]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
x86: Change PLT32 reloc against section to PC32
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2020 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27 # Format of the input table
28 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
29
30 do_read ()
31 {
32 comment=""
33 class=""
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
37 # shellcheck disable=SC2162
38 while IFS='' read line
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
44 then
45 continue
46 elif expr "${line}" : "#" > /dev/null
47 then
48 comment="${comment}
49 ${line}"
50 else
51
52 # The semantics of IFS varies between different SH's. Some
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
56
57 OFS="${IFS}" ; IFS="[;]"
58 eval read "${read}" <<EOF
59 ${line}
60 EOF
61 IFS="${OFS}"
62
63 if test -n "${garbage_at_eol:-}"
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
74 if eval test "\"\${${r}}\" = ' '"
75 then
76 eval "${r}="
77 fi
78 done
79
80 case "${class}" in
81 m ) staticdefault="${predefault:-}" ;;
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
85
86 case "${class}" in
87 F | V | M )
88 case "${invalid_p:-}" in
89 "" )
90 if test -n "${predefault}"
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
93 predicate="gdbarch->${function:-} != ${predefault}"
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
100 fi
101 ;;
102 * )
103 echo "Predicate function ${function} with invalid_p." 1>&2
104 kill $$
105 exit 1
106 ;;
107 esac
108 esac
109
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
114 fi
115 done
116 if [ -n "${class}" ]
117 then
118 true
119 else
120 false
121 fi
122 }
123
124
125 fallback_default_p ()
126 {
127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
129 }
130
131 class_is_variable_p ()
132 {
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
137 }
138
139 class_is_function_p ()
140 {
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145 }
146
147 class_is_multiarch_p ()
148 {
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
153 }
154
155 class_is_predicate_p ()
156 {
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
161 }
162
163 class_is_info_p ()
164 {
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171
172 # dump out/verify the doco
173 for field in ${read}
174 do
175 case ${field} in
176
177 class ) : ;;
178
179 # # -> line disable
180 # f -> function
181 # hiding a function
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
184 # v -> variable
185 # hiding a variable
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
188 # i -> set from info
189 # hiding something from the ``struct info'' object
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
194
195 returntype ) : ;;
196
197 # For functions, the return type; for variables, the data type
198
199 function ) : ;;
200
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
204
205 formal ) : ;;
206
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
211
212 actual ) : ;;
213
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
217
218 staticdefault ) : ;;
219
220 # To help with the GDB startup a static gdbarch object is
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
224
225 # If STATICDEFAULT is empty, zero is used.
226
227 predefault ) : ;;
228
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
233
234 # If PREDEFAULT is empty, zero is used.
235
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
265 # Variable declarations can refer to ``gdbarch'' which
266 # will contain the current architecture. Care should be
267 # taken.
268
269 invalid_p ) : ;;
270
271 # A predicate equation that validates MEMBER. Non-zero is
272 # returned if the code creating the new architecture failed to
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
283
284 # See also PREDEFAULT and POSTDEFAULT.
285
286 print ) : ;;
287
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
290
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
293
294 garbage_at_eol ) : ;;
295
296 # Catches stray fields.
297
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
301 esac
302 done
303
304
305 function_list ()
306 {
307 # See below (DOCO) for description of each field
308 cat <<EOF
309 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
310 #
311 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
313 #
314 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
315 #
316 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
317
318 # Number of bits in a short or unsigned short for the target machine.
319 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
320 # Number of bits in an int or unsigned int for the target machine.
321 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
322 # Number of bits in a long or unsigned long for the target machine.
323 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
324 # Number of bits in a long long or unsigned long long for the target
325 # machine.
326 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
327
328 # The ABI default bit-size and format for "half", "float", "double", and
329 # "long double". These bit/format pairs should eventually be combined
330 # into a single object. For the moment, just initialize them as a pair.
331 # Each format describes both the big and little endian layouts (if
332 # useful).
333
334 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
335 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
336 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
337 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
338 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
339 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
340 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
341 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
342
343 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
344 # starting with C++11.
345 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
346 # One if \`wchar_t' is signed, zero if unsigned.
347 v;int;wchar_signed;;;1;-1;1
348
349 # Returns the floating-point format to be used for values of length LENGTH.
350 # NAME, if non-NULL, is the type name, which may be used to distinguish
351 # different target formats of the same length.
352 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
353
354 # For most targets, a pointer on the target and its representation as an
355 # address in GDB have the same size and "look the same". For such a
356 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
357 # / addr_bit will be set from it.
358 #
359 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
360 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
361 # gdbarch_address_to_pointer as well.
362 #
363 # ptr_bit is the size of a pointer on the target
364 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
365 # addr_bit is the size of a target address as represented in gdb
366 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
367 #
368 # dwarf2_addr_size is the target address size as used in the Dwarf debug
369 # info. For .debug_frame FDEs, this is supposed to be the target address
370 # size from the associated CU header, and which is equivalent to the
371 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
372 # Unfortunately there is no good way to determine this value. Therefore
373 # dwarf2_addr_size simply defaults to the target pointer size.
374 #
375 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
376 # defined using the target's pointer size so far.
377 #
378 # Note that dwarf2_addr_size only needs to be redefined by a target if the
379 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
380 # and if Dwarf versions < 4 need to be supported.
381 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
382 #
383 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
384 v;int;char_signed;;;1;-1;1
385 #
386 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
387 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
388 # Function for getting target's idea of a frame pointer. FIXME: GDB's
389 # whole scheme for dealing with "frames" and "frame pointers" needs a
390 # serious shakedown.
391 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
392 #
393 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
394 # Read a register into a new struct value. If the register is wholly
395 # or partly unavailable, this should call mark_value_bytes_unavailable
396 # as appropriate. If this is defined, then pseudo_register_read will
397 # never be called.
398 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
399 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
400 #
401 v;int;num_regs;;;0;-1
402 # This macro gives the number of pseudo-registers that live in the
403 # register namespace but do not get fetched or stored on the target.
404 # These pseudo-registers may be aliases for other registers,
405 # combinations of other registers, or they may be computed by GDB.
406 v;int;num_pseudo_regs;;;0;0;;0
407
408 # Assemble agent expression bytecode to collect pseudo-register REG.
409 # Return -1 if something goes wrong, 0 otherwise.
410 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
411
412 # Assemble agent expression bytecode to push the value of pseudo-register
413 # REG on the interpreter stack.
414 # Return -1 if something goes wrong, 0 otherwise.
415 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
416
417 # Some targets/architectures can do extra processing/display of
418 # segmentation faults. E.g., Intel MPX boundary faults.
419 # Call the architecture dependent function to handle the fault.
420 # UIOUT is the output stream where the handler will place information.
421 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
422
423 # GDB's standard (or well known) register numbers. These can map onto
424 # a real register or a pseudo (computed) register or not be defined at
425 # all (-1).
426 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
427 v;int;sp_regnum;;;-1;-1;;0
428 v;int;pc_regnum;;;-1;-1;;0
429 v;int;ps_regnum;;;-1;-1;;0
430 v;int;fp0_regnum;;;0;-1;;0
431 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
432 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
433 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
434 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
435 # Convert from an sdb register number to an internal gdb register number.
436 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
437 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
438 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
439 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
440 m;const char *;register_name;int regnr;regnr;;0
441
442 # Return the type of a register specified by the architecture. Only
443 # the register cache should call this function directly; others should
444 # use "register_type".
445 M;struct type *;register_type;int reg_nr;reg_nr
446
447 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
448 # a dummy frame. A dummy frame is created before an inferior call,
449 # the frame_id returned here must match the frame_id that was built
450 # for the inferior call. Usually this means the returned frame_id's
451 # stack address should match the address returned by
452 # gdbarch_push_dummy_call, and the returned frame_id's code address
453 # should match the address at which the breakpoint was set in the dummy
454 # frame.
455 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
456 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
457 # deprecated_fp_regnum.
458 v;int;deprecated_fp_regnum;;;-1;-1;;0
459
460 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
461 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
462 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
463
464 # Return true if the code of FRAME is writable.
465 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
466
467 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
468 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
469 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
470 # MAP a GDB RAW register number onto a simulator register number. See
471 # also include/...-sim.h.
472 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
473 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
474 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
475
476 # Determine the address where a longjmp will land and save this address
477 # in PC. Return nonzero on success.
478 #
479 # FRAME corresponds to the longjmp frame.
480 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
481
482 #
483 v;int;believe_pcc_promotion;;;;;;;
484 #
485 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
486 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
487 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
488 # Construct a value representing the contents of register REGNUM in
489 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
490 # allocate and return a struct value with all value attributes
491 # (but not the value contents) filled in.
492 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
493 #
494 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
495 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
496 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
497
498 # Return the return-value convention that will be used by FUNCTION
499 # to return a value of type VALTYPE. FUNCTION may be NULL in which
500 # case the return convention is computed based only on VALTYPE.
501 #
502 # If READBUF is not NULL, extract the return value and save it in this buffer.
503 #
504 # If WRITEBUF is not NULL, it contains a return value which will be
505 # stored into the appropriate register. This can be used when we want
506 # to force the value returned by a function (see the "return" command
507 # for instance).
508 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
509
510 # Return true if the return value of function is stored in the first hidden
511 # parameter. In theory, this feature should be language-dependent, specified
512 # by language and its ABI, such as C++. Unfortunately, compiler may
513 # implement it to a target-dependent feature. So that we need such hook here
514 # to be aware of this in GDB.
515 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
516
517 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
518 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
519 # On some platforms, a single function may provide multiple entry points,
520 # e.g. one that is used for function-pointer calls and a different one
521 # that is used for direct function calls.
522 # In order to ensure that breakpoints set on the function will trigger
523 # no matter via which entry point the function is entered, a platform
524 # may provide the skip_entrypoint callback. It is called with IP set
525 # to the main entry point of a function (as determined by the symbol table),
526 # and should return the address of the innermost entry point, where the
527 # actual breakpoint needs to be set. Note that skip_entrypoint is used
528 # by GDB common code even when debugging optimized code, where skip_prologue
529 # is not used.
530 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
531
532 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
533 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
534
535 # Return the breakpoint kind for this target based on *PCPTR.
536 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
537
538 # Return the software breakpoint from KIND. KIND can have target
539 # specific meaning like the Z0 kind parameter.
540 # SIZE is set to the software breakpoint's length in memory.
541 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
542
543 # Return the breakpoint kind for this target based on the current
544 # processor state (e.g. the current instruction mode on ARM) and the
545 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
546 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
547
548 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
549 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
550 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
551 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
552
553 # A function can be addressed by either it's "pointer" (possibly a
554 # descriptor address) or "entry point" (first executable instruction).
555 # The method "convert_from_func_ptr_addr" converting the former to the
556 # latter. gdbarch_deprecated_function_start_offset is being used to implement
557 # a simplified subset of that functionality - the function's address
558 # corresponds to the "function pointer" and the function's start
559 # corresponds to the "function entry point" - and hence is redundant.
560
561 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
562
563 # Return the remote protocol register number associated with this
564 # register. Normally the identity mapping.
565 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
566
567 # Fetch the target specific address used to represent a load module.
568 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
569
570 # Return the thread-local address at OFFSET in the thread-local
571 # storage for the thread PTID and the shared library or executable
572 # file given by LM_ADDR. If that block of thread-local storage hasn't
573 # been allocated yet, this function may throw an error. LM_ADDR may
574 # be zero for statically linked multithreaded inferiors.
575
576 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
577 #
578 v;CORE_ADDR;frame_args_skip;;;0;;;0
579 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
580 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
581 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
582 # frame-base. Enable frame-base before frame-unwind.
583 F;int;frame_num_args;struct frame_info *frame;frame
584 #
585 M;CORE_ADDR;frame_align;CORE_ADDR address;address
586 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
587 v;int;frame_red_zone_size
588 #
589 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
590 # On some machines there are bits in addresses which are not really
591 # part of the address, but are used by the kernel, the hardware, etc.
592 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
593 # we get a "real" address such as one would find in a symbol table.
594 # This is used only for addresses of instructions, and even then I'm
595 # not sure it's used in all contexts. It exists to deal with there
596 # being a few stray bits in the PC which would mislead us, not as some
597 # sort of generic thing to handle alignment or segmentation (it's
598 # possible it should be in TARGET_READ_PC instead).
599 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
600
601 # On some machines, not all bits of an address word are significant.
602 # For example, on AArch64, the top bits of an address known as the "tag"
603 # are ignored by the kernel, the hardware, etc. and can be regarded as
604 # additional data associated with the address.
605 v;int;significant_addr_bit;;;;;;0
606
607 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
608 # indicates if the target needs software single step. An ISA method to
609 # implement it.
610 #
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
612 # target can single step. If not, then implement single step using breakpoints.
613 #
614 # Return a vector of addresses on which the software single step
615 # breakpoints should be inserted. NULL means software single step is
616 # not used.
617 # Multiple breakpoints may be inserted for some instructions such as
618 # conditional branch. However, each implementation must always evaluate
619 # the condition and only put the breakpoint at the branch destination if
620 # the condition is true, so that we ensure forward progress when stepping
621 # past a conditional branch to self.
622 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
623
624 # Return non-zero if the processor is executing a delay slot and a
625 # further single-step is needed before the instruction finishes.
626 M;int;single_step_through_delay;struct frame_info *frame;frame
627 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
628 # disassembler. Perhaps objdump can handle it?
629 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
630 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
631
632
633 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
634 # evaluates non-zero, this is the address where the debugger will place
635 # a step-resume breakpoint to get us past the dynamic linker.
636 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
637 # Some systems also have trampoline code for returning from shared libs.
638 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
639
640 # Return true if PC lies inside an indirect branch thunk.
641 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
642
643 # A target might have problems with watchpoints as soon as the stack
644 # frame of the current function has been destroyed. This mostly happens
645 # as the first action in a function's epilogue. stack_frame_destroyed_p()
646 # is defined to return a non-zero value if either the given addr is one
647 # instruction after the stack destroying instruction up to the trailing
648 # return instruction or if we can figure out that the stack frame has
649 # already been invalidated regardless of the value of addr. Targets
650 # which don't suffer from that problem could just let this functionality
651 # untouched.
652 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
653 # Process an ELF symbol in the minimal symbol table in a backend-specific
654 # way. Normally this hook is supposed to do nothing, however if required,
655 # then this hook can be used to apply tranformations to symbols that are
656 # considered special in some way. For example the MIPS backend uses it
657 # to interpret \`st_other' information to mark compressed code symbols so
658 # that they can be treated in the appropriate manner in the processing of
659 # the main symbol table and DWARF-2 records.
660 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
661 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
662 # Process a symbol in the main symbol table in a backend-specific way.
663 # Normally this hook is supposed to do nothing, however if required,
664 # then this hook can be used to apply tranformations to symbols that
665 # are considered special in some way. This is currently used by the
666 # MIPS backend to make sure compressed code symbols have the ISA bit
667 # set. This in turn is needed for symbol values seen in GDB to match
668 # the values used at the runtime by the program itself, for function
669 # and label references.
670 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
671 # Adjust the address retrieved from a DWARF-2 record other than a line
672 # entry in a backend-specific way. Normally this hook is supposed to
673 # return the address passed unchanged, however if that is incorrect for
674 # any reason, then this hook can be used to fix the address up in the
675 # required manner. This is currently used by the MIPS backend to make
676 # sure addresses in FDE, range records, etc. referring to compressed
677 # code have the ISA bit set, matching line information and the symbol
678 # table.
679 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
680 # Adjust the address updated by a line entry in a backend-specific way.
681 # Normally this hook is supposed to return the address passed unchanged,
682 # however in the case of inconsistencies in these records, this hook can
683 # be used to fix them up in the required manner. This is currently used
684 # by the MIPS backend to make sure all line addresses in compressed code
685 # are presented with the ISA bit set, which is not always the case. This
686 # in turn ensures breakpoint addresses are correctly matched against the
687 # stop PC.
688 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
689 v;int;cannot_step_breakpoint;;;0;0;;0
690 # See comment in target.h about continuable, steppable and
691 # non-steppable watchpoints.
692 v;int;have_nonsteppable_watchpoint;;;0;0;;0
693 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
694 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
695 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
696 # FS are passed from the generic execute_cfa_program function.
697 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
698
699 # Return the appropriate type_flags for the supplied address class.
700 # This function should return 1 if the address class was recognized and
701 # type_flags was set, zero otherwise.
702 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
703 # Is a register in a group
704 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
705 # Fetch the pointer to the ith function argument.
706 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
707
708 # Iterate over all supported register notes in a core file. For each
709 # supported register note section, the iterator must call CB and pass
710 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
711 # the supported register note sections based on the current register
712 # values. Otherwise it should enumerate all supported register note
713 # sections.
714 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
715
716 # Create core file notes
717 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
718
719 # Find core file memory regions
720 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
721
722 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
723 # core file into buffer READBUF with length LEN. Return the number of bytes read
724 # (zero indicates failure).
725 # failed, otherwise, return the red length of READBUF.
726 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
727
728 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
729 # libraries list from core file into buffer READBUF with length LEN.
730 # Return the number of bytes read (zero indicates failure).
731 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
732
733 # How the core target converts a PTID from a core file to a string.
734 M;std::string;core_pid_to_str;ptid_t ptid;ptid
735
736 # How the core target extracts the name of a thread from a core file.
737 M;const char *;core_thread_name;struct thread_info *thr;thr
738
739 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
740 # from core file into buffer READBUF with length LEN. Return the number
741 # of bytes read (zero indicates EOF, a negative value indicates failure).
742 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
743
744 # BFD target to use when generating a core file.
745 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
746
747 # If the elements of C++ vtables are in-place function descriptors rather
748 # than normal function pointers (which may point to code or a descriptor),
749 # set this to one.
750 v;int;vtable_function_descriptors;;;0;0;;0
751
752 # Set if the least significant bit of the delta is used instead of the least
753 # significant bit of the pfn for pointers to virtual member functions.
754 v;int;vbit_in_delta;;;0;0;;0
755
756 # Advance PC to next instruction in order to skip a permanent breakpoint.
757 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
758
759 # The maximum length of an instruction on this architecture in bytes.
760 V;ULONGEST;max_insn_length;;;0;0
761
762 # Copy the instruction at FROM to TO, and make any adjustments
763 # necessary to single-step it at that address.
764 #
765 # REGS holds the state the thread's registers will have before
766 # executing the copied instruction; the PC in REGS will refer to FROM,
767 # not the copy at TO. The caller should update it to point at TO later.
768 #
769 # Return a pointer to data of the architecture's choice to be passed
770 # to gdbarch_displaced_step_fixup.
771 #
772 # For a general explanation of displaced stepping and how GDB uses it,
773 # see the comments in infrun.c.
774 #
775 # The TO area is only guaranteed to have space for
776 # gdbarch_max_insn_length (arch) bytes, so this function must not
777 # write more bytes than that to that area.
778 #
779 # If you do not provide this function, GDB assumes that the
780 # architecture does not support displaced stepping.
781 #
782 # If the instruction cannot execute out of line, return NULL. The
783 # core falls back to stepping past the instruction in-line instead in
784 # that case.
785 M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
786
787 # Return true if GDB should use hardware single-stepping to execute
788 # the displaced instruction identified by CLOSURE. If false,
789 # GDB will simply restart execution at the displaced instruction
790 # location, and it is up to the target to ensure GDB will receive
791 # control again (e.g. by placing a software breakpoint instruction
792 # into the displaced instruction buffer).
793 #
794 # The default implementation returns false on all targets that
795 # provide a gdbarch_software_single_step routine, and true otherwise.
796 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
797
798 # Fix up the state resulting from successfully single-stepping a
799 # displaced instruction, to give the result we would have gotten from
800 # stepping the instruction in its original location.
801 #
802 # REGS is the register state resulting from single-stepping the
803 # displaced instruction.
804 #
805 # CLOSURE is the result from the matching call to
806 # gdbarch_displaced_step_copy_insn.
807 #
808 # If you provide gdbarch_displaced_step_copy_insn.but not this
809 # function, then GDB assumes that no fixup is needed after
810 # single-stepping the instruction.
811 #
812 # For a general explanation of displaced stepping and how GDB uses it,
813 # see the comments in infrun.c.
814 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
815
816 # Return the address of an appropriate place to put displaced
817 # instructions while we step over them. There need only be one such
818 # place, since we're only stepping one thread over a breakpoint at a
819 # time.
820 #
821 # For a general explanation of displaced stepping and how GDB uses it,
822 # see the comments in infrun.c.
823 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
824
825 # Relocate an instruction to execute at a different address. OLDLOC
826 # is the address in the inferior memory where the instruction to
827 # relocate is currently at. On input, TO points to the destination
828 # where we want the instruction to be copied (and possibly adjusted)
829 # to. On output, it points to one past the end of the resulting
830 # instruction(s). The effect of executing the instruction at TO shall
831 # be the same as if executing it at FROM. For example, call
832 # instructions that implicitly push the return address on the stack
833 # should be adjusted to return to the instruction after OLDLOC;
834 # relative branches, and other PC-relative instructions need the
835 # offset adjusted; etc.
836 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
837
838 # Refresh overlay mapped state for section OSECT.
839 F;void;overlay_update;struct obj_section *osect;osect
840
841 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
842
843 # Set if the address in N_SO or N_FUN stabs may be zero.
844 v;int;sofun_address_maybe_missing;;;0;0;;0
845
846 # Parse the instruction at ADDR storing in the record execution log
847 # the registers REGCACHE and memory ranges that will be affected when
848 # the instruction executes, along with their current values.
849 # Return -1 if something goes wrong, 0 otherwise.
850 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
851
852 # Save process state after a signal.
853 # Return -1 if something goes wrong, 0 otherwise.
854 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
855
856 # Signal translation: translate inferior's signal (target's) number
857 # into GDB's representation. The implementation of this method must
858 # be host independent. IOW, don't rely on symbols of the NAT_FILE
859 # header (the nm-*.h files), the host <signal.h> header, or similar
860 # headers. This is mainly used when cross-debugging core files ---
861 # "Live" targets hide the translation behind the target interface
862 # (target_wait, target_resume, etc.).
863 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
864
865 # Signal translation: translate the GDB's internal signal number into
866 # the inferior's signal (target's) representation. The implementation
867 # of this method must be host independent. IOW, don't rely on symbols
868 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
869 # header, or similar headers.
870 # Return the target signal number if found, or -1 if the GDB internal
871 # signal number is invalid.
872 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
873
874 # Extra signal info inspection.
875 #
876 # Return a type suitable to inspect extra signal information.
877 M;struct type *;get_siginfo_type;void;
878
879 # Record architecture-specific information from the symbol table.
880 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
881
882 # Function for the 'catch syscall' feature.
883
884 # Get architecture-specific system calls information from registers.
885 M;LONGEST;get_syscall_number;thread_info *thread;thread
886
887 # The filename of the XML syscall for this architecture.
888 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
889
890 # Information about system calls from this architecture
891 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
892
893 # SystemTap related fields and functions.
894
895 # A NULL-terminated array of prefixes used to mark an integer constant
896 # on the architecture's assembly.
897 # For example, on x86 integer constants are written as:
898 #
899 # \$10 ;; integer constant 10
900 #
901 # in this case, this prefix would be the character \`\$\'.
902 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
903
904 # A NULL-terminated array of suffixes used to mark an integer constant
905 # on the architecture's assembly.
906 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
907
908 # A NULL-terminated array of prefixes used to mark a register name on
909 # the architecture's assembly.
910 # For example, on x86 the register name is written as:
911 #
912 # \%eax ;; register eax
913 #
914 # in this case, this prefix would be the character \`\%\'.
915 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
916
917 # A NULL-terminated array of suffixes used to mark a register name on
918 # the architecture's assembly.
919 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
920
921 # A NULL-terminated array of prefixes used to mark a register
922 # indirection on the architecture's assembly.
923 # For example, on x86 the register indirection is written as:
924 #
925 # \(\%eax\) ;; indirecting eax
926 #
927 # in this case, this prefix would be the charater \`\(\'.
928 #
929 # Please note that we use the indirection prefix also for register
930 # displacement, e.g., \`4\(\%eax\)\' on x86.
931 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
932
933 # A NULL-terminated array of suffixes used to mark a register
934 # indirection on the architecture's assembly.
935 # For example, on x86 the register indirection is written as:
936 #
937 # \(\%eax\) ;; indirecting eax
938 #
939 # in this case, this prefix would be the charater \`\)\'.
940 #
941 # Please note that we use the indirection suffix also for register
942 # displacement, e.g., \`4\(\%eax\)\' on x86.
943 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
944
945 # Prefix(es) used to name a register using GDB's nomenclature.
946 #
947 # For example, on PPC a register is represented by a number in the assembly
948 # language (e.g., \`10\' is the 10th general-purpose register). However,
949 # inside GDB this same register has an \`r\' appended to its name, so the 10th
950 # register would be represented as \`r10\' internally.
951 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
952
953 # Suffix used to name a register using GDB's nomenclature.
954 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
955
956 # Check if S is a single operand.
957 #
958 # Single operands can be:
959 # \- Literal integers, e.g. \`\$10\' on x86
960 # \- Register access, e.g. \`\%eax\' on x86
961 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
962 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
963 #
964 # This function should check for these patterns on the string
965 # and return 1 if some were found, or zero otherwise. Please try to match
966 # as much info as you can from the string, i.e., if you have to match
967 # something like \`\(\%\', do not match just the \`\(\'.
968 M;int;stap_is_single_operand;const char *s;s
969
970 # Function used to handle a "special case" in the parser.
971 #
972 # A "special case" is considered to be an unknown token, i.e., a token
973 # that the parser does not know how to parse. A good example of special
974 # case would be ARM's register displacement syntax:
975 #
976 # [R0, #4] ;; displacing R0 by 4
977 #
978 # Since the parser assumes that a register displacement is of the form:
979 #
980 # <number> <indirection_prefix> <register_name> <indirection_suffix>
981 #
982 # it means that it will not be able to recognize and parse this odd syntax.
983 # Therefore, we should add a special case function that will handle this token.
984 #
985 # This function should generate the proper expression form of the expression
986 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
987 # and so on). It should also return 1 if the parsing was successful, or zero
988 # if the token was not recognized as a special token (in this case, returning
989 # zero means that the special parser is deferring the parsing to the generic
990 # parser), and should advance the buffer pointer (p->arg).
991 M;int;stap_parse_special_token;struct stap_parse_info *p;p
992
993 # Perform arch-dependent adjustments to a register name.
994 #
995 # In very specific situations, it may be necessary for the register
996 # name present in a SystemTap probe's argument to be handled in a
997 # special way. For example, on i386, GCC may over-optimize the
998 # register allocation and use smaller registers than necessary. In
999 # such cases, the client that is reading and evaluating the SystemTap
1000 # probe (ourselves) will need to actually fetch values from the wider
1001 # version of the register in question.
1002 #
1003 # To illustrate the example, consider the following probe argument
1004 # (i386):
1005 #
1006 # 4@%ax
1007 #
1008 # This argument says that its value can be found at the %ax register,
1009 # which is a 16-bit register. However, the argument's prefix says
1010 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1011 # this case, GDB should actually fetch the probe's value from register
1012 # %eax, not %ax. In this scenario, this function would actually
1013 # replace the register name from %ax to %eax.
1014 #
1015 # The rationale for this can be found at PR breakpoints/24541.
1016 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1017
1018 # DTrace related functions.
1019
1020 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1021 # NARG must be >= 0.
1022 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1023
1024 # True if the given ADDR does not contain the instruction sequence
1025 # corresponding to a disabled DTrace is-enabled probe.
1026 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1027
1028 # Enable a DTrace is-enabled probe at ADDR.
1029 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1030
1031 # Disable a DTrace is-enabled probe at ADDR.
1032 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1033
1034 # True if the list of shared libraries is one and only for all
1035 # processes, as opposed to a list of shared libraries per inferior.
1036 # This usually means that all processes, although may or may not share
1037 # an address space, will see the same set of symbols at the same
1038 # addresses.
1039 v;int;has_global_solist;;;0;0;;0
1040
1041 # On some targets, even though each inferior has its own private
1042 # address space, the debug interface takes care of making breakpoints
1043 # visible to all address spaces automatically. For such cases,
1044 # this property should be set to true.
1045 v;int;has_global_breakpoints;;;0;0;;0
1046
1047 # True if inferiors share an address space (e.g., uClinux).
1048 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1049
1050 # True if a fast tracepoint can be set at an address.
1051 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1052
1053 # Guess register state based on tracepoint location. Used for tracepoints
1054 # where no registers have been collected, but there's only one location,
1055 # allowing us to guess the PC value, and perhaps some other registers.
1056 # On entry, regcache has all registers marked as unavailable.
1057 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1058
1059 # Return the "auto" target charset.
1060 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1061 # Return the "auto" target wide charset.
1062 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1063
1064 # If non-empty, this is a file extension that will be opened in place
1065 # of the file extension reported by the shared library list.
1066 #
1067 # This is most useful for toolchains that use a post-linker tool,
1068 # where the names of the files run on the target differ in extension
1069 # compared to the names of the files GDB should load for debug info.
1070 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1071
1072 # If true, the target OS has DOS-based file system semantics. That
1073 # is, absolute paths include a drive name, and the backslash is
1074 # considered a directory separator.
1075 v;int;has_dos_based_file_system;;;0;0;;0
1076
1077 # Generate bytecodes to collect the return address in a frame.
1078 # Since the bytecodes run on the target, possibly with GDB not even
1079 # connected, the full unwinding machinery is not available, and
1080 # typically this function will issue bytecodes for one or more likely
1081 # places that the return address may be found.
1082 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1083
1084 # Implement the "info proc" command.
1085 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1086
1087 # Implement the "info proc" command for core files. Noe that there
1088 # are two "info_proc"-like methods on gdbarch -- one for core files,
1089 # one for live targets.
1090 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1091
1092 # Iterate over all objfiles in the order that makes the most sense
1093 # for the architecture to make global symbol searches.
1094 #
1095 # CB is a callback function where OBJFILE is the objfile to be searched,
1096 # and CB_DATA a pointer to user-defined data (the same data that is passed
1097 # when calling this gdbarch method). The iteration stops if this function
1098 # returns nonzero.
1099 #
1100 # CB_DATA is a pointer to some user-defined data to be passed to
1101 # the callback.
1102 #
1103 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1104 # inspected when the symbol search was requested.
1105 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1106
1107 # Ravenscar arch-dependent ops.
1108 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1109
1110 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1111 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1112
1113 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1114 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1115
1116 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1117 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1118
1119 # Return true if there's a program/permanent breakpoint planted in
1120 # memory at ADDRESS, return false otherwise.
1121 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1122
1123 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1124 # Return 0 if *READPTR is already at the end of the buffer.
1125 # Return -1 if there is insufficient buffer for a whole entry.
1126 # Return 1 if an entry was read into *TYPEP and *VALP.
1127 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1128
1129 # Print the description of a single auxv entry described by TYPE and VAL
1130 # to FILE.
1131 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1132
1133 # Find the address range of the current inferior's vsyscall/vDSO, and
1134 # write it to *RANGE. If the vsyscall's length can't be determined, a
1135 # range with zero length is returned. Returns true if the vsyscall is
1136 # found, false otherwise.
1137 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1138
1139 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1140 # PROT has GDB_MMAP_PROT_* bitmask format.
1141 # Throw an error if it is not possible. Returned address is always valid.
1142 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1143
1144 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1145 # Print a warning if it is not possible.
1146 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1147
1148 # Return string (caller has to use xfree for it) with options for GCC
1149 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1150 # These options are put before CU's DW_AT_producer compilation options so that
1151 # they can override it.
1152 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1153
1154 # Return a regular expression that matches names used by this
1155 # architecture in GNU configury triplets. The result is statically
1156 # allocated and must not be freed. The default implementation simply
1157 # returns the BFD architecture name, which is correct in nearly every
1158 # case.
1159 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1160
1161 # Return the size in 8-bit bytes of an addressable memory unit on this
1162 # architecture. This corresponds to the number of 8-bit bytes associated to
1163 # each address in memory.
1164 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1165
1166 # Functions for allowing a target to modify its disassembler options.
1167 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1168 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1169 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1170
1171 # Type alignment override method. Return the architecture specific
1172 # alignment required for TYPE. If there is no special handling
1173 # required for TYPE then return the value 0, GDB will then apply the
1174 # default rules as laid out in gdbtypes.c:type_align.
1175 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1176
1177 # Return a string containing any flags for the given PC in the given FRAME.
1178 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1179
1180 EOF
1181 }
1182
1183 #
1184 # The .log file
1185 #
1186 exec > gdbarch.log
1187 function_list | while do_read
1188 do
1189 cat <<EOF
1190 ${class} ${returntype:-} ${function} (${formal:-})
1191 EOF
1192 for r in ${read}
1193 do
1194 eval echo "\" ${r}=\${${r}}\""
1195 done
1196 if class_is_predicate_p && fallback_default_p
1197 then
1198 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1199 kill $$
1200 exit 1
1201 fi
1202 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1203 then
1204 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1205 kill $$
1206 exit 1
1207 fi
1208 if class_is_multiarch_p
1209 then
1210 if class_is_predicate_p ; then :
1211 elif test "x${predefault}" = "x"
1212 then
1213 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1214 kill $$
1215 exit 1
1216 fi
1217 fi
1218 echo ""
1219 done
1220
1221 exec 1>&2
1222
1223
1224 copyright ()
1225 {
1226 cat <<EOF
1227 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1228 /* vi:set ro: */
1229
1230 /* Dynamic architecture support for GDB, the GNU debugger.
1231
1232 Copyright (C) 1998-2020 Free Software Foundation, Inc.
1233
1234 This file is part of GDB.
1235
1236 This program is free software; you can redistribute it and/or modify
1237 it under the terms of the GNU General Public License as published by
1238 the Free Software Foundation; either version 3 of the License, or
1239 (at your option) any later version.
1240
1241 This program is distributed in the hope that it will be useful,
1242 but WITHOUT ANY WARRANTY; without even the implied warranty of
1243 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1244 GNU General Public License for more details.
1245
1246 You should have received a copy of the GNU General Public License
1247 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1248
1249 /* This file was created with the aid of \`\`gdbarch.sh''. */
1250
1251 EOF
1252 }
1253
1254 #
1255 # The .h file
1256 #
1257
1258 exec > new-gdbarch.h
1259 copyright
1260 cat <<EOF
1261 #ifndef GDBARCH_H
1262 #define GDBARCH_H
1263
1264 #include <vector>
1265 #include "frame.h"
1266 #include "dis-asm.h"
1267 #include "gdb_obstack.h"
1268 #include "infrun.h"
1269 #include "osabi.h"
1270
1271 struct floatformat;
1272 struct ui_file;
1273 struct value;
1274 struct objfile;
1275 struct obj_section;
1276 struct minimal_symbol;
1277 struct regcache;
1278 struct reggroup;
1279 struct regset;
1280 struct disassemble_info;
1281 struct target_ops;
1282 struct obstack;
1283 struct bp_target_info;
1284 struct target_desc;
1285 struct symbol;
1286 struct syscall;
1287 struct agent_expr;
1288 struct axs_value;
1289 struct stap_parse_info;
1290 struct expr_builder;
1291 struct ravenscar_arch_ops;
1292 struct mem_range;
1293 struct syscalls_info;
1294 struct thread_info;
1295 struct ui_out;
1296
1297 #include "regcache.h"
1298
1299 /* The architecture associated with the inferior through the
1300 connection to the target.
1301
1302 The architecture vector provides some information that is really a
1303 property of the inferior, accessed through a particular target:
1304 ptrace operations; the layout of certain RSP packets; the solib_ops
1305 vector; etc. To differentiate architecture accesses to
1306 per-inferior/target properties from
1307 per-thread/per-frame/per-objfile properties, accesses to
1308 per-inferior/target properties should be made through this
1309 gdbarch. */
1310
1311 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1312 extern struct gdbarch *target_gdbarch (void);
1313
1314 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1315 gdbarch method. */
1316
1317 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1318 (struct objfile *objfile, void *cb_data);
1319
1320 /* Callback type for regset section iterators. The callback usually
1321 invokes the REGSET's supply or collect method, to which it must
1322 pass a buffer - for collects this buffer will need to be created using
1323 COLLECT_SIZE, for supply the existing buffer being read from should
1324 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1325 is used for diagnostic messages. CB_DATA should have been passed
1326 unchanged through the iterator. */
1327
1328 typedef void (iterate_over_regset_sections_cb)
1329 (const char *sect_name, int supply_size, int collect_size,
1330 const struct regset *regset, const char *human_name, void *cb_data);
1331
1332 /* For a function call, does the function return a value using a
1333 normal value return or a structure return - passing a hidden
1334 argument pointing to storage. For the latter, there are two
1335 cases: language-mandated structure return and target ABI
1336 structure return. */
1337
1338 enum function_call_return_method
1339 {
1340 /* Standard value return. */
1341 return_method_normal = 0,
1342
1343 /* Language ABI structure return. This is handled
1344 by passing the return location as the first parameter to
1345 the function, even preceding "this". */
1346 return_method_hidden_param,
1347
1348 /* Target ABI struct return. This is target-specific; for instance,
1349 on ia64 the first argument is passed in out0 but the hidden
1350 structure return pointer would normally be passed in r8. */
1351 return_method_struct,
1352 };
1353
1354 EOF
1355
1356 # function typedef's
1357 printf "\n"
1358 printf "\n"
1359 printf "/* The following are pre-initialized by GDBARCH. */\n"
1360 function_list | while do_read
1361 do
1362 if class_is_info_p
1363 then
1364 printf "\n"
1365 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1366 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1367 fi
1368 done
1369
1370 # function typedef's
1371 printf "\n"
1372 printf "\n"
1373 printf "/* The following are initialized by the target dependent code. */\n"
1374 function_list | while do_read
1375 do
1376 if [ -n "${comment}" ]
1377 then
1378 echo "${comment}" | sed \
1379 -e '2 s,#,/*,' \
1380 -e '3,$ s,#, ,' \
1381 -e '$ s,$, */,'
1382 fi
1383
1384 if class_is_predicate_p
1385 then
1386 printf "\n"
1387 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1388 fi
1389 if class_is_variable_p
1390 then
1391 printf "\n"
1392 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1393 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1394 fi
1395 if class_is_function_p
1396 then
1397 printf "\n"
1398 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1399 then
1400 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1401 elif class_is_multiarch_p
1402 then
1403 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1404 else
1405 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1406 fi
1407 if [ "x${formal}" = "xvoid" ]
1408 then
1409 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1410 else
1411 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1412 fi
1413 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1414 fi
1415 done
1416
1417 # close it off
1418 cat <<EOF
1419
1420 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1421
1422
1423 /* Mechanism for co-ordinating the selection of a specific
1424 architecture.
1425
1426 GDB targets (*-tdep.c) can register an interest in a specific
1427 architecture. Other GDB components can register a need to maintain
1428 per-architecture data.
1429
1430 The mechanisms below ensures that there is only a loose connection
1431 between the set-architecture command and the various GDB
1432 components. Each component can independently register their need
1433 to maintain architecture specific data with gdbarch.
1434
1435 Pragmatics:
1436
1437 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1438 didn't scale.
1439
1440 The more traditional mega-struct containing architecture specific
1441 data for all the various GDB components was also considered. Since
1442 GDB is built from a variable number of (fairly independent)
1443 components it was determined that the global aproach was not
1444 applicable. */
1445
1446
1447 /* Register a new architectural family with GDB.
1448
1449 Register support for the specified ARCHITECTURE with GDB. When
1450 gdbarch determines that the specified architecture has been
1451 selected, the corresponding INIT function is called.
1452
1453 --
1454
1455 The INIT function takes two parameters: INFO which contains the
1456 information available to gdbarch about the (possibly new)
1457 architecture; ARCHES which is a list of the previously created
1458 \`\`struct gdbarch'' for this architecture.
1459
1460 The INFO parameter is, as far as possible, be pre-initialized with
1461 information obtained from INFO.ABFD or the global defaults.
1462
1463 The ARCHES parameter is a linked list (sorted most recently used)
1464 of all the previously created architures for this architecture
1465 family. The (possibly NULL) ARCHES->gdbarch can used to access
1466 values from the previously selected architecture for this
1467 architecture family.
1468
1469 The INIT function shall return any of: NULL - indicating that it
1470 doesn't recognize the selected architecture; an existing \`\`struct
1471 gdbarch'' from the ARCHES list - indicating that the new
1472 architecture is just a synonym for an earlier architecture (see
1473 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1474 - that describes the selected architecture (see gdbarch_alloc()).
1475
1476 The DUMP_TDEP function shall print out all target specific values.
1477 Care should be taken to ensure that the function works in both the
1478 multi-arch and non- multi-arch cases. */
1479
1480 struct gdbarch_list
1481 {
1482 struct gdbarch *gdbarch;
1483 struct gdbarch_list *next;
1484 };
1485
1486 struct gdbarch_info
1487 {
1488 /* Use default: NULL (ZERO). */
1489 const struct bfd_arch_info *bfd_arch_info;
1490
1491 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1492 enum bfd_endian byte_order;
1493
1494 enum bfd_endian byte_order_for_code;
1495
1496 /* Use default: NULL (ZERO). */
1497 bfd *abfd;
1498
1499 /* Use default: NULL (ZERO). */
1500 union
1501 {
1502 /* Architecture-specific information. The generic form for targets
1503 that have extra requirements. */
1504 struct gdbarch_tdep_info *tdep_info;
1505
1506 /* Architecture-specific target description data. Numerous targets
1507 need only this, so give them an easy way to hold it. */
1508 struct tdesc_arch_data *tdesc_data;
1509
1510 /* SPU file system ID. This is a single integer, so using the
1511 generic form would only complicate code. Other targets may
1512 reuse this member if suitable. */
1513 int *id;
1514 };
1515
1516 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1517 enum gdb_osabi osabi;
1518
1519 /* Use default: NULL (ZERO). */
1520 const struct target_desc *target_desc;
1521 };
1522
1523 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1524 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1525
1526 /* DEPRECATED - use gdbarch_register() */
1527 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1528
1529 extern void gdbarch_register (enum bfd_architecture architecture,
1530 gdbarch_init_ftype *,
1531 gdbarch_dump_tdep_ftype *);
1532
1533
1534 /* Return a freshly allocated, NULL terminated, array of the valid
1535 architecture names. Since architectures are registered during the
1536 _initialize phase this function only returns useful information
1537 once initialization has been completed. */
1538
1539 extern const char **gdbarch_printable_names (void);
1540
1541
1542 /* Helper function. Search the list of ARCHES for a GDBARCH that
1543 matches the information provided by INFO. */
1544
1545 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1546
1547
1548 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1549 basic initialization using values obtained from the INFO and TDEP
1550 parameters. set_gdbarch_*() functions are called to complete the
1551 initialization of the object. */
1552
1553 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1554
1555
1556 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1557 It is assumed that the caller freeds the \`\`struct
1558 gdbarch_tdep''. */
1559
1560 extern void gdbarch_free (struct gdbarch *);
1561
1562 /* Get the obstack owned by ARCH. */
1563
1564 extern obstack *gdbarch_obstack (gdbarch *arch);
1565
1566 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1567 obstack. The memory is freed when the corresponding architecture
1568 is also freed. */
1569
1570 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1571 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1572
1573 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1574 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1575
1576 /* Duplicate STRING, returning an equivalent string that's allocated on the
1577 obstack associated with GDBARCH. The string is freed when the corresponding
1578 architecture is also freed. */
1579
1580 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1581
1582 /* Helper function. Force an update of the current architecture.
1583
1584 The actual architecture selected is determined by INFO, \`\`(gdb) set
1585 architecture'' et.al., the existing architecture and BFD's default
1586 architecture. INFO should be initialized to zero and then selected
1587 fields should be updated.
1588
1589 Returns non-zero if the update succeeds. */
1590
1591 extern int gdbarch_update_p (struct gdbarch_info info);
1592
1593
1594 /* Helper function. Find an architecture matching info.
1595
1596 INFO should be initialized using gdbarch_info_init, relevant fields
1597 set, and then finished using gdbarch_info_fill.
1598
1599 Returns the corresponding architecture, or NULL if no matching
1600 architecture was found. */
1601
1602 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1603
1604
1605 /* Helper function. Set the target gdbarch to "gdbarch". */
1606
1607 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1608
1609
1610 /* Register per-architecture data-pointer.
1611
1612 Reserve space for a per-architecture data-pointer. An identifier
1613 for the reserved data-pointer is returned. That identifer should
1614 be saved in a local static variable.
1615
1616 Memory for the per-architecture data shall be allocated using
1617 gdbarch_obstack_zalloc. That memory will be deleted when the
1618 corresponding architecture object is deleted.
1619
1620 When a previously created architecture is re-selected, the
1621 per-architecture data-pointer for that previous architecture is
1622 restored. INIT() is not re-called.
1623
1624 Multiple registrarants for any architecture are allowed (and
1625 strongly encouraged). */
1626
1627 struct gdbarch_data;
1628
1629 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1630 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1631 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1632 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1633 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1634 struct gdbarch_data *data,
1635 void *pointer);
1636
1637 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1638
1639
1640 /* Set the dynamic target-system-dependent parameters (architecture,
1641 byte-order, ...) using information found in the BFD. */
1642
1643 extern void set_gdbarch_from_file (bfd *);
1644
1645
1646 /* Initialize the current architecture to the "first" one we find on
1647 our list. */
1648
1649 extern void initialize_current_architecture (void);
1650
1651 /* gdbarch trace variable */
1652 extern unsigned int gdbarch_debug;
1653
1654 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1655
1656 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1657
1658 static inline int
1659 gdbarch_num_cooked_regs (gdbarch *arch)
1660 {
1661 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1662 }
1663
1664 #endif
1665 EOF
1666 exec 1>&2
1667 ../move-if-change new-gdbarch.h gdbarch.h
1668 rm -f new-gdbarch.h
1669
1670
1671 #
1672 # C file
1673 #
1674
1675 exec > new-gdbarch.c
1676 copyright
1677 cat <<EOF
1678
1679 #include "defs.h"
1680 #include "arch-utils.h"
1681
1682 #include "gdbcmd.h"
1683 #include "inferior.h"
1684 #include "symcat.h"
1685
1686 #include "floatformat.h"
1687 #include "reggroups.h"
1688 #include "osabi.h"
1689 #include "gdb_obstack.h"
1690 #include "observable.h"
1691 #include "regcache.h"
1692 #include "objfiles.h"
1693 #include "auxv.h"
1694 #include "frame-unwind.h"
1695 #include "dummy-frame.h"
1696
1697 /* Static function declarations */
1698
1699 static void alloc_gdbarch_data (struct gdbarch *);
1700
1701 /* Non-zero if we want to trace architecture code. */
1702
1703 #ifndef GDBARCH_DEBUG
1704 #define GDBARCH_DEBUG 0
1705 #endif
1706 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1707 static void
1708 show_gdbarch_debug (struct ui_file *file, int from_tty,
1709 struct cmd_list_element *c, const char *value)
1710 {
1711 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1712 }
1713
1714 static const char *
1715 pformat (const struct floatformat **format)
1716 {
1717 if (format == NULL)
1718 return "(null)";
1719 else
1720 /* Just print out one of them - this is only for diagnostics. */
1721 return format[0]->name;
1722 }
1723
1724 static const char *
1725 pstring (const char *string)
1726 {
1727 if (string == NULL)
1728 return "(null)";
1729 return string;
1730 }
1731
1732 static const char *
1733 pstring_ptr (char **string)
1734 {
1735 if (string == NULL || *string == NULL)
1736 return "(null)";
1737 return *string;
1738 }
1739
1740 /* Helper function to print a list of strings, represented as "const
1741 char *const *". The list is printed comma-separated. */
1742
1743 static const char *
1744 pstring_list (const char *const *list)
1745 {
1746 static char ret[100];
1747 const char *const *p;
1748 size_t offset = 0;
1749
1750 if (list == NULL)
1751 return "(null)";
1752
1753 ret[0] = '\0';
1754 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1755 {
1756 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1757 offset += 2 + s;
1758 }
1759
1760 if (offset > 0)
1761 {
1762 gdb_assert (offset - 2 < sizeof (ret));
1763 ret[offset - 2] = '\0';
1764 }
1765
1766 return ret;
1767 }
1768
1769 EOF
1770
1771 # gdbarch open the gdbarch object
1772 printf "\n"
1773 printf "/* Maintain the struct gdbarch object. */\n"
1774 printf "\n"
1775 printf "struct gdbarch\n"
1776 printf "{\n"
1777 printf " /* Has this architecture been fully initialized? */\n"
1778 printf " int initialized_p;\n"
1779 printf "\n"
1780 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1781 printf " struct obstack *obstack;\n"
1782 printf "\n"
1783 printf " /* basic architectural information. */\n"
1784 function_list | while do_read
1785 do
1786 if class_is_info_p
1787 then
1788 printf " %s %s;\n" "$returntype" "$function"
1789 fi
1790 done
1791 printf "\n"
1792 printf " /* target specific vector. */\n"
1793 printf " struct gdbarch_tdep *tdep;\n"
1794 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1795 printf "\n"
1796 printf " /* per-architecture data-pointers. */\n"
1797 printf " unsigned nr_data;\n"
1798 printf " void **data;\n"
1799 printf "\n"
1800 cat <<EOF
1801 /* Multi-arch values.
1802
1803 When extending this structure you must:
1804
1805 Add the field below.
1806
1807 Declare set/get functions and define the corresponding
1808 macro in gdbarch.h.
1809
1810 gdbarch_alloc(): If zero/NULL is not a suitable default,
1811 initialize the new field.
1812
1813 verify_gdbarch(): Confirm that the target updated the field
1814 correctly.
1815
1816 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1817 field is dumped out
1818
1819 get_gdbarch(): Implement the set/get functions (probably using
1820 the macro's as shortcuts).
1821
1822 */
1823
1824 EOF
1825 function_list | while do_read
1826 do
1827 if class_is_variable_p
1828 then
1829 printf " %s %s;\n" "$returntype" "$function"
1830 elif class_is_function_p
1831 then
1832 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1833 fi
1834 done
1835 printf "};\n"
1836
1837 # Create a new gdbarch struct
1838 cat <<EOF
1839
1840 /* Create a new \`\`struct gdbarch'' based on information provided by
1841 \`\`struct gdbarch_info''. */
1842 EOF
1843 printf "\n"
1844 cat <<EOF
1845 struct gdbarch *
1846 gdbarch_alloc (const struct gdbarch_info *info,
1847 struct gdbarch_tdep *tdep)
1848 {
1849 struct gdbarch *gdbarch;
1850
1851 /* Create an obstack for allocating all the per-architecture memory,
1852 then use that to allocate the architecture vector. */
1853 struct obstack *obstack = XNEW (struct obstack);
1854 obstack_init (obstack);
1855 gdbarch = XOBNEW (obstack, struct gdbarch);
1856 memset (gdbarch, 0, sizeof (*gdbarch));
1857 gdbarch->obstack = obstack;
1858
1859 alloc_gdbarch_data (gdbarch);
1860
1861 gdbarch->tdep = tdep;
1862 EOF
1863 printf "\n"
1864 function_list | while do_read
1865 do
1866 if class_is_info_p
1867 then
1868 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1869 fi
1870 done
1871 printf "\n"
1872 printf " /* Force the explicit initialization of these. */\n"
1873 function_list | while do_read
1874 do
1875 if class_is_function_p || class_is_variable_p
1876 then
1877 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1878 then
1879 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1880 fi
1881 fi
1882 done
1883 cat <<EOF
1884 /* gdbarch_alloc() */
1885
1886 return gdbarch;
1887 }
1888 EOF
1889
1890 # Free a gdbarch struct.
1891 printf "\n"
1892 printf "\n"
1893 cat <<EOF
1894
1895 obstack *gdbarch_obstack (gdbarch *arch)
1896 {
1897 return arch->obstack;
1898 }
1899
1900 /* See gdbarch.h. */
1901
1902 char *
1903 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1904 {
1905 return obstack_strdup (arch->obstack, string);
1906 }
1907
1908
1909 /* Free a gdbarch struct. This should never happen in normal
1910 operation --- once you've created a gdbarch, you keep it around.
1911 However, if an architecture's init function encounters an error
1912 building the structure, it may need to clean up a partially
1913 constructed gdbarch. */
1914
1915 void
1916 gdbarch_free (struct gdbarch *arch)
1917 {
1918 struct obstack *obstack;
1919
1920 gdb_assert (arch != NULL);
1921 gdb_assert (!arch->initialized_p);
1922 obstack = arch->obstack;
1923 obstack_free (obstack, 0); /* Includes the ARCH. */
1924 xfree (obstack);
1925 }
1926 EOF
1927
1928 # verify a new architecture
1929 cat <<EOF
1930
1931
1932 /* Ensure that all values in a GDBARCH are reasonable. */
1933
1934 static void
1935 verify_gdbarch (struct gdbarch *gdbarch)
1936 {
1937 string_file log;
1938
1939 /* fundamental */
1940 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1941 log.puts ("\n\tbyte-order");
1942 if (gdbarch->bfd_arch_info == NULL)
1943 log.puts ("\n\tbfd_arch_info");
1944 /* Check those that need to be defined for the given multi-arch level. */
1945 EOF
1946 function_list | while do_read
1947 do
1948 if class_is_function_p || class_is_variable_p
1949 then
1950 if [ "x${invalid_p}" = "x0" ]
1951 then
1952 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1953 elif class_is_predicate_p
1954 then
1955 printf " /* Skip verify of %s, has predicate. */\n" "$function"
1956 # FIXME: See do_read for potential simplification
1957 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
1958 then
1959 printf " if (%s)\n" "$invalid_p"
1960 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1961 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
1962 then
1963 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1964 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1965 elif [ -n "${postdefault}" ]
1966 then
1967 printf " if (gdbarch->%s == 0)\n" "$function"
1968 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1969 elif [ -n "${invalid_p}" ]
1970 then
1971 printf " if (%s)\n" "$invalid_p"
1972 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1973 elif [ -n "${predefault}" ]
1974 then
1975 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1976 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1977 fi
1978 fi
1979 done
1980 cat <<EOF
1981 if (!log.empty ())
1982 internal_error (__FILE__, __LINE__,
1983 _("verify_gdbarch: the following are invalid ...%s"),
1984 log.c_str ());
1985 }
1986 EOF
1987
1988 # dump the structure
1989 printf "\n"
1990 printf "\n"
1991 cat <<EOF
1992 /* Print out the details of the current architecture. */
1993
1994 void
1995 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1996 {
1997 const char *gdb_nm_file = "<not-defined>";
1998
1999 #if defined (GDB_NM_FILE)
2000 gdb_nm_file = GDB_NM_FILE;
2001 #endif
2002 fprintf_unfiltered (file,
2003 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2004 gdb_nm_file);
2005 EOF
2006 function_list | sort '-t;' -k 3 | while do_read
2007 do
2008 # First the predicate
2009 if class_is_predicate_p
2010 then
2011 printf " fprintf_unfiltered (file,\n"
2012 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2013 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2014 fi
2015 # Print the corresponding value.
2016 if class_is_function_p
2017 then
2018 printf " fprintf_unfiltered (file,\n"
2019 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2020 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2021 else
2022 # It is a variable
2023 case "${print}:${returntype}" in
2024 :CORE_ADDR )
2025 fmt="%s"
2026 print="core_addr_to_string_nz (gdbarch->${function})"
2027 ;;
2028 :* )
2029 fmt="%s"
2030 print="plongest (gdbarch->${function})"
2031 ;;
2032 * )
2033 fmt="%s"
2034 ;;
2035 esac
2036 printf " fprintf_unfiltered (file,\n"
2037 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2038 printf " %s);\n" "$print"
2039 fi
2040 done
2041 cat <<EOF
2042 if (gdbarch->dump_tdep != NULL)
2043 gdbarch->dump_tdep (gdbarch, file);
2044 }
2045 EOF
2046
2047
2048 # GET/SET
2049 printf "\n"
2050 cat <<EOF
2051 struct gdbarch_tdep *
2052 gdbarch_tdep (struct gdbarch *gdbarch)
2053 {
2054 if (gdbarch_debug >= 2)
2055 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2056 return gdbarch->tdep;
2057 }
2058 EOF
2059 printf "\n"
2060 function_list | while do_read
2061 do
2062 if class_is_predicate_p
2063 then
2064 printf "\n"
2065 printf "int\n"
2066 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2067 printf "{\n"
2068 printf " gdb_assert (gdbarch != NULL);\n"
2069 printf " return %s;\n" "$predicate"
2070 printf "}\n"
2071 fi
2072 if class_is_function_p
2073 then
2074 printf "\n"
2075 printf "%s\n" "$returntype"
2076 if [ "x${formal}" = "xvoid" ]
2077 then
2078 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2079 else
2080 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2081 fi
2082 printf "{\n"
2083 printf " gdb_assert (gdbarch != NULL);\n"
2084 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2085 if class_is_predicate_p && test -n "${predefault}"
2086 then
2087 # Allow a call to a function with a predicate.
2088 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2089 fi
2090 printf " if (gdbarch_debug >= 2)\n"
2091 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2092 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2093 then
2094 if class_is_multiarch_p
2095 then
2096 params="gdbarch"
2097 else
2098 params=""
2099 fi
2100 else
2101 if class_is_multiarch_p
2102 then
2103 params="gdbarch, ${actual}"
2104 else
2105 params="${actual}"
2106 fi
2107 fi
2108 if [ "x${returntype}" = "xvoid" ]
2109 then
2110 printf " gdbarch->%s (%s);\n" "$function" "$params"
2111 else
2112 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2113 fi
2114 printf "}\n"
2115 printf "\n"
2116 printf "void\n"
2117 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2118 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2119 printf "{\n"
2120 printf " gdbarch->%s = %s;\n" "$function" "$function"
2121 printf "}\n"
2122 elif class_is_variable_p
2123 then
2124 printf "\n"
2125 printf "%s\n" "$returntype"
2126 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2127 printf "{\n"
2128 printf " gdb_assert (gdbarch != NULL);\n"
2129 if [ "x${invalid_p}" = "x0" ]
2130 then
2131 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2132 elif [ -n "${invalid_p}" ]
2133 then
2134 printf " /* Check variable is valid. */\n"
2135 printf " gdb_assert (!(%s));\n" "$invalid_p"
2136 elif [ -n "${predefault}" ]
2137 then
2138 printf " /* Check variable changed from pre-default. */\n"
2139 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2140 fi
2141 printf " if (gdbarch_debug >= 2)\n"
2142 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2143 printf " return gdbarch->%s;\n" "$function"
2144 printf "}\n"
2145 printf "\n"
2146 printf "void\n"
2147 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2148 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2149 printf "{\n"
2150 printf " gdbarch->%s = %s;\n" "$function" "$function"
2151 printf "}\n"
2152 elif class_is_info_p
2153 then
2154 printf "\n"
2155 printf "%s\n" "$returntype"
2156 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2157 printf "{\n"
2158 printf " gdb_assert (gdbarch != NULL);\n"
2159 printf " if (gdbarch_debug >= 2)\n"
2160 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2161 printf " return gdbarch->%s;\n" "$function"
2162 printf "}\n"
2163 fi
2164 done
2165
2166 # All the trailing guff
2167 cat <<EOF
2168
2169
2170 /* Keep a registry of per-architecture data-pointers required by GDB
2171 modules. */
2172
2173 struct gdbarch_data
2174 {
2175 unsigned index;
2176 int init_p;
2177 gdbarch_data_pre_init_ftype *pre_init;
2178 gdbarch_data_post_init_ftype *post_init;
2179 };
2180
2181 struct gdbarch_data_registration
2182 {
2183 struct gdbarch_data *data;
2184 struct gdbarch_data_registration *next;
2185 };
2186
2187 struct gdbarch_data_registry
2188 {
2189 unsigned nr;
2190 struct gdbarch_data_registration *registrations;
2191 };
2192
2193 struct gdbarch_data_registry gdbarch_data_registry =
2194 {
2195 0, NULL,
2196 };
2197
2198 static struct gdbarch_data *
2199 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2200 gdbarch_data_post_init_ftype *post_init)
2201 {
2202 struct gdbarch_data_registration **curr;
2203
2204 /* Append the new registration. */
2205 for (curr = &gdbarch_data_registry.registrations;
2206 (*curr) != NULL;
2207 curr = &(*curr)->next);
2208 (*curr) = XNEW (struct gdbarch_data_registration);
2209 (*curr)->next = NULL;
2210 (*curr)->data = XNEW (struct gdbarch_data);
2211 (*curr)->data->index = gdbarch_data_registry.nr++;
2212 (*curr)->data->pre_init = pre_init;
2213 (*curr)->data->post_init = post_init;
2214 (*curr)->data->init_p = 1;
2215 return (*curr)->data;
2216 }
2217
2218 struct gdbarch_data *
2219 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2220 {
2221 return gdbarch_data_register (pre_init, NULL);
2222 }
2223
2224 struct gdbarch_data *
2225 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2226 {
2227 return gdbarch_data_register (NULL, post_init);
2228 }
2229
2230 /* Create/delete the gdbarch data vector. */
2231
2232 static void
2233 alloc_gdbarch_data (struct gdbarch *gdbarch)
2234 {
2235 gdb_assert (gdbarch->data == NULL);
2236 gdbarch->nr_data = gdbarch_data_registry.nr;
2237 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2238 }
2239
2240 /* Initialize the current value of the specified per-architecture
2241 data-pointer. */
2242
2243 void
2244 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2245 struct gdbarch_data *data,
2246 void *pointer)
2247 {
2248 gdb_assert (data->index < gdbarch->nr_data);
2249 gdb_assert (gdbarch->data[data->index] == NULL);
2250 gdb_assert (data->pre_init == NULL);
2251 gdbarch->data[data->index] = pointer;
2252 }
2253
2254 /* Return the current value of the specified per-architecture
2255 data-pointer. */
2256
2257 void *
2258 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2259 {
2260 gdb_assert (data->index < gdbarch->nr_data);
2261 if (gdbarch->data[data->index] == NULL)
2262 {
2263 /* The data-pointer isn't initialized, call init() to get a
2264 value. */
2265 if (data->pre_init != NULL)
2266 /* Mid architecture creation: pass just the obstack, and not
2267 the entire architecture, as that way it isn't possible for
2268 pre-init code to refer to undefined architecture
2269 fields. */
2270 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2271 else if (gdbarch->initialized_p
2272 && data->post_init != NULL)
2273 /* Post architecture creation: pass the entire architecture
2274 (as all fields are valid), but be careful to also detect
2275 recursive references. */
2276 {
2277 gdb_assert (data->init_p);
2278 data->init_p = 0;
2279 gdbarch->data[data->index] = data->post_init (gdbarch);
2280 data->init_p = 1;
2281 }
2282 else
2283 /* The architecture initialization hasn't completed - punt -
2284 hope that the caller knows what they are doing. Once
2285 deprecated_set_gdbarch_data has been initialized, this can be
2286 changed to an internal error. */
2287 return NULL;
2288 gdb_assert (gdbarch->data[data->index] != NULL);
2289 }
2290 return gdbarch->data[data->index];
2291 }
2292
2293
2294 /* Keep a registry of the architectures known by GDB. */
2295
2296 struct gdbarch_registration
2297 {
2298 enum bfd_architecture bfd_architecture;
2299 gdbarch_init_ftype *init;
2300 gdbarch_dump_tdep_ftype *dump_tdep;
2301 struct gdbarch_list *arches;
2302 struct gdbarch_registration *next;
2303 };
2304
2305 static struct gdbarch_registration *gdbarch_registry = NULL;
2306
2307 static void
2308 append_name (const char ***buf, int *nr, const char *name)
2309 {
2310 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2311 (*buf)[*nr] = name;
2312 *nr += 1;
2313 }
2314
2315 const char **
2316 gdbarch_printable_names (void)
2317 {
2318 /* Accumulate a list of names based on the registed list of
2319 architectures. */
2320 int nr_arches = 0;
2321 const char **arches = NULL;
2322 struct gdbarch_registration *rego;
2323
2324 for (rego = gdbarch_registry;
2325 rego != NULL;
2326 rego = rego->next)
2327 {
2328 const struct bfd_arch_info *ap;
2329 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2330 if (ap == NULL)
2331 internal_error (__FILE__, __LINE__,
2332 _("gdbarch_architecture_names: multi-arch unknown"));
2333 do
2334 {
2335 append_name (&arches, &nr_arches, ap->printable_name);
2336 ap = ap->next;
2337 }
2338 while (ap != NULL);
2339 }
2340 append_name (&arches, &nr_arches, NULL);
2341 return arches;
2342 }
2343
2344
2345 void
2346 gdbarch_register (enum bfd_architecture bfd_architecture,
2347 gdbarch_init_ftype *init,
2348 gdbarch_dump_tdep_ftype *dump_tdep)
2349 {
2350 struct gdbarch_registration **curr;
2351 const struct bfd_arch_info *bfd_arch_info;
2352
2353 /* Check that BFD recognizes this architecture */
2354 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2355 if (bfd_arch_info == NULL)
2356 {
2357 internal_error (__FILE__, __LINE__,
2358 _("gdbarch: Attempt to register "
2359 "unknown architecture (%d)"),
2360 bfd_architecture);
2361 }
2362 /* Check that we haven't seen this architecture before. */
2363 for (curr = &gdbarch_registry;
2364 (*curr) != NULL;
2365 curr = &(*curr)->next)
2366 {
2367 if (bfd_architecture == (*curr)->bfd_architecture)
2368 internal_error (__FILE__, __LINE__,
2369 _("gdbarch: Duplicate registration "
2370 "of architecture (%s)"),
2371 bfd_arch_info->printable_name);
2372 }
2373 /* log it */
2374 if (gdbarch_debug)
2375 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2376 bfd_arch_info->printable_name,
2377 host_address_to_string (init));
2378 /* Append it */
2379 (*curr) = XNEW (struct gdbarch_registration);
2380 (*curr)->bfd_architecture = bfd_architecture;
2381 (*curr)->init = init;
2382 (*curr)->dump_tdep = dump_tdep;
2383 (*curr)->arches = NULL;
2384 (*curr)->next = NULL;
2385 }
2386
2387 void
2388 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2389 gdbarch_init_ftype *init)
2390 {
2391 gdbarch_register (bfd_architecture, init, NULL);
2392 }
2393
2394
2395 /* Look for an architecture using gdbarch_info. */
2396
2397 struct gdbarch_list *
2398 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2399 const struct gdbarch_info *info)
2400 {
2401 for (; arches != NULL; arches = arches->next)
2402 {
2403 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2404 continue;
2405 if (info->byte_order != arches->gdbarch->byte_order)
2406 continue;
2407 if (info->osabi != arches->gdbarch->osabi)
2408 continue;
2409 if (info->target_desc != arches->gdbarch->target_desc)
2410 continue;
2411 return arches;
2412 }
2413 return NULL;
2414 }
2415
2416
2417 /* Find an architecture that matches the specified INFO. Create a new
2418 architecture if needed. Return that new architecture. */
2419
2420 struct gdbarch *
2421 gdbarch_find_by_info (struct gdbarch_info info)
2422 {
2423 struct gdbarch *new_gdbarch;
2424 struct gdbarch_registration *rego;
2425
2426 /* Fill in missing parts of the INFO struct using a number of
2427 sources: "set ..."; INFOabfd supplied; and the global
2428 defaults. */
2429 gdbarch_info_fill (&info);
2430
2431 /* Must have found some sort of architecture. */
2432 gdb_assert (info.bfd_arch_info != NULL);
2433
2434 if (gdbarch_debug)
2435 {
2436 fprintf_unfiltered (gdb_stdlog,
2437 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2438 (info.bfd_arch_info != NULL
2439 ? info.bfd_arch_info->printable_name
2440 : "(null)"));
2441 fprintf_unfiltered (gdb_stdlog,
2442 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2443 info.byte_order,
2444 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2445 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2446 : "default"));
2447 fprintf_unfiltered (gdb_stdlog,
2448 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2449 info.osabi, gdbarch_osabi_name (info.osabi));
2450 fprintf_unfiltered (gdb_stdlog,
2451 "gdbarch_find_by_info: info.abfd %s\n",
2452 host_address_to_string (info.abfd));
2453 fprintf_unfiltered (gdb_stdlog,
2454 "gdbarch_find_by_info: info.tdep_info %s\n",
2455 host_address_to_string (info.tdep_info));
2456 }
2457
2458 /* Find the tdep code that knows about this architecture. */
2459 for (rego = gdbarch_registry;
2460 rego != NULL;
2461 rego = rego->next)
2462 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2463 break;
2464 if (rego == NULL)
2465 {
2466 if (gdbarch_debug)
2467 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2468 "No matching architecture\n");
2469 return 0;
2470 }
2471
2472 /* Ask the tdep code for an architecture that matches "info". */
2473 new_gdbarch = rego->init (info, rego->arches);
2474
2475 /* Did the tdep code like it? No. Reject the change and revert to
2476 the old architecture. */
2477 if (new_gdbarch == NULL)
2478 {
2479 if (gdbarch_debug)
2480 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2481 "Target rejected architecture\n");
2482 return NULL;
2483 }
2484
2485 /* Is this a pre-existing architecture (as determined by already
2486 being initialized)? Move it to the front of the architecture
2487 list (keeping the list sorted Most Recently Used). */
2488 if (new_gdbarch->initialized_p)
2489 {
2490 struct gdbarch_list **list;
2491 struct gdbarch_list *self;
2492 if (gdbarch_debug)
2493 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2494 "Previous architecture %s (%s) selected\n",
2495 host_address_to_string (new_gdbarch),
2496 new_gdbarch->bfd_arch_info->printable_name);
2497 /* Find the existing arch in the list. */
2498 for (list = &rego->arches;
2499 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2500 list = &(*list)->next);
2501 /* It had better be in the list of architectures. */
2502 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2503 /* Unlink SELF. */
2504 self = (*list);
2505 (*list) = self->next;
2506 /* Insert SELF at the front. */
2507 self->next = rego->arches;
2508 rego->arches = self;
2509 /* Return it. */
2510 return new_gdbarch;
2511 }
2512
2513 /* It's a new architecture. */
2514 if (gdbarch_debug)
2515 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2516 "New architecture %s (%s) selected\n",
2517 host_address_to_string (new_gdbarch),
2518 new_gdbarch->bfd_arch_info->printable_name);
2519
2520 /* Insert the new architecture into the front of the architecture
2521 list (keep the list sorted Most Recently Used). */
2522 {
2523 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2524 self->next = rego->arches;
2525 self->gdbarch = new_gdbarch;
2526 rego->arches = self;
2527 }
2528
2529 /* Check that the newly installed architecture is valid. Plug in
2530 any post init values. */
2531 new_gdbarch->dump_tdep = rego->dump_tdep;
2532 verify_gdbarch (new_gdbarch);
2533 new_gdbarch->initialized_p = 1;
2534
2535 if (gdbarch_debug)
2536 gdbarch_dump (new_gdbarch, gdb_stdlog);
2537
2538 return new_gdbarch;
2539 }
2540
2541 /* Make the specified architecture current. */
2542
2543 void
2544 set_target_gdbarch (struct gdbarch *new_gdbarch)
2545 {
2546 gdb_assert (new_gdbarch != NULL);
2547 gdb_assert (new_gdbarch->initialized_p);
2548 current_inferior ()->gdbarch = new_gdbarch;
2549 gdb::observers::architecture_changed.notify (new_gdbarch);
2550 registers_changed ();
2551 }
2552
2553 /* Return the current inferior's arch. */
2554
2555 struct gdbarch *
2556 target_gdbarch (void)
2557 {
2558 return current_inferior ()->gdbarch;
2559 }
2560
2561 void _initialize_gdbarch ();
2562 void
2563 _initialize_gdbarch ()
2564 {
2565 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2566 Set architecture debugging."), _("\\
2567 Show architecture debugging."), _("\\
2568 When non-zero, architecture debugging is enabled."),
2569 NULL,
2570 show_gdbarch_debug,
2571 &setdebuglist, &showdebuglist);
2572 }
2573 EOF
2574
2575 # close things off
2576 exec 1>&2
2577 ../move-if-change new-gdbarch.c gdbarch.c
2578 rm -f new-gdbarch.c