]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
Add auxv parsing to the architecture vector.
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
640 v:int:cannot_step_breakpoint:::0:0::0
641 v:int:have_nonsteppable_watchpoint:::0:0::0
642 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
644
645 # Return the appropriate type_flags for the supplied address class.
646 # This function should return 1 if the address class was recognized and
647 # type_flags was set, zero otherwise.
648 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
649 # Is a register in a group
650 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
651 # Fetch the pointer to the ith function argument.
652 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
653
654 # Return the appropriate register set for a core file section with
655 # name SECT_NAME and size SECT_SIZE.
656 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
657
658 # Supported register notes in a core file.
659 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
660
661 # Create core file notes
662 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
663
664 # The elfcore writer hook to use to write Linux prpsinfo notes to core
665 # files. Most Linux architectures use the same prpsinfo32 or
666 # prpsinfo64 layouts, and so won't need to provide this hook, as we
667 # call the Linux generic routines in bfd to write prpsinfo notes by
668 # default.
669 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
670
671 # Find core file memory regions
672 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
673
674 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
675 # core file into buffer READBUF with length LEN. Return the number of bytes read
676 # (zero indicates failure).
677 # failed, otherwise, return the red length of READBUF.
678 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
679
680 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
681 # libraries list from core file into buffer READBUF with length LEN.
682 # Return the number of bytes read (zero indicates failure).
683 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
684
685 # How the core target converts a PTID from a core file to a string.
686 M:char *:core_pid_to_str:ptid_t ptid:ptid
687
688 # BFD target to use when generating a core file.
689 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
690
691 # If the elements of C++ vtables are in-place function descriptors rather
692 # than normal function pointers (which may point to code or a descriptor),
693 # set this to one.
694 v:int:vtable_function_descriptors:::0:0::0
695
696 # Set if the least significant bit of the delta is used instead of the least
697 # significant bit of the pfn for pointers to virtual member functions.
698 v:int:vbit_in_delta:::0:0::0
699
700 # Advance PC to next instruction in order to skip a permanent breakpoint.
701 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
702
703 # The maximum length of an instruction on this architecture in bytes.
704 V:ULONGEST:max_insn_length:::0:0
705
706 # Copy the instruction at FROM to TO, and make any adjustments
707 # necessary to single-step it at that address.
708 #
709 # REGS holds the state the thread's registers will have before
710 # executing the copied instruction; the PC in REGS will refer to FROM,
711 # not the copy at TO. The caller should update it to point at TO later.
712 #
713 # Return a pointer to data of the architecture's choice to be passed
714 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
715 # the instruction's effects have been completely simulated, with the
716 # resulting state written back to REGS.
717 #
718 # For a general explanation of displaced stepping and how GDB uses it,
719 # see the comments in infrun.c.
720 #
721 # The TO area is only guaranteed to have space for
722 # gdbarch_max_insn_length (arch) bytes, so this function must not
723 # write more bytes than that to that area.
724 #
725 # If you do not provide this function, GDB assumes that the
726 # architecture does not support displaced stepping.
727 #
728 # If your architecture doesn't need to adjust instructions before
729 # single-stepping them, consider using simple_displaced_step_copy_insn
730 # here.
731 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
732
733 # Return true if GDB should use hardware single-stepping to execute
734 # the displaced instruction identified by CLOSURE. If false,
735 # GDB will simply restart execution at the displaced instruction
736 # location, and it is up to the target to ensure GDB will receive
737 # control again (e.g. by placing a software breakpoint instruction
738 # into the displaced instruction buffer).
739 #
740 # The default implementation returns false on all targets that
741 # provide a gdbarch_software_single_step routine, and true otherwise.
742 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
743
744 # Fix up the state resulting from successfully single-stepping a
745 # displaced instruction, to give the result we would have gotten from
746 # stepping the instruction in its original location.
747 #
748 # REGS is the register state resulting from single-stepping the
749 # displaced instruction.
750 #
751 # CLOSURE is the result from the matching call to
752 # gdbarch_displaced_step_copy_insn.
753 #
754 # If you provide gdbarch_displaced_step_copy_insn.but not this
755 # function, then GDB assumes that no fixup is needed after
756 # single-stepping the instruction.
757 #
758 # For a general explanation of displaced stepping and how GDB uses it,
759 # see the comments in infrun.c.
760 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
761
762 # Free a closure returned by gdbarch_displaced_step_copy_insn.
763 #
764 # If you provide gdbarch_displaced_step_copy_insn, you must provide
765 # this function as well.
766 #
767 # If your architecture uses closures that don't need to be freed, then
768 # you can use simple_displaced_step_free_closure here.
769 #
770 # For a general explanation of displaced stepping and how GDB uses it,
771 # see the comments in infrun.c.
772 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
773
774 # Return the address of an appropriate place to put displaced
775 # instructions while we step over them. There need only be one such
776 # place, since we're only stepping one thread over a breakpoint at a
777 # time.
778 #
779 # For a general explanation of displaced stepping and how GDB uses it,
780 # see the comments in infrun.c.
781 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
782
783 # Relocate an instruction to execute at a different address. OLDLOC
784 # is the address in the inferior memory where the instruction to
785 # relocate is currently at. On input, TO points to the destination
786 # where we want the instruction to be copied (and possibly adjusted)
787 # to. On output, it points to one past the end of the resulting
788 # instruction(s). The effect of executing the instruction at TO shall
789 # be the same as if executing it at FROM. For example, call
790 # instructions that implicitly push the return address on the stack
791 # should be adjusted to return to the instruction after OLDLOC;
792 # relative branches, and other PC-relative instructions need the
793 # offset adjusted; etc.
794 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
795
796 # Refresh overlay mapped state for section OSECT.
797 F:void:overlay_update:struct obj_section *osect:osect
798
799 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
800
801 # Handle special encoding of static variables in stabs debug info.
802 F:const char *:static_transform_name:const char *name:name
803 # Set if the address in N_SO or N_FUN stabs may be zero.
804 v:int:sofun_address_maybe_missing:::0:0::0
805
806 # Parse the instruction at ADDR storing in the record execution log
807 # the registers REGCACHE and memory ranges that will be affected when
808 # the instruction executes, along with their current values.
809 # Return -1 if something goes wrong, 0 otherwise.
810 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
811
812 # Save process state after a signal.
813 # Return -1 if something goes wrong, 0 otherwise.
814 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
815
816 # Signal translation: translate inferior's signal (target's) number
817 # into GDB's representation. The implementation of this method must
818 # be host independent. IOW, don't rely on symbols of the NAT_FILE
819 # header (the nm-*.h files), the host <signal.h> header, or similar
820 # headers. This is mainly used when cross-debugging core files ---
821 # "Live" targets hide the translation behind the target interface
822 # (target_wait, target_resume, etc.).
823 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
824
825 # Signal translation: translate the GDB's internal signal number into
826 # the inferior's signal (target's) representation. The implementation
827 # of this method must be host independent. IOW, don't rely on symbols
828 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
829 # header, or similar headers.
830 # Return the target signal number if found, or -1 if the GDB internal
831 # signal number is invalid.
832 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
833
834 # Extra signal info inspection.
835 #
836 # Return a type suitable to inspect extra signal information.
837 M:struct type *:get_siginfo_type:void:
838
839 # Record architecture-specific information from the symbol table.
840 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
841
842 # Function for the 'catch syscall' feature.
843
844 # Get architecture-specific system calls information from registers.
845 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
846
847 # SystemTap related fields and functions.
848
849 # A NULL-terminated array of prefixes used to mark an integer constant
850 # on the architecture's assembly.
851 # For example, on x86 integer constants are written as:
852 #
853 # \$10 ;; integer constant 10
854 #
855 # in this case, this prefix would be the character \`\$\'.
856 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
857
858 # A NULL-terminated array of suffixes used to mark an integer constant
859 # on the architecture's assembly.
860 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
861
862 # A NULL-terminated array of prefixes used to mark a register name on
863 # the architecture's assembly.
864 # For example, on x86 the register name is written as:
865 #
866 # \%eax ;; register eax
867 #
868 # in this case, this prefix would be the character \`\%\'.
869 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
870
871 # A NULL-terminated array of suffixes used to mark a register name on
872 # the architecture's assembly.
873 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
874
875 # A NULL-terminated array of prefixes used to mark a register
876 # indirection on the architecture's assembly.
877 # For example, on x86 the register indirection is written as:
878 #
879 # \(\%eax\) ;; indirecting eax
880 #
881 # in this case, this prefix would be the charater \`\(\'.
882 #
883 # Please note that we use the indirection prefix also for register
884 # displacement, e.g., \`4\(\%eax\)\' on x86.
885 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
886
887 # A NULL-terminated array of suffixes used to mark a register
888 # indirection on the architecture's assembly.
889 # For example, on x86 the register indirection is written as:
890 #
891 # \(\%eax\) ;; indirecting eax
892 #
893 # in this case, this prefix would be the charater \`\)\'.
894 #
895 # Please note that we use the indirection suffix also for register
896 # displacement, e.g., \`4\(\%eax\)\' on x86.
897 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
898
899 # Prefix(es) used to name a register using GDB's nomenclature.
900 #
901 # For example, on PPC a register is represented by a number in the assembly
902 # language (e.g., \`10\' is the 10th general-purpose register). However,
903 # inside GDB this same register has an \`r\' appended to its name, so the 10th
904 # register would be represented as \`r10\' internally.
905 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
906
907 # Suffix used to name a register using GDB's nomenclature.
908 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
909
910 # Check if S is a single operand.
911 #
912 # Single operands can be:
913 # \- Literal integers, e.g. \`\$10\' on x86
914 # \- Register access, e.g. \`\%eax\' on x86
915 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
916 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
917 #
918 # This function should check for these patterns on the string
919 # and return 1 if some were found, or zero otherwise. Please try to match
920 # as much info as you can from the string, i.e., if you have to match
921 # something like \`\(\%\', do not match just the \`\(\'.
922 M:int:stap_is_single_operand:const char *s:s
923
924 # Function used to handle a "special case" in the parser.
925 #
926 # A "special case" is considered to be an unknown token, i.e., a token
927 # that the parser does not know how to parse. A good example of special
928 # case would be ARM's register displacement syntax:
929 #
930 # [R0, #4] ;; displacing R0 by 4
931 #
932 # Since the parser assumes that a register displacement is of the form:
933 #
934 # <number> <indirection_prefix> <register_name> <indirection_suffix>
935 #
936 # it means that it will not be able to recognize and parse this odd syntax.
937 # Therefore, we should add a special case function that will handle this token.
938 #
939 # This function should generate the proper expression form of the expression
940 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
941 # and so on). It should also return 1 if the parsing was successful, or zero
942 # if the token was not recognized as a special token (in this case, returning
943 # zero means that the special parser is deferring the parsing to the generic
944 # parser), and should advance the buffer pointer (p->arg).
945 M:int:stap_parse_special_token:struct stap_parse_info *p:p
946
947
948 # True if the list of shared libraries is one and only for all
949 # processes, as opposed to a list of shared libraries per inferior.
950 # This usually means that all processes, although may or may not share
951 # an address space, will see the same set of symbols at the same
952 # addresses.
953 v:int:has_global_solist:::0:0::0
954
955 # On some targets, even though each inferior has its own private
956 # address space, the debug interface takes care of making breakpoints
957 # visible to all address spaces automatically. For such cases,
958 # this property should be set to true.
959 v:int:has_global_breakpoints:::0:0::0
960
961 # True if inferiors share an address space (e.g., uClinux).
962 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
963
964 # True if a fast tracepoint can be set at an address.
965 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
966
967 # Return the "auto" target charset.
968 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
969 # Return the "auto" target wide charset.
970 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
971
972 # If non-empty, this is a file extension that will be opened in place
973 # of the file extension reported by the shared library list.
974 #
975 # This is most useful for toolchains that use a post-linker tool,
976 # where the names of the files run on the target differ in extension
977 # compared to the names of the files GDB should load for debug info.
978 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
979
980 # If true, the target OS has DOS-based file system semantics. That
981 # is, absolute paths include a drive name, and the backslash is
982 # considered a directory separator.
983 v:int:has_dos_based_file_system:::0:0::0
984
985 # Generate bytecodes to collect the return address in a frame.
986 # Since the bytecodes run on the target, possibly with GDB not even
987 # connected, the full unwinding machinery is not available, and
988 # typically this function will issue bytecodes for one or more likely
989 # places that the return address may be found.
990 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
991
992 # Implement the "info proc" command.
993 M:void:info_proc:char *args, enum info_proc_what what:args, what
994
995 # Implement the "info proc" command for core files. Noe that there
996 # are two "info_proc"-like methods on gdbarch -- one for core files,
997 # one for live targets.
998 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
999
1000 # Iterate over all objfiles in the order that makes the most sense
1001 # for the architecture to make global symbol searches.
1002 #
1003 # CB is a callback function where OBJFILE is the objfile to be searched,
1004 # and CB_DATA a pointer to user-defined data (the same data that is passed
1005 # when calling this gdbarch method). The iteration stops if this function
1006 # returns nonzero.
1007 #
1008 # CB_DATA is a pointer to some user-defined data to be passed to
1009 # the callback.
1010 #
1011 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1012 # inspected when the symbol search was requested.
1013 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1014
1015 # Ravenscar arch-dependent ops.
1016 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1017
1018 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1019 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1020
1021 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1022 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1023
1024 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1025 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1026
1027 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1028 # Return 0 if *READPTR is already at the end of the buffer.
1029 # Return -1 if there is insufficient buffer for a whole entry.
1030 # Return 1 if an entry was read into *TYPEP and *VALP.
1031 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1032 EOF
1033 }
1034
1035 #
1036 # The .log file
1037 #
1038 exec > new-gdbarch.log
1039 function_list | while do_read
1040 do
1041 cat <<EOF
1042 ${class} ${returntype} ${function} ($formal)
1043 EOF
1044 for r in ${read}
1045 do
1046 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1047 done
1048 if class_is_predicate_p && fallback_default_p
1049 then
1050 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1051 kill $$
1052 exit 1
1053 fi
1054 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1055 then
1056 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1057 kill $$
1058 exit 1
1059 fi
1060 if class_is_multiarch_p
1061 then
1062 if class_is_predicate_p ; then :
1063 elif test "x${predefault}" = "x"
1064 then
1065 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1066 kill $$
1067 exit 1
1068 fi
1069 fi
1070 echo ""
1071 done
1072
1073 exec 1>&2
1074 compare_new gdbarch.log
1075
1076
1077 copyright ()
1078 {
1079 cat <<EOF
1080 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1081 /* vi:set ro: */
1082
1083 /* Dynamic architecture support for GDB, the GNU debugger.
1084
1085 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1086
1087 This file is part of GDB.
1088
1089 This program is free software; you can redistribute it and/or modify
1090 it under the terms of the GNU General Public License as published by
1091 the Free Software Foundation; either version 3 of the License, or
1092 (at your option) any later version.
1093
1094 This program is distributed in the hope that it will be useful,
1095 but WITHOUT ANY WARRANTY; without even the implied warranty of
1096 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1097 GNU General Public License for more details.
1098
1099 You should have received a copy of the GNU General Public License
1100 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1101
1102 /* This file was created with the aid of \`\`gdbarch.sh''.
1103
1104 The Bourne shell script \`\`gdbarch.sh'' creates the files
1105 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1106 against the existing \`\`gdbarch.[hc]''. Any differences found
1107 being reported.
1108
1109 If editing this file, please also run gdbarch.sh and merge any
1110 changes into that script. Conversely, when making sweeping changes
1111 to this file, modifying gdbarch.sh and using its output may prove
1112 easier. */
1113
1114 EOF
1115 }
1116
1117 #
1118 # The .h file
1119 #
1120
1121 exec > new-gdbarch.h
1122 copyright
1123 cat <<EOF
1124 #ifndef GDBARCH_H
1125 #define GDBARCH_H
1126
1127 struct floatformat;
1128 struct ui_file;
1129 struct frame_info;
1130 struct value;
1131 struct objfile;
1132 struct obj_section;
1133 struct minimal_symbol;
1134 struct regcache;
1135 struct reggroup;
1136 struct regset;
1137 struct disassemble_info;
1138 struct target_ops;
1139 struct obstack;
1140 struct bp_target_info;
1141 struct target_desc;
1142 struct displaced_step_closure;
1143 struct core_regset_section;
1144 struct syscall;
1145 struct agent_expr;
1146 struct axs_value;
1147 struct stap_parse_info;
1148 struct ravenscar_arch_ops;
1149 struct elf_internal_linux_prpsinfo;
1150
1151 /* The architecture associated with the inferior through the
1152 connection to the target.
1153
1154 The architecture vector provides some information that is really a
1155 property of the inferior, accessed through a particular target:
1156 ptrace operations; the layout of certain RSP packets; the solib_ops
1157 vector; etc. To differentiate architecture accesses to
1158 per-inferior/target properties from
1159 per-thread/per-frame/per-objfile properties, accesses to
1160 per-inferior/target properties should be made through this
1161 gdbarch. */
1162
1163 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1164 extern struct gdbarch *target_gdbarch (void);
1165
1166 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1167 gdbarch method. */
1168
1169 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1170 (struct objfile *objfile, void *cb_data);
1171 EOF
1172
1173 # function typedef's
1174 printf "\n"
1175 printf "\n"
1176 printf "/* The following are pre-initialized by GDBARCH. */\n"
1177 function_list | while do_read
1178 do
1179 if class_is_info_p
1180 then
1181 printf "\n"
1182 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1183 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1184 fi
1185 done
1186
1187 # function typedef's
1188 printf "\n"
1189 printf "\n"
1190 printf "/* The following are initialized by the target dependent code. */\n"
1191 function_list | while do_read
1192 do
1193 if [ -n "${comment}" ]
1194 then
1195 echo "${comment}" | sed \
1196 -e '2 s,#,/*,' \
1197 -e '3,$ s,#, ,' \
1198 -e '$ s,$, */,'
1199 fi
1200
1201 if class_is_predicate_p
1202 then
1203 printf "\n"
1204 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1205 fi
1206 if class_is_variable_p
1207 then
1208 printf "\n"
1209 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1210 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1211 fi
1212 if class_is_function_p
1213 then
1214 printf "\n"
1215 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1216 then
1217 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1218 elif class_is_multiarch_p
1219 then
1220 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1221 else
1222 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1223 fi
1224 if [ "x${formal}" = "xvoid" ]
1225 then
1226 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1227 else
1228 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1229 fi
1230 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1231 fi
1232 done
1233
1234 # close it off
1235 cat <<EOF
1236
1237 /* Definition for an unknown syscall, used basically in error-cases. */
1238 #define UNKNOWN_SYSCALL (-1)
1239
1240 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1241
1242
1243 /* Mechanism for co-ordinating the selection of a specific
1244 architecture.
1245
1246 GDB targets (*-tdep.c) can register an interest in a specific
1247 architecture. Other GDB components can register a need to maintain
1248 per-architecture data.
1249
1250 The mechanisms below ensures that there is only a loose connection
1251 between the set-architecture command and the various GDB
1252 components. Each component can independently register their need
1253 to maintain architecture specific data with gdbarch.
1254
1255 Pragmatics:
1256
1257 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1258 didn't scale.
1259
1260 The more traditional mega-struct containing architecture specific
1261 data for all the various GDB components was also considered. Since
1262 GDB is built from a variable number of (fairly independent)
1263 components it was determined that the global aproach was not
1264 applicable. */
1265
1266
1267 /* Register a new architectural family with GDB.
1268
1269 Register support for the specified ARCHITECTURE with GDB. When
1270 gdbarch determines that the specified architecture has been
1271 selected, the corresponding INIT function is called.
1272
1273 --
1274
1275 The INIT function takes two parameters: INFO which contains the
1276 information available to gdbarch about the (possibly new)
1277 architecture; ARCHES which is a list of the previously created
1278 \`\`struct gdbarch'' for this architecture.
1279
1280 The INFO parameter is, as far as possible, be pre-initialized with
1281 information obtained from INFO.ABFD or the global defaults.
1282
1283 The ARCHES parameter is a linked list (sorted most recently used)
1284 of all the previously created architures for this architecture
1285 family. The (possibly NULL) ARCHES->gdbarch can used to access
1286 values from the previously selected architecture for this
1287 architecture family.
1288
1289 The INIT function shall return any of: NULL - indicating that it
1290 doesn't recognize the selected architecture; an existing \`\`struct
1291 gdbarch'' from the ARCHES list - indicating that the new
1292 architecture is just a synonym for an earlier architecture (see
1293 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1294 - that describes the selected architecture (see gdbarch_alloc()).
1295
1296 The DUMP_TDEP function shall print out all target specific values.
1297 Care should be taken to ensure that the function works in both the
1298 multi-arch and non- multi-arch cases. */
1299
1300 struct gdbarch_list
1301 {
1302 struct gdbarch *gdbarch;
1303 struct gdbarch_list *next;
1304 };
1305
1306 struct gdbarch_info
1307 {
1308 /* Use default: NULL (ZERO). */
1309 const struct bfd_arch_info *bfd_arch_info;
1310
1311 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1312 enum bfd_endian byte_order;
1313
1314 enum bfd_endian byte_order_for_code;
1315
1316 /* Use default: NULL (ZERO). */
1317 bfd *abfd;
1318
1319 /* Use default: NULL (ZERO). */
1320 struct gdbarch_tdep_info *tdep_info;
1321
1322 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1323 enum gdb_osabi osabi;
1324
1325 /* Use default: NULL (ZERO). */
1326 const struct target_desc *target_desc;
1327 };
1328
1329 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1330 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1331
1332 /* DEPRECATED - use gdbarch_register() */
1333 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1334
1335 extern void gdbarch_register (enum bfd_architecture architecture,
1336 gdbarch_init_ftype *,
1337 gdbarch_dump_tdep_ftype *);
1338
1339
1340 /* Return a freshly allocated, NULL terminated, array of the valid
1341 architecture names. Since architectures are registered during the
1342 _initialize phase this function only returns useful information
1343 once initialization has been completed. */
1344
1345 extern const char **gdbarch_printable_names (void);
1346
1347
1348 /* Helper function. Search the list of ARCHES for a GDBARCH that
1349 matches the information provided by INFO. */
1350
1351 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1352
1353
1354 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1355 basic initialization using values obtained from the INFO and TDEP
1356 parameters. set_gdbarch_*() functions are called to complete the
1357 initialization of the object. */
1358
1359 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1360
1361
1362 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1363 It is assumed that the caller freeds the \`\`struct
1364 gdbarch_tdep''. */
1365
1366 extern void gdbarch_free (struct gdbarch *);
1367
1368
1369 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1370 obstack. The memory is freed when the corresponding architecture
1371 is also freed. */
1372
1373 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1374 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1375 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1376
1377
1378 /* Helper function. Force an update of the current architecture.
1379
1380 The actual architecture selected is determined by INFO, \`\`(gdb) set
1381 architecture'' et.al., the existing architecture and BFD's default
1382 architecture. INFO should be initialized to zero and then selected
1383 fields should be updated.
1384
1385 Returns non-zero if the update succeeds. */
1386
1387 extern int gdbarch_update_p (struct gdbarch_info info);
1388
1389
1390 /* Helper function. Find an architecture matching info.
1391
1392 INFO should be initialized using gdbarch_info_init, relevant fields
1393 set, and then finished using gdbarch_info_fill.
1394
1395 Returns the corresponding architecture, or NULL if no matching
1396 architecture was found. */
1397
1398 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1399
1400
1401 /* Helper function. Set the target gdbarch to "gdbarch". */
1402
1403 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1404
1405
1406 /* Register per-architecture data-pointer.
1407
1408 Reserve space for a per-architecture data-pointer. An identifier
1409 for the reserved data-pointer is returned. That identifer should
1410 be saved in a local static variable.
1411
1412 Memory for the per-architecture data shall be allocated using
1413 gdbarch_obstack_zalloc. That memory will be deleted when the
1414 corresponding architecture object is deleted.
1415
1416 When a previously created architecture is re-selected, the
1417 per-architecture data-pointer for that previous architecture is
1418 restored. INIT() is not re-called.
1419
1420 Multiple registrarants for any architecture are allowed (and
1421 strongly encouraged). */
1422
1423 struct gdbarch_data;
1424
1425 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1426 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1427 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1428 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1429 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1430 struct gdbarch_data *data,
1431 void *pointer);
1432
1433 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1434
1435
1436 /* Set the dynamic target-system-dependent parameters (architecture,
1437 byte-order, ...) using information found in the BFD. */
1438
1439 extern void set_gdbarch_from_file (bfd *);
1440
1441
1442 /* Initialize the current architecture to the "first" one we find on
1443 our list. */
1444
1445 extern void initialize_current_architecture (void);
1446
1447 /* gdbarch trace variable */
1448 extern unsigned int gdbarch_debug;
1449
1450 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1451
1452 #endif
1453 EOF
1454 exec 1>&2
1455 #../move-if-change new-gdbarch.h gdbarch.h
1456 compare_new gdbarch.h
1457
1458
1459 #
1460 # C file
1461 #
1462
1463 exec > new-gdbarch.c
1464 copyright
1465 cat <<EOF
1466
1467 #include "defs.h"
1468 #include "arch-utils.h"
1469
1470 #include "gdbcmd.h"
1471 #include "inferior.h"
1472 #include "symcat.h"
1473
1474 #include "floatformat.h"
1475
1476 #include "gdb_assert.h"
1477 #include <string.h>
1478 #include "reggroups.h"
1479 #include "osabi.h"
1480 #include "gdb_obstack.h"
1481 #include "observer.h"
1482 #include "regcache.h"
1483 #include "objfiles.h"
1484
1485 /* Static function declarations */
1486
1487 static void alloc_gdbarch_data (struct gdbarch *);
1488
1489 /* Non-zero if we want to trace architecture code. */
1490
1491 #ifndef GDBARCH_DEBUG
1492 #define GDBARCH_DEBUG 0
1493 #endif
1494 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1495 static void
1496 show_gdbarch_debug (struct ui_file *file, int from_tty,
1497 struct cmd_list_element *c, const char *value)
1498 {
1499 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1500 }
1501
1502 static const char *
1503 pformat (const struct floatformat **format)
1504 {
1505 if (format == NULL)
1506 return "(null)";
1507 else
1508 /* Just print out one of them - this is only for diagnostics. */
1509 return format[0]->name;
1510 }
1511
1512 static const char *
1513 pstring (const char *string)
1514 {
1515 if (string == NULL)
1516 return "(null)";
1517 return string;
1518 }
1519
1520 /* Helper function to print a list of strings, represented as "const
1521 char *const *". The list is printed comma-separated. */
1522
1523 static char *
1524 pstring_list (const char *const *list)
1525 {
1526 static char ret[100];
1527 const char *const *p;
1528 size_t offset = 0;
1529
1530 if (list == NULL)
1531 return "(null)";
1532
1533 ret[0] = '\0';
1534 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1535 {
1536 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1537 offset += 2 + s;
1538 }
1539
1540 if (offset > 0)
1541 {
1542 gdb_assert (offset - 2 < sizeof (ret));
1543 ret[offset - 2] = '\0';
1544 }
1545
1546 return ret;
1547 }
1548
1549 EOF
1550
1551 # gdbarch open the gdbarch object
1552 printf "\n"
1553 printf "/* Maintain the struct gdbarch object. */\n"
1554 printf "\n"
1555 printf "struct gdbarch\n"
1556 printf "{\n"
1557 printf " /* Has this architecture been fully initialized? */\n"
1558 printf " int initialized_p;\n"
1559 printf "\n"
1560 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1561 printf " struct obstack *obstack;\n"
1562 printf "\n"
1563 printf " /* basic architectural information. */\n"
1564 function_list | while do_read
1565 do
1566 if class_is_info_p
1567 then
1568 printf " ${returntype} ${function};\n"
1569 fi
1570 done
1571 printf "\n"
1572 printf " /* target specific vector. */\n"
1573 printf " struct gdbarch_tdep *tdep;\n"
1574 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1575 printf "\n"
1576 printf " /* per-architecture data-pointers. */\n"
1577 printf " unsigned nr_data;\n"
1578 printf " void **data;\n"
1579 printf "\n"
1580 cat <<EOF
1581 /* Multi-arch values.
1582
1583 When extending this structure you must:
1584
1585 Add the field below.
1586
1587 Declare set/get functions and define the corresponding
1588 macro in gdbarch.h.
1589
1590 gdbarch_alloc(): If zero/NULL is not a suitable default,
1591 initialize the new field.
1592
1593 verify_gdbarch(): Confirm that the target updated the field
1594 correctly.
1595
1596 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1597 field is dumped out
1598
1599 get_gdbarch(): Implement the set/get functions (probably using
1600 the macro's as shortcuts).
1601
1602 */
1603
1604 EOF
1605 function_list | while do_read
1606 do
1607 if class_is_variable_p
1608 then
1609 printf " ${returntype} ${function};\n"
1610 elif class_is_function_p
1611 then
1612 printf " gdbarch_${function}_ftype *${function};\n"
1613 fi
1614 done
1615 printf "};\n"
1616
1617 # Create a new gdbarch struct
1618 cat <<EOF
1619
1620 /* Create a new \`\`struct gdbarch'' based on information provided by
1621 \`\`struct gdbarch_info''. */
1622 EOF
1623 printf "\n"
1624 cat <<EOF
1625 struct gdbarch *
1626 gdbarch_alloc (const struct gdbarch_info *info,
1627 struct gdbarch_tdep *tdep)
1628 {
1629 struct gdbarch *gdbarch;
1630
1631 /* Create an obstack for allocating all the per-architecture memory,
1632 then use that to allocate the architecture vector. */
1633 struct obstack *obstack = XNEW (struct obstack);
1634 obstack_init (obstack);
1635 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1636 memset (gdbarch, 0, sizeof (*gdbarch));
1637 gdbarch->obstack = obstack;
1638
1639 alloc_gdbarch_data (gdbarch);
1640
1641 gdbarch->tdep = tdep;
1642 EOF
1643 printf "\n"
1644 function_list | while do_read
1645 do
1646 if class_is_info_p
1647 then
1648 printf " gdbarch->${function} = info->${function};\n"
1649 fi
1650 done
1651 printf "\n"
1652 printf " /* Force the explicit initialization of these. */\n"
1653 function_list | while do_read
1654 do
1655 if class_is_function_p || class_is_variable_p
1656 then
1657 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1658 then
1659 printf " gdbarch->${function} = ${predefault};\n"
1660 fi
1661 fi
1662 done
1663 cat <<EOF
1664 /* gdbarch_alloc() */
1665
1666 return gdbarch;
1667 }
1668 EOF
1669
1670 # Free a gdbarch struct.
1671 printf "\n"
1672 printf "\n"
1673 cat <<EOF
1674 /* Allocate extra space using the per-architecture obstack. */
1675
1676 void *
1677 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1678 {
1679 void *data = obstack_alloc (arch->obstack, size);
1680
1681 memset (data, 0, size);
1682 return data;
1683 }
1684
1685
1686 /* Free a gdbarch struct. This should never happen in normal
1687 operation --- once you've created a gdbarch, you keep it around.
1688 However, if an architecture's init function encounters an error
1689 building the structure, it may need to clean up a partially
1690 constructed gdbarch. */
1691
1692 void
1693 gdbarch_free (struct gdbarch *arch)
1694 {
1695 struct obstack *obstack;
1696
1697 gdb_assert (arch != NULL);
1698 gdb_assert (!arch->initialized_p);
1699 obstack = arch->obstack;
1700 obstack_free (obstack, 0); /* Includes the ARCH. */
1701 xfree (obstack);
1702 }
1703 EOF
1704
1705 # verify a new architecture
1706 cat <<EOF
1707
1708
1709 /* Ensure that all values in a GDBARCH are reasonable. */
1710
1711 static void
1712 verify_gdbarch (struct gdbarch *gdbarch)
1713 {
1714 struct ui_file *log;
1715 struct cleanup *cleanups;
1716 long length;
1717 char *buf;
1718
1719 log = mem_fileopen ();
1720 cleanups = make_cleanup_ui_file_delete (log);
1721 /* fundamental */
1722 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1723 fprintf_unfiltered (log, "\n\tbyte-order");
1724 if (gdbarch->bfd_arch_info == NULL)
1725 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1726 /* Check those that need to be defined for the given multi-arch level. */
1727 EOF
1728 function_list | while do_read
1729 do
1730 if class_is_function_p || class_is_variable_p
1731 then
1732 if [ "x${invalid_p}" = "x0" ]
1733 then
1734 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1735 elif class_is_predicate_p
1736 then
1737 printf " /* Skip verify of ${function}, has predicate. */\n"
1738 # FIXME: See do_read for potential simplification
1739 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1740 then
1741 printf " if (${invalid_p})\n"
1742 printf " gdbarch->${function} = ${postdefault};\n"
1743 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1744 then
1745 printf " if (gdbarch->${function} == ${predefault})\n"
1746 printf " gdbarch->${function} = ${postdefault};\n"
1747 elif [ -n "${postdefault}" ]
1748 then
1749 printf " if (gdbarch->${function} == 0)\n"
1750 printf " gdbarch->${function} = ${postdefault};\n"
1751 elif [ -n "${invalid_p}" ]
1752 then
1753 printf " if (${invalid_p})\n"
1754 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1755 elif [ -n "${predefault}" ]
1756 then
1757 printf " if (gdbarch->${function} == ${predefault})\n"
1758 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1759 fi
1760 fi
1761 done
1762 cat <<EOF
1763 buf = ui_file_xstrdup (log, &length);
1764 make_cleanup (xfree, buf);
1765 if (length > 0)
1766 internal_error (__FILE__, __LINE__,
1767 _("verify_gdbarch: the following are invalid ...%s"),
1768 buf);
1769 do_cleanups (cleanups);
1770 }
1771 EOF
1772
1773 # dump the structure
1774 printf "\n"
1775 printf "\n"
1776 cat <<EOF
1777 /* Print out the details of the current architecture. */
1778
1779 void
1780 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1781 {
1782 const char *gdb_nm_file = "<not-defined>";
1783
1784 #if defined (GDB_NM_FILE)
1785 gdb_nm_file = GDB_NM_FILE;
1786 #endif
1787 fprintf_unfiltered (file,
1788 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1789 gdb_nm_file);
1790 EOF
1791 function_list | sort -t: -k 3 | while do_read
1792 do
1793 # First the predicate
1794 if class_is_predicate_p
1795 then
1796 printf " fprintf_unfiltered (file,\n"
1797 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1798 printf " gdbarch_${function}_p (gdbarch));\n"
1799 fi
1800 # Print the corresponding value.
1801 if class_is_function_p
1802 then
1803 printf " fprintf_unfiltered (file,\n"
1804 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1805 printf " host_address_to_string (gdbarch->${function}));\n"
1806 else
1807 # It is a variable
1808 case "${print}:${returntype}" in
1809 :CORE_ADDR )
1810 fmt="%s"
1811 print="core_addr_to_string_nz (gdbarch->${function})"
1812 ;;
1813 :* )
1814 fmt="%s"
1815 print="plongest (gdbarch->${function})"
1816 ;;
1817 * )
1818 fmt="%s"
1819 ;;
1820 esac
1821 printf " fprintf_unfiltered (file,\n"
1822 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1823 printf " ${print});\n"
1824 fi
1825 done
1826 cat <<EOF
1827 if (gdbarch->dump_tdep != NULL)
1828 gdbarch->dump_tdep (gdbarch, file);
1829 }
1830 EOF
1831
1832
1833 # GET/SET
1834 printf "\n"
1835 cat <<EOF
1836 struct gdbarch_tdep *
1837 gdbarch_tdep (struct gdbarch *gdbarch)
1838 {
1839 if (gdbarch_debug >= 2)
1840 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1841 return gdbarch->tdep;
1842 }
1843 EOF
1844 printf "\n"
1845 function_list | while do_read
1846 do
1847 if class_is_predicate_p
1848 then
1849 printf "\n"
1850 printf "int\n"
1851 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1852 printf "{\n"
1853 printf " gdb_assert (gdbarch != NULL);\n"
1854 printf " return ${predicate};\n"
1855 printf "}\n"
1856 fi
1857 if class_is_function_p
1858 then
1859 printf "\n"
1860 printf "${returntype}\n"
1861 if [ "x${formal}" = "xvoid" ]
1862 then
1863 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1864 else
1865 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1866 fi
1867 printf "{\n"
1868 printf " gdb_assert (gdbarch != NULL);\n"
1869 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1870 if class_is_predicate_p && test -n "${predefault}"
1871 then
1872 # Allow a call to a function with a predicate.
1873 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1874 fi
1875 printf " if (gdbarch_debug >= 2)\n"
1876 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1877 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1878 then
1879 if class_is_multiarch_p
1880 then
1881 params="gdbarch"
1882 else
1883 params=""
1884 fi
1885 else
1886 if class_is_multiarch_p
1887 then
1888 params="gdbarch, ${actual}"
1889 else
1890 params="${actual}"
1891 fi
1892 fi
1893 if [ "x${returntype}" = "xvoid" ]
1894 then
1895 printf " gdbarch->${function} (${params});\n"
1896 else
1897 printf " return gdbarch->${function} (${params});\n"
1898 fi
1899 printf "}\n"
1900 printf "\n"
1901 printf "void\n"
1902 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1903 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1904 printf "{\n"
1905 printf " gdbarch->${function} = ${function};\n"
1906 printf "}\n"
1907 elif class_is_variable_p
1908 then
1909 printf "\n"
1910 printf "${returntype}\n"
1911 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1912 printf "{\n"
1913 printf " gdb_assert (gdbarch != NULL);\n"
1914 if [ "x${invalid_p}" = "x0" ]
1915 then
1916 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1917 elif [ -n "${invalid_p}" ]
1918 then
1919 printf " /* Check variable is valid. */\n"
1920 printf " gdb_assert (!(${invalid_p}));\n"
1921 elif [ -n "${predefault}" ]
1922 then
1923 printf " /* Check variable changed from pre-default. */\n"
1924 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1925 fi
1926 printf " if (gdbarch_debug >= 2)\n"
1927 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1928 printf " return gdbarch->${function};\n"
1929 printf "}\n"
1930 printf "\n"
1931 printf "void\n"
1932 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1933 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1934 printf "{\n"
1935 printf " gdbarch->${function} = ${function};\n"
1936 printf "}\n"
1937 elif class_is_info_p
1938 then
1939 printf "\n"
1940 printf "${returntype}\n"
1941 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1942 printf "{\n"
1943 printf " gdb_assert (gdbarch != NULL);\n"
1944 printf " if (gdbarch_debug >= 2)\n"
1945 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1946 printf " return gdbarch->${function};\n"
1947 printf "}\n"
1948 fi
1949 done
1950
1951 # All the trailing guff
1952 cat <<EOF
1953
1954
1955 /* Keep a registry of per-architecture data-pointers required by GDB
1956 modules. */
1957
1958 struct gdbarch_data
1959 {
1960 unsigned index;
1961 int init_p;
1962 gdbarch_data_pre_init_ftype *pre_init;
1963 gdbarch_data_post_init_ftype *post_init;
1964 };
1965
1966 struct gdbarch_data_registration
1967 {
1968 struct gdbarch_data *data;
1969 struct gdbarch_data_registration *next;
1970 };
1971
1972 struct gdbarch_data_registry
1973 {
1974 unsigned nr;
1975 struct gdbarch_data_registration *registrations;
1976 };
1977
1978 struct gdbarch_data_registry gdbarch_data_registry =
1979 {
1980 0, NULL,
1981 };
1982
1983 static struct gdbarch_data *
1984 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1985 gdbarch_data_post_init_ftype *post_init)
1986 {
1987 struct gdbarch_data_registration **curr;
1988
1989 /* Append the new registration. */
1990 for (curr = &gdbarch_data_registry.registrations;
1991 (*curr) != NULL;
1992 curr = &(*curr)->next);
1993 (*curr) = XNEW (struct gdbarch_data_registration);
1994 (*curr)->next = NULL;
1995 (*curr)->data = XNEW (struct gdbarch_data);
1996 (*curr)->data->index = gdbarch_data_registry.nr++;
1997 (*curr)->data->pre_init = pre_init;
1998 (*curr)->data->post_init = post_init;
1999 (*curr)->data->init_p = 1;
2000 return (*curr)->data;
2001 }
2002
2003 struct gdbarch_data *
2004 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2005 {
2006 return gdbarch_data_register (pre_init, NULL);
2007 }
2008
2009 struct gdbarch_data *
2010 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2011 {
2012 return gdbarch_data_register (NULL, post_init);
2013 }
2014
2015 /* Create/delete the gdbarch data vector. */
2016
2017 static void
2018 alloc_gdbarch_data (struct gdbarch *gdbarch)
2019 {
2020 gdb_assert (gdbarch->data == NULL);
2021 gdbarch->nr_data = gdbarch_data_registry.nr;
2022 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2023 }
2024
2025 /* Initialize the current value of the specified per-architecture
2026 data-pointer. */
2027
2028 void
2029 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2030 struct gdbarch_data *data,
2031 void *pointer)
2032 {
2033 gdb_assert (data->index < gdbarch->nr_data);
2034 gdb_assert (gdbarch->data[data->index] == NULL);
2035 gdb_assert (data->pre_init == NULL);
2036 gdbarch->data[data->index] = pointer;
2037 }
2038
2039 /* Return the current value of the specified per-architecture
2040 data-pointer. */
2041
2042 void *
2043 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2044 {
2045 gdb_assert (data->index < gdbarch->nr_data);
2046 if (gdbarch->data[data->index] == NULL)
2047 {
2048 /* The data-pointer isn't initialized, call init() to get a
2049 value. */
2050 if (data->pre_init != NULL)
2051 /* Mid architecture creation: pass just the obstack, and not
2052 the entire architecture, as that way it isn't possible for
2053 pre-init code to refer to undefined architecture
2054 fields. */
2055 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2056 else if (gdbarch->initialized_p
2057 && data->post_init != NULL)
2058 /* Post architecture creation: pass the entire architecture
2059 (as all fields are valid), but be careful to also detect
2060 recursive references. */
2061 {
2062 gdb_assert (data->init_p);
2063 data->init_p = 0;
2064 gdbarch->data[data->index] = data->post_init (gdbarch);
2065 data->init_p = 1;
2066 }
2067 else
2068 /* The architecture initialization hasn't completed - punt -
2069 hope that the caller knows what they are doing. Once
2070 deprecated_set_gdbarch_data has been initialized, this can be
2071 changed to an internal error. */
2072 return NULL;
2073 gdb_assert (gdbarch->data[data->index] != NULL);
2074 }
2075 return gdbarch->data[data->index];
2076 }
2077
2078
2079 /* Keep a registry of the architectures known by GDB. */
2080
2081 struct gdbarch_registration
2082 {
2083 enum bfd_architecture bfd_architecture;
2084 gdbarch_init_ftype *init;
2085 gdbarch_dump_tdep_ftype *dump_tdep;
2086 struct gdbarch_list *arches;
2087 struct gdbarch_registration *next;
2088 };
2089
2090 static struct gdbarch_registration *gdbarch_registry = NULL;
2091
2092 static void
2093 append_name (const char ***buf, int *nr, const char *name)
2094 {
2095 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2096 (*buf)[*nr] = name;
2097 *nr += 1;
2098 }
2099
2100 const char **
2101 gdbarch_printable_names (void)
2102 {
2103 /* Accumulate a list of names based on the registed list of
2104 architectures. */
2105 int nr_arches = 0;
2106 const char **arches = NULL;
2107 struct gdbarch_registration *rego;
2108
2109 for (rego = gdbarch_registry;
2110 rego != NULL;
2111 rego = rego->next)
2112 {
2113 const struct bfd_arch_info *ap;
2114 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2115 if (ap == NULL)
2116 internal_error (__FILE__, __LINE__,
2117 _("gdbarch_architecture_names: multi-arch unknown"));
2118 do
2119 {
2120 append_name (&arches, &nr_arches, ap->printable_name);
2121 ap = ap->next;
2122 }
2123 while (ap != NULL);
2124 }
2125 append_name (&arches, &nr_arches, NULL);
2126 return arches;
2127 }
2128
2129
2130 void
2131 gdbarch_register (enum bfd_architecture bfd_architecture,
2132 gdbarch_init_ftype *init,
2133 gdbarch_dump_tdep_ftype *dump_tdep)
2134 {
2135 struct gdbarch_registration **curr;
2136 const struct bfd_arch_info *bfd_arch_info;
2137
2138 /* Check that BFD recognizes this architecture */
2139 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2140 if (bfd_arch_info == NULL)
2141 {
2142 internal_error (__FILE__, __LINE__,
2143 _("gdbarch: Attempt to register "
2144 "unknown architecture (%d)"),
2145 bfd_architecture);
2146 }
2147 /* Check that we haven't seen this architecture before. */
2148 for (curr = &gdbarch_registry;
2149 (*curr) != NULL;
2150 curr = &(*curr)->next)
2151 {
2152 if (bfd_architecture == (*curr)->bfd_architecture)
2153 internal_error (__FILE__, __LINE__,
2154 _("gdbarch: Duplicate registration "
2155 "of architecture (%s)"),
2156 bfd_arch_info->printable_name);
2157 }
2158 /* log it */
2159 if (gdbarch_debug)
2160 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2161 bfd_arch_info->printable_name,
2162 host_address_to_string (init));
2163 /* Append it */
2164 (*curr) = XNEW (struct gdbarch_registration);
2165 (*curr)->bfd_architecture = bfd_architecture;
2166 (*curr)->init = init;
2167 (*curr)->dump_tdep = dump_tdep;
2168 (*curr)->arches = NULL;
2169 (*curr)->next = NULL;
2170 }
2171
2172 void
2173 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2174 gdbarch_init_ftype *init)
2175 {
2176 gdbarch_register (bfd_architecture, init, NULL);
2177 }
2178
2179
2180 /* Look for an architecture using gdbarch_info. */
2181
2182 struct gdbarch_list *
2183 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2184 const struct gdbarch_info *info)
2185 {
2186 for (; arches != NULL; arches = arches->next)
2187 {
2188 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2189 continue;
2190 if (info->byte_order != arches->gdbarch->byte_order)
2191 continue;
2192 if (info->osabi != arches->gdbarch->osabi)
2193 continue;
2194 if (info->target_desc != arches->gdbarch->target_desc)
2195 continue;
2196 return arches;
2197 }
2198 return NULL;
2199 }
2200
2201
2202 /* Find an architecture that matches the specified INFO. Create a new
2203 architecture if needed. Return that new architecture. */
2204
2205 struct gdbarch *
2206 gdbarch_find_by_info (struct gdbarch_info info)
2207 {
2208 struct gdbarch *new_gdbarch;
2209 struct gdbarch_registration *rego;
2210
2211 /* Fill in missing parts of the INFO struct using a number of
2212 sources: "set ..."; INFOabfd supplied; and the global
2213 defaults. */
2214 gdbarch_info_fill (&info);
2215
2216 /* Must have found some sort of architecture. */
2217 gdb_assert (info.bfd_arch_info != NULL);
2218
2219 if (gdbarch_debug)
2220 {
2221 fprintf_unfiltered (gdb_stdlog,
2222 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2223 (info.bfd_arch_info != NULL
2224 ? info.bfd_arch_info->printable_name
2225 : "(null)"));
2226 fprintf_unfiltered (gdb_stdlog,
2227 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2228 info.byte_order,
2229 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2230 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2231 : "default"));
2232 fprintf_unfiltered (gdb_stdlog,
2233 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2234 info.osabi, gdbarch_osabi_name (info.osabi));
2235 fprintf_unfiltered (gdb_stdlog,
2236 "gdbarch_find_by_info: info.abfd %s\n",
2237 host_address_to_string (info.abfd));
2238 fprintf_unfiltered (gdb_stdlog,
2239 "gdbarch_find_by_info: info.tdep_info %s\n",
2240 host_address_to_string (info.tdep_info));
2241 }
2242
2243 /* Find the tdep code that knows about this architecture. */
2244 for (rego = gdbarch_registry;
2245 rego != NULL;
2246 rego = rego->next)
2247 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2248 break;
2249 if (rego == NULL)
2250 {
2251 if (gdbarch_debug)
2252 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2253 "No matching architecture\n");
2254 return 0;
2255 }
2256
2257 /* Ask the tdep code for an architecture that matches "info". */
2258 new_gdbarch = rego->init (info, rego->arches);
2259
2260 /* Did the tdep code like it? No. Reject the change and revert to
2261 the old architecture. */
2262 if (new_gdbarch == NULL)
2263 {
2264 if (gdbarch_debug)
2265 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2266 "Target rejected architecture\n");
2267 return NULL;
2268 }
2269
2270 /* Is this a pre-existing architecture (as determined by already
2271 being initialized)? Move it to the front of the architecture
2272 list (keeping the list sorted Most Recently Used). */
2273 if (new_gdbarch->initialized_p)
2274 {
2275 struct gdbarch_list **list;
2276 struct gdbarch_list *this;
2277 if (gdbarch_debug)
2278 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2279 "Previous architecture %s (%s) selected\n",
2280 host_address_to_string (new_gdbarch),
2281 new_gdbarch->bfd_arch_info->printable_name);
2282 /* Find the existing arch in the list. */
2283 for (list = &rego->arches;
2284 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2285 list = &(*list)->next);
2286 /* It had better be in the list of architectures. */
2287 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2288 /* Unlink THIS. */
2289 this = (*list);
2290 (*list) = this->next;
2291 /* Insert THIS at the front. */
2292 this->next = rego->arches;
2293 rego->arches = this;
2294 /* Return it. */
2295 return new_gdbarch;
2296 }
2297
2298 /* It's a new architecture. */
2299 if (gdbarch_debug)
2300 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2301 "New architecture %s (%s) selected\n",
2302 host_address_to_string (new_gdbarch),
2303 new_gdbarch->bfd_arch_info->printable_name);
2304
2305 /* Insert the new architecture into the front of the architecture
2306 list (keep the list sorted Most Recently Used). */
2307 {
2308 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2309 this->next = rego->arches;
2310 this->gdbarch = new_gdbarch;
2311 rego->arches = this;
2312 }
2313
2314 /* Check that the newly installed architecture is valid. Plug in
2315 any post init values. */
2316 new_gdbarch->dump_tdep = rego->dump_tdep;
2317 verify_gdbarch (new_gdbarch);
2318 new_gdbarch->initialized_p = 1;
2319
2320 if (gdbarch_debug)
2321 gdbarch_dump (new_gdbarch, gdb_stdlog);
2322
2323 return new_gdbarch;
2324 }
2325
2326 /* Make the specified architecture current. */
2327
2328 void
2329 set_target_gdbarch (struct gdbarch *new_gdbarch)
2330 {
2331 gdb_assert (new_gdbarch != NULL);
2332 gdb_assert (new_gdbarch->initialized_p);
2333 current_inferior ()->gdbarch = new_gdbarch;
2334 observer_notify_architecture_changed (new_gdbarch);
2335 registers_changed ();
2336 }
2337
2338 /* Return the current inferior's arch. */
2339
2340 struct gdbarch *
2341 target_gdbarch (void)
2342 {
2343 return current_inferior ()->gdbarch;
2344 }
2345
2346 extern void _initialize_gdbarch (void);
2347
2348 void
2349 _initialize_gdbarch (void)
2350 {
2351 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2352 Set architecture debugging."), _("\\
2353 Show architecture debugging."), _("\\
2354 When non-zero, architecture debugging is enabled."),
2355 NULL,
2356 show_gdbarch_debug,
2357 &setdebuglist, &showdebuglist);
2358 }
2359 EOF
2360
2361 # close things off
2362 exec 1>&2
2363 #../move-if-change new-gdbarch.c gdbarch.c
2364 compare_new gdbarch.c