]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
OBVIOUS fix the month of the last gdb/ChangeLog entry to be 11 instead of 12.
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2018 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345 #
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347 #
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
353
354 # Number of bits in a short or unsigned short for the target machine.
355 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
356 # Number of bits in an int or unsigned int for the target machine.
357 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
358 # Number of bits in a long or unsigned long for the target machine.
359 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
360 # Number of bits in a long long or unsigned long long for the target
361 # machine.
362 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
363
364 # The ABI default bit-size and format for "half", "float", "double", and
365 # "long double". These bit/format pairs should eventually be combined
366 # into a single object. For the moment, just initialize them as a pair.
367 # Each format describes both the big and little endian layouts (if
368 # useful).
369
370 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
371 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
372 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
373 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
374 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
375 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
376 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
377 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
378
379 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
380 # starting with C++11.
381 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
382 # One if \`wchar_t' is signed, zero if unsigned.
383 v;int;wchar_signed;;;1;-1;1
384
385 # Returns the floating-point format to be used for values of length LENGTH.
386 # NAME, if non-NULL, is the type name, which may be used to distinguish
387 # different target formats of the same length.
388 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
389
390 # For most targets, a pointer on the target and its representation as an
391 # address in GDB have the same size and "look the same". For such a
392 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
393 # / addr_bit will be set from it.
394 #
395 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
396 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
397 # gdbarch_address_to_pointer as well.
398 #
399 # ptr_bit is the size of a pointer on the target
400 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
401 # addr_bit is the size of a target address as represented in gdb
402 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
403 #
404 # dwarf2_addr_size is the target address size as used in the Dwarf debug
405 # info. For .debug_frame FDEs, this is supposed to be the target address
406 # size from the associated CU header, and which is equivalent to the
407 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
408 # Unfortunately there is no good way to determine this value. Therefore
409 # dwarf2_addr_size simply defaults to the target pointer size.
410 #
411 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
412 # defined using the target's pointer size so far.
413 #
414 # Note that dwarf2_addr_size only needs to be redefined by a target if the
415 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
416 # and if Dwarf versions < 4 need to be supported.
417 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
418 #
419 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
420 v;int;char_signed;;;1;-1;1
421 #
422 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
423 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
424 # Function for getting target's idea of a frame pointer. FIXME: GDB's
425 # whole scheme for dealing with "frames" and "frame pointers" needs a
426 # serious shakedown.
427 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
428 #
429 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
430 # Read a register into a new struct value. If the register is wholly
431 # or partly unavailable, this should call mark_value_bytes_unavailable
432 # as appropriate. If this is defined, then pseudo_register_read will
433 # never be called.
434 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
435 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
436 #
437 v;int;num_regs;;;0;-1
438 # This macro gives the number of pseudo-registers that live in the
439 # register namespace but do not get fetched or stored on the target.
440 # These pseudo-registers may be aliases for other registers,
441 # combinations of other registers, or they may be computed by GDB.
442 v;int;num_pseudo_regs;;;0;0;;0
443
444 # Assemble agent expression bytecode to collect pseudo-register REG.
445 # Return -1 if something goes wrong, 0 otherwise.
446 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
447
448 # Assemble agent expression bytecode to push the value of pseudo-register
449 # REG on the interpreter stack.
450 # Return -1 if something goes wrong, 0 otherwise.
451 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
452
453 # Some targets/architectures can do extra processing/display of
454 # segmentation faults. E.g., Intel MPX boundary faults.
455 # Call the architecture dependent function to handle the fault.
456 # UIOUT is the output stream where the handler will place information.
457 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
458
459 # GDB's standard (or well known) register numbers. These can map onto
460 # a real register or a pseudo (computed) register or not be defined at
461 # all (-1).
462 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
463 v;int;sp_regnum;;;-1;-1;;0
464 v;int;pc_regnum;;;-1;-1;;0
465 v;int;ps_regnum;;;-1;-1;;0
466 v;int;fp0_regnum;;;0;-1;;0
467 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
468 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
469 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
470 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
471 # Convert from an sdb register number to an internal gdb register number.
472 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
473 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
474 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
475 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
476 m;const char *;register_name;int regnr;regnr;;0
477
478 # Return the type of a register specified by the architecture. Only
479 # the register cache should call this function directly; others should
480 # use "register_type".
481 M;struct type *;register_type;int reg_nr;reg_nr
482
483 M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
484 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
485 # deprecated_fp_regnum.
486 v;int;deprecated_fp_regnum;;;-1;-1;;0
487
488 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
489 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
490 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
491
492 # Return true if the code of FRAME is writable.
493 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
494
495 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
496 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
497 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
498 # MAP a GDB RAW register number onto a simulator register number. See
499 # also include/...-sim.h.
500 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
501 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
502 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
503
504 # Determine the address where a longjmp will land and save this address
505 # in PC. Return nonzero on success.
506 #
507 # FRAME corresponds to the longjmp frame.
508 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
509
510 #
511 v;int;believe_pcc_promotion;;;;;;;
512 #
513 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
514 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
515 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
516 # Construct a value representing the contents of register REGNUM in
517 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
518 # allocate and return a struct value with all value attributes
519 # (but not the value contents) filled in.
520 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
521 #
522 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
523 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
524 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
525
526 # Return the return-value convention that will be used by FUNCTION
527 # to return a value of type VALTYPE. FUNCTION may be NULL in which
528 # case the return convention is computed based only on VALTYPE.
529 #
530 # If READBUF is not NULL, extract the return value and save it in this buffer.
531 #
532 # If WRITEBUF is not NULL, it contains a return value which will be
533 # stored into the appropriate register. This can be used when we want
534 # to force the value returned by a function (see the "return" command
535 # for instance).
536 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
537
538 # Return true if the return value of function is stored in the first hidden
539 # parameter. In theory, this feature should be language-dependent, specified
540 # by language and its ABI, such as C++. Unfortunately, compiler may
541 # implement it to a target-dependent feature. So that we need such hook here
542 # to be aware of this in GDB.
543 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
544
545 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
546 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
547 # On some platforms, a single function may provide multiple entry points,
548 # e.g. one that is used for function-pointer calls and a different one
549 # that is used for direct function calls.
550 # In order to ensure that breakpoints set on the function will trigger
551 # no matter via which entry point the function is entered, a platform
552 # may provide the skip_entrypoint callback. It is called with IP set
553 # to the main entry point of a function (as determined by the symbol table),
554 # and should return the address of the innermost entry point, where the
555 # actual breakpoint needs to be set. Note that skip_entrypoint is used
556 # by GDB common code even when debugging optimized code, where skip_prologue
557 # is not used.
558 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
559
560 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
561 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
562
563 # Return the breakpoint kind for this target based on *PCPTR.
564 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
565
566 # Return the software breakpoint from KIND. KIND can have target
567 # specific meaning like the Z0 kind parameter.
568 # SIZE is set to the software breakpoint's length in memory.
569 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
570
571 # Return the breakpoint kind for this target based on the current
572 # processor state (e.g. the current instruction mode on ARM) and the
573 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
574 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
575
576 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
577 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
578 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
579 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
580
581 # A function can be addressed by either it's "pointer" (possibly a
582 # descriptor address) or "entry point" (first executable instruction).
583 # The method "convert_from_func_ptr_addr" converting the former to the
584 # latter. gdbarch_deprecated_function_start_offset is being used to implement
585 # a simplified subset of that functionality - the function's address
586 # corresponds to the "function pointer" and the function's start
587 # corresponds to the "function entry point" - and hence is redundant.
588
589 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
590
591 # Return the remote protocol register number associated with this
592 # register. Normally the identity mapping.
593 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
594
595 # Fetch the target specific address used to represent a load module.
596 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
597 #
598 v;CORE_ADDR;frame_args_skip;;;0;;;0
599 M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
600 M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
601 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
602 # frame-base. Enable frame-base before frame-unwind.
603 F;int;frame_num_args;struct frame_info *frame;frame
604 #
605 M;CORE_ADDR;frame_align;CORE_ADDR address;address
606 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
607 v;int;frame_red_zone_size
608 #
609 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
610 # On some machines there are bits in addresses which are not really
611 # part of the address, but are used by the kernel, the hardware, etc.
612 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
613 # we get a "real" address such as one would find in a symbol table.
614 # This is used only for addresses of instructions, and even then I'm
615 # not sure it's used in all contexts. It exists to deal with there
616 # being a few stray bits in the PC which would mislead us, not as some
617 # sort of generic thing to handle alignment or segmentation (it's
618 # possible it should be in TARGET_READ_PC instead).
619 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
620
621 # On some machines, not all bits of an address word are significant.
622 # For example, on AArch64, the top bits of an address known as the "tag"
623 # are ignored by the kernel, the hardware, etc. and can be regarded as
624 # additional data associated with the address.
625 v;int;significant_addr_bit;;;;;;0
626
627 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
628 # indicates if the target needs software single step. An ISA method to
629 # implement it.
630 #
631 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
632 # target can single step. If not, then implement single step using breakpoints.
633 #
634 # Return a vector of addresses on which the software single step
635 # breakpoints should be inserted. NULL means software single step is
636 # not used.
637 # Multiple breakpoints may be inserted for some instructions such as
638 # conditional branch. However, each implementation must always evaluate
639 # the condition and only put the breakpoint at the branch destination if
640 # the condition is true, so that we ensure forward progress when stepping
641 # past a conditional branch to self.
642 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
643
644 # Return non-zero if the processor is executing a delay slot and a
645 # further single-step is needed before the instruction finishes.
646 M;int;single_step_through_delay;struct frame_info *frame;frame
647 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
648 # disassembler. Perhaps objdump can handle it?
649 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
650 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
651
652
653 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
654 # evaluates non-zero, this is the address where the debugger will place
655 # a step-resume breakpoint to get us past the dynamic linker.
656 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
657 # Some systems also have trampoline code for returning from shared libs.
658 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
659
660 # Return true if PC lies inside an indirect branch thunk.
661 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
662
663 # A target might have problems with watchpoints as soon as the stack
664 # frame of the current function has been destroyed. This mostly happens
665 # as the first action in a function's epilogue. stack_frame_destroyed_p()
666 # is defined to return a non-zero value if either the given addr is one
667 # instruction after the stack destroying instruction up to the trailing
668 # return instruction or if we can figure out that the stack frame has
669 # already been invalidated regardless of the value of addr. Targets
670 # which don't suffer from that problem could just let this functionality
671 # untouched.
672 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
673 # Process an ELF symbol in the minimal symbol table in a backend-specific
674 # way. Normally this hook is supposed to do nothing, however if required,
675 # then this hook can be used to apply tranformations to symbols that are
676 # considered special in some way. For example the MIPS backend uses it
677 # to interpret \`st_other' information to mark compressed code symbols so
678 # that they can be treated in the appropriate manner in the processing of
679 # the main symbol table and DWARF-2 records.
680 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
681 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
682 # Process a symbol in the main symbol table in a backend-specific way.
683 # Normally this hook is supposed to do nothing, however if required,
684 # then this hook can be used to apply tranformations to symbols that
685 # are considered special in some way. This is currently used by the
686 # MIPS backend to make sure compressed code symbols have the ISA bit
687 # set. This in turn is needed for symbol values seen in GDB to match
688 # the values used at the runtime by the program itself, for function
689 # and label references.
690 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
691 # Adjust the address retrieved from a DWARF-2 record other than a line
692 # entry in a backend-specific way. Normally this hook is supposed to
693 # return the address passed unchanged, however if that is incorrect for
694 # any reason, then this hook can be used to fix the address up in the
695 # required manner. This is currently used by the MIPS backend to make
696 # sure addresses in FDE, range records, etc. referring to compressed
697 # code have the ISA bit set, matching line information and the symbol
698 # table.
699 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
700 # Adjust the address updated by a line entry in a backend-specific way.
701 # Normally this hook is supposed to return the address passed unchanged,
702 # however in the case of inconsistencies in these records, this hook can
703 # be used to fix them up in the required manner. This is currently used
704 # by the MIPS backend to make sure all line addresses in compressed code
705 # are presented with the ISA bit set, which is not always the case. This
706 # in turn ensures breakpoint addresses are correctly matched against the
707 # stop PC.
708 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
709 v;int;cannot_step_breakpoint;;;0;0;;0
710 # See comment in target.h about continuable, steppable and
711 # non-steppable watchpoints.
712 v;int;have_nonsteppable_watchpoint;;;0;0;;0
713 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
714 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
715 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
716 # FS are passed from the generic execute_cfa_program function.
717 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
718
719 # Return the appropriate type_flags for the supplied address class.
720 # This function should return 1 if the address class was recognized and
721 # type_flags was set, zero otherwise.
722 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
723 # Is a register in a group
724 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
725 # Fetch the pointer to the ith function argument.
726 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
727
728 # Iterate over all supported register notes in a core file. For each
729 # supported register note section, the iterator must call CB and pass
730 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
731 # the supported register note sections based on the current register
732 # values. Otherwise it should enumerate all supported register note
733 # sections.
734 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
735
736 # Create core file notes
737 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
738
739 # Find core file memory regions
740 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
741
742 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
743 # core file into buffer READBUF with length LEN. Return the number of bytes read
744 # (zero indicates failure).
745 # failed, otherwise, return the red length of READBUF.
746 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
747
748 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
749 # libraries list from core file into buffer READBUF with length LEN.
750 # Return the number of bytes read (zero indicates failure).
751 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
752
753 # How the core target converts a PTID from a core file to a string.
754 M;const char *;core_pid_to_str;ptid_t ptid;ptid
755
756 # How the core target extracts the name of a thread from a core file.
757 M;const char *;core_thread_name;struct thread_info *thr;thr
758
759 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
760 # from core file into buffer READBUF with length LEN. Return the number
761 # of bytes read (zero indicates EOF, a negative value indicates failure).
762 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
763
764 # BFD target to use when generating a core file.
765 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
766
767 # If the elements of C++ vtables are in-place function descriptors rather
768 # than normal function pointers (which may point to code or a descriptor),
769 # set this to one.
770 v;int;vtable_function_descriptors;;;0;0;;0
771
772 # Set if the least significant bit of the delta is used instead of the least
773 # significant bit of the pfn for pointers to virtual member functions.
774 v;int;vbit_in_delta;;;0;0;;0
775
776 # Advance PC to next instruction in order to skip a permanent breakpoint.
777 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
778
779 # The maximum length of an instruction on this architecture in bytes.
780 V;ULONGEST;max_insn_length;;;0;0
781
782 # Copy the instruction at FROM to TO, and make any adjustments
783 # necessary to single-step it at that address.
784 #
785 # REGS holds the state the thread's registers will have before
786 # executing the copied instruction; the PC in REGS will refer to FROM,
787 # not the copy at TO. The caller should update it to point at TO later.
788 #
789 # Return a pointer to data of the architecture's choice to be passed
790 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
791 # the instruction's effects have been completely simulated, with the
792 # resulting state written back to REGS.
793 #
794 # For a general explanation of displaced stepping and how GDB uses it,
795 # see the comments in infrun.c.
796 #
797 # The TO area is only guaranteed to have space for
798 # gdbarch_max_insn_length (arch) bytes, so this function must not
799 # write more bytes than that to that area.
800 #
801 # If you do not provide this function, GDB assumes that the
802 # architecture does not support displaced stepping.
803 #
804 # If the instruction cannot execute out of line, return NULL. The
805 # core falls back to stepping past the instruction in-line instead in
806 # that case.
807 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
808
809 # Return true if GDB should use hardware single-stepping to execute
810 # the displaced instruction identified by CLOSURE. If false,
811 # GDB will simply restart execution at the displaced instruction
812 # location, and it is up to the target to ensure GDB will receive
813 # control again (e.g. by placing a software breakpoint instruction
814 # into the displaced instruction buffer).
815 #
816 # The default implementation returns false on all targets that
817 # provide a gdbarch_software_single_step routine, and true otherwise.
818 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
819
820 # Fix up the state resulting from successfully single-stepping a
821 # displaced instruction, to give the result we would have gotten from
822 # stepping the instruction in its original location.
823 #
824 # REGS is the register state resulting from single-stepping the
825 # displaced instruction.
826 #
827 # CLOSURE is the result from the matching call to
828 # gdbarch_displaced_step_copy_insn.
829 #
830 # If you provide gdbarch_displaced_step_copy_insn.but not this
831 # function, then GDB assumes that no fixup is needed after
832 # single-stepping the instruction.
833 #
834 # For a general explanation of displaced stepping and how GDB uses it,
835 # see the comments in infrun.c.
836 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
837
838 # Return the address of an appropriate place to put displaced
839 # instructions while we step over them. There need only be one such
840 # place, since we're only stepping one thread over a breakpoint at a
841 # time.
842 #
843 # For a general explanation of displaced stepping and how GDB uses it,
844 # see the comments in infrun.c.
845 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
846
847 # Relocate an instruction to execute at a different address. OLDLOC
848 # is the address in the inferior memory where the instruction to
849 # relocate is currently at. On input, TO points to the destination
850 # where we want the instruction to be copied (and possibly adjusted)
851 # to. On output, it points to one past the end of the resulting
852 # instruction(s). The effect of executing the instruction at TO shall
853 # be the same as if executing it at FROM. For example, call
854 # instructions that implicitly push the return address on the stack
855 # should be adjusted to return to the instruction after OLDLOC;
856 # relative branches, and other PC-relative instructions need the
857 # offset adjusted; etc.
858 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
859
860 # Refresh overlay mapped state for section OSECT.
861 F;void;overlay_update;struct obj_section *osect;osect
862
863 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
864
865 # Handle special encoding of static variables in stabs debug info.
866 F;const char *;static_transform_name;const char *name;name
867 # Set if the address in N_SO or N_FUN stabs may be zero.
868 v;int;sofun_address_maybe_missing;;;0;0;;0
869
870 # Parse the instruction at ADDR storing in the record execution log
871 # the registers REGCACHE and memory ranges that will be affected when
872 # the instruction executes, along with their current values.
873 # Return -1 if something goes wrong, 0 otherwise.
874 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
875
876 # Save process state after a signal.
877 # Return -1 if something goes wrong, 0 otherwise.
878 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
879
880 # Signal translation: translate inferior's signal (target's) number
881 # into GDB's representation. The implementation of this method must
882 # be host independent. IOW, don't rely on symbols of the NAT_FILE
883 # header (the nm-*.h files), the host <signal.h> header, or similar
884 # headers. This is mainly used when cross-debugging core files ---
885 # "Live" targets hide the translation behind the target interface
886 # (target_wait, target_resume, etc.).
887 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
888
889 # Signal translation: translate the GDB's internal signal number into
890 # the inferior's signal (target's) representation. The implementation
891 # of this method must be host independent. IOW, don't rely on symbols
892 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
893 # header, or similar headers.
894 # Return the target signal number if found, or -1 if the GDB internal
895 # signal number is invalid.
896 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
897
898 # Extra signal info inspection.
899 #
900 # Return a type suitable to inspect extra signal information.
901 M;struct type *;get_siginfo_type;void;
902
903 # Record architecture-specific information from the symbol table.
904 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
905
906 # Function for the 'catch syscall' feature.
907
908 # Get architecture-specific system calls information from registers.
909 M;LONGEST;get_syscall_number;thread_info *thread;thread
910
911 # The filename of the XML syscall for this architecture.
912 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
913
914 # Information about system calls from this architecture
915 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
916
917 # SystemTap related fields and functions.
918
919 # A NULL-terminated array of prefixes used to mark an integer constant
920 # on the architecture's assembly.
921 # For example, on x86 integer constants are written as:
922 #
923 # \$10 ;; integer constant 10
924 #
925 # in this case, this prefix would be the character \`\$\'.
926 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
927
928 # A NULL-terminated array of suffixes used to mark an integer constant
929 # on the architecture's assembly.
930 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
931
932 # A NULL-terminated array of prefixes used to mark a register name on
933 # the architecture's assembly.
934 # For example, on x86 the register name is written as:
935 #
936 # \%eax ;; register eax
937 #
938 # in this case, this prefix would be the character \`\%\'.
939 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
940
941 # A NULL-terminated array of suffixes used to mark a register name on
942 # the architecture's assembly.
943 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
944
945 # A NULL-terminated array of prefixes used to mark a register
946 # indirection on the architecture's assembly.
947 # For example, on x86 the register indirection is written as:
948 #
949 # \(\%eax\) ;; indirecting eax
950 #
951 # in this case, this prefix would be the charater \`\(\'.
952 #
953 # Please note that we use the indirection prefix also for register
954 # displacement, e.g., \`4\(\%eax\)\' on x86.
955 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
956
957 # A NULL-terminated array of suffixes used to mark a register
958 # indirection on the architecture's assembly.
959 # For example, on x86 the register indirection is written as:
960 #
961 # \(\%eax\) ;; indirecting eax
962 #
963 # in this case, this prefix would be the charater \`\)\'.
964 #
965 # Please note that we use the indirection suffix also for register
966 # displacement, e.g., \`4\(\%eax\)\' on x86.
967 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
968
969 # Prefix(es) used to name a register using GDB's nomenclature.
970 #
971 # For example, on PPC a register is represented by a number in the assembly
972 # language (e.g., \`10\' is the 10th general-purpose register). However,
973 # inside GDB this same register has an \`r\' appended to its name, so the 10th
974 # register would be represented as \`r10\' internally.
975 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
976
977 # Suffix used to name a register using GDB's nomenclature.
978 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
979
980 # Check if S is a single operand.
981 #
982 # Single operands can be:
983 # \- Literal integers, e.g. \`\$10\' on x86
984 # \- Register access, e.g. \`\%eax\' on x86
985 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
986 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
987 #
988 # This function should check for these patterns on the string
989 # and return 1 if some were found, or zero otherwise. Please try to match
990 # as much info as you can from the string, i.e., if you have to match
991 # something like \`\(\%\', do not match just the \`\(\'.
992 M;int;stap_is_single_operand;const char *s;s
993
994 # Function used to handle a "special case" in the parser.
995 #
996 # A "special case" is considered to be an unknown token, i.e., a token
997 # that the parser does not know how to parse. A good example of special
998 # case would be ARM's register displacement syntax:
999 #
1000 # [R0, #4] ;; displacing R0 by 4
1001 #
1002 # Since the parser assumes that a register displacement is of the form:
1003 #
1004 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1005 #
1006 # it means that it will not be able to recognize and parse this odd syntax.
1007 # Therefore, we should add a special case function that will handle this token.
1008 #
1009 # This function should generate the proper expression form of the expression
1010 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1011 # and so on). It should also return 1 if the parsing was successful, or zero
1012 # if the token was not recognized as a special token (in this case, returning
1013 # zero means that the special parser is deferring the parsing to the generic
1014 # parser), and should advance the buffer pointer (p->arg).
1015 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1016
1017 # DTrace related functions.
1018
1019 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1020 # NARG must be >= 0.
1021 M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
1022
1023 # True if the given ADDR does not contain the instruction sequence
1024 # corresponding to a disabled DTrace is-enabled probe.
1025 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1026
1027 # Enable a DTrace is-enabled probe at ADDR.
1028 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1029
1030 # Disable a DTrace is-enabled probe at ADDR.
1031 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1032
1033 # True if the list of shared libraries is one and only for all
1034 # processes, as opposed to a list of shared libraries per inferior.
1035 # This usually means that all processes, although may or may not share
1036 # an address space, will see the same set of symbols at the same
1037 # addresses.
1038 v;int;has_global_solist;;;0;0;;0
1039
1040 # On some targets, even though each inferior has its own private
1041 # address space, the debug interface takes care of making breakpoints
1042 # visible to all address spaces automatically. For such cases,
1043 # this property should be set to true.
1044 v;int;has_global_breakpoints;;;0;0;;0
1045
1046 # True if inferiors share an address space (e.g., uClinux).
1047 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1048
1049 # True if a fast tracepoint can be set at an address.
1050 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1051
1052 # Guess register state based on tracepoint location. Used for tracepoints
1053 # where no registers have been collected, but there's only one location,
1054 # allowing us to guess the PC value, and perhaps some other registers.
1055 # On entry, regcache has all registers marked as unavailable.
1056 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1057
1058 # Return the "auto" target charset.
1059 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1060 # Return the "auto" target wide charset.
1061 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1062
1063 # If non-empty, this is a file extension that will be opened in place
1064 # of the file extension reported by the shared library list.
1065 #
1066 # This is most useful for toolchains that use a post-linker tool,
1067 # where the names of the files run on the target differ in extension
1068 # compared to the names of the files GDB should load for debug info.
1069 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1070
1071 # If true, the target OS has DOS-based file system semantics. That
1072 # is, absolute paths include a drive name, and the backslash is
1073 # considered a directory separator.
1074 v;int;has_dos_based_file_system;;;0;0;;0
1075
1076 # Generate bytecodes to collect the return address in a frame.
1077 # Since the bytecodes run on the target, possibly with GDB not even
1078 # connected, the full unwinding machinery is not available, and
1079 # typically this function will issue bytecodes for one or more likely
1080 # places that the return address may be found.
1081 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1082
1083 # Implement the "info proc" command.
1084 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1085
1086 # Implement the "info proc" command for core files. Noe that there
1087 # are two "info_proc"-like methods on gdbarch -- one for core files,
1088 # one for live targets.
1089 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1090
1091 # Iterate over all objfiles in the order that makes the most sense
1092 # for the architecture to make global symbol searches.
1093 #
1094 # CB is a callback function where OBJFILE is the objfile to be searched,
1095 # and CB_DATA a pointer to user-defined data (the same data that is passed
1096 # when calling this gdbarch method). The iteration stops if this function
1097 # returns nonzero.
1098 #
1099 # CB_DATA is a pointer to some user-defined data to be passed to
1100 # the callback.
1101 #
1102 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1103 # inspected when the symbol search was requested.
1104 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1105
1106 # Ravenscar arch-dependent ops.
1107 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1108
1109 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1110 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1111
1112 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1113 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1114
1115 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1116 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1117
1118 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1119 # Return 0 if *READPTR is already at the end of the buffer.
1120 # Return -1 if there is insufficient buffer for a whole entry.
1121 # Return 1 if an entry was read into *TYPEP and *VALP.
1122 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1123
1124 # Print the description of a single auxv entry described by TYPE and VAL
1125 # to FILE.
1126 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1127
1128 # Find the address range of the current inferior's vsyscall/vDSO, and
1129 # write it to *RANGE. If the vsyscall's length can't be determined, a
1130 # range with zero length is returned. Returns true if the vsyscall is
1131 # found, false otherwise.
1132 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1133
1134 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1135 # PROT has GDB_MMAP_PROT_* bitmask format.
1136 # Throw an error if it is not possible. Returned address is always valid.
1137 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1138
1139 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1140 # Print a warning if it is not possible.
1141 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1142
1143 # Return string (caller has to use xfree for it) with options for GCC
1144 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1145 # These options are put before CU's DW_AT_producer compilation options so that
1146 # they can override it. Method may also return NULL.
1147 m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1148
1149 # Return a regular expression that matches names used by this
1150 # architecture in GNU configury triplets. The result is statically
1151 # allocated and must not be freed. The default implementation simply
1152 # returns the BFD architecture name, which is correct in nearly every
1153 # case.
1154 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1155
1156 # Return the size in 8-bit bytes of an addressable memory unit on this
1157 # architecture. This corresponds to the number of 8-bit bytes associated to
1158 # each address in memory.
1159 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1160
1161 # Functions for allowing a target to modify its disassembler options.
1162 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1163 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1164 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1165
1166 # Type alignment.
1167 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1168
1169 EOF
1170 }
1171
1172 #
1173 # The .log file
1174 #
1175 exec > new-gdbarch.log
1176 function_list | while do_read
1177 do
1178 cat <<EOF
1179 ${class} ${returntype} ${function} ($formal)
1180 EOF
1181 for r in ${read}
1182 do
1183 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1184 done
1185 if class_is_predicate_p && fallback_default_p
1186 then
1187 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1188 kill $$
1189 exit 1
1190 fi
1191 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1192 then
1193 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1194 kill $$
1195 exit 1
1196 fi
1197 if class_is_multiarch_p
1198 then
1199 if class_is_predicate_p ; then :
1200 elif test "x${predefault}" = "x"
1201 then
1202 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1203 kill $$
1204 exit 1
1205 fi
1206 fi
1207 echo ""
1208 done
1209
1210 exec 1>&2
1211 compare_new gdbarch.log
1212
1213
1214 copyright ()
1215 {
1216 cat <<EOF
1217 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1218 /* vi:set ro: */
1219
1220 /* Dynamic architecture support for GDB, the GNU debugger.
1221
1222 Copyright (C) 1998-2018 Free Software Foundation, Inc.
1223
1224 This file is part of GDB.
1225
1226 This program is free software; you can redistribute it and/or modify
1227 it under the terms of the GNU General Public License as published by
1228 the Free Software Foundation; either version 3 of the License, or
1229 (at your option) any later version.
1230
1231 This program is distributed in the hope that it will be useful,
1232 but WITHOUT ANY WARRANTY; without even the implied warranty of
1233 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1234 GNU General Public License for more details.
1235
1236 You should have received a copy of the GNU General Public License
1237 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1238
1239 /* This file was created with the aid of \`\`gdbarch.sh''.
1240
1241 The Bourne shell script \`\`gdbarch.sh'' creates the files
1242 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1243 against the existing \`\`gdbarch.[hc]''. Any differences found
1244 being reported.
1245
1246 If editing this file, please also run gdbarch.sh and merge any
1247 changes into that script. Conversely, when making sweeping changes
1248 to this file, modifying gdbarch.sh and using its output may prove
1249 easier. */
1250
1251 EOF
1252 }
1253
1254 #
1255 # The .h file
1256 #
1257
1258 exec > new-gdbarch.h
1259 copyright
1260 cat <<EOF
1261 #ifndef GDBARCH_H
1262 #define GDBARCH_H
1263
1264 #include <vector>
1265 #include "frame.h"
1266 #include "dis-asm.h"
1267 #include "gdb_obstack.h"
1268
1269 struct floatformat;
1270 struct ui_file;
1271 struct value;
1272 struct objfile;
1273 struct obj_section;
1274 struct minimal_symbol;
1275 struct regcache;
1276 struct reggroup;
1277 struct regset;
1278 struct disassemble_info;
1279 struct target_ops;
1280 struct obstack;
1281 struct bp_target_info;
1282 struct target_desc;
1283 struct symbol;
1284 struct displaced_step_closure;
1285 struct syscall;
1286 struct agent_expr;
1287 struct axs_value;
1288 struct stap_parse_info;
1289 struct parser_state;
1290 struct ravenscar_arch_ops;
1291 struct mem_range;
1292 struct syscalls_info;
1293 struct thread_info;
1294 struct ui_out;
1295
1296 #include "regcache.h"
1297
1298 /* The architecture associated with the inferior through the
1299 connection to the target.
1300
1301 The architecture vector provides some information that is really a
1302 property of the inferior, accessed through a particular target:
1303 ptrace operations; the layout of certain RSP packets; the solib_ops
1304 vector; etc. To differentiate architecture accesses to
1305 per-inferior/target properties from
1306 per-thread/per-frame/per-objfile properties, accesses to
1307 per-inferior/target properties should be made through this
1308 gdbarch. */
1309
1310 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1311 extern struct gdbarch *target_gdbarch (void);
1312
1313 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1314 gdbarch method. */
1315
1316 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1317 (struct objfile *objfile, void *cb_data);
1318
1319 /* Callback type for regset section iterators. The callback usually
1320 invokes the REGSET's supply or collect method, to which it must
1321 pass a buffer - for collects this buffer will need to be created using
1322 COLLECT_SIZE, for supply the existing buffer being read from should
1323 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1324 is used for diagnostic messages. CB_DATA should have been passed
1325 unchanged through the iterator. */
1326
1327 typedef void (iterate_over_regset_sections_cb)
1328 (const char *sect_name, int supply_size, int collect_size,
1329 const struct regset *regset, const char *human_name, void *cb_data);
1330 EOF
1331
1332 # function typedef's
1333 printf "\n"
1334 printf "\n"
1335 printf "/* The following are pre-initialized by GDBARCH. */\n"
1336 function_list | while do_read
1337 do
1338 if class_is_info_p
1339 then
1340 printf "\n"
1341 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1342 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1343 fi
1344 done
1345
1346 # function typedef's
1347 printf "\n"
1348 printf "\n"
1349 printf "/* The following are initialized by the target dependent code. */\n"
1350 function_list | while do_read
1351 do
1352 if [ -n "${comment}" ]
1353 then
1354 echo "${comment}" | sed \
1355 -e '2 s,#,/*,' \
1356 -e '3,$ s,#, ,' \
1357 -e '$ s,$, */,'
1358 fi
1359
1360 if class_is_predicate_p
1361 then
1362 printf "\n"
1363 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1364 fi
1365 if class_is_variable_p
1366 then
1367 printf "\n"
1368 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1369 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1370 fi
1371 if class_is_function_p
1372 then
1373 printf "\n"
1374 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1375 then
1376 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1377 elif class_is_multiarch_p
1378 then
1379 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1380 else
1381 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1382 fi
1383 if [ "x${formal}" = "xvoid" ]
1384 then
1385 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1386 else
1387 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1388 fi
1389 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1390 fi
1391 done
1392
1393 # close it off
1394 cat <<EOF
1395
1396 /* Definition for an unknown syscall, used basically in error-cases. */
1397 #define UNKNOWN_SYSCALL (-1)
1398
1399 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1400
1401
1402 /* Mechanism for co-ordinating the selection of a specific
1403 architecture.
1404
1405 GDB targets (*-tdep.c) can register an interest in a specific
1406 architecture. Other GDB components can register a need to maintain
1407 per-architecture data.
1408
1409 The mechanisms below ensures that there is only a loose connection
1410 between the set-architecture command and the various GDB
1411 components. Each component can independently register their need
1412 to maintain architecture specific data with gdbarch.
1413
1414 Pragmatics:
1415
1416 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1417 didn't scale.
1418
1419 The more traditional mega-struct containing architecture specific
1420 data for all the various GDB components was also considered. Since
1421 GDB is built from a variable number of (fairly independent)
1422 components it was determined that the global aproach was not
1423 applicable. */
1424
1425
1426 /* Register a new architectural family with GDB.
1427
1428 Register support for the specified ARCHITECTURE with GDB. When
1429 gdbarch determines that the specified architecture has been
1430 selected, the corresponding INIT function is called.
1431
1432 --
1433
1434 The INIT function takes two parameters: INFO which contains the
1435 information available to gdbarch about the (possibly new)
1436 architecture; ARCHES which is a list of the previously created
1437 \`\`struct gdbarch'' for this architecture.
1438
1439 The INFO parameter is, as far as possible, be pre-initialized with
1440 information obtained from INFO.ABFD or the global defaults.
1441
1442 The ARCHES parameter is a linked list (sorted most recently used)
1443 of all the previously created architures for this architecture
1444 family. The (possibly NULL) ARCHES->gdbarch can used to access
1445 values from the previously selected architecture for this
1446 architecture family.
1447
1448 The INIT function shall return any of: NULL - indicating that it
1449 doesn't recognize the selected architecture; an existing \`\`struct
1450 gdbarch'' from the ARCHES list - indicating that the new
1451 architecture is just a synonym for an earlier architecture (see
1452 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1453 - that describes the selected architecture (see gdbarch_alloc()).
1454
1455 The DUMP_TDEP function shall print out all target specific values.
1456 Care should be taken to ensure that the function works in both the
1457 multi-arch and non- multi-arch cases. */
1458
1459 struct gdbarch_list
1460 {
1461 struct gdbarch *gdbarch;
1462 struct gdbarch_list *next;
1463 };
1464
1465 struct gdbarch_info
1466 {
1467 /* Use default: NULL (ZERO). */
1468 const struct bfd_arch_info *bfd_arch_info;
1469
1470 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1471 enum bfd_endian byte_order;
1472
1473 enum bfd_endian byte_order_for_code;
1474
1475 /* Use default: NULL (ZERO). */
1476 bfd *abfd;
1477
1478 /* Use default: NULL (ZERO). */
1479 union
1480 {
1481 /* Architecture-specific information. The generic form for targets
1482 that have extra requirements. */
1483 struct gdbarch_tdep_info *tdep_info;
1484
1485 /* Architecture-specific target description data. Numerous targets
1486 need only this, so give them an easy way to hold it. */
1487 struct tdesc_arch_data *tdesc_data;
1488
1489 /* SPU file system ID. This is a single integer, so using the
1490 generic form would only complicate code. Other targets may
1491 reuse this member if suitable. */
1492 int *id;
1493 };
1494
1495 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1496 enum gdb_osabi osabi;
1497
1498 /* Use default: NULL (ZERO). */
1499 const struct target_desc *target_desc;
1500 };
1501
1502 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1503 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1504
1505 /* DEPRECATED - use gdbarch_register() */
1506 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1507
1508 extern void gdbarch_register (enum bfd_architecture architecture,
1509 gdbarch_init_ftype *,
1510 gdbarch_dump_tdep_ftype *);
1511
1512
1513 /* Return a freshly allocated, NULL terminated, array of the valid
1514 architecture names. Since architectures are registered during the
1515 _initialize phase this function only returns useful information
1516 once initialization has been completed. */
1517
1518 extern const char **gdbarch_printable_names (void);
1519
1520
1521 /* Helper function. Search the list of ARCHES for a GDBARCH that
1522 matches the information provided by INFO. */
1523
1524 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1525
1526
1527 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1528 basic initialization using values obtained from the INFO and TDEP
1529 parameters. set_gdbarch_*() functions are called to complete the
1530 initialization of the object. */
1531
1532 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1533
1534
1535 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1536 It is assumed that the caller freeds the \`\`struct
1537 gdbarch_tdep''. */
1538
1539 extern void gdbarch_free (struct gdbarch *);
1540
1541 /* Get the obstack owned by ARCH. */
1542
1543 extern obstack *gdbarch_obstack (gdbarch *arch);
1544
1545 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1546 obstack. The memory is freed when the corresponding architecture
1547 is also freed. */
1548
1549 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1550 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1551
1552 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1553 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1554
1555 /* Duplicate STRING, returning an equivalent string that's allocated on the
1556 obstack associated with GDBARCH. The string is freed when the corresponding
1557 architecture is also freed. */
1558
1559 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1560
1561 /* Helper function. Force an update of the current architecture.
1562
1563 The actual architecture selected is determined by INFO, \`\`(gdb) set
1564 architecture'' et.al., the existing architecture and BFD's default
1565 architecture. INFO should be initialized to zero and then selected
1566 fields should be updated.
1567
1568 Returns non-zero if the update succeeds. */
1569
1570 extern int gdbarch_update_p (struct gdbarch_info info);
1571
1572
1573 /* Helper function. Find an architecture matching info.
1574
1575 INFO should be initialized using gdbarch_info_init, relevant fields
1576 set, and then finished using gdbarch_info_fill.
1577
1578 Returns the corresponding architecture, or NULL if no matching
1579 architecture was found. */
1580
1581 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1582
1583
1584 /* Helper function. Set the target gdbarch to "gdbarch". */
1585
1586 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1587
1588
1589 /* Register per-architecture data-pointer.
1590
1591 Reserve space for a per-architecture data-pointer. An identifier
1592 for the reserved data-pointer is returned. That identifer should
1593 be saved in a local static variable.
1594
1595 Memory for the per-architecture data shall be allocated using
1596 gdbarch_obstack_zalloc. That memory will be deleted when the
1597 corresponding architecture object is deleted.
1598
1599 When a previously created architecture is re-selected, the
1600 per-architecture data-pointer for that previous architecture is
1601 restored. INIT() is not re-called.
1602
1603 Multiple registrarants for any architecture are allowed (and
1604 strongly encouraged). */
1605
1606 struct gdbarch_data;
1607
1608 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1609 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1610 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1611 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1612 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1613 struct gdbarch_data *data,
1614 void *pointer);
1615
1616 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1617
1618
1619 /* Set the dynamic target-system-dependent parameters (architecture,
1620 byte-order, ...) using information found in the BFD. */
1621
1622 extern void set_gdbarch_from_file (bfd *);
1623
1624
1625 /* Initialize the current architecture to the "first" one we find on
1626 our list. */
1627
1628 extern void initialize_current_architecture (void);
1629
1630 /* gdbarch trace variable */
1631 extern unsigned int gdbarch_debug;
1632
1633 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1634
1635 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1636
1637 static inline int
1638 gdbarch_num_cooked_regs (gdbarch *arch)
1639 {
1640 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1641 }
1642
1643 #endif
1644 EOF
1645 exec 1>&2
1646 #../move-if-change new-gdbarch.h gdbarch.h
1647 compare_new gdbarch.h
1648
1649
1650 #
1651 # C file
1652 #
1653
1654 exec > new-gdbarch.c
1655 copyright
1656 cat <<EOF
1657
1658 #include "defs.h"
1659 #include "arch-utils.h"
1660
1661 #include "gdbcmd.h"
1662 #include "inferior.h"
1663 #include "symcat.h"
1664
1665 #include "floatformat.h"
1666 #include "reggroups.h"
1667 #include "osabi.h"
1668 #include "gdb_obstack.h"
1669 #include "observable.h"
1670 #include "regcache.h"
1671 #include "objfiles.h"
1672 #include "auxv.h"
1673
1674 /* Static function declarations */
1675
1676 static void alloc_gdbarch_data (struct gdbarch *);
1677
1678 /* Non-zero if we want to trace architecture code. */
1679
1680 #ifndef GDBARCH_DEBUG
1681 #define GDBARCH_DEBUG 0
1682 #endif
1683 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1684 static void
1685 show_gdbarch_debug (struct ui_file *file, int from_tty,
1686 struct cmd_list_element *c, const char *value)
1687 {
1688 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1689 }
1690
1691 static const char *
1692 pformat (const struct floatformat **format)
1693 {
1694 if (format == NULL)
1695 return "(null)";
1696 else
1697 /* Just print out one of them - this is only for diagnostics. */
1698 return format[0]->name;
1699 }
1700
1701 static const char *
1702 pstring (const char *string)
1703 {
1704 if (string == NULL)
1705 return "(null)";
1706 return string;
1707 }
1708
1709 static const char *
1710 pstring_ptr (char **string)
1711 {
1712 if (string == NULL || *string == NULL)
1713 return "(null)";
1714 return *string;
1715 }
1716
1717 /* Helper function to print a list of strings, represented as "const
1718 char *const *". The list is printed comma-separated. */
1719
1720 static const char *
1721 pstring_list (const char *const *list)
1722 {
1723 static char ret[100];
1724 const char *const *p;
1725 size_t offset = 0;
1726
1727 if (list == NULL)
1728 return "(null)";
1729
1730 ret[0] = '\0';
1731 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1732 {
1733 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1734 offset += 2 + s;
1735 }
1736
1737 if (offset > 0)
1738 {
1739 gdb_assert (offset - 2 < sizeof (ret));
1740 ret[offset - 2] = '\0';
1741 }
1742
1743 return ret;
1744 }
1745
1746 EOF
1747
1748 # gdbarch open the gdbarch object
1749 printf "\n"
1750 printf "/* Maintain the struct gdbarch object. */\n"
1751 printf "\n"
1752 printf "struct gdbarch\n"
1753 printf "{\n"
1754 printf " /* Has this architecture been fully initialized? */\n"
1755 printf " int initialized_p;\n"
1756 printf "\n"
1757 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1758 printf " struct obstack *obstack;\n"
1759 printf "\n"
1760 printf " /* basic architectural information. */\n"
1761 function_list | while do_read
1762 do
1763 if class_is_info_p
1764 then
1765 printf " ${returntype} ${function};\n"
1766 fi
1767 done
1768 printf "\n"
1769 printf " /* target specific vector. */\n"
1770 printf " struct gdbarch_tdep *tdep;\n"
1771 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1772 printf "\n"
1773 printf " /* per-architecture data-pointers. */\n"
1774 printf " unsigned nr_data;\n"
1775 printf " void **data;\n"
1776 printf "\n"
1777 cat <<EOF
1778 /* Multi-arch values.
1779
1780 When extending this structure you must:
1781
1782 Add the field below.
1783
1784 Declare set/get functions and define the corresponding
1785 macro in gdbarch.h.
1786
1787 gdbarch_alloc(): If zero/NULL is not a suitable default,
1788 initialize the new field.
1789
1790 verify_gdbarch(): Confirm that the target updated the field
1791 correctly.
1792
1793 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1794 field is dumped out
1795
1796 get_gdbarch(): Implement the set/get functions (probably using
1797 the macro's as shortcuts).
1798
1799 */
1800
1801 EOF
1802 function_list | while do_read
1803 do
1804 if class_is_variable_p
1805 then
1806 printf " ${returntype} ${function};\n"
1807 elif class_is_function_p
1808 then
1809 printf " gdbarch_${function}_ftype *${function};\n"
1810 fi
1811 done
1812 printf "};\n"
1813
1814 # Create a new gdbarch struct
1815 cat <<EOF
1816
1817 /* Create a new \`\`struct gdbarch'' based on information provided by
1818 \`\`struct gdbarch_info''. */
1819 EOF
1820 printf "\n"
1821 cat <<EOF
1822 struct gdbarch *
1823 gdbarch_alloc (const struct gdbarch_info *info,
1824 struct gdbarch_tdep *tdep)
1825 {
1826 struct gdbarch *gdbarch;
1827
1828 /* Create an obstack for allocating all the per-architecture memory,
1829 then use that to allocate the architecture vector. */
1830 struct obstack *obstack = XNEW (struct obstack);
1831 obstack_init (obstack);
1832 gdbarch = XOBNEW (obstack, struct gdbarch);
1833 memset (gdbarch, 0, sizeof (*gdbarch));
1834 gdbarch->obstack = obstack;
1835
1836 alloc_gdbarch_data (gdbarch);
1837
1838 gdbarch->tdep = tdep;
1839 EOF
1840 printf "\n"
1841 function_list | while do_read
1842 do
1843 if class_is_info_p
1844 then
1845 printf " gdbarch->${function} = info->${function};\n"
1846 fi
1847 done
1848 printf "\n"
1849 printf " /* Force the explicit initialization of these. */\n"
1850 function_list | while do_read
1851 do
1852 if class_is_function_p || class_is_variable_p
1853 then
1854 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1855 then
1856 printf " gdbarch->${function} = ${predefault};\n"
1857 fi
1858 fi
1859 done
1860 cat <<EOF
1861 /* gdbarch_alloc() */
1862
1863 return gdbarch;
1864 }
1865 EOF
1866
1867 # Free a gdbarch struct.
1868 printf "\n"
1869 printf "\n"
1870 cat <<EOF
1871
1872 obstack *gdbarch_obstack (gdbarch *arch)
1873 {
1874 return arch->obstack;
1875 }
1876
1877 /* See gdbarch.h. */
1878
1879 char *
1880 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1881 {
1882 return obstack_strdup (arch->obstack, string);
1883 }
1884
1885
1886 /* Free a gdbarch struct. This should never happen in normal
1887 operation --- once you've created a gdbarch, you keep it around.
1888 However, if an architecture's init function encounters an error
1889 building the structure, it may need to clean up a partially
1890 constructed gdbarch. */
1891
1892 void
1893 gdbarch_free (struct gdbarch *arch)
1894 {
1895 struct obstack *obstack;
1896
1897 gdb_assert (arch != NULL);
1898 gdb_assert (!arch->initialized_p);
1899 obstack = arch->obstack;
1900 obstack_free (obstack, 0); /* Includes the ARCH. */
1901 xfree (obstack);
1902 }
1903 EOF
1904
1905 # verify a new architecture
1906 cat <<EOF
1907
1908
1909 /* Ensure that all values in a GDBARCH are reasonable. */
1910
1911 static void
1912 verify_gdbarch (struct gdbarch *gdbarch)
1913 {
1914 string_file log;
1915
1916 /* fundamental */
1917 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1918 log.puts ("\n\tbyte-order");
1919 if (gdbarch->bfd_arch_info == NULL)
1920 log.puts ("\n\tbfd_arch_info");
1921 /* Check those that need to be defined for the given multi-arch level. */
1922 EOF
1923 function_list | while do_read
1924 do
1925 if class_is_function_p || class_is_variable_p
1926 then
1927 if [ "x${invalid_p}" = "x0" ]
1928 then
1929 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1930 elif class_is_predicate_p
1931 then
1932 printf " /* Skip verify of ${function}, has predicate. */\n"
1933 # FIXME: See do_read for potential simplification
1934 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1935 then
1936 printf " if (${invalid_p})\n"
1937 printf " gdbarch->${function} = ${postdefault};\n"
1938 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1939 then
1940 printf " if (gdbarch->${function} == ${predefault})\n"
1941 printf " gdbarch->${function} = ${postdefault};\n"
1942 elif [ -n "${postdefault}" ]
1943 then
1944 printf " if (gdbarch->${function} == 0)\n"
1945 printf " gdbarch->${function} = ${postdefault};\n"
1946 elif [ -n "${invalid_p}" ]
1947 then
1948 printf " if (${invalid_p})\n"
1949 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1950 elif [ -n "${predefault}" ]
1951 then
1952 printf " if (gdbarch->${function} == ${predefault})\n"
1953 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1954 fi
1955 fi
1956 done
1957 cat <<EOF
1958 if (!log.empty ())
1959 internal_error (__FILE__, __LINE__,
1960 _("verify_gdbarch: the following are invalid ...%s"),
1961 log.c_str ());
1962 }
1963 EOF
1964
1965 # dump the structure
1966 printf "\n"
1967 printf "\n"
1968 cat <<EOF
1969 /* Print out the details of the current architecture. */
1970
1971 void
1972 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1973 {
1974 const char *gdb_nm_file = "<not-defined>";
1975
1976 #if defined (GDB_NM_FILE)
1977 gdb_nm_file = GDB_NM_FILE;
1978 #endif
1979 fprintf_unfiltered (file,
1980 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1981 gdb_nm_file);
1982 EOF
1983 function_list | sort '-t;' -k 3 | while do_read
1984 do
1985 # First the predicate
1986 if class_is_predicate_p
1987 then
1988 printf " fprintf_unfiltered (file,\n"
1989 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1990 printf " gdbarch_${function}_p (gdbarch));\n"
1991 fi
1992 # Print the corresponding value.
1993 if class_is_function_p
1994 then
1995 printf " fprintf_unfiltered (file,\n"
1996 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1997 printf " host_address_to_string (gdbarch->${function}));\n"
1998 else
1999 # It is a variable
2000 case "${print}:${returntype}" in
2001 :CORE_ADDR )
2002 fmt="%s"
2003 print="core_addr_to_string_nz (gdbarch->${function})"
2004 ;;
2005 :* )
2006 fmt="%s"
2007 print="plongest (gdbarch->${function})"
2008 ;;
2009 * )
2010 fmt="%s"
2011 ;;
2012 esac
2013 printf " fprintf_unfiltered (file,\n"
2014 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
2015 printf " ${print});\n"
2016 fi
2017 done
2018 cat <<EOF
2019 if (gdbarch->dump_tdep != NULL)
2020 gdbarch->dump_tdep (gdbarch, file);
2021 }
2022 EOF
2023
2024
2025 # GET/SET
2026 printf "\n"
2027 cat <<EOF
2028 struct gdbarch_tdep *
2029 gdbarch_tdep (struct gdbarch *gdbarch)
2030 {
2031 if (gdbarch_debug >= 2)
2032 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2033 return gdbarch->tdep;
2034 }
2035 EOF
2036 printf "\n"
2037 function_list | while do_read
2038 do
2039 if class_is_predicate_p
2040 then
2041 printf "\n"
2042 printf "int\n"
2043 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2044 printf "{\n"
2045 printf " gdb_assert (gdbarch != NULL);\n"
2046 printf " return ${predicate};\n"
2047 printf "}\n"
2048 fi
2049 if class_is_function_p
2050 then
2051 printf "\n"
2052 printf "${returntype}\n"
2053 if [ "x${formal}" = "xvoid" ]
2054 then
2055 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2056 else
2057 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2058 fi
2059 printf "{\n"
2060 printf " gdb_assert (gdbarch != NULL);\n"
2061 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2062 if class_is_predicate_p && test -n "${predefault}"
2063 then
2064 # Allow a call to a function with a predicate.
2065 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2066 fi
2067 printf " if (gdbarch_debug >= 2)\n"
2068 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2069 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2070 then
2071 if class_is_multiarch_p
2072 then
2073 params="gdbarch"
2074 else
2075 params=""
2076 fi
2077 else
2078 if class_is_multiarch_p
2079 then
2080 params="gdbarch, ${actual}"
2081 else
2082 params="${actual}"
2083 fi
2084 fi
2085 if [ "x${returntype}" = "xvoid" ]
2086 then
2087 printf " gdbarch->${function} (${params});\n"
2088 else
2089 printf " return gdbarch->${function} (${params});\n"
2090 fi
2091 printf "}\n"
2092 printf "\n"
2093 printf "void\n"
2094 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2095 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2096 printf "{\n"
2097 printf " gdbarch->${function} = ${function};\n"
2098 printf "}\n"
2099 elif class_is_variable_p
2100 then
2101 printf "\n"
2102 printf "${returntype}\n"
2103 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2104 printf "{\n"
2105 printf " gdb_assert (gdbarch != NULL);\n"
2106 if [ "x${invalid_p}" = "x0" ]
2107 then
2108 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2109 elif [ -n "${invalid_p}" ]
2110 then
2111 printf " /* Check variable is valid. */\n"
2112 printf " gdb_assert (!(${invalid_p}));\n"
2113 elif [ -n "${predefault}" ]
2114 then
2115 printf " /* Check variable changed from pre-default. */\n"
2116 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2117 fi
2118 printf " if (gdbarch_debug >= 2)\n"
2119 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2120 printf " return gdbarch->${function};\n"
2121 printf "}\n"
2122 printf "\n"
2123 printf "void\n"
2124 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2125 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2126 printf "{\n"
2127 printf " gdbarch->${function} = ${function};\n"
2128 printf "}\n"
2129 elif class_is_info_p
2130 then
2131 printf "\n"
2132 printf "${returntype}\n"
2133 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2134 printf "{\n"
2135 printf " gdb_assert (gdbarch != NULL);\n"
2136 printf " if (gdbarch_debug >= 2)\n"
2137 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2138 printf " return gdbarch->${function};\n"
2139 printf "}\n"
2140 fi
2141 done
2142
2143 # All the trailing guff
2144 cat <<EOF
2145
2146
2147 /* Keep a registry of per-architecture data-pointers required by GDB
2148 modules. */
2149
2150 struct gdbarch_data
2151 {
2152 unsigned index;
2153 int init_p;
2154 gdbarch_data_pre_init_ftype *pre_init;
2155 gdbarch_data_post_init_ftype *post_init;
2156 };
2157
2158 struct gdbarch_data_registration
2159 {
2160 struct gdbarch_data *data;
2161 struct gdbarch_data_registration *next;
2162 };
2163
2164 struct gdbarch_data_registry
2165 {
2166 unsigned nr;
2167 struct gdbarch_data_registration *registrations;
2168 };
2169
2170 struct gdbarch_data_registry gdbarch_data_registry =
2171 {
2172 0, NULL,
2173 };
2174
2175 static struct gdbarch_data *
2176 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2177 gdbarch_data_post_init_ftype *post_init)
2178 {
2179 struct gdbarch_data_registration **curr;
2180
2181 /* Append the new registration. */
2182 for (curr = &gdbarch_data_registry.registrations;
2183 (*curr) != NULL;
2184 curr = &(*curr)->next);
2185 (*curr) = XNEW (struct gdbarch_data_registration);
2186 (*curr)->next = NULL;
2187 (*curr)->data = XNEW (struct gdbarch_data);
2188 (*curr)->data->index = gdbarch_data_registry.nr++;
2189 (*curr)->data->pre_init = pre_init;
2190 (*curr)->data->post_init = post_init;
2191 (*curr)->data->init_p = 1;
2192 return (*curr)->data;
2193 }
2194
2195 struct gdbarch_data *
2196 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2197 {
2198 return gdbarch_data_register (pre_init, NULL);
2199 }
2200
2201 struct gdbarch_data *
2202 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2203 {
2204 return gdbarch_data_register (NULL, post_init);
2205 }
2206
2207 /* Create/delete the gdbarch data vector. */
2208
2209 static void
2210 alloc_gdbarch_data (struct gdbarch *gdbarch)
2211 {
2212 gdb_assert (gdbarch->data == NULL);
2213 gdbarch->nr_data = gdbarch_data_registry.nr;
2214 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2215 }
2216
2217 /* Initialize the current value of the specified per-architecture
2218 data-pointer. */
2219
2220 void
2221 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2222 struct gdbarch_data *data,
2223 void *pointer)
2224 {
2225 gdb_assert (data->index < gdbarch->nr_data);
2226 gdb_assert (gdbarch->data[data->index] == NULL);
2227 gdb_assert (data->pre_init == NULL);
2228 gdbarch->data[data->index] = pointer;
2229 }
2230
2231 /* Return the current value of the specified per-architecture
2232 data-pointer. */
2233
2234 void *
2235 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2236 {
2237 gdb_assert (data->index < gdbarch->nr_data);
2238 if (gdbarch->data[data->index] == NULL)
2239 {
2240 /* The data-pointer isn't initialized, call init() to get a
2241 value. */
2242 if (data->pre_init != NULL)
2243 /* Mid architecture creation: pass just the obstack, and not
2244 the entire architecture, as that way it isn't possible for
2245 pre-init code to refer to undefined architecture
2246 fields. */
2247 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2248 else if (gdbarch->initialized_p
2249 && data->post_init != NULL)
2250 /* Post architecture creation: pass the entire architecture
2251 (as all fields are valid), but be careful to also detect
2252 recursive references. */
2253 {
2254 gdb_assert (data->init_p);
2255 data->init_p = 0;
2256 gdbarch->data[data->index] = data->post_init (gdbarch);
2257 data->init_p = 1;
2258 }
2259 else
2260 /* The architecture initialization hasn't completed - punt -
2261 hope that the caller knows what they are doing. Once
2262 deprecated_set_gdbarch_data has been initialized, this can be
2263 changed to an internal error. */
2264 return NULL;
2265 gdb_assert (gdbarch->data[data->index] != NULL);
2266 }
2267 return gdbarch->data[data->index];
2268 }
2269
2270
2271 /* Keep a registry of the architectures known by GDB. */
2272
2273 struct gdbarch_registration
2274 {
2275 enum bfd_architecture bfd_architecture;
2276 gdbarch_init_ftype *init;
2277 gdbarch_dump_tdep_ftype *dump_tdep;
2278 struct gdbarch_list *arches;
2279 struct gdbarch_registration *next;
2280 };
2281
2282 static struct gdbarch_registration *gdbarch_registry = NULL;
2283
2284 static void
2285 append_name (const char ***buf, int *nr, const char *name)
2286 {
2287 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2288 (*buf)[*nr] = name;
2289 *nr += 1;
2290 }
2291
2292 const char **
2293 gdbarch_printable_names (void)
2294 {
2295 /* Accumulate a list of names based on the registed list of
2296 architectures. */
2297 int nr_arches = 0;
2298 const char **arches = NULL;
2299 struct gdbarch_registration *rego;
2300
2301 for (rego = gdbarch_registry;
2302 rego != NULL;
2303 rego = rego->next)
2304 {
2305 const struct bfd_arch_info *ap;
2306 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2307 if (ap == NULL)
2308 internal_error (__FILE__, __LINE__,
2309 _("gdbarch_architecture_names: multi-arch unknown"));
2310 do
2311 {
2312 append_name (&arches, &nr_arches, ap->printable_name);
2313 ap = ap->next;
2314 }
2315 while (ap != NULL);
2316 }
2317 append_name (&arches, &nr_arches, NULL);
2318 return arches;
2319 }
2320
2321
2322 void
2323 gdbarch_register (enum bfd_architecture bfd_architecture,
2324 gdbarch_init_ftype *init,
2325 gdbarch_dump_tdep_ftype *dump_tdep)
2326 {
2327 struct gdbarch_registration **curr;
2328 const struct bfd_arch_info *bfd_arch_info;
2329
2330 /* Check that BFD recognizes this architecture */
2331 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2332 if (bfd_arch_info == NULL)
2333 {
2334 internal_error (__FILE__, __LINE__,
2335 _("gdbarch: Attempt to register "
2336 "unknown architecture (%d)"),
2337 bfd_architecture);
2338 }
2339 /* Check that we haven't seen this architecture before. */
2340 for (curr = &gdbarch_registry;
2341 (*curr) != NULL;
2342 curr = &(*curr)->next)
2343 {
2344 if (bfd_architecture == (*curr)->bfd_architecture)
2345 internal_error (__FILE__, __LINE__,
2346 _("gdbarch: Duplicate registration "
2347 "of architecture (%s)"),
2348 bfd_arch_info->printable_name);
2349 }
2350 /* log it */
2351 if (gdbarch_debug)
2352 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2353 bfd_arch_info->printable_name,
2354 host_address_to_string (init));
2355 /* Append it */
2356 (*curr) = XNEW (struct gdbarch_registration);
2357 (*curr)->bfd_architecture = bfd_architecture;
2358 (*curr)->init = init;
2359 (*curr)->dump_tdep = dump_tdep;
2360 (*curr)->arches = NULL;
2361 (*curr)->next = NULL;
2362 }
2363
2364 void
2365 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2366 gdbarch_init_ftype *init)
2367 {
2368 gdbarch_register (bfd_architecture, init, NULL);
2369 }
2370
2371
2372 /* Look for an architecture using gdbarch_info. */
2373
2374 struct gdbarch_list *
2375 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2376 const struct gdbarch_info *info)
2377 {
2378 for (; arches != NULL; arches = arches->next)
2379 {
2380 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2381 continue;
2382 if (info->byte_order != arches->gdbarch->byte_order)
2383 continue;
2384 if (info->osabi != arches->gdbarch->osabi)
2385 continue;
2386 if (info->target_desc != arches->gdbarch->target_desc)
2387 continue;
2388 return arches;
2389 }
2390 return NULL;
2391 }
2392
2393
2394 /* Find an architecture that matches the specified INFO. Create a new
2395 architecture if needed. Return that new architecture. */
2396
2397 struct gdbarch *
2398 gdbarch_find_by_info (struct gdbarch_info info)
2399 {
2400 struct gdbarch *new_gdbarch;
2401 struct gdbarch_registration *rego;
2402
2403 /* Fill in missing parts of the INFO struct using a number of
2404 sources: "set ..."; INFOabfd supplied; and the global
2405 defaults. */
2406 gdbarch_info_fill (&info);
2407
2408 /* Must have found some sort of architecture. */
2409 gdb_assert (info.bfd_arch_info != NULL);
2410
2411 if (gdbarch_debug)
2412 {
2413 fprintf_unfiltered (gdb_stdlog,
2414 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2415 (info.bfd_arch_info != NULL
2416 ? info.bfd_arch_info->printable_name
2417 : "(null)"));
2418 fprintf_unfiltered (gdb_stdlog,
2419 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2420 info.byte_order,
2421 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2422 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2423 : "default"));
2424 fprintf_unfiltered (gdb_stdlog,
2425 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2426 info.osabi, gdbarch_osabi_name (info.osabi));
2427 fprintf_unfiltered (gdb_stdlog,
2428 "gdbarch_find_by_info: info.abfd %s\n",
2429 host_address_to_string (info.abfd));
2430 fprintf_unfiltered (gdb_stdlog,
2431 "gdbarch_find_by_info: info.tdep_info %s\n",
2432 host_address_to_string (info.tdep_info));
2433 }
2434
2435 /* Find the tdep code that knows about this architecture. */
2436 for (rego = gdbarch_registry;
2437 rego != NULL;
2438 rego = rego->next)
2439 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2440 break;
2441 if (rego == NULL)
2442 {
2443 if (gdbarch_debug)
2444 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2445 "No matching architecture\n");
2446 return 0;
2447 }
2448
2449 /* Ask the tdep code for an architecture that matches "info". */
2450 new_gdbarch = rego->init (info, rego->arches);
2451
2452 /* Did the tdep code like it? No. Reject the change and revert to
2453 the old architecture. */
2454 if (new_gdbarch == NULL)
2455 {
2456 if (gdbarch_debug)
2457 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2458 "Target rejected architecture\n");
2459 return NULL;
2460 }
2461
2462 /* Is this a pre-existing architecture (as determined by already
2463 being initialized)? Move it to the front of the architecture
2464 list (keeping the list sorted Most Recently Used). */
2465 if (new_gdbarch->initialized_p)
2466 {
2467 struct gdbarch_list **list;
2468 struct gdbarch_list *self;
2469 if (gdbarch_debug)
2470 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2471 "Previous architecture %s (%s) selected\n",
2472 host_address_to_string (new_gdbarch),
2473 new_gdbarch->bfd_arch_info->printable_name);
2474 /* Find the existing arch in the list. */
2475 for (list = &rego->arches;
2476 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2477 list = &(*list)->next);
2478 /* It had better be in the list of architectures. */
2479 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2480 /* Unlink SELF. */
2481 self = (*list);
2482 (*list) = self->next;
2483 /* Insert SELF at the front. */
2484 self->next = rego->arches;
2485 rego->arches = self;
2486 /* Return it. */
2487 return new_gdbarch;
2488 }
2489
2490 /* It's a new architecture. */
2491 if (gdbarch_debug)
2492 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2493 "New architecture %s (%s) selected\n",
2494 host_address_to_string (new_gdbarch),
2495 new_gdbarch->bfd_arch_info->printable_name);
2496
2497 /* Insert the new architecture into the front of the architecture
2498 list (keep the list sorted Most Recently Used). */
2499 {
2500 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2501 self->next = rego->arches;
2502 self->gdbarch = new_gdbarch;
2503 rego->arches = self;
2504 }
2505
2506 /* Check that the newly installed architecture is valid. Plug in
2507 any post init values. */
2508 new_gdbarch->dump_tdep = rego->dump_tdep;
2509 verify_gdbarch (new_gdbarch);
2510 new_gdbarch->initialized_p = 1;
2511
2512 if (gdbarch_debug)
2513 gdbarch_dump (new_gdbarch, gdb_stdlog);
2514
2515 return new_gdbarch;
2516 }
2517
2518 /* Make the specified architecture current. */
2519
2520 void
2521 set_target_gdbarch (struct gdbarch *new_gdbarch)
2522 {
2523 gdb_assert (new_gdbarch != NULL);
2524 gdb_assert (new_gdbarch->initialized_p);
2525 current_inferior ()->gdbarch = new_gdbarch;
2526 gdb::observers::architecture_changed.notify (new_gdbarch);
2527 registers_changed ();
2528 }
2529
2530 /* Return the current inferior's arch. */
2531
2532 struct gdbarch *
2533 target_gdbarch (void)
2534 {
2535 return current_inferior ()->gdbarch;
2536 }
2537
2538 void
2539 _initialize_gdbarch (void)
2540 {
2541 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2542 Set architecture debugging."), _("\\
2543 Show architecture debugging."), _("\\
2544 When non-zero, architecture debugging is enabled."),
2545 NULL,
2546 show_gdbarch_debug,
2547 &setdebuglist, &showdebuglist);
2548 }
2549 EOF
2550
2551 # close things off
2552 exec 1>&2
2553 #../move-if-change new-gdbarch.c gdbarch.c
2554 compare_new gdbarch.c