]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/frame.c
* defs.h (strlen_paddr, paddr, paddr_nz): Remove.
[thirdparty/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44 #include "block.h"
45 #include "inline-frame.h"
46
47 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
48 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
49
50 /* We keep a cache of stack frames, each of which is a "struct
51 frame_info". The innermost one gets allocated (in
52 wait_for_inferior) each time the inferior stops; current_frame
53 points to it. Additional frames get allocated (in get_prev_frame)
54 as needed, and are chained through the next and prev fields. Any
55 time that the frame cache becomes invalid (most notably when we
56 execute something, but also if we change how we interpret the
57 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
58 which reads new symbols)), we should call reinit_frame_cache. */
59
60 struct frame_info
61 {
62 /* Level of this frame. The inner-most (youngest) frame is at level
63 0. As you move towards the outer-most (oldest) frame, the level
64 increases. This is a cached value. It could just as easily be
65 computed by counting back from the selected frame to the inner
66 most frame. */
67 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
68 reserved to indicate a bogus frame - one that has been created
69 just to keep GDB happy (GDB always needs a frame). For the
70 moment leave this as speculation. */
71 int level;
72
73 /* The frame's low-level unwinder and corresponding cache. The
74 low-level unwinder is responsible for unwinding register values
75 for the previous frame. The low-level unwind methods are
76 selected based on the presence, or otherwise, of register unwind
77 information such as CFI. */
78 void *prologue_cache;
79 const struct frame_unwind *unwind;
80
81 /* Cached copy of the previous frame's architecture. */
82 struct
83 {
84 int p;
85 struct gdbarch *arch;
86 } prev_arch;
87
88 /* Cached copy of the previous frame's resume address. */
89 struct {
90 int p;
91 CORE_ADDR value;
92 } prev_pc;
93
94 /* Cached copy of the previous frame's function address. */
95 struct
96 {
97 CORE_ADDR addr;
98 int p;
99 } prev_func;
100
101 /* This frame's ID. */
102 struct
103 {
104 int p;
105 struct frame_id value;
106 } this_id;
107
108 /* The frame's high-level base methods, and corresponding cache.
109 The high level base methods are selected based on the frame's
110 debug info. */
111 const struct frame_base *base;
112 void *base_cache;
113
114 /* Pointers to the next (down, inner, younger) and previous (up,
115 outer, older) frame_info's in the frame cache. */
116 struct frame_info *next; /* down, inner, younger */
117 int prev_p;
118 struct frame_info *prev; /* up, outer, older */
119
120 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
121 could. Only valid when PREV_P is set. */
122 enum unwind_stop_reason stop_reason;
123 };
124
125 /* Flag to control debugging. */
126
127 int frame_debug;
128 static void
129 show_frame_debug (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131 {
132 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
133 }
134
135 /* Flag to indicate whether backtraces should stop at main et.al. */
136
137 static int backtrace_past_main;
138 static void
139 show_backtrace_past_main (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Whether backtraces should continue past \"main\" is %s.\n"),
144 value);
145 }
146
147 static int backtrace_past_entry;
148 static void
149 show_backtrace_past_entry (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("\
153 Whether backtraces should continue past the entry point of a program is %s.\n"),
154 value);
155 }
156
157 static int backtrace_limit = INT_MAX;
158 static void
159 show_backtrace_limit (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file, _("\
163 An upper bound on the number of backtrace levels is %s.\n"),
164 value);
165 }
166
167
168 static void
169 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
170 {
171 if (p)
172 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
173 else
174 fprintf_unfiltered (file, "!%s", name);
175 }
176
177 void
178 fprint_frame_id (struct ui_file *file, struct frame_id id)
179 {
180 fprintf_unfiltered (file, "{");
181 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
182 fprintf_unfiltered (file, ",");
183 fprint_field (file, "code", id.code_addr_p, id.code_addr);
184 fprintf_unfiltered (file, ",");
185 fprint_field (file, "special", id.special_addr_p, id.special_addr);
186 if (id.inline_depth)
187 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
188 fprintf_unfiltered (file, "}");
189 }
190
191 static void
192 fprint_frame_type (struct ui_file *file, enum frame_type type)
193 {
194 switch (type)
195 {
196 case NORMAL_FRAME:
197 fprintf_unfiltered (file, "NORMAL_FRAME");
198 return;
199 case DUMMY_FRAME:
200 fprintf_unfiltered (file, "DUMMY_FRAME");
201 return;
202 case INLINE_FRAME:
203 fprintf_unfiltered (file, "INLINE_FRAME");
204 return;
205 case SENTINEL_FRAME:
206 fprintf_unfiltered (file, "SENTINEL_FRAME");
207 return;
208 case SIGTRAMP_FRAME:
209 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
210 return;
211 case ARCH_FRAME:
212 fprintf_unfiltered (file, "ARCH_FRAME");
213 return;
214 default:
215 fprintf_unfiltered (file, "<unknown type>");
216 return;
217 };
218 }
219
220 static void
221 fprint_frame (struct ui_file *file, struct frame_info *fi)
222 {
223 if (fi == NULL)
224 {
225 fprintf_unfiltered (file, "<NULL frame>");
226 return;
227 }
228 fprintf_unfiltered (file, "{");
229 fprintf_unfiltered (file, "level=%d", fi->level);
230 fprintf_unfiltered (file, ",");
231 fprintf_unfiltered (file, "type=");
232 if (fi->unwind != NULL)
233 fprint_frame_type (file, fi->unwind->type);
234 else
235 fprintf_unfiltered (file, "<unknown>");
236 fprintf_unfiltered (file, ",");
237 fprintf_unfiltered (file, "unwind=");
238 if (fi->unwind != NULL)
239 gdb_print_host_address (fi->unwind, file);
240 else
241 fprintf_unfiltered (file, "<unknown>");
242 fprintf_unfiltered (file, ",");
243 fprintf_unfiltered (file, "pc=");
244 if (fi->next != NULL && fi->next->prev_pc.p)
245 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
246 else
247 fprintf_unfiltered (file, "<unknown>");
248 fprintf_unfiltered (file, ",");
249 fprintf_unfiltered (file, "id=");
250 if (fi->this_id.p)
251 fprint_frame_id (file, fi->this_id.value);
252 else
253 fprintf_unfiltered (file, "<unknown>");
254 fprintf_unfiltered (file, ",");
255 fprintf_unfiltered (file, "func=");
256 if (fi->next != NULL && fi->next->prev_func.p)
257 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
258 else
259 fprintf_unfiltered (file, "<unknown>");
260 fprintf_unfiltered (file, "}");
261 }
262
263 /* Given FRAME, return the enclosing normal frame for inlined
264 function frames. Otherwise return the original frame. */
265
266 static struct frame_info *
267 skip_inlined_frames (struct frame_info *frame)
268 {
269 while (get_frame_type (frame) == INLINE_FRAME)
270 frame = get_prev_frame (frame);
271
272 return frame;
273 }
274
275 /* Return a frame uniq ID that can be used to, later, re-find the
276 frame. */
277
278 struct frame_id
279 get_frame_id (struct frame_info *fi)
280 {
281 if (fi == NULL)
282 {
283 return null_frame_id;
284 }
285 if (!fi->this_id.p)
286 {
287 if (frame_debug)
288 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
289 fi->level);
290 /* Find the unwinder. */
291 if (fi->unwind == NULL)
292 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
293 /* Find THIS frame's ID. */
294 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
295 fi->this_id.p = 1;
296 if (frame_debug)
297 {
298 fprintf_unfiltered (gdb_stdlog, "-> ");
299 fprint_frame_id (gdb_stdlog, fi->this_id.value);
300 fprintf_unfiltered (gdb_stdlog, " }\n");
301 }
302 }
303 return fi->this_id.value;
304 }
305
306 struct frame_id
307 get_stack_frame_id (struct frame_info *next_frame)
308 {
309 return get_frame_id (skip_inlined_frames (next_frame));
310 }
311
312 struct frame_id
313 frame_unwind_caller_id (struct frame_info *next_frame)
314 {
315 struct frame_info *this_frame;
316
317 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
318 the frame chain, leading to this function unintentionally
319 returning a null_frame_id (e.g., when a caller requests the frame
320 ID of "main()"s caller. */
321
322 next_frame = skip_inlined_frames (next_frame);
323 this_frame = get_prev_frame_1 (next_frame);
324 if (this_frame)
325 return get_frame_id (skip_inlined_frames (this_frame));
326 else
327 return null_frame_id;
328 }
329
330 const struct frame_id null_frame_id; /* All zeros. */
331
332 struct frame_id
333 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
334 CORE_ADDR special_addr)
335 {
336 struct frame_id id = null_frame_id;
337 id.stack_addr = stack_addr;
338 id.stack_addr_p = 1;
339 id.code_addr = code_addr;
340 id.code_addr_p = 1;
341 id.special_addr = special_addr;
342 id.special_addr_p = 1;
343 return id;
344 }
345
346 struct frame_id
347 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
348 {
349 struct frame_id id = null_frame_id;
350 id.stack_addr = stack_addr;
351 id.stack_addr_p = 1;
352 id.code_addr = code_addr;
353 id.code_addr_p = 1;
354 return id;
355 }
356
357 struct frame_id
358 frame_id_build_wild (CORE_ADDR stack_addr)
359 {
360 struct frame_id id = null_frame_id;
361 id.stack_addr = stack_addr;
362 id.stack_addr_p = 1;
363 return id;
364 }
365
366 int
367 frame_id_p (struct frame_id l)
368 {
369 int p;
370 /* The frame is valid iff it has a valid stack address. */
371 p = l.stack_addr_p;
372 if (frame_debug)
373 {
374 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
375 fprint_frame_id (gdb_stdlog, l);
376 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
377 }
378 return p;
379 }
380
381 int
382 frame_id_inlined_p (struct frame_id l)
383 {
384 if (!frame_id_p (l))
385 return 0;
386
387 return (l.inline_depth != 0);
388 }
389
390 int
391 frame_id_eq (struct frame_id l, struct frame_id r)
392 {
393 int eq;
394 if (!l.stack_addr_p || !r.stack_addr_p)
395 /* Like a NaN, if either ID is invalid, the result is false.
396 Note that a frame ID is invalid iff it is the null frame ID. */
397 eq = 0;
398 else if (l.stack_addr != r.stack_addr)
399 /* If .stack addresses are different, the frames are different. */
400 eq = 0;
401 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
402 /* An invalid code addr is a wild card. If .code addresses are
403 different, the frames are different. */
404 eq = 0;
405 else if (l.special_addr_p && r.special_addr_p
406 && l.special_addr != r.special_addr)
407 /* An invalid special addr is a wild card (or unused). Otherwise
408 if special addresses are different, the frames are different. */
409 eq = 0;
410 else if (l.inline_depth != r.inline_depth)
411 /* If inline depths are different, the frames must be different. */
412 eq = 0;
413 else
414 /* Frames are equal. */
415 eq = 1;
416
417 if (frame_debug)
418 {
419 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
420 fprint_frame_id (gdb_stdlog, l);
421 fprintf_unfiltered (gdb_stdlog, ",r=");
422 fprint_frame_id (gdb_stdlog, r);
423 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
424 }
425 return eq;
426 }
427
428 /* Safety net to check whether frame ID L should be inner to
429 frame ID R, according to their stack addresses.
430
431 This method cannot be used to compare arbitrary frames, as the
432 ranges of valid stack addresses may be discontiguous (e.g. due
433 to sigaltstack).
434
435 However, it can be used as safety net to discover invalid frame
436 IDs in certain circumstances. Assuming that NEXT is the immediate
437 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
438
439 * The stack address of NEXT must be inner-than-or-equal to the stack
440 address of THIS.
441
442 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
443 error has occurred.
444
445 * If NEXT and THIS have different stack addresses, no other frame
446 in the frame chain may have a stack address in between.
447
448 Therefore, if frame_id_inner (TEST, THIS) holds, but
449 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
450 to a valid frame in the frame chain.
451
452 The sanity checks above cannot be performed when a SIGTRAMP frame
453 is involved, because signal handlers might be executed on a different
454 stack than the stack used by the routine that caused the signal
455 to be raised. This can happen for instance when a thread exceeds
456 its maximum stack size. In this case, certain compilers implement
457 a stack overflow strategy that cause the handler to be run on a
458 different stack. */
459
460 static int
461 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
462 {
463 int inner;
464 if (!l.stack_addr_p || !r.stack_addr_p)
465 /* Like NaN, any operation involving an invalid ID always fails. */
466 inner = 0;
467 else if (l.inline_depth > r.inline_depth
468 && l.stack_addr == r.stack_addr
469 && l.code_addr_p == r.code_addr_p
470 && l.special_addr_p == r.special_addr_p
471 && l.special_addr == r.special_addr)
472 {
473 /* Same function, different inlined functions. */
474 struct block *lb, *rb;
475
476 gdb_assert (l.code_addr_p && r.code_addr_p);
477
478 lb = block_for_pc (l.code_addr);
479 rb = block_for_pc (r.code_addr);
480
481 if (lb == NULL || rb == NULL)
482 /* Something's gone wrong. */
483 inner = 0;
484 else
485 /* This will return true if LB and RB are the same block, or
486 if the block with the smaller depth lexically encloses the
487 block with the greater depth. */
488 inner = contained_in (lb, rb);
489 }
490 else
491 /* Only return non-zero when strictly inner than. Note that, per
492 comment in "frame.h", there is some fuzz here. Frameless
493 functions are not strictly inner than (same .stack but
494 different .code and/or .special address). */
495 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
496 if (frame_debug)
497 {
498 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
499 fprint_frame_id (gdb_stdlog, l);
500 fprintf_unfiltered (gdb_stdlog, ",r=");
501 fprint_frame_id (gdb_stdlog, r);
502 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
503 }
504 return inner;
505 }
506
507 struct frame_info *
508 frame_find_by_id (struct frame_id id)
509 {
510 struct frame_info *frame, *prev_frame;
511
512 /* ZERO denotes the null frame, let the caller decide what to do
513 about it. Should it instead return get_current_frame()? */
514 if (!frame_id_p (id))
515 return NULL;
516
517 for (frame = get_current_frame (); ; frame = prev_frame)
518 {
519 struct frame_id this = get_frame_id (frame);
520 if (frame_id_eq (id, this))
521 /* An exact match. */
522 return frame;
523
524 prev_frame = get_prev_frame (frame);
525 if (!prev_frame)
526 return NULL;
527
528 /* As a safety net to avoid unnecessary backtracing while trying
529 to find an invalid ID, we check for a common situation where
530 we can detect from comparing stack addresses that no other
531 frame in the current frame chain can have this ID. See the
532 comment at frame_id_inner for details. */
533 if (get_frame_type (frame) == NORMAL_FRAME
534 && !frame_id_inner (get_frame_arch (frame), id, this)
535 && frame_id_inner (get_frame_arch (prev_frame), id,
536 get_frame_id (prev_frame)))
537 return NULL;
538 }
539 return NULL;
540 }
541
542 static CORE_ADDR
543 frame_unwind_pc (struct frame_info *this_frame)
544 {
545 if (!this_frame->prev_pc.p)
546 {
547 CORE_ADDR pc;
548 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
549 {
550 /* The right way. The `pure' way. The one true way. This
551 method depends solely on the register-unwind code to
552 determine the value of registers in THIS frame, and hence
553 the value of this frame's PC (resume address). A typical
554 implementation is no more than:
555
556 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
557 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
558
559 Note: this method is very heavily dependent on a correct
560 register-unwind implementation, it pays to fix that
561 method first; this method is frame type agnostic, since
562 it only deals with register values, it works with any
563 frame. This is all in stark contrast to the old
564 FRAME_SAVED_PC which would try to directly handle all the
565 different ways that a PC could be unwound. */
566 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
567 }
568 else
569 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
570 this_frame->prev_pc.value = pc;
571 this_frame->prev_pc.p = 1;
572 if (frame_debug)
573 fprintf_unfiltered (gdb_stdlog,
574 "{ frame_unwind_caller_pc (this_frame=%d) -> 0x%s }\n",
575 this_frame->level,
576 hex_string (this_frame->prev_pc.value));
577 }
578 return this_frame->prev_pc.value;
579 }
580
581 CORE_ADDR
582 frame_unwind_caller_pc (struct frame_info *this_frame)
583 {
584 return frame_unwind_pc (skip_inlined_frames (this_frame));
585 }
586
587 CORE_ADDR
588 get_frame_func (struct frame_info *this_frame)
589 {
590 struct frame_info *next_frame = this_frame->next;
591
592 if (!next_frame->prev_func.p)
593 {
594 /* Make certain that this, and not the adjacent, function is
595 found. */
596 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
597 next_frame->prev_func.p = 1;
598 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
599 if (frame_debug)
600 fprintf_unfiltered (gdb_stdlog,
601 "{ get_frame_func (this_frame=%d) -> %s }\n",
602 this_frame->level,
603 hex_string (next_frame->prev_func.addr));
604 }
605 return next_frame->prev_func.addr;
606 }
607
608 static int
609 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
610 {
611 return frame_register_read (src, regnum, buf);
612 }
613
614 struct regcache *
615 frame_save_as_regcache (struct frame_info *this_frame)
616 {
617 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
618 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
619 regcache_save (regcache, do_frame_register_read, this_frame);
620 discard_cleanups (cleanups);
621 return regcache;
622 }
623
624 void
625 frame_pop (struct frame_info *this_frame)
626 {
627 struct frame_info *prev_frame;
628 struct regcache *scratch;
629 struct cleanup *cleanups;
630
631 if (get_frame_type (this_frame) == DUMMY_FRAME)
632 {
633 /* Popping a dummy frame involves restoring more than just registers.
634 dummy_frame_pop does all the work. */
635 dummy_frame_pop (get_frame_id (this_frame));
636 return;
637 }
638
639 /* Ensure that we have a frame to pop to. */
640 prev_frame = get_prev_frame_1 (this_frame);
641
642 if (!prev_frame)
643 error (_("Cannot pop the initial frame."));
644
645 /* Make a copy of all the register values unwound from this frame.
646 Save them in a scratch buffer so that there isn't a race between
647 trying to extract the old values from the current regcache while
648 at the same time writing new values into that same cache. */
649 scratch = frame_save_as_regcache (prev_frame);
650 cleanups = make_cleanup_regcache_xfree (scratch);
651
652 /* FIXME: cagney/2003-03-16: It should be possible to tell the
653 target's register cache that it is about to be hit with a burst
654 register transfer and that the sequence of register writes should
655 be batched. The pair target_prepare_to_store() and
656 target_store_registers() kind of suggest this functionality.
657 Unfortunately, they don't implement it. Their lack of a formal
658 definition can lead to targets writing back bogus values
659 (arguably a bug in the target code mind). */
660 /* Now copy those saved registers into the current regcache.
661 Here, regcache_cpy() calls regcache_restore(). */
662 regcache_cpy (get_current_regcache (), scratch);
663 do_cleanups (cleanups);
664
665 /* We've made right mess of GDB's local state, just discard
666 everything. */
667 reinit_frame_cache ();
668 }
669
670 void
671 frame_register_unwind (struct frame_info *frame, int regnum,
672 int *optimizedp, enum lval_type *lvalp,
673 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
674 {
675 struct value *value;
676
677 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
678 that the value proper does not need to be fetched. */
679 gdb_assert (optimizedp != NULL);
680 gdb_assert (lvalp != NULL);
681 gdb_assert (addrp != NULL);
682 gdb_assert (realnump != NULL);
683 /* gdb_assert (bufferp != NULL); */
684
685 value = frame_unwind_register_value (frame, regnum);
686
687 gdb_assert (value != NULL);
688
689 *optimizedp = value_optimized_out (value);
690 *lvalp = VALUE_LVAL (value);
691 *addrp = value_address (value);
692 *realnump = VALUE_REGNUM (value);
693
694 if (bufferp)
695 memcpy (bufferp, value_contents_all (value),
696 TYPE_LENGTH (value_type (value)));
697
698 /* Dispose of the new value. This prevents watchpoints from
699 trying to watch the saved frame pointer. */
700 release_value (value);
701 value_free (value);
702 }
703
704 void
705 frame_register (struct frame_info *frame, int regnum,
706 int *optimizedp, enum lval_type *lvalp,
707 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
708 {
709 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
710 that the value proper does not need to be fetched. */
711 gdb_assert (optimizedp != NULL);
712 gdb_assert (lvalp != NULL);
713 gdb_assert (addrp != NULL);
714 gdb_assert (realnump != NULL);
715 /* gdb_assert (bufferp != NULL); */
716
717 /* Obtain the register value by unwinding the register from the next
718 (more inner frame). */
719 gdb_assert (frame != NULL && frame->next != NULL);
720 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
721 realnump, bufferp);
722 }
723
724 void
725 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
726 {
727 int optimized;
728 CORE_ADDR addr;
729 int realnum;
730 enum lval_type lval;
731 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
732 &realnum, buf);
733 }
734
735 void
736 get_frame_register (struct frame_info *frame,
737 int regnum, gdb_byte *buf)
738 {
739 frame_unwind_register (frame->next, regnum, buf);
740 }
741
742 struct value *
743 frame_unwind_register_value (struct frame_info *frame, int regnum)
744 {
745 struct gdbarch *gdbarch;
746 struct value *value;
747
748 gdb_assert (frame != NULL);
749 gdbarch = frame_unwind_arch (frame);
750
751 if (frame_debug)
752 {
753 fprintf_unfiltered (gdb_stdlog, "\
754 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
755 frame->level, regnum,
756 user_reg_map_regnum_to_name (gdbarch, regnum));
757 }
758
759 /* Find the unwinder. */
760 if (frame->unwind == NULL)
761 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
762
763 /* Ask this frame to unwind its register. */
764 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
765
766 if (frame_debug)
767 {
768 fprintf_unfiltered (gdb_stdlog, "->");
769 if (value_optimized_out (value))
770 fprintf_unfiltered (gdb_stdlog, " optimized out");
771 else
772 {
773 if (VALUE_LVAL (value) == lval_register)
774 fprintf_unfiltered (gdb_stdlog, " register=%d",
775 VALUE_REGNUM (value));
776 else if (VALUE_LVAL (value) == lval_memory)
777 fprintf_unfiltered (gdb_stdlog, " address=%s",
778 paddress (gdbarch,
779 value_address (value)));
780 else
781 fprintf_unfiltered (gdb_stdlog, " computed");
782
783 if (value_lazy (value))
784 fprintf_unfiltered (gdb_stdlog, " lazy");
785 else
786 {
787 int i;
788 const gdb_byte *buf = value_contents (value);
789
790 fprintf_unfiltered (gdb_stdlog, " bytes=");
791 fprintf_unfiltered (gdb_stdlog, "[");
792 for (i = 0; i < register_size (gdbarch, regnum); i++)
793 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
794 fprintf_unfiltered (gdb_stdlog, "]");
795 }
796 }
797
798 fprintf_unfiltered (gdb_stdlog, " }\n");
799 }
800
801 return value;
802 }
803
804 struct value *
805 get_frame_register_value (struct frame_info *frame, int regnum)
806 {
807 return frame_unwind_register_value (frame->next, regnum);
808 }
809
810 LONGEST
811 frame_unwind_register_signed (struct frame_info *frame, int regnum)
812 {
813 gdb_byte buf[MAX_REGISTER_SIZE];
814 frame_unwind_register (frame, regnum, buf);
815 return extract_signed_integer (buf, register_size (frame_unwind_arch (frame),
816 regnum));
817 }
818
819 LONGEST
820 get_frame_register_signed (struct frame_info *frame, int regnum)
821 {
822 return frame_unwind_register_signed (frame->next, regnum);
823 }
824
825 ULONGEST
826 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
827 {
828 gdb_byte buf[MAX_REGISTER_SIZE];
829 frame_unwind_register (frame, regnum, buf);
830 return extract_unsigned_integer (buf, register_size (frame_unwind_arch (frame),
831 regnum));
832 }
833
834 ULONGEST
835 get_frame_register_unsigned (struct frame_info *frame, int regnum)
836 {
837 return frame_unwind_register_unsigned (frame->next, regnum);
838 }
839
840 void
841 put_frame_register (struct frame_info *frame, int regnum,
842 const gdb_byte *buf)
843 {
844 struct gdbarch *gdbarch = get_frame_arch (frame);
845 int realnum;
846 int optim;
847 enum lval_type lval;
848 CORE_ADDR addr;
849 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
850 if (optim)
851 error (_("Attempt to assign to a value that was optimized out."));
852 switch (lval)
853 {
854 case lval_memory:
855 {
856 /* FIXME: write_memory doesn't yet take constant buffers.
857 Arrrg! */
858 gdb_byte tmp[MAX_REGISTER_SIZE];
859 memcpy (tmp, buf, register_size (gdbarch, regnum));
860 write_memory (addr, tmp, register_size (gdbarch, regnum));
861 break;
862 }
863 case lval_register:
864 regcache_cooked_write (get_current_regcache (), realnum, buf);
865 break;
866 default:
867 error (_("Attempt to assign to an unmodifiable value."));
868 }
869 }
870
871 /* frame_register_read ()
872
873 Find and return the value of REGNUM for the specified stack frame.
874 The number of bytes copied is REGISTER_SIZE (REGNUM).
875
876 Returns 0 if the register value could not be found. */
877
878 int
879 frame_register_read (struct frame_info *frame, int regnum,
880 gdb_byte *myaddr)
881 {
882 int optimized;
883 enum lval_type lval;
884 CORE_ADDR addr;
885 int realnum;
886 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
887
888 return !optimized;
889 }
890
891 int
892 get_frame_register_bytes (struct frame_info *frame, int regnum,
893 CORE_ADDR offset, int len, gdb_byte *myaddr)
894 {
895 struct gdbarch *gdbarch = get_frame_arch (frame);
896 int i;
897 int maxsize;
898 int numregs;
899
900 /* Skip registers wholly inside of OFFSET. */
901 while (offset >= register_size (gdbarch, regnum))
902 {
903 offset -= register_size (gdbarch, regnum);
904 regnum++;
905 }
906
907 /* Ensure that we will not read beyond the end of the register file.
908 This can only ever happen if the debug information is bad. */
909 maxsize = -offset;
910 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
911 for (i = regnum; i < numregs; i++)
912 {
913 int thissize = register_size (gdbarch, i);
914 if (thissize == 0)
915 break; /* This register is not available on this architecture. */
916 maxsize += thissize;
917 }
918 if (len > maxsize)
919 {
920 warning (_("Bad debug information detected: "
921 "Attempt to read %d bytes from registers."), len);
922 return 0;
923 }
924
925 /* Copy the data. */
926 while (len > 0)
927 {
928 int curr_len = register_size (gdbarch, regnum) - offset;
929 if (curr_len > len)
930 curr_len = len;
931
932 if (curr_len == register_size (gdbarch, regnum))
933 {
934 if (!frame_register_read (frame, regnum, myaddr))
935 return 0;
936 }
937 else
938 {
939 gdb_byte buf[MAX_REGISTER_SIZE];
940 if (!frame_register_read (frame, regnum, buf))
941 return 0;
942 memcpy (myaddr, buf + offset, curr_len);
943 }
944
945 myaddr += curr_len;
946 len -= curr_len;
947 offset = 0;
948 regnum++;
949 }
950
951 return 1;
952 }
953
954 void
955 put_frame_register_bytes (struct frame_info *frame, int regnum,
956 CORE_ADDR offset, int len, const gdb_byte *myaddr)
957 {
958 struct gdbarch *gdbarch = get_frame_arch (frame);
959
960 /* Skip registers wholly inside of OFFSET. */
961 while (offset >= register_size (gdbarch, regnum))
962 {
963 offset -= register_size (gdbarch, regnum);
964 regnum++;
965 }
966
967 /* Copy the data. */
968 while (len > 0)
969 {
970 int curr_len = register_size (gdbarch, regnum) - offset;
971 if (curr_len > len)
972 curr_len = len;
973
974 if (curr_len == register_size (gdbarch, regnum))
975 {
976 put_frame_register (frame, regnum, myaddr);
977 }
978 else
979 {
980 gdb_byte buf[MAX_REGISTER_SIZE];
981 frame_register_read (frame, regnum, buf);
982 memcpy (buf + offset, myaddr, curr_len);
983 put_frame_register (frame, regnum, buf);
984 }
985
986 myaddr += curr_len;
987 len -= curr_len;
988 offset = 0;
989 regnum++;
990 }
991 }
992
993 /* Create a sentinel frame. */
994
995 static struct frame_info *
996 create_sentinel_frame (struct regcache *regcache)
997 {
998 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
999 frame->level = -1;
1000 /* Explicitly initialize the sentinel frame's cache. Provide it
1001 with the underlying regcache. In the future additional
1002 information, such as the frame's thread will be added. */
1003 frame->prologue_cache = sentinel_frame_cache (regcache);
1004 /* For the moment there is only one sentinel frame implementation. */
1005 frame->unwind = sentinel_frame_unwind;
1006 /* Link this frame back to itself. The frame is self referential
1007 (the unwound PC is the same as the pc), so make it so. */
1008 frame->next = frame;
1009 /* Make the sentinel frame's ID valid, but invalid. That way all
1010 comparisons with it should fail. */
1011 frame->this_id.p = 1;
1012 frame->this_id.value = null_frame_id;
1013 if (frame_debug)
1014 {
1015 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1016 fprint_frame (gdb_stdlog, frame);
1017 fprintf_unfiltered (gdb_stdlog, " }\n");
1018 }
1019 return frame;
1020 }
1021
1022 /* Info about the innermost stack frame (contents of FP register) */
1023
1024 static struct frame_info *current_frame;
1025
1026 /* Cache for frame addresses already read by gdb. Valid only while
1027 inferior is stopped. Control variables for the frame cache should
1028 be local to this module. */
1029
1030 static struct obstack frame_cache_obstack;
1031
1032 void *
1033 frame_obstack_zalloc (unsigned long size)
1034 {
1035 void *data = obstack_alloc (&frame_cache_obstack, size);
1036 memset (data, 0, size);
1037 return data;
1038 }
1039
1040 /* Return the innermost (currently executing) stack frame. This is
1041 split into two functions. The function unwind_to_current_frame()
1042 is wrapped in catch exceptions so that, even when the unwind of the
1043 sentinel frame fails, the function still returns a stack frame. */
1044
1045 static int
1046 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1047 {
1048 struct frame_info *frame = get_prev_frame (args);
1049 /* A sentinel frame can fail to unwind, e.g., because its PC value
1050 lands in somewhere like start. */
1051 if (frame == NULL)
1052 return 1;
1053 current_frame = frame;
1054 return 0;
1055 }
1056
1057 struct frame_info *
1058 get_current_frame (void)
1059 {
1060 /* First check, and report, the lack of registers. Having GDB
1061 report "No stack!" or "No memory" when the target doesn't even
1062 have registers is very confusing. Besides, "printcmd.exp"
1063 explicitly checks that ``print $pc'' with no registers prints "No
1064 registers". */
1065 if (!target_has_registers)
1066 error (_("No registers."));
1067 if (!target_has_stack)
1068 error (_("No stack."));
1069 if (!target_has_memory)
1070 error (_("No memory."));
1071 if (ptid_equal (inferior_ptid, null_ptid))
1072 error (_("No selected thread."));
1073 if (is_exited (inferior_ptid))
1074 error (_("Invalid selected thread."));
1075 if (is_executing (inferior_ptid))
1076 error (_("Target is executing."));
1077
1078 if (current_frame == NULL)
1079 {
1080 struct frame_info *sentinel_frame =
1081 create_sentinel_frame (get_current_regcache ());
1082 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1083 RETURN_MASK_ERROR) != 0)
1084 {
1085 /* Oops! Fake a current frame? Is this useful? It has a PC
1086 of zero, for instance. */
1087 current_frame = sentinel_frame;
1088 }
1089 }
1090 return current_frame;
1091 }
1092
1093 /* The "selected" stack frame is used by default for local and arg
1094 access. May be zero, for no selected frame. */
1095
1096 static struct frame_info *selected_frame;
1097
1098 int
1099 has_stack_frames (void)
1100 {
1101 if (!target_has_registers || !target_has_stack || !target_has_memory)
1102 return 0;
1103
1104 /* No current inferior, no frame. */
1105 if (ptid_equal (inferior_ptid, null_ptid))
1106 return 0;
1107
1108 /* Don't try to read from a dead thread. */
1109 if (is_exited (inferior_ptid))
1110 return 0;
1111
1112 /* ... or from a spinning thread. */
1113 if (is_executing (inferior_ptid))
1114 return 0;
1115
1116 return 1;
1117 }
1118
1119 /* Return the selected frame. Always non-NULL (unless there isn't an
1120 inferior sufficient for creating a frame) in which case an error is
1121 thrown. */
1122
1123 struct frame_info *
1124 get_selected_frame (const char *message)
1125 {
1126 if (selected_frame == NULL)
1127 {
1128 if (message != NULL && !has_stack_frames ())
1129 error (("%s"), message);
1130 /* Hey! Don't trust this. It should really be re-finding the
1131 last selected frame of the currently selected thread. This,
1132 though, is better than nothing. */
1133 select_frame (get_current_frame ());
1134 }
1135 /* There is always a frame. */
1136 gdb_assert (selected_frame != NULL);
1137 return selected_frame;
1138 }
1139
1140 /* This is a variant of get_selected_frame() which can be called when
1141 the inferior does not have a frame; in that case it will return
1142 NULL instead of calling error(). */
1143
1144 struct frame_info *
1145 deprecated_safe_get_selected_frame (void)
1146 {
1147 if (!has_stack_frames ())
1148 return NULL;
1149 return get_selected_frame (NULL);
1150 }
1151
1152 /* Select frame FI (or NULL - to invalidate the current frame). */
1153
1154 void
1155 select_frame (struct frame_info *fi)
1156 {
1157 struct symtab *s;
1158
1159 selected_frame = fi;
1160 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1161 frame is being invalidated. */
1162 if (deprecated_selected_frame_level_changed_hook)
1163 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1164
1165 /* FIXME: kseitz/2002-08-28: It would be nice to call
1166 selected_frame_level_changed_event() right here, but due to limitations
1167 in the current interfaces, we would end up flooding UIs with events
1168 because select_frame() is used extensively internally.
1169
1170 Once we have frame-parameterized frame (and frame-related) commands,
1171 the event notification can be moved here, since this function will only
1172 be called when the user's selected frame is being changed. */
1173
1174 /* Ensure that symbols for this frame are read in. Also, determine the
1175 source language of this frame, and switch to it if desired. */
1176 if (fi)
1177 {
1178 /* We retrieve the frame's symtab by using the frame PC. However
1179 we cannot use the frame PC as-is, because it usually points to
1180 the instruction following the "call", which is sometimes the
1181 first instruction of another function. So we rely on
1182 get_frame_address_in_block() which provides us with a PC which
1183 is guaranteed to be inside the frame's code block. */
1184 s = find_pc_symtab (get_frame_address_in_block (fi));
1185 if (s
1186 && s->language != current_language->la_language
1187 && s->language != language_unknown
1188 && language_mode == language_mode_auto)
1189 {
1190 set_language (s->language);
1191 }
1192 }
1193 }
1194
1195 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1196 Always returns a non-NULL value. */
1197
1198 struct frame_info *
1199 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1200 {
1201 struct frame_info *fi;
1202
1203 if (frame_debug)
1204 {
1205 fprintf_unfiltered (gdb_stdlog,
1206 "{ create_new_frame (addr=%s, pc=%s) ",
1207 hex_string (addr), hex_string (pc));
1208 }
1209
1210 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1211
1212 fi->next = create_sentinel_frame (get_current_regcache ());
1213
1214 /* Set/update this frame's cached PC value, found in the next frame.
1215 Do this before looking for this frame's unwinder. A sniffer is
1216 very likely to read this, and the corresponding unwinder is
1217 entitled to rely that the PC doesn't magically change. */
1218 fi->next->prev_pc.value = pc;
1219 fi->next->prev_pc.p = 1;
1220
1221 /* Select/initialize both the unwind function and the frame's type
1222 based on the PC. */
1223 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1224
1225 fi->this_id.p = 1;
1226 fi->this_id.value = frame_id_build (addr, pc);
1227
1228 if (frame_debug)
1229 {
1230 fprintf_unfiltered (gdb_stdlog, "-> ");
1231 fprint_frame (gdb_stdlog, fi);
1232 fprintf_unfiltered (gdb_stdlog, " }\n");
1233 }
1234
1235 return fi;
1236 }
1237
1238 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1239 innermost frame). Be careful to not fall off the bottom of the
1240 frame chain and onto the sentinel frame. */
1241
1242 struct frame_info *
1243 get_next_frame (struct frame_info *this_frame)
1244 {
1245 if (this_frame->level > 0)
1246 return this_frame->next;
1247 else
1248 return NULL;
1249 }
1250
1251 /* Observer for the target_changed event. */
1252
1253 static void
1254 frame_observer_target_changed (struct target_ops *target)
1255 {
1256 reinit_frame_cache ();
1257 }
1258
1259 /* Flush the entire frame cache. */
1260
1261 void
1262 reinit_frame_cache (void)
1263 {
1264 struct frame_info *fi;
1265
1266 /* Tear down all frame caches. */
1267 for (fi = current_frame; fi != NULL; fi = fi->prev)
1268 {
1269 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1270 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1271 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1272 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1273 }
1274
1275 /* Since we can't really be sure what the first object allocated was */
1276 obstack_free (&frame_cache_obstack, 0);
1277 obstack_init (&frame_cache_obstack);
1278
1279 if (current_frame != NULL)
1280 annotate_frames_invalid ();
1281
1282 current_frame = NULL; /* Invalidate cache */
1283 select_frame (NULL);
1284 if (frame_debug)
1285 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1286 }
1287
1288 /* Find where a register is saved (in memory or another register).
1289 The result of frame_register_unwind is just where it is saved
1290 relative to this particular frame. */
1291
1292 static void
1293 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1294 int *optimizedp, enum lval_type *lvalp,
1295 CORE_ADDR *addrp, int *realnump)
1296 {
1297 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1298
1299 while (this_frame != NULL)
1300 {
1301 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1302 addrp, realnump, NULL);
1303
1304 if (*optimizedp)
1305 break;
1306
1307 if (*lvalp != lval_register)
1308 break;
1309
1310 regnum = *realnump;
1311 this_frame = get_next_frame (this_frame);
1312 }
1313 }
1314
1315 /* Return a "struct frame_info" corresponding to the frame that called
1316 THIS_FRAME. Returns NULL if there is no such frame.
1317
1318 Unlike get_prev_frame, this function always tries to unwind the
1319 frame. */
1320
1321 static struct frame_info *
1322 get_prev_frame_1 (struct frame_info *this_frame)
1323 {
1324 struct frame_id this_id;
1325 struct gdbarch *gdbarch;
1326
1327 gdb_assert (this_frame != NULL);
1328 gdbarch = get_frame_arch (this_frame);
1329
1330 if (frame_debug)
1331 {
1332 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1333 if (this_frame != NULL)
1334 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1335 else
1336 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1337 fprintf_unfiltered (gdb_stdlog, ") ");
1338 }
1339
1340 /* Only try to do the unwind once. */
1341 if (this_frame->prev_p)
1342 {
1343 if (frame_debug)
1344 {
1345 fprintf_unfiltered (gdb_stdlog, "-> ");
1346 fprint_frame (gdb_stdlog, this_frame->prev);
1347 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1348 }
1349 return this_frame->prev;
1350 }
1351
1352 /* If the frame unwinder hasn't been selected yet, we must do so
1353 before setting prev_p; otherwise the check for misbehaved
1354 sniffers will think that this frame's sniffer tried to unwind
1355 further (see frame_cleanup_after_sniffer). */
1356 if (this_frame->unwind == NULL)
1357 this_frame->unwind
1358 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1359
1360 this_frame->prev_p = 1;
1361 this_frame->stop_reason = UNWIND_NO_REASON;
1362
1363 /* If we are unwinding from an inline frame, all of the below tests
1364 were already performed when we unwound from the next non-inline
1365 frame. We must skip them, since we can not get THIS_FRAME's ID
1366 until we have unwound all the way down to the previous non-inline
1367 frame. */
1368 if (get_frame_type (this_frame) == INLINE_FRAME)
1369 return get_prev_frame_raw (this_frame);
1370
1371 /* Check that this frame's ID was valid. If it wasn't, don't try to
1372 unwind to the prev frame. Be careful to not apply this test to
1373 the sentinel frame. */
1374 this_id = get_frame_id (this_frame);
1375 if (this_frame->level >= 0 && !frame_id_p (this_id))
1376 {
1377 if (frame_debug)
1378 {
1379 fprintf_unfiltered (gdb_stdlog, "-> ");
1380 fprint_frame (gdb_stdlog, NULL);
1381 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1382 }
1383 this_frame->stop_reason = UNWIND_NULL_ID;
1384 return NULL;
1385 }
1386
1387 /* Check that this frame's ID isn't inner to (younger, below, next)
1388 the next frame. This happens when a frame unwind goes backwards.
1389 This check is valid only if this frame and the next frame are NORMAL.
1390 See the comment at frame_id_inner for details. */
1391 if (get_frame_type (this_frame) == NORMAL_FRAME
1392 && this_frame->next->unwind->type == NORMAL_FRAME
1393 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1394 get_frame_id (this_frame->next)))
1395 {
1396 if (frame_debug)
1397 {
1398 fprintf_unfiltered (gdb_stdlog, "-> ");
1399 fprint_frame (gdb_stdlog, NULL);
1400 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1401 }
1402 this_frame->stop_reason = UNWIND_INNER_ID;
1403 return NULL;
1404 }
1405
1406 /* Check that this and the next frame are not identical. If they
1407 are, there is most likely a stack cycle. As with the inner-than
1408 test above, avoid comparing the inner-most and sentinel frames. */
1409 if (this_frame->level > 0
1410 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1411 {
1412 if (frame_debug)
1413 {
1414 fprintf_unfiltered (gdb_stdlog, "-> ");
1415 fprint_frame (gdb_stdlog, NULL);
1416 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1417 }
1418 this_frame->stop_reason = UNWIND_SAME_ID;
1419 return NULL;
1420 }
1421
1422 /* Check that this and the next frame do not unwind the PC register
1423 to the same memory location. If they do, then even though they
1424 have different frame IDs, the new frame will be bogus; two
1425 functions can't share a register save slot for the PC. This can
1426 happen when the prologue analyzer finds a stack adjustment, but
1427 no PC save.
1428
1429 This check does assume that the "PC register" is roughly a
1430 traditional PC, even if the gdbarch_unwind_pc method adjusts
1431 it (we do not rely on the value, only on the unwound PC being
1432 dependent on this value). A potential improvement would be
1433 to have the frame prev_pc method and the gdbarch unwind_pc
1434 method set the same lval and location information as
1435 frame_register_unwind. */
1436 if (this_frame->level > 0
1437 && gdbarch_pc_regnum (gdbarch) >= 0
1438 && get_frame_type (this_frame) == NORMAL_FRAME
1439 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1440 || get_frame_type (this_frame->next) == INLINE_FRAME))
1441 {
1442 int optimized, realnum, nrealnum;
1443 enum lval_type lval, nlval;
1444 CORE_ADDR addr, naddr;
1445
1446 frame_register_unwind_location (this_frame,
1447 gdbarch_pc_regnum (gdbarch),
1448 &optimized, &lval, &addr, &realnum);
1449 frame_register_unwind_location (get_next_frame (this_frame),
1450 gdbarch_pc_regnum (gdbarch),
1451 &optimized, &nlval, &naddr, &nrealnum);
1452
1453 if ((lval == lval_memory && lval == nlval && addr == naddr)
1454 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1455 {
1456 if (frame_debug)
1457 {
1458 fprintf_unfiltered (gdb_stdlog, "-> ");
1459 fprint_frame (gdb_stdlog, NULL);
1460 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1461 }
1462
1463 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1464 this_frame->prev = NULL;
1465 return NULL;
1466 }
1467 }
1468
1469 return get_prev_frame_raw (this_frame);
1470 }
1471
1472 /* Construct a new "struct frame_info" and link it previous to
1473 this_frame. */
1474
1475 static struct frame_info *
1476 get_prev_frame_raw (struct frame_info *this_frame)
1477 {
1478 struct frame_info *prev_frame;
1479
1480 /* Allocate the new frame but do not wire it in to the frame chain.
1481 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1482 frame->next to pull some fancy tricks (of course such code is, by
1483 definition, recursive). Try to prevent it.
1484
1485 There is no reason to worry about memory leaks, should the
1486 remainder of the function fail. The allocated memory will be
1487 quickly reclaimed when the frame cache is flushed, and the `we've
1488 been here before' check above will stop repeated memory
1489 allocation calls. */
1490 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1491 prev_frame->level = this_frame->level + 1;
1492
1493 /* Don't yet compute ->unwind (and hence ->type). It is computed
1494 on-demand in get_frame_type, frame_register_unwind, and
1495 get_frame_id. */
1496
1497 /* Don't yet compute the frame's ID. It is computed on-demand by
1498 get_frame_id(). */
1499
1500 /* The unwound frame ID is validate at the start of this function,
1501 as part of the logic to decide if that frame should be further
1502 unwound, and not here while the prev frame is being created.
1503 Doing this makes it possible for the user to examine a frame that
1504 has an invalid frame ID.
1505
1506 Some very old VAX code noted: [...] For the sake of argument,
1507 suppose that the stack is somewhat trashed (which is one reason
1508 that "info frame" exists). So, return 0 (indicating we don't
1509 know the address of the arglist) if we don't know what frame this
1510 frame calls. */
1511
1512 /* Link it in. */
1513 this_frame->prev = prev_frame;
1514 prev_frame->next = this_frame;
1515
1516 if (frame_debug)
1517 {
1518 fprintf_unfiltered (gdb_stdlog, "-> ");
1519 fprint_frame (gdb_stdlog, prev_frame);
1520 fprintf_unfiltered (gdb_stdlog, " }\n");
1521 }
1522
1523 return prev_frame;
1524 }
1525
1526 /* Debug routine to print a NULL frame being returned. */
1527
1528 static void
1529 frame_debug_got_null_frame (struct frame_info *this_frame,
1530 const char *reason)
1531 {
1532 if (frame_debug)
1533 {
1534 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1535 if (this_frame != NULL)
1536 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1537 else
1538 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1539 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1540 }
1541 }
1542
1543 /* Is this (non-sentinel) frame in the "main"() function? */
1544
1545 static int
1546 inside_main_func (struct frame_info *this_frame)
1547 {
1548 struct minimal_symbol *msymbol;
1549 CORE_ADDR maddr;
1550
1551 if (symfile_objfile == 0)
1552 return 0;
1553 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1554 if (msymbol == NULL)
1555 return 0;
1556 /* Make certain that the code, and not descriptor, address is
1557 returned. */
1558 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1559 SYMBOL_VALUE_ADDRESS (msymbol),
1560 &current_target);
1561 return maddr == get_frame_func (this_frame);
1562 }
1563
1564 /* Test whether THIS_FRAME is inside the process entry point function. */
1565
1566 static int
1567 inside_entry_func (struct frame_info *this_frame)
1568 {
1569 return (get_frame_func (this_frame) == entry_point_address ());
1570 }
1571
1572 /* Return a structure containing various interesting information about
1573 the frame that called THIS_FRAME. Returns NULL if there is entier
1574 no such frame or the frame fails any of a set of target-independent
1575 condition that should terminate the frame chain (e.g., as unwinding
1576 past main()).
1577
1578 This function should not contain target-dependent tests, such as
1579 checking whether the program-counter is zero. */
1580
1581 struct frame_info *
1582 get_prev_frame (struct frame_info *this_frame)
1583 {
1584 struct frame_info *prev_frame;
1585
1586 /* There is always a frame. If this assertion fails, suspect that
1587 something should be calling get_selected_frame() or
1588 get_current_frame(). */
1589 gdb_assert (this_frame != NULL);
1590
1591 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1592 sense to stop unwinding at a dummy frame. One place where a dummy
1593 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1594 pcsqh register (space register for the instruction at the head of the
1595 instruction queue) cannot be written directly; the only way to set it
1596 is to branch to code that is in the target space. In order to implement
1597 frame dummies on HPUX, the called function is made to jump back to where
1598 the inferior was when the user function was called. If gdb was inside
1599 the main function when we created the dummy frame, the dummy frame will
1600 point inside the main function. */
1601 if (this_frame->level >= 0
1602 && get_frame_type (this_frame) == NORMAL_FRAME
1603 && !backtrace_past_main
1604 && inside_main_func (this_frame))
1605 /* Don't unwind past main(). Note, this is done _before_ the
1606 frame has been marked as previously unwound. That way if the
1607 user later decides to enable unwinds past main(), that will
1608 automatically happen. */
1609 {
1610 frame_debug_got_null_frame (this_frame, "inside main func");
1611 return NULL;
1612 }
1613
1614 /* If the user's backtrace limit has been exceeded, stop. We must
1615 add two to the current level; one of those accounts for backtrace_limit
1616 being 1-based and the level being 0-based, and the other accounts for
1617 the level of the new frame instead of the level of the current
1618 frame. */
1619 if (this_frame->level + 2 > backtrace_limit)
1620 {
1621 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1622 return NULL;
1623 }
1624
1625 /* If we're already inside the entry function for the main objfile,
1626 then it isn't valid. Don't apply this test to a dummy frame -
1627 dummy frame PCs typically land in the entry func. Don't apply
1628 this test to the sentinel frame. Sentinel frames should always
1629 be allowed to unwind. */
1630 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1631 wasn't checking for "main" in the minimal symbols. With that
1632 fixed asm-source tests now stop in "main" instead of halting the
1633 backtrace in weird and wonderful ways somewhere inside the entry
1634 file. Suspect that tests for inside the entry file/func were
1635 added to work around that (now fixed) case. */
1636 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1637 suggested having the inside_entry_func test use the
1638 inside_main_func() msymbol trick (along with entry_point_address()
1639 I guess) to determine the address range of the start function.
1640 That should provide a far better stopper than the current
1641 heuristics. */
1642 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1643 applied tail-call optimizations to main so that a function called
1644 from main returns directly to the caller of main. Since we don't
1645 stop at main, we should at least stop at the entry point of the
1646 application. */
1647 if (this_frame->level >= 0
1648 && get_frame_type (this_frame) == NORMAL_FRAME
1649 && !backtrace_past_entry
1650 && inside_entry_func (this_frame))
1651 {
1652 frame_debug_got_null_frame (this_frame, "inside entry func");
1653 return NULL;
1654 }
1655
1656 /* Assume that the only way to get a zero PC is through something
1657 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1658 will never unwind a zero PC. */
1659 if (this_frame->level > 0
1660 && (get_frame_type (this_frame) == NORMAL_FRAME
1661 || get_frame_type (this_frame) == INLINE_FRAME)
1662 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1663 && get_frame_pc (this_frame) == 0)
1664 {
1665 frame_debug_got_null_frame (this_frame, "zero PC");
1666 return NULL;
1667 }
1668
1669 return get_prev_frame_1 (this_frame);
1670 }
1671
1672 CORE_ADDR
1673 get_frame_pc (struct frame_info *frame)
1674 {
1675 gdb_assert (frame->next != NULL);
1676 return frame_unwind_pc (frame->next);
1677 }
1678
1679 /* Return an address that falls within THIS_FRAME's code block. */
1680
1681 CORE_ADDR
1682 get_frame_address_in_block (struct frame_info *this_frame)
1683 {
1684 /* A draft address. */
1685 CORE_ADDR pc = get_frame_pc (this_frame);
1686
1687 struct frame_info *next_frame = this_frame->next;
1688
1689 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1690 Normally the resume address is inside the body of the function
1691 associated with THIS_FRAME, but there is a special case: when
1692 calling a function which the compiler knows will never return
1693 (for instance abort), the call may be the very last instruction
1694 in the calling function. The resume address will point after the
1695 call and may be at the beginning of a different function
1696 entirely.
1697
1698 If THIS_FRAME is a signal frame or dummy frame, then we should
1699 not adjust the unwound PC. For a dummy frame, GDB pushed the
1700 resume address manually onto the stack. For a signal frame, the
1701 OS may have pushed the resume address manually and invoked the
1702 handler (e.g. GNU/Linux), or invoked the trampoline which called
1703 the signal handler - but in either case the signal handler is
1704 expected to return to the trampoline. So in both of these
1705 cases we know that the resume address is executable and
1706 related. So we only need to adjust the PC if THIS_FRAME
1707 is a normal function.
1708
1709 If the program has been interrupted while THIS_FRAME is current,
1710 then clearly the resume address is inside the associated
1711 function. There are three kinds of interruption: debugger stop
1712 (next frame will be SENTINEL_FRAME), operating system
1713 signal or exception (next frame will be SIGTRAMP_FRAME),
1714 or debugger-induced function call (next frame will be
1715 DUMMY_FRAME). So we only need to adjust the PC if
1716 NEXT_FRAME is a normal function.
1717
1718 We check the type of NEXT_FRAME first, since it is already
1719 known; frame type is determined by the unwinder, and since
1720 we have THIS_FRAME we've already selected an unwinder for
1721 NEXT_FRAME.
1722
1723 If the next frame is inlined, we need to keep going until we find
1724 the real function - for instance, if a signal handler is invoked
1725 while in an inlined function, then the code address of the
1726 "calling" normal function should not be adjusted either. */
1727
1728 while (get_frame_type (next_frame) == INLINE_FRAME)
1729 next_frame = next_frame->next;
1730
1731 if (get_frame_type (next_frame) == NORMAL_FRAME
1732 && (get_frame_type (this_frame) == NORMAL_FRAME
1733 || get_frame_type (this_frame) == INLINE_FRAME))
1734 return pc - 1;
1735
1736 return pc;
1737 }
1738
1739 void
1740 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1741 {
1742 struct frame_info *next_frame;
1743 int notcurrent;
1744
1745 /* If the next frame represents an inlined function call, this frame's
1746 sal is the "call site" of that inlined function, which can not
1747 be inferred from get_frame_pc. */
1748 next_frame = get_next_frame (frame);
1749 if (frame_inlined_callees (frame) > 0)
1750 {
1751 struct symbol *sym;
1752
1753 if (next_frame)
1754 sym = get_frame_function (next_frame);
1755 else
1756 sym = inline_skipped_symbol (inferior_ptid);
1757
1758 init_sal (sal);
1759 if (SYMBOL_LINE (sym) != 0)
1760 {
1761 sal->symtab = SYMBOL_SYMTAB (sym);
1762 sal->line = SYMBOL_LINE (sym);
1763 }
1764 else
1765 /* If the symbol does not have a location, we don't know where
1766 the call site is. Do not pretend to. This is jarring, but
1767 we can't do much better. */
1768 sal->pc = get_frame_pc (frame);
1769
1770 return;
1771 }
1772
1773 /* If FRAME is not the innermost frame, that normally means that
1774 FRAME->pc points at the return instruction (which is *after* the
1775 call instruction), and we want to get the line containing the
1776 call (because the call is where the user thinks the program is).
1777 However, if the next frame is either a SIGTRAMP_FRAME or a
1778 DUMMY_FRAME, then the next frame will contain a saved interrupt
1779 PC and such a PC indicates the current (rather than next)
1780 instruction/line, consequently, for such cases, want to get the
1781 line containing fi->pc. */
1782 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1783 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1784 }
1785
1786 /* Per "frame.h", return the ``address'' of the frame. Code should
1787 really be using get_frame_id(). */
1788 CORE_ADDR
1789 get_frame_base (struct frame_info *fi)
1790 {
1791 return get_frame_id (fi).stack_addr;
1792 }
1793
1794 /* High-level offsets into the frame. Used by the debug info. */
1795
1796 CORE_ADDR
1797 get_frame_base_address (struct frame_info *fi)
1798 {
1799 if (get_frame_type (fi) != NORMAL_FRAME)
1800 return 0;
1801 if (fi->base == NULL)
1802 fi->base = frame_base_find_by_frame (fi);
1803 /* Sneaky: If the low-level unwind and high-level base code share a
1804 common unwinder, let them share the prologue cache. */
1805 if (fi->base->unwind == fi->unwind)
1806 return fi->base->this_base (fi, &fi->prologue_cache);
1807 return fi->base->this_base (fi, &fi->base_cache);
1808 }
1809
1810 CORE_ADDR
1811 get_frame_locals_address (struct frame_info *fi)
1812 {
1813 void **cache;
1814 if (get_frame_type (fi) != NORMAL_FRAME)
1815 return 0;
1816 /* If there isn't a frame address method, find it. */
1817 if (fi->base == NULL)
1818 fi->base = frame_base_find_by_frame (fi);
1819 /* Sneaky: If the low-level unwind and high-level base code share a
1820 common unwinder, let them share the prologue cache. */
1821 if (fi->base->unwind == fi->unwind)
1822 return fi->base->this_locals (fi, &fi->prologue_cache);
1823 return fi->base->this_locals (fi, &fi->base_cache);
1824 }
1825
1826 CORE_ADDR
1827 get_frame_args_address (struct frame_info *fi)
1828 {
1829 void **cache;
1830 if (get_frame_type (fi) != NORMAL_FRAME)
1831 return 0;
1832 /* If there isn't a frame address method, find it. */
1833 if (fi->base == NULL)
1834 fi->base = frame_base_find_by_frame (fi);
1835 /* Sneaky: If the low-level unwind and high-level base code share a
1836 common unwinder, let them share the prologue cache. */
1837 if (fi->base->unwind == fi->unwind)
1838 return fi->base->this_args (fi, &fi->prologue_cache);
1839 return fi->base->this_args (fi, &fi->base_cache);
1840 }
1841
1842 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1843 or -1 for a NULL frame. */
1844
1845 int
1846 frame_relative_level (struct frame_info *fi)
1847 {
1848 if (fi == NULL)
1849 return -1;
1850 else
1851 return fi->level;
1852 }
1853
1854 enum frame_type
1855 get_frame_type (struct frame_info *frame)
1856 {
1857 if (frame->unwind == NULL)
1858 /* Initialize the frame's unwinder because that's what
1859 provides the frame's type. */
1860 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1861 return frame->unwind->type;
1862 }
1863
1864 /* Memory access methods. */
1865
1866 void
1867 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1868 gdb_byte *buf, int len)
1869 {
1870 read_memory (addr, buf, len);
1871 }
1872
1873 LONGEST
1874 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1875 int len)
1876 {
1877 return read_memory_integer (addr, len);
1878 }
1879
1880 ULONGEST
1881 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1882 int len)
1883 {
1884 return read_memory_unsigned_integer (addr, len);
1885 }
1886
1887 int
1888 safe_frame_unwind_memory (struct frame_info *this_frame,
1889 CORE_ADDR addr, gdb_byte *buf, int len)
1890 {
1891 /* NOTE: target_read_memory returns zero on success! */
1892 return !target_read_memory (addr, buf, len);
1893 }
1894
1895 /* Architecture methods. */
1896
1897 struct gdbarch *
1898 get_frame_arch (struct frame_info *this_frame)
1899 {
1900 return frame_unwind_arch (this_frame->next);
1901 }
1902
1903 struct gdbarch *
1904 frame_unwind_arch (struct frame_info *next_frame)
1905 {
1906 if (!next_frame->prev_arch.p)
1907 {
1908 struct gdbarch *arch;
1909
1910 if (next_frame->unwind == NULL)
1911 next_frame->unwind
1912 = frame_unwind_find_by_frame (next_frame,
1913 &next_frame->prologue_cache);
1914
1915 if (next_frame->unwind->prev_arch != NULL)
1916 arch = next_frame->unwind->prev_arch (next_frame,
1917 &next_frame->prologue_cache);
1918 else
1919 arch = get_frame_arch (next_frame);
1920
1921 next_frame->prev_arch.arch = arch;
1922 next_frame->prev_arch.p = 1;
1923 if (frame_debug)
1924 fprintf_unfiltered (gdb_stdlog,
1925 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
1926 next_frame->level,
1927 gdbarch_bfd_arch_info (arch)->printable_name);
1928 }
1929
1930 return next_frame->prev_arch.arch;
1931 }
1932
1933 struct gdbarch *
1934 frame_unwind_caller_arch (struct frame_info *next_frame)
1935 {
1936 return frame_unwind_arch (skip_inlined_frames (next_frame));
1937 }
1938
1939 /* Stack pointer methods. */
1940
1941 CORE_ADDR
1942 get_frame_sp (struct frame_info *this_frame)
1943 {
1944 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1945 /* Normality - an architecture that provides a way of obtaining any
1946 frame inner-most address. */
1947 if (gdbarch_unwind_sp_p (gdbarch))
1948 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
1949 operate on THIS_FRAME now. */
1950 return gdbarch_unwind_sp (gdbarch, this_frame->next);
1951 /* Now things are really are grim. Hope that the value returned by
1952 the gdbarch_sp_regnum register is meaningful. */
1953 if (gdbarch_sp_regnum (gdbarch) >= 0)
1954 return get_frame_register_unsigned (this_frame,
1955 gdbarch_sp_regnum (gdbarch));
1956 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1957 }
1958
1959 /* Return the reason why we can't unwind past FRAME. */
1960
1961 enum unwind_stop_reason
1962 get_frame_unwind_stop_reason (struct frame_info *frame)
1963 {
1964 /* If we haven't tried to unwind past this point yet, then assume
1965 that unwinding would succeed. */
1966 if (frame->prev_p == 0)
1967 return UNWIND_NO_REASON;
1968
1969 /* Otherwise, we set a reason when we succeeded (or failed) to
1970 unwind. */
1971 return frame->stop_reason;
1972 }
1973
1974 /* Return a string explaining REASON. */
1975
1976 const char *
1977 frame_stop_reason_string (enum unwind_stop_reason reason)
1978 {
1979 switch (reason)
1980 {
1981 case UNWIND_NULL_ID:
1982 return _("unwinder did not report frame ID");
1983
1984 case UNWIND_INNER_ID:
1985 return _("previous frame inner to this frame (corrupt stack?)");
1986
1987 case UNWIND_SAME_ID:
1988 return _("previous frame identical to this frame (corrupt stack?)");
1989
1990 case UNWIND_NO_SAVED_PC:
1991 return _("frame did not save the PC");
1992
1993 case UNWIND_NO_REASON:
1994 case UNWIND_FIRST_ERROR:
1995 default:
1996 internal_error (__FILE__, __LINE__,
1997 "Invalid frame stop reason");
1998 }
1999 }
2000
2001 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2002 FRAME. */
2003
2004 static void
2005 frame_cleanup_after_sniffer (void *arg)
2006 {
2007 struct frame_info *frame = arg;
2008
2009 /* The sniffer should not allocate a prologue cache if it did not
2010 match this frame. */
2011 gdb_assert (frame->prologue_cache == NULL);
2012
2013 /* No sniffer should extend the frame chain; sniff based on what is
2014 already certain. */
2015 gdb_assert (!frame->prev_p);
2016
2017 /* The sniffer should not check the frame's ID; that's circular. */
2018 gdb_assert (!frame->this_id.p);
2019
2020 /* Clear cached fields dependent on the unwinder.
2021
2022 The previous PC is independent of the unwinder, but the previous
2023 function is not (see get_frame_address_in_block). */
2024 frame->prev_func.p = 0;
2025 frame->prev_func.addr = 0;
2026
2027 /* Discard the unwinder last, so that we can easily find it if an assertion
2028 in this function triggers. */
2029 frame->unwind = NULL;
2030 }
2031
2032 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2033 Return a cleanup which should be called if unwinding fails, and
2034 discarded if it succeeds. */
2035
2036 struct cleanup *
2037 frame_prepare_for_sniffer (struct frame_info *frame,
2038 const struct frame_unwind *unwind)
2039 {
2040 gdb_assert (frame->unwind == NULL);
2041 frame->unwind = unwind;
2042 return make_cleanup (frame_cleanup_after_sniffer, frame);
2043 }
2044
2045 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2046
2047 static struct cmd_list_element *set_backtrace_cmdlist;
2048 static struct cmd_list_element *show_backtrace_cmdlist;
2049
2050 static void
2051 set_backtrace_cmd (char *args, int from_tty)
2052 {
2053 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2054 }
2055
2056 static void
2057 show_backtrace_cmd (char *args, int from_tty)
2058 {
2059 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2060 }
2061
2062 void
2063 _initialize_frame (void)
2064 {
2065 obstack_init (&frame_cache_obstack);
2066
2067 observer_attach_target_changed (frame_observer_target_changed);
2068
2069 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2070 Set backtrace specific variables.\n\
2071 Configure backtrace variables such as the backtrace limit"),
2072 &set_backtrace_cmdlist, "set backtrace ",
2073 0/*allow-unknown*/, &setlist);
2074 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2075 Show backtrace specific variables\n\
2076 Show backtrace variables such as the backtrace limit"),
2077 &show_backtrace_cmdlist, "show backtrace ",
2078 0/*allow-unknown*/, &showlist);
2079
2080 add_setshow_boolean_cmd ("past-main", class_obscure,
2081 &backtrace_past_main, _("\
2082 Set whether backtraces should continue past \"main\"."), _("\
2083 Show whether backtraces should continue past \"main\"."), _("\
2084 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2085 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2086 of the stack trace."),
2087 NULL,
2088 show_backtrace_past_main,
2089 &set_backtrace_cmdlist,
2090 &show_backtrace_cmdlist);
2091
2092 add_setshow_boolean_cmd ("past-entry", class_obscure,
2093 &backtrace_past_entry, _("\
2094 Set whether backtraces should continue past the entry point of a program."),
2095 _("\
2096 Show whether backtraces should continue past the entry point of a program."),
2097 _("\
2098 Normally there are no callers beyond the entry point of a program, so GDB\n\
2099 will terminate the backtrace there. Set this variable if you need to see \n\
2100 the rest of the stack trace."),
2101 NULL,
2102 show_backtrace_past_entry,
2103 &set_backtrace_cmdlist,
2104 &show_backtrace_cmdlist);
2105
2106 add_setshow_integer_cmd ("limit", class_obscure,
2107 &backtrace_limit, _("\
2108 Set an upper bound on the number of backtrace levels."), _("\
2109 Show the upper bound on the number of backtrace levels."), _("\
2110 No more than the specified number of frames can be displayed or examined.\n\
2111 Zero is unlimited."),
2112 NULL,
2113 show_backtrace_limit,
2114 &set_backtrace_cmdlist,
2115 &show_backtrace_cmdlist);
2116
2117 /* Debug this files internals. */
2118 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2119 Set frame debugging."), _("\
2120 Show frame debugging."), _("\
2121 When non-zero, frame specific internal debugging is enabled."),
2122 NULL,
2123 show_frame_debug,
2124 &setdebuglist, &showdebuglist);
2125 }