]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2020 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345 #
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347 #
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350 # Number of bits in a short or unsigned short for the target machine.
351 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
352 # Number of bits in an int or unsigned int for the target machine.
353 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
354 # Number of bits in a long or unsigned long for the target machine.
355 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
356 # Number of bits in a long long or unsigned long long for the target
357 # machine.
358 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
359
360 # The ABI default bit-size and format for "half", "float", "double", and
361 # "long double". These bit/format pairs should eventually be combined
362 # into a single object. For the moment, just initialize them as a pair.
363 # Each format describes both the big and little endian layouts (if
364 # useful).
365
366 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
367 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
368 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
369 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
370 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
371 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
372 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
373 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
374
375 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
376 # starting with C++11.
377 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
378 # One if \`wchar_t' is signed, zero if unsigned.
379 v;int;wchar_signed;;;1;-1;1
380
381 # Returns the floating-point format to be used for values of length LENGTH.
382 # NAME, if non-NULL, is the type name, which may be used to distinguish
383 # different target formats of the same length.
384 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
397 # addr_bit is the size of a target address as represented in gdb
398 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v;int;char_signed;;;1;-1;1
417 #
418 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
419 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
424 #
425 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
431 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
432 #
433 v;int;num_regs;;;0;-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v;int;num_pseudo_regs;;;0;0;;0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
448
449 # Some targets/architectures can do extra processing/display of
450 # segmentation faults. E.g., Intel MPX boundary faults.
451 # Call the architecture dependent function to handle the fault.
452 # UIOUT is the output stream where the handler will place information.
453 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
454
455 # GDB's standard (or well known) register numbers. These can map onto
456 # a real register or a pseudo (computed) register or not be defined at
457 # all (-1).
458 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
459 v;int;sp_regnum;;;-1;-1;;0
460 v;int;pc_regnum;;;-1;-1;;0
461 v;int;ps_regnum;;;-1;-1;;0
462 v;int;fp0_regnum;;;0;-1;;0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
467 # Convert from an sdb register number to an internal gdb register number.
468 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
469 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
470 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
471 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
472 m;const char *;register_name;int regnr;regnr;;0
473
474 # Return the type of a register specified by the architecture. Only
475 # the register cache should call this function directly; others should
476 # use "register_type".
477 M;struct type *;register_type;int reg_nr;reg_nr
478
479 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
480 # a dummy frame. A dummy frame is created before an inferior call,
481 # the frame_id returned here must match the frame_id that was built
482 # for the inferior call. Usually this means the returned frame_id's
483 # stack address should match the address returned by
484 # gdbarch_push_dummy_call, and the returned frame_id's code address
485 # should match the address at which the breakpoint was set in the dummy
486 # frame.
487 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
488 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
489 # deprecated_fp_regnum.
490 v;int;deprecated_fp_regnum;;;-1;-1;;0
491
492 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
493 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
494 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
495
496 # Return true if the code of FRAME is writable.
497 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
498
499 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
500 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
501 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
502 # MAP a GDB RAW register number onto a simulator register number. See
503 # also include/...-sim.h.
504 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
505 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
506 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
507
508 # Determine the address where a longjmp will land and save this address
509 # in PC. Return nonzero on success.
510 #
511 # FRAME corresponds to the longjmp frame.
512 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
513
514 #
515 v;int;believe_pcc_promotion;;;;;;;
516 #
517 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
518 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
519 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
520 # Construct a value representing the contents of register REGNUM in
521 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
522 # allocate and return a struct value with all value attributes
523 # (but not the value contents) filled in.
524 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
525 #
526 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
527 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
528 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
529
530 # Return the return-value convention that will be used by FUNCTION
531 # to return a value of type VALTYPE. FUNCTION may be NULL in which
532 # case the return convention is computed based only on VALTYPE.
533 #
534 # If READBUF is not NULL, extract the return value and save it in this buffer.
535 #
536 # If WRITEBUF is not NULL, it contains a return value which will be
537 # stored into the appropriate register. This can be used when we want
538 # to force the value returned by a function (see the "return" command
539 # for instance).
540 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
541
542 # Return true if the return value of function is stored in the first hidden
543 # parameter. In theory, this feature should be language-dependent, specified
544 # by language and its ABI, such as C++. Unfortunately, compiler may
545 # implement it to a target-dependent feature. So that we need such hook here
546 # to be aware of this in GDB.
547 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
548
549 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
550 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
551 # On some platforms, a single function may provide multiple entry points,
552 # e.g. one that is used for function-pointer calls and a different one
553 # that is used for direct function calls.
554 # In order to ensure that breakpoints set on the function will trigger
555 # no matter via which entry point the function is entered, a platform
556 # may provide the skip_entrypoint callback. It is called with IP set
557 # to the main entry point of a function (as determined by the symbol table),
558 # and should return the address of the innermost entry point, where the
559 # actual breakpoint needs to be set. Note that skip_entrypoint is used
560 # by GDB common code even when debugging optimized code, where skip_prologue
561 # is not used.
562 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
563
564 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
565 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
566
567 # Return the breakpoint kind for this target based on *PCPTR.
568 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
569
570 # Return the software breakpoint from KIND. KIND can have target
571 # specific meaning like the Z0 kind parameter.
572 # SIZE is set to the software breakpoint's length in memory.
573 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
574
575 # Return the breakpoint kind for this target based on the current
576 # processor state (e.g. the current instruction mode on ARM) and the
577 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
578 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
579
580 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
581 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
582 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
583 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
584
585 # A function can be addressed by either it's "pointer" (possibly a
586 # descriptor address) or "entry point" (first executable instruction).
587 # The method "convert_from_func_ptr_addr" converting the former to the
588 # latter. gdbarch_deprecated_function_start_offset is being used to implement
589 # a simplified subset of that functionality - the function's address
590 # corresponds to the "function pointer" and the function's start
591 # corresponds to the "function entry point" - and hence is redundant.
592
593 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
594
595 # Return the remote protocol register number associated with this
596 # register. Normally the identity mapping.
597 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
598
599 # Fetch the target specific address used to represent a load module.
600 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
601
602 # Return the thread-local address at OFFSET in the thread-local
603 # storage for the thread PTID and the shared library or executable
604 # file given by LM_ADDR. If that block of thread-local storage hasn't
605 # been allocated yet, this function may throw an error. LM_ADDR may
606 # be zero for statically linked multithreaded inferiors.
607
608 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
609 #
610 v;CORE_ADDR;frame_args_skip;;;0;;;0
611 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
612 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
613 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
614 # frame-base. Enable frame-base before frame-unwind.
615 F;int;frame_num_args;struct frame_info *frame;frame
616 #
617 M;CORE_ADDR;frame_align;CORE_ADDR address;address
618 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
619 v;int;frame_red_zone_size
620 #
621 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
622 # On some machines there are bits in addresses which are not really
623 # part of the address, but are used by the kernel, the hardware, etc.
624 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
625 # we get a "real" address such as one would find in a symbol table.
626 # This is used only for addresses of instructions, and even then I'm
627 # not sure it's used in all contexts. It exists to deal with there
628 # being a few stray bits in the PC which would mislead us, not as some
629 # sort of generic thing to handle alignment or segmentation (it's
630 # possible it should be in TARGET_READ_PC instead).
631 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
632
633 # On some machines, not all bits of an address word are significant.
634 # For example, on AArch64, the top bits of an address known as the "tag"
635 # are ignored by the kernel, the hardware, etc. and can be regarded as
636 # additional data associated with the address.
637 v;int;significant_addr_bit;;;;;;0
638
639 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
640 # indicates if the target needs software single step. An ISA method to
641 # implement it.
642 #
643 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
644 # target can single step. If not, then implement single step using breakpoints.
645 #
646 # Return a vector of addresses on which the software single step
647 # breakpoints should be inserted. NULL means software single step is
648 # not used.
649 # Multiple breakpoints may be inserted for some instructions such as
650 # conditional branch. However, each implementation must always evaluate
651 # the condition and only put the breakpoint at the branch destination if
652 # the condition is true, so that we ensure forward progress when stepping
653 # past a conditional branch to self.
654 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
655
656 # Return non-zero if the processor is executing a delay slot and a
657 # further single-step is needed before the instruction finishes.
658 M;int;single_step_through_delay;struct frame_info *frame;frame
659 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
660 # disassembler. Perhaps objdump can handle it?
661 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
662 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
663
664
665 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
666 # evaluates non-zero, this is the address where the debugger will place
667 # a step-resume breakpoint to get us past the dynamic linker.
668 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
669 # Some systems also have trampoline code for returning from shared libs.
670 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
671
672 # Return true if PC lies inside an indirect branch thunk.
673 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
674
675 # A target might have problems with watchpoints as soon as the stack
676 # frame of the current function has been destroyed. This mostly happens
677 # as the first action in a function's epilogue. stack_frame_destroyed_p()
678 # is defined to return a non-zero value if either the given addr is one
679 # instruction after the stack destroying instruction up to the trailing
680 # return instruction or if we can figure out that the stack frame has
681 # already been invalidated regardless of the value of addr. Targets
682 # which don't suffer from that problem could just let this functionality
683 # untouched.
684 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
685 # Process an ELF symbol in the minimal symbol table in a backend-specific
686 # way. Normally this hook is supposed to do nothing, however if required,
687 # then this hook can be used to apply tranformations to symbols that are
688 # considered special in some way. For example the MIPS backend uses it
689 # to interpret \`st_other' information to mark compressed code symbols so
690 # that they can be treated in the appropriate manner in the processing of
691 # the main symbol table and DWARF-2 records.
692 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
693 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
694 # Process a symbol in the main symbol table in a backend-specific way.
695 # Normally this hook is supposed to do nothing, however if required,
696 # then this hook can be used to apply tranformations to symbols that
697 # are considered special in some way. This is currently used by the
698 # MIPS backend to make sure compressed code symbols have the ISA bit
699 # set. This in turn is needed for symbol values seen in GDB to match
700 # the values used at the runtime by the program itself, for function
701 # and label references.
702 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
703 # Adjust the address retrieved from a DWARF-2 record other than a line
704 # entry in a backend-specific way. Normally this hook is supposed to
705 # return the address passed unchanged, however if that is incorrect for
706 # any reason, then this hook can be used to fix the address up in the
707 # required manner. This is currently used by the MIPS backend to make
708 # sure addresses in FDE, range records, etc. referring to compressed
709 # code have the ISA bit set, matching line information and the symbol
710 # table.
711 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
712 # Adjust the address updated by a line entry in a backend-specific way.
713 # Normally this hook is supposed to return the address passed unchanged,
714 # however in the case of inconsistencies in these records, this hook can
715 # be used to fix them up in the required manner. This is currently used
716 # by the MIPS backend to make sure all line addresses in compressed code
717 # are presented with the ISA bit set, which is not always the case. This
718 # in turn ensures breakpoint addresses are correctly matched against the
719 # stop PC.
720 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
721 v;int;cannot_step_breakpoint;;;0;0;;0
722 # See comment in target.h about continuable, steppable and
723 # non-steppable watchpoints.
724 v;int;have_nonsteppable_watchpoint;;;0;0;;0
725 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
726 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
727 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
728 # FS are passed from the generic execute_cfa_program function.
729 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
730
731 # Return the appropriate type_flags for the supplied address class.
732 # This function should return 1 if the address class was recognized and
733 # type_flags was set, zero otherwise.
734 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
735 # Is a register in a group
736 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
737 # Fetch the pointer to the ith function argument.
738 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
739
740 # Iterate over all supported register notes in a core file. For each
741 # supported register note section, the iterator must call CB and pass
742 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
743 # the supported register note sections based on the current register
744 # values. Otherwise it should enumerate all supported register note
745 # sections.
746 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
747
748 # Create core file notes
749 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
750
751 # Find core file memory regions
752 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
753
754 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
755 # core file into buffer READBUF with length LEN. Return the number of bytes read
756 # (zero indicates failure).
757 # failed, otherwise, return the red length of READBUF.
758 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
759
760 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
761 # libraries list from core file into buffer READBUF with length LEN.
762 # Return the number of bytes read (zero indicates failure).
763 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
764
765 # How the core target converts a PTID from a core file to a string.
766 M;std::string;core_pid_to_str;ptid_t ptid;ptid
767
768 # How the core target extracts the name of a thread from a core file.
769 M;const char *;core_thread_name;struct thread_info *thr;thr
770
771 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
772 # from core file into buffer READBUF with length LEN. Return the number
773 # of bytes read (zero indicates EOF, a negative value indicates failure).
774 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
775
776 # BFD target to use when generating a core file.
777 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
778
779 # If the elements of C++ vtables are in-place function descriptors rather
780 # than normal function pointers (which may point to code or a descriptor),
781 # set this to one.
782 v;int;vtable_function_descriptors;;;0;0;;0
783
784 # Set if the least significant bit of the delta is used instead of the least
785 # significant bit of the pfn for pointers to virtual member functions.
786 v;int;vbit_in_delta;;;0;0;;0
787
788 # Advance PC to next instruction in order to skip a permanent breakpoint.
789 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
790
791 # The maximum length of an instruction on this architecture in bytes.
792 V;ULONGEST;max_insn_length;;;0;0
793
794 # Copy the instruction at FROM to TO, and make any adjustments
795 # necessary to single-step it at that address.
796 #
797 # REGS holds the state the thread's registers will have before
798 # executing the copied instruction; the PC in REGS will refer to FROM,
799 # not the copy at TO. The caller should update it to point at TO later.
800 #
801 # Return a pointer to data of the architecture's choice to be passed
802 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
803 # the instruction's effects have been completely simulated, with the
804 # resulting state written back to REGS.
805 #
806 # For a general explanation of displaced stepping and how GDB uses it,
807 # see the comments in infrun.c.
808 #
809 # The TO area is only guaranteed to have space for
810 # gdbarch_max_insn_length (arch) bytes, so this function must not
811 # write more bytes than that to that area.
812 #
813 # If you do not provide this function, GDB assumes that the
814 # architecture does not support displaced stepping.
815 #
816 # If the instruction cannot execute out of line, return NULL. The
817 # core falls back to stepping past the instruction in-line instead in
818 # that case.
819 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
820
821 # Return true if GDB should use hardware single-stepping to execute
822 # the displaced instruction identified by CLOSURE. If false,
823 # GDB will simply restart execution at the displaced instruction
824 # location, and it is up to the target to ensure GDB will receive
825 # control again (e.g. by placing a software breakpoint instruction
826 # into the displaced instruction buffer).
827 #
828 # The default implementation returns false on all targets that
829 # provide a gdbarch_software_single_step routine, and true otherwise.
830 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
831
832 # Fix up the state resulting from successfully single-stepping a
833 # displaced instruction, to give the result we would have gotten from
834 # stepping the instruction in its original location.
835 #
836 # REGS is the register state resulting from single-stepping the
837 # displaced instruction.
838 #
839 # CLOSURE is the result from the matching call to
840 # gdbarch_displaced_step_copy_insn.
841 #
842 # If you provide gdbarch_displaced_step_copy_insn.but not this
843 # function, then GDB assumes that no fixup is needed after
844 # single-stepping the instruction.
845 #
846 # For a general explanation of displaced stepping and how GDB uses it,
847 # see the comments in infrun.c.
848 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
849
850 # Return the address of an appropriate place to put displaced
851 # instructions while we step over them. There need only be one such
852 # place, since we're only stepping one thread over a breakpoint at a
853 # time.
854 #
855 # For a general explanation of displaced stepping and how GDB uses it,
856 # see the comments in infrun.c.
857 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
858
859 # Relocate an instruction to execute at a different address. OLDLOC
860 # is the address in the inferior memory where the instruction to
861 # relocate is currently at. On input, TO points to the destination
862 # where we want the instruction to be copied (and possibly adjusted)
863 # to. On output, it points to one past the end of the resulting
864 # instruction(s). The effect of executing the instruction at TO shall
865 # be the same as if executing it at FROM. For example, call
866 # instructions that implicitly push the return address on the stack
867 # should be adjusted to return to the instruction after OLDLOC;
868 # relative branches, and other PC-relative instructions need the
869 # offset adjusted; etc.
870 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
871
872 # Refresh overlay mapped state for section OSECT.
873 F;void;overlay_update;struct obj_section *osect;osect
874
875 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
876
877 # Handle special encoding of static variables in stabs debug info.
878 F;const char *;static_transform_name;const char *name;name
879 # Set if the address in N_SO or N_FUN stabs may be zero.
880 v;int;sofun_address_maybe_missing;;;0;0;;0
881
882 # Parse the instruction at ADDR storing in the record execution log
883 # the registers REGCACHE and memory ranges that will be affected when
884 # the instruction executes, along with their current values.
885 # Return -1 if something goes wrong, 0 otherwise.
886 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
887
888 # Save process state after a signal.
889 # Return -1 if something goes wrong, 0 otherwise.
890 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
891
892 # Signal translation: translate inferior's signal (target's) number
893 # into GDB's representation. The implementation of this method must
894 # be host independent. IOW, don't rely on symbols of the NAT_FILE
895 # header (the nm-*.h files), the host <signal.h> header, or similar
896 # headers. This is mainly used when cross-debugging core files ---
897 # "Live" targets hide the translation behind the target interface
898 # (target_wait, target_resume, etc.).
899 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
900
901 # Signal translation: translate the GDB's internal signal number into
902 # the inferior's signal (target's) representation. The implementation
903 # of this method must be host independent. IOW, don't rely on symbols
904 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
905 # header, or similar headers.
906 # Return the target signal number if found, or -1 if the GDB internal
907 # signal number is invalid.
908 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
909
910 # Extra signal info inspection.
911 #
912 # Return a type suitable to inspect extra signal information.
913 M;struct type *;get_siginfo_type;void;
914
915 # Record architecture-specific information from the symbol table.
916 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
917
918 # Function for the 'catch syscall' feature.
919
920 # Get architecture-specific system calls information from registers.
921 M;LONGEST;get_syscall_number;thread_info *thread;thread
922
923 # The filename of the XML syscall for this architecture.
924 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
925
926 # Information about system calls from this architecture
927 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
928
929 # SystemTap related fields and functions.
930
931 # A NULL-terminated array of prefixes used to mark an integer constant
932 # on the architecture's assembly.
933 # For example, on x86 integer constants are written as:
934 #
935 # \$10 ;; integer constant 10
936 #
937 # in this case, this prefix would be the character \`\$\'.
938 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
939
940 # A NULL-terminated array of suffixes used to mark an integer constant
941 # on the architecture's assembly.
942 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
943
944 # A NULL-terminated array of prefixes used to mark a register name on
945 # the architecture's assembly.
946 # For example, on x86 the register name is written as:
947 #
948 # \%eax ;; register eax
949 #
950 # in this case, this prefix would be the character \`\%\'.
951 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
952
953 # A NULL-terminated array of suffixes used to mark a register name on
954 # the architecture's assembly.
955 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
956
957 # A NULL-terminated array of prefixes used to mark a register
958 # indirection on the architecture's assembly.
959 # For example, on x86 the register indirection is written as:
960 #
961 # \(\%eax\) ;; indirecting eax
962 #
963 # in this case, this prefix would be the charater \`\(\'.
964 #
965 # Please note that we use the indirection prefix also for register
966 # displacement, e.g., \`4\(\%eax\)\' on x86.
967 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
968
969 # A NULL-terminated array of suffixes used to mark a register
970 # indirection on the architecture's assembly.
971 # For example, on x86 the register indirection is written as:
972 #
973 # \(\%eax\) ;; indirecting eax
974 #
975 # in this case, this prefix would be the charater \`\)\'.
976 #
977 # Please note that we use the indirection suffix also for register
978 # displacement, e.g., \`4\(\%eax\)\' on x86.
979 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
980
981 # Prefix(es) used to name a register using GDB's nomenclature.
982 #
983 # For example, on PPC a register is represented by a number in the assembly
984 # language (e.g., \`10\' is the 10th general-purpose register). However,
985 # inside GDB this same register has an \`r\' appended to its name, so the 10th
986 # register would be represented as \`r10\' internally.
987 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
988
989 # Suffix used to name a register using GDB's nomenclature.
990 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
991
992 # Check if S is a single operand.
993 #
994 # Single operands can be:
995 # \- Literal integers, e.g. \`\$10\' on x86
996 # \- Register access, e.g. \`\%eax\' on x86
997 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
998 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
999 #
1000 # This function should check for these patterns on the string
1001 # and return 1 if some were found, or zero otherwise. Please try to match
1002 # as much info as you can from the string, i.e., if you have to match
1003 # something like \`\(\%\', do not match just the \`\(\'.
1004 M;int;stap_is_single_operand;const char *s;s
1005
1006 # Function used to handle a "special case" in the parser.
1007 #
1008 # A "special case" is considered to be an unknown token, i.e., a token
1009 # that the parser does not know how to parse. A good example of special
1010 # case would be ARM's register displacement syntax:
1011 #
1012 # [R0, #4] ;; displacing R0 by 4
1013 #
1014 # Since the parser assumes that a register displacement is of the form:
1015 #
1016 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1017 #
1018 # it means that it will not be able to recognize and parse this odd syntax.
1019 # Therefore, we should add a special case function that will handle this token.
1020 #
1021 # This function should generate the proper expression form of the expression
1022 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1023 # and so on). It should also return 1 if the parsing was successful, or zero
1024 # if the token was not recognized as a special token (in this case, returning
1025 # zero means that the special parser is deferring the parsing to the generic
1026 # parser), and should advance the buffer pointer (p->arg).
1027 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1028
1029 # Perform arch-dependent adjustments to a register name.
1030 #
1031 # In very specific situations, it may be necessary for the register
1032 # name present in a SystemTap probe's argument to be handled in a
1033 # special way. For example, on i386, GCC may over-optimize the
1034 # register allocation and use smaller registers than necessary. In
1035 # such cases, the client that is reading and evaluating the SystemTap
1036 # probe (ourselves) will need to actually fetch values from the wider
1037 # version of the register in question.
1038 #
1039 # To illustrate the example, consider the following probe argument
1040 # (i386):
1041 #
1042 # 4@%ax
1043 #
1044 # This argument says that its value can be found at the %ax register,
1045 # which is a 16-bit register. However, the argument's prefix says
1046 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1047 # this case, GDB should actually fetch the probe's value from register
1048 # %eax, not %ax. In this scenario, this function would actually
1049 # replace the register name from %ax to %eax.
1050 #
1051 # The rationale for this can be found at PR breakpoints/24541.
1052 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1053
1054 # DTrace related functions.
1055
1056 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1057 # NARG must be >= 0.
1058 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1059
1060 # True if the given ADDR does not contain the instruction sequence
1061 # corresponding to a disabled DTrace is-enabled probe.
1062 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1063
1064 # Enable a DTrace is-enabled probe at ADDR.
1065 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1066
1067 # Disable a DTrace is-enabled probe at ADDR.
1068 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1069
1070 # True if the list of shared libraries is one and only for all
1071 # processes, as opposed to a list of shared libraries per inferior.
1072 # This usually means that all processes, although may or may not share
1073 # an address space, will see the same set of symbols at the same
1074 # addresses.
1075 v;int;has_global_solist;;;0;0;;0
1076
1077 # On some targets, even though each inferior has its own private
1078 # address space, the debug interface takes care of making breakpoints
1079 # visible to all address spaces automatically. For such cases,
1080 # this property should be set to true.
1081 v;int;has_global_breakpoints;;;0;0;;0
1082
1083 # True if inferiors share an address space (e.g., uClinux).
1084 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1085
1086 # True if a fast tracepoint can be set at an address.
1087 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1088
1089 # Guess register state based on tracepoint location. Used for tracepoints
1090 # where no registers have been collected, but there's only one location,
1091 # allowing us to guess the PC value, and perhaps some other registers.
1092 # On entry, regcache has all registers marked as unavailable.
1093 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1094
1095 # Return the "auto" target charset.
1096 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1097 # Return the "auto" target wide charset.
1098 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1099
1100 # If non-empty, this is a file extension that will be opened in place
1101 # of the file extension reported by the shared library list.
1102 #
1103 # This is most useful for toolchains that use a post-linker tool,
1104 # where the names of the files run on the target differ in extension
1105 # compared to the names of the files GDB should load for debug info.
1106 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1107
1108 # If true, the target OS has DOS-based file system semantics. That
1109 # is, absolute paths include a drive name, and the backslash is
1110 # considered a directory separator.
1111 v;int;has_dos_based_file_system;;;0;0;;0
1112
1113 # Generate bytecodes to collect the return address in a frame.
1114 # Since the bytecodes run on the target, possibly with GDB not even
1115 # connected, the full unwinding machinery is not available, and
1116 # typically this function will issue bytecodes for one or more likely
1117 # places that the return address may be found.
1118 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1119
1120 # Implement the "info proc" command.
1121 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1122
1123 # Implement the "info proc" command for core files. Noe that there
1124 # are two "info_proc"-like methods on gdbarch -- one for core files,
1125 # one for live targets.
1126 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1127
1128 # Iterate over all objfiles in the order that makes the most sense
1129 # for the architecture to make global symbol searches.
1130 #
1131 # CB is a callback function where OBJFILE is the objfile to be searched,
1132 # and CB_DATA a pointer to user-defined data (the same data that is passed
1133 # when calling this gdbarch method). The iteration stops if this function
1134 # returns nonzero.
1135 #
1136 # CB_DATA is a pointer to some user-defined data to be passed to
1137 # the callback.
1138 #
1139 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1140 # inspected when the symbol search was requested.
1141 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1142
1143 # Ravenscar arch-dependent ops.
1144 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1145
1146 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1147 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1148
1149 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1150 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1151
1152 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1153 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1154
1155 # Return true if there's a program/permanent breakpoint planted in
1156 # memory at ADDRESS, return false otherwise.
1157 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1158
1159 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1160 # Return 0 if *READPTR is already at the end of the buffer.
1161 # Return -1 if there is insufficient buffer for a whole entry.
1162 # Return 1 if an entry was read into *TYPEP and *VALP.
1163 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1164
1165 # Print the description of a single auxv entry described by TYPE and VAL
1166 # to FILE.
1167 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1168
1169 # Find the address range of the current inferior's vsyscall/vDSO, and
1170 # write it to *RANGE. If the vsyscall's length can't be determined, a
1171 # range with zero length is returned. Returns true if the vsyscall is
1172 # found, false otherwise.
1173 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1174
1175 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1176 # PROT has GDB_MMAP_PROT_* bitmask format.
1177 # Throw an error if it is not possible. Returned address is always valid.
1178 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1179
1180 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1181 # Print a warning if it is not possible.
1182 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1183
1184 # Return string (caller has to use xfree for it) with options for GCC
1185 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1186 # These options are put before CU's DW_AT_producer compilation options so that
1187 # they can override it.
1188 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1189
1190 # Return a regular expression that matches names used by this
1191 # architecture in GNU configury triplets. The result is statically
1192 # allocated and must not be freed. The default implementation simply
1193 # returns the BFD architecture name, which is correct in nearly every
1194 # case.
1195 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1196
1197 # Return the size in 8-bit bytes of an addressable memory unit on this
1198 # architecture. This corresponds to the number of 8-bit bytes associated to
1199 # each address in memory.
1200 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1201
1202 # Functions for allowing a target to modify its disassembler options.
1203 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1204 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1205 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1206
1207 # Type alignment override method. Return the architecture specific
1208 # alignment required for TYPE. If there is no special handling
1209 # required for TYPE then return the value 0, GDB will then apply the
1210 # default rules as laid out in gdbtypes.c:type_align.
1211 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1212
1213 # Return a string containing any flags for the given PC in the given FRAME.
1214 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1215
1216 EOF
1217 }
1218
1219 #
1220 # The .log file
1221 #
1222 exec > new-gdbarch.log
1223 function_list | while do_read
1224 do
1225 cat <<EOF
1226 ${class} ${returntype} ${function} ($formal)
1227 EOF
1228 for r in ${read}
1229 do
1230 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1231 done
1232 if class_is_predicate_p && fallback_default_p
1233 then
1234 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1235 kill $$
1236 exit 1
1237 fi
1238 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1239 then
1240 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1241 kill $$
1242 exit 1
1243 fi
1244 if class_is_multiarch_p
1245 then
1246 if class_is_predicate_p ; then :
1247 elif test "x${predefault}" = "x"
1248 then
1249 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1250 kill $$
1251 exit 1
1252 fi
1253 fi
1254 echo ""
1255 done
1256
1257 exec 1>&2
1258 compare_new gdbarch.log
1259
1260
1261 copyright ()
1262 {
1263 cat <<EOF
1264 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1265 /* vi:set ro: */
1266
1267 /* Dynamic architecture support for GDB, the GNU debugger.
1268
1269 Copyright (C) 1998-2020 Free Software Foundation, Inc.
1270
1271 This file is part of GDB.
1272
1273 This program is free software; you can redistribute it and/or modify
1274 it under the terms of the GNU General Public License as published by
1275 the Free Software Foundation; either version 3 of the License, or
1276 (at your option) any later version.
1277
1278 This program is distributed in the hope that it will be useful,
1279 but WITHOUT ANY WARRANTY; without even the implied warranty of
1280 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1281 GNU General Public License for more details.
1282
1283 You should have received a copy of the GNU General Public License
1284 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1285
1286 /* This file was created with the aid of \`\`gdbarch.sh''.
1287
1288 The Bourne shell script \`\`gdbarch.sh'' creates the files
1289 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1290 against the existing \`\`gdbarch.[hc]''. Any differences found
1291 being reported.
1292
1293 If editing this file, please also run gdbarch.sh and merge any
1294 changes into that script. Conversely, when making sweeping changes
1295 to this file, modifying gdbarch.sh and using its output may prove
1296 easier. */
1297
1298 EOF
1299 }
1300
1301 #
1302 # The .h file
1303 #
1304
1305 exec > new-gdbarch.h
1306 copyright
1307 cat <<EOF
1308 #ifndef GDBARCH_H
1309 #define GDBARCH_H
1310
1311 #include <vector>
1312 #include "frame.h"
1313 #include "dis-asm.h"
1314 #include "gdb_obstack.h"
1315
1316 struct floatformat;
1317 struct ui_file;
1318 struct value;
1319 struct objfile;
1320 struct obj_section;
1321 struct minimal_symbol;
1322 struct regcache;
1323 struct reggroup;
1324 struct regset;
1325 struct disassemble_info;
1326 struct target_ops;
1327 struct obstack;
1328 struct bp_target_info;
1329 struct target_desc;
1330 struct symbol;
1331 struct displaced_step_closure;
1332 struct syscall;
1333 struct agent_expr;
1334 struct axs_value;
1335 struct stap_parse_info;
1336 struct expr_builder;
1337 struct ravenscar_arch_ops;
1338 struct mem_range;
1339 struct syscalls_info;
1340 struct thread_info;
1341 struct ui_out;
1342
1343 #include "regcache.h"
1344
1345 /* The architecture associated with the inferior through the
1346 connection to the target.
1347
1348 The architecture vector provides some information that is really a
1349 property of the inferior, accessed through a particular target:
1350 ptrace operations; the layout of certain RSP packets; the solib_ops
1351 vector; etc. To differentiate architecture accesses to
1352 per-inferior/target properties from
1353 per-thread/per-frame/per-objfile properties, accesses to
1354 per-inferior/target properties should be made through this
1355 gdbarch. */
1356
1357 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1358 extern struct gdbarch *target_gdbarch (void);
1359
1360 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1361 gdbarch method. */
1362
1363 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1364 (struct objfile *objfile, void *cb_data);
1365
1366 /* Callback type for regset section iterators. The callback usually
1367 invokes the REGSET's supply or collect method, to which it must
1368 pass a buffer - for collects this buffer will need to be created using
1369 COLLECT_SIZE, for supply the existing buffer being read from should
1370 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1371 is used for diagnostic messages. CB_DATA should have been passed
1372 unchanged through the iterator. */
1373
1374 typedef void (iterate_over_regset_sections_cb)
1375 (const char *sect_name, int supply_size, int collect_size,
1376 const struct regset *regset, const char *human_name, void *cb_data);
1377
1378 /* For a function call, does the function return a value using a
1379 normal value return or a structure return - passing a hidden
1380 argument pointing to storage. For the latter, there are two
1381 cases: language-mandated structure return and target ABI
1382 structure return. */
1383
1384 enum function_call_return_method
1385 {
1386 /* Standard value return. */
1387 return_method_normal = 0,
1388
1389 /* Language ABI structure return. This is handled
1390 by passing the return location as the first parameter to
1391 the function, even preceding "this". */
1392 return_method_hidden_param,
1393
1394 /* Target ABI struct return. This is target-specific; for instance,
1395 on ia64 the first argument is passed in out0 but the hidden
1396 structure return pointer would normally be passed in r8. */
1397 return_method_struct,
1398 };
1399
1400 EOF
1401
1402 # function typedef's
1403 printf "\n"
1404 printf "\n"
1405 printf "/* The following are pre-initialized by GDBARCH. */\n"
1406 function_list | while do_read
1407 do
1408 if class_is_info_p
1409 then
1410 printf "\n"
1411 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1412 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1413 fi
1414 done
1415
1416 # function typedef's
1417 printf "\n"
1418 printf "\n"
1419 printf "/* The following are initialized by the target dependent code. */\n"
1420 function_list | while do_read
1421 do
1422 if [ -n "${comment}" ]
1423 then
1424 echo "${comment}" | sed \
1425 -e '2 s,#,/*,' \
1426 -e '3,$ s,#, ,' \
1427 -e '$ s,$, */,'
1428 fi
1429
1430 if class_is_predicate_p
1431 then
1432 printf "\n"
1433 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1434 fi
1435 if class_is_variable_p
1436 then
1437 printf "\n"
1438 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1439 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1440 fi
1441 if class_is_function_p
1442 then
1443 printf "\n"
1444 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1445 then
1446 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1447 elif class_is_multiarch_p
1448 then
1449 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1450 else
1451 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1452 fi
1453 if [ "x${formal}" = "xvoid" ]
1454 then
1455 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1456 else
1457 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1458 fi
1459 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1460 fi
1461 done
1462
1463 # close it off
1464 cat <<EOF
1465
1466 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1467
1468
1469 /* Mechanism for co-ordinating the selection of a specific
1470 architecture.
1471
1472 GDB targets (*-tdep.c) can register an interest in a specific
1473 architecture. Other GDB components can register a need to maintain
1474 per-architecture data.
1475
1476 The mechanisms below ensures that there is only a loose connection
1477 between the set-architecture command and the various GDB
1478 components. Each component can independently register their need
1479 to maintain architecture specific data with gdbarch.
1480
1481 Pragmatics:
1482
1483 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1484 didn't scale.
1485
1486 The more traditional mega-struct containing architecture specific
1487 data for all the various GDB components was also considered. Since
1488 GDB is built from a variable number of (fairly independent)
1489 components it was determined that the global aproach was not
1490 applicable. */
1491
1492
1493 /* Register a new architectural family with GDB.
1494
1495 Register support for the specified ARCHITECTURE with GDB. When
1496 gdbarch determines that the specified architecture has been
1497 selected, the corresponding INIT function is called.
1498
1499 --
1500
1501 The INIT function takes two parameters: INFO which contains the
1502 information available to gdbarch about the (possibly new)
1503 architecture; ARCHES which is a list of the previously created
1504 \`\`struct gdbarch'' for this architecture.
1505
1506 The INFO parameter is, as far as possible, be pre-initialized with
1507 information obtained from INFO.ABFD or the global defaults.
1508
1509 The ARCHES parameter is a linked list (sorted most recently used)
1510 of all the previously created architures for this architecture
1511 family. The (possibly NULL) ARCHES->gdbarch can used to access
1512 values from the previously selected architecture for this
1513 architecture family.
1514
1515 The INIT function shall return any of: NULL - indicating that it
1516 doesn't recognize the selected architecture; an existing \`\`struct
1517 gdbarch'' from the ARCHES list - indicating that the new
1518 architecture is just a synonym for an earlier architecture (see
1519 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1520 - that describes the selected architecture (see gdbarch_alloc()).
1521
1522 The DUMP_TDEP function shall print out all target specific values.
1523 Care should be taken to ensure that the function works in both the
1524 multi-arch and non- multi-arch cases. */
1525
1526 struct gdbarch_list
1527 {
1528 struct gdbarch *gdbarch;
1529 struct gdbarch_list *next;
1530 };
1531
1532 struct gdbarch_info
1533 {
1534 /* Use default: NULL (ZERO). */
1535 const struct bfd_arch_info *bfd_arch_info;
1536
1537 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1538 enum bfd_endian byte_order;
1539
1540 enum bfd_endian byte_order_for_code;
1541
1542 /* Use default: NULL (ZERO). */
1543 bfd *abfd;
1544
1545 /* Use default: NULL (ZERO). */
1546 union
1547 {
1548 /* Architecture-specific information. The generic form for targets
1549 that have extra requirements. */
1550 struct gdbarch_tdep_info *tdep_info;
1551
1552 /* Architecture-specific target description data. Numerous targets
1553 need only this, so give them an easy way to hold it. */
1554 struct tdesc_arch_data *tdesc_data;
1555
1556 /* SPU file system ID. This is a single integer, so using the
1557 generic form would only complicate code. Other targets may
1558 reuse this member if suitable. */
1559 int *id;
1560 };
1561
1562 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1563 enum gdb_osabi osabi;
1564
1565 /* Use default: NULL (ZERO). */
1566 const struct target_desc *target_desc;
1567 };
1568
1569 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1570 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1571
1572 /* DEPRECATED - use gdbarch_register() */
1573 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1574
1575 extern void gdbarch_register (enum bfd_architecture architecture,
1576 gdbarch_init_ftype *,
1577 gdbarch_dump_tdep_ftype *);
1578
1579
1580 /* Return a freshly allocated, NULL terminated, array of the valid
1581 architecture names. Since architectures are registered during the
1582 _initialize phase this function only returns useful information
1583 once initialization has been completed. */
1584
1585 extern const char **gdbarch_printable_names (void);
1586
1587
1588 /* Helper function. Search the list of ARCHES for a GDBARCH that
1589 matches the information provided by INFO. */
1590
1591 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1592
1593
1594 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1595 basic initialization using values obtained from the INFO and TDEP
1596 parameters. set_gdbarch_*() functions are called to complete the
1597 initialization of the object. */
1598
1599 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1600
1601
1602 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1603 It is assumed that the caller freeds the \`\`struct
1604 gdbarch_tdep''. */
1605
1606 extern void gdbarch_free (struct gdbarch *);
1607
1608 /* Get the obstack owned by ARCH. */
1609
1610 extern obstack *gdbarch_obstack (gdbarch *arch);
1611
1612 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1613 obstack. The memory is freed when the corresponding architecture
1614 is also freed. */
1615
1616 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1617 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1618
1619 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1620 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1621
1622 /* Duplicate STRING, returning an equivalent string that's allocated on the
1623 obstack associated with GDBARCH. The string is freed when the corresponding
1624 architecture is also freed. */
1625
1626 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1627
1628 /* Helper function. Force an update of the current architecture.
1629
1630 The actual architecture selected is determined by INFO, \`\`(gdb) set
1631 architecture'' et.al., the existing architecture and BFD's default
1632 architecture. INFO should be initialized to zero and then selected
1633 fields should be updated.
1634
1635 Returns non-zero if the update succeeds. */
1636
1637 extern int gdbarch_update_p (struct gdbarch_info info);
1638
1639
1640 /* Helper function. Find an architecture matching info.
1641
1642 INFO should be initialized using gdbarch_info_init, relevant fields
1643 set, and then finished using gdbarch_info_fill.
1644
1645 Returns the corresponding architecture, or NULL if no matching
1646 architecture was found. */
1647
1648 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1649
1650
1651 /* Helper function. Set the target gdbarch to "gdbarch". */
1652
1653 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1654
1655
1656 /* Register per-architecture data-pointer.
1657
1658 Reserve space for a per-architecture data-pointer. An identifier
1659 for the reserved data-pointer is returned. That identifer should
1660 be saved in a local static variable.
1661
1662 Memory for the per-architecture data shall be allocated using
1663 gdbarch_obstack_zalloc. That memory will be deleted when the
1664 corresponding architecture object is deleted.
1665
1666 When a previously created architecture is re-selected, the
1667 per-architecture data-pointer for that previous architecture is
1668 restored. INIT() is not re-called.
1669
1670 Multiple registrarants for any architecture are allowed (and
1671 strongly encouraged). */
1672
1673 struct gdbarch_data;
1674
1675 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1676 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1677 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1678 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1679 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1680 struct gdbarch_data *data,
1681 void *pointer);
1682
1683 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1684
1685
1686 /* Set the dynamic target-system-dependent parameters (architecture,
1687 byte-order, ...) using information found in the BFD. */
1688
1689 extern void set_gdbarch_from_file (bfd *);
1690
1691
1692 /* Initialize the current architecture to the "first" one we find on
1693 our list. */
1694
1695 extern void initialize_current_architecture (void);
1696
1697 /* gdbarch trace variable */
1698 extern unsigned int gdbarch_debug;
1699
1700 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1701
1702 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1703
1704 static inline int
1705 gdbarch_num_cooked_regs (gdbarch *arch)
1706 {
1707 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1708 }
1709
1710 #endif
1711 EOF
1712 exec 1>&2
1713 #../move-if-change new-gdbarch.h gdbarch.h
1714 compare_new gdbarch.h
1715
1716
1717 #
1718 # C file
1719 #
1720
1721 exec > new-gdbarch.c
1722 copyright
1723 cat <<EOF
1724
1725 #include "defs.h"
1726 #include "arch-utils.h"
1727
1728 #include "gdbcmd.h"
1729 #include "inferior.h"
1730 #include "symcat.h"
1731
1732 #include "floatformat.h"
1733 #include "reggroups.h"
1734 #include "osabi.h"
1735 #include "gdb_obstack.h"
1736 #include "observable.h"
1737 #include "regcache.h"
1738 #include "objfiles.h"
1739 #include "auxv.h"
1740 #include "frame-unwind.h"
1741 #include "dummy-frame.h"
1742
1743 /* Static function declarations */
1744
1745 static void alloc_gdbarch_data (struct gdbarch *);
1746
1747 /* Non-zero if we want to trace architecture code. */
1748
1749 #ifndef GDBARCH_DEBUG
1750 #define GDBARCH_DEBUG 0
1751 #endif
1752 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1753 static void
1754 show_gdbarch_debug (struct ui_file *file, int from_tty,
1755 struct cmd_list_element *c, const char *value)
1756 {
1757 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1758 }
1759
1760 static const char *
1761 pformat (const struct floatformat **format)
1762 {
1763 if (format == NULL)
1764 return "(null)";
1765 else
1766 /* Just print out one of them - this is only for diagnostics. */
1767 return format[0]->name;
1768 }
1769
1770 static const char *
1771 pstring (const char *string)
1772 {
1773 if (string == NULL)
1774 return "(null)";
1775 return string;
1776 }
1777
1778 static const char *
1779 pstring_ptr (char **string)
1780 {
1781 if (string == NULL || *string == NULL)
1782 return "(null)";
1783 return *string;
1784 }
1785
1786 /* Helper function to print a list of strings, represented as "const
1787 char *const *". The list is printed comma-separated. */
1788
1789 static const char *
1790 pstring_list (const char *const *list)
1791 {
1792 static char ret[100];
1793 const char *const *p;
1794 size_t offset = 0;
1795
1796 if (list == NULL)
1797 return "(null)";
1798
1799 ret[0] = '\0';
1800 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1801 {
1802 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1803 offset += 2 + s;
1804 }
1805
1806 if (offset > 0)
1807 {
1808 gdb_assert (offset - 2 < sizeof (ret));
1809 ret[offset - 2] = '\0';
1810 }
1811
1812 return ret;
1813 }
1814
1815 EOF
1816
1817 # gdbarch open the gdbarch object
1818 printf "\n"
1819 printf "/* Maintain the struct gdbarch object. */\n"
1820 printf "\n"
1821 printf "struct gdbarch\n"
1822 printf "{\n"
1823 printf " /* Has this architecture been fully initialized? */\n"
1824 printf " int initialized_p;\n"
1825 printf "\n"
1826 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1827 printf " struct obstack *obstack;\n"
1828 printf "\n"
1829 printf " /* basic architectural information. */\n"
1830 function_list | while do_read
1831 do
1832 if class_is_info_p
1833 then
1834 printf " ${returntype} ${function};\n"
1835 fi
1836 done
1837 printf "\n"
1838 printf " /* target specific vector. */\n"
1839 printf " struct gdbarch_tdep *tdep;\n"
1840 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1841 printf "\n"
1842 printf " /* per-architecture data-pointers. */\n"
1843 printf " unsigned nr_data;\n"
1844 printf " void **data;\n"
1845 printf "\n"
1846 cat <<EOF
1847 /* Multi-arch values.
1848
1849 When extending this structure you must:
1850
1851 Add the field below.
1852
1853 Declare set/get functions and define the corresponding
1854 macro in gdbarch.h.
1855
1856 gdbarch_alloc(): If zero/NULL is not a suitable default,
1857 initialize the new field.
1858
1859 verify_gdbarch(): Confirm that the target updated the field
1860 correctly.
1861
1862 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1863 field is dumped out
1864
1865 get_gdbarch(): Implement the set/get functions (probably using
1866 the macro's as shortcuts).
1867
1868 */
1869
1870 EOF
1871 function_list | while do_read
1872 do
1873 if class_is_variable_p
1874 then
1875 printf " ${returntype} ${function};\n"
1876 elif class_is_function_p
1877 then
1878 printf " gdbarch_${function}_ftype *${function};\n"
1879 fi
1880 done
1881 printf "};\n"
1882
1883 # Create a new gdbarch struct
1884 cat <<EOF
1885
1886 /* Create a new \`\`struct gdbarch'' based on information provided by
1887 \`\`struct gdbarch_info''. */
1888 EOF
1889 printf "\n"
1890 cat <<EOF
1891 struct gdbarch *
1892 gdbarch_alloc (const struct gdbarch_info *info,
1893 struct gdbarch_tdep *tdep)
1894 {
1895 struct gdbarch *gdbarch;
1896
1897 /* Create an obstack for allocating all the per-architecture memory,
1898 then use that to allocate the architecture vector. */
1899 struct obstack *obstack = XNEW (struct obstack);
1900 obstack_init (obstack);
1901 gdbarch = XOBNEW (obstack, struct gdbarch);
1902 memset (gdbarch, 0, sizeof (*gdbarch));
1903 gdbarch->obstack = obstack;
1904
1905 alloc_gdbarch_data (gdbarch);
1906
1907 gdbarch->tdep = tdep;
1908 EOF
1909 printf "\n"
1910 function_list | while do_read
1911 do
1912 if class_is_info_p
1913 then
1914 printf " gdbarch->${function} = info->${function};\n"
1915 fi
1916 done
1917 printf "\n"
1918 printf " /* Force the explicit initialization of these. */\n"
1919 function_list | while do_read
1920 do
1921 if class_is_function_p || class_is_variable_p
1922 then
1923 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1924 then
1925 printf " gdbarch->${function} = ${predefault};\n"
1926 fi
1927 fi
1928 done
1929 cat <<EOF
1930 /* gdbarch_alloc() */
1931
1932 return gdbarch;
1933 }
1934 EOF
1935
1936 # Free a gdbarch struct.
1937 printf "\n"
1938 printf "\n"
1939 cat <<EOF
1940
1941 obstack *gdbarch_obstack (gdbarch *arch)
1942 {
1943 return arch->obstack;
1944 }
1945
1946 /* See gdbarch.h. */
1947
1948 char *
1949 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1950 {
1951 return obstack_strdup (arch->obstack, string);
1952 }
1953
1954
1955 /* Free a gdbarch struct. This should never happen in normal
1956 operation --- once you've created a gdbarch, you keep it around.
1957 However, if an architecture's init function encounters an error
1958 building the structure, it may need to clean up a partially
1959 constructed gdbarch. */
1960
1961 void
1962 gdbarch_free (struct gdbarch *arch)
1963 {
1964 struct obstack *obstack;
1965
1966 gdb_assert (arch != NULL);
1967 gdb_assert (!arch->initialized_p);
1968 obstack = arch->obstack;
1969 obstack_free (obstack, 0); /* Includes the ARCH. */
1970 xfree (obstack);
1971 }
1972 EOF
1973
1974 # verify a new architecture
1975 cat <<EOF
1976
1977
1978 /* Ensure that all values in a GDBARCH are reasonable. */
1979
1980 static void
1981 verify_gdbarch (struct gdbarch *gdbarch)
1982 {
1983 string_file log;
1984
1985 /* fundamental */
1986 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1987 log.puts ("\n\tbyte-order");
1988 if (gdbarch->bfd_arch_info == NULL)
1989 log.puts ("\n\tbfd_arch_info");
1990 /* Check those that need to be defined for the given multi-arch level. */
1991 EOF
1992 function_list | while do_read
1993 do
1994 if class_is_function_p || class_is_variable_p
1995 then
1996 if [ "x${invalid_p}" = "x0" ]
1997 then
1998 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1999 elif class_is_predicate_p
2000 then
2001 printf " /* Skip verify of ${function}, has predicate. */\n"
2002 # FIXME: See do_read for potential simplification
2003 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
2004 then
2005 printf " if (${invalid_p})\n"
2006 printf " gdbarch->${function} = ${postdefault};\n"
2007 elif [ -n "${predefault}" -a -n "${postdefault}" ]
2008 then
2009 printf " if (gdbarch->${function} == ${predefault})\n"
2010 printf " gdbarch->${function} = ${postdefault};\n"
2011 elif [ -n "${postdefault}" ]
2012 then
2013 printf " if (gdbarch->${function} == 0)\n"
2014 printf " gdbarch->${function} = ${postdefault};\n"
2015 elif [ -n "${invalid_p}" ]
2016 then
2017 printf " if (${invalid_p})\n"
2018 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
2019 elif [ -n "${predefault}" ]
2020 then
2021 printf " if (gdbarch->${function} == ${predefault})\n"
2022 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
2023 fi
2024 fi
2025 done
2026 cat <<EOF
2027 if (!log.empty ())
2028 internal_error (__FILE__, __LINE__,
2029 _("verify_gdbarch: the following are invalid ...%s"),
2030 log.c_str ());
2031 }
2032 EOF
2033
2034 # dump the structure
2035 printf "\n"
2036 printf "\n"
2037 cat <<EOF
2038 /* Print out the details of the current architecture. */
2039
2040 void
2041 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2042 {
2043 const char *gdb_nm_file = "<not-defined>";
2044
2045 #if defined (GDB_NM_FILE)
2046 gdb_nm_file = GDB_NM_FILE;
2047 #endif
2048 fprintf_unfiltered (file,
2049 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2050 gdb_nm_file);
2051 EOF
2052 function_list | sort '-t;' -k 3 | while do_read
2053 do
2054 # First the predicate
2055 if class_is_predicate_p
2056 then
2057 printf " fprintf_unfiltered (file,\n"
2058 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
2059 printf " gdbarch_${function}_p (gdbarch));\n"
2060 fi
2061 # Print the corresponding value.
2062 if class_is_function_p
2063 then
2064 printf " fprintf_unfiltered (file,\n"
2065 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
2066 printf " host_address_to_string (gdbarch->${function}));\n"
2067 else
2068 # It is a variable
2069 case "${print}:${returntype}" in
2070 :CORE_ADDR )
2071 fmt="%s"
2072 print="core_addr_to_string_nz (gdbarch->${function})"
2073 ;;
2074 :* )
2075 fmt="%s"
2076 print="plongest (gdbarch->${function})"
2077 ;;
2078 * )
2079 fmt="%s"
2080 ;;
2081 esac
2082 printf " fprintf_unfiltered (file,\n"
2083 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
2084 printf " ${print});\n"
2085 fi
2086 done
2087 cat <<EOF
2088 if (gdbarch->dump_tdep != NULL)
2089 gdbarch->dump_tdep (gdbarch, file);
2090 }
2091 EOF
2092
2093
2094 # GET/SET
2095 printf "\n"
2096 cat <<EOF
2097 struct gdbarch_tdep *
2098 gdbarch_tdep (struct gdbarch *gdbarch)
2099 {
2100 if (gdbarch_debug >= 2)
2101 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2102 return gdbarch->tdep;
2103 }
2104 EOF
2105 printf "\n"
2106 function_list | while do_read
2107 do
2108 if class_is_predicate_p
2109 then
2110 printf "\n"
2111 printf "int\n"
2112 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2113 printf "{\n"
2114 printf " gdb_assert (gdbarch != NULL);\n"
2115 printf " return ${predicate};\n"
2116 printf "}\n"
2117 fi
2118 if class_is_function_p
2119 then
2120 printf "\n"
2121 printf "${returntype}\n"
2122 if [ "x${formal}" = "xvoid" ]
2123 then
2124 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2125 else
2126 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2127 fi
2128 printf "{\n"
2129 printf " gdb_assert (gdbarch != NULL);\n"
2130 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2131 if class_is_predicate_p && test -n "${predefault}"
2132 then
2133 # Allow a call to a function with a predicate.
2134 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2135 fi
2136 printf " if (gdbarch_debug >= 2)\n"
2137 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2138 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2139 then
2140 if class_is_multiarch_p
2141 then
2142 params="gdbarch"
2143 else
2144 params=""
2145 fi
2146 else
2147 if class_is_multiarch_p
2148 then
2149 params="gdbarch, ${actual}"
2150 else
2151 params="${actual}"
2152 fi
2153 fi
2154 if [ "x${returntype}" = "xvoid" ]
2155 then
2156 printf " gdbarch->${function} (${params});\n"
2157 else
2158 printf " return gdbarch->${function} (${params});\n"
2159 fi
2160 printf "}\n"
2161 printf "\n"
2162 printf "void\n"
2163 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2164 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2165 printf "{\n"
2166 printf " gdbarch->${function} = ${function};\n"
2167 printf "}\n"
2168 elif class_is_variable_p
2169 then
2170 printf "\n"
2171 printf "${returntype}\n"
2172 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2173 printf "{\n"
2174 printf " gdb_assert (gdbarch != NULL);\n"
2175 if [ "x${invalid_p}" = "x0" ]
2176 then
2177 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2178 elif [ -n "${invalid_p}" ]
2179 then
2180 printf " /* Check variable is valid. */\n"
2181 printf " gdb_assert (!(${invalid_p}));\n"
2182 elif [ -n "${predefault}" ]
2183 then
2184 printf " /* Check variable changed from pre-default. */\n"
2185 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2186 fi
2187 printf " if (gdbarch_debug >= 2)\n"
2188 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2189 printf " return gdbarch->${function};\n"
2190 printf "}\n"
2191 printf "\n"
2192 printf "void\n"
2193 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2194 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2195 printf "{\n"
2196 printf " gdbarch->${function} = ${function};\n"
2197 printf "}\n"
2198 elif class_is_info_p
2199 then
2200 printf "\n"
2201 printf "${returntype}\n"
2202 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2203 printf "{\n"
2204 printf " gdb_assert (gdbarch != NULL);\n"
2205 printf " if (gdbarch_debug >= 2)\n"
2206 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2207 printf " return gdbarch->${function};\n"
2208 printf "}\n"
2209 fi
2210 done
2211
2212 # All the trailing guff
2213 cat <<EOF
2214
2215
2216 /* Keep a registry of per-architecture data-pointers required by GDB
2217 modules. */
2218
2219 struct gdbarch_data
2220 {
2221 unsigned index;
2222 int init_p;
2223 gdbarch_data_pre_init_ftype *pre_init;
2224 gdbarch_data_post_init_ftype *post_init;
2225 };
2226
2227 struct gdbarch_data_registration
2228 {
2229 struct gdbarch_data *data;
2230 struct gdbarch_data_registration *next;
2231 };
2232
2233 struct gdbarch_data_registry
2234 {
2235 unsigned nr;
2236 struct gdbarch_data_registration *registrations;
2237 };
2238
2239 struct gdbarch_data_registry gdbarch_data_registry =
2240 {
2241 0, NULL,
2242 };
2243
2244 static struct gdbarch_data *
2245 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2246 gdbarch_data_post_init_ftype *post_init)
2247 {
2248 struct gdbarch_data_registration **curr;
2249
2250 /* Append the new registration. */
2251 for (curr = &gdbarch_data_registry.registrations;
2252 (*curr) != NULL;
2253 curr = &(*curr)->next);
2254 (*curr) = XNEW (struct gdbarch_data_registration);
2255 (*curr)->next = NULL;
2256 (*curr)->data = XNEW (struct gdbarch_data);
2257 (*curr)->data->index = gdbarch_data_registry.nr++;
2258 (*curr)->data->pre_init = pre_init;
2259 (*curr)->data->post_init = post_init;
2260 (*curr)->data->init_p = 1;
2261 return (*curr)->data;
2262 }
2263
2264 struct gdbarch_data *
2265 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2266 {
2267 return gdbarch_data_register (pre_init, NULL);
2268 }
2269
2270 struct gdbarch_data *
2271 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2272 {
2273 return gdbarch_data_register (NULL, post_init);
2274 }
2275
2276 /* Create/delete the gdbarch data vector. */
2277
2278 static void
2279 alloc_gdbarch_data (struct gdbarch *gdbarch)
2280 {
2281 gdb_assert (gdbarch->data == NULL);
2282 gdbarch->nr_data = gdbarch_data_registry.nr;
2283 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2284 }
2285
2286 /* Initialize the current value of the specified per-architecture
2287 data-pointer. */
2288
2289 void
2290 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2291 struct gdbarch_data *data,
2292 void *pointer)
2293 {
2294 gdb_assert (data->index < gdbarch->nr_data);
2295 gdb_assert (gdbarch->data[data->index] == NULL);
2296 gdb_assert (data->pre_init == NULL);
2297 gdbarch->data[data->index] = pointer;
2298 }
2299
2300 /* Return the current value of the specified per-architecture
2301 data-pointer. */
2302
2303 void *
2304 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2305 {
2306 gdb_assert (data->index < gdbarch->nr_data);
2307 if (gdbarch->data[data->index] == NULL)
2308 {
2309 /* The data-pointer isn't initialized, call init() to get a
2310 value. */
2311 if (data->pre_init != NULL)
2312 /* Mid architecture creation: pass just the obstack, and not
2313 the entire architecture, as that way it isn't possible for
2314 pre-init code to refer to undefined architecture
2315 fields. */
2316 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2317 else if (gdbarch->initialized_p
2318 && data->post_init != NULL)
2319 /* Post architecture creation: pass the entire architecture
2320 (as all fields are valid), but be careful to also detect
2321 recursive references. */
2322 {
2323 gdb_assert (data->init_p);
2324 data->init_p = 0;
2325 gdbarch->data[data->index] = data->post_init (gdbarch);
2326 data->init_p = 1;
2327 }
2328 else
2329 /* The architecture initialization hasn't completed - punt -
2330 hope that the caller knows what they are doing. Once
2331 deprecated_set_gdbarch_data has been initialized, this can be
2332 changed to an internal error. */
2333 return NULL;
2334 gdb_assert (gdbarch->data[data->index] != NULL);
2335 }
2336 return gdbarch->data[data->index];
2337 }
2338
2339
2340 /* Keep a registry of the architectures known by GDB. */
2341
2342 struct gdbarch_registration
2343 {
2344 enum bfd_architecture bfd_architecture;
2345 gdbarch_init_ftype *init;
2346 gdbarch_dump_tdep_ftype *dump_tdep;
2347 struct gdbarch_list *arches;
2348 struct gdbarch_registration *next;
2349 };
2350
2351 static struct gdbarch_registration *gdbarch_registry = NULL;
2352
2353 static void
2354 append_name (const char ***buf, int *nr, const char *name)
2355 {
2356 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2357 (*buf)[*nr] = name;
2358 *nr += 1;
2359 }
2360
2361 const char **
2362 gdbarch_printable_names (void)
2363 {
2364 /* Accumulate a list of names based on the registed list of
2365 architectures. */
2366 int nr_arches = 0;
2367 const char **arches = NULL;
2368 struct gdbarch_registration *rego;
2369
2370 for (rego = gdbarch_registry;
2371 rego != NULL;
2372 rego = rego->next)
2373 {
2374 const struct bfd_arch_info *ap;
2375 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2376 if (ap == NULL)
2377 internal_error (__FILE__, __LINE__,
2378 _("gdbarch_architecture_names: multi-arch unknown"));
2379 do
2380 {
2381 append_name (&arches, &nr_arches, ap->printable_name);
2382 ap = ap->next;
2383 }
2384 while (ap != NULL);
2385 }
2386 append_name (&arches, &nr_arches, NULL);
2387 return arches;
2388 }
2389
2390
2391 void
2392 gdbarch_register (enum bfd_architecture bfd_architecture,
2393 gdbarch_init_ftype *init,
2394 gdbarch_dump_tdep_ftype *dump_tdep)
2395 {
2396 struct gdbarch_registration **curr;
2397 const struct bfd_arch_info *bfd_arch_info;
2398
2399 /* Check that BFD recognizes this architecture */
2400 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2401 if (bfd_arch_info == NULL)
2402 {
2403 internal_error (__FILE__, __LINE__,
2404 _("gdbarch: Attempt to register "
2405 "unknown architecture (%d)"),
2406 bfd_architecture);
2407 }
2408 /* Check that we haven't seen this architecture before. */
2409 for (curr = &gdbarch_registry;
2410 (*curr) != NULL;
2411 curr = &(*curr)->next)
2412 {
2413 if (bfd_architecture == (*curr)->bfd_architecture)
2414 internal_error (__FILE__, __LINE__,
2415 _("gdbarch: Duplicate registration "
2416 "of architecture (%s)"),
2417 bfd_arch_info->printable_name);
2418 }
2419 /* log it */
2420 if (gdbarch_debug)
2421 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2422 bfd_arch_info->printable_name,
2423 host_address_to_string (init));
2424 /* Append it */
2425 (*curr) = XNEW (struct gdbarch_registration);
2426 (*curr)->bfd_architecture = bfd_architecture;
2427 (*curr)->init = init;
2428 (*curr)->dump_tdep = dump_tdep;
2429 (*curr)->arches = NULL;
2430 (*curr)->next = NULL;
2431 }
2432
2433 void
2434 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2435 gdbarch_init_ftype *init)
2436 {
2437 gdbarch_register (bfd_architecture, init, NULL);
2438 }
2439
2440
2441 /* Look for an architecture using gdbarch_info. */
2442
2443 struct gdbarch_list *
2444 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2445 const struct gdbarch_info *info)
2446 {
2447 for (; arches != NULL; arches = arches->next)
2448 {
2449 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2450 continue;
2451 if (info->byte_order != arches->gdbarch->byte_order)
2452 continue;
2453 if (info->osabi != arches->gdbarch->osabi)
2454 continue;
2455 if (info->target_desc != arches->gdbarch->target_desc)
2456 continue;
2457 return arches;
2458 }
2459 return NULL;
2460 }
2461
2462
2463 /* Find an architecture that matches the specified INFO. Create a new
2464 architecture if needed. Return that new architecture. */
2465
2466 struct gdbarch *
2467 gdbarch_find_by_info (struct gdbarch_info info)
2468 {
2469 struct gdbarch *new_gdbarch;
2470 struct gdbarch_registration *rego;
2471
2472 /* Fill in missing parts of the INFO struct using a number of
2473 sources: "set ..."; INFOabfd supplied; and the global
2474 defaults. */
2475 gdbarch_info_fill (&info);
2476
2477 /* Must have found some sort of architecture. */
2478 gdb_assert (info.bfd_arch_info != NULL);
2479
2480 if (gdbarch_debug)
2481 {
2482 fprintf_unfiltered (gdb_stdlog,
2483 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2484 (info.bfd_arch_info != NULL
2485 ? info.bfd_arch_info->printable_name
2486 : "(null)"));
2487 fprintf_unfiltered (gdb_stdlog,
2488 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2489 info.byte_order,
2490 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2491 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2492 : "default"));
2493 fprintf_unfiltered (gdb_stdlog,
2494 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2495 info.osabi, gdbarch_osabi_name (info.osabi));
2496 fprintf_unfiltered (gdb_stdlog,
2497 "gdbarch_find_by_info: info.abfd %s\n",
2498 host_address_to_string (info.abfd));
2499 fprintf_unfiltered (gdb_stdlog,
2500 "gdbarch_find_by_info: info.tdep_info %s\n",
2501 host_address_to_string (info.tdep_info));
2502 }
2503
2504 /* Find the tdep code that knows about this architecture. */
2505 for (rego = gdbarch_registry;
2506 rego != NULL;
2507 rego = rego->next)
2508 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2509 break;
2510 if (rego == NULL)
2511 {
2512 if (gdbarch_debug)
2513 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2514 "No matching architecture\n");
2515 return 0;
2516 }
2517
2518 /* Ask the tdep code for an architecture that matches "info". */
2519 new_gdbarch = rego->init (info, rego->arches);
2520
2521 /* Did the tdep code like it? No. Reject the change and revert to
2522 the old architecture. */
2523 if (new_gdbarch == NULL)
2524 {
2525 if (gdbarch_debug)
2526 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2527 "Target rejected architecture\n");
2528 return NULL;
2529 }
2530
2531 /* Is this a pre-existing architecture (as determined by already
2532 being initialized)? Move it to the front of the architecture
2533 list (keeping the list sorted Most Recently Used). */
2534 if (new_gdbarch->initialized_p)
2535 {
2536 struct gdbarch_list **list;
2537 struct gdbarch_list *self;
2538 if (gdbarch_debug)
2539 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2540 "Previous architecture %s (%s) selected\n",
2541 host_address_to_string (new_gdbarch),
2542 new_gdbarch->bfd_arch_info->printable_name);
2543 /* Find the existing arch in the list. */
2544 for (list = &rego->arches;
2545 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2546 list = &(*list)->next);
2547 /* It had better be in the list of architectures. */
2548 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2549 /* Unlink SELF. */
2550 self = (*list);
2551 (*list) = self->next;
2552 /* Insert SELF at the front. */
2553 self->next = rego->arches;
2554 rego->arches = self;
2555 /* Return it. */
2556 return new_gdbarch;
2557 }
2558
2559 /* It's a new architecture. */
2560 if (gdbarch_debug)
2561 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2562 "New architecture %s (%s) selected\n",
2563 host_address_to_string (new_gdbarch),
2564 new_gdbarch->bfd_arch_info->printable_name);
2565
2566 /* Insert the new architecture into the front of the architecture
2567 list (keep the list sorted Most Recently Used). */
2568 {
2569 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2570 self->next = rego->arches;
2571 self->gdbarch = new_gdbarch;
2572 rego->arches = self;
2573 }
2574
2575 /* Check that the newly installed architecture is valid. Plug in
2576 any post init values. */
2577 new_gdbarch->dump_tdep = rego->dump_tdep;
2578 verify_gdbarch (new_gdbarch);
2579 new_gdbarch->initialized_p = 1;
2580
2581 if (gdbarch_debug)
2582 gdbarch_dump (new_gdbarch, gdb_stdlog);
2583
2584 return new_gdbarch;
2585 }
2586
2587 /* Make the specified architecture current. */
2588
2589 void
2590 set_target_gdbarch (struct gdbarch *new_gdbarch)
2591 {
2592 gdb_assert (new_gdbarch != NULL);
2593 gdb_assert (new_gdbarch->initialized_p);
2594 current_inferior ()->gdbarch = new_gdbarch;
2595 gdb::observers::architecture_changed.notify (new_gdbarch);
2596 registers_changed ();
2597 }
2598
2599 /* Return the current inferior's arch. */
2600
2601 struct gdbarch *
2602 target_gdbarch (void)
2603 {
2604 return current_inferior ()->gdbarch;
2605 }
2606
2607 void _initialize_gdbarch ();
2608 void
2609 _initialize_gdbarch ()
2610 {
2611 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2612 Set architecture debugging."), _("\\
2613 Show architecture debugging."), _("\\
2614 When non-zero, architecture debugging is enabled."),
2615 NULL,
2616 show_gdbarch_debug,
2617 &setdebuglist, &showdebuglist);
2618 }
2619 EOF
2620
2621 # close things off
2622 exec 1>&2
2623 #../move-if-change new-gdbarch.c gdbarch.c
2624 compare_new gdbarch.c