]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
gdbarch-ification of ravenscar-thread support.
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:int:byte_order:::BFD_ENDIAN_BIG
344 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
473 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
475 # deprecated_fp_regnum.
476 v:int:deprecated_fp_regnum:::-1:-1::0
477
478 # See gdbint.texinfo. See infcall.c.
479 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
480 v:int:call_dummy_location::::AT_ENTRY_POINT::0
481 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
482
483 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
486 # MAP a GDB RAW register number onto a simulator register number. See
487 # also include/...-sim.h.
488 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
489 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
493 #
494 v:int:believe_pcc_promotion:::::::
495 #
496 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
498 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
499 # Construct a value representing the contents of register REGNUM in
500 # frame FRAME, interpreted as type TYPE. The routine needs to
501 # allocate and return a struct value with all value attributes
502 # (but not the value contents) filled in.
503 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
504 #
505 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
506 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
507 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
508
509 # Return the return-value convention that will be used by FUNCTION
510 # to return a value of type VALTYPE. FUNCTION may be NULL in which
511 # case the return convention is computed based only on VALTYPE.
512 #
513 # If READBUF is not NULL, extract the return value and save it in this buffer.
514 #
515 # If WRITEBUF is not NULL, it contains a return value which will be
516 # stored into the appropriate register. This can be used when we want
517 # to force the value returned by a function (see the "return" command
518 # for instance).
519 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
520
521 # Return true if the return value of function is stored in the first hidden
522 # parameter. In theory, this feature should be language-dependent, specified
523 # by language and its ABI, such as C++. Unfortunately, compiler may
524 # implement it to a target-dependent feature. So that we need such hook here
525 # to be aware of this in GDB.
526 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
527
528 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
529 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
530 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
531 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
532 # Return the adjusted address and kind to use for Z0/Z1 packets.
533 # KIND is usually the memory length of the breakpoint, but may have a
534 # different target-specific meaning.
535 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
536 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
537 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
538 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
539 v:CORE_ADDR:decr_pc_after_break:::0:::0
540
541 # A function can be addressed by either it's "pointer" (possibly a
542 # descriptor address) or "entry point" (first executable instruction).
543 # The method "convert_from_func_ptr_addr" converting the former to the
544 # latter. gdbarch_deprecated_function_start_offset is being used to implement
545 # a simplified subset of that functionality - the function's address
546 # corresponds to the "function pointer" and the function's start
547 # corresponds to the "function entry point" - and hence is redundant.
548
549 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
550
551 # Return the remote protocol register number associated with this
552 # register. Normally the identity mapping.
553 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
554
555 # Fetch the target specific address used to represent a load module.
556 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
557 #
558 v:CORE_ADDR:frame_args_skip:::0:::0
559 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
560 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
561 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
562 # frame-base. Enable frame-base before frame-unwind.
563 F:int:frame_num_args:struct frame_info *frame:frame
564 #
565 M:CORE_ADDR:frame_align:CORE_ADDR address:address
566 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
567 v:int:frame_red_zone_size
568 #
569 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
570 # On some machines there are bits in addresses which are not really
571 # part of the address, but are used by the kernel, the hardware, etc.
572 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
573 # we get a "real" address such as one would find in a symbol table.
574 # This is used only for addresses of instructions, and even then I'm
575 # not sure it's used in all contexts. It exists to deal with there
576 # being a few stray bits in the PC which would mislead us, not as some
577 # sort of generic thing to handle alignment or segmentation (it's
578 # possible it should be in TARGET_READ_PC instead).
579 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
580
581 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
582 # indicates if the target needs software single step. An ISA method to
583 # implement it.
584 #
585 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586 # breakpoints using the breakpoint system instead of blatting memory directly
587 # (as with rs6000).
588 #
589 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590 # target can single step. If not, then implement single step using breakpoints.
591 #
592 # A return value of 1 means that the software_single_step breakpoints
593 # were inserted; 0 means they were not.
594 F:int:software_single_step:struct frame_info *frame:frame
595
596 # Return non-zero if the processor is executing a delay slot and a
597 # further single-step is needed before the instruction finishes.
598 M:int:single_step_through_delay:struct frame_info *frame:frame
599 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
600 # disassembler. Perhaps objdump can handle it?
601 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
603
604
605 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
606 # evaluates non-zero, this is the address where the debugger will place
607 # a step-resume breakpoint to get us past the dynamic linker.
608 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
609 # Some systems also have trampoline code for returning from shared libs.
610 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
611
612 # A target might have problems with watchpoints as soon as the stack
613 # frame of the current function has been destroyed. This mostly happens
614 # as the first action in a funtion's epilogue. in_function_epilogue_p()
615 # is defined to return a non-zero value if either the given addr is one
616 # instruction after the stack destroying instruction up to the trailing
617 # return instruction or if we can figure out that the stack frame has
618 # already been invalidated regardless of the value of addr. Targets
619 # which don't suffer from that problem could just let this functionality
620 # untouched.
621 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
622 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
624 v:int:cannot_step_breakpoint:::0:0::0
625 v:int:have_nonsteppable_watchpoint:::0:0::0
626 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
629 # Is a register in a group
630 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
631 # Fetch the pointer to the ith function argument.
632 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
633
634 # Return the appropriate register set for a core file section with
635 # name SECT_NAME and size SECT_SIZE.
636 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
637
638 # Supported register notes in a core file.
639 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
640
641 # Create core file notes
642 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
643
644 # Find core file memory regions
645 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
646
647 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
648 # core file into buffer READBUF with length LEN.
649 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
650
651 # How the core target converts a PTID from a core file to a string.
652 M:char *:core_pid_to_str:ptid_t ptid:ptid
653
654 # BFD target to use when generating a core file.
655 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
656
657 # If the elements of C++ vtables are in-place function descriptors rather
658 # than normal function pointers (which may point to code or a descriptor),
659 # set this to one.
660 v:int:vtable_function_descriptors:::0:0::0
661
662 # Set if the least significant bit of the delta is used instead of the least
663 # significant bit of the pfn for pointers to virtual member functions.
664 v:int:vbit_in_delta:::0:0::0
665
666 # Advance PC to next instruction in order to skip a permanent breakpoint.
667 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
668
669 # The maximum length of an instruction on this architecture in bytes.
670 V:ULONGEST:max_insn_length:::0:0
671
672 # Copy the instruction at FROM to TO, and make any adjustments
673 # necessary to single-step it at that address.
674 #
675 # REGS holds the state the thread's registers will have before
676 # executing the copied instruction; the PC in REGS will refer to FROM,
677 # not the copy at TO. The caller should update it to point at TO later.
678 #
679 # Return a pointer to data of the architecture's choice to be passed
680 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
681 # the instruction's effects have been completely simulated, with the
682 # resulting state written back to REGS.
683 #
684 # For a general explanation of displaced stepping and how GDB uses it,
685 # see the comments in infrun.c.
686 #
687 # The TO area is only guaranteed to have space for
688 # gdbarch_max_insn_length (arch) bytes, so this function must not
689 # write more bytes than that to that area.
690 #
691 # If you do not provide this function, GDB assumes that the
692 # architecture does not support displaced stepping.
693 #
694 # If your architecture doesn't need to adjust instructions before
695 # single-stepping them, consider using simple_displaced_step_copy_insn
696 # here.
697 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
698
699 # Return true if GDB should use hardware single-stepping to execute
700 # the displaced instruction identified by CLOSURE. If false,
701 # GDB will simply restart execution at the displaced instruction
702 # location, and it is up to the target to ensure GDB will receive
703 # control again (e.g. by placing a software breakpoint instruction
704 # into the displaced instruction buffer).
705 #
706 # The default implementation returns false on all targets that
707 # provide a gdbarch_software_single_step routine, and true otherwise.
708 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
709
710 # Fix up the state resulting from successfully single-stepping a
711 # displaced instruction, to give the result we would have gotten from
712 # stepping the instruction in its original location.
713 #
714 # REGS is the register state resulting from single-stepping the
715 # displaced instruction.
716 #
717 # CLOSURE is the result from the matching call to
718 # gdbarch_displaced_step_copy_insn.
719 #
720 # If you provide gdbarch_displaced_step_copy_insn.but not this
721 # function, then GDB assumes that no fixup is needed after
722 # single-stepping the instruction.
723 #
724 # For a general explanation of displaced stepping and how GDB uses it,
725 # see the comments in infrun.c.
726 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
727
728 # Free a closure returned by gdbarch_displaced_step_copy_insn.
729 #
730 # If you provide gdbarch_displaced_step_copy_insn, you must provide
731 # this function as well.
732 #
733 # If your architecture uses closures that don't need to be freed, then
734 # you can use simple_displaced_step_free_closure here.
735 #
736 # For a general explanation of displaced stepping and how GDB uses it,
737 # see the comments in infrun.c.
738 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
739
740 # Return the address of an appropriate place to put displaced
741 # instructions while we step over them. There need only be one such
742 # place, since we're only stepping one thread over a breakpoint at a
743 # time.
744 #
745 # For a general explanation of displaced stepping and how GDB uses it,
746 # see the comments in infrun.c.
747 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
748
749 # Relocate an instruction to execute at a different address. OLDLOC
750 # is the address in the inferior memory where the instruction to
751 # relocate is currently at. On input, TO points to the destination
752 # where we want the instruction to be copied (and possibly adjusted)
753 # to. On output, it points to one past the end of the resulting
754 # instruction(s). The effect of executing the instruction at TO shall
755 # be the same as if executing it at FROM. For example, call
756 # instructions that implicitly push the return address on the stack
757 # should be adjusted to return to the instruction after OLDLOC;
758 # relative branches, and other PC-relative instructions need the
759 # offset adjusted; etc.
760 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
761
762 # Refresh overlay mapped state for section OSECT.
763 F:void:overlay_update:struct obj_section *osect:osect
764
765 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
766
767 # Handle special encoding of static variables in stabs debug info.
768 F:const char *:static_transform_name:const char *name:name
769 # Set if the address in N_SO or N_FUN stabs may be zero.
770 v:int:sofun_address_maybe_missing:::0:0::0
771
772 # Parse the instruction at ADDR storing in the record execution log
773 # the registers REGCACHE and memory ranges that will be affected when
774 # the instruction executes, along with their current values.
775 # Return -1 if something goes wrong, 0 otherwise.
776 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
777
778 # Save process state after a signal.
779 # Return -1 if something goes wrong, 0 otherwise.
780 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
781
782 # Signal translation: translate inferior's signal (target's) number
783 # into GDB's representation. The implementation of this method must
784 # be host independent. IOW, don't rely on symbols of the NAT_FILE
785 # header (the nm-*.h files), the host <signal.h> header, or similar
786 # headers. This is mainly used when cross-debugging core files ---
787 # "Live" targets hide the translation behind the target interface
788 # (target_wait, target_resume, etc.).
789 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
790
791 # Extra signal info inspection.
792 #
793 # Return a type suitable to inspect extra signal information.
794 M:struct type *:get_siginfo_type:void:
795
796 # Record architecture-specific information from the symbol table.
797 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
798
799 # Function for the 'catch syscall' feature.
800
801 # Get architecture-specific system calls information from registers.
802 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
803
804 # SystemTap related fields and functions.
805
806 # Prefix used to mark an integer constant on the architecture's assembly
807 # For example, on x86 integer constants are written as:
808 #
809 # \$10 ;; integer constant 10
810 #
811 # in this case, this prefix would be the character \`\$\'.
812 v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
813
814 # Suffix used to mark an integer constant on the architecture's assembly.
815 v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
816
817 # Prefix used to mark a register name on the architecture's assembly.
818 # For example, on x86 the register name is written as:
819 #
820 # \%eax ;; register eax
821 #
822 # in this case, this prefix would be the character \`\%\'.
823 v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
824
825 # Suffix used to mark a register name on the architecture's assembly
826 v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
827
828 # Prefix used to mark a register indirection on the architecture's assembly.
829 # For example, on x86 the register indirection is written as:
830 #
831 # \(\%eax\) ;; indirecting eax
832 #
833 # in this case, this prefix would be the charater \`\(\'.
834 #
835 # Please note that we use the indirection prefix also for register
836 # displacement, e.g., \`4\(\%eax\)\' on x86.
837 v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
838
839 # Suffix used to mark a register indirection on the architecture's assembly.
840 # For example, on x86 the register indirection is written as:
841 #
842 # \(\%eax\) ;; indirecting eax
843 #
844 # in this case, this prefix would be the charater \`\)\'.
845 #
846 # Please note that we use the indirection suffix also for register
847 # displacement, e.g., \`4\(\%eax\)\' on x86.
848 v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
849
850 # Prefix used to name a register using GDB's nomenclature.
851 #
852 # For example, on PPC a register is represented by a number in the assembly
853 # language (e.g., \`10\' is the 10th general-purpose register). However,
854 # inside GDB this same register has an \`r\' appended to its name, so the 10th
855 # register would be represented as \`r10\' internally.
856 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
857
858 # Suffix used to name a register using GDB's nomenclature.
859 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
860
861 # Check if S is a single operand.
862 #
863 # Single operands can be:
864 # \- Literal integers, e.g. \`\$10\' on x86
865 # \- Register access, e.g. \`\%eax\' on x86
866 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
867 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
868 #
869 # This function should check for these patterns on the string
870 # and return 1 if some were found, or zero otherwise. Please try to match
871 # as much info as you can from the string, i.e., if you have to match
872 # something like \`\(\%\', do not match just the \`\(\'.
873 M:int:stap_is_single_operand:const char *s:s
874
875 # Function used to handle a "special case" in the parser.
876 #
877 # A "special case" is considered to be an unknown token, i.e., a token
878 # that the parser does not know how to parse. A good example of special
879 # case would be ARM's register displacement syntax:
880 #
881 # [R0, #4] ;; displacing R0 by 4
882 #
883 # Since the parser assumes that a register displacement is of the form:
884 #
885 # <number> <indirection_prefix> <register_name> <indirection_suffix>
886 #
887 # it means that it will not be able to recognize and parse this odd syntax.
888 # Therefore, we should add a special case function that will handle this token.
889 #
890 # This function should generate the proper expression form of the expression
891 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
892 # and so on). It should also return 1 if the parsing was successful, or zero
893 # if the token was not recognized as a special token (in this case, returning
894 # zero means that the special parser is deferring the parsing to the generic
895 # parser), and should advance the buffer pointer (p->arg).
896 M:int:stap_parse_special_token:struct stap_parse_info *p:p
897
898
899 # True if the list of shared libraries is one and only for all
900 # processes, as opposed to a list of shared libraries per inferior.
901 # This usually means that all processes, although may or may not share
902 # an address space, will see the same set of symbols at the same
903 # addresses.
904 v:int:has_global_solist:::0:0::0
905
906 # On some targets, even though each inferior has its own private
907 # address space, the debug interface takes care of making breakpoints
908 # visible to all address spaces automatically. For such cases,
909 # this property should be set to true.
910 v:int:has_global_breakpoints:::0:0::0
911
912 # True if inferiors share an address space (e.g., uClinux).
913 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
914
915 # True if a fast tracepoint can be set at an address.
916 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
917
918 # Return the "auto" target charset.
919 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
920 # Return the "auto" target wide charset.
921 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
922
923 # If non-empty, this is a file extension that will be opened in place
924 # of the file extension reported by the shared library list.
925 #
926 # This is most useful for toolchains that use a post-linker tool,
927 # where the names of the files run on the target differ in extension
928 # compared to the names of the files GDB should load for debug info.
929 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
930
931 # If true, the target OS has DOS-based file system semantics. That
932 # is, absolute paths include a drive name, and the backslash is
933 # considered a directory separator.
934 v:int:has_dos_based_file_system:::0:0::0
935
936 # Generate bytecodes to collect the return address in a frame.
937 # Since the bytecodes run on the target, possibly with GDB not even
938 # connected, the full unwinding machinery is not available, and
939 # typically this function will issue bytecodes for one or more likely
940 # places that the return address may be found.
941 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
942
943 # Implement the "info proc" command.
944 M:void:info_proc:char *args, enum info_proc_what what:args, what
945
946 # Implement the "info proc" command for core files. Noe that there
947 # are two "info_proc"-like methods on gdbarch -- one for core files,
948 # one for live targets.
949 M:void:core_info_proc:char *args, enum info_proc_what what:args, what
950
951 # Iterate over all objfiles in the order that makes the most sense
952 # for the architecture to make global symbol searches.
953 #
954 # CB is a callback function where OBJFILE is the objfile to be searched,
955 # and CB_DATA a pointer to user-defined data (the same data that is passed
956 # when calling this gdbarch method). The iteration stops if this function
957 # returns nonzero.
958 #
959 # CB_DATA is a pointer to some user-defined data to be passed to
960 # the callback.
961 #
962 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
963 # inspected when the symbol search was requested.
964 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
965
966 # Ravenscar arch-dependent ops.
967 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
968 EOF
969 }
970
971 #
972 # The .log file
973 #
974 exec > new-gdbarch.log
975 function_list | while do_read
976 do
977 cat <<EOF
978 ${class} ${returntype} ${function} ($formal)
979 EOF
980 for r in ${read}
981 do
982 eval echo \"\ \ \ \ ${r}=\${${r}}\"
983 done
984 if class_is_predicate_p && fallback_default_p
985 then
986 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
987 kill $$
988 exit 1
989 fi
990 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
991 then
992 echo "Error: postdefault is useless when invalid_p=0" 1>&2
993 kill $$
994 exit 1
995 fi
996 if class_is_multiarch_p
997 then
998 if class_is_predicate_p ; then :
999 elif test "x${predefault}" = "x"
1000 then
1001 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1002 kill $$
1003 exit 1
1004 fi
1005 fi
1006 echo ""
1007 done
1008
1009 exec 1>&2
1010 compare_new gdbarch.log
1011
1012
1013 copyright ()
1014 {
1015 cat <<EOF
1016 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1017 /* vi:set ro: */
1018
1019 /* Dynamic architecture support for GDB, the GNU debugger.
1020
1021 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1022 2007, 2008, 2009 Free Software Foundation, Inc.
1023
1024 This file is part of GDB.
1025
1026 This program is free software; you can redistribute it and/or modify
1027 it under the terms of the GNU General Public License as published by
1028 the Free Software Foundation; either version 3 of the License, or
1029 (at your option) any later version.
1030
1031 This program is distributed in the hope that it will be useful,
1032 but WITHOUT ANY WARRANTY; without even the implied warranty of
1033 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1034 GNU General Public License for more details.
1035
1036 You should have received a copy of the GNU General Public License
1037 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1038
1039 /* This file was created with the aid of \`\`gdbarch.sh''.
1040
1041 The Bourne shell script \`\`gdbarch.sh'' creates the files
1042 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1043 against the existing \`\`gdbarch.[hc]''. Any differences found
1044 being reported.
1045
1046 If editing this file, please also run gdbarch.sh and merge any
1047 changes into that script. Conversely, when making sweeping changes
1048 to this file, modifying gdbarch.sh and using its output may prove
1049 easier. */
1050
1051 EOF
1052 }
1053
1054 #
1055 # The .h file
1056 #
1057
1058 exec > new-gdbarch.h
1059 copyright
1060 cat <<EOF
1061 #ifndef GDBARCH_H
1062 #define GDBARCH_H
1063
1064 struct floatformat;
1065 struct ui_file;
1066 struct frame_info;
1067 struct value;
1068 struct objfile;
1069 struct obj_section;
1070 struct minimal_symbol;
1071 struct regcache;
1072 struct reggroup;
1073 struct regset;
1074 struct disassemble_info;
1075 struct target_ops;
1076 struct obstack;
1077 struct bp_target_info;
1078 struct target_desc;
1079 struct displaced_step_closure;
1080 struct core_regset_section;
1081 struct syscall;
1082 struct agent_expr;
1083 struct axs_value;
1084 struct stap_parse_info;
1085 struct ravenscar_arch_ops;
1086
1087 /* The architecture associated with the inferior through the
1088 connection to the target.
1089
1090 The architecture vector provides some information that is really a
1091 property of the inferior, accessed through a particular target:
1092 ptrace operations; the layout of certain RSP packets; the solib_ops
1093 vector; etc. To differentiate architecture accesses to
1094 per-inferior/target properties from
1095 per-thread/per-frame/per-objfile properties, accesses to
1096 per-inferior/target properties should be made through this
1097 gdbarch. */
1098
1099 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1100 extern struct gdbarch *target_gdbarch (void);
1101
1102 /* The initial, default architecture. It uses host values (for want of a better
1103 choice). */
1104 extern struct gdbarch startup_gdbarch;
1105
1106
1107 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1108 gdbarch method. */
1109
1110 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1111 (struct objfile *objfile, void *cb_data);
1112 EOF
1113
1114 # function typedef's
1115 printf "\n"
1116 printf "\n"
1117 printf "/* The following are pre-initialized by GDBARCH. */\n"
1118 function_list | while do_read
1119 do
1120 if class_is_info_p
1121 then
1122 printf "\n"
1123 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1124 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1125 fi
1126 done
1127
1128 # function typedef's
1129 printf "\n"
1130 printf "\n"
1131 printf "/* The following are initialized by the target dependent code. */\n"
1132 function_list | while do_read
1133 do
1134 if [ -n "${comment}" ]
1135 then
1136 echo "${comment}" | sed \
1137 -e '2 s,#,/*,' \
1138 -e '3,$ s,#, ,' \
1139 -e '$ s,$, */,'
1140 fi
1141
1142 if class_is_predicate_p
1143 then
1144 printf "\n"
1145 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1146 fi
1147 if class_is_variable_p
1148 then
1149 printf "\n"
1150 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1151 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1152 fi
1153 if class_is_function_p
1154 then
1155 printf "\n"
1156 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1157 then
1158 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1159 elif class_is_multiarch_p
1160 then
1161 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1162 else
1163 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1164 fi
1165 if [ "x${formal}" = "xvoid" ]
1166 then
1167 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1168 else
1169 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1170 fi
1171 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1172 fi
1173 done
1174
1175 # close it off
1176 cat <<EOF
1177
1178 /* Definition for an unknown syscall, used basically in error-cases. */
1179 #define UNKNOWN_SYSCALL (-1)
1180
1181 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1182
1183
1184 /* Mechanism for co-ordinating the selection of a specific
1185 architecture.
1186
1187 GDB targets (*-tdep.c) can register an interest in a specific
1188 architecture. Other GDB components can register a need to maintain
1189 per-architecture data.
1190
1191 The mechanisms below ensures that there is only a loose connection
1192 between the set-architecture command and the various GDB
1193 components. Each component can independently register their need
1194 to maintain architecture specific data with gdbarch.
1195
1196 Pragmatics:
1197
1198 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1199 didn't scale.
1200
1201 The more traditional mega-struct containing architecture specific
1202 data for all the various GDB components was also considered. Since
1203 GDB is built from a variable number of (fairly independent)
1204 components it was determined that the global aproach was not
1205 applicable. */
1206
1207
1208 /* Register a new architectural family with GDB.
1209
1210 Register support for the specified ARCHITECTURE with GDB. When
1211 gdbarch determines that the specified architecture has been
1212 selected, the corresponding INIT function is called.
1213
1214 --
1215
1216 The INIT function takes two parameters: INFO which contains the
1217 information available to gdbarch about the (possibly new)
1218 architecture; ARCHES which is a list of the previously created
1219 \`\`struct gdbarch'' for this architecture.
1220
1221 The INFO parameter is, as far as possible, be pre-initialized with
1222 information obtained from INFO.ABFD or the global defaults.
1223
1224 The ARCHES parameter is a linked list (sorted most recently used)
1225 of all the previously created architures for this architecture
1226 family. The (possibly NULL) ARCHES->gdbarch can used to access
1227 values from the previously selected architecture for this
1228 architecture family.
1229
1230 The INIT function shall return any of: NULL - indicating that it
1231 doesn't recognize the selected architecture; an existing \`\`struct
1232 gdbarch'' from the ARCHES list - indicating that the new
1233 architecture is just a synonym for an earlier architecture (see
1234 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1235 - that describes the selected architecture (see gdbarch_alloc()).
1236
1237 The DUMP_TDEP function shall print out all target specific values.
1238 Care should be taken to ensure that the function works in both the
1239 multi-arch and non- multi-arch cases. */
1240
1241 struct gdbarch_list
1242 {
1243 struct gdbarch *gdbarch;
1244 struct gdbarch_list *next;
1245 };
1246
1247 struct gdbarch_info
1248 {
1249 /* Use default: NULL (ZERO). */
1250 const struct bfd_arch_info *bfd_arch_info;
1251
1252 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1253 int byte_order;
1254
1255 int byte_order_for_code;
1256
1257 /* Use default: NULL (ZERO). */
1258 bfd *abfd;
1259
1260 /* Use default: NULL (ZERO). */
1261 struct gdbarch_tdep_info *tdep_info;
1262
1263 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1264 enum gdb_osabi osabi;
1265
1266 /* Use default: NULL (ZERO). */
1267 const struct target_desc *target_desc;
1268 };
1269
1270 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1271 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1272
1273 /* DEPRECATED - use gdbarch_register() */
1274 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1275
1276 extern void gdbarch_register (enum bfd_architecture architecture,
1277 gdbarch_init_ftype *,
1278 gdbarch_dump_tdep_ftype *);
1279
1280
1281 /* Return a freshly allocated, NULL terminated, array of the valid
1282 architecture names. Since architectures are registered during the
1283 _initialize phase this function only returns useful information
1284 once initialization has been completed. */
1285
1286 extern const char **gdbarch_printable_names (void);
1287
1288
1289 /* Helper function. Search the list of ARCHES for a GDBARCH that
1290 matches the information provided by INFO. */
1291
1292 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1293
1294
1295 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1296 basic initialization using values obtained from the INFO and TDEP
1297 parameters. set_gdbarch_*() functions are called to complete the
1298 initialization of the object. */
1299
1300 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1301
1302
1303 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1304 It is assumed that the caller freeds the \`\`struct
1305 gdbarch_tdep''. */
1306
1307 extern void gdbarch_free (struct gdbarch *);
1308
1309
1310 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1311 obstack. The memory is freed when the corresponding architecture
1312 is also freed. */
1313
1314 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1315 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1316 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1317
1318
1319 /* Helper function. Force an update of the current architecture.
1320
1321 The actual architecture selected is determined by INFO, \`\`(gdb) set
1322 architecture'' et.al., the existing architecture and BFD's default
1323 architecture. INFO should be initialized to zero and then selected
1324 fields should be updated.
1325
1326 Returns non-zero if the update succeeds. */
1327
1328 extern int gdbarch_update_p (struct gdbarch_info info);
1329
1330
1331 /* Helper function. Find an architecture matching info.
1332
1333 INFO should be initialized using gdbarch_info_init, relevant fields
1334 set, and then finished using gdbarch_info_fill.
1335
1336 Returns the corresponding architecture, or NULL if no matching
1337 architecture was found. */
1338
1339 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1340
1341
1342 /* Helper function. Set the target gdbarch to "gdbarch". */
1343
1344 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1345
1346
1347 /* Register per-architecture data-pointer.
1348
1349 Reserve space for a per-architecture data-pointer. An identifier
1350 for the reserved data-pointer is returned. That identifer should
1351 be saved in a local static variable.
1352
1353 Memory for the per-architecture data shall be allocated using
1354 gdbarch_obstack_zalloc. That memory will be deleted when the
1355 corresponding architecture object is deleted.
1356
1357 When a previously created architecture is re-selected, the
1358 per-architecture data-pointer for that previous architecture is
1359 restored. INIT() is not re-called.
1360
1361 Multiple registrarants for any architecture are allowed (and
1362 strongly encouraged). */
1363
1364 struct gdbarch_data;
1365
1366 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1367 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1368 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1369 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1370 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1371 struct gdbarch_data *data,
1372 void *pointer);
1373
1374 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1375
1376
1377 /* Set the dynamic target-system-dependent parameters (architecture,
1378 byte-order, ...) using information found in the BFD. */
1379
1380 extern void set_gdbarch_from_file (bfd *);
1381
1382
1383 /* Initialize the current architecture to the "first" one we find on
1384 our list. */
1385
1386 extern void initialize_current_architecture (void);
1387
1388 /* gdbarch trace variable */
1389 extern unsigned int gdbarch_debug;
1390
1391 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1392
1393 #endif
1394 EOF
1395 exec 1>&2
1396 #../move-if-change new-gdbarch.h gdbarch.h
1397 compare_new gdbarch.h
1398
1399
1400 #
1401 # C file
1402 #
1403
1404 exec > new-gdbarch.c
1405 copyright
1406 cat <<EOF
1407
1408 #include "defs.h"
1409 #include "arch-utils.h"
1410
1411 #include "gdbcmd.h"
1412 #include "inferior.h"
1413 #include "symcat.h"
1414
1415 #include "floatformat.h"
1416
1417 #include "gdb_assert.h"
1418 #include "gdb_string.h"
1419 #include "reggroups.h"
1420 #include "osabi.h"
1421 #include "gdb_obstack.h"
1422 #include "observer.h"
1423 #include "regcache.h"
1424 #include "objfiles.h"
1425
1426 /* Static function declarations */
1427
1428 static void alloc_gdbarch_data (struct gdbarch *);
1429
1430 /* Non-zero if we want to trace architecture code. */
1431
1432 #ifndef GDBARCH_DEBUG
1433 #define GDBARCH_DEBUG 0
1434 #endif
1435 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1436 static void
1437 show_gdbarch_debug (struct ui_file *file, int from_tty,
1438 struct cmd_list_element *c, const char *value)
1439 {
1440 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1441 }
1442
1443 static const char *
1444 pformat (const struct floatformat **format)
1445 {
1446 if (format == NULL)
1447 return "(null)";
1448 else
1449 /* Just print out one of them - this is only for diagnostics. */
1450 return format[0]->name;
1451 }
1452
1453 static const char *
1454 pstring (const char *string)
1455 {
1456 if (string == NULL)
1457 return "(null)";
1458 return string;
1459 }
1460
1461 EOF
1462
1463 # gdbarch open the gdbarch object
1464 printf "\n"
1465 printf "/* Maintain the struct gdbarch object. */\n"
1466 printf "\n"
1467 printf "struct gdbarch\n"
1468 printf "{\n"
1469 printf " /* Has this architecture been fully initialized? */\n"
1470 printf " int initialized_p;\n"
1471 printf "\n"
1472 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1473 printf " struct obstack *obstack;\n"
1474 printf "\n"
1475 printf " /* basic architectural information. */\n"
1476 function_list | while do_read
1477 do
1478 if class_is_info_p
1479 then
1480 printf " ${returntype} ${function};\n"
1481 fi
1482 done
1483 printf "\n"
1484 printf " /* target specific vector. */\n"
1485 printf " struct gdbarch_tdep *tdep;\n"
1486 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1487 printf "\n"
1488 printf " /* per-architecture data-pointers. */\n"
1489 printf " unsigned nr_data;\n"
1490 printf " void **data;\n"
1491 printf "\n"
1492 cat <<EOF
1493 /* Multi-arch values.
1494
1495 When extending this structure you must:
1496
1497 Add the field below.
1498
1499 Declare set/get functions and define the corresponding
1500 macro in gdbarch.h.
1501
1502 gdbarch_alloc(): If zero/NULL is not a suitable default,
1503 initialize the new field.
1504
1505 verify_gdbarch(): Confirm that the target updated the field
1506 correctly.
1507
1508 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1509 field is dumped out
1510
1511 \`\`startup_gdbarch()'': Append an initial value to the static
1512 variable (base values on the host's c-type system).
1513
1514 get_gdbarch(): Implement the set/get functions (probably using
1515 the macro's as shortcuts).
1516
1517 */
1518
1519 EOF
1520 function_list | while do_read
1521 do
1522 if class_is_variable_p
1523 then
1524 printf " ${returntype} ${function};\n"
1525 elif class_is_function_p
1526 then
1527 printf " gdbarch_${function}_ftype *${function};\n"
1528 fi
1529 done
1530 printf "};\n"
1531
1532 # A pre-initialized vector
1533 printf "\n"
1534 printf "\n"
1535 cat <<EOF
1536 /* The default architecture uses host values (for want of a better
1537 choice). */
1538 EOF
1539 printf "\n"
1540 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1541 printf "\n"
1542 printf "struct gdbarch startup_gdbarch =\n"
1543 printf "{\n"
1544 printf " 1, /* Always initialized. */\n"
1545 printf " NULL, /* The obstack. */\n"
1546 printf " /* basic architecture information. */\n"
1547 function_list | while do_read
1548 do
1549 if class_is_info_p
1550 then
1551 printf " ${staticdefault}, /* ${function} */\n"
1552 fi
1553 done
1554 cat <<EOF
1555 /* target specific vector and its dump routine. */
1556 NULL, NULL,
1557 /*per-architecture data-pointers. */
1558 0, NULL,
1559 /* Multi-arch values */
1560 EOF
1561 function_list | while do_read
1562 do
1563 if class_is_function_p || class_is_variable_p
1564 then
1565 printf " ${staticdefault}, /* ${function} */\n"
1566 fi
1567 done
1568 cat <<EOF
1569 /* startup_gdbarch() */
1570 };
1571
1572 EOF
1573
1574 # Create a new gdbarch struct
1575 cat <<EOF
1576
1577 /* Create a new \`\`struct gdbarch'' based on information provided by
1578 \`\`struct gdbarch_info''. */
1579 EOF
1580 printf "\n"
1581 cat <<EOF
1582 struct gdbarch *
1583 gdbarch_alloc (const struct gdbarch_info *info,
1584 struct gdbarch_tdep *tdep)
1585 {
1586 struct gdbarch *gdbarch;
1587
1588 /* Create an obstack for allocating all the per-architecture memory,
1589 then use that to allocate the architecture vector. */
1590 struct obstack *obstack = XMALLOC (struct obstack);
1591 obstack_init (obstack);
1592 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1593 memset (gdbarch, 0, sizeof (*gdbarch));
1594 gdbarch->obstack = obstack;
1595
1596 alloc_gdbarch_data (gdbarch);
1597
1598 gdbarch->tdep = tdep;
1599 EOF
1600 printf "\n"
1601 function_list | while do_read
1602 do
1603 if class_is_info_p
1604 then
1605 printf " gdbarch->${function} = info->${function};\n"
1606 fi
1607 done
1608 printf "\n"
1609 printf " /* Force the explicit initialization of these. */\n"
1610 function_list | while do_read
1611 do
1612 if class_is_function_p || class_is_variable_p
1613 then
1614 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1615 then
1616 printf " gdbarch->${function} = ${predefault};\n"
1617 fi
1618 fi
1619 done
1620 cat <<EOF
1621 /* gdbarch_alloc() */
1622
1623 return gdbarch;
1624 }
1625 EOF
1626
1627 # Free a gdbarch struct.
1628 printf "\n"
1629 printf "\n"
1630 cat <<EOF
1631 /* Allocate extra space using the per-architecture obstack. */
1632
1633 void *
1634 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1635 {
1636 void *data = obstack_alloc (arch->obstack, size);
1637
1638 memset (data, 0, size);
1639 return data;
1640 }
1641
1642
1643 /* Free a gdbarch struct. This should never happen in normal
1644 operation --- once you've created a gdbarch, you keep it around.
1645 However, if an architecture's init function encounters an error
1646 building the structure, it may need to clean up a partially
1647 constructed gdbarch. */
1648
1649 void
1650 gdbarch_free (struct gdbarch *arch)
1651 {
1652 struct obstack *obstack;
1653
1654 gdb_assert (arch != NULL);
1655 gdb_assert (!arch->initialized_p);
1656 obstack = arch->obstack;
1657 obstack_free (obstack, 0); /* Includes the ARCH. */
1658 xfree (obstack);
1659 }
1660 EOF
1661
1662 # verify a new architecture
1663 cat <<EOF
1664
1665
1666 /* Ensure that all values in a GDBARCH are reasonable. */
1667
1668 static void
1669 verify_gdbarch (struct gdbarch *gdbarch)
1670 {
1671 struct ui_file *log;
1672 struct cleanup *cleanups;
1673 long length;
1674 char *buf;
1675
1676 log = mem_fileopen ();
1677 cleanups = make_cleanup_ui_file_delete (log);
1678 /* fundamental */
1679 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1680 fprintf_unfiltered (log, "\n\tbyte-order");
1681 if (gdbarch->bfd_arch_info == NULL)
1682 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1683 /* Check those that need to be defined for the given multi-arch level. */
1684 EOF
1685 function_list | while do_read
1686 do
1687 if class_is_function_p || class_is_variable_p
1688 then
1689 if [ "x${invalid_p}" = "x0" ]
1690 then
1691 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1692 elif class_is_predicate_p
1693 then
1694 printf " /* Skip verify of ${function}, has predicate. */\n"
1695 # FIXME: See do_read for potential simplification
1696 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1697 then
1698 printf " if (${invalid_p})\n"
1699 printf " gdbarch->${function} = ${postdefault};\n"
1700 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1701 then
1702 printf " if (gdbarch->${function} == ${predefault})\n"
1703 printf " gdbarch->${function} = ${postdefault};\n"
1704 elif [ -n "${postdefault}" ]
1705 then
1706 printf " if (gdbarch->${function} == 0)\n"
1707 printf " gdbarch->${function} = ${postdefault};\n"
1708 elif [ -n "${invalid_p}" ]
1709 then
1710 printf " if (${invalid_p})\n"
1711 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1712 elif [ -n "${predefault}" ]
1713 then
1714 printf " if (gdbarch->${function} == ${predefault})\n"
1715 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1716 fi
1717 fi
1718 done
1719 cat <<EOF
1720 buf = ui_file_xstrdup (log, &length);
1721 make_cleanup (xfree, buf);
1722 if (length > 0)
1723 internal_error (__FILE__, __LINE__,
1724 _("verify_gdbarch: the following are invalid ...%s"),
1725 buf);
1726 do_cleanups (cleanups);
1727 }
1728 EOF
1729
1730 # dump the structure
1731 printf "\n"
1732 printf "\n"
1733 cat <<EOF
1734 /* Print out the details of the current architecture. */
1735
1736 void
1737 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1738 {
1739 const char *gdb_nm_file = "<not-defined>";
1740
1741 #if defined (GDB_NM_FILE)
1742 gdb_nm_file = GDB_NM_FILE;
1743 #endif
1744 fprintf_unfiltered (file,
1745 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1746 gdb_nm_file);
1747 EOF
1748 function_list | sort -t: -k 3 | while do_read
1749 do
1750 # First the predicate
1751 if class_is_predicate_p
1752 then
1753 printf " fprintf_unfiltered (file,\n"
1754 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1755 printf " gdbarch_${function}_p (gdbarch));\n"
1756 fi
1757 # Print the corresponding value.
1758 if class_is_function_p
1759 then
1760 printf " fprintf_unfiltered (file,\n"
1761 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1762 printf " host_address_to_string (gdbarch->${function}));\n"
1763 else
1764 # It is a variable
1765 case "${print}:${returntype}" in
1766 :CORE_ADDR )
1767 fmt="%s"
1768 print="core_addr_to_string_nz (gdbarch->${function})"
1769 ;;
1770 :* )
1771 fmt="%s"
1772 print="plongest (gdbarch->${function})"
1773 ;;
1774 * )
1775 fmt="%s"
1776 ;;
1777 esac
1778 printf " fprintf_unfiltered (file,\n"
1779 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1780 printf " ${print});\n"
1781 fi
1782 done
1783 cat <<EOF
1784 if (gdbarch->dump_tdep != NULL)
1785 gdbarch->dump_tdep (gdbarch, file);
1786 }
1787 EOF
1788
1789
1790 # GET/SET
1791 printf "\n"
1792 cat <<EOF
1793 struct gdbarch_tdep *
1794 gdbarch_tdep (struct gdbarch *gdbarch)
1795 {
1796 if (gdbarch_debug >= 2)
1797 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1798 return gdbarch->tdep;
1799 }
1800 EOF
1801 printf "\n"
1802 function_list | while do_read
1803 do
1804 if class_is_predicate_p
1805 then
1806 printf "\n"
1807 printf "int\n"
1808 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1809 printf "{\n"
1810 printf " gdb_assert (gdbarch != NULL);\n"
1811 printf " return ${predicate};\n"
1812 printf "}\n"
1813 fi
1814 if class_is_function_p
1815 then
1816 printf "\n"
1817 printf "${returntype}\n"
1818 if [ "x${formal}" = "xvoid" ]
1819 then
1820 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1821 else
1822 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1823 fi
1824 printf "{\n"
1825 printf " gdb_assert (gdbarch != NULL);\n"
1826 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1827 if class_is_predicate_p && test -n "${predefault}"
1828 then
1829 # Allow a call to a function with a predicate.
1830 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1831 fi
1832 printf " if (gdbarch_debug >= 2)\n"
1833 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1834 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1835 then
1836 if class_is_multiarch_p
1837 then
1838 params="gdbarch"
1839 else
1840 params=""
1841 fi
1842 else
1843 if class_is_multiarch_p
1844 then
1845 params="gdbarch, ${actual}"
1846 else
1847 params="${actual}"
1848 fi
1849 fi
1850 if [ "x${returntype}" = "xvoid" ]
1851 then
1852 printf " gdbarch->${function} (${params});\n"
1853 else
1854 printf " return gdbarch->${function} (${params});\n"
1855 fi
1856 printf "}\n"
1857 printf "\n"
1858 printf "void\n"
1859 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1860 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1861 printf "{\n"
1862 printf " gdbarch->${function} = ${function};\n"
1863 printf "}\n"
1864 elif class_is_variable_p
1865 then
1866 printf "\n"
1867 printf "${returntype}\n"
1868 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1869 printf "{\n"
1870 printf " gdb_assert (gdbarch != NULL);\n"
1871 if [ "x${invalid_p}" = "x0" ]
1872 then
1873 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1874 elif [ -n "${invalid_p}" ]
1875 then
1876 printf " /* Check variable is valid. */\n"
1877 printf " gdb_assert (!(${invalid_p}));\n"
1878 elif [ -n "${predefault}" ]
1879 then
1880 printf " /* Check variable changed from pre-default. */\n"
1881 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1882 fi
1883 printf " if (gdbarch_debug >= 2)\n"
1884 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1885 printf " return gdbarch->${function};\n"
1886 printf "}\n"
1887 printf "\n"
1888 printf "void\n"
1889 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1890 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1891 printf "{\n"
1892 printf " gdbarch->${function} = ${function};\n"
1893 printf "}\n"
1894 elif class_is_info_p
1895 then
1896 printf "\n"
1897 printf "${returntype}\n"
1898 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1899 printf "{\n"
1900 printf " gdb_assert (gdbarch != NULL);\n"
1901 printf " if (gdbarch_debug >= 2)\n"
1902 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1903 printf " return gdbarch->${function};\n"
1904 printf "}\n"
1905 fi
1906 done
1907
1908 # All the trailing guff
1909 cat <<EOF
1910
1911
1912 /* Keep a registry of per-architecture data-pointers required by GDB
1913 modules. */
1914
1915 struct gdbarch_data
1916 {
1917 unsigned index;
1918 int init_p;
1919 gdbarch_data_pre_init_ftype *pre_init;
1920 gdbarch_data_post_init_ftype *post_init;
1921 };
1922
1923 struct gdbarch_data_registration
1924 {
1925 struct gdbarch_data *data;
1926 struct gdbarch_data_registration *next;
1927 };
1928
1929 struct gdbarch_data_registry
1930 {
1931 unsigned nr;
1932 struct gdbarch_data_registration *registrations;
1933 };
1934
1935 struct gdbarch_data_registry gdbarch_data_registry =
1936 {
1937 0, NULL,
1938 };
1939
1940 static struct gdbarch_data *
1941 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1942 gdbarch_data_post_init_ftype *post_init)
1943 {
1944 struct gdbarch_data_registration **curr;
1945
1946 /* Append the new registration. */
1947 for (curr = &gdbarch_data_registry.registrations;
1948 (*curr) != NULL;
1949 curr = &(*curr)->next);
1950 (*curr) = XMALLOC (struct gdbarch_data_registration);
1951 (*curr)->next = NULL;
1952 (*curr)->data = XMALLOC (struct gdbarch_data);
1953 (*curr)->data->index = gdbarch_data_registry.nr++;
1954 (*curr)->data->pre_init = pre_init;
1955 (*curr)->data->post_init = post_init;
1956 (*curr)->data->init_p = 1;
1957 return (*curr)->data;
1958 }
1959
1960 struct gdbarch_data *
1961 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1962 {
1963 return gdbarch_data_register (pre_init, NULL);
1964 }
1965
1966 struct gdbarch_data *
1967 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1968 {
1969 return gdbarch_data_register (NULL, post_init);
1970 }
1971
1972 /* Create/delete the gdbarch data vector. */
1973
1974 static void
1975 alloc_gdbarch_data (struct gdbarch *gdbarch)
1976 {
1977 gdb_assert (gdbarch->data == NULL);
1978 gdbarch->nr_data = gdbarch_data_registry.nr;
1979 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1980 }
1981
1982 /* Initialize the current value of the specified per-architecture
1983 data-pointer. */
1984
1985 void
1986 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1987 struct gdbarch_data *data,
1988 void *pointer)
1989 {
1990 gdb_assert (data->index < gdbarch->nr_data);
1991 gdb_assert (gdbarch->data[data->index] == NULL);
1992 gdb_assert (data->pre_init == NULL);
1993 gdbarch->data[data->index] = pointer;
1994 }
1995
1996 /* Return the current value of the specified per-architecture
1997 data-pointer. */
1998
1999 void *
2000 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2001 {
2002 gdb_assert (data->index < gdbarch->nr_data);
2003 if (gdbarch->data[data->index] == NULL)
2004 {
2005 /* The data-pointer isn't initialized, call init() to get a
2006 value. */
2007 if (data->pre_init != NULL)
2008 /* Mid architecture creation: pass just the obstack, and not
2009 the entire architecture, as that way it isn't possible for
2010 pre-init code to refer to undefined architecture
2011 fields. */
2012 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2013 else if (gdbarch->initialized_p
2014 && data->post_init != NULL)
2015 /* Post architecture creation: pass the entire architecture
2016 (as all fields are valid), but be careful to also detect
2017 recursive references. */
2018 {
2019 gdb_assert (data->init_p);
2020 data->init_p = 0;
2021 gdbarch->data[data->index] = data->post_init (gdbarch);
2022 data->init_p = 1;
2023 }
2024 else
2025 /* The architecture initialization hasn't completed - punt -
2026 hope that the caller knows what they are doing. Once
2027 deprecated_set_gdbarch_data has been initialized, this can be
2028 changed to an internal error. */
2029 return NULL;
2030 gdb_assert (gdbarch->data[data->index] != NULL);
2031 }
2032 return gdbarch->data[data->index];
2033 }
2034
2035
2036 /* Keep a registry of the architectures known by GDB. */
2037
2038 struct gdbarch_registration
2039 {
2040 enum bfd_architecture bfd_architecture;
2041 gdbarch_init_ftype *init;
2042 gdbarch_dump_tdep_ftype *dump_tdep;
2043 struct gdbarch_list *arches;
2044 struct gdbarch_registration *next;
2045 };
2046
2047 static struct gdbarch_registration *gdbarch_registry = NULL;
2048
2049 static void
2050 append_name (const char ***buf, int *nr, const char *name)
2051 {
2052 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2053 (*buf)[*nr] = name;
2054 *nr += 1;
2055 }
2056
2057 const char **
2058 gdbarch_printable_names (void)
2059 {
2060 /* Accumulate a list of names based on the registed list of
2061 architectures. */
2062 int nr_arches = 0;
2063 const char **arches = NULL;
2064 struct gdbarch_registration *rego;
2065
2066 for (rego = gdbarch_registry;
2067 rego != NULL;
2068 rego = rego->next)
2069 {
2070 const struct bfd_arch_info *ap;
2071 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2072 if (ap == NULL)
2073 internal_error (__FILE__, __LINE__,
2074 _("gdbarch_architecture_names: multi-arch unknown"));
2075 do
2076 {
2077 append_name (&arches, &nr_arches, ap->printable_name);
2078 ap = ap->next;
2079 }
2080 while (ap != NULL);
2081 }
2082 append_name (&arches, &nr_arches, NULL);
2083 return arches;
2084 }
2085
2086
2087 void
2088 gdbarch_register (enum bfd_architecture bfd_architecture,
2089 gdbarch_init_ftype *init,
2090 gdbarch_dump_tdep_ftype *dump_tdep)
2091 {
2092 struct gdbarch_registration **curr;
2093 const struct bfd_arch_info *bfd_arch_info;
2094
2095 /* Check that BFD recognizes this architecture */
2096 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2097 if (bfd_arch_info == NULL)
2098 {
2099 internal_error (__FILE__, __LINE__,
2100 _("gdbarch: Attempt to register "
2101 "unknown architecture (%d)"),
2102 bfd_architecture);
2103 }
2104 /* Check that we haven't seen this architecture before. */
2105 for (curr = &gdbarch_registry;
2106 (*curr) != NULL;
2107 curr = &(*curr)->next)
2108 {
2109 if (bfd_architecture == (*curr)->bfd_architecture)
2110 internal_error (__FILE__, __LINE__,
2111 _("gdbarch: Duplicate registration "
2112 "of architecture (%s)"),
2113 bfd_arch_info->printable_name);
2114 }
2115 /* log it */
2116 if (gdbarch_debug)
2117 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2118 bfd_arch_info->printable_name,
2119 host_address_to_string (init));
2120 /* Append it */
2121 (*curr) = XMALLOC (struct gdbarch_registration);
2122 (*curr)->bfd_architecture = bfd_architecture;
2123 (*curr)->init = init;
2124 (*curr)->dump_tdep = dump_tdep;
2125 (*curr)->arches = NULL;
2126 (*curr)->next = NULL;
2127 }
2128
2129 void
2130 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2131 gdbarch_init_ftype *init)
2132 {
2133 gdbarch_register (bfd_architecture, init, NULL);
2134 }
2135
2136
2137 /* Look for an architecture using gdbarch_info. */
2138
2139 struct gdbarch_list *
2140 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2141 const struct gdbarch_info *info)
2142 {
2143 for (; arches != NULL; arches = arches->next)
2144 {
2145 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2146 continue;
2147 if (info->byte_order != arches->gdbarch->byte_order)
2148 continue;
2149 if (info->osabi != arches->gdbarch->osabi)
2150 continue;
2151 if (info->target_desc != arches->gdbarch->target_desc)
2152 continue;
2153 return arches;
2154 }
2155 return NULL;
2156 }
2157
2158
2159 /* Find an architecture that matches the specified INFO. Create a new
2160 architecture if needed. Return that new architecture. */
2161
2162 struct gdbarch *
2163 gdbarch_find_by_info (struct gdbarch_info info)
2164 {
2165 struct gdbarch *new_gdbarch;
2166 struct gdbarch_registration *rego;
2167
2168 /* Fill in missing parts of the INFO struct using a number of
2169 sources: "set ..."; INFOabfd supplied; and the global
2170 defaults. */
2171 gdbarch_info_fill (&info);
2172
2173 /* Must have found some sort of architecture. */
2174 gdb_assert (info.bfd_arch_info != NULL);
2175
2176 if (gdbarch_debug)
2177 {
2178 fprintf_unfiltered (gdb_stdlog,
2179 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2180 (info.bfd_arch_info != NULL
2181 ? info.bfd_arch_info->printable_name
2182 : "(null)"));
2183 fprintf_unfiltered (gdb_stdlog,
2184 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2185 info.byte_order,
2186 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2187 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2188 : "default"));
2189 fprintf_unfiltered (gdb_stdlog,
2190 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2191 info.osabi, gdbarch_osabi_name (info.osabi));
2192 fprintf_unfiltered (gdb_stdlog,
2193 "gdbarch_find_by_info: info.abfd %s\n",
2194 host_address_to_string (info.abfd));
2195 fprintf_unfiltered (gdb_stdlog,
2196 "gdbarch_find_by_info: info.tdep_info %s\n",
2197 host_address_to_string (info.tdep_info));
2198 }
2199
2200 /* Find the tdep code that knows about this architecture. */
2201 for (rego = gdbarch_registry;
2202 rego != NULL;
2203 rego = rego->next)
2204 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2205 break;
2206 if (rego == NULL)
2207 {
2208 if (gdbarch_debug)
2209 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2210 "No matching architecture\n");
2211 return 0;
2212 }
2213
2214 /* Ask the tdep code for an architecture that matches "info". */
2215 new_gdbarch = rego->init (info, rego->arches);
2216
2217 /* Did the tdep code like it? No. Reject the change and revert to
2218 the old architecture. */
2219 if (new_gdbarch == NULL)
2220 {
2221 if (gdbarch_debug)
2222 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2223 "Target rejected architecture\n");
2224 return NULL;
2225 }
2226
2227 /* Is this a pre-existing architecture (as determined by already
2228 being initialized)? Move it to the front of the architecture
2229 list (keeping the list sorted Most Recently Used). */
2230 if (new_gdbarch->initialized_p)
2231 {
2232 struct gdbarch_list **list;
2233 struct gdbarch_list *this;
2234 if (gdbarch_debug)
2235 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2236 "Previous architecture %s (%s) selected\n",
2237 host_address_to_string (new_gdbarch),
2238 new_gdbarch->bfd_arch_info->printable_name);
2239 /* Find the existing arch in the list. */
2240 for (list = &rego->arches;
2241 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2242 list = &(*list)->next);
2243 /* It had better be in the list of architectures. */
2244 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2245 /* Unlink THIS. */
2246 this = (*list);
2247 (*list) = this->next;
2248 /* Insert THIS at the front. */
2249 this->next = rego->arches;
2250 rego->arches = this;
2251 /* Return it. */
2252 return new_gdbarch;
2253 }
2254
2255 /* It's a new architecture. */
2256 if (gdbarch_debug)
2257 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2258 "New architecture %s (%s) selected\n",
2259 host_address_to_string (new_gdbarch),
2260 new_gdbarch->bfd_arch_info->printable_name);
2261
2262 /* Insert the new architecture into the front of the architecture
2263 list (keep the list sorted Most Recently Used). */
2264 {
2265 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2266 this->next = rego->arches;
2267 this->gdbarch = new_gdbarch;
2268 rego->arches = this;
2269 }
2270
2271 /* Check that the newly installed architecture is valid. Plug in
2272 any post init values. */
2273 new_gdbarch->dump_tdep = rego->dump_tdep;
2274 verify_gdbarch (new_gdbarch);
2275 new_gdbarch->initialized_p = 1;
2276
2277 if (gdbarch_debug)
2278 gdbarch_dump (new_gdbarch, gdb_stdlog);
2279
2280 return new_gdbarch;
2281 }
2282
2283 /* Make the specified architecture current. */
2284
2285 void
2286 set_target_gdbarch (struct gdbarch *new_gdbarch)
2287 {
2288 gdb_assert (new_gdbarch != NULL);
2289 gdb_assert (new_gdbarch->initialized_p);
2290 current_inferior ()->gdbarch = new_gdbarch;
2291 observer_notify_architecture_changed (new_gdbarch);
2292 registers_changed ();
2293 }
2294
2295 /* Return the current inferior's arch. */
2296
2297 struct gdbarch *
2298 target_gdbarch (void)
2299 {
2300 return current_inferior ()->gdbarch;
2301 }
2302
2303 extern void _initialize_gdbarch (void);
2304
2305 void
2306 _initialize_gdbarch (void)
2307 {
2308 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2309 Set architecture debugging."), _("\\
2310 Show architecture debugging."), _("\\
2311 When non-zero, architecture debugging is enabled."),
2312 NULL,
2313 show_gdbarch_debug,
2314 &setdebuglist, &showdebuglist);
2315 }
2316 EOF
2317
2318 # close things off
2319 exec 1>&2
2320 #../move-if-change new-gdbarch.c gdbarch.c
2321 compare_new gdbarch.c