]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
Add a new gdbarch method to fetch signal information from core files.
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2017 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
71
72 OFS="${IFS}" ; IFS="[;]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
345 #
346 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
347 #
348 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
353
354 # Number of bits in a short or unsigned short for the target machine.
355 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
356 # Number of bits in an int or unsigned int for the target machine.
357 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
358 # Number of bits in a long or unsigned long for the target machine.
359 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
360 # Number of bits in a long long or unsigned long long for the target
361 # machine.
362 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
363 # Alignment of a long long or unsigned long long for the target
364 # machine.
365 v;int;long_long_align_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
366
367 # The ABI default bit-size and format for "half", "float", "double", and
368 # "long double". These bit/format pairs should eventually be combined
369 # into a single object. For the moment, just initialize them as a pair.
370 # Each format describes both the big and little endian layouts (if
371 # useful).
372
373 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
374 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
375 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
376 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
377 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
378 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
379 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
380 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
381
382 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
383 # starting with C++11.
384 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
385 # One if \`wchar_t' is signed, zero if unsigned.
386 v;int;wchar_signed;;;1;-1;1
387
388 # Returns the floating-point format to be used for values of length LENGTH.
389 # NAME, if non-NULL, is the type name, which may be used to distinguish
390 # different target formats of the same length.
391 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
392
393 # For most targets, a pointer on the target and its representation as an
394 # address in GDB have the same size and "look the same". For such a
395 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
396 # / addr_bit will be set from it.
397 #
398 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
399 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
400 # gdbarch_address_to_pointer as well.
401 #
402 # ptr_bit is the size of a pointer on the target
403 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
404 # addr_bit is the size of a target address as represented in gdb
405 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
406 #
407 # dwarf2_addr_size is the target address size as used in the Dwarf debug
408 # info. For .debug_frame FDEs, this is supposed to be the target address
409 # size from the associated CU header, and which is equivalent to the
410 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
411 # Unfortunately there is no good way to determine this value. Therefore
412 # dwarf2_addr_size simply defaults to the target pointer size.
413 #
414 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
415 # defined using the target's pointer size so far.
416 #
417 # Note that dwarf2_addr_size only needs to be redefined by a target if the
418 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
419 # and if Dwarf versions < 4 need to be supported.
420 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
421 #
422 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
423 v;int;char_signed;;;1;-1;1
424 #
425 F;CORE_ADDR;read_pc;struct regcache *regcache;regcache
426 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
427 # Function for getting target's idea of a frame pointer. FIXME: GDB's
428 # whole scheme for dealing with "frames" and "frame pointers" needs a
429 # serious shakedown.
430 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
431 #
432 M;enum register_status;pseudo_register_read;struct regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
433 # Read a register into a new struct value. If the register is wholly
434 # or partly unavailable, this should call mark_value_bytes_unavailable
435 # as appropriate. If this is defined, then pseudo_register_read will
436 # never be called.
437 M;struct value *;pseudo_register_read_value;struct regcache *regcache, int cookednum;regcache, cookednum
438 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
439 #
440 v;int;num_regs;;;0;-1
441 # This macro gives the number of pseudo-registers that live in the
442 # register namespace but do not get fetched or stored on the target.
443 # These pseudo-registers may be aliases for other registers,
444 # combinations of other registers, or they may be computed by GDB.
445 v;int;num_pseudo_regs;;;0;0;;0
446
447 # Assemble agent expression bytecode to collect pseudo-register REG.
448 # Return -1 if something goes wrong, 0 otherwise.
449 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
450
451 # Assemble agent expression bytecode to push the value of pseudo-register
452 # REG on the interpreter stack.
453 # Return -1 if something goes wrong, 0 otherwise.
454 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
455
456 # Some targets/architectures can do extra processing/display of
457 # segmentation faults. E.g., Intel MPX boundary faults.
458 # Call the architecture dependent function to handle the fault.
459 # UIOUT is the output stream where the handler will place information.
460 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
461
462 # GDB's standard (or well known) register numbers. These can map onto
463 # a real register or a pseudo (computed) register or not be defined at
464 # all (-1).
465 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
466 v;int;sp_regnum;;;-1;-1;;0
467 v;int;pc_regnum;;;-1;-1;;0
468 v;int;ps_regnum;;;-1;-1;;0
469 v;int;fp0_regnum;;;0;-1;;0
470 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
471 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
472 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
473 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
474 # Convert from an sdb register number to an internal gdb register number.
475 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
476 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
477 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
478 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
479 m;const char *;register_name;int regnr;regnr;;0
480
481 # Return the type of a register specified by the architecture. Only
482 # the register cache should call this function directly; others should
483 # use "register_type".
484 M;struct type *;register_type;int reg_nr;reg_nr
485
486 M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
487 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
488 # deprecated_fp_regnum.
489 v;int;deprecated_fp_regnum;;;-1;-1;;0
490
491 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
492 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
493 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
494
495 # Return true if the code of FRAME is writable.
496 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
497
498 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
499 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
500 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
501 # MAP a GDB RAW register number onto a simulator register number. See
502 # also include/...-sim.h.
503 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
504 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
505 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
506
507 # Determine the address where a longjmp will land and save this address
508 # in PC. Return nonzero on success.
509 #
510 # FRAME corresponds to the longjmp frame.
511 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
512
513 #
514 v;int;believe_pcc_promotion;;;;;;;
515 #
516 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
517 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
518 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
519 # Construct a value representing the contents of register REGNUM in
520 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
521 # allocate and return a struct value with all value attributes
522 # (but not the value contents) filled in.
523 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
524 #
525 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
526 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
527 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
528
529 # Return the return-value convention that will be used by FUNCTION
530 # to return a value of type VALTYPE. FUNCTION may be NULL in which
531 # case the return convention is computed based only on VALTYPE.
532 #
533 # If READBUF is not NULL, extract the return value and save it in this buffer.
534 #
535 # If WRITEBUF is not NULL, it contains a return value which will be
536 # stored into the appropriate register. This can be used when we want
537 # to force the value returned by a function (see the "return" command
538 # for instance).
539 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
540
541 # Return true if the return value of function is stored in the first hidden
542 # parameter. In theory, this feature should be language-dependent, specified
543 # by language and its ABI, such as C++. Unfortunately, compiler may
544 # implement it to a target-dependent feature. So that we need such hook here
545 # to be aware of this in GDB.
546 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
547
548 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
549 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
550 # On some platforms, a single function may provide multiple entry points,
551 # e.g. one that is used for function-pointer calls and a different one
552 # that is used for direct function calls.
553 # In order to ensure that breakpoints set on the function will trigger
554 # no matter via which entry point the function is entered, a platform
555 # may provide the skip_entrypoint callback. It is called with IP set
556 # to the main entry point of a function (as determined by the symbol table),
557 # and should return the address of the innermost entry point, where the
558 # actual breakpoint needs to be set. Note that skip_entrypoint is used
559 # by GDB common code even when debugging optimized code, where skip_prologue
560 # is not used.
561 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
562
563 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
564 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
565
566 # Return the breakpoint kind for this target based on *PCPTR.
567 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
568
569 # Return the software breakpoint from KIND. KIND can have target
570 # specific meaning like the Z0 kind parameter.
571 # SIZE is set to the software breakpoint's length in memory.
572 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
573
574 # Return the breakpoint kind for this target based on the current
575 # processor state (e.g. the current instruction mode on ARM) and the
576 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
577 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
578
579 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
580 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
581 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
582 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
583
584 # A function can be addressed by either it's "pointer" (possibly a
585 # descriptor address) or "entry point" (first executable instruction).
586 # The method "convert_from_func_ptr_addr" converting the former to the
587 # latter. gdbarch_deprecated_function_start_offset is being used to implement
588 # a simplified subset of that functionality - the function's address
589 # corresponds to the "function pointer" and the function's start
590 # corresponds to the "function entry point" - and hence is redundant.
591
592 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
593
594 # Return the remote protocol register number associated with this
595 # register. Normally the identity mapping.
596 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
597
598 # Fetch the target specific address used to represent a load module.
599 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
600 #
601 v;CORE_ADDR;frame_args_skip;;;0;;;0
602 M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
603 M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
604 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
605 # frame-base. Enable frame-base before frame-unwind.
606 F;int;frame_num_args;struct frame_info *frame;frame
607 #
608 M;CORE_ADDR;frame_align;CORE_ADDR address;address
609 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
610 v;int;frame_red_zone_size
611 #
612 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
613 # On some machines there are bits in addresses which are not really
614 # part of the address, but are used by the kernel, the hardware, etc.
615 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
616 # we get a "real" address such as one would find in a symbol table.
617 # This is used only for addresses of instructions, and even then I'm
618 # not sure it's used in all contexts. It exists to deal with there
619 # being a few stray bits in the PC which would mislead us, not as some
620 # sort of generic thing to handle alignment or segmentation (it's
621 # possible it should be in TARGET_READ_PC instead).
622 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
623
624 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
625 # indicates if the target needs software single step. An ISA method to
626 # implement it.
627 #
628 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
629 # target can single step. If not, then implement single step using breakpoints.
630 #
631 # Return a vector of addresses on which the software single step
632 # breakpoints should be inserted. NULL means software single step is
633 # not used.
634 # Multiple breakpoints may be inserted for some instructions such as
635 # conditional branch. However, each implementation must always evaluate
636 # the condition and only put the breakpoint at the branch destination if
637 # the condition is true, so that we ensure forward progress when stepping
638 # past a conditional branch to self.
639 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
640
641 # Return non-zero if the processor is executing a delay slot and a
642 # further single-step is needed before the instruction finishes.
643 M;int;single_step_through_delay;struct frame_info *frame;frame
644 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
645 # disassembler. Perhaps objdump can handle it?
646 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
647 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
648
649
650 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
651 # evaluates non-zero, this is the address where the debugger will place
652 # a step-resume breakpoint to get us past the dynamic linker.
653 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
654 # Some systems also have trampoline code for returning from shared libs.
655 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
656
657 # A target might have problems with watchpoints as soon as the stack
658 # frame of the current function has been destroyed. This mostly happens
659 # as the first action in a function's epilogue. stack_frame_destroyed_p()
660 # is defined to return a non-zero value if either the given addr is one
661 # instruction after the stack destroying instruction up to the trailing
662 # return instruction or if we can figure out that the stack frame has
663 # already been invalidated regardless of the value of addr. Targets
664 # which don't suffer from that problem could just let this functionality
665 # untouched.
666 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
667 # Process an ELF symbol in the minimal symbol table in a backend-specific
668 # way. Normally this hook is supposed to do nothing, however if required,
669 # then this hook can be used to apply tranformations to symbols that are
670 # considered special in some way. For example the MIPS backend uses it
671 # to interpret \`st_other' information to mark compressed code symbols so
672 # that they can be treated in the appropriate manner in the processing of
673 # the main symbol table and DWARF-2 records.
674 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
675 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
676 # Process a symbol in the main symbol table in a backend-specific way.
677 # Normally this hook is supposed to do nothing, however if required,
678 # then this hook can be used to apply tranformations to symbols that
679 # are considered special in some way. This is currently used by the
680 # MIPS backend to make sure compressed code symbols have the ISA bit
681 # set. This in turn is needed for symbol values seen in GDB to match
682 # the values used at the runtime by the program itself, for function
683 # and label references.
684 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
685 # Adjust the address retrieved from a DWARF-2 record other than a line
686 # entry in a backend-specific way. Normally this hook is supposed to
687 # return the address passed unchanged, however if that is incorrect for
688 # any reason, then this hook can be used to fix the address up in the
689 # required manner. This is currently used by the MIPS backend to make
690 # sure addresses in FDE, range records, etc. referring to compressed
691 # code have the ISA bit set, matching line information and the symbol
692 # table.
693 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
694 # Adjust the address updated by a line entry in a backend-specific way.
695 # Normally this hook is supposed to return the address passed unchanged,
696 # however in the case of inconsistencies in these records, this hook can
697 # be used to fix them up in the required manner. This is currently used
698 # by the MIPS backend to make sure all line addresses in compressed code
699 # are presented with the ISA bit set, which is not always the case. This
700 # in turn ensures breakpoint addresses are correctly matched against the
701 # stop PC.
702 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
703 v;int;cannot_step_breakpoint;;;0;0;;0
704 v;int;have_nonsteppable_watchpoint;;;0;0;;0
705 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
706 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
707 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
708 # FS are passed from the generic execute_cfa_program function.
709 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
710
711 # Return the appropriate type_flags for the supplied address class.
712 # This function should return 1 if the address class was recognized and
713 # type_flags was set, zero otherwise.
714 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
715 # Is a register in a group
716 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
717 # Fetch the pointer to the ith function argument.
718 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
719
720 # Iterate over all supported register notes in a core file. For each
721 # supported register note section, the iterator must call CB and pass
722 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
723 # the supported register note sections based on the current register
724 # values. Otherwise it should enumerate all supported register note
725 # sections.
726 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
727
728 # Create core file notes
729 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
730
731 # The elfcore writer hook to use to write Linux prpsinfo notes to core
732 # files. Most Linux architectures use the same prpsinfo32 or
733 # prpsinfo64 layouts, and so won't need to provide this hook, as we
734 # call the Linux generic routines in bfd to write prpsinfo notes by
735 # default.
736 F;char *;elfcore_write_linux_prpsinfo;bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info;obfd, note_data, note_size, info
737
738 # Find core file memory regions
739 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
740
741 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
742 # core file into buffer READBUF with length LEN. Return the number of bytes read
743 # (zero indicates failure).
744 # failed, otherwise, return the red length of READBUF.
745 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
746
747 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
748 # libraries list from core file into buffer READBUF with length LEN.
749 # Return the number of bytes read (zero indicates failure).
750 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
751
752 # How the core target converts a PTID from a core file to a string.
753 M;const char *;core_pid_to_str;ptid_t ptid;ptid
754
755 # How the core target extracts the name of a thread from a core file.
756 M;const char *;core_thread_name;struct thread_info *thr;thr
757
758 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
759 # from core file into buffer READBUF with length LEN. Return the number
760 # of bytes read (zero indicates EOF, a negative value indicates failure).
761 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
762
763 # BFD target to use when generating a core file.
764 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
765
766 # If the elements of C++ vtables are in-place function descriptors rather
767 # than normal function pointers (which may point to code or a descriptor),
768 # set this to one.
769 v;int;vtable_function_descriptors;;;0;0;;0
770
771 # Set if the least significant bit of the delta is used instead of the least
772 # significant bit of the pfn for pointers to virtual member functions.
773 v;int;vbit_in_delta;;;0;0;;0
774
775 # Advance PC to next instruction in order to skip a permanent breakpoint.
776 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
777
778 # The maximum length of an instruction on this architecture in bytes.
779 V;ULONGEST;max_insn_length;;;0;0
780
781 # Copy the instruction at FROM to TO, and make any adjustments
782 # necessary to single-step it at that address.
783 #
784 # REGS holds the state the thread's registers will have before
785 # executing the copied instruction; the PC in REGS will refer to FROM,
786 # not the copy at TO. The caller should update it to point at TO later.
787 #
788 # Return a pointer to data of the architecture's choice to be passed
789 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
790 # the instruction's effects have been completely simulated, with the
791 # resulting state written back to REGS.
792 #
793 # For a general explanation of displaced stepping and how GDB uses it,
794 # see the comments in infrun.c.
795 #
796 # The TO area is only guaranteed to have space for
797 # gdbarch_max_insn_length (arch) bytes, so this function must not
798 # write more bytes than that to that area.
799 #
800 # If you do not provide this function, GDB assumes that the
801 # architecture does not support displaced stepping.
802 #
803 # If your architecture doesn't need to adjust instructions before
804 # single-stepping them, consider using simple_displaced_step_copy_insn
805 # here.
806 #
807 # If the instruction cannot execute out of line, return NULL. The
808 # core falls back to stepping past the instruction in-line instead in
809 # that case.
810 M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
811
812 # Return true if GDB should use hardware single-stepping to execute
813 # the displaced instruction identified by CLOSURE. If false,
814 # GDB will simply restart execution at the displaced instruction
815 # location, and it is up to the target to ensure GDB will receive
816 # control again (e.g. by placing a software breakpoint instruction
817 # into the displaced instruction buffer).
818 #
819 # The default implementation returns false on all targets that
820 # provide a gdbarch_software_single_step routine, and true otherwise.
821 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
822
823 # Fix up the state resulting from successfully single-stepping a
824 # displaced instruction, to give the result we would have gotten from
825 # stepping the instruction in its original location.
826 #
827 # REGS is the register state resulting from single-stepping the
828 # displaced instruction.
829 #
830 # CLOSURE is the result from the matching call to
831 # gdbarch_displaced_step_copy_insn.
832 #
833 # If you provide gdbarch_displaced_step_copy_insn.but not this
834 # function, then GDB assumes that no fixup is needed after
835 # single-stepping the instruction.
836 #
837 # For a general explanation of displaced stepping and how GDB uses it,
838 # see the comments in infrun.c.
839 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
840
841 # Return the address of an appropriate place to put displaced
842 # instructions while we step over them. There need only be one such
843 # place, since we're only stepping one thread over a breakpoint at a
844 # time.
845 #
846 # For a general explanation of displaced stepping and how GDB uses it,
847 # see the comments in infrun.c.
848 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
849
850 # Relocate an instruction to execute at a different address. OLDLOC
851 # is the address in the inferior memory where the instruction to
852 # relocate is currently at. On input, TO points to the destination
853 # where we want the instruction to be copied (and possibly adjusted)
854 # to. On output, it points to one past the end of the resulting
855 # instruction(s). The effect of executing the instruction at TO shall
856 # be the same as if executing it at FROM. For example, call
857 # instructions that implicitly push the return address on the stack
858 # should be adjusted to return to the instruction after OLDLOC;
859 # relative branches, and other PC-relative instructions need the
860 # offset adjusted; etc.
861 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
862
863 # Refresh overlay mapped state for section OSECT.
864 F;void;overlay_update;struct obj_section *osect;osect
865
866 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
867
868 # Handle special encoding of static variables in stabs debug info.
869 F;const char *;static_transform_name;const char *name;name
870 # Set if the address in N_SO or N_FUN stabs may be zero.
871 v;int;sofun_address_maybe_missing;;;0;0;;0
872
873 # Parse the instruction at ADDR storing in the record execution log
874 # the registers REGCACHE and memory ranges that will be affected when
875 # the instruction executes, along with their current values.
876 # Return -1 if something goes wrong, 0 otherwise.
877 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
878
879 # Save process state after a signal.
880 # Return -1 if something goes wrong, 0 otherwise.
881 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
882
883 # Signal translation: translate inferior's signal (target's) number
884 # into GDB's representation. The implementation of this method must
885 # be host independent. IOW, don't rely on symbols of the NAT_FILE
886 # header (the nm-*.h files), the host <signal.h> header, or similar
887 # headers. This is mainly used when cross-debugging core files ---
888 # "Live" targets hide the translation behind the target interface
889 # (target_wait, target_resume, etc.).
890 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
891
892 # Signal translation: translate the GDB's internal signal number into
893 # the inferior's signal (target's) representation. The implementation
894 # of this method must be host independent. IOW, don't rely on symbols
895 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
896 # header, or similar headers.
897 # Return the target signal number if found, or -1 if the GDB internal
898 # signal number is invalid.
899 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
900
901 # Extra signal info inspection.
902 #
903 # Return a type suitable to inspect extra signal information.
904 M;struct type *;get_siginfo_type;void;
905
906 # Record architecture-specific information from the symbol table.
907 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
908
909 # Function for the 'catch syscall' feature.
910
911 # Get architecture-specific system calls information from registers.
912 M;LONGEST;get_syscall_number;ptid_t ptid;ptid
913
914 # The filename of the XML syscall for this architecture.
915 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
916
917 # Information about system calls from this architecture
918 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
919
920 # SystemTap related fields and functions.
921
922 # A NULL-terminated array of prefixes used to mark an integer constant
923 # on the architecture's assembly.
924 # For example, on x86 integer constants are written as:
925 #
926 # \$10 ;; integer constant 10
927 #
928 # in this case, this prefix would be the character \`\$\'.
929 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
930
931 # A NULL-terminated array of suffixes used to mark an integer constant
932 # on the architecture's assembly.
933 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
934
935 # A NULL-terminated array of prefixes used to mark a register name on
936 # the architecture's assembly.
937 # For example, on x86 the register name is written as:
938 #
939 # \%eax ;; register eax
940 #
941 # in this case, this prefix would be the character \`\%\'.
942 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
943
944 # A NULL-terminated array of suffixes used to mark a register name on
945 # the architecture's assembly.
946 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
947
948 # A NULL-terminated array of prefixes used to mark a register
949 # indirection on the architecture's assembly.
950 # For example, on x86 the register indirection is written as:
951 #
952 # \(\%eax\) ;; indirecting eax
953 #
954 # in this case, this prefix would be the charater \`\(\'.
955 #
956 # Please note that we use the indirection prefix also for register
957 # displacement, e.g., \`4\(\%eax\)\' on x86.
958 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
959
960 # A NULL-terminated array of suffixes used to mark a register
961 # indirection on the architecture's assembly.
962 # For example, on x86 the register indirection is written as:
963 #
964 # \(\%eax\) ;; indirecting eax
965 #
966 # in this case, this prefix would be the charater \`\)\'.
967 #
968 # Please note that we use the indirection suffix also for register
969 # displacement, e.g., \`4\(\%eax\)\' on x86.
970 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
971
972 # Prefix(es) used to name a register using GDB's nomenclature.
973 #
974 # For example, on PPC a register is represented by a number in the assembly
975 # language (e.g., \`10\' is the 10th general-purpose register). However,
976 # inside GDB this same register has an \`r\' appended to its name, so the 10th
977 # register would be represented as \`r10\' internally.
978 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
979
980 # Suffix used to name a register using GDB's nomenclature.
981 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
982
983 # Check if S is a single operand.
984 #
985 # Single operands can be:
986 # \- Literal integers, e.g. \`\$10\' on x86
987 # \- Register access, e.g. \`\%eax\' on x86
988 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
989 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
990 #
991 # This function should check for these patterns on the string
992 # and return 1 if some were found, or zero otherwise. Please try to match
993 # as much info as you can from the string, i.e., if you have to match
994 # something like \`\(\%\', do not match just the \`\(\'.
995 M;int;stap_is_single_operand;const char *s;s
996
997 # Function used to handle a "special case" in the parser.
998 #
999 # A "special case" is considered to be an unknown token, i.e., a token
1000 # that the parser does not know how to parse. A good example of special
1001 # case would be ARM's register displacement syntax:
1002 #
1003 # [R0, #4] ;; displacing R0 by 4
1004 #
1005 # Since the parser assumes that a register displacement is of the form:
1006 #
1007 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1008 #
1009 # it means that it will not be able to recognize and parse this odd syntax.
1010 # Therefore, we should add a special case function that will handle this token.
1011 #
1012 # This function should generate the proper expression form of the expression
1013 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1014 # and so on). It should also return 1 if the parsing was successful, or zero
1015 # if the token was not recognized as a special token (in this case, returning
1016 # zero means that the special parser is deferring the parsing to the generic
1017 # parser), and should advance the buffer pointer (p->arg).
1018 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1019
1020 # DTrace related functions.
1021
1022 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1023 # NARG must be >= 0.
1024 M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
1025
1026 # True if the given ADDR does not contain the instruction sequence
1027 # corresponding to a disabled DTrace is-enabled probe.
1028 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1029
1030 # Enable a DTrace is-enabled probe at ADDR.
1031 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1032
1033 # Disable a DTrace is-enabled probe at ADDR.
1034 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1035
1036 # True if the list of shared libraries is one and only for all
1037 # processes, as opposed to a list of shared libraries per inferior.
1038 # This usually means that all processes, although may or may not share
1039 # an address space, will see the same set of symbols at the same
1040 # addresses.
1041 v;int;has_global_solist;;;0;0;;0
1042
1043 # On some targets, even though each inferior has its own private
1044 # address space, the debug interface takes care of making breakpoints
1045 # visible to all address spaces automatically. For such cases,
1046 # this property should be set to true.
1047 v;int;has_global_breakpoints;;;0;0;;0
1048
1049 # True if inferiors share an address space (e.g., uClinux).
1050 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1051
1052 # True if a fast tracepoint can be set at an address.
1053 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, char **msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1054
1055 # Guess register state based on tracepoint location. Used for tracepoints
1056 # where no registers have been collected, but there's only one location,
1057 # allowing us to guess the PC value, and perhaps some other registers.
1058 # On entry, regcache has all registers marked as unavailable.
1059 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1060
1061 # Return the "auto" target charset.
1062 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1063 # Return the "auto" target wide charset.
1064 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1065
1066 # If non-empty, this is a file extension that will be opened in place
1067 # of the file extension reported by the shared library list.
1068 #
1069 # This is most useful for toolchains that use a post-linker tool,
1070 # where the names of the files run on the target differ in extension
1071 # compared to the names of the files GDB should load for debug info.
1072 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1073
1074 # If true, the target OS has DOS-based file system semantics. That
1075 # is, absolute paths include a drive name, and the backslash is
1076 # considered a directory separator.
1077 v;int;has_dos_based_file_system;;;0;0;;0
1078
1079 # Generate bytecodes to collect the return address in a frame.
1080 # Since the bytecodes run on the target, possibly with GDB not even
1081 # connected, the full unwinding machinery is not available, and
1082 # typically this function will issue bytecodes for one or more likely
1083 # places that the return address may be found.
1084 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1085
1086 # Implement the "info proc" command.
1087 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1088
1089 # Implement the "info proc" command for core files. Noe that there
1090 # are two "info_proc"-like methods on gdbarch -- one for core files,
1091 # one for live targets.
1092 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1093
1094 # Iterate over all objfiles in the order that makes the most sense
1095 # for the architecture to make global symbol searches.
1096 #
1097 # CB is a callback function where OBJFILE is the objfile to be searched,
1098 # and CB_DATA a pointer to user-defined data (the same data that is passed
1099 # when calling this gdbarch method). The iteration stops if this function
1100 # returns nonzero.
1101 #
1102 # CB_DATA is a pointer to some user-defined data to be passed to
1103 # the callback.
1104 #
1105 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1106 # inspected when the symbol search was requested.
1107 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1108
1109 # Ravenscar arch-dependent ops.
1110 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1111
1112 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1113 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1114
1115 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1116 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1117
1118 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1119 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1120
1121 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1122 # Return 0 if *READPTR is already at the end of the buffer.
1123 # Return -1 if there is insufficient buffer for a whole entry.
1124 # Return 1 if an entry was read into *TYPEP and *VALP.
1125 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1126
1127 # Print the description of a single auxv entry described by TYPE and VAL
1128 # to FILE.
1129 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1130
1131 # Find the address range of the current inferior's vsyscall/vDSO, and
1132 # write it to *RANGE. If the vsyscall's length can't be determined, a
1133 # range with zero length is returned. Returns true if the vsyscall is
1134 # found, false otherwise.
1135 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1136
1137 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1138 # PROT has GDB_MMAP_PROT_* bitmask format.
1139 # Throw an error if it is not possible. Returned address is always valid.
1140 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1141
1142 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1143 # Print a warning if it is not possible.
1144 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1145
1146 # Return string (caller has to use xfree for it) with options for GCC
1147 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1148 # These options are put before CU's DW_AT_producer compilation options so that
1149 # they can override it. Method may also return NULL.
1150 m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
1151
1152 # Return a regular expression that matches names used by this
1153 # architecture in GNU configury triplets. The result is statically
1154 # allocated and must not be freed. The default implementation simply
1155 # returns the BFD architecture name, which is correct in nearly every
1156 # case.
1157 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1158
1159 # Return the size in 8-bit bytes of an addressable memory unit on this
1160 # architecture. This corresponds to the number of 8-bit bytes associated to
1161 # each address in memory.
1162 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1163
1164 # Functions for allowing a target to modify its disassembler options.
1165 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1166 v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1167
1168 EOF
1169 }
1170
1171 #
1172 # The .log file
1173 #
1174 exec > new-gdbarch.log
1175 function_list | while do_read
1176 do
1177 cat <<EOF
1178 ${class} ${returntype} ${function} ($formal)
1179 EOF
1180 for r in ${read}
1181 do
1182 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1183 done
1184 if class_is_predicate_p && fallback_default_p
1185 then
1186 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1187 kill $$
1188 exit 1
1189 fi
1190 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1191 then
1192 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1193 kill $$
1194 exit 1
1195 fi
1196 if class_is_multiarch_p
1197 then
1198 if class_is_predicate_p ; then :
1199 elif test "x${predefault}" = "x"
1200 then
1201 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1202 kill $$
1203 exit 1
1204 fi
1205 fi
1206 echo ""
1207 done
1208
1209 exec 1>&2
1210 compare_new gdbarch.log
1211
1212
1213 copyright ()
1214 {
1215 cat <<EOF
1216 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1217 /* vi:set ro: */
1218
1219 /* Dynamic architecture support for GDB, the GNU debugger.
1220
1221 Copyright (C) 1998-2017 Free Software Foundation, Inc.
1222
1223 This file is part of GDB.
1224
1225 This program is free software; you can redistribute it and/or modify
1226 it under the terms of the GNU General Public License as published by
1227 the Free Software Foundation; either version 3 of the License, or
1228 (at your option) any later version.
1229
1230 This program is distributed in the hope that it will be useful,
1231 but WITHOUT ANY WARRANTY; without even the implied warranty of
1232 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1233 GNU General Public License for more details.
1234
1235 You should have received a copy of the GNU General Public License
1236 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1237
1238 /* This file was created with the aid of \`\`gdbarch.sh''.
1239
1240 The Bourne shell script \`\`gdbarch.sh'' creates the files
1241 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1242 against the existing \`\`gdbarch.[hc]''. Any differences found
1243 being reported.
1244
1245 If editing this file, please also run gdbarch.sh and merge any
1246 changes into that script. Conversely, when making sweeping changes
1247 to this file, modifying gdbarch.sh and using its output may prove
1248 easier. */
1249
1250 EOF
1251 }
1252
1253 #
1254 # The .h file
1255 #
1256
1257 exec > new-gdbarch.h
1258 copyright
1259 cat <<EOF
1260 #ifndef GDBARCH_H
1261 #define GDBARCH_H
1262
1263 #include <vector>
1264 #include "frame.h"
1265 #include "dis-asm.h"
1266
1267 struct floatformat;
1268 struct ui_file;
1269 struct value;
1270 struct objfile;
1271 struct obj_section;
1272 struct minimal_symbol;
1273 struct regcache;
1274 struct reggroup;
1275 struct regset;
1276 struct disassemble_info;
1277 struct target_ops;
1278 struct obstack;
1279 struct bp_target_info;
1280 struct target_desc;
1281 struct objfile;
1282 struct symbol;
1283 struct displaced_step_closure;
1284 struct syscall;
1285 struct agent_expr;
1286 struct axs_value;
1287 struct stap_parse_info;
1288 struct parser_state;
1289 struct ravenscar_arch_ops;
1290 struct elf_internal_linux_prpsinfo;
1291 struct mem_range;
1292 struct syscalls_info;
1293 struct thread_info;
1294 struct ui_out;
1295
1296 #include "regcache.h"
1297
1298 /* The architecture associated with the inferior through the
1299 connection to the target.
1300
1301 The architecture vector provides some information that is really a
1302 property of the inferior, accessed through a particular target:
1303 ptrace operations; the layout of certain RSP packets; the solib_ops
1304 vector; etc. To differentiate architecture accesses to
1305 per-inferior/target properties from
1306 per-thread/per-frame/per-objfile properties, accesses to
1307 per-inferior/target properties should be made through this
1308 gdbarch. */
1309
1310 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1311 extern struct gdbarch *target_gdbarch (void);
1312
1313 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1314 gdbarch method. */
1315
1316 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1317 (struct objfile *objfile, void *cb_data);
1318
1319 /* Callback type for regset section iterators. The callback usually
1320 invokes the REGSET's supply or collect method, to which it must
1321 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1322 section name, and HUMAN_NAME is used for diagnostic messages.
1323 CB_DATA should have been passed unchanged through the iterator. */
1324
1325 typedef void (iterate_over_regset_sections_cb)
1326 (const char *sect_name, int size, const struct regset *regset,
1327 const char *human_name, void *cb_data);
1328 EOF
1329
1330 # function typedef's
1331 printf "\n"
1332 printf "\n"
1333 printf "/* The following are pre-initialized by GDBARCH. */\n"
1334 function_list | while do_read
1335 do
1336 if class_is_info_p
1337 then
1338 printf "\n"
1339 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1340 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1341 fi
1342 done
1343
1344 # function typedef's
1345 printf "\n"
1346 printf "\n"
1347 printf "/* The following are initialized by the target dependent code. */\n"
1348 function_list | while do_read
1349 do
1350 if [ -n "${comment}" ]
1351 then
1352 echo "${comment}" | sed \
1353 -e '2 s,#,/*,' \
1354 -e '3,$ s,#, ,' \
1355 -e '$ s,$, */,'
1356 fi
1357
1358 if class_is_predicate_p
1359 then
1360 printf "\n"
1361 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1362 fi
1363 if class_is_variable_p
1364 then
1365 printf "\n"
1366 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1367 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1368 fi
1369 if class_is_function_p
1370 then
1371 printf "\n"
1372 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1373 then
1374 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1375 elif class_is_multiarch_p
1376 then
1377 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1378 else
1379 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1380 fi
1381 if [ "x${formal}" = "xvoid" ]
1382 then
1383 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1384 else
1385 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1386 fi
1387 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1388 fi
1389 done
1390
1391 # close it off
1392 cat <<EOF
1393
1394 /* Definition for an unknown syscall, used basically in error-cases. */
1395 #define UNKNOWN_SYSCALL (-1)
1396
1397 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1398
1399
1400 /* Mechanism for co-ordinating the selection of a specific
1401 architecture.
1402
1403 GDB targets (*-tdep.c) can register an interest in a specific
1404 architecture. Other GDB components can register a need to maintain
1405 per-architecture data.
1406
1407 The mechanisms below ensures that there is only a loose connection
1408 between the set-architecture command and the various GDB
1409 components. Each component can independently register their need
1410 to maintain architecture specific data with gdbarch.
1411
1412 Pragmatics:
1413
1414 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1415 didn't scale.
1416
1417 The more traditional mega-struct containing architecture specific
1418 data for all the various GDB components was also considered. Since
1419 GDB is built from a variable number of (fairly independent)
1420 components it was determined that the global aproach was not
1421 applicable. */
1422
1423
1424 /* Register a new architectural family with GDB.
1425
1426 Register support for the specified ARCHITECTURE with GDB. When
1427 gdbarch determines that the specified architecture has been
1428 selected, the corresponding INIT function is called.
1429
1430 --
1431
1432 The INIT function takes two parameters: INFO which contains the
1433 information available to gdbarch about the (possibly new)
1434 architecture; ARCHES which is a list of the previously created
1435 \`\`struct gdbarch'' for this architecture.
1436
1437 The INFO parameter is, as far as possible, be pre-initialized with
1438 information obtained from INFO.ABFD or the global defaults.
1439
1440 The ARCHES parameter is a linked list (sorted most recently used)
1441 of all the previously created architures for this architecture
1442 family. The (possibly NULL) ARCHES->gdbarch can used to access
1443 values from the previously selected architecture for this
1444 architecture family.
1445
1446 The INIT function shall return any of: NULL - indicating that it
1447 doesn't recognize the selected architecture; an existing \`\`struct
1448 gdbarch'' from the ARCHES list - indicating that the new
1449 architecture is just a synonym for an earlier architecture (see
1450 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1451 - that describes the selected architecture (see gdbarch_alloc()).
1452
1453 The DUMP_TDEP function shall print out all target specific values.
1454 Care should be taken to ensure that the function works in both the
1455 multi-arch and non- multi-arch cases. */
1456
1457 struct gdbarch_list
1458 {
1459 struct gdbarch *gdbarch;
1460 struct gdbarch_list *next;
1461 };
1462
1463 struct gdbarch_info
1464 {
1465 /* Use default: NULL (ZERO). */
1466 const struct bfd_arch_info *bfd_arch_info;
1467
1468 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1469 enum bfd_endian byte_order;
1470
1471 enum bfd_endian byte_order_for_code;
1472
1473 /* Use default: NULL (ZERO). */
1474 bfd *abfd;
1475
1476 /* Use default: NULL (ZERO). */
1477 void *tdep_info;
1478
1479 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1480 enum gdb_osabi osabi;
1481
1482 /* Use default: NULL (ZERO). */
1483 const struct target_desc *target_desc;
1484 };
1485
1486 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1487 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1488
1489 /* DEPRECATED - use gdbarch_register() */
1490 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1491
1492 extern void gdbarch_register (enum bfd_architecture architecture,
1493 gdbarch_init_ftype *,
1494 gdbarch_dump_tdep_ftype *);
1495
1496
1497 /* Return a freshly allocated, NULL terminated, array of the valid
1498 architecture names. Since architectures are registered during the
1499 _initialize phase this function only returns useful information
1500 once initialization has been completed. */
1501
1502 extern const char **gdbarch_printable_names (void);
1503
1504
1505 /* Helper function. Search the list of ARCHES for a GDBARCH that
1506 matches the information provided by INFO. */
1507
1508 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1509
1510
1511 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1512 basic initialization using values obtained from the INFO and TDEP
1513 parameters. set_gdbarch_*() functions are called to complete the
1514 initialization of the object. */
1515
1516 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1517
1518
1519 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1520 It is assumed that the caller freeds the \`\`struct
1521 gdbarch_tdep''. */
1522
1523 extern void gdbarch_free (struct gdbarch *);
1524
1525
1526 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1527 obstack. The memory is freed when the corresponding architecture
1528 is also freed. */
1529
1530 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1531 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1532 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1533
1534 /* Duplicate STRING, returning an equivalent string that's allocated on the
1535 obstack associated with GDBARCH. The string is freed when the corresponding
1536 architecture is also freed. */
1537
1538 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1539
1540 /* Helper function. Force an update of the current architecture.
1541
1542 The actual architecture selected is determined by INFO, \`\`(gdb) set
1543 architecture'' et.al., the existing architecture and BFD's default
1544 architecture. INFO should be initialized to zero and then selected
1545 fields should be updated.
1546
1547 Returns non-zero if the update succeeds. */
1548
1549 extern int gdbarch_update_p (struct gdbarch_info info);
1550
1551
1552 /* Helper function. Find an architecture matching info.
1553
1554 INFO should be initialized using gdbarch_info_init, relevant fields
1555 set, and then finished using gdbarch_info_fill.
1556
1557 Returns the corresponding architecture, or NULL if no matching
1558 architecture was found. */
1559
1560 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1561
1562
1563 /* Helper function. Set the target gdbarch to "gdbarch". */
1564
1565 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1566
1567
1568 /* Register per-architecture data-pointer.
1569
1570 Reserve space for a per-architecture data-pointer. An identifier
1571 for the reserved data-pointer is returned. That identifer should
1572 be saved in a local static variable.
1573
1574 Memory for the per-architecture data shall be allocated using
1575 gdbarch_obstack_zalloc. That memory will be deleted when the
1576 corresponding architecture object is deleted.
1577
1578 When a previously created architecture is re-selected, the
1579 per-architecture data-pointer for that previous architecture is
1580 restored. INIT() is not re-called.
1581
1582 Multiple registrarants for any architecture are allowed (and
1583 strongly encouraged). */
1584
1585 struct gdbarch_data;
1586
1587 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1588 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1589 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1590 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1591 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1592 struct gdbarch_data *data,
1593 void *pointer);
1594
1595 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1596
1597
1598 /* Set the dynamic target-system-dependent parameters (architecture,
1599 byte-order, ...) using information found in the BFD. */
1600
1601 extern void set_gdbarch_from_file (bfd *);
1602
1603
1604 /* Initialize the current architecture to the "first" one we find on
1605 our list. */
1606
1607 extern void initialize_current_architecture (void);
1608
1609 /* gdbarch trace variable */
1610 extern unsigned int gdbarch_debug;
1611
1612 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1613
1614 #endif
1615 EOF
1616 exec 1>&2
1617 #../move-if-change new-gdbarch.h gdbarch.h
1618 compare_new gdbarch.h
1619
1620
1621 #
1622 # C file
1623 #
1624
1625 exec > new-gdbarch.c
1626 copyright
1627 cat <<EOF
1628
1629 #include "defs.h"
1630 #include "arch-utils.h"
1631
1632 #include "gdbcmd.h"
1633 #include "inferior.h"
1634 #include "symcat.h"
1635
1636 #include "floatformat.h"
1637 #include "reggroups.h"
1638 #include "osabi.h"
1639 #include "gdb_obstack.h"
1640 #include "observer.h"
1641 #include "regcache.h"
1642 #include "objfiles.h"
1643 #include "auxv.h"
1644
1645 /* Static function declarations */
1646
1647 static void alloc_gdbarch_data (struct gdbarch *);
1648
1649 /* Non-zero if we want to trace architecture code. */
1650
1651 #ifndef GDBARCH_DEBUG
1652 #define GDBARCH_DEBUG 0
1653 #endif
1654 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1655 static void
1656 show_gdbarch_debug (struct ui_file *file, int from_tty,
1657 struct cmd_list_element *c, const char *value)
1658 {
1659 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1660 }
1661
1662 static const char *
1663 pformat (const struct floatformat **format)
1664 {
1665 if (format == NULL)
1666 return "(null)";
1667 else
1668 /* Just print out one of them - this is only for diagnostics. */
1669 return format[0]->name;
1670 }
1671
1672 static const char *
1673 pstring (const char *string)
1674 {
1675 if (string == NULL)
1676 return "(null)";
1677 return string;
1678 }
1679
1680 static const char *
1681 pstring_ptr (char **string)
1682 {
1683 if (string == NULL || *string == NULL)
1684 return "(null)";
1685 return *string;
1686 }
1687
1688 /* Helper function to print a list of strings, represented as "const
1689 char *const *". The list is printed comma-separated. */
1690
1691 static const char *
1692 pstring_list (const char *const *list)
1693 {
1694 static char ret[100];
1695 const char *const *p;
1696 size_t offset = 0;
1697
1698 if (list == NULL)
1699 return "(null)";
1700
1701 ret[0] = '\0';
1702 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1703 {
1704 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1705 offset += 2 + s;
1706 }
1707
1708 if (offset > 0)
1709 {
1710 gdb_assert (offset - 2 < sizeof (ret));
1711 ret[offset - 2] = '\0';
1712 }
1713
1714 return ret;
1715 }
1716
1717 EOF
1718
1719 # gdbarch open the gdbarch object
1720 printf "\n"
1721 printf "/* Maintain the struct gdbarch object. */\n"
1722 printf "\n"
1723 printf "struct gdbarch\n"
1724 printf "{\n"
1725 printf " /* Has this architecture been fully initialized? */\n"
1726 printf " int initialized_p;\n"
1727 printf "\n"
1728 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1729 printf " struct obstack *obstack;\n"
1730 printf "\n"
1731 printf " /* basic architectural information. */\n"
1732 function_list | while do_read
1733 do
1734 if class_is_info_p
1735 then
1736 printf " ${returntype} ${function};\n"
1737 fi
1738 done
1739 printf "\n"
1740 printf " /* target specific vector. */\n"
1741 printf " struct gdbarch_tdep *tdep;\n"
1742 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1743 printf "\n"
1744 printf " /* per-architecture data-pointers. */\n"
1745 printf " unsigned nr_data;\n"
1746 printf " void **data;\n"
1747 printf "\n"
1748 cat <<EOF
1749 /* Multi-arch values.
1750
1751 When extending this structure you must:
1752
1753 Add the field below.
1754
1755 Declare set/get functions and define the corresponding
1756 macro in gdbarch.h.
1757
1758 gdbarch_alloc(): If zero/NULL is not a suitable default,
1759 initialize the new field.
1760
1761 verify_gdbarch(): Confirm that the target updated the field
1762 correctly.
1763
1764 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1765 field is dumped out
1766
1767 get_gdbarch(): Implement the set/get functions (probably using
1768 the macro's as shortcuts).
1769
1770 */
1771
1772 EOF
1773 function_list | while do_read
1774 do
1775 if class_is_variable_p
1776 then
1777 printf " ${returntype} ${function};\n"
1778 elif class_is_function_p
1779 then
1780 printf " gdbarch_${function}_ftype *${function};\n"
1781 fi
1782 done
1783 printf "};\n"
1784
1785 # Create a new gdbarch struct
1786 cat <<EOF
1787
1788 /* Create a new \`\`struct gdbarch'' based on information provided by
1789 \`\`struct gdbarch_info''. */
1790 EOF
1791 printf "\n"
1792 cat <<EOF
1793 struct gdbarch *
1794 gdbarch_alloc (const struct gdbarch_info *info,
1795 struct gdbarch_tdep *tdep)
1796 {
1797 struct gdbarch *gdbarch;
1798
1799 /* Create an obstack for allocating all the per-architecture memory,
1800 then use that to allocate the architecture vector. */
1801 struct obstack *obstack = XNEW (struct obstack);
1802 obstack_init (obstack);
1803 gdbarch = XOBNEW (obstack, struct gdbarch);
1804 memset (gdbarch, 0, sizeof (*gdbarch));
1805 gdbarch->obstack = obstack;
1806
1807 alloc_gdbarch_data (gdbarch);
1808
1809 gdbarch->tdep = tdep;
1810 EOF
1811 printf "\n"
1812 function_list | while do_read
1813 do
1814 if class_is_info_p
1815 then
1816 printf " gdbarch->${function} = info->${function};\n"
1817 fi
1818 done
1819 printf "\n"
1820 printf " /* Force the explicit initialization of these. */\n"
1821 function_list | while do_read
1822 do
1823 if class_is_function_p || class_is_variable_p
1824 then
1825 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1826 then
1827 printf " gdbarch->${function} = ${predefault};\n"
1828 fi
1829 fi
1830 done
1831 cat <<EOF
1832 /* gdbarch_alloc() */
1833
1834 return gdbarch;
1835 }
1836 EOF
1837
1838 # Free a gdbarch struct.
1839 printf "\n"
1840 printf "\n"
1841 cat <<EOF
1842 /* Allocate extra space using the per-architecture obstack. */
1843
1844 void *
1845 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1846 {
1847 void *data = obstack_alloc (arch->obstack, size);
1848
1849 memset (data, 0, size);
1850 return data;
1851 }
1852
1853 /* See gdbarch.h. */
1854
1855 char *
1856 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1857 {
1858 return obstack_strdup (arch->obstack, string);
1859 }
1860
1861
1862 /* Free a gdbarch struct. This should never happen in normal
1863 operation --- once you've created a gdbarch, you keep it around.
1864 However, if an architecture's init function encounters an error
1865 building the structure, it may need to clean up a partially
1866 constructed gdbarch. */
1867
1868 void
1869 gdbarch_free (struct gdbarch *arch)
1870 {
1871 struct obstack *obstack;
1872
1873 gdb_assert (arch != NULL);
1874 gdb_assert (!arch->initialized_p);
1875 obstack = arch->obstack;
1876 obstack_free (obstack, 0); /* Includes the ARCH. */
1877 xfree (obstack);
1878 }
1879 EOF
1880
1881 # verify a new architecture
1882 cat <<EOF
1883
1884
1885 /* Ensure that all values in a GDBARCH are reasonable. */
1886
1887 static void
1888 verify_gdbarch (struct gdbarch *gdbarch)
1889 {
1890 string_file log;
1891
1892 /* fundamental */
1893 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1894 log.puts ("\n\tbyte-order");
1895 if (gdbarch->bfd_arch_info == NULL)
1896 log.puts ("\n\tbfd_arch_info");
1897 /* Check those that need to be defined for the given multi-arch level. */
1898 EOF
1899 function_list | while do_read
1900 do
1901 if class_is_function_p || class_is_variable_p
1902 then
1903 if [ "x${invalid_p}" = "x0" ]
1904 then
1905 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1906 elif class_is_predicate_p
1907 then
1908 printf " /* Skip verify of ${function}, has predicate. */\n"
1909 # FIXME: See do_read for potential simplification
1910 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1911 then
1912 printf " if (${invalid_p})\n"
1913 printf " gdbarch->${function} = ${postdefault};\n"
1914 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1915 then
1916 printf " if (gdbarch->${function} == ${predefault})\n"
1917 printf " gdbarch->${function} = ${postdefault};\n"
1918 elif [ -n "${postdefault}" ]
1919 then
1920 printf " if (gdbarch->${function} == 0)\n"
1921 printf " gdbarch->${function} = ${postdefault};\n"
1922 elif [ -n "${invalid_p}" ]
1923 then
1924 printf " if (${invalid_p})\n"
1925 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1926 elif [ -n "${predefault}" ]
1927 then
1928 printf " if (gdbarch->${function} == ${predefault})\n"
1929 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1930 fi
1931 fi
1932 done
1933 cat <<EOF
1934 if (!log.empty ())
1935 internal_error (__FILE__, __LINE__,
1936 _("verify_gdbarch: the following are invalid ...%s"),
1937 log.c_str ());
1938 }
1939 EOF
1940
1941 # dump the structure
1942 printf "\n"
1943 printf "\n"
1944 cat <<EOF
1945 /* Print out the details of the current architecture. */
1946
1947 void
1948 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1949 {
1950 const char *gdb_nm_file = "<not-defined>";
1951
1952 #if defined (GDB_NM_FILE)
1953 gdb_nm_file = GDB_NM_FILE;
1954 #endif
1955 fprintf_unfiltered (file,
1956 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1957 gdb_nm_file);
1958 EOF
1959 function_list | sort '-t;' -k 3 | while do_read
1960 do
1961 # First the predicate
1962 if class_is_predicate_p
1963 then
1964 printf " fprintf_unfiltered (file,\n"
1965 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1966 printf " gdbarch_${function}_p (gdbarch));\n"
1967 fi
1968 # Print the corresponding value.
1969 if class_is_function_p
1970 then
1971 printf " fprintf_unfiltered (file,\n"
1972 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1973 printf " host_address_to_string (gdbarch->${function}));\n"
1974 else
1975 # It is a variable
1976 case "${print}:${returntype}" in
1977 :CORE_ADDR )
1978 fmt="%s"
1979 print="core_addr_to_string_nz (gdbarch->${function})"
1980 ;;
1981 :* )
1982 fmt="%s"
1983 print="plongest (gdbarch->${function})"
1984 ;;
1985 * )
1986 fmt="%s"
1987 ;;
1988 esac
1989 printf " fprintf_unfiltered (file,\n"
1990 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1991 printf " ${print});\n"
1992 fi
1993 done
1994 cat <<EOF
1995 if (gdbarch->dump_tdep != NULL)
1996 gdbarch->dump_tdep (gdbarch, file);
1997 }
1998 EOF
1999
2000
2001 # GET/SET
2002 printf "\n"
2003 cat <<EOF
2004 struct gdbarch_tdep *
2005 gdbarch_tdep (struct gdbarch *gdbarch)
2006 {
2007 if (gdbarch_debug >= 2)
2008 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2009 return gdbarch->tdep;
2010 }
2011 EOF
2012 printf "\n"
2013 function_list | while do_read
2014 do
2015 if class_is_predicate_p
2016 then
2017 printf "\n"
2018 printf "int\n"
2019 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2020 printf "{\n"
2021 printf " gdb_assert (gdbarch != NULL);\n"
2022 printf " return ${predicate};\n"
2023 printf "}\n"
2024 fi
2025 if class_is_function_p
2026 then
2027 printf "\n"
2028 printf "${returntype}\n"
2029 if [ "x${formal}" = "xvoid" ]
2030 then
2031 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2032 else
2033 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2034 fi
2035 printf "{\n"
2036 printf " gdb_assert (gdbarch != NULL);\n"
2037 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2038 if class_is_predicate_p && test -n "${predefault}"
2039 then
2040 # Allow a call to a function with a predicate.
2041 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2042 fi
2043 printf " if (gdbarch_debug >= 2)\n"
2044 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2045 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2046 then
2047 if class_is_multiarch_p
2048 then
2049 params="gdbarch"
2050 else
2051 params=""
2052 fi
2053 else
2054 if class_is_multiarch_p
2055 then
2056 params="gdbarch, ${actual}"
2057 else
2058 params="${actual}"
2059 fi
2060 fi
2061 if [ "x${returntype}" = "xvoid" ]
2062 then
2063 printf " gdbarch->${function} (${params});\n"
2064 else
2065 printf " return gdbarch->${function} (${params});\n"
2066 fi
2067 printf "}\n"
2068 printf "\n"
2069 printf "void\n"
2070 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2071 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2072 printf "{\n"
2073 printf " gdbarch->${function} = ${function};\n"
2074 printf "}\n"
2075 elif class_is_variable_p
2076 then
2077 printf "\n"
2078 printf "${returntype}\n"
2079 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2080 printf "{\n"
2081 printf " gdb_assert (gdbarch != NULL);\n"
2082 if [ "x${invalid_p}" = "x0" ]
2083 then
2084 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2085 elif [ -n "${invalid_p}" ]
2086 then
2087 printf " /* Check variable is valid. */\n"
2088 printf " gdb_assert (!(${invalid_p}));\n"
2089 elif [ -n "${predefault}" ]
2090 then
2091 printf " /* Check variable changed from pre-default. */\n"
2092 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2093 fi
2094 printf " if (gdbarch_debug >= 2)\n"
2095 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2096 printf " return gdbarch->${function};\n"
2097 printf "}\n"
2098 printf "\n"
2099 printf "void\n"
2100 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2101 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2102 printf "{\n"
2103 printf " gdbarch->${function} = ${function};\n"
2104 printf "}\n"
2105 elif class_is_info_p
2106 then
2107 printf "\n"
2108 printf "${returntype}\n"
2109 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2110 printf "{\n"
2111 printf " gdb_assert (gdbarch != NULL);\n"
2112 printf " if (gdbarch_debug >= 2)\n"
2113 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2114 printf " return gdbarch->${function};\n"
2115 printf "}\n"
2116 fi
2117 done
2118
2119 # All the trailing guff
2120 cat <<EOF
2121
2122
2123 /* Keep a registry of per-architecture data-pointers required by GDB
2124 modules. */
2125
2126 struct gdbarch_data
2127 {
2128 unsigned index;
2129 int init_p;
2130 gdbarch_data_pre_init_ftype *pre_init;
2131 gdbarch_data_post_init_ftype *post_init;
2132 };
2133
2134 struct gdbarch_data_registration
2135 {
2136 struct gdbarch_data *data;
2137 struct gdbarch_data_registration *next;
2138 };
2139
2140 struct gdbarch_data_registry
2141 {
2142 unsigned nr;
2143 struct gdbarch_data_registration *registrations;
2144 };
2145
2146 struct gdbarch_data_registry gdbarch_data_registry =
2147 {
2148 0, NULL,
2149 };
2150
2151 static struct gdbarch_data *
2152 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2153 gdbarch_data_post_init_ftype *post_init)
2154 {
2155 struct gdbarch_data_registration **curr;
2156
2157 /* Append the new registration. */
2158 for (curr = &gdbarch_data_registry.registrations;
2159 (*curr) != NULL;
2160 curr = &(*curr)->next);
2161 (*curr) = XNEW (struct gdbarch_data_registration);
2162 (*curr)->next = NULL;
2163 (*curr)->data = XNEW (struct gdbarch_data);
2164 (*curr)->data->index = gdbarch_data_registry.nr++;
2165 (*curr)->data->pre_init = pre_init;
2166 (*curr)->data->post_init = post_init;
2167 (*curr)->data->init_p = 1;
2168 return (*curr)->data;
2169 }
2170
2171 struct gdbarch_data *
2172 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2173 {
2174 return gdbarch_data_register (pre_init, NULL);
2175 }
2176
2177 struct gdbarch_data *
2178 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2179 {
2180 return gdbarch_data_register (NULL, post_init);
2181 }
2182
2183 /* Create/delete the gdbarch data vector. */
2184
2185 static void
2186 alloc_gdbarch_data (struct gdbarch *gdbarch)
2187 {
2188 gdb_assert (gdbarch->data == NULL);
2189 gdbarch->nr_data = gdbarch_data_registry.nr;
2190 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2191 }
2192
2193 /* Initialize the current value of the specified per-architecture
2194 data-pointer. */
2195
2196 void
2197 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2198 struct gdbarch_data *data,
2199 void *pointer)
2200 {
2201 gdb_assert (data->index < gdbarch->nr_data);
2202 gdb_assert (gdbarch->data[data->index] == NULL);
2203 gdb_assert (data->pre_init == NULL);
2204 gdbarch->data[data->index] = pointer;
2205 }
2206
2207 /* Return the current value of the specified per-architecture
2208 data-pointer. */
2209
2210 void *
2211 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2212 {
2213 gdb_assert (data->index < gdbarch->nr_data);
2214 if (gdbarch->data[data->index] == NULL)
2215 {
2216 /* The data-pointer isn't initialized, call init() to get a
2217 value. */
2218 if (data->pre_init != NULL)
2219 /* Mid architecture creation: pass just the obstack, and not
2220 the entire architecture, as that way it isn't possible for
2221 pre-init code to refer to undefined architecture
2222 fields. */
2223 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2224 else if (gdbarch->initialized_p
2225 && data->post_init != NULL)
2226 /* Post architecture creation: pass the entire architecture
2227 (as all fields are valid), but be careful to also detect
2228 recursive references. */
2229 {
2230 gdb_assert (data->init_p);
2231 data->init_p = 0;
2232 gdbarch->data[data->index] = data->post_init (gdbarch);
2233 data->init_p = 1;
2234 }
2235 else
2236 /* The architecture initialization hasn't completed - punt -
2237 hope that the caller knows what they are doing. Once
2238 deprecated_set_gdbarch_data has been initialized, this can be
2239 changed to an internal error. */
2240 return NULL;
2241 gdb_assert (gdbarch->data[data->index] != NULL);
2242 }
2243 return gdbarch->data[data->index];
2244 }
2245
2246
2247 /* Keep a registry of the architectures known by GDB. */
2248
2249 struct gdbarch_registration
2250 {
2251 enum bfd_architecture bfd_architecture;
2252 gdbarch_init_ftype *init;
2253 gdbarch_dump_tdep_ftype *dump_tdep;
2254 struct gdbarch_list *arches;
2255 struct gdbarch_registration *next;
2256 };
2257
2258 static struct gdbarch_registration *gdbarch_registry = NULL;
2259
2260 static void
2261 append_name (const char ***buf, int *nr, const char *name)
2262 {
2263 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2264 (*buf)[*nr] = name;
2265 *nr += 1;
2266 }
2267
2268 const char **
2269 gdbarch_printable_names (void)
2270 {
2271 /* Accumulate a list of names based on the registed list of
2272 architectures. */
2273 int nr_arches = 0;
2274 const char **arches = NULL;
2275 struct gdbarch_registration *rego;
2276
2277 for (rego = gdbarch_registry;
2278 rego != NULL;
2279 rego = rego->next)
2280 {
2281 const struct bfd_arch_info *ap;
2282 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2283 if (ap == NULL)
2284 internal_error (__FILE__, __LINE__,
2285 _("gdbarch_architecture_names: multi-arch unknown"));
2286 do
2287 {
2288 append_name (&arches, &nr_arches, ap->printable_name);
2289 ap = ap->next;
2290 }
2291 while (ap != NULL);
2292 }
2293 append_name (&arches, &nr_arches, NULL);
2294 return arches;
2295 }
2296
2297
2298 void
2299 gdbarch_register (enum bfd_architecture bfd_architecture,
2300 gdbarch_init_ftype *init,
2301 gdbarch_dump_tdep_ftype *dump_tdep)
2302 {
2303 struct gdbarch_registration **curr;
2304 const struct bfd_arch_info *bfd_arch_info;
2305
2306 /* Check that BFD recognizes this architecture */
2307 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2308 if (bfd_arch_info == NULL)
2309 {
2310 internal_error (__FILE__, __LINE__,
2311 _("gdbarch: Attempt to register "
2312 "unknown architecture (%d)"),
2313 bfd_architecture);
2314 }
2315 /* Check that we haven't seen this architecture before. */
2316 for (curr = &gdbarch_registry;
2317 (*curr) != NULL;
2318 curr = &(*curr)->next)
2319 {
2320 if (bfd_architecture == (*curr)->bfd_architecture)
2321 internal_error (__FILE__, __LINE__,
2322 _("gdbarch: Duplicate registration "
2323 "of architecture (%s)"),
2324 bfd_arch_info->printable_name);
2325 }
2326 /* log it */
2327 if (gdbarch_debug)
2328 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2329 bfd_arch_info->printable_name,
2330 host_address_to_string (init));
2331 /* Append it */
2332 (*curr) = XNEW (struct gdbarch_registration);
2333 (*curr)->bfd_architecture = bfd_architecture;
2334 (*curr)->init = init;
2335 (*curr)->dump_tdep = dump_tdep;
2336 (*curr)->arches = NULL;
2337 (*curr)->next = NULL;
2338 }
2339
2340 void
2341 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2342 gdbarch_init_ftype *init)
2343 {
2344 gdbarch_register (bfd_architecture, init, NULL);
2345 }
2346
2347
2348 /* Look for an architecture using gdbarch_info. */
2349
2350 struct gdbarch_list *
2351 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2352 const struct gdbarch_info *info)
2353 {
2354 for (; arches != NULL; arches = arches->next)
2355 {
2356 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2357 continue;
2358 if (info->byte_order != arches->gdbarch->byte_order)
2359 continue;
2360 if (info->osabi != arches->gdbarch->osabi)
2361 continue;
2362 if (info->target_desc != arches->gdbarch->target_desc)
2363 continue;
2364 return arches;
2365 }
2366 return NULL;
2367 }
2368
2369
2370 /* Find an architecture that matches the specified INFO. Create a new
2371 architecture if needed. Return that new architecture. */
2372
2373 struct gdbarch *
2374 gdbarch_find_by_info (struct gdbarch_info info)
2375 {
2376 struct gdbarch *new_gdbarch;
2377 struct gdbarch_registration *rego;
2378
2379 /* Fill in missing parts of the INFO struct using a number of
2380 sources: "set ..."; INFOabfd supplied; and the global
2381 defaults. */
2382 gdbarch_info_fill (&info);
2383
2384 /* Must have found some sort of architecture. */
2385 gdb_assert (info.bfd_arch_info != NULL);
2386
2387 if (gdbarch_debug)
2388 {
2389 fprintf_unfiltered (gdb_stdlog,
2390 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2391 (info.bfd_arch_info != NULL
2392 ? info.bfd_arch_info->printable_name
2393 : "(null)"));
2394 fprintf_unfiltered (gdb_stdlog,
2395 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2396 info.byte_order,
2397 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2398 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2399 : "default"));
2400 fprintf_unfiltered (gdb_stdlog,
2401 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2402 info.osabi, gdbarch_osabi_name (info.osabi));
2403 fprintf_unfiltered (gdb_stdlog,
2404 "gdbarch_find_by_info: info.abfd %s\n",
2405 host_address_to_string (info.abfd));
2406 fprintf_unfiltered (gdb_stdlog,
2407 "gdbarch_find_by_info: info.tdep_info %s\n",
2408 host_address_to_string (info.tdep_info));
2409 }
2410
2411 /* Find the tdep code that knows about this architecture. */
2412 for (rego = gdbarch_registry;
2413 rego != NULL;
2414 rego = rego->next)
2415 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2416 break;
2417 if (rego == NULL)
2418 {
2419 if (gdbarch_debug)
2420 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2421 "No matching architecture\n");
2422 return 0;
2423 }
2424
2425 /* Ask the tdep code for an architecture that matches "info". */
2426 new_gdbarch = rego->init (info, rego->arches);
2427
2428 /* Did the tdep code like it? No. Reject the change and revert to
2429 the old architecture. */
2430 if (new_gdbarch == NULL)
2431 {
2432 if (gdbarch_debug)
2433 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2434 "Target rejected architecture\n");
2435 return NULL;
2436 }
2437
2438 /* Is this a pre-existing architecture (as determined by already
2439 being initialized)? Move it to the front of the architecture
2440 list (keeping the list sorted Most Recently Used). */
2441 if (new_gdbarch->initialized_p)
2442 {
2443 struct gdbarch_list **list;
2444 struct gdbarch_list *self;
2445 if (gdbarch_debug)
2446 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2447 "Previous architecture %s (%s) selected\n",
2448 host_address_to_string (new_gdbarch),
2449 new_gdbarch->bfd_arch_info->printable_name);
2450 /* Find the existing arch in the list. */
2451 for (list = &rego->arches;
2452 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2453 list = &(*list)->next);
2454 /* It had better be in the list of architectures. */
2455 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2456 /* Unlink SELF. */
2457 self = (*list);
2458 (*list) = self->next;
2459 /* Insert SELF at the front. */
2460 self->next = rego->arches;
2461 rego->arches = self;
2462 /* Return it. */
2463 return new_gdbarch;
2464 }
2465
2466 /* It's a new architecture. */
2467 if (gdbarch_debug)
2468 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2469 "New architecture %s (%s) selected\n",
2470 host_address_to_string (new_gdbarch),
2471 new_gdbarch->bfd_arch_info->printable_name);
2472
2473 /* Insert the new architecture into the front of the architecture
2474 list (keep the list sorted Most Recently Used). */
2475 {
2476 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2477 self->next = rego->arches;
2478 self->gdbarch = new_gdbarch;
2479 rego->arches = self;
2480 }
2481
2482 /* Check that the newly installed architecture is valid. Plug in
2483 any post init values. */
2484 new_gdbarch->dump_tdep = rego->dump_tdep;
2485 verify_gdbarch (new_gdbarch);
2486 new_gdbarch->initialized_p = 1;
2487
2488 if (gdbarch_debug)
2489 gdbarch_dump (new_gdbarch, gdb_stdlog);
2490
2491 return new_gdbarch;
2492 }
2493
2494 /* Make the specified architecture current. */
2495
2496 void
2497 set_target_gdbarch (struct gdbarch *new_gdbarch)
2498 {
2499 gdb_assert (new_gdbarch != NULL);
2500 gdb_assert (new_gdbarch->initialized_p);
2501 current_inferior ()->gdbarch = new_gdbarch;
2502 observer_notify_architecture_changed (new_gdbarch);
2503 registers_changed ();
2504 }
2505
2506 /* Return the current inferior's arch. */
2507
2508 struct gdbarch *
2509 target_gdbarch (void)
2510 {
2511 return current_inferior ()->gdbarch;
2512 }
2513
2514 extern void _initialize_gdbarch (void);
2515
2516 void
2517 _initialize_gdbarch (void)
2518 {
2519 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2520 Set architecture debugging."), _("\\
2521 Show architecture debugging."), _("\\
2522 When non-zero, architecture debugging is enabled."),
2523 NULL,
2524 show_gdbarch_debug,
2525 &setdebuglist, &showdebuglist);
2526 }
2527 EOF
2528
2529 # close things off
2530 exec 1>&2
2531 #../move-if-change new-gdbarch.c gdbarch.c
2532 compare_new gdbarch.c