]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/frame.c
Remove regcache_cooked_write
[thirdparty/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
48 innermost frame.
49
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object. */
59
60 enum cached_copy_status
61 {
62 /* Value is unknown. */
63 CC_UNKNOWN,
64
65 /* We have a value. */
66 CC_VALUE,
67
68 /* Value was not saved. */
69 CC_NOT_SAVED,
70
71 /* Value is unavailable. */
72 CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
77 wait_for_inferior) each time the inferior stops; sentinel_frame
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
84
85 struct frame_info
86 {
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
91 most frame. */
92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
96 int level;
97
98 /* The frame's program space. */
99 struct program_space *pspace;
100
101 /* The frame's address space. */
102 const address_space *aspace;
103
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
107 selected based on the presence, or otherwise, of register unwind
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
111
112 /* Cached copy of the previous frame's architecture. */
113 struct
114 {
115 int p;
116 struct gdbarch *arch;
117 } prev_arch;
118
119 /* Cached copy of the previous frame's resume address. */
120 struct {
121 enum cached_copy_status status;
122 CORE_ADDR value;
123 } prev_pc;
124
125 /* Cached copy of the previous frame's function address. */
126 struct
127 {
128 CORE_ADDR addr;
129 int p;
130 } prev_func;
131
132 /* This frame's ID. */
133 struct
134 {
135 int p;
136 struct frame_id value;
137 } this_id;
138
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
141 debug info. */
142 const struct frame_base *base;
143 void *base_cache;
144
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
148 int prev_p;
149 struct frame_info *prev; /* up, outer, older */
150
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
154
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174 const struct frame_info *frame = (const struct frame_info *) ap;
175 const struct frame_id f_id = frame->this_id.value;
176 hashval_t hash = 0;
177
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
179 || f_id.code_addr_p
180 || f_id.special_addr_p);
181
182 if (f_id.stack_status == FID_STACK_VALID)
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
191
192 return hash;
193 }
194
195 /* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
203
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
210
211 static void
212 frame_stash_create (void)
213 {
214 frame_stash = htab_create (100,
215 frame_addr_hash,
216 frame_addr_hash_eq,
217 NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
222 otherwise. */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227 struct frame_info **slot;
228
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
231
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
233 frame,
234 INSERT);
235
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
240 if (*slot != NULL)
241 return 0;
242
243 *slot = frame;
244 return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
249 NULL. */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254 struct frame_info dummy;
255 struct frame_info *frame;
256
257 dummy.this_id.value = id;
258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259 return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
264 invalidated. */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269 htab_empty (frame_stash);
270 }
271
272 /* See frame.h */
273 scoped_restore_selected_frame::scoped_restore_selected_frame ()
274 {
275 m_fid = get_frame_id (get_selected_frame (NULL));
276 }
277
278 /* See frame.h */
279 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
280 {
281 frame_info *frame = frame_find_by_id (m_fid);
282 if (frame == NULL)
283 warning (_("Unable to restore previously selected frame."));
284 else
285 select_frame (frame);
286 }
287
288 /* Flag to control debugging. */
289
290 unsigned int frame_debug;
291 static void
292 show_frame_debug (struct ui_file *file, int from_tty,
293 struct cmd_list_element *c, const char *value)
294 {
295 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
296 }
297
298 /* Flag to indicate whether backtraces should stop at main et.al. */
299
300 static int backtrace_past_main;
301 static void
302 show_backtrace_past_main (struct ui_file *file, int from_tty,
303 struct cmd_list_element *c, const char *value)
304 {
305 fprintf_filtered (file,
306 _("Whether backtraces should "
307 "continue past \"main\" is %s.\n"),
308 value);
309 }
310
311 static int backtrace_past_entry;
312 static void
313 show_backtrace_past_entry (struct ui_file *file, int from_tty,
314 struct cmd_list_element *c, const char *value)
315 {
316 fprintf_filtered (file, _("Whether backtraces should continue past the "
317 "entry point of a program is %s.\n"),
318 value);
319 }
320
321 static unsigned int backtrace_limit = UINT_MAX;
322 static void
323 show_backtrace_limit (struct ui_file *file, int from_tty,
324 struct cmd_list_element *c, const char *value)
325 {
326 fprintf_filtered (file,
327 _("An upper bound on the number "
328 "of backtrace levels is %s.\n"),
329 value);
330 }
331
332
333 static void
334 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
335 {
336 if (p)
337 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
338 else
339 fprintf_unfiltered (file, "!%s", name);
340 }
341
342 void
343 fprint_frame_id (struct ui_file *file, struct frame_id id)
344 {
345 fprintf_unfiltered (file, "{");
346
347 if (id.stack_status == FID_STACK_INVALID)
348 fprintf_unfiltered (file, "!stack");
349 else if (id.stack_status == FID_STACK_UNAVAILABLE)
350 fprintf_unfiltered (file, "stack=<unavailable>");
351 else if (id.stack_status == FID_STACK_SENTINEL)
352 fprintf_unfiltered (file, "stack=<sentinel>");
353 else
354 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
355 fprintf_unfiltered (file, ",");
356
357 fprint_field (file, "code", id.code_addr_p, id.code_addr);
358 fprintf_unfiltered (file, ",");
359
360 fprint_field (file, "special", id.special_addr_p, id.special_addr);
361
362 if (id.artificial_depth)
363 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
364
365 fprintf_unfiltered (file, "}");
366 }
367
368 static void
369 fprint_frame_type (struct ui_file *file, enum frame_type type)
370 {
371 switch (type)
372 {
373 case NORMAL_FRAME:
374 fprintf_unfiltered (file, "NORMAL_FRAME");
375 return;
376 case DUMMY_FRAME:
377 fprintf_unfiltered (file, "DUMMY_FRAME");
378 return;
379 case INLINE_FRAME:
380 fprintf_unfiltered (file, "INLINE_FRAME");
381 return;
382 case TAILCALL_FRAME:
383 fprintf_unfiltered (file, "TAILCALL_FRAME");
384 return;
385 case SIGTRAMP_FRAME:
386 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
387 return;
388 case ARCH_FRAME:
389 fprintf_unfiltered (file, "ARCH_FRAME");
390 return;
391 case SENTINEL_FRAME:
392 fprintf_unfiltered (file, "SENTINEL_FRAME");
393 return;
394 default:
395 fprintf_unfiltered (file, "<unknown type>");
396 return;
397 };
398 }
399
400 static void
401 fprint_frame (struct ui_file *file, struct frame_info *fi)
402 {
403 if (fi == NULL)
404 {
405 fprintf_unfiltered (file, "<NULL frame>");
406 return;
407 }
408 fprintf_unfiltered (file, "{");
409 fprintf_unfiltered (file, "level=%d", fi->level);
410 fprintf_unfiltered (file, ",");
411 fprintf_unfiltered (file, "type=");
412 if (fi->unwind != NULL)
413 fprint_frame_type (file, fi->unwind->type);
414 else
415 fprintf_unfiltered (file, "<unknown>");
416 fprintf_unfiltered (file, ",");
417 fprintf_unfiltered (file, "unwind=");
418 if (fi->unwind != NULL)
419 gdb_print_host_address (fi->unwind, file);
420 else
421 fprintf_unfiltered (file, "<unknown>");
422 fprintf_unfiltered (file, ",");
423 fprintf_unfiltered (file, "pc=");
424 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
425 fprintf_unfiltered (file, "<unknown>");
426 else if (fi->next->prev_pc.status == CC_VALUE)
427 fprintf_unfiltered (file, "%s",
428 hex_string (fi->next->prev_pc.value));
429 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
430 val_print_not_saved (file);
431 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
432 val_print_unavailable (file);
433 fprintf_unfiltered (file, ",");
434 fprintf_unfiltered (file, "id=");
435 if (fi->this_id.p)
436 fprint_frame_id (file, fi->this_id.value);
437 else
438 fprintf_unfiltered (file, "<unknown>");
439 fprintf_unfiltered (file, ",");
440 fprintf_unfiltered (file, "func=");
441 if (fi->next != NULL && fi->next->prev_func.p)
442 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
443 else
444 fprintf_unfiltered (file, "<unknown>");
445 fprintf_unfiltered (file, "}");
446 }
447
448 /* Given FRAME, return the enclosing frame as found in real frames read-in from
449 inferior memory. Skip any previous frames which were made up by GDB.
450 Return FRAME if FRAME is a non-artificial frame.
451 Return NULL if FRAME is the start of an artificial-only chain. */
452
453 static struct frame_info *
454 skip_artificial_frames (struct frame_info *frame)
455 {
456 /* Note we use get_prev_frame_always, and not get_prev_frame. The
457 latter will truncate the frame chain, leading to this function
458 unintentionally returning a null_frame_id (e.g., when the user
459 sets a backtrace limit).
460
461 Note that for record targets we may get a frame chain that consists
462 of artificial frames only. */
463 while (get_frame_type (frame) == INLINE_FRAME
464 || get_frame_type (frame) == TAILCALL_FRAME)
465 {
466 frame = get_prev_frame_always (frame);
467 if (frame == NULL)
468 break;
469 }
470
471 return frame;
472 }
473
474 struct frame_info *
475 skip_unwritable_frames (struct frame_info *frame)
476 {
477 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
478 {
479 frame = get_prev_frame (frame);
480 if (frame == NULL)
481 break;
482 }
483
484 return frame;
485 }
486
487 /* See frame.h. */
488
489 struct frame_info *
490 skip_tailcall_frames (struct frame_info *frame)
491 {
492 while (get_frame_type (frame) == TAILCALL_FRAME)
493 {
494 /* Note that for record targets we may get a frame chain that consists of
495 tailcall frames only. */
496 frame = get_prev_frame (frame);
497 if (frame == NULL)
498 break;
499 }
500
501 return frame;
502 }
503
504 /* Compute the frame's uniq ID that can be used to, later, re-find the
505 frame. */
506
507 static void
508 compute_frame_id (struct frame_info *fi)
509 {
510 gdb_assert (!fi->this_id.p);
511
512 if (frame_debug)
513 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
514 fi->level);
515 /* Find the unwinder. */
516 if (fi->unwind == NULL)
517 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
518 /* Find THIS frame's ID. */
519 /* Default to outermost if no ID is found. */
520 fi->this_id.value = outer_frame_id;
521 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
522 gdb_assert (frame_id_p (fi->this_id.value));
523 fi->this_id.p = 1;
524 if (frame_debug)
525 {
526 fprintf_unfiltered (gdb_stdlog, "-> ");
527 fprint_frame_id (gdb_stdlog, fi->this_id.value);
528 fprintf_unfiltered (gdb_stdlog, " }\n");
529 }
530 }
531
532 /* Return a frame uniq ID that can be used to, later, re-find the
533 frame. */
534
535 struct frame_id
536 get_frame_id (struct frame_info *fi)
537 {
538 if (fi == NULL)
539 return null_frame_id;
540
541 if (!fi->this_id.p)
542 {
543 int stashed;
544
545 /* If we haven't computed the frame id yet, then it must be that
546 this is the current frame. Compute it now, and stash the
547 result. The IDs of other frames are computed as soon as
548 they're created, in order to detect cycles. See
549 get_prev_frame_if_no_cycle. */
550 gdb_assert (fi->level == 0);
551
552 /* Compute. */
553 compute_frame_id (fi);
554
555 /* Since this is the first frame in the chain, this should
556 always succeed. */
557 stashed = frame_stash_add (fi);
558 gdb_assert (stashed);
559 }
560
561 return fi->this_id.value;
562 }
563
564 struct frame_id
565 get_stack_frame_id (struct frame_info *next_frame)
566 {
567 return get_frame_id (skip_artificial_frames (next_frame));
568 }
569
570 struct frame_id
571 frame_unwind_caller_id (struct frame_info *next_frame)
572 {
573 struct frame_info *this_frame;
574
575 /* Use get_prev_frame_always, and not get_prev_frame. The latter
576 will truncate the frame chain, leading to this function
577 unintentionally returning a null_frame_id (e.g., when a caller
578 requests the frame ID of "main()"s caller. */
579
580 next_frame = skip_artificial_frames (next_frame);
581 if (next_frame == NULL)
582 return null_frame_id;
583
584 this_frame = get_prev_frame_always (next_frame);
585 if (this_frame)
586 return get_frame_id (skip_artificial_frames (this_frame));
587 else
588 return null_frame_id;
589 }
590
591 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
592 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
593 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
594
595 struct frame_id
596 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
597 CORE_ADDR special_addr)
598 {
599 struct frame_id id = null_frame_id;
600
601 id.stack_addr = stack_addr;
602 id.stack_status = FID_STACK_VALID;
603 id.code_addr = code_addr;
604 id.code_addr_p = 1;
605 id.special_addr = special_addr;
606 id.special_addr_p = 1;
607 return id;
608 }
609
610 /* See frame.h. */
611
612 struct frame_id
613 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
614 {
615 struct frame_id id = null_frame_id;
616
617 id.stack_status = FID_STACK_UNAVAILABLE;
618 id.code_addr = code_addr;
619 id.code_addr_p = 1;
620 return id;
621 }
622
623 /* See frame.h. */
624
625 struct frame_id
626 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
627 CORE_ADDR special_addr)
628 {
629 struct frame_id id = null_frame_id;
630
631 id.stack_status = FID_STACK_UNAVAILABLE;
632 id.code_addr = code_addr;
633 id.code_addr_p = 1;
634 id.special_addr = special_addr;
635 id.special_addr_p = 1;
636 return id;
637 }
638
639 struct frame_id
640 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
641 {
642 struct frame_id id = null_frame_id;
643
644 id.stack_addr = stack_addr;
645 id.stack_status = FID_STACK_VALID;
646 id.code_addr = code_addr;
647 id.code_addr_p = 1;
648 return id;
649 }
650
651 struct frame_id
652 frame_id_build_wild (CORE_ADDR stack_addr)
653 {
654 struct frame_id id = null_frame_id;
655
656 id.stack_addr = stack_addr;
657 id.stack_status = FID_STACK_VALID;
658 return id;
659 }
660
661 int
662 frame_id_p (struct frame_id l)
663 {
664 int p;
665
666 /* The frame is valid iff it has a valid stack address. */
667 p = l.stack_status != FID_STACK_INVALID;
668 /* outer_frame_id is also valid. */
669 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
670 p = 1;
671 if (frame_debug)
672 {
673 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
674 fprint_frame_id (gdb_stdlog, l);
675 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
676 }
677 return p;
678 }
679
680 int
681 frame_id_artificial_p (struct frame_id l)
682 {
683 if (!frame_id_p (l))
684 return 0;
685
686 return (l.artificial_depth != 0);
687 }
688
689 int
690 frame_id_eq (struct frame_id l, struct frame_id r)
691 {
692 int eq;
693
694 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
695 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
696 /* The outermost frame marker is equal to itself. This is the
697 dodgy thing about outer_frame_id, since between execution steps
698 we might step into another function - from which we can't
699 unwind either. More thought required to get rid of
700 outer_frame_id. */
701 eq = 1;
702 else if (l.stack_status == FID_STACK_INVALID
703 || r.stack_status == FID_STACK_INVALID)
704 /* Like a NaN, if either ID is invalid, the result is false.
705 Note that a frame ID is invalid iff it is the null frame ID. */
706 eq = 0;
707 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
708 /* If .stack addresses are different, the frames are different. */
709 eq = 0;
710 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
711 /* An invalid code addr is a wild card. If .code addresses are
712 different, the frames are different. */
713 eq = 0;
714 else if (l.special_addr_p && r.special_addr_p
715 && l.special_addr != r.special_addr)
716 /* An invalid special addr is a wild card (or unused). Otherwise
717 if special addresses are different, the frames are different. */
718 eq = 0;
719 else if (l.artificial_depth != r.artificial_depth)
720 /* If artifical depths are different, the frames must be different. */
721 eq = 0;
722 else
723 /* Frames are equal. */
724 eq = 1;
725
726 if (frame_debug)
727 {
728 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
729 fprint_frame_id (gdb_stdlog, l);
730 fprintf_unfiltered (gdb_stdlog, ",r=");
731 fprint_frame_id (gdb_stdlog, r);
732 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
733 }
734 return eq;
735 }
736
737 /* Safety net to check whether frame ID L should be inner to
738 frame ID R, according to their stack addresses.
739
740 This method cannot be used to compare arbitrary frames, as the
741 ranges of valid stack addresses may be discontiguous (e.g. due
742 to sigaltstack).
743
744 However, it can be used as safety net to discover invalid frame
745 IDs in certain circumstances. Assuming that NEXT is the immediate
746 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
747
748 * The stack address of NEXT must be inner-than-or-equal to the stack
749 address of THIS.
750
751 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
752 error has occurred.
753
754 * If NEXT and THIS have different stack addresses, no other frame
755 in the frame chain may have a stack address in between.
756
757 Therefore, if frame_id_inner (TEST, THIS) holds, but
758 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
759 to a valid frame in the frame chain.
760
761 The sanity checks above cannot be performed when a SIGTRAMP frame
762 is involved, because signal handlers might be executed on a different
763 stack than the stack used by the routine that caused the signal
764 to be raised. This can happen for instance when a thread exceeds
765 its maximum stack size. In this case, certain compilers implement
766 a stack overflow strategy that cause the handler to be run on a
767 different stack. */
768
769 static int
770 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
771 {
772 int inner;
773
774 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
775 /* Like NaN, any operation involving an invalid ID always fails.
776 Likewise if either ID has an unavailable stack address. */
777 inner = 0;
778 else if (l.artificial_depth > r.artificial_depth
779 && l.stack_addr == r.stack_addr
780 && l.code_addr_p == r.code_addr_p
781 && l.special_addr_p == r.special_addr_p
782 && l.special_addr == r.special_addr)
783 {
784 /* Same function, different inlined functions. */
785 const struct block *lb, *rb;
786
787 gdb_assert (l.code_addr_p && r.code_addr_p);
788
789 lb = block_for_pc (l.code_addr);
790 rb = block_for_pc (r.code_addr);
791
792 if (lb == NULL || rb == NULL)
793 /* Something's gone wrong. */
794 inner = 0;
795 else
796 /* This will return true if LB and RB are the same block, or
797 if the block with the smaller depth lexically encloses the
798 block with the greater depth. */
799 inner = contained_in (lb, rb);
800 }
801 else
802 /* Only return non-zero when strictly inner than. Note that, per
803 comment in "frame.h", there is some fuzz here. Frameless
804 functions are not strictly inner than (same .stack but
805 different .code and/or .special address). */
806 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
807 if (frame_debug)
808 {
809 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
810 fprint_frame_id (gdb_stdlog, l);
811 fprintf_unfiltered (gdb_stdlog, ",r=");
812 fprint_frame_id (gdb_stdlog, r);
813 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
814 }
815 return inner;
816 }
817
818 struct frame_info *
819 frame_find_by_id (struct frame_id id)
820 {
821 struct frame_info *frame, *prev_frame;
822
823 /* ZERO denotes the null frame, let the caller decide what to do
824 about it. Should it instead return get_current_frame()? */
825 if (!frame_id_p (id))
826 return NULL;
827
828 /* Check for the sentinel frame. */
829 if (frame_id_eq (id, sentinel_frame_id))
830 return sentinel_frame;
831
832 /* Try using the frame stash first. Finding it there removes the need
833 to perform the search by looping over all frames, which can be very
834 CPU-intensive if the number of frames is very high (the loop is O(n)
835 and get_prev_frame performs a series of checks that are relatively
836 expensive). This optimization is particularly useful when this function
837 is called from another function (such as value_fetch_lazy, case
838 VALUE_LVAL (val) == lval_register) which already loops over all frames,
839 making the overall behavior O(n^2). */
840 frame = frame_stash_find (id);
841 if (frame)
842 return frame;
843
844 for (frame = get_current_frame (); ; frame = prev_frame)
845 {
846 struct frame_id self = get_frame_id (frame);
847
848 if (frame_id_eq (id, self))
849 /* An exact match. */
850 return frame;
851
852 prev_frame = get_prev_frame (frame);
853 if (!prev_frame)
854 return NULL;
855
856 /* As a safety net to avoid unnecessary backtracing while trying
857 to find an invalid ID, we check for a common situation where
858 we can detect from comparing stack addresses that no other
859 frame in the current frame chain can have this ID. See the
860 comment at frame_id_inner for details. */
861 if (get_frame_type (frame) == NORMAL_FRAME
862 && !frame_id_inner (get_frame_arch (frame), id, self)
863 && frame_id_inner (get_frame_arch (prev_frame), id,
864 get_frame_id (prev_frame)))
865 return NULL;
866 }
867 return NULL;
868 }
869
870 static CORE_ADDR
871 frame_unwind_pc (struct frame_info *this_frame)
872 {
873 if (this_frame->prev_pc.status == CC_UNKNOWN)
874 {
875 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
876 {
877 struct gdbarch *prev_gdbarch;
878 CORE_ADDR pc = 0;
879 int pc_p = 0;
880
881 /* The right way. The `pure' way. The one true way. This
882 method depends solely on the register-unwind code to
883 determine the value of registers in THIS frame, and hence
884 the value of this frame's PC (resume address). A typical
885 implementation is no more than:
886
887 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
888 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
889
890 Note: this method is very heavily dependent on a correct
891 register-unwind implementation, it pays to fix that
892 method first; this method is frame type agnostic, since
893 it only deals with register values, it works with any
894 frame. This is all in stark contrast to the old
895 FRAME_SAVED_PC which would try to directly handle all the
896 different ways that a PC could be unwound. */
897 prev_gdbarch = frame_unwind_arch (this_frame);
898
899 TRY
900 {
901 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
902 pc_p = 1;
903 }
904 CATCH (ex, RETURN_MASK_ERROR)
905 {
906 if (ex.error == NOT_AVAILABLE_ERROR)
907 {
908 this_frame->prev_pc.status = CC_UNAVAILABLE;
909
910 if (frame_debug)
911 fprintf_unfiltered (gdb_stdlog,
912 "{ frame_unwind_pc (this_frame=%d)"
913 " -> <unavailable> }\n",
914 this_frame->level);
915 }
916 else if (ex.error == OPTIMIZED_OUT_ERROR)
917 {
918 this_frame->prev_pc.status = CC_NOT_SAVED;
919
920 if (frame_debug)
921 fprintf_unfiltered (gdb_stdlog,
922 "{ frame_unwind_pc (this_frame=%d)"
923 " -> <not saved> }\n",
924 this_frame->level);
925 }
926 else
927 throw_exception (ex);
928 }
929 END_CATCH
930
931 if (pc_p)
932 {
933 this_frame->prev_pc.value = pc;
934 this_frame->prev_pc.status = CC_VALUE;
935 if (frame_debug)
936 fprintf_unfiltered (gdb_stdlog,
937 "{ frame_unwind_pc (this_frame=%d) "
938 "-> %s }\n",
939 this_frame->level,
940 hex_string (this_frame->prev_pc.value));
941 }
942 }
943 else
944 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
945 }
946
947 if (this_frame->prev_pc.status == CC_VALUE)
948 return this_frame->prev_pc.value;
949 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
950 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
951 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
952 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
953 else
954 internal_error (__FILE__, __LINE__,
955 "unexpected prev_pc status: %d",
956 (int) this_frame->prev_pc.status);
957 }
958
959 CORE_ADDR
960 frame_unwind_caller_pc (struct frame_info *this_frame)
961 {
962 this_frame = skip_artificial_frames (this_frame);
963
964 /* We must have a non-artificial frame. The caller is supposed to check
965 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
966 in this case. */
967 gdb_assert (this_frame != NULL);
968
969 return frame_unwind_pc (this_frame);
970 }
971
972 int
973 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
974 {
975 struct frame_info *next_frame = this_frame->next;
976
977 if (!next_frame->prev_func.p)
978 {
979 CORE_ADDR addr_in_block;
980
981 /* Make certain that this, and not the adjacent, function is
982 found. */
983 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
984 {
985 next_frame->prev_func.p = -1;
986 if (frame_debug)
987 fprintf_unfiltered (gdb_stdlog,
988 "{ get_frame_func (this_frame=%d)"
989 " -> unavailable }\n",
990 this_frame->level);
991 }
992 else
993 {
994 next_frame->prev_func.p = 1;
995 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
996 if (frame_debug)
997 fprintf_unfiltered (gdb_stdlog,
998 "{ get_frame_func (this_frame=%d) -> %s }\n",
999 this_frame->level,
1000 hex_string (next_frame->prev_func.addr));
1001 }
1002 }
1003
1004 if (next_frame->prev_func.p < 0)
1005 {
1006 *pc = -1;
1007 return 0;
1008 }
1009 else
1010 {
1011 *pc = next_frame->prev_func.addr;
1012 return 1;
1013 }
1014 }
1015
1016 CORE_ADDR
1017 get_frame_func (struct frame_info *this_frame)
1018 {
1019 CORE_ADDR pc;
1020
1021 if (!get_frame_func_if_available (this_frame, &pc))
1022 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1023
1024 return pc;
1025 }
1026
1027 static enum register_status
1028 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
1029 {
1030 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
1031 return REG_UNAVAILABLE;
1032 else
1033 return REG_VALID;
1034 }
1035
1036 std::unique_ptr<readonly_detached_regcache>
1037 frame_save_as_regcache (struct frame_info *this_frame)
1038 {
1039 std::unique_ptr<readonly_detached_regcache> regcache
1040 (new readonly_detached_regcache (get_frame_arch (this_frame),
1041 do_frame_register_read, this_frame));
1042
1043 return regcache;
1044 }
1045
1046 void
1047 frame_pop (struct frame_info *this_frame)
1048 {
1049 struct frame_info *prev_frame;
1050
1051 if (get_frame_type (this_frame) == DUMMY_FRAME)
1052 {
1053 /* Popping a dummy frame involves restoring more than just registers.
1054 dummy_frame_pop does all the work. */
1055 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
1056 return;
1057 }
1058
1059 /* Ensure that we have a frame to pop to. */
1060 prev_frame = get_prev_frame_always (this_frame);
1061
1062 if (!prev_frame)
1063 error (_("Cannot pop the initial frame."));
1064
1065 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1066 entering THISFRAME. */
1067 prev_frame = skip_tailcall_frames (prev_frame);
1068
1069 if (prev_frame == NULL)
1070 error (_("Cannot find the caller frame."));
1071
1072 /* Make a copy of all the register values unwound from this frame.
1073 Save them in a scratch buffer so that there isn't a race between
1074 trying to extract the old values from the current regcache while
1075 at the same time writing new values into that same cache. */
1076 std::unique_ptr<readonly_detached_regcache> scratch
1077 = frame_save_as_regcache (prev_frame);
1078
1079 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1080 target's register cache that it is about to be hit with a burst
1081 register transfer and that the sequence of register writes should
1082 be batched. The pair target_prepare_to_store() and
1083 target_store_registers() kind of suggest this functionality.
1084 Unfortunately, they don't implement it. Their lack of a formal
1085 definition can lead to targets writing back bogus values
1086 (arguably a bug in the target code mind). */
1087 /* Now copy those saved registers into the current regcache. */
1088 get_current_regcache ()->restore (scratch.get ());
1089
1090 /* We've made right mess of GDB's local state, just discard
1091 everything. */
1092 reinit_frame_cache ();
1093 }
1094
1095 void
1096 frame_register_unwind (struct frame_info *frame, int regnum,
1097 int *optimizedp, int *unavailablep,
1098 enum lval_type *lvalp, CORE_ADDR *addrp,
1099 int *realnump, gdb_byte *bufferp)
1100 {
1101 struct value *value;
1102
1103 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1104 that the value proper does not need to be fetched. */
1105 gdb_assert (optimizedp != NULL);
1106 gdb_assert (lvalp != NULL);
1107 gdb_assert (addrp != NULL);
1108 gdb_assert (realnump != NULL);
1109 /* gdb_assert (bufferp != NULL); */
1110
1111 value = frame_unwind_register_value (frame, regnum);
1112
1113 gdb_assert (value != NULL);
1114
1115 *optimizedp = value_optimized_out (value);
1116 *unavailablep = !value_entirely_available (value);
1117 *lvalp = VALUE_LVAL (value);
1118 *addrp = value_address (value);
1119 if (*lvalp == lval_register)
1120 *realnump = VALUE_REGNUM (value);
1121 else
1122 *realnump = -1;
1123
1124 if (bufferp)
1125 {
1126 if (!*optimizedp && !*unavailablep)
1127 memcpy (bufferp, value_contents_all (value),
1128 TYPE_LENGTH (value_type (value)));
1129 else
1130 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1131 }
1132
1133 /* Dispose of the new value. This prevents watchpoints from
1134 trying to watch the saved frame pointer. */
1135 release_value (value);
1136 }
1137
1138 void
1139 frame_register (struct frame_info *frame, int regnum,
1140 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1141 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1142 {
1143 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1144 that the value proper does not need to be fetched. */
1145 gdb_assert (optimizedp != NULL);
1146 gdb_assert (lvalp != NULL);
1147 gdb_assert (addrp != NULL);
1148 gdb_assert (realnump != NULL);
1149 /* gdb_assert (bufferp != NULL); */
1150
1151 /* Obtain the register value by unwinding the register from the next
1152 (more inner frame). */
1153 gdb_assert (frame != NULL && frame->next != NULL);
1154 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1155 lvalp, addrp, realnump, bufferp);
1156 }
1157
1158 void
1159 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1160 {
1161 int optimized;
1162 int unavailable;
1163 CORE_ADDR addr;
1164 int realnum;
1165 enum lval_type lval;
1166
1167 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1168 &lval, &addr, &realnum, buf);
1169
1170 if (optimized)
1171 throw_error (OPTIMIZED_OUT_ERROR,
1172 _("Register %d was not saved"), regnum);
1173 if (unavailable)
1174 throw_error (NOT_AVAILABLE_ERROR,
1175 _("Register %d is not available"), regnum);
1176 }
1177
1178 void
1179 get_frame_register (struct frame_info *frame,
1180 int regnum, gdb_byte *buf)
1181 {
1182 frame_unwind_register (frame->next, regnum, buf);
1183 }
1184
1185 struct value *
1186 frame_unwind_register_value (struct frame_info *frame, int regnum)
1187 {
1188 struct gdbarch *gdbarch;
1189 struct value *value;
1190
1191 gdb_assert (frame != NULL);
1192 gdbarch = frame_unwind_arch (frame);
1193
1194 if (frame_debug)
1195 {
1196 fprintf_unfiltered (gdb_stdlog,
1197 "{ frame_unwind_register_value "
1198 "(frame=%d,regnum=%d(%s),...) ",
1199 frame->level, regnum,
1200 user_reg_map_regnum_to_name (gdbarch, regnum));
1201 }
1202
1203 /* Find the unwinder. */
1204 if (frame->unwind == NULL)
1205 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1206
1207 /* Ask this frame to unwind its register. */
1208 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1209
1210 if (frame_debug)
1211 {
1212 fprintf_unfiltered (gdb_stdlog, "->");
1213 if (value_optimized_out (value))
1214 {
1215 fprintf_unfiltered (gdb_stdlog, " ");
1216 val_print_optimized_out (value, gdb_stdlog);
1217 }
1218 else
1219 {
1220 if (VALUE_LVAL (value) == lval_register)
1221 fprintf_unfiltered (gdb_stdlog, " register=%d",
1222 VALUE_REGNUM (value));
1223 else if (VALUE_LVAL (value) == lval_memory)
1224 fprintf_unfiltered (gdb_stdlog, " address=%s",
1225 paddress (gdbarch,
1226 value_address (value)));
1227 else
1228 fprintf_unfiltered (gdb_stdlog, " computed");
1229
1230 if (value_lazy (value))
1231 fprintf_unfiltered (gdb_stdlog, " lazy");
1232 else
1233 {
1234 int i;
1235 const gdb_byte *buf = value_contents (value);
1236
1237 fprintf_unfiltered (gdb_stdlog, " bytes=");
1238 fprintf_unfiltered (gdb_stdlog, "[");
1239 for (i = 0; i < register_size (gdbarch, regnum); i++)
1240 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1241 fprintf_unfiltered (gdb_stdlog, "]");
1242 }
1243 }
1244
1245 fprintf_unfiltered (gdb_stdlog, " }\n");
1246 }
1247
1248 return value;
1249 }
1250
1251 struct value *
1252 get_frame_register_value (struct frame_info *frame, int regnum)
1253 {
1254 return frame_unwind_register_value (frame->next, regnum);
1255 }
1256
1257 LONGEST
1258 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1259 {
1260 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1261 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1262 int size = register_size (gdbarch, regnum);
1263 struct value *value = frame_unwind_register_value (frame, regnum);
1264
1265 gdb_assert (value != NULL);
1266
1267 if (value_optimized_out (value))
1268 {
1269 throw_error (OPTIMIZED_OUT_ERROR,
1270 _("Register %d was not saved"), regnum);
1271 }
1272 if (!value_entirely_available (value))
1273 {
1274 throw_error (NOT_AVAILABLE_ERROR,
1275 _("Register %d is not available"), regnum);
1276 }
1277
1278 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1279 byte_order);
1280
1281 release_value (value);
1282 return r;
1283 }
1284
1285 LONGEST
1286 get_frame_register_signed (struct frame_info *frame, int regnum)
1287 {
1288 return frame_unwind_register_signed (frame->next, regnum);
1289 }
1290
1291 ULONGEST
1292 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1293 {
1294 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1296 int size = register_size (gdbarch, regnum);
1297 struct value *value = frame_unwind_register_value (frame, regnum);
1298
1299 gdb_assert (value != NULL);
1300
1301 if (value_optimized_out (value))
1302 {
1303 throw_error (OPTIMIZED_OUT_ERROR,
1304 _("Register %d was not saved"), regnum);
1305 }
1306 if (!value_entirely_available (value))
1307 {
1308 throw_error (NOT_AVAILABLE_ERROR,
1309 _("Register %d is not available"), regnum);
1310 }
1311
1312 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1313 byte_order);
1314
1315 release_value (value);
1316 return r;
1317 }
1318
1319 ULONGEST
1320 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1321 {
1322 return frame_unwind_register_unsigned (frame->next, regnum);
1323 }
1324
1325 int
1326 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1327 ULONGEST *val)
1328 {
1329 struct value *regval = get_frame_register_value (frame, regnum);
1330
1331 if (!value_optimized_out (regval)
1332 && value_entirely_available (regval))
1333 {
1334 struct gdbarch *gdbarch = get_frame_arch (frame);
1335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1336 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1337
1338 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1339 return 1;
1340 }
1341
1342 return 0;
1343 }
1344
1345 void
1346 put_frame_register (struct frame_info *frame, int regnum,
1347 const gdb_byte *buf)
1348 {
1349 struct gdbarch *gdbarch = get_frame_arch (frame);
1350 int realnum;
1351 int optim;
1352 int unavail;
1353 enum lval_type lval;
1354 CORE_ADDR addr;
1355
1356 frame_register (frame, regnum, &optim, &unavail,
1357 &lval, &addr, &realnum, NULL);
1358 if (optim)
1359 error (_("Attempt to assign to a register that was not saved."));
1360 switch (lval)
1361 {
1362 case lval_memory:
1363 {
1364 write_memory (addr, buf, register_size (gdbarch, regnum));
1365 break;
1366 }
1367 case lval_register:
1368 get_current_regcache ()->cooked_write (realnum, buf);
1369 break;
1370 default:
1371 error (_("Attempt to assign to an unmodifiable value."));
1372 }
1373 }
1374
1375 /* This function is deprecated. Use get_frame_register_value instead,
1376 which provides more accurate information.
1377
1378 Find and return the value of REGNUM for the specified stack frame.
1379 The number of bytes copied is REGISTER_SIZE (REGNUM).
1380
1381 Returns 0 if the register value could not be found. */
1382
1383 int
1384 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1385 gdb_byte *myaddr)
1386 {
1387 int optimized;
1388 int unavailable;
1389 enum lval_type lval;
1390 CORE_ADDR addr;
1391 int realnum;
1392
1393 frame_register (frame, regnum, &optimized, &unavailable,
1394 &lval, &addr, &realnum, myaddr);
1395
1396 return !optimized && !unavailable;
1397 }
1398
1399 int
1400 get_frame_register_bytes (struct frame_info *frame, int regnum,
1401 CORE_ADDR offset, int len, gdb_byte *myaddr,
1402 int *optimizedp, int *unavailablep)
1403 {
1404 struct gdbarch *gdbarch = get_frame_arch (frame);
1405 int i;
1406 int maxsize;
1407 int numregs;
1408
1409 /* Skip registers wholly inside of OFFSET. */
1410 while (offset >= register_size (gdbarch, regnum))
1411 {
1412 offset -= register_size (gdbarch, regnum);
1413 regnum++;
1414 }
1415
1416 /* Ensure that we will not read beyond the end of the register file.
1417 This can only ever happen if the debug information is bad. */
1418 maxsize = -offset;
1419 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1420 for (i = regnum; i < numregs; i++)
1421 {
1422 int thissize = register_size (gdbarch, i);
1423
1424 if (thissize == 0)
1425 break; /* This register is not available on this architecture. */
1426 maxsize += thissize;
1427 }
1428 if (len > maxsize)
1429 error (_("Bad debug information detected: "
1430 "Attempt to read %d bytes from registers."), len);
1431
1432 /* Copy the data. */
1433 while (len > 0)
1434 {
1435 int curr_len = register_size (gdbarch, regnum) - offset;
1436
1437 if (curr_len > len)
1438 curr_len = len;
1439
1440 if (curr_len == register_size (gdbarch, regnum))
1441 {
1442 enum lval_type lval;
1443 CORE_ADDR addr;
1444 int realnum;
1445
1446 frame_register (frame, regnum, optimizedp, unavailablep,
1447 &lval, &addr, &realnum, myaddr);
1448 if (*optimizedp || *unavailablep)
1449 return 0;
1450 }
1451 else
1452 {
1453 struct value *value = frame_unwind_register_value (frame->next,
1454 regnum);
1455 gdb_assert (value != NULL);
1456 *optimizedp = value_optimized_out (value);
1457 *unavailablep = !value_entirely_available (value);
1458
1459 if (*optimizedp || *unavailablep)
1460 {
1461 release_value (value);
1462 return 0;
1463 }
1464 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1465 release_value (value);
1466 }
1467
1468 myaddr += curr_len;
1469 len -= curr_len;
1470 offset = 0;
1471 regnum++;
1472 }
1473
1474 *optimizedp = 0;
1475 *unavailablep = 0;
1476 return 1;
1477 }
1478
1479 void
1480 put_frame_register_bytes (struct frame_info *frame, int regnum,
1481 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1482 {
1483 struct gdbarch *gdbarch = get_frame_arch (frame);
1484
1485 /* Skip registers wholly inside of OFFSET. */
1486 while (offset >= register_size (gdbarch, regnum))
1487 {
1488 offset -= register_size (gdbarch, regnum);
1489 regnum++;
1490 }
1491
1492 /* Copy the data. */
1493 while (len > 0)
1494 {
1495 int curr_len = register_size (gdbarch, regnum) - offset;
1496
1497 if (curr_len > len)
1498 curr_len = len;
1499
1500 if (curr_len == register_size (gdbarch, regnum))
1501 {
1502 put_frame_register (frame, regnum, myaddr);
1503 }
1504 else
1505 {
1506 struct value *value = frame_unwind_register_value (frame->next,
1507 regnum);
1508 gdb_assert (value != NULL);
1509
1510 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1511 curr_len);
1512 put_frame_register (frame, regnum, value_contents_raw (value));
1513 release_value (value);
1514 }
1515
1516 myaddr += curr_len;
1517 len -= curr_len;
1518 offset = 0;
1519 regnum++;
1520 }
1521 }
1522
1523 /* Create a sentinel frame. */
1524
1525 static struct frame_info *
1526 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1527 {
1528 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1529
1530 frame->level = -1;
1531 frame->pspace = pspace;
1532 frame->aspace = regcache->aspace ();
1533 /* Explicitly initialize the sentinel frame's cache. Provide it
1534 with the underlying regcache. In the future additional
1535 information, such as the frame's thread will be added. */
1536 frame->prologue_cache = sentinel_frame_cache (regcache);
1537 /* For the moment there is only one sentinel frame implementation. */
1538 frame->unwind = &sentinel_frame_unwind;
1539 /* Link this frame back to itself. The frame is self referential
1540 (the unwound PC is the same as the pc), so make it so. */
1541 frame->next = frame;
1542 /* The sentinel frame has a special ID. */
1543 frame->this_id.p = 1;
1544 frame->this_id.value = sentinel_frame_id;
1545 if (frame_debug)
1546 {
1547 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1548 fprint_frame (gdb_stdlog, frame);
1549 fprintf_unfiltered (gdb_stdlog, " }\n");
1550 }
1551 return frame;
1552 }
1553
1554 /* Cache for frame addresses already read by gdb. Valid only while
1555 inferior is stopped. Control variables for the frame cache should
1556 be local to this module. */
1557
1558 static struct obstack frame_cache_obstack;
1559
1560 void *
1561 frame_obstack_zalloc (unsigned long size)
1562 {
1563 void *data = obstack_alloc (&frame_cache_obstack, size);
1564
1565 memset (data, 0, size);
1566 return data;
1567 }
1568
1569 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1570
1571 struct frame_info *
1572 get_current_frame (void)
1573 {
1574 struct frame_info *current_frame;
1575
1576 /* First check, and report, the lack of registers. Having GDB
1577 report "No stack!" or "No memory" when the target doesn't even
1578 have registers is very confusing. Besides, "printcmd.exp"
1579 explicitly checks that ``print $pc'' with no registers prints "No
1580 registers". */
1581 if (!target_has_registers)
1582 error (_("No registers."));
1583 if (!target_has_stack)
1584 error (_("No stack."));
1585 if (!target_has_memory)
1586 error (_("No memory."));
1587 /* Traceframes are effectively a substitute for the live inferior. */
1588 if (get_traceframe_number () < 0)
1589 validate_registers_access ();
1590
1591 if (sentinel_frame == NULL)
1592 sentinel_frame =
1593 create_sentinel_frame (current_program_space, get_current_regcache ());
1594
1595 /* Set the current frame before computing the frame id, to avoid
1596 recursion inside compute_frame_id, in case the frame's
1597 unwinder decides to do a symbol lookup (which depends on the
1598 selected frame's block).
1599
1600 This call must always succeed. In particular, nothing inside
1601 get_prev_frame_always_1 should try to unwind from the
1602 sentinel frame, because that could fail/throw, and we always
1603 want to leave with the current frame created and linked in --
1604 we should never end up with the sentinel frame as outermost
1605 frame. */
1606 current_frame = get_prev_frame_always_1 (sentinel_frame);
1607 gdb_assert (current_frame != NULL);
1608
1609 return current_frame;
1610 }
1611
1612 /* The "selected" stack frame is used by default for local and arg
1613 access. May be zero, for no selected frame. */
1614
1615 static struct frame_info *selected_frame;
1616
1617 int
1618 has_stack_frames (void)
1619 {
1620 if (!target_has_registers || !target_has_stack || !target_has_memory)
1621 return 0;
1622
1623 /* Traceframes are effectively a substitute for the live inferior. */
1624 if (get_traceframe_number () < 0)
1625 {
1626 /* No current inferior, no frame. */
1627 if (ptid_equal (inferior_ptid, null_ptid))
1628 return 0;
1629
1630 /* Don't try to read from a dead thread. */
1631 if (is_exited (inferior_ptid))
1632 return 0;
1633
1634 /* ... or from a spinning thread. */
1635 if (is_executing (inferior_ptid))
1636 return 0;
1637 }
1638
1639 return 1;
1640 }
1641
1642 /* Return the selected frame. Always non-NULL (unless there isn't an
1643 inferior sufficient for creating a frame) in which case an error is
1644 thrown. */
1645
1646 struct frame_info *
1647 get_selected_frame (const char *message)
1648 {
1649 if (selected_frame == NULL)
1650 {
1651 if (message != NULL && !has_stack_frames ())
1652 error (("%s"), message);
1653 /* Hey! Don't trust this. It should really be re-finding the
1654 last selected frame of the currently selected thread. This,
1655 though, is better than nothing. */
1656 select_frame (get_current_frame ());
1657 }
1658 /* There is always a frame. */
1659 gdb_assert (selected_frame != NULL);
1660 return selected_frame;
1661 }
1662
1663 /* If there is a selected frame, return it. Otherwise, return NULL. */
1664
1665 struct frame_info *
1666 get_selected_frame_if_set (void)
1667 {
1668 return selected_frame;
1669 }
1670
1671 /* This is a variant of get_selected_frame() which can be called when
1672 the inferior does not have a frame; in that case it will return
1673 NULL instead of calling error(). */
1674
1675 struct frame_info *
1676 deprecated_safe_get_selected_frame (void)
1677 {
1678 if (!has_stack_frames ())
1679 return NULL;
1680 return get_selected_frame (NULL);
1681 }
1682
1683 /* Select frame FI (or NULL - to invalidate the current frame). */
1684
1685 void
1686 select_frame (struct frame_info *fi)
1687 {
1688 selected_frame = fi;
1689 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1690 frame is being invalidated. */
1691
1692 /* FIXME: kseitz/2002-08-28: It would be nice to call
1693 selected_frame_level_changed_event() right here, but due to limitations
1694 in the current interfaces, we would end up flooding UIs with events
1695 because select_frame() is used extensively internally.
1696
1697 Once we have frame-parameterized frame (and frame-related) commands,
1698 the event notification can be moved here, since this function will only
1699 be called when the user's selected frame is being changed. */
1700
1701 /* Ensure that symbols for this frame are read in. Also, determine the
1702 source language of this frame, and switch to it if desired. */
1703 if (fi)
1704 {
1705 CORE_ADDR pc;
1706
1707 /* We retrieve the frame's symtab by using the frame PC.
1708 However we cannot use the frame PC as-is, because it usually
1709 points to the instruction following the "call", which is
1710 sometimes the first instruction of another function. So we
1711 rely on get_frame_address_in_block() which provides us with a
1712 PC which is guaranteed to be inside the frame's code
1713 block. */
1714 if (get_frame_address_in_block_if_available (fi, &pc))
1715 {
1716 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1717
1718 if (cust != NULL
1719 && compunit_language (cust) != current_language->la_language
1720 && compunit_language (cust) != language_unknown
1721 && language_mode == language_mode_auto)
1722 set_language (compunit_language (cust));
1723 }
1724 }
1725 }
1726
1727 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1728 Always returns a non-NULL value. */
1729
1730 struct frame_info *
1731 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1732 {
1733 struct frame_info *fi;
1734
1735 if (frame_debug)
1736 {
1737 fprintf_unfiltered (gdb_stdlog,
1738 "{ create_new_frame (addr=%s, pc=%s) ",
1739 hex_string (addr), hex_string (pc));
1740 }
1741
1742 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1743
1744 fi->next = create_sentinel_frame (current_program_space,
1745 get_current_regcache ());
1746
1747 /* Set/update this frame's cached PC value, found in the next frame.
1748 Do this before looking for this frame's unwinder. A sniffer is
1749 very likely to read this, and the corresponding unwinder is
1750 entitled to rely that the PC doesn't magically change. */
1751 fi->next->prev_pc.value = pc;
1752 fi->next->prev_pc.status = CC_VALUE;
1753
1754 /* We currently assume that frame chain's can't cross spaces. */
1755 fi->pspace = fi->next->pspace;
1756 fi->aspace = fi->next->aspace;
1757
1758 /* Select/initialize both the unwind function and the frame's type
1759 based on the PC. */
1760 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1761
1762 fi->this_id.p = 1;
1763 fi->this_id.value = frame_id_build (addr, pc);
1764
1765 if (frame_debug)
1766 {
1767 fprintf_unfiltered (gdb_stdlog, "-> ");
1768 fprint_frame (gdb_stdlog, fi);
1769 fprintf_unfiltered (gdb_stdlog, " }\n");
1770 }
1771
1772 return fi;
1773 }
1774
1775 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1776 innermost frame). Be careful to not fall off the bottom of the
1777 frame chain and onto the sentinel frame. */
1778
1779 struct frame_info *
1780 get_next_frame (struct frame_info *this_frame)
1781 {
1782 if (this_frame->level > 0)
1783 return this_frame->next;
1784 else
1785 return NULL;
1786 }
1787
1788 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1789 innermost (i.e. current) frame, return the sentinel frame. Thus,
1790 unlike get_next_frame(), NULL will never be returned. */
1791
1792 struct frame_info *
1793 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1794 {
1795 gdb_assert (this_frame != NULL);
1796
1797 /* Note that, due to the manner in which the sentinel frame is
1798 constructed, this_frame->next still works even when this_frame
1799 is the sentinel frame. But we disallow it here anyway because
1800 calling get_next_frame_sentinel_okay() on the sentinel frame
1801 is likely a coding error. */
1802 gdb_assert (this_frame != sentinel_frame);
1803
1804 return this_frame->next;
1805 }
1806
1807 /* Observer for the target_changed event. */
1808
1809 static void
1810 frame_observer_target_changed (struct target_ops *target)
1811 {
1812 reinit_frame_cache ();
1813 }
1814
1815 /* Flush the entire frame cache. */
1816
1817 void
1818 reinit_frame_cache (void)
1819 {
1820 struct frame_info *fi;
1821
1822 /* Tear down all frame caches. */
1823 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1824 {
1825 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1826 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1827 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1828 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1829 }
1830
1831 /* Since we can't really be sure what the first object allocated was. */
1832 obstack_free (&frame_cache_obstack, 0);
1833 obstack_init (&frame_cache_obstack);
1834
1835 if (sentinel_frame != NULL)
1836 annotate_frames_invalid ();
1837
1838 sentinel_frame = NULL; /* Invalidate cache */
1839 select_frame (NULL);
1840 frame_stash_invalidate ();
1841 if (frame_debug)
1842 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1843 }
1844
1845 /* Find where a register is saved (in memory or another register).
1846 The result of frame_register_unwind is just where it is saved
1847 relative to this particular frame. */
1848
1849 static void
1850 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1851 int *optimizedp, enum lval_type *lvalp,
1852 CORE_ADDR *addrp, int *realnump)
1853 {
1854 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1855
1856 while (this_frame != NULL)
1857 {
1858 int unavailable;
1859
1860 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1861 lvalp, addrp, realnump, NULL);
1862
1863 if (*optimizedp)
1864 break;
1865
1866 if (*lvalp != lval_register)
1867 break;
1868
1869 regnum = *realnump;
1870 this_frame = get_next_frame (this_frame);
1871 }
1872 }
1873
1874 /* Get the previous raw frame, and check that it is not identical to
1875 same other frame frame already in the chain. If it is, there is
1876 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1877 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1878 validity tests, that compare THIS_FRAME and the next frame, we do
1879 this right after creating the previous frame, to avoid ever ending
1880 up with two frames with the same id in the frame chain. */
1881
1882 static struct frame_info *
1883 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1884 {
1885 struct frame_info *prev_frame;
1886
1887 prev_frame = get_prev_frame_raw (this_frame);
1888
1889 /* Don't compute the frame id of the current frame yet. Unwinding
1890 the sentinel frame can fail (e.g., if the thread is gone and we
1891 can't thus read its registers). If we let the cycle detection
1892 code below try to compute a frame ID, then an error thrown from
1893 within the frame ID computation would result in the sentinel
1894 frame as outermost frame, which is bogus. Instead, we'll compute
1895 the current frame's ID lazily in get_frame_id. Note that there's
1896 no point in doing cycle detection when there's only one frame, so
1897 nothing is lost here. */
1898 if (prev_frame->level == 0)
1899 return prev_frame;
1900
1901 TRY
1902 {
1903 compute_frame_id (prev_frame);
1904 if (!frame_stash_add (prev_frame))
1905 {
1906 /* Another frame with the same id was already in the stash. We just
1907 detected a cycle. */
1908 if (frame_debug)
1909 {
1910 fprintf_unfiltered (gdb_stdlog, "-> ");
1911 fprint_frame (gdb_stdlog, NULL);
1912 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1913 }
1914 this_frame->stop_reason = UNWIND_SAME_ID;
1915 /* Unlink. */
1916 prev_frame->next = NULL;
1917 this_frame->prev = NULL;
1918 prev_frame = NULL;
1919 }
1920 }
1921 CATCH (ex, RETURN_MASK_ALL)
1922 {
1923 prev_frame->next = NULL;
1924 this_frame->prev = NULL;
1925
1926 throw_exception (ex);
1927 }
1928 END_CATCH
1929
1930 return prev_frame;
1931 }
1932
1933 /* Helper function for get_prev_frame_always, this is called inside a
1934 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1935 there is no such frame. This may throw an exception. */
1936
1937 static struct frame_info *
1938 get_prev_frame_always_1 (struct frame_info *this_frame)
1939 {
1940 struct gdbarch *gdbarch;
1941
1942 gdb_assert (this_frame != NULL);
1943 gdbarch = get_frame_arch (this_frame);
1944
1945 if (frame_debug)
1946 {
1947 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1948 if (this_frame != NULL)
1949 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1950 else
1951 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1952 fprintf_unfiltered (gdb_stdlog, ") ");
1953 }
1954
1955 /* Only try to do the unwind once. */
1956 if (this_frame->prev_p)
1957 {
1958 if (frame_debug)
1959 {
1960 fprintf_unfiltered (gdb_stdlog, "-> ");
1961 fprint_frame (gdb_stdlog, this_frame->prev);
1962 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1963 }
1964 return this_frame->prev;
1965 }
1966
1967 /* If the frame unwinder hasn't been selected yet, we must do so
1968 before setting prev_p; otherwise the check for misbehaved
1969 sniffers will think that this frame's sniffer tried to unwind
1970 further (see frame_cleanup_after_sniffer). */
1971 if (this_frame->unwind == NULL)
1972 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1973
1974 this_frame->prev_p = 1;
1975 this_frame->stop_reason = UNWIND_NO_REASON;
1976
1977 /* If we are unwinding from an inline frame, all of the below tests
1978 were already performed when we unwound from the next non-inline
1979 frame. We must skip them, since we can not get THIS_FRAME's ID
1980 until we have unwound all the way down to the previous non-inline
1981 frame. */
1982 if (get_frame_type (this_frame) == INLINE_FRAME)
1983 return get_prev_frame_if_no_cycle (this_frame);
1984
1985 /* Check that this frame is unwindable. If it isn't, don't try to
1986 unwind to the prev frame. */
1987 this_frame->stop_reason
1988 = this_frame->unwind->stop_reason (this_frame,
1989 &this_frame->prologue_cache);
1990
1991 if (this_frame->stop_reason != UNWIND_NO_REASON)
1992 {
1993 if (frame_debug)
1994 {
1995 enum unwind_stop_reason reason = this_frame->stop_reason;
1996
1997 fprintf_unfiltered (gdb_stdlog, "-> ");
1998 fprint_frame (gdb_stdlog, NULL);
1999 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
2000 frame_stop_reason_symbol_string (reason));
2001 }
2002 return NULL;
2003 }
2004
2005 /* Check that this frame's ID isn't inner to (younger, below, next)
2006 the next frame. This happens when a frame unwind goes backwards.
2007 This check is valid only if this frame and the next frame are NORMAL.
2008 See the comment at frame_id_inner for details. */
2009 if (get_frame_type (this_frame) == NORMAL_FRAME
2010 && this_frame->next->unwind->type == NORMAL_FRAME
2011 && frame_id_inner (get_frame_arch (this_frame->next),
2012 get_frame_id (this_frame),
2013 get_frame_id (this_frame->next)))
2014 {
2015 CORE_ADDR this_pc_in_block;
2016 struct minimal_symbol *morestack_msym;
2017 const char *morestack_name = NULL;
2018
2019 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2020 this_pc_in_block = get_frame_address_in_block (this_frame);
2021 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2022 if (morestack_msym)
2023 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
2024 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2025 {
2026 if (frame_debug)
2027 {
2028 fprintf_unfiltered (gdb_stdlog, "-> ");
2029 fprint_frame (gdb_stdlog, NULL);
2030 fprintf_unfiltered (gdb_stdlog,
2031 " // this frame ID is inner }\n");
2032 }
2033 this_frame->stop_reason = UNWIND_INNER_ID;
2034 return NULL;
2035 }
2036 }
2037
2038 /* Check that this and the next frame do not unwind the PC register
2039 to the same memory location. If they do, then even though they
2040 have different frame IDs, the new frame will be bogus; two
2041 functions can't share a register save slot for the PC. This can
2042 happen when the prologue analyzer finds a stack adjustment, but
2043 no PC save.
2044
2045 This check does assume that the "PC register" is roughly a
2046 traditional PC, even if the gdbarch_unwind_pc method adjusts
2047 it (we do not rely on the value, only on the unwound PC being
2048 dependent on this value). A potential improvement would be
2049 to have the frame prev_pc method and the gdbarch unwind_pc
2050 method set the same lval and location information as
2051 frame_register_unwind. */
2052 if (this_frame->level > 0
2053 && gdbarch_pc_regnum (gdbarch) >= 0
2054 && get_frame_type (this_frame) == NORMAL_FRAME
2055 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2056 || get_frame_type (this_frame->next) == INLINE_FRAME))
2057 {
2058 int optimized, realnum, nrealnum;
2059 enum lval_type lval, nlval;
2060 CORE_ADDR addr, naddr;
2061
2062 frame_register_unwind_location (this_frame,
2063 gdbarch_pc_regnum (gdbarch),
2064 &optimized, &lval, &addr, &realnum);
2065 frame_register_unwind_location (get_next_frame (this_frame),
2066 gdbarch_pc_regnum (gdbarch),
2067 &optimized, &nlval, &naddr, &nrealnum);
2068
2069 if ((lval == lval_memory && lval == nlval && addr == naddr)
2070 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2071 {
2072 if (frame_debug)
2073 {
2074 fprintf_unfiltered (gdb_stdlog, "-> ");
2075 fprint_frame (gdb_stdlog, NULL);
2076 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2077 }
2078
2079 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2080 this_frame->prev = NULL;
2081 return NULL;
2082 }
2083 }
2084
2085 return get_prev_frame_if_no_cycle (this_frame);
2086 }
2087
2088 /* Return a "struct frame_info" corresponding to the frame that called
2089 THIS_FRAME. Returns NULL if there is no such frame.
2090
2091 Unlike get_prev_frame, this function always tries to unwind the
2092 frame. */
2093
2094 struct frame_info *
2095 get_prev_frame_always (struct frame_info *this_frame)
2096 {
2097 struct frame_info *prev_frame = NULL;
2098
2099 TRY
2100 {
2101 prev_frame = get_prev_frame_always_1 (this_frame);
2102 }
2103 CATCH (ex, RETURN_MASK_ERROR)
2104 {
2105 if (ex.error == MEMORY_ERROR)
2106 {
2107 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2108 if (ex.message != NULL)
2109 {
2110 char *stop_string;
2111 size_t size;
2112
2113 /* The error needs to live as long as the frame does.
2114 Allocate using stack local STOP_STRING then assign the
2115 pointer to the frame, this allows the STOP_STRING on the
2116 frame to be of type 'const char *'. */
2117 size = strlen (ex.message) + 1;
2118 stop_string = (char *) frame_obstack_zalloc (size);
2119 memcpy (stop_string, ex.message, size);
2120 this_frame->stop_string = stop_string;
2121 }
2122 prev_frame = NULL;
2123 }
2124 else
2125 throw_exception (ex);
2126 }
2127 END_CATCH
2128
2129 return prev_frame;
2130 }
2131
2132 /* Construct a new "struct frame_info" and link it previous to
2133 this_frame. */
2134
2135 static struct frame_info *
2136 get_prev_frame_raw (struct frame_info *this_frame)
2137 {
2138 struct frame_info *prev_frame;
2139
2140 /* Allocate the new frame but do not wire it in to the frame chain.
2141 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2142 frame->next to pull some fancy tricks (of course such code is, by
2143 definition, recursive). Try to prevent it.
2144
2145 There is no reason to worry about memory leaks, should the
2146 remainder of the function fail. The allocated memory will be
2147 quickly reclaimed when the frame cache is flushed, and the `we've
2148 been here before' check above will stop repeated memory
2149 allocation calls. */
2150 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2151 prev_frame->level = this_frame->level + 1;
2152
2153 /* For now, assume we don't have frame chains crossing address
2154 spaces. */
2155 prev_frame->pspace = this_frame->pspace;
2156 prev_frame->aspace = this_frame->aspace;
2157
2158 /* Don't yet compute ->unwind (and hence ->type). It is computed
2159 on-demand in get_frame_type, frame_register_unwind, and
2160 get_frame_id. */
2161
2162 /* Don't yet compute the frame's ID. It is computed on-demand by
2163 get_frame_id(). */
2164
2165 /* The unwound frame ID is validate at the start of this function,
2166 as part of the logic to decide if that frame should be further
2167 unwound, and not here while the prev frame is being created.
2168 Doing this makes it possible for the user to examine a frame that
2169 has an invalid frame ID.
2170
2171 Some very old VAX code noted: [...] For the sake of argument,
2172 suppose that the stack is somewhat trashed (which is one reason
2173 that "info frame" exists). So, return 0 (indicating we don't
2174 know the address of the arglist) if we don't know what frame this
2175 frame calls. */
2176
2177 /* Link it in. */
2178 this_frame->prev = prev_frame;
2179 prev_frame->next = this_frame;
2180
2181 if (frame_debug)
2182 {
2183 fprintf_unfiltered (gdb_stdlog, "-> ");
2184 fprint_frame (gdb_stdlog, prev_frame);
2185 fprintf_unfiltered (gdb_stdlog, " }\n");
2186 }
2187
2188 return prev_frame;
2189 }
2190
2191 /* Debug routine to print a NULL frame being returned. */
2192
2193 static void
2194 frame_debug_got_null_frame (struct frame_info *this_frame,
2195 const char *reason)
2196 {
2197 if (frame_debug)
2198 {
2199 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2200 if (this_frame != NULL)
2201 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2202 else
2203 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2204 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2205 }
2206 }
2207
2208 /* Is this (non-sentinel) frame in the "main"() function? */
2209
2210 static int
2211 inside_main_func (struct frame_info *this_frame)
2212 {
2213 struct bound_minimal_symbol msymbol;
2214 CORE_ADDR maddr;
2215
2216 if (symfile_objfile == 0)
2217 return 0;
2218 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2219 if (msymbol.minsym == NULL)
2220 return 0;
2221 /* Make certain that the code, and not descriptor, address is
2222 returned. */
2223 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2224 BMSYMBOL_VALUE_ADDRESS (msymbol),
2225 target_stack);
2226 return maddr == get_frame_func (this_frame);
2227 }
2228
2229 /* Test whether THIS_FRAME is inside the process entry point function. */
2230
2231 static int
2232 inside_entry_func (struct frame_info *this_frame)
2233 {
2234 CORE_ADDR entry_point;
2235
2236 if (!entry_point_address_query (&entry_point))
2237 return 0;
2238
2239 return get_frame_func (this_frame) == entry_point;
2240 }
2241
2242 /* Return a structure containing various interesting information about
2243 the frame that called THIS_FRAME. Returns NULL if there is entier
2244 no such frame or the frame fails any of a set of target-independent
2245 condition that should terminate the frame chain (e.g., as unwinding
2246 past main()).
2247
2248 This function should not contain target-dependent tests, such as
2249 checking whether the program-counter is zero. */
2250
2251 struct frame_info *
2252 get_prev_frame (struct frame_info *this_frame)
2253 {
2254 CORE_ADDR frame_pc;
2255 int frame_pc_p;
2256
2257 /* There is always a frame. If this assertion fails, suspect that
2258 something should be calling get_selected_frame() or
2259 get_current_frame(). */
2260 gdb_assert (this_frame != NULL);
2261
2262 /* If this_frame is the current frame, then compute and stash
2263 its frame id prior to fetching and computing the frame id of the
2264 previous frame. Otherwise, the cycle detection code in
2265 get_prev_frame_if_no_cycle() will not work correctly. When
2266 get_frame_id() is called later on, an assertion error will
2267 be triggered in the event of a cycle between the current
2268 frame and its previous frame. */
2269 if (this_frame->level == 0)
2270 get_frame_id (this_frame);
2271
2272 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2273
2274 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2275 sense to stop unwinding at a dummy frame. One place where a dummy
2276 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2277 pcsqh register (space register for the instruction at the head of the
2278 instruction queue) cannot be written directly; the only way to set it
2279 is to branch to code that is in the target space. In order to implement
2280 frame dummies on HPUX, the called function is made to jump back to where
2281 the inferior was when the user function was called. If gdb was inside
2282 the main function when we created the dummy frame, the dummy frame will
2283 point inside the main function. */
2284 if (this_frame->level >= 0
2285 && get_frame_type (this_frame) == NORMAL_FRAME
2286 && !backtrace_past_main
2287 && frame_pc_p
2288 && inside_main_func (this_frame))
2289 /* Don't unwind past main(). Note, this is done _before_ the
2290 frame has been marked as previously unwound. That way if the
2291 user later decides to enable unwinds past main(), that will
2292 automatically happen. */
2293 {
2294 frame_debug_got_null_frame (this_frame, "inside main func");
2295 return NULL;
2296 }
2297
2298 /* If the user's backtrace limit has been exceeded, stop. We must
2299 add two to the current level; one of those accounts for backtrace_limit
2300 being 1-based and the level being 0-based, and the other accounts for
2301 the level of the new frame instead of the level of the current
2302 frame. */
2303 if (this_frame->level + 2 > backtrace_limit)
2304 {
2305 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2306 return NULL;
2307 }
2308
2309 /* If we're already inside the entry function for the main objfile,
2310 then it isn't valid. Don't apply this test to a dummy frame -
2311 dummy frame PCs typically land in the entry func. Don't apply
2312 this test to the sentinel frame. Sentinel frames should always
2313 be allowed to unwind. */
2314 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2315 wasn't checking for "main" in the minimal symbols. With that
2316 fixed asm-source tests now stop in "main" instead of halting the
2317 backtrace in weird and wonderful ways somewhere inside the entry
2318 file. Suspect that tests for inside the entry file/func were
2319 added to work around that (now fixed) case. */
2320 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2321 suggested having the inside_entry_func test use the
2322 inside_main_func() msymbol trick (along with entry_point_address()
2323 I guess) to determine the address range of the start function.
2324 That should provide a far better stopper than the current
2325 heuristics. */
2326 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2327 applied tail-call optimizations to main so that a function called
2328 from main returns directly to the caller of main. Since we don't
2329 stop at main, we should at least stop at the entry point of the
2330 application. */
2331 if (this_frame->level >= 0
2332 && get_frame_type (this_frame) == NORMAL_FRAME
2333 && !backtrace_past_entry
2334 && frame_pc_p
2335 && inside_entry_func (this_frame))
2336 {
2337 frame_debug_got_null_frame (this_frame, "inside entry func");
2338 return NULL;
2339 }
2340
2341 /* Assume that the only way to get a zero PC is through something
2342 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2343 will never unwind a zero PC. */
2344 if (this_frame->level > 0
2345 && (get_frame_type (this_frame) == NORMAL_FRAME
2346 || get_frame_type (this_frame) == INLINE_FRAME)
2347 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2348 && frame_pc_p && frame_pc == 0)
2349 {
2350 frame_debug_got_null_frame (this_frame, "zero PC");
2351 return NULL;
2352 }
2353
2354 return get_prev_frame_always (this_frame);
2355 }
2356
2357 struct frame_id
2358 get_prev_frame_id_by_id (struct frame_id id)
2359 {
2360 struct frame_id prev_id;
2361 struct frame_info *frame;
2362
2363 frame = frame_find_by_id (id);
2364
2365 if (frame != NULL)
2366 prev_id = get_frame_id (get_prev_frame (frame));
2367 else
2368 prev_id = null_frame_id;
2369
2370 return prev_id;
2371 }
2372
2373 CORE_ADDR
2374 get_frame_pc (struct frame_info *frame)
2375 {
2376 gdb_assert (frame->next != NULL);
2377 return frame_unwind_pc (frame->next);
2378 }
2379
2380 int
2381 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2382 {
2383
2384 gdb_assert (frame->next != NULL);
2385
2386 TRY
2387 {
2388 *pc = frame_unwind_pc (frame->next);
2389 }
2390 CATCH (ex, RETURN_MASK_ERROR)
2391 {
2392 if (ex.error == NOT_AVAILABLE_ERROR)
2393 return 0;
2394 else
2395 throw_exception (ex);
2396 }
2397 END_CATCH
2398
2399 return 1;
2400 }
2401
2402 /* Return an address that falls within THIS_FRAME's code block. */
2403
2404 CORE_ADDR
2405 get_frame_address_in_block (struct frame_info *this_frame)
2406 {
2407 /* A draft address. */
2408 CORE_ADDR pc = get_frame_pc (this_frame);
2409
2410 struct frame_info *next_frame = this_frame->next;
2411
2412 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2413 Normally the resume address is inside the body of the function
2414 associated with THIS_FRAME, but there is a special case: when
2415 calling a function which the compiler knows will never return
2416 (for instance abort), the call may be the very last instruction
2417 in the calling function. The resume address will point after the
2418 call and may be at the beginning of a different function
2419 entirely.
2420
2421 If THIS_FRAME is a signal frame or dummy frame, then we should
2422 not adjust the unwound PC. For a dummy frame, GDB pushed the
2423 resume address manually onto the stack. For a signal frame, the
2424 OS may have pushed the resume address manually and invoked the
2425 handler (e.g. GNU/Linux), or invoked the trampoline which called
2426 the signal handler - but in either case the signal handler is
2427 expected to return to the trampoline. So in both of these
2428 cases we know that the resume address is executable and
2429 related. So we only need to adjust the PC if THIS_FRAME
2430 is a normal function.
2431
2432 If the program has been interrupted while THIS_FRAME is current,
2433 then clearly the resume address is inside the associated
2434 function. There are three kinds of interruption: debugger stop
2435 (next frame will be SENTINEL_FRAME), operating system
2436 signal or exception (next frame will be SIGTRAMP_FRAME),
2437 or debugger-induced function call (next frame will be
2438 DUMMY_FRAME). So we only need to adjust the PC if
2439 NEXT_FRAME is a normal function.
2440
2441 We check the type of NEXT_FRAME first, since it is already
2442 known; frame type is determined by the unwinder, and since
2443 we have THIS_FRAME we've already selected an unwinder for
2444 NEXT_FRAME.
2445
2446 If the next frame is inlined, we need to keep going until we find
2447 the real function - for instance, if a signal handler is invoked
2448 while in an inlined function, then the code address of the
2449 "calling" normal function should not be adjusted either. */
2450
2451 while (get_frame_type (next_frame) == INLINE_FRAME)
2452 next_frame = next_frame->next;
2453
2454 if ((get_frame_type (next_frame) == NORMAL_FRAME
2455 || get_frame_type (next_frame) == TAILCALL_FRAME)
2456 && (get_frame_type (this_frame) == NORMAL_FRAME
2457 || get_frame_type (this_frame) == TAILCALL_FRAME
2458 || get_frame_type (this_frame) == INLINE_FRAME))
2459 return pc - 1;
2460
2461 return pc;
2462 }
2463
2464 int
2465 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2466 CORE_ADDR *pc)
2467 {
2468
2469 TRY
2470 {
2471 *pc = get_frame_address_in_block (this_frame);
2472 }
2473 CATCH (ex, RETURN_MASK_ERROR)
2474 {
2475 if (ex.error == NOT_AVAILABLE_ERROR)
2476 return 0;
2477 throw_exception (ex);
2478 }
2479 END_CATCH
2480
2481 return 1;
2482 }
2483
2484 symtab_and_line
2485 find_frame_sal (frame_info *frame)
2486 {
2487 struct frame_info *next_frame;
2488 int notcurrent;
2489 CORE_ADDR pc;
2490
2491 /* If the next frame represents an inlined function call, this frame's
2492 sal is the "call site" of that inlined function, which can not
2493 be inferred from get_frame_pc. */
2494 next_frame = get_next_frame (frame);
2495 if (frame_inlined_callees (frame) > 0)
2496 {
2497 struct symbol *sym;
2498
2499 if (next_frame)
2500 sym = get_frame_function (next_frame);
2501 else
2502 sym = inline_skipped_symbol (inferior_ptid);
2503
2504 /* If frame is inline, it certainly has symbols. */
2505 gdb_assert (sym);
2506
2507 symtab_and_line sal;
2508 if (SYMBOL_LINE (sym) != 0)
2509 {
2510 sal.symtab = symbol_symtab (sym);
2511 sal.line = SYMBOL_LINE (sym);
2512 }
2513 else
2514 /* If the symbol does not have a location, we don't know where
2515 the call site is. Do not pretend to. This is jarring, but
2516 we can't do much better. */
2517 sal.pc = get_frame_pc (frame);
2518
2519 sal.pspace = get_frame_program_space (frame);
2520 return sal;
2521 }
2522
2523 /* If FRAME is not the innermost frame, that normally means that
2524 FRAME->pc points at the return instruction (which is *after* the
2525 call instruction), and we want to get the line containing the
2526 call (because the call is where the user thinks the program is).
2527 However, if the next frame is either a SIGTRAMP_FRAME or a
2528 DUMMY_FRAME, then the next frame will contain a saved interrupt
2529 PC and such a PC indicates the current (rather than next)
2530 instruction/line, consequently, for such cases, want to get the
2531 line containing fi->pc. */
2532 if (!get_frame_pc_if_available (frame, &pc))
2533 return {};
2534
2535 notcurrent = (pc != get_frame_address_in_block (frame));
2536 return find_pc_line (pc, notcurrent);
2537 }
2538
2539 /* Per "frame.h", return the ``address'' of the frame. Code should
2540 really be using get_frame_id(). */
2541 CORE_ADDR
2542 get_frame_base (struct frame_info *fi)
2543 {
2544 return get_frame_id (fi).stack_addr;
2545 }
2546
2547 /* High-level offsets into the frame. Used by the debug info. */
2548
2549 CORE_ADDR
2550 get_frame_base_address (struct frame_info *fi)
2551 {
2552 if (get_frame_type (fi) != NORMAL_FRAME)
2553 return 0;
2554 if (fi->base == NULL)
2555 fi->base = frame_base_find_by_frame (fi);
2556 /* Sneaky: If the low-level unwind and high-level base code share a
2557 common unwinder, let them share the prologue cache. */
2558 if (fi->base->unwind == fi->unwind)
2559 return fi->base->this_base (fi, &fi->prologue_cache);
2560 return fi->base->this_base (fi, &fi->base_cache);
2561 }
2562
2563 CORE_ADDR
2564 get_frame_locals_address (struct frame_info *fi)
2565 {
2566 if (get_frame_type (fi) != NORMAL_FRAME)
2567 return 0;
2568 /* If there isn't a frame address method, find it. */
2569 if (fi->base == NULL)
2570 fi->base = frame_base_find_by_frame (fi);
2571 /* Sneaky: If the low-level unwind and high-level base code share a
2572 common unwinder, let them share the prologue cache. */
2573 if (fi->base->unwind == fi->unwind)
2574 return fi->base->this_locals (fi, &fi->prologue_cache);
2575 return fi->base->this_locals (fi, &fi->base_cache);
2576 }
2577
2578 CORE_ADDR
2579 get_frame_args_address (struct frame_info *fi)
2580 {
2581 if (get_frame_type (fi) != NORMAL_FRAME)
2582 return 0;
2583 /* If there isn't a frame address method, find it. */
2584 if (fi->base == NULL)
2585 fi->base = frame_base_find_by_frame (fi);
2586 /* Sneaky: If the low-level unwind and high-level base code share a
2587 common unwinder, let them share the prologue cache. */
2588 if (fi->base->unwind == fi->unwind)
2589 return fi->base->this_args (fi, &fi->prologue_cache);
2590 return fi->base->this_args (fi, &fi->base_cache);
2591 }
2592
2593 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2594 otherwise. */
2595
2596 int
2597 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2598 {
2599 if (fi->unwind == NULL)
2600 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2601 return fi->unwind == unwinder;
2602 }
2603
2604 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2605 or -1 for a NULL frame. */
2606
2607 int
2608 frame_relative_level (struct frame_info *fi)
2609 {
2610 if (fi == NULL)
2611 return -1;
2612 else
2613 return fi->level;
2614 }
2615
2616 enum frame_type
2617 get_frame_type (struct frame_info *frame)
2618 {
2619 if (frame->unwind == NULL)
2620 /* Initialize the frame's unwinder because that's what
2621 provides the frame's type. */
2622 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2623 return frame->unwind->type;
2624 }
2625
2626 struct program_space *
2627 get_frame_program_space (struct frame_info *frame)
2628 {
2629 return frame->pspace;
2630 }
2631
2632 struct program_space *
2633 frame_unwind_program_space (struct frame_info *this_frame)
2634 {
2635 gdb_assert (this_frame);
2636
2637 /* This is really a placeholder to keep the API consistent --- we
2638 assume for now that we don't have frame chains crossing
2639 spaces. */
2640 return this_frame->pspace;
2641 }
2642
2643 const address_space *
2644 get_frame_address_space (struct frame_info *frame)
2645 {
2646 return frame->aspace;
2647 }
2648
2649 /* Memory access methods. */
2650
2651 void
2652 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2653 gdb_byte *buf, int len)
2654 {
2655 read_memory (addr, buf, len);
2656 }
2657
2658 LONGEST
2659 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2660 int len)
2661 {
2662 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2663 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2664
2665 return read_memory_integer (addr, len, byte_order);
2666 }
2667
2668 ULONGEST
2669 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2670 int len)
2671 {
2672 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2673 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2674
2675 return read_memory_unsigned_integer (addr, len, byte_order);
2676 }
2677
2678 int
2679 safe_frame_unwind_memory (struct frame_info *this_frame,
2680 CORE_ADDR addr, gdb_byte *buf, int len)
2681 {
2682 /* NOTE: target_read_memory returns zero on success! */
2683 return !target_read_memory (addr, buf, len);
2684 }
2685
2686 /* Architecture methods. */
2687
2688 struct gdbarch *
2689 get_frame_arch (struct frame_info *this_frame)
2690 {
2691 return frame_unwind_arch (this_frame->next);
2692 }
2693
2694 struct gdbarch *
2695 frame_unwind_arch (struct frame_info *next_frame)
2696 {
2697 if (!next_frame->prev_arch.p)
2698 {
2699 struct gdbarch *arch;
2700
2701 if (next_frame->unwind == NULL)
2702 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2703
2704 if (next_frame->unwind->prev_arch != NULL)
2705 arch = next_frame->unwind->prev_arch (next_frame,
2706 &next_frame->prologue_cache);
2707 else
2708 arch = get_frame_arch (next_frame);
2709
2710 next_frame->prev_arch.arch = arch;
2711 next_frame->prev_arch.p = 1;
2712 if (frame_debug)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2715 next_frame->level,
2716 gdbarch_bfd_arch_info (arch)->printable_name);
2717 }
2718
2719 return next_frame->prev_arch.arch;
2720 }
2721
2722 struct gdbarch *
2723 frame_unwind_caller_arch (struct frame_info *next_frame)
2724 {
2725 next_frame = skip_artificial_frames (next_frame);
2726
2727 /* We must have a non-artificial frame. The caller is supposed to check
2728 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2729 in this case. */
2730 gdb_assert (next_frame != NULL);
2731
2732 return frame_unwind_arch (next_frame);
2733 }
2734
2735 /* Gets the language of FRAME. */
2736
2737 enum language
2738 get_frame_language (struct frame_info *frame)
2739 {
2740 CORE_ADDR pc = 0;
2741 int pc_p = 0;
2742
2743 gdb_assert (frame!= NULL);
2744
2745 /* We determine the current frame language by looking up its
2746 associated symtab. To retrieve this symtab, we use the frame
2747 PC. However we cannot use the frame PC as is, because it
2748 usually points to the instruction following the "call", which
2749 is sometimes the first instruction of another function. So
2750 we rely on get_frame_address_in_block(), it provides us with
2751 a PC that is guaranteed to be inside the frame's code
2752 block. */
2753
2754 TRY
2755 {
2756 pc = get_frame_address_in_block (frame);
2757 pc_p = 1;
2758 }
2759 CATCH (ex, RETURN_MASK_ERROR)
2760 {
2761 if (ex.error != NOT_AVAILABLE_ERROR)
2762 throw_exception (ex);
2763 }
2764 END_CATCH
2765
2766 if (pc_p)
2767 {
2768 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2769
2770 if (cust != NULL)
2771 return compunit_language (cust);
2772 }
2773
2774 return language_unknown;
2775 }
2776
2777 /* Stack pointer methods. */
2778
2779 CORE_ADDR
2780 get_frame_sp (struct frame_info *this_frame)
2781 {
2782 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2783
2784 /* Normality - an architecture that provides a way of obtaining any
2785 frame inner-most address. */
2786 if (gdbarch_unwind_sp_p (gdbarch))
2787 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2788 operate on THIS_FRAME now. */
2789 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2790 /* Now things are really are grim. Hope that the value returned by
2791 the gdbarch_sp_regnum register is meaningful. */
2792 if (gdbarch_sp_regnum (gdbarch) >= 0)
2793 return get_frame_register_unsigned (this_frame,
2794 gdbarch_sp_regnum (gdbarch));
2795 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2796 }
2797
2798 /* Return the reason why we can't unwind past FRAME. */
2799
2800 enum unwind_stop_reason
2801 get_frame_unwind_stop_reason (struct frame_info *frame)
2802 {
2803 /* Fill-in STOP_REASON. */
2804 get_prev_frame_always (frame);
2805 gdb_assert (frame->prev_p);
2806
2807 return frame->stop_reason;
2808 }
2809
2810 /* Return a string explaining REASON. */
2811
2812 const char *
2813 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2814 {
2815 switch (reason)
2816 {
2817 #define SET(name, description) \
2818 case name: return _(description);
2819 #include "unwind_stop_reasons.def"
2820 #undef SET
2821
2822 default:
2823 internal_error (__FILE__, __LINE__,
2824 "Invalid frame stop reason");
2825 }
2826 }
2827
2828 const char *
2829 frame_stop_reason_string (struct frame_info *fi)
2830 {
2831 gdb_assert (fi->prev_p);
2832 gdb_assert (fi->prev == NULL);
2833
2834 /* Return the specific string if we have one. */
2835 if (fi->stop_string != NULL)
2836 return fi->stop_string;
2837
2838 /* Return the generic string if we have nothing better. */
2839 return unwind_stop_reason_to_string (fi->stop_reason);
2840 }
2841
2842 /* Return the enum symbol name of REASON as a string, to use in debug
2843 output. */
2844
2845 static const char *
2846 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2847 {
2848 switch (reason)
2849 {
2850 #define SET(name, description) \
2851 case name: return #name;
2852 #include "unwind_stop_reasons.def"
2853 #undef SET
2854
2855 default:
2856 internal_error (__FILE__, __LINE__,
2857 "Invalid frame stop reason");
2858 }
2859 }
2860
2861 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2862 FRAME. */
2863
2864 void
2865 frame_cleanup_after_sniffer (struct frame_info *frame)
2866 {
2867 /* The sniffer should not allocate a prologue cache if it did not
2868 match this frame. */
2869 gdb_assert (frame->prologue_cache == NULL);
2870
2871 /* No sniffer should extend the frame chain; sniff based on what is
2872 already certain. */
2873 gdb_assert (!frame->prev_p);
2874
2875 /* The sniffer should not check the frame's ID; that's circular. */
2876 gdb_assert (!frame->this_id.p);
2877
2878 /* Clear cached fields dependent on the unwinder.
2879
2880 The previous PC is independent of the unwinder, but the previous
2881 function is not (see get_frame_address_in_block). */
2882 frame->prev_func.p = 0;
2883 frame->prev_func.addr = 0;
2884
2885 /* Discard the unwinder last, so that we can easily find it if an assertion
2886 in this function triggers. */
2887 frame->unwind = NULL;
2888 }
2889
2890 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2891 If sniffing fails, the caller should be sure to call
2892 frame_cleanup_after_sniffer. */
2893
2894 void
2895 frame_prepare_for_sniffer (struct frame_info *frame,
2896 const struct frame_unwind *unwind)
2897 {
2898 gdb_assert (frame->unwind == NULL);
2899 frame->unwind = unwind;
2900 }
2901
2902 static struct cmd_list_element *set_backtrace_cmdlist;
2903 static struct cmd_list_element *show_backtrace_cmdlist;
2904
2905 static void
2906 set_backtrace_cmd (const char *args, int from_tty)
2907 {
2908 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2909 gdb_stdout);
2910 }
2911
2912 static void
2913 show_backtrace_cmd (const char *args, int from_tty)
2914 {
2915 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2916 }
2917
2918 void
2919 _initialize_frame (void)
2920 {
2921 obstack_init (&frame_cache_obstack);
2922
2923 frame_stash_create ();
2924
2925 gdb::observers::target_changed.attach (frame_observer_target_changed);
2926
2927 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2928 Set backtrace specific variables.\n\
2929 Configure backtrace variables such as the backtrace limit"),
2930 &set_backtrace_cmdlist, "set backtrace ",
2931 0/*allow-unknown*/, &setlist);
2932 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2933 Show backtrace specific variables\n\
2934 Show backtrace variables such as the backtrace limit"),
2935 &show_backtrace_cmdlist, "show backtrace ",
2936 0/*allow-unknown*/, &showlist);
2937
2938 add_setshow_boolean_cmd ("past-main", class_obscure,
2939 &backtrace_past_main, _("\
2940 Set whether backtraces should continue past \"main\"."), _("\
2941 Show whether backtraces should continue past \"main\"."), _("\
2942 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2943 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2944 of the stack trace."),
2945 NULL,
2946 show_backtrace_past_main,
2947 &set_backtrace_cmdlist,
2948 &show_backtrace_cmdlist);
2949
2950 add_setshow_boolean_cmd ("past-entry", class_obscure,
2951 &backtrace_past_entry, _("\
2952 Set whether backtraces should continue past the entry point of a program."),
2953 _("\
2954 Show whether backtraces should continue past the entry point of a program."),
2955 _("\
2956 Normally there are no callers beyond the entry point of a program, so GDB\n\
2957 will terminate the backtrace there. Set this variable if you need to see\n\
2958 the rest of the stack trace."),
2959 NULL,
2960 show_backtrace_past_entry,
2961 &set_backtrace_cmdlist,
2962 &show_backtrace_cmdlist);
2963
2964 add_setshow_uinteger_cmd ("limit", class_obscure,
2965 &backtrace_limit, _("\
2966 Set an upper bound on the number of backtrace levels."), _("\
2967 Show the upper bound on the number of backtrace levels."), _("\
2968 No more than the specified number of frames can be displayed or examined.\n\
2969 Literal \"unlimited\" or zero means no limit."),
2970 NULL,
2971 show_backtrace_limit,
2972 &set_backtrace_cmdlist,
2973 &show_backtrace_cmdlist);
2974
2975 /* Debug this files internals. */
2976 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2977 Set frame debugging."), _("\
2978 Show frame debugging."), _("\
2979 When non-zero, frame specific internal debugging is enabled."),
2980 NULL,
2981 show_frame_debug,
2982 &setdebuglist, &showdebuglist);
2983 }