]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/frame.c
* defs.h (extract_signed_integer, extract_unsigned_integer,
[thirdparty/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44 #include "block.h"
45 #include "inline-frame.h"
46
47 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
48 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
49
50 /* We keep a cache of stack frames, each of which is a "struct
51 frame_info". The innermost one gets allocated (in
52 wait_for_inferior) each time the inferior stops; current_frame
53 points to it. Additional frames get allocated (in get_prev_frame)
54 as needed, and are chained through the next and prev fields. Any
55 time that the frame cache becomes invalid (most notably when we
56 execute something, but also if we change how we interpret the
57 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
58 which reads new symbols)), we should call reinit_frame_cache. */
59
60 struct frame_info
61 {
62 /* Level of this frame. The inner-most (youngest) frame is at level
63 0. As you move towards the outer-most (oldest) frame, the level
64 increases. This is a cached value. It could just as easily be
65 computed by counting back from the selected frame to the inner
66 most frame. */
67 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
68 reserved to indicate a bogus frame - one that has been created
69 just to keep GDB happy (GDB always needs a frame). For the
70 moment leave this as speculation. */
71 int level;
72
73 /* The frame's low-level unwinder and corresponding cache. The
74 low-level unwinder is responsible for unwinding register values
75 for the previous frame. The low-level unwind methods are
76 selected based on the presence, or otherwise, of register unwind
77 information such as CFI. */
78 void *prologue_cache;
79 const struct frame_unwind *unwind;
80
81 /* Cached copy of the previous frame's architecture. */
82 struct
83 {
84 int p;
85 struct gdbarch *arch;
86 } prev_arch;
87
88 /* Cached copy of the previous frame's resume address. */
89 struct {
90 int p;
91 CORE_ADDR value;
92 } prev_pc;
93
94 /* Cached copy of the previous frame's function address. */
95 struct
96 {
97 CORE_ADDR addr;
98 int p;
99 } prev_func;
100
101 /* This frame's ID. */
102 struct
103 {
104 int p;
105 struct frame_id value;
106 } this_id;
107
108 /* The frame's high-level base methods, and corresponding cache.
109 The high level base methods are selected based on the frame's
110 debug info. */
111 const struct frame_base *base;
112 void *base_cache;
113
114 /* Pointers to the next (down, inner, younger) and previous (up,
115 outer, older) frame_info's in the frame cache. */
116 struct frame_info *next; /* down, inner, younger */
117 int prev_p;
118 struct frame_info *prev; /* up, outer, older */
119
120 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
121 could. Only valid when PREV_P is set. */
122 enum unwind_stop_reason stop_reason;
123 };
124
125 /* Flag to control debugging. */
126
127 int frame_debug;
128 static void
129 show_frame_debug (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131 {
132 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
133 }
134
135 /* Flag to indicate whether backtraces should stop at main et.al. */
136
137 static int backtrace_past_main;
138 static void
139 show_backtrace_past_main (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Whether backtraces should continue past \"main\" is %s.\n"),
144 value);
145 }
146
147 static int backtrace_past_entry;
148 static void
149 show_backtrace_past_entry (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("\
153 Whether backtraces should continue past the entry point of a program is %s.\n"),
154 value);
155 }
156
157 static int backtrace_limit = INT_MAX;
158 static void
159 show_backtrace_limit (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file, _("\
163 An upper bound on the number of backtrace levels is %s.\n"),
164 value);
165 }
166
167
168 static void
169 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
170 {
171 if (p)
172 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
173 else
174 fprintf_unfiltered (file, "!%s", name);
175 }
176
177 void
178 fprint_frame_id (struct ui_file *file, struct frame_id id)
179 {
180 fprintf_unfiltered (file, "{");
181 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
182 fprintf_unfiltered (file, ",");
183 fprint_field (file, "code", id.code_addr_p, id.code_addr);
184 fprintf_unfiltered (file, ",");
185 fprint_field (file, "special", id.special_addr_p, id.special_addr);
186 if (id.inline_depth)
187 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
188 fprintf_unfiltered (file, "}");
189 }
190
191 static void
192 fprint_frame_type (struct ui_file *file, enum frame_type type)
193 {
194 switch (type)
195 {
196 case NORMAL_FRAME:
197 fprintf_unfiltered (file, "NORMAL_FRAME");
198 return;
199 case DUMMY_FRAME:
200 fprintf_unfiltered (file, "DUMMY_FRAME");
201 return;
202 case INLINE_FRAME:
203 fprintf_unfiltered (file, "INLINE_FRAME");
204 return;
205 case SENTINEL_FRAME:
206 fprintf_unfiltered (file, "SENTINEL_FRAME");
207 return;
208 case SIGTRAMP_FRAME:
209 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
210 return;
211 case ARCH_FRAME:
212 fprintf_unfiltered (file, "ARCH_FRAME");
213 return;
214 default:
215 fprintf_unfiltered (file, "<unknown type>");
216 return;
217 };
218 }
219
220 static void
221 fprint_frame (struct ui_file *file, struct frame_info *fi)
222 {
223 if (fi == NULL)
224 {
225 fprintf_unfiltered (file, "<NULL frame>");
226 return;
227 }
228 fprintf_unfiltered (file, "{");
229 fprintf_unfiltered (file, "level=%d", fi->level);
230 fprintf_unfiltered (file, ",");
231 fprintf_unfiltered (file, "type=");
232 if (fi->unwind != NULL)
233 fprint_frame_type (file, fi->unwind->type);
234 else
235 fprintf_unfiltered (file, "<unknown>");
236 fprintf_unfiltered (file, ",");
237 fprintf_unfiltered (file, "unwind=");
238 if (fi->unwind != NULL)
239 gdb_print_host_address (fi->unwind, file);
240 else
241 fprintf_unfiltered (file, "<unknown>");
242 fprintf_unfiltered (file, ",");
243 fprintf_unfiltered (file, "pc=");
244 if (fi->next != NULL && fi->next->prev_pc.p)
245 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
246 else
247 fprintf_unfiltered (file, "<unknown>");
248 fprintf_unfiltered (file, ",");
249 fprintf_unfiltered (file, "id=");
250 if (fi->this_id.p)
251 fprint_frame_id (file, fi->this_id.value);
252 else
253 fprintf_unfiltered (file, "<unknown>");
254 fprintf_unfiltered (file, ",");
255 fprintf_unfiltered (file, "func=");
256 if (fi->next != NULL && fi->next->prev_func.p)
257 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
258 else
259 fprintf_unfiltered (file, "<unknown>");
260 fprintf_unfiltered (file, "}");
261 }
262
263 /* Given FRAME, return the enclosing normal frame for inlined
264 function frames. Otherwise return the original frame. */
265
266 static struct frame_info *
267 skip_inlined_frames (struct frame_info *frame)
268 {
269 while (get_frame_type (frame) == INLINE_FRAME)
270 frame = get_prev_frame (frame);
271
272 return frame;
273 }
274
275 /* Return a frame uniq ID that can be used to, later, re-find the
276 frame. */
277
278 struct frame_id
279 get_frame_id (struct frame_info *fi)
280 {
281 if (fi == NULL)
282 {
283 return null_frame_id;
284 }
285 if (!fi->this_id.p)
286 {
287 if (frame_debug)
288 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
289 fi->level);
290 /* Find the unwinder. */
291 if (fi->unwind == NULL)
292 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
293 /* Find THIS frame's ID. */
294 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
295 fi->this_id.p = 1;
296 if (frame_debug)
297 {
298 fprintf_unfiltered (gdb_stdlog, "-> ");
299 fprint_frame_id (gdb_stdlog, fi->this_id.value);
300 fprintf_unfiltered (gdb_stdlog, " }\n");
301 }
302 }
303 return fi->this_id.value;
304 }
305
306 struct frame_id
307 get_stack_frame_id (struct frame_info *next_frame)
308 {
309 return get_frame_id (skip_inlined_frames (next_frame));
310 }
311
312 struct frame_id
313 frame_unwind_caller_id (struct frame_info *next_frame)
314 {
315 struct frame_info *this_frame;
316
317 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
318 the frame chain, leading to this function unintentionally
319 returning a null_frame_id (e.g., when a caller requests the frame
320 ID of "main()"s caller. */
321
322 next_frame = skip_inlined_frames (next_frame);
323 this_frame = get_prev_frame_1 (next_frame);
324 if (this_frame)
325 return get_frame_id (skip_inlined_frames (this_frame));
326 else
327 return null_frame_id;
328 }
329
330 const struct frame_id null_frame_id; /* All zeros. */
331
332 struct frame_id
333 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
334 CORE_ADDR special_addr)
335 {
336 struct frame_id id = null_frame_id;
337 id.stack_addr = stack_addr;
338 id.stack_addr_p = 1;
339 id.code_addr = code_addr;
340 id.code_addr_p = 1;
341 id.special_addr = special_addr;
342 id.special_addr_p = 1;
343 return id;
344 }
345
346 struct frame_id
347 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
348 {
349 struct frame_id id = null_frame_id;
350 id.stack_addr = stack_addr;
351 id.stack_addr_p = 1;
352 id.code_addr = code_addr;
353 id.code_addr_p = 1;
354 return id;
355 }
356
357 struct frame_id
358 frame_id_build_wild (CORE_ADDR stack_addr)
359 {
360 struct frame_id id = null_frame_id;
361 id.stack_addr = stack_addr;
362 id.stack_addr_p = 1;
363 return id;
364 }
365
366 int
367 frame_id_p (struct frame_id l)
368 {
369 int p;
370 /* The frame is valid iff it has a valid stack address. */
371 p = l.stack_addr_p;
372 if (frame_debug)
373 {
374 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
375 fprint_frame_id (gdb_stdlog, l);
376 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
377 }
378 return p;
379 }
380
381 int
382 frame_id_inlined_p (struct frame_id l)
383 {
384 if (!frame_id_p (l))
385 return 0;
386
387 return (l.inline_depth != 0);
388 }
389
390 int
391 frame_id_eq (struct frame_id l, struct frame_id r)
392 {
393 int eq;
394 if (!l.stack_addr_p || !r.stack_addr_p)
395 /* Like a NaN, if either ID is invalid, the result is false.
396 Note that a frame ID is invalid iff it is the null frame ID. */
397 eq = 0;
398 else if (l.stack_addr != r.stack_addr)
399 /* If .stack addresses are different, the frames are different. */
400 eq = 0;
401 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
402 /* An invalid code addr is a wild card. If .code addresses are
403 different, the frames are different. */
404 eq = 0;
405 else if (l.special_addr_p && r.special_addr_p
406 && l.special_addr != r.special_addr)
407 /* An invalid special addr is a wild card (or unused). Otherwise
408 if special addresses are different, the frames are different. */
409 eq = 0;
410 else if (l.inline_depth != r.inline_depth)
411 /* If inline depths are different, the frames must be different. */
412 eq = 0;
413 else
414 /* Frames are equal. */
415 eq = 1;
416
417 if (frame_debug)
418 {
419 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
420 fprint_frame_id (gdb_stdlog, l);
421 fprintf_unfiltered (gdb_stdlog, ",r=");
422 fprint_frame_id (gdb_stdlog, r);
423 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
424 }
425 return eq;
426 }
427
428 /* Safety net to check whether frame ID L should be inner to
429 frame ID R, according to their stack addresses.
430
431 This method cannot be used to compare arbitrary frames, as the
432 ranges of valid stack addresses may be discontiguous (e.g. due
433 to sigaltstack).
434
435 However, it can be used as safety net to discover invalid frame
436 IDs in certain circumstances. Assuming that NEXT is the immediate
437 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
438
439 * The stack address of NEXT must be inner-than-or-equal to the stack
440 address of THIS.
441
442 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
443 error has occurred.
444
445 * If NEXT and THIS have different stack addresses, no other frame
446 in the frame chain may have a stack address in between.
447
448 Therefore, if frame_id_inner (TEST, THIS) holds, but
449 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
450 to a valid frame in the frame chain.
451
452 The sanity checks above cannot be performed when a SIGTRAMP frame
453 is involved, because signal handlers might be executed on a different
454 stack than the stack used by the routine that caused the signal
455 to be raised. This can happen for instance when a thread exceeds
456 its maximum stack size. In this case, certain compilers implement
457 a stack overflow strategy that cause the handler to be run on a
458 different stack. */
459
460 static int
461 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
462 {
463 int inner;
464 if (!l.stack_addr_p || !r.stack_addr_p)
465 /* Like NaN, any operation involving an invalid ID always fails. */
466 inner = 0;
467 else if (l.inline_depth > r.inline_depth
468 && l.stack_addr == r.stack_addr
469 && l.code_addr_p == r.code_addr_p
470 && l.special_addr_p == r.special_addr_p
471 && l.special_addr == r.special_addr)
472 {
473 /* Same function, different inlined functions. */
474 struct block *lb, *rb;
475
476 gdb_assert (l.code_addr_p && r.code_addr_p);
477
478 lb = block_for_pc (l.code_addr);
479 rb = block_for_pc (r.code_addr);
480
481 if (lb == NULL || rb == NULL)
482 /* Something's gone wrong. */
483 inner = 0;
484 else
485 /* This will return true if LB and RB are the same block, or
486 if the block with the smaller depth lexically encloses the
487 block with the greater depth. */
488 inner = contained_in (lb, rb);
489 }
490 else
491 /* Only return non-zero when strictly inner than. Note that, per
492 comment in "frame.h", there is some fuzz here. Frameless
493 functions are not strictly inner than (same .stack but
494 different .code and/or .special address). */
495 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
496 if (frame_debug)
497 {
498 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
499 fprint_frame_id (gdb_stdlog, l);
500 fprintf_unfiltered (gdb_stdlog, ",r=");
501 fprint_frame_id (gdb_stdlog, r);
502 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
503 }
504 return inner;
505 }
506
507 struct frame_info *
508 frame_find_by_id (struct frame_id id)
509 {
510 struct frame_info *frame, *prev_frame;
511
512 /* ZERO denotes the null frame, let the caller decide what to do
513 about it. Should it instead return get_current_frame()? */
514 if (!frame_id_p (id))
515 return NULL;
516
517 for (frame = get_current_frame (); ; frame = prev_frame)
518 {
519 struct frame_id this = get_frame_id (frame);
520 if (frame_id_eq (id, this))
521 /* An exact match. */
522 return frame;
523
524 prev_frame = get_prev_frame (frame);
525 if (!prev_frame)
526 return NULL;
527
528 /* As a safety net to avoid unnecessary backtracing while trying
529 to find an invalid ID, we check for a common situation where
530 we can detect from comparing stack addresses that no other
531 frame in the current frame chain can have this ID. See the
532 comment at frame_id_inner for details. */
533 if (get_frame_type (frame) == NORMAL_FRAME
534 && !frame_id_inner (get_frame_arch (frame), id, this)
535 && frame_id_inner (get_frame_arch (prev_frame), id,
536 get_frame_id (prev_frame)))
537 return NULL;
538 }
539 return NULL;
540 }
541
542 static CORE_ADDR
543 frame_unwind_pc (struct frame_info *this_frame)
544 {
545 if (!this_frame->prev_pc.p)
546 {
547 CORE_ADDR pc;
548 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
549 {
550 /* The right way. The `pure' way. The one true way. This
551 method depends solely on the register-unwind code to
552 determine the value of registers in THIS frame, and hence
553 the value of this frame's PC (resume address). A typical
554 implementation is no more than:
555
556 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
557 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
558
559 Note: this method is very heavily dependent on a correct
560 register-unwind implementation, it pays to fix that
561 method first; this method is frame type agnostic, since
562 it only deals with register values, it works with any
563 frame. This is all in stark contrast to the old
564 FRAME_SAVED_PC which would try to directly handle all the
565 different ways that a PC could be unwound. */
566 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
567 }
568 else
569 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
570 this_frame->prev_pc.value = pc;
571 this_frame->prev_pc.p = 1;
572 if (frame_debug)
573 fprintf_unfiltered (gdb_stdlog,
574 "{ frame_unwind_caller_pc (this_frame=%d) -> 0x%s }\n",
575 this_frame->level,
576 hex_string (this_frame->prev_pc.value));
577 }
578 return this_frame->prev_pc.value;
579 }
580
581 CORE_ADDR
582 frame_unwind_caller_pc (struct frame_info *this_frame)
583 {
584 return frame_unwind_pc (skip_inlined_frames (this_frame));
585 }
586
587 CORE_ADDR
588 get_frame_func (struct frame_info *this_frame)
589 {
590 struct frame_info *next_frame = this_frame->next;
591
592 if (!next_frame->prev_func.p)
593 {
594 /* Make certain that this, and not the adjacent, function is
595 found. */
596 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
597 next_frame->prev_func.p = 1;
598 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
599 if (frame_debug)
600 fprintf_unfiltered (gdb_stdlog,
601 "{ get_frame_func (this_frame=%d) -> %s }\n",
602 this_frame->level,
603 hex_string (next_frame->prev_func.addr));
604 }
605 return next_frame->prev_func.addr;
606 }
607
608 static int
609 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
610 {
611 return frame_register_read (src, regnum, buf);
612 }
613
614 struct regcache *
615 frame_save_as_regcache (struct frame_info *this_frame)
616 {
617 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
618 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
619 regcache_save (regcache, do_frame_register_read, this_frame);
620 discard_cleanups (cleanups);
621 return regcache;
622 }
623
624 void
625 frame_pop (struct frame_info *this_frame)
626 {
627 struct frame_info *prev_frame;
628 struct regcache *scratch;
629 struct cleanup *cleanups;
630
631 if (get_frame_type (this_frame) == DUMMY_FRAME)
632 {
633 /* Popping a dummy frame involves restoring more than just registers.
634 dummy_frame_pop does all the work. */
635 dummy_frame_pop (get_frame_id (this_frame));
636 return;
637 }
638
639 /* Ensure that we have a frame to pop to. */
640 prev_frame = get_prev_frame_1 (this_frame);
641
642 if (!prev_frame)
643 error (_("Cannot pop the initial frame."));
644
645 /* Make a copy of all the register values unwound from this frame.
646 Save them in a scratch buffer so that there isn't a race between
647 trying to extract the old values from the current regcache while
648 at the same time writing new values into that same cache. */
649 scratch = frame_save_as_regcache (prev_frame);
650 cleanups = make_cleanup_regcache_xfree (scratch);
651
652 /* FIXME: cagney/2003-03-16: It should be possible to tell the
653 target's register cache that it is about to be hit with a burst
654 register transfer and that the sequence of register writes should
655 be batched. The pair target_prepare_to_store() and
656 target_store_registers() kind of suggest this functionality.
657 Unfortunately, they don't implement it. Their lack of a formal
658 definition can lead to targets writing back bogus values
659 (arguably a bug in the target code mind). */
660 /* Now copy those saved registers into the current regcache.
661 Here, regcache_cpy() calls regcache_restore(). */
662 regcache_cpy (get_current_regcache (), scratch);
663 do_cleanups (cleanups);
664
665 /* We've made right mess of GDB's local state, just discard
666 everything. */
667 reinit_frame_cache ();
668 }
669
670 void
671 frame_register_unwind (struct frame_info *frame, int regnum,
672 int *optimizedp, enum lval_type *lvalp,
673 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
674 {
675 struct value *value;
676
677 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
678 that the value proper does not need to be fetched. */
679 gdb_assert (optimizedp != NULL);
680 gdb_assert (lvalp != NULL);
681 gdb_assert (addrp != NULL);
682 gdb_assert (realnump != NULL);
683 /* gdb_assert (bufferp != NULL); */
684
685 value = frame_unwind_register_value (frame, regnum);
686
687 gdb_assert (value != NULL);
688
689 *optimizedp = value_optimized_out (value);
690 *lvalp = VALUE_LVAL (value);
691 *addrp = value_address (value);
692 *realnump = VALUE_REGNUM (value);
693
694 if (bufferp)
695 memcpy (bufferp, value_contents_all (value),
696 TYPE_LENGTH (value_type (value)));
697
698 /* Dispose of the new value. This prevents watchpoints from
699 trying to watch the saved frame pointer. */
700 release_value (value);
701 value_free (value);
702 }
703
704 void
705 frame_register (struct frame_info *frame, int regnum,
706 int *optimizedp, enum lval_type *lvalp,
707 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
708 {
709 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
710 that the value proper does not need to be fetched. */
711 gdb_assert (optimizedp != NULL);
712 gdb_assert (lvalp != NULL);
713 gdb_assert (addrp != NULL);
714 gdb_assert (realnump != NULL);
715 /* gdb_assert (bufferp != NULL); */
716
717 /* Obtain the register value by unwinding the register from the next
718 (more inner frame). */
719 gdb_assert (frame != NULL && frame->next != NULL);
720 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
721 realnump, bufferp);
722 }
723
724 void
725 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
726 {
727 int optimized;
728 CORE_ADDR addr;
729 int realnum;
730 enum lval_type lval;
731 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
732 &realnum, buf);
733 }
734
735 void
736 get_frame_register (struct frame_info *frame,
737 int regnum, gdb_byte *buf)
738 {
739 frame_unwind_register (frame->next, regnum, buf);
740 }
741
742 struct value *
743 frame_unwind_register_value (struct frame_info *frame, int regnum)
744 {
745 struct gdbarch *gdbarch;
746 struct value *value;
747
748 gdb_assert (frame != NULL);
749 gdbarch = frame_unwind_arch (frame);
750
751 if (frame_debug)
752 {
753 fprintf_unfiltered (gdb_stdlog, "\
754 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
755 frame->level, regnum,
756 user_reg_map_regnum_to_name (gdbarch, regnum));
757 }
758
759 /* Find the unwinder. */
760 if (frame->unwind == NULL)
761 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
762
763 /* Ask this frame to unwind its register. */
764 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
765
766 if (frame_debug)
767 {
768 fprintf_unfiltered (gdb_stdlog, "->");
769 if (value_optimized_out (value))
770 fprintf_unfiltered (gdb_stdlog, " optimized out");
771 else
772 {
773 if (VALUE_LVAL (value) == lval_register)
774 fprintf_unfiltered (gdb_stdlog, " register=%d",
775 VALUE_REGNUM (value));
776 else if (VALUE_LVAL (value) == lval_memory)
777 fprintf_unfiltered (gdb_stdlog, " address=%s",
778 paddress (gdbarch,
779 value_address (value)));
780 else
781 fprintf_unfiltered (gdb_stdlog, " computed");
782
783 if (value_lazy (value))
784 fprintf_unfiltered (gdb_stdlog, " lazy");
785 else
786 {
787 int i;
788 const gdb_byte *buf = value_contents (value);
789
790 fprintf_unfiltered (gdb_stdlog, " bytes=");
791 fprintf_unfiltered (gdb_stdlog, "[");
792 for (i = 0; i < register_size (gdbarch, regnum); i++)
793 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
794 fprintf_unfiltered (gdb_stdlog, "]");
795 }
796 }
797
798 fprintf_unfiltered (gdb_stdlog, " }\n");
799 }
800
801 return value;
802 }
803
804 struct value *
805 get_frame_register_value (struct frame_info *frame, int regnum)
806 {
807 return frame_unwind_register_value (frame->next, regnum);
808 }
809
810 LONGEST
811 frame_unwind_register_signed (struct frame_info *frame, int regnum)
812 {
813 struct gdbarch *gdbarch = frame_unwind_arch (frame);
814 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
815 int size = register_size (gdbarch, regnum);
816 gdb_byte buf[MAX_REGISTER_SIZE];
817 frame_unwind_register (frame, regnum, buf);
818 return extract_signed_integer (buf, size, byte_order);
819 }
820
821 LONGEST
822 get_frame_register_signed (struct frame_info *frame, int regnum)
823 {
824 return frame_unwind_register_signed (frame->next, regnum);
825 }
826
827 ULONGEST
828 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
829 {
830 struct gdbarch *gdbarch = frame_unwind_arch (frame);
831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
832 int size = register_size (gdbarch, regnum);
833 gdb_byte buf[MAX_REGISTER_SIZE];
834 frame_unwind_register (frame, regnum, buf);
835 return extract_unsigned_integer (buf, size, byte_order);
836 }
837
838 ULONGEST
839 get_frame_register_unsigned (struct frame_info *frame, int regnum)
840 {
841 return frame_unwind_register_unsigned (frame->next, regnum);
842 }
843
844 void
845 put_frame_register (struct frame_info *frame, int regnum,
846 const gdb_byte *buf)
847 {
848 struct gdbarch *gdbarch = get_frame_arch (frame);
849 int realnum;
850 int optim;
851 enum lval_type lval;
852 CORE_ADDR addr;
853 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
854 if (optim)
855 error (_("Attempt to assign to a value that was optimized out."));
856 switch (lval)
857 {
858 case lval_memory:
859 {
860 /* FIXME: write_memory doesn't yet take constant buffers.
861 Arrrg! */
862 gdb_byte tmp[MAX_REGISTER_SIZE];
863 memcpy (tmp, buf, register_size (gdbarch, regnum));
864 write_memory (addr, tmp, register_size (gdbarch, regnum));
865 break;
866 }
867 case lval_register:
868 regcache_cooked_write (get_current_regcache (), realnum, buf);
869 break;
870 default:
871 error (_("Attempt to assign to an unmodifiable value."));
872 }
873 }
874
875 /* frame_register_read ()
876
877 Find and return the value of REGNUM for the specified stack frame.
878 The number of bytes copied is REGISTER_SIZE (REGNUM).
879
880 Returns 0 if the register value could not be found. */
881
882 int
883 frame_register_read (struct frame_info *frame, int regnum,
884 gdb_byte *myaddr)
885 {
886 int optimized;
887 enum lval_type lval;
888 CORE_ADDR addr;
889 int realnum;
890 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
891
892 return !optimized;
893 }
894
895 int
896 get_frame_register_bytes (struct frame_info *frame, int regnum,
897 CORE_ADDR offset, int len, gdb_byte *myaddr)
898 {
899 struct gdbarch *gdbarch = get_frame_arch (frame);
900 int i;
901 int maxsize;
902 int numregs;
903
904 /* Skip registers wholly inside of OFFSET. */
905 while (offset >= register_size (gdbarch, regnum))
906 {
907 offset -= register_size (gdbarch, regnum);
908 regnum++;
909 }
910
911 /* Ensure that we will not read beyond the end of the register file.
912 This can only ever happen if the debug information is bad. */
913 maxsize = -offset;
914 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
915 for (i = regnum; i < numregs; i++)
916 {
917 int thissize = register_size (gdbarch, i);
918 if (thissize == 0)
919 break; /* This register is not available on this architecture. */
920 maxsize += thissize;
921 }
922 if (len > maxsize)
923 {
924 warning (_("Bad debug information detected: "
925 "Attempt to read %d bytes from registers."), len);
926 return 0;
927 }
928
929 /* Copy the data. */
930 while (len > 0)
931 {
932 int curr_len = register_size (gdbarch, regnum) - offset;
933 if (curr_len > len)
934 curr_len = len;
935
936 if (curr_len == register_size (gdbarch, regnum))
937 {
938 if (!frame_register_read (frame, regnum, myaddr))
939 return 0;
940 }
941 else
942 {
943 gdb_byte buf[MAX_REGISTER_SIZE];
944 if (!frame_register_read (frame, regnum, buf))
945 return 0;
946 memcpy (myaddr, buf + offset, curr_len);
947 }
948
949 myaddr += curr_len;
950 len -= curr_len;
951 offset = 0;
952 regnum++;
953 }
954
955 return 1;
956 }
957
958 void
959 put_frame_register_bytes (struct frame_info *frame, int regnum,
960 CORE_ADDR offset, int len, const gdb_byte *myaddr)
961 {
962 struct gdbarch *gdbarch = get_frame_arch (frame);
963
964 /* Skip registers wholly inside of OFFSET. */
965 while (offset >= register_size (gdbarch, regnum))
966 {
967 offset -= register_size (gdbarch, regnum);
968 regnum++;
969 }
970
971 /* Copy the data. */
972 while (len > 0)
973 {
974 int curr_len = register_size (gdbarch, regnum) - offset;
975 if (curr_len > len)
976 curr_len = len;
977
978 if (curr_len == register_size (gdbarch, regnum))
979 {
980 put_frame_register (frame, regnum, myaddr);
981 }
982 else
983 {
984 gdb_byte buf[MAX_REGISTER_SIZE];
985 frame_register_read (frame, regnum, buf);
986 memcpy (buf + offset, myaddr, curr_len);
987 put_frame_register (frame, regnum, buf);
988 }
989
990 myaddr += curr_len;
991 len -= curr_len;
992 offset = 0;
993 regnum++;
994 }
995 }
996
997 /* Create a sentinel frame. */
998
999 static struct frame_info *
1000 create_sentinel_frame (struct regcache *regcache)
1001 {
1002 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1003 frame->level = -1;
1004 /* Explicitly initialize the sentinel frame's cache. Provide it
1005 with the underlying regcache. In the future additional
1006 information, such as the frame's thread will be added. */
1007 frame->prologue_cache = sentinel_frame_cache (regcache);
1008 /* For the moment there is only one sentinel frame implementation. */
1009 frame->unwind = sentinel_frame_unwind;
1010 /* Link this frame back to itself. The frame is self referential
1011 (the unwound PC is the same as the pc), so make it so. */
1012 frame->next = frame;
1013 /* Make the sentinel frame's ID valid, but invalid. That way all
1014 comparisons with it should fail. */
1015 frame->this_id.p = 1;
1016 frame->this_id.value = null_frame_id;
1017 if (frame_debug)
1018 {
1019 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1020 fprint_frame (gdb_stdlog, frame);
1021 fprintf_unfiltered (gdb_stdlog, " }\n");
1022 }
1023 return frame;
1024 }
1025
1026 /* Info about the innermost stack frame (contents of FP register) */
1027
1028 static struct frame_info *current_frame;
1029
1030 /* Cache for frame addresses already read by gdb. Valid only while
1031 inferior is stopped. Control variables for the frame cache should
1032 be local to this module. */
1033
1034 static struct obstack frame_cache_obstack;
1035
1036 void *
1037 frame_obstack_zalloc (unsigned long size)
1038 {
1039 void *data = obstack_alloc (&frame_cache_obstack, size);
1040 memset (data, 0, size);
1041 return data;
1042 }
1043
1044 /* Return the innermost (currently executing) stack frame. This is
1045 split into two functions. The function unwind_to_current_frame()
1046 is wrapped in catch exceptions so that, even when the unwind of the
1047 sentinel frame fails, the function still returns a stack frame. */
1048
1049 static int
1050 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1051 {
1052 struct frame_info *frame = get_prev_frame (args);
1053 /* A sentinel frame can fail to unwind, e.g., because its PC value
1054 lands in somewhere like start. */
1055 if (frame == NULL)
1056 return 1;
1057 current_frame = frame;
1058 return 0;
1059 }
1060
1061 struct frame_info *
1062 get_current_frame (void)
1063 {
1064 /* First check, and report, the lack of registers. Having GDB
1065 report "No stack!" or "No memory" when the target doesn't even
1066 have registers is very confusing. Besides, "printcmd.exp"
1067 explicitly checks that ``print $pc'' with no registers prints "No
1068 registers". */
1069 if (!target_has_registers)
1070 error (_("No registers."));
1071 if (!target_has_stack)
1072 error (_("No stack."));
1073 if (!target_has_memory)
1074 error (_("No memory."));
1075 if (ptid_equal (inferior_ptid, null_ptid))
1076 error (_("No selected thread."));
1077 if (is_exited (inferior_ptid))
1078 error (_("Invalid selected thread."));
1079 if (is_executing (inferior_ptid))
1080 error (_("Target is executing."));
1081
1082 if (current_frame == NULL)
1083 {
1084 struct frame_info *sentinel_frame =
1085 create_sentinel_frame (get_current_regcache ());
1086 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1087 RETURN_MASK_ERROR) != 0)
1088 {
1089 /* Oops! Fake a current frame? Is this useful? It has a PC
1090 of zero, for instance. */
1091 current_frame = sentinel_frame;
1092 }
1093 }
1094 return current_frame;
1095 }
1096
1097 /* The "selected" stack frame is used by default for local and arg
1098 access. May be zero, for no selected frame. */
1099
1100 static struct frame_info *selected_frame;
1101
1102 int
1103 has_stack_frames (void)
1104 {
1105 if (!target_has_registers || !target_has_stack || !target_has_memory)
1106 return 0;
1107
1108 /* No current inferior, no frame. */
1109 if (ptid_equal (inferior_ptid, null_ptid))
1110 return 0;
1111
1112 /* Don't try to read from a dead thread. */
1113 if (is_exited (inferior_ptid))
1114 return 0;
1115
1116 /* ... or from a spinning thread. */
1117 if (is_executing (inferior_ptid))
1118 return 0;
1119
1120 return 1;
1121 }
1122
1123 /* Return the selected frame. Always non-NULL (unless there isn't an
1124 inferior sufficient for creating a frame) in which case an error is
1125 thrown. */
1126
1127 struct frame_info *
1128 get_selected_frame (const char *message)
1129 {
1130 if (selected_frame == NULL)
1131 {
1132 if (message != NULL && !has_stack_frames ())
1133 error (("%s"), message);
1134 /* Hey! Don't trust this. It should really be re-finding the
1135 last selected frame of the currently selected thread. This,
1136 though, is better than nothing. */
1137 select_frame (get_current_frame ());
1138 }
1139 /* There is always a frame. */
1140 gdb_assert (selected_frame != NULL);
1141 return selected_frame;
1142 }
1143
1144 /* This is a variant of get_selected_frame() which can be called when
1145 the inferior does not have a frame; in that case it will return
1146 NULL instead of calling error(). */
1147
1148 struct frame_info *
1149 deprecated_safe_get_selected_frame (void)
1150 {
1151 if (!has_stack_frames ())
1152 return NULL;
1153 return get_selected_frame (NULL);
1154 }
1155
1156 /* Select frame FI (or NULL - to invalidate the current frame). */
1157
1158 void
1159 select_frame (struct frame_info *fi)
1160 {
1161 struct symtab *s;
1162
1163 selected_frame = fi;
1164 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1165 frame is being invalidated. */
1166 if (deprecated_selected_frame_level_changed_hook)
1167 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1168
1169 /* FIXME: kseitz/2002-08-28: It would be nice to call
1170 selected_frame_level_changed_event() right here, but due to limitations
1171 in the current interfaces, we would end up flooding UIs with events
1172 because select_frame() is used extensively internally.
1173
1174 Once we have frame-parameterized frame (and frame-related) commands,
1175 the event notification can be moved here, since this function will only
1176 be called when the user's selected frame is being changed. */
1177
1178 /* Ensure that symbols for this frame are read in. Also, determine the
1179 source language of this frame, and switch to it if desired. */
1180 if (fi)
1181 {
1182 /* We retrieve the frame's symtab by using the frame PC. However
1183 we cannot use the frame PC as-is, because it usually points to
1184 the instruction following the "call", which is sometimes the
1185 first instruction of another function. So we rely on
1186 get_frame_address_in_block() which provides us with a PC which
1187 is guaranteed to be inside the frame's code block. */
1188 s = find_pc_symtab (get_frame_address_in_block (fi));
1189 if (s
1190 && s->language != current_language->la_language
1191 && s->language != language_unknown
1192 && language_mode == language_mode_auto)
1193 {
1194 set_language (s->language);
1195 }
1196 }
1197 }
1198
1199 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1200 Always returns a non-NULL value. */
1201
1202 struct frame_info *
1203 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1204 {
1205 struct frame_info *fi;
1206
1207 if (frame_debug)
1208 {
1209 fprintf_unfiltered (gdb_stdlog,
1210 "{ create_new_frame (addr=%s, pc=%s) ",
1211 hex_string (addr), hex_string (pc));
1212 }
1213
1214 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1215
1216 fi->next = create_sentinel_frame (get_current_regcache ());
1217
1218 /* Set/update this frame's cached PC value, found in the next frame.
1219 Do this before looking for this frame's unwinder. A sniffer is
1220 very likely to read this, and the corresponding unwinder is
1221 entitled to rely that the PC doesn't magically change. */
1222 fi->next->prev_pc.value = pc;
1223 fi->next->prev_pc.p = 1;
1224
1225 /* Select/initialize both the unwind function and the frame's type
1226 based on the PC. */
1227 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1228
1229 fi->this_id.p = 1;
1230 fi->this_id.value = frame_id_build (addr, pc);
1231
1232 if (frame_debug)
1233 {
1234 fprintf_unfiltered (gdb_stdlog, "-> ");
1235 fprint_frame (gdb_stdlog, fi);
1236 fprintf_unfiltered (gdb_stdlog, " }\n");
1237 }
1238
1239 return fi;
1240 }
1241
1242 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1243 innermost frame). Be careful to not fall off the bottom of the
1244 frame chain and onto the sentinel frame. */
1245
1246 struct frame_info *
1247 get_next_frame (struct frame_info *this_frame)
1248 {
1249 if (this_frame->level > 0)
1250 return this_frame->next;
1251 else
1252 return NULL;
1253 }
1254
1255 /* Observer for the target_changed event. */
1256
1257 static void
1258 frame_observer_target_changed (struct target_ops *target)
1259 {
1260 reinit_frame_cache ();
1261 }
1262
1263 /* Flush the entire frame cache. */
1264
1265 void
1266 reinit_frame_cache (void)
1267 {
1268 struct frame_info *fi;
1269
1270 /* Tear down all frame caches. */
1271 for (fi = current_frame; fi != NULL; fi = fi->prev)
1272 {
1273 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1274 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1275 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1276 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1277 }
1278
1279 /* Since we can't really be sure what the first object allocated was */
1280 obstack_free (&frame_cache_obstack, 0);
1281 obstack_init (&frame_cache_obstack);
1282
1283 if (current_frame != NULL)
1284 annotate_frames_invalid ();
1285
1286 current_frame = NULL; /* Invalidate cache */
1287 select_frame (NULL);
1288 if (frame_debug)
1289 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1290 }
1291
1292 /* Find where a register is saved (in memory or another register).
1293 The result of frame_register_unwind is just where it is saved
1294 relative to this particular frame. */
1295
1296 static void
1297 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1298 int *optimizedp, enum lval_type *lvalp,
1299 CORE_ADDR *addrp, int *realnump)
1300 {
1301 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1302
1303 while (this_frame != NULL)
1304 {
1305 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1306 addrp, realnump, NULL);
1307
1308 if (*optimizedp)
1309 break;
1310
1311 if (*lvalp != lval_register)
1312 break;
1313
1314 regnum = *realnump;
1315 this_frame = get_next_frame (this_frame);
1316 }
1317 }
1318
1319 /* Return a "struct frame_info" corresponding to the frame that called
1320 THIS_FRAME. Returns NULL if there is no such frame.
1321
1322 Unlike get_prev_frame, this function always tries to unwind the
1323 frame. */
1324
1325 static struct frame_info *
1326 get_prev_frame_1 (struct frame_info *this_frame)
1327 {
1328 struct frame_id this_id;
1329 struct gdbarch *gdbarch;
1330
1331 gdb_assert (this_frame != NULL);
1332 gdbarch = get_frame_arch (this_frame);
1333
1334 if (frame_debug)
1335 {
1336 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1337 if (this_frame != NULL)
1338 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1339 else
1340 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1341 fprintf_unfiltered (gdb_stdlog, ") ");
1342 }
1343
1344 /* Only try to do the unwind once. */
1345 if (this_frame->prev_p)
1346 {
1347 if (frame_debug)
1348 {
1349 fprintf_unfiltered (gdb_stdlog, "-> ");
1350 fprint_frame (gdb_stdlog, this_frame->prev);
1351 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1352 }
1353 return this_frame->prev;
1354 }
1355
1356 /* If the frame unwinder hasn't been selected yet, we must do so
1357 before setting prev_p; otherwise the check for misbehaved
1358 sniffers will think that this frame's sniffer tried to unwind
1359 further (see frame_cleanup_after_sniffer). */
1360 if (this_frame->unwind == NULL)
1361 this_frame->unwind
1362 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1363
1364 this_frame->prev_p = 1;
1365 this_frame->stop_reason = UNWIND_NO_REASON;
1366
1367 /* If we are unwinding from an inline frame, all of the below tests
1368 were already performed when we unwound from the next non-inline
1369 frame. We must skip them, since we can not get THIS_FRAME's ID
1370 until we have unwound all the way down to the previous non-inline
1371 frame. */
1372 if (get_frame_type (this_frame) == INLINE_FRAME)
1373 return get_prev_frame_raw (this_frame);
1374
1375 /* Check that this frame's ID was valid. If it wasn't, don't try to
1376 unwind to the prev frame. Be careful to not apply this test to
1377 the sentinel frame. */
1378 this_id = get_frame_id (this_frame);
1379 if (this_frame->level >= 0 && !frame_id_p (this_id))
1380 {
1381 if (frame_debug)
1382 {
1383 fprintf_unfiltered (gdb_stdlog, "-> ");
1384 fprint_frame (gdb_stdlog, NULL);
1385 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1386 }
1387 this_frame->stop_reason = UNWIND_NULL_ID;
1388 return NULL;
1389 }
1390
1391 /* Check that this frame's ID isn't inner to (younger, below, next)
1392 the next frame. This happens when a frame unwind goes backwards.
1393 This check is valid only if this frame and the next frame are NORMAL.
1394 See the comment at frame_id_inner for details. */
1395 if (get_frame_type (this_frame) == NORMAL_FRAME
1396 && this_frame->next->unwind->type == NORMAL_FRAME
1397 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1398 get_frame_id (this_frame->next)))
1399 {
1400 if (frame_debug)
1401 {
1402 fprintf_unfiltered (gdb_stdlog, "-> ");
1403 fprint_frame (gdb_stdlog, NULL);
1404 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1405 }
1406 this_frame->stop_reason = UNWIND_INNER_ID;
1407 return NULL;
1408 }
1409
1410 /* Check that this and the next frame are not identical. If they
1411 are, there is most likely a stack cycle. As with the inner-than
1412 test above, avoid comparing the inner-most and sentinel frames. */
1413 if (this_frame->level > 0
1414 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1415 {
1416 if (frame_debug)
1417 {
1418 fprintf_unfiltered (gdb_stdlog, "-> ");
1419 fprint_frame (gdb_stdlog, NULL);
1420 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1421 }
1422 this_frame->stop_reason = UNWIND_SAME_ID;
1423 return NULL;
1424 }
1425
1426 /* Check that this and the next frame do not unwind the PC register
1427 to the same memory location. If they do, then even though they
1428 have different frame IDs, the new frame will be bogus; two
1429 functions can't share a register save slot for the PC. This can
1430 happen when the prologue analyzer finds a stack adjustment, but
1431 no PC save.
1432
1433 This check does assume that the "PC register" is roughly a
1434 traditional PC, even if the gdbarch_unwind_pc method adjusts
1435 it (we do not rely on the value, only on the unwound PC being
1436 dependent on this value). A potential improvement would be
1437 to have the frame prev_pc method and the gdbarch unwind_pc
1438 method set the same lval and location information as
1439 frame_register_unwind. */
1440 if (this_frame->level > 0
1441 && gdbarch_pc_regnum (gdbarch) >= 0
1442 && get_frame_type (this_frame) == NORMAL_FRAME
1443 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1444 || get_frame_type (this_frame->next) == INLINE_FRAME))
1445 {
1446 int optimized, realnum, nrealnum;
1447 enum lval_type lval, nlval;
1448 CORE_ADDR addr, naddr;
1449
1450 frame_register_unwind_location (this_frame,
1451 gdbarch_pc_regnum (gdbarch),
1452 &optimized, &lval, &addr, &realnum);
1453 frame_register_unwind_location (get_next_frame (this_frame),
1454 gdbarch_pc_regnum (gdbarch),
1455 &optimized, &nlval, &naddr, &nrealnum);
1456
1457 if ((lval == lval_memory && lval == nlval && addr == naddr)
1458 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1459 {
1460 if (frame_debug)
1461 {
1462 fprintf_unfiltered (gdb_stdlog, "-> ");
1463 fprint_frame (gdb_stdlog, NULL);
1464 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1465 }
1466
1467 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1468 this_frame->prev = NULL;
1469 return NULL;
1470 }
1471 }
1472
1473 return get_prev_frame_raw (this_frame);
1474 }
1475
1476 /* Construct a new "struct frame_info" and link it previous to
1477 this_frame. */
1478
1479 static struct frame_info *
1480 get_prev_frame_raw (struct frame_info *this_frame)
1481 {
1482 struct frame_info *prev_frame;
1483
1484 /* Allocate the new frame but do not wire it in to the frame chain.
1485 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1486 frame->next to pull some fancy tricks (of course such code is, by
1487 definition, recursive). Try to prevent it.
1488
1489 There is no reason to worry about memory leaks, should the
1490 remainder of the function fail. The allocated memory will be
1491 quickly reclaimed when the frame cache is flushed, and the `we've
1492 been here before' check above will stop repeated memory
1493 allocation calls. */
1494 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1495 prev_frame->level = this_frame->level + 1;
1496
1497 /* Don't yet compute ->unwind (and hence ->type). It is computed
1498 on-demand in get_frame_type, frame_register_unwind, and
1499 get_frame_id. */
1500
1501 /* Don't yet compute the frame's ID. It is computed on-demand by
1502 get_frame_id(). */
1503
1504 /* The unwound frame ID is validate at the start of this function,
1505 as part of the logic to decide if that frame should be further
1506 unwound, and not here while the prev frame is being created.
1507 Doing this makes it possible for the user to examine a frame that
1508 has an invalid frame ID.
1509
1510 Some very old VAX code noted: [...] For the sake of argument,
1511 suppose that the stack is somewhat trashed (which is one reason
1512 that "info frame" exists). So, return 0 (indicating we don't
1513 know the address of the arglist) if we don't know what frame this
1514 frame calls. */
1515
1516 /* Link it in. */
1517 this_frame->prev = prev_frame;
1518 prev_frame->next = this_frame;
1519
1520 if (frame_debug)
1521 {
1522 fprintf_unfiltered (gdb_stdlog, "-> ");
1523 fprint_frame (gdb_stdlog, prev_frame);
1524 fprintf_unfiltered (gdb_stdlog, " }\n");
1525 }
1526
1527 return prev_frame;
1528 }
1529
1530 /* Debug routine to print a NULL frame being returned. */
1531
1532 static void
1533 frame_debug_got_null_frame (struct frame_info *this_frame,
1534 const char *reason)
1535 {
1536 if (frame_debug)
1537 {
1538 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1539 if (this_frame != NULL)
1540 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1541 else
1542 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1543 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1544 }
1545 }
1546
1547 /* Is this (non-sentinel) frame in the "main"() function? */
1548
1549 static int
1550 inside_main_func (struct frame_info *this_frame)
1551 {
1552 struct minimal_symbol *msymbol;
1553 CORE_ADDR maddr;
1554
1555 if (symfile_objfile == 0)
1556 return 0;
1557 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1558 if (msymbol == NULL)
1559 return 0;
1560 /* Make certain that the code, and not descriptor, address is
1561 returned. */
1562 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1563 SYMBOL_VALUE_ADDRESS (msymbol),
1564 &current_target);
1565 return maddr == get_frame_func (this_frame);
1566 }
1567
1568 /* Test whether THIS_FRAME is inside the process entry point function. */
1569
1570 static int
1571 inside_entry_func (struct frame_info *this_frame)
1572 {
1573 return (get_frame_func (this_frame) == entry_point_address ());
1574 }
1575
1576 /* Return a structure containing various interesting information about
1577 the frame that called THIS_FRAME. Returns NULL if there is entier
1578 no such frame or the frame fails any of a set of target-independent
1579 condition that should terminate the frame chain (e.g., as unwinding
1580 past main()).
1581
1582 This function should not contain target-dependent tests, such as
1583 checking whether the program-counter is zero. */
1584
1585 struct frame_info *
1586 get_prev_frame (struct frame_info *this_frame)
1587 {
1588 struct frame_info *prev_frame;
1589
1590 /* There is always a frame. If this assertion fails, suspect that
1591 something should be calling get_selected_frame() or
1592 get_current_frame(). */
1593 gdb_assert (this_frame != NULL);
1594
1595 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1596 sense to stop unwinding at a dummy frame. One place where a dummy
1597 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1598 pcsqh register (space register for the instruction at the head of the
1599 instruction queue) cannot be written directly; the only way to set it
1600 is to branch to code that is in the target space. In order to implement
1601 frame dummies on HPUX, the called function is made to jump back to where
1602 the inferior was when the user function was called. If gdb was inside
1603 the main function when we created the dummy frame, the dummy frame will
1604 point inside the main function. */
1605 if (this_frame->level >= 0
1606 && get_frame_type (this_frame) == NORMAL_FRAME
1607 && !backtrace_past_main
1608 && inside_main_func (this_frame))
1609 /* Don't unwind past main(). Note, this is done _before_ the
1610 frame has been marked as previously unwound. That way if the
1611 user later decides to enable unwinds past main(), that will
1612 automatically happen. */
1613 {
1614 frame_debug_got_null_frame (this_frame, "inside main func");
1615 return NULL;
1616 }
1617
1618 /* If the user's backtrace limit has been exceeded, stop. We must
1619 add two to the current level; one of those accounts for backtrace_limit
1620 being 1-based and the level being 0-based, and the other accounts for
1621 the level of the new frame instead of the level of the current
1622 frame. */
1623 if (this_frame->level + 2 > backtrace_limit)
1624 {
1625 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1626 return NULL;
1627 }
1628
1629 /* If we're already inside the entry function for the main objfile,
1630 then it isn't valid. Don't apply this test to a dummy frame -
1631 dummy frame PCs typically land in the entry func. Don't apply
1632 this test to the sentinel frame. Sentinel frames should always
1633 be allowed to unwind. */
1634 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1635 wasn't checking for "main" in the minimal symbols. With that
1636 fixed asm-source tests now stop in "main" instead of halting the
1637 backtrace in weird and wonderful ways somewhere inside the entry
1638 file. Suspect that tests for inside the entry file/func were
1639 added to work around that (now fixed) case. */
1640 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1641 suggested having the inside_entry_func test use the
1642 inside_main_func() msymbol trick (along with entry_point_address()
1643 I guess) to determine the address range of the start function.
1644 That should provide a far better stopper than the current
1645 heuristics. */
1646 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1647 applied tail-call optimizations to main so that a function called
1648 from main returns directly to the caller of main. Since we don't
1649 stop at main, we should at least stop at the entry point of the
1650 application. */
1651 if (this_frame->level >= 0
1652 && get_frame_type (this_frame) == NORMAL_FRAME
1653 && !backtrace_past_entry
1654 && inside_entry_func (this_frame))
1655 {
1656 frame_debug_got_null_frame (this_frame, "inside entry func");
1657 return NULL;
1658 }
1659
1660 /* Assume that the only way to get a zero PC is through something
1661 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1662 will never unwind a zero PC. */
1663 if (this_frame->level > 0
1664 && (get_frame_type (this_frame) == NORMAL_FRAME
1665 || get_frame_type (this_frame) == INLINE_FRAME)
1666 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1667 && get_frame_pc (this_frame) == 0)
1668 {
1669 frame_debug_got_null_frame (this_frame, "zero PC");
1670 return NULL;
1671 }
1672
1673 return get_prev_frame_1 (this_frame);
1674 }
1675
1676 CORE_ADDR
1677 get_frame_pc (struct frame_info *frame)
1678 {
1679 gdb_assert (frame->next != NULL);
1680 return frame_unwind_pc (frame->next);
1681 }
1682
1683 /* Return an address that falls within THIS_FRAME's code block. */
1684
1685 CORE_ADDR
1686 get_frame_address_in_block (struct frame_info *this_frame)
1687 {
1688 /* A draft address. */
1689 CORE_ADDR pc = get_frame_pc (this_frame);
1690
1691 struct frame_info *next_frame = this_frame->next;
1692
1693 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1694 Normally the resume address is inside the body of the function
1695 associated with THIS_FRAME, but there is a special case: when
1696 calling a function which the compiler knows will never return
1697 (for instance abort), the call may be the very last instruction
1698 in the calling function. The resume address will point after the
1699 call and may be at the beginning of a different function
1700 entirely.
1701
1702 If THIS_FRAME is a signal frame or dummy frame, then we should
1703 not adjust the unwound PC. For a dummy frame, GDB pushed the
1704 resume address manually onto the stack. For a signal frame, the
1705 OS may have pushed the resume address manually and invoked the
1706 handler (e.g. GNU/Linux), or invoked the trampoline which called
1707 the signal handler - but in either case the signal handler is
1708 expected to return to the trampoline. So in both of these
1709 cases we know that the resume address is executable and
1710 related. So we only need to adjust the PC if THIS_FRAME
1711 is a normal function.
1712
1713 If the program has been interrupted while THIS_FRAME is current,
1714 then clearly the resume address is inside the associated
1715 function. There are three kinds of interruption: debugger stop
1716 (next frame will be SENTINEL_FRAME), operating system
1717 signal or exception (next frame will be SIGTRAMP_FRAME),
1718 or debugger-induced function call (next frame will be
1719 DUMMY_FRAME). So we only need to adjust the PC if
1720 NEXT_FRAME is a normal function.
1721
1722 We check the type of NEXT_FRAME first, since it is already
1723 known; frame type is determined by the unwinder, and since
1724 we have THIS_FRAME we've already selected an unwinder for
1725 NEXT_FRAME.
1726
1727 If the next frame is inlined, we need to keep going until we find
1728 the real function - for instance, if a signal handler is invoked
1729 while in an inlined function, then the code address of the
1730 "calling" normal function should not be adjusted either. */
1731
1732 while (get_frame_type (next_frame) == INLINE_FRAME)
1733 next_frame = next_frame->next;
1734
1735 if (get_frame_type (next_frame) == NORMAL_FRAME
1736 && (get_frame_type (this_frame) == NORMAL_FRAME
1737 || get_frame_type (this_frame) == INLINE_FRAME))
1738 return pc - 1;
1739
1740 return pc;
1741 }
1742
1743 void
1744 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1745 {
1746 struct frame_info *next_frame;
1747 int notcurrent;
1748
1749 /* If the next frame represents an inlined function call, this frame's
1750 sal is the "call site" of that inlined function, which can not
1751 be inferred from get_frame_pc. */
1752 next_frame = get_next_frame (frame);
1753 if (frame_inlined_callees (frame) > 0)
1754 {
1755 struct symbol *sym;
1756
1757 if (next_frame)
1758 sym = get_frame_function (next_frame);
1759 else
1760 sym = inline_skipped_symbol (inferior_ptid);
1761
1762 init_sal (sal);
1763 if (SYMBOL_LINE (sym) != 0)
1764 {
1765 sal->symtab = SYMBOL_SYMTAB (sym);
1766 sal->line = SYMBOL_LINE (sym);
1767 }
1768 else
1769 /* If the symbol does not have a location, we don't know where
1770 the call site is. Do not pretend to. This is jarring, but
1771 we can't do much better. */
1772 sal->pc = get_frame_pc (frame);
1773
1774 return;
1775 }
1776
1777 /* If FRAME is not the innermost frame, that normally means that
1778 FRAME->pc points at the return instruction (which is *after* the
1779 call instruction), and we want to get the line containing the
1780 call (because the call is where the user thinks the program is).
1781 However, if the next frame is either a SIGTRAMP_FRAME or a
1782 DUMMY_FRAME, then the next frame will contain a saved interrupt
1783 PC and such a PC indicates the current (rather than next)
1784 instruction/line, consequently, for such cases, want to get the
1785 line containing fi->pc. */
1786 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1787 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1788 }
1789
1790 /* Per "frame.h", return the ``address'' of the frame. Code should
1791 really be using get_frame_id(). */
1792 CORE_ADDR
1793 get_frame_base (struct frame_info *fi)
1794 {
1795 return get_frame_id (fi).stack_addr;
1796 }
1797
1798 /* High-level offsets into the frame. Used by the debug info. */
1799
1800 CORE_ADDR
1801 get_frame_base_address (struct frame_info *fi)
1802 {
1803 if (get_frame_type (fi) != NORMAL_FRAME)
1804 return 0;
1805 if (fi->base == NULL)
1806 fi->base = frame_base_find_by_frame (fi);
1807 /* Sneaky: If the low-level unwind and high-level base code share a
1808 common unwinder, let them share the prologue cache. */
1809 if (fi->base->unwind == fi->unwind)
1810 return fi->base->this_base (fi, &fi->prologue_cache);
1811 return fi->base->this_base (fi, &fi->base_cache);
1812 }
1813
1814 CORE_ADDR
1815 get_frame_locals_address (struct frame_info *fi)
1816 {
1817 void **cache;
1818 if (get_frame_type (fi) != NORMAL_FRAME)
1819 return 0;
1820 /* If there isn't a frame address method, find it. */
1821 if (fi->base == NULL)
1822 fi->base = frame_base_find_by_frame (fi);
1823 /* Sneaky: If the low-level unwind and high-level base code share a
1824 common unwinder, let them share the prologue cache. */
1825 if (fi->base->unwind == fi->unwind)
1826 return fi->base->this_locals (fi, &fi->prologue_cache);
1827 return fi->base->this_locals (fi, &fi->base_cache);
1828 }
1829
1830 CORE_ADDR
1831 get_frame_args_address (struct frame_info *fi)
1832 {
1833 void **cache;
1834 if (get_frame_type (fi) != NORMAL_FRAME)
1835 return 0;
1836 /* If there isn't a frame address method, find it. */
1837 if (fi->base == NULL)
1838 fi->base = frame_base_find_by_frame (fi);
1839 /* Sneaky: If the low-level unwind and high-level base code share a
1840 common unwinder, let them share the prologue cache. */
1841 if (fi->base->unwind == fi->unwind)
1842 return fi->base->this_args (fi, &fi->prologue_cache);
1843 return fi->base->this_args (fi, &fi->base_cache);
1844 }
1845
1846 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1847 or -1 for a NULL frame. */
1848
1849 int
1850 frame_relative_level (struct frame_info *fi)
1851 {
1852 if (fi == NULL)
1853 return -1;
1854 else
1855 return fi->level;
1856 }
1857
1858 enum frame_type
1859 get_frame_type (struct frame_info *frame)
1860 {
1861 if (frame->unwind == NULL)
1862 /* Initialize the frame's unwinder because that's what
1863 provides the frame's type. */
1864 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1865 return frame->unwind->type;
1866 }
1867
1868 /* Memory access methods. */
1869
1870 void
1871 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1872 gdb_byte *buf, int len)
1873 {
1874 read_memory (addr, buf, len);
1875 }
1876
1877 LONGEST
1878 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1879 int len)
1880 {
1881 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1882 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1883 return read_memory_integer (addr, len, byte_order);
1884 }
1885
1886 ULONGEST
1887 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1888 int len)
1889 {
1890 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1891 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1892 return read_memory_unsigned_integer (addr, len, byte_order);
1893 }
1894
1895 int
1896 safe_frame_unwind_memory (struct frame_info *this_frame,
1897 CORE_ADDR addr, gdb_byte *buf, int len)
1898 {
1899 /* NOTE: target_read_memory returns zero on success! */
1900 return !target_read_memory (addr, buf, len);
1901 }
1902
1903 /* Architecture methods. */
1904
1905 struct gdbarch *
1906 get_frame_arch (struct frame_info *this_frame)
1907 {
1908 return frame_unwind_arch (this_frame->next);
1909 }
1910
1911 struct gdbarch *
1912 frame_unwind_arch (struct frame_info *next_frame)
1913 {
1914 if (!next_frame->prev_arch.p)
1915 {
1916 struct gdbarch *arch;
1917
1918 if (next_frame->unwind == NULL)
1919 next_frame->unwind
1920 = frame_unwind_find_by_frame (next_frame,
1921 &next_frame->prologue_cache);
1922
1923 if (next_frame->unwind->prev_arch != NULL)
1924 arch = next_frame->unwind->prev_arch (next_frame,
1925 &next_frame->prologue_cache);
1926 else
1927 arch = get_frame_arch (next_frame);
1928
1929 next_frame->prev_arch.arch = arch;
1930 next_frame->prev_arch.p = 1;
1931 if (frame_debug)
1932 fprintf_unfiltered (gdb_stdlog,
1933 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
1934 next_frame->level,
1935 gdbarch_bfd_arch_info (arch)->printable_name);
1936 }
1937
1938 return next_frame->prev_arch.arch;
1939 }
1940
1941 struct gdbarch *
1942 frame_unwind_caller_arch (struct frame_info *next_frame)
1943 {
1944 return frame_unwind_arch (skip_inlined_frames (next_frame));
1945 }
1946
1947 /* Stack pointer methods. */
1948
1949 CORE_ADDR
1950 get_frame_sp (struct frame_info *this_frame)
1951 {
1952 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1953 /* Normality - an architecture that provides a way of obtaining any
1954 frame inner-most address. */
1955 if (gdbarch_unwind_sp_p (gdbarch))
1956 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
1957 operate on THIS_FRAME now. */
1958 return gdbarch_unwind_sp (gdbarch, this_frame->next);
1959 /* Now things are really are grim. Hope that the value returned by
1960 the gdbarch_sp_regnum register is meaningful. */
1961 if (gdbarch_sp_regnum (gdbarch) >= 0)
1962 return get_frame_register_unsigned (this_frame,
1963 gdbarch_sp_regnum (gdbarch));
1964 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1965 }
1966
1967 /* Return the reason why we can't unwind past FRAME. */
1968
1969 enum unwind_stop_reason
1970 get_frame_unwind_stop_reason (struct frame_info *frame)
1971 {
1972 /* If we haven't tried to unwind past this point yet, then assume
1973 that unwinding would succeed. */
1974 if (frame->prev_p == 0)
1975 return UNWIND_NO_REASON;
1976
1977 /* Otherwise, we set a reason when we succeeded (or failed) to
1978 unwind. */
1979 return frame->stop_reason;
1980 }
1981
1982 /* Return a string explaining REASON. */
1983
1984 const char *
1985 frame_stop_reason_string (enum unwind_stop_reason reason)
1986 {
1987 switch (reason)
1988 {
1989 case UNWIND_NULL_ID:
1990 return _("unwinder did not report frame ID");
1991
1992 case UNWIND_INNER_ID:
1993 return _("previous frame inner to this frame (corrupt stack?)");
1994
1995 case UNWIND_SAME_ID:
1996 return _("previous frame identical to this frame (corrupt stack?)");
1997
1998 case UNWIND_NO_SAVED_PC:
1999 return _("frame did not save the PC");
2000
2001 case UNWIND_NO_REASON:
2002 case UNWIND_FIRST_ERROR:
2003 default:
2004 internal_error (__FILE__, __LINE__,
2005 "Invalid frame stop reason");
2006 }
2007 }
2008
2009 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2010 FRAME. */
2011
2012 static void
2013 frame_cleanup_after_sniffer (void *arg)
2014 {
2015 struct frame_info *frame = arg;
2016
2017 /* The sniffer should not allocate a prologue cache if it did not
2018 match this frame. */
2019 gdb_assert (frame->prologue_cache == NULL);
2020
2021 /* No sniffer should extend the frame chain; sniff based on what is
2022 already certain. */
2023 gdb_assert (!frame->prev_p);
2024
2025 /* The sniffer should not check the frame's ID; that's circular. */
2026 gdb_assert (!frame->this_id.p);
2027
2028 /* Clear cached fields dependent on the unwinder.
2029
2030 The previous PC is independent of the unwinder, but the previous
2031 function is not (see get_frame_address_in_block). */
2032 frame->prev_func.p = 0;
2033 frame->prev_func.addr = 0;
2034
2035 /* Discard the unwinder last, so that we can easily find it if an assertion
2036 in this function triggers. */
2037 frame->unwind = NULL;
2038 }
2039
2040 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2041 Return a cleanup which should be called if unwinding fails, and
2042 discarded if it succeeds. */
2043
2044 struct cleanup *
2045 frame_prepare_for_sniffer (struct frame_info *frame,
2046 const struct frame_unwind *unwind)
2047 {
2048 gdb_assert (frame->unwind == NULL);
2049 frame->unwind = unwind;
2050 return make_cleanup (frame_cleanup_after_sniffer, frame);
2051 }
2052
2053 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2054
2055 static struct cmd_list_element *set_backtrace_cmdlist;
2056 static struct cmd_list_element *show_backtrace_cmdlist;
2057
2058 static void
2059 set_backtrace_cmd (char *args, int from_tty)
2060 {
2061 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2062 }
2063
2064 static void
2065 show_backtrace_cmd (char *args, int from_tty)
2066 {
2067 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2068 }
2069
2070 void
2071 _initialize_frame (void)
2072 {
2073 obstack_init (&frame_cache_obstack);
2074
2075 observer_attach_target_changed (frame_observer_target_changed);
2076
2077 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2078 Set backtrace specific variables.\n\
2079 Configure backtrace variables such as the backtrace limit"),
2080 &set_backtrace_cmdlist, "set backtrace ",
2081 0/*allow-unknown*/, &setlist);
2082 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2083 Show backtrace specific variables\n\
2084 Show backtrace variables such as the backtrace limit"),
2085 &show_backtrace_cmdlist, "show backtrace ",
2086 0/*allow-unknown*/, &showlist);
2087
2088 add_setshow_boolean_cmd ("past-main", class_obscure,
2089 &backtrace_past_main, _("\
2090 Set whether backtraces should continue past \"main\"."), _("\
2091 Show whether backtraces should continue past \"main\"."), _("\
2092 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2093 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2094 of the stack trace."),
2095 NULL,
2096 show_backtrace_past_main,
2097 &set_backtrace_cmdlist,
2098 &show_backtrace_cmdlist);
2099
2100 add_setshow_boolean_cmd ("past-entry", class_obscure,
2101 &backtrace_past_entry, _("\
2102 Set whether backtraces should continue past the entry point of a program."),
2103 _("\
2104 Show whether backtraces should continue past the entry point of a program."),
2105 _("\
2106 Normally there are no callers beyond the entry point of a program, so GDB\n\
2107 will terminate the backtrace there. Set this variable if you need to see \n\
2108 the rest of the stack trace."),
2109 NULL,
2110 show_backtrace_past_entry,
2111 &set_backtrace_cmdlist,
2112 &show_backtrace_cmdlist);
2113
2114 add_setshow_integer_cmd ("limit", class_obscure,
2115 &backtrace_limit, _("\
2116 Set an upper bound on the number of backtrace levels."), _("\
2117 Show the upper bound on the number of backtrace levels."), _("\
2118 No more than the specified number of frames can be displayed or examined.\n\
2119 Zero is unlimited."),
2120 NULL,
2121 show_backtrace_limit,
2122 &set_backtrace_cmdlist,
2123 &show_backtrace_cmdlist);
2124
2125 /* Debug this files internals. */
2126 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2127 Set frame debugging."), _("\
2128 Show frame debugging."), _("\
2129 When non-zero, frame specific internal debugging is enabled."),
2130 NULL,
2131 show_frame_debug,
2132 &setdebuglist, &showdebuglist);
2133 }