]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
Remove core_regset_section
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2015 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a function's epilogue. stack_frame_destroyed_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
638 # Process an ELF symbol in the minimal symbol table in a backend-specific
639 # way. Normally this hook is supposed to do nothing, however if required,
640 # then this hook can be used to apply tranformations to symbols that are
641 # considered special in some way. For example the MIPS backend uses it
642 # to interpret \`st_other' information to mark compressed code symbols so
643 # that they can be treated in the appropriate manner in the processing of
644 # the main symbol table and DWARF-2 records.
645 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
646 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
647 # Process a symbol in the main symbol table in a backend-specific way.
648 # Normally this hook is supposed to do nothing, however if required,
649 # then this hook can be used to apply tranformations to symbols that
650 # are considered special in some way. This is currently used by the
651 # MIPS backend to make sure compressed code symbols have the ISA bit
652 # set. This in turn is needed for symbol values seen in GDB to match
653 # the values used at the runtime by the program itself, for function
654 # and label references.
655 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656 # Adjust the address retrieved from a DWARF-2 record other than a line
657 # entry in a backend-specific way. Normally this hook is supposed to
658 # return the address passed unchanged, however if that is incorrect for
659 # any reason, then this hook can be used to fix the address up in the
660 # required manner. This is currently used by the MIPS backend to make
661 # sure addresses in FDE, range records, etc. referring to compressed
662 # code have the ISA bit set, matching line information and the symbol
663 # table.
664 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665 # Adjust the address updated by a line entry in a backend-specific way.
666 # Normally this hook is supposed to return the address passed unchanged,
667 # however in the case of inconsistencies in these records, this hook can
668 # be used to fix them up in the required manner. This is currently used
669 # by the MIPS backend to make sure all line addresses in compressed code
670 # are presented with the ISA bit set, which is not always the case. This
671 # in turn ensures breakpoint addresses are correctly matched against the
672 # stop PC.
673 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
674 v:int:cannot_step_breakpoint:::0:0::0
675 v:int:have_nonsteppable_watchpoint:::0:0::0
676 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
678
679 # Return the appropriate type_flags for the supplied address class.
680 # This function should return 1 if the address class was recognized and
681 # type_flags was set, zero otherwise.
682 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
683 # Is a register in a group
684 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
685 # Fetch the pointer to the ith function argument.
686 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
687
688 # Iterate over all supported register notes in a core file. For each
689 # supported register note section, the iterator must call CB and pass
690 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691 # the supported register note sections based on the current register
692 # values. Otherwise it should enumerate all supported register note
693 # sections.
694 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
695
696 # Create core file notes
697 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
699 # The elfcore writer hook to use to write Linux prpsinfo notes to core
700 # files. Most Linux architectures use the same prpsinfo32 or
701 # prpsinfo64 layouts, and so won't need to provide this hook, as we
702 # call the Linux generic routines in bfd to write prpsinfo notes by
703 # default.
704 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
706 # Find core file memory regions
707 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
709 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
710 # core file into buffer READBUF with length LEN. Return the number of bytes read
711 # (zero indicates failure).
712 # failed, otherwise, return the red length of READBUF.
713 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
714
715 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716 # libraries list from core file into buffer READBUF with length LEN.
717 # Return the number of bytes read (zero indicates failure).
718 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
719
720 # How the core target converts a PTID from a core file to a string.
721 M:char *:core_pid_to_str:ptid_t ptid:ptid
722
723 # BFD target to use when generating a core file.
724 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
725
726 # If the elements of C++ vtables are in-place function descriptors rather
727 # than normal function pointers (which may point to code or a descriptor),
728 # set this to one.
729 v:int:vtable_function_descriptors:::0:0::0
730
731 # Set if the least significant bit of the delta is used instead of the least
732 # significant bit of the pfn for pointers to virtual member functions.
733 v:int:vbit_in_delta:::0:0::0
734
735 # Advance PC to next instruction in order to skip a permanent breakpoint.
736 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
737
738 # The maximum length of an instruction on this architecture in bytes.
739 V:ULONGEST:max_insn_length:::0:0
740
741 # Copy the instruction at FROM to TO, and make any adjustments
742 # necessary to single-step it at that address.
743 #
744 # REGS holds the state the thread's registers will have before
745 # executing the copied instruction; the PC in REGS will refer to FROM,
746 # not the copy at TO. The caller should update it to point at TO later.
747 #
748 # Return a pointer to data of the architecture's choice to be passed
749 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750 # the instruction's effects have been completely simulated, with the
751 # resulting state written back to REGS.
752 #
753 # For a general explanation of displaced stepping and how GDB uses it,
754 # see the comments in infrun.c.
755 #
756 # The TO area is only guaranteed to have space for
757 # gdbarch_max_insn_length (arch) bytes, so this function must not
758 # write more bytes than that to that area.
759 #
760 # If you do not provide this function, GDB assumes that the
761 # architecture does not support displaced stepping.
762 #
763 # If your architecture doesn't need to adjust instructions before
764 # single-stepping them, consider using simple_displaced_step_copy_insn
765 # here.
766 #
767 # If the instruction cannot execute out of line, return NULL. The
768 # core falls back to stepping past the instruction in-line instead in
769 # that case.
770 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
771
772 # Return true if GDB should use hardware single-stepping to execute
773 # the displaced instruction identified by CLOSURE. If false,
774 # GDB will simply restart execution at the displaced instruction
775 # location, and it is up to the target to ensure GDB will receive
776 # control again (e.g. by placing a software breakpoint instruction
777 # into the displaced instruction buffer).
778 #
779 # The default implementation returns false on all targets that
780 # provide a gdbarch_software_single_step routine, and true otherwise.
781 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
782
783 # Fix up the state resulting from successfully single-stepping a
784 # displaced instruction, to give the result we would have gotten from
785 # stepping the instruction in its original location.
786 #
787 # REGS is the register state resulting from single-stepping the
788 # displaced instruction.
789 #
790 # CLOSURE is the result from the matching call to
791 # gdbarch_displaced_step_copy_insn.
792 #
793 # If you provide gdbarch_displaced_step_copy_insn.but not this
794 # function, then GDB assumes that no fixup is needed after
795 # single-stepping the instruction.
796 #
797 # For a general explanation of displaced stepping and how GDB uses it,
798 # see the comments in infrun.c.
799 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
800
801 # Free a closure returned by gdbarch_displaced_step_copy_insn.
802 #
803 # If you provide gdbarch_displaced_step_copy_insn, you must provide
804 # this function as well.
805 #
806 # If your architecture uses closures that don't need to be freed, then
807 # you can use simple_displaced_step_free_closure here.
808 #
809 # For a general explanation of displaced stepping and how GDB uses it,
810 # see the comments in infrun.c.
811 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
812
813 # Return the address of an appropriate place to put displaced
814 # instructions while we step over them. There need only be one such
815 # place, since we're only stepping one thread over a breakpoint at a
816 # time.
817 #
818 # For a general explanation of displaced stepping and how GDB uses it,
819 # see the comments in infrun.c.
820 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
821
822 # Relocate an instruction to execute at a different address. OLDLOC
823 # is the address in the inferior memory where the instruction to
824 # relocate is currently at. On input, TO points to the destination
825 # where we want the instruction to be copied (and possibly adjusted)
826 # to. On output, it points to one past the end of the resulting
827 # instruction(s). The effect of executing the instruction at TO shall
828 # be the same as if executing it at FROM. For example, call
829 # instructions that implicitly push the return address on the stack
830 # should be adjusted to return to the instruction after OLDLOC;
831 # relative branches, and other PC-relative instructions need the
832 # offset adjusted; etc.
833 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
834
835 # Refresh overlay mapped state for section OSECT.
836 F:void:overlay_update:struct obj_section *osect:osect
837
838 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
839
840 # Handle special encoding of static variables in stabs debug info.
841 F:const char *:static_transform_name:const char *name:name
842 # Set if the address in N_SO or N_FUN stabs may be zero.
843 v:int:sofun_address_maybe_missing:::0:0::0
844
845 # Parse the instruction at ADDR storing in the record execution log
846 # the registers REGCACHE and memory ranges that will be affected when
847 # the instruction executes, along with their current values.
848 # Return -1 if something goes wrong, 0 otherwise.
849 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
850
851 # Save process state after a signal.
852 # Return -1 if something goes wrong, 0 otherwise.
853 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
854
855 # Signal translation: translate inferior's signal (target's) number
856 # into GDB's representation. The implementation of this method must
857 # be host independent. IOW, don't rely on symbols of the NAT_FILE
858 # header (the nm-*.h files), the host <signal.h> header, or similar
859 # headers. This is mainly used when cross-debugging core files ---
860 # "Live" targets hide the translation behind the target interface
861 # (target_wait, target_resume, etc.).
862 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
863
864 # Signal translation: translate the GDB's internal signal number into
865 # the inferior's signal (target's) representation. The implementation
866 # of this method must be host independent. IOW, don't rely on symbols
867 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
868 # header, or similar headers.
869 # Return the target signal number if found, or -1 if the GDB internal
870 # signal number is invalid.
871 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
872
873 # Extra signal info inspection.
874 #
875 # Return a type suitable to inspect extra signal information.
876 M:struct type *:get_siginfo_type:void:
877
878 # Record architecture-specific information from the symbol table.
879 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
880
881 # Function for the 'catch syscall' feature.
882
883 # Get architecture-specific system calls information from registers.
884 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
885
886 # The filename of the XML syscall for this architecture.
887 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
888
889 # Information about system calls from this architecture
890 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
891
892 # SystemTap related fields and functions.
893
894 # A NULL-terminated array of prefixes used to mark an integer constant
895 # on the architecture's assembly.
896 # For example, on x86 integer constants are written as:
897 #
898 # \$10 ;; integer constant 10
899 #
900 # in this case, this prefix would be the character \`\$\'.
901 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
902
903 # A NULL-terminated array of suffixes used to mark an integer constant
904 # on the architecture's assembly.
905 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
906
907 # A NULL-terminated array of prefixes used to mark a register name on
908 # the architecture's assembly.
909 # For example, on x86 the register name is written as:
910 #
911 # \%eax ;; register eax
912 #
913 # in this case, this prefix would be the character \`\%\'.
914 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
915
916 # A NULL-terminated array of suffixes used to mark a register name on
917 # the architecture's assembly.
918 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
919
920 # A NULL-terminated array of prefixes used to mark a register
921 # indirection on the architecture's assembly.
922 # For example, on x86 the register indirection is written as:
923 #
924 # \(\%eax\) ;; indirecting eax
925 #
926 # in this case, this prefix would be the charater \`\(\'.
927 #
928 # Please note that we use the indirection prefix also for register
929 # displacement, e.g., \`4\(\%eax\)\' on x86.
930 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
931
932 # A NULL-terminated array of suffixes used to mark a register
933 # indirection on the architecture's assembly.
934 # For example, on x86 the register indirection is written as:
935 #
936 # \(\%eax\) ;; indirecting eax
937 #
938 # in this case, this prefix would be the charater \`\)\'.
939 #
940 # Please note that we use the indirection suffix also for register
941 # displacement, e.g., \`4\(\%eax\)\' on x86.
942 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
943
944 # Prefix(es) used to name a register using GDB's nomenclature.
945 #
946 # For example, on PPC a register is represented by a number in the assembly
947 # language (e.g., \`10\' is the 10th general-purpose register). However,
948 # inside GDB this same register has an \`r\' appended to its name, so the 10th
949 # register would be represented as \`r10\' internally.
950 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
951
952 # Suffix used to name a register using GDB's nomenclature.
953 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
954
955 # Check if S is a single operand.
956 #
957 # Single operands can be:
958 # \- Literal integers, e.g. \`\$10\' on x86
959 # \- Register access, e.g. \`\%eax\' on x86
960 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
961 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
962 #
963 # This function should check for these patterns on the string
964 # and return 1 if some were found, or zero otherwise. Please try to match
965 # as much info as you can from the string, i.e., if you have to match
966 # something like \`\(\%\', do not match just the \`\(\'.
967 M:int:stap_is_single_operand:const char *s:s
968
969 # Function used to handle a "special case" in the parser.
970 #
971 # A "special case" is considered to be an unknown token, i.e., a token
972 # that the parser does not know how to parse. A good example of special
973 # case would be ARM's register displacement syntax:
974 #
975 # [R0, #4] ;; displacing R0 by 4
976 #
977 # Since the parser assumes that a register displacement is of the form:
978 #
979 # <number> <indirection_prefix> <register_name> <indirection_suffix>
980 #
981 # it means that it will not be able to recognize and parse this odd syntax.
982 # Therefore, we should add a special case function that will handle this token.
983 #
984 # This function should generate the proper expression form of the expression
985 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
986 # and so on). It should also return 1 if the parsing was successful, or zero
987 # if the token was not recognized as a special token (in this case, returning
988 # zero means that the special parser is deferring the parsing to the generic
989 # parser), and should advance the buffer pointer (p->arg).
990 M:int:stap_parse_special_token:struct stap_parse_info *p:p
991
992 # DTrace related functions.
993
994 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
995 # NARG must be >= 0.
996 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
997
998 # True if the given ADDR does not contain the instruction sequence
999 # corresponding to a disabled DTrace is-enabled probe.
1000 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1001
1002 # Enable a DTrace is-enabled probe at ADDR.
1003 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1004
1005 # Disable a DTrace is-enabled probe at ADDR.
1006 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1007
1008 # True if the list of shared libraries is one and only for all
1009 # processes, as opposed to a list of shared libraries per inferior.
1010 # This usually means that all processes, although may or may not share
1011 # an address space, will see the same set of symbols at the same
1012 # addresses.
1013 v:int:has_global_solist:::0:0::0
1014
1015 # On some targets, even though each inferior has its own private
1016 # address space, the debug interface takes care of making breakpoints
1017 # visible to all address spaces automatically. For such cases,
1018 # this property should be set to true.
1019 v:int:has_global_breakpoints:::0:0::0
1020
1021 # True if inferiors share an address space (e.g., uClinux).
1022 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1023
1024 # True if a fast tracepoint can be set at an address.
1025 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
1026
1027 # Return the "auto" target charset.
1028 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1029 # Return the "auto" target wide charset.
1030 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1031
1032 # If non-empty, this is a file extension that will be opened in place
1033 # of the file extension reported by the shared library list.
1034 #
1035 # This is most useful for toolchains that use a post-linker tool,
1036 # where the names of the files run on the target differ in extension
1037 # compared to the names of the files GDB should load for debug info.
1038 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1039
1040 # If true, the target OS has DOS-based file system semantics. That
1041 # is, absolute paths include a drive name, and the backslash is
1042 # considered a directory separator.
1043 v:int:has_dos_based_file_system:::0:0::0
1044
1045 # Generate bytecodes to collect the return address in a frame.
1046 # Since the bytecodes run on the target, possibly with GDB not even
1047 # connected, the full unwinding machinery is not available, and
1048 # typically this function will issue bytecodes for one or more likely
1049 # places that the return address may be found.
1050 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1051
1052 # Implement the "info proc" command.
1053 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1054
1055 # Implement the "info proc" command for core files. Noe that there
1056 # are two "info_proc"-like methods on gdbarch -- one for core files,
1057 # one for live targets.
1058 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1059
1060 # Iterate over all objfiles in the order that makes the most sense
1061 # for the architecture to make global symbol searches.
1062 #
1063 # CB is a callback function where OBJFILE is the objfile to be searched,
1064 # and CB_DATA a pointer to user-defined data (the same data that is passed
1065 # when calling this gdbarch method). The iteration stops if this function
1066 # returns nonzero.
1067 #
1068 # CB_DATA is a pointer to some user-defined data to be passed to
1069 # the callback.
1070 #
1071 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1072 # inspected when the symbol search was requested.
1073 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1074
1075 # Ravenscar arch-dependent ops.
1076 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1077
1078 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1079 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1080
1081 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1082 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1083
1084 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1085 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1086
1087 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1088 # Return 0 if *READPTR is already at the end of the buffer.
1089 # Return -1 if there is insufficient buffer for a whole entry.
1090 # Return 1 if an entry was read into *TYPEP and *VALP.
1091 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1092
1093 # Find the address range of the current inferior's vsyscall/vDSO, and
1094 # write it to *RANGE. If the vsyscall's length can't be determined, a
1095 # range with zero length is returned. Returns true if the vsyscall is
1096 # found, false otherwise.
1097 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1098
1099 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1100 # PROT has GDB_MMAP_PROT_* bitmask format.
1101 # Throw an error if it is not possible. Returned address is always valid.
1102 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1103
1104 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1105 # Print a warning if it is not possible.
1106 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1107
1108 # Return string (caller has to use xfree for it) with options for GCC
1109 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1110 # These options are put before CU's DW_AT_producer compilation options so that
1111 # they can override it. Method may also return NULL.
1112 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1113
1114 # Return a regular expression that matches names used by this
1115 # architecture in GNU configury triplets. The result is statically
1116 # allocated and must not be freed. The default implementation simply
1117 # returns the BFD architecture name, which is correct in nearly every
1118 # case.
1119 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1120
1121 # Return the size in 8-bit bytes of an addressable memory unit on this
1122 # architecture. This corresponds to the number of 8-bit bytes associated to
1123 # each address in memory.
1124 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1125
1126 EOF
1127 }
1128
1129 #
1130 # The .log file
1131 #
1132 exec > new-gdbarch.log
1133 function_list | while do_read
1134 do
1135 cat <<EOF
1136 ${class} ${returntype} ${function} ($formal)
1137 EOF
1138 for r in ${read}
1139 do
1140 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1141 done
1142 if class_is_predicate_p && fallback_default_p
1143 then
1144 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1145 kill $$
1146 exit 1
1147 fi
1148 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1149 then
1150 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1151 kill $$
1152 exit 1
1153 fi
1154 if class_is_multiarch_p
1155 then
1156 if class_is_predicate_p ; then :
1157 elif test "x${predefault}" = "x"
1158 then
1159 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1160 kill $$
1161 exit 1
1162 fi
1163 fi
1164 echo ""
1165 done
1166
1167 exec 1>&2
1168 compare_new gdbarch.log
1169
1170
1171 copyright ()
1172 {
1173 cat <<EOF
1174 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1175 /* vi:set ro: */
1176
1177 /* Dynamic architecture support for GDB, the GNU debugger.
1178
1179 Copyright (C) 1998-2015 Free Software Foundation, Inc.
1180
1181 This file is part of GDB.
1182
1183 This program is free software; you can redistribute it and/or modify
1184 it under the terms of the GNU General Public License as published by
1185 the Free Software Foundation; either version 3 of the License, or
1186 (at your option) any later version.
1187
1188 This program is distributed in the hope that it will be useful,
1189 but WITHOUT ANY WARRANTY; without even the implied warranty of
1190 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1191 GNU General Public License for more details.
1192
1193 You should have received a copy of the GNU General Public License
1194 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1195
1196 /* This file was created with the aid of \`\`gdbarch.sh''.
1197
1198 The Bourne shell script \`\`gdbarch.sh'' creates the files
1199 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1200 against the existing \`\`gdbarch.[hc]''. Any differences found
1201 being reported.
1202
1203 If editing this file, please also run gdbarch.sh and merge any
1204 changes into that script. Conversely, when making sweeping changes
1205 to this file, modifying gdbarch.sh and using its output may prove
1206 easier. */
1207
1208 EOF
1209 }
1210
1211 #
1212 # The .h file
1213 #
1214
1215 exec > new-gdbarch.h
1216 copyright
1217 cat <<EOF
1218 #ifndef GDBARCH_H
1219 #define GDBARCH_H
1220
1221 #include "frame.h"
1222
1223 struct floatformat;
1224 struct ui_file;
1225 struct value;
1226 struct objfile;
1227 struct obj_section;
1228 struct minimal_symbol;
1229 struct regcache;
1230 struct reggroup;
1231 struct regset;
1232 struct disassemble_info;
1233 struct target_ops;
1234 struct obstack;
1235 struct bp_target_info;
1236 struct target_desc;
1237 struct objfile;
1238 struct symbol;
1239 struct displaced_step_closure;
1240 struct syscall;
1241 struct agent_expr;
1242 struct axs_value;
1243 struct stap_parse_info;
1244 struct parser_state;
1245 struct ravenscar_arch_ops;
1246 struct elf_internal_linux_prpsinfo;
1247 struct mem_range;
1248 struct syscalls_info;
1249
1250 #include "regcache.h"
1251
1252 /* The architecture associated with the inferior through the
1253 connection to the target.
1254
1255 The architecture vector provides some information that is really a
1256 property of the inferior, accessed through a particular target:
1257 ptrace operations; the layout of certain RSP packets; the solib_ops
1258 vector; etc. To differentiate architecture accesses to
1259 per-inferior/target properties from
1260 per-thread/per-frame/per-objfile properties, accesses to
1261 per-inferior/target properties should be made through this
1262 gdbarch. */
1263
1264 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1265 extern struct gdbarch *target_gdbarch (void);
1266
1267 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1268 gdbarch method. */
1269
1270 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1271 (struct objfile *objfile, void *cb_data);
1272
1273 /* Callback type for regset section iterators. The callback usually
1274 invokes the REGSET's supply or collect method, to which it must
1275 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1276 section name, and HUMAN_NAME is used for diagnostic messages.
1277 CB_DATA should have been passed unchanged through the iterator. */
1278
1279 typedef void (iterate_over_regset_sections_cb)
1280 (const char *sect_name, int size, const struct regset *regset,
1281 const char *human_name, void *cb_data);
1282 EOF
1283
1284 # function typedef's
1285 printf "\n"
1286 printf "\n"
1287 printf "/* The following are pre-initialized by GDBARCH. */\n"
1288 function_list | while do_read
1289 do
1290 if class_is_info_p
1291 then
1292 printf "\n"
1293 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1294 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1295 fi
1296 done
1297
1298 # function typedef's
1299 printf "\n"
1300 printf "\n"
1301 printf "/* The following are initialized by the target dependent code. */\n"
1302 function_list | while do_read
1303 do
1304 if [ -n "${comment}" ]
1305 then
1306 echo "${comment}" | sed \
1307 -e '2 s,#,/*,' \
1308 -e '3,$ s,#, ,' \
1309 -e '$ s,$, */,'
1310 fi
1311
1312 if class_is_predicate_p
1313 then
1314 printf "\n"
1315 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1316 fi
1317 if class_is_variable_p
1318 then
1319 printf "\n"
1320 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1321 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1322 fi
1323 if class_is_function_p
1324 then
1325 printf "\n"
1326 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1327 then
1328 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1329 elif class_is_multiarch_p
1330 then
1331 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1332 else
1333 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1334 fi
1335 if [ "x${formal}" = "xvoid" ]
1336 then
1337 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1338 else
1339 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1340 fi
1341 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1342 fi
1343 done
1344
1345 # close it off
1346 cat <<EOF
1347
1348 /* Definition for an unknown syscall, used basically in error-cases. */
1349 #define UNKNOWN_SYSCALL (-1)
1350
1351 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1352
1353
1354 /* Mechanism for co-ordinating the selection of a specific
1355 architecture.
1356
1357 GDB targets (*-tdep.c) can register an interest in a specific
1358 architecture. Other GDB components can register a need to maintain
1359 per-architecture data.
1360
1361 The mechanisms below ensures that there is only a loose connection
1362 between the set-architecture command and the various GDB
1363 components. Each component can independently register their need
1364 to maintain architecture specific data with gdbarch.
1365
1366 Pragmatics:
1367
1368 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1369 didn't scale.
1370
1371 The more traditional mega-struct containing architecture specific
1372 data for all the various GDB components was also considered. Since
1373 GDB is built from a variable number of (fairly independent)
1374 components it was determined that the global aproach was not
1375 applicable. */
1376
1377
1378 /* Register a new architectural family with GDB.
1379
1380 Register support for the specified ARCHITECTURE with GDB. When
1381 gdbarch determines that the specified architecture has been
1382 selected, the corresponding INIT function is called.
1383
1384 --
1385
1386 The INIT function takes two parameters: INFO which contains the
1387 information available to gdbarch about the (possibly new)
1388 architecture; ARCHES which is a list of the previously created
1389 \`\`struct gdbarch'' for this architecture.
1390
1391 The INFO parameter is, as far as possible, be pre-initialized with
1392 information obtained from INFO.ABFD or the global defaults.
1393
1394 The ARCHES parameter is a linked list (sorted most recently used)
1395 of all the previously created architures for this architecture
1396 family. The (possibly NULL) ARCHES->gdbarch can used to access
1397 values from the previously selected architecture for this
1398 architecture family.
1399
1400 The INIT function shall return any of: NULL - indicating that it
1401 doesn't recognize the selected architecture; an existing \`\`struct
1402 gdbarch'' from the ARCHES list - indicating that the new
1403 architecture is just a synonym for an earlier architecture (see
1404 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1405 - that describes the selected architecture (see gdbarch_alloc()).
1406
1407 The DUMP_TDEP function shall print out all target specific values.
1408 Care should be taken to ensure that the function works in both the
1409 multi-arch and non- multi-arch cases. */
1410
1411 struct gdbarch_list
1412 {
1413 struct gdbarch *gdbarch;
1414 struct gdbarch_list *next;
1415 };
1416
1417 struct gdbarch_info
1418 {
1419 /* Use default: NULL (ZERO). */
1420 const struct bfd_arch_info *bfd_arch_info;
1421
1422 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1423 enum bfd_endian byte_order;
1424
1425 enum bfd_endian byte_order_for_code;
1426
1427 /* Use default: NULL (ZERO). */
1428 bfd *abfd;
1429
1430 /* Use default: NULL (ZERO). */
1431 void *tdep_info;
1432
1433 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1434 enum gdb_osabi osabi;
1435
1436 /* Use default: NULL (ZERO). */
1437 const struct target_desc *target_desc;
1438 };
1439
1440 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1441 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1442
1443 /* DEPRECATED - use gdbarch_register() */
1444 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1445
1446 extern void gdbarch_register (enum bfd_architecture architecture,
1447 gdbarch_init_ftype *,
1448 gdbarch_dump_tdep_ftype *);
1449
1450
1451 /* Return a freshly allocated, NULL terminated, array of the valid
1452 architecture names. Since architectures are registered during the
1453 _initialize phase this function only returns useful information
1454 once initialization has been completed. */
1455
1456 extern const char **gdbarch_printable_names (void);
1457
1458
1459 /* Helper function. Search the list of ARCHES for a GDBARCH that
1460 matches the information provided by INFO. */
1461
1462 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1463
1464
1465 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1466 basic initialization using values obtained from the INFO and TDEP
1467 parameters. set_gdbarch_*() functions are called to complete the
1468 initialization of the object. */
1469
1470 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1471
1472
1473 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1474 It is assumed that the caller freeds the \`\`struct
1475 gdbarch_tdep''. */
1476
1477 extern void gdbarch_free (struct gdbarch *);
1478
1479
1480 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1481 obstack. The memory is freed when the corresponding architecture
1482 is also freed. */
1483
1484 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1485 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1486 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1487
1488 /* Duplicate STRING, returning an equivalent string that's allocated on the
1489 obstack associated with GDBARCH. The string is freed when the corresponding
1490 architecture is also freed. */
1491
1492 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1493
1494 /* Helper function. Force an update of the current architecture.
1495
1496 The actual architecture selected is determined by INFO, \`\`(gdb) set
1497 architecture'' et.al., the existing architecture and BFD's default
1498 architecture. INFO should be initialized to zero and then selected
1499 fields should be updated.
1500
1501 Returns non-zero if the update succeeds. */
1502
1503 extern int gdbarch_update_p (struct gdbarch_info info);
1504
1505
1506 /* Helper function. Find an architecture matching info.
1507
1508 INFO should be initialized using gdbarch_info_init, relevant fields
1509 set, and then finished using gdbarch_info_fill.
1510
1511 Returns the corresponding architecture, or NULL if no matching
1512 architecture was found. */
1513
1514 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1515
1516
1517 /* Helper function. Set the target gdbarch to "gdbarch". */
1518
1519 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1520
1521
1522 /* Register per-architecture data-pointer.
1523
1524 Reserve space for a per-architecture data-pointer. An identifier
1525 for the reserved data-pointer is returned. That identifer should
1526 be saved in a local static variable.
1527
1528 Memory for the per-architecture data shall be allocated using
1529 gdbarch_obstack_zalloc. That memory will be deleted when the
1530 corresponding architecture object is deleted.
1531
1532 When a previously created architecture is re-selected, the
1533 per-architecture data-pointer for that previous architecture is
1534 restored. INIT() is not re-called.
1535
1536 Multiple registrarants for any architecture are allowed (and
1537 strongly encouraged). */
1538
1539 struct gdbarch_data;
1540
1541 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1542 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1543 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1544 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1545 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1546 struct gdbarch_data *data,
1547 void *pointer);
1548
1549 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1550
1551
1552 /* Set the dynamic target-system-dependent parameters (architecture,
1553 byte-order, ...) using information found in the BFD. */
1554
1555 extern void set_gdbarch_from_file (bfd *);
1556
1557
1558 /* Initialize the current architecture to the "first" one we find on
1559 our list. */
1560
1561 extern void initialize_current_architecture (void);
1562
1563 /* gdbarch trace variable */
1564 extern unsigned int gdbarch_debug;
1565
1566 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1567
1568 #endif
1569 EOF
1570 exec 1>&2
1571 #../move-if-change new-gdbarch.h gdbarch.h
1572 compare_new gdbarch.h
1573
1574
1575 #
1576 # C file
1577 #
1578
1579 exec > new-gdbarch.c
1580 copyright
1581 cat <<EOF
1582
1583 #include "defs.h"
1584 #include "arch-utils.h"
1585
1586 #include "gdbcmd.h"
1587 #include "inferior.h"
1588 #include "symcat.h"
1589
1590 #include "floatformat.h"
1591 #include "reggroups.h"
1592 #include "osabi.h"
1593 #include "gdb_obstack.h"
1594 #include "observer.h"
1595 #include "regcache.h"
1596 #include "objfiles.h"
1597
1598 /* Static function declarations */
1599
1600 static void alloc_gdbarch_data (struct gdbarch *);
1601
1602 /* Non-zero if we want to trace architecture code. */
1603
1604 #ifndef GDBARCH_DEBUG
1605 #define GDBARCH_DEBUG 0
1606 #endif
1607 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1608 static void
1609 show_gdbarch_debug (struct ui_file *file, int from_tty,
1610 struct cmd_list_element *c, const char *value)
1611 {
1612 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1613 }
1614
1615 static const char *
1616 pformat (const struct floatformat **format)
1617 {
1618 if (format == NULL)
1619 return "(null)";
1620 else
1621 /* Just print out one of them - this is only for diagnostics. */
1622 return format[0]->name;
1623 }
1624
1625 static const char *
1626 pstring (const char *string)
1627 {
1628 if (string == NULL)
1629 return "(null)";
1630 return string;
1631 }
1632
1633 /* Helper function to print a list of strings, represented as "const
1634 char *const *". The list is printed comma-separated. */
1635
1636 static char *
1637 pstring_list (const char *const *list)
1638 {
1639 static char ret[100];
1640 const char *const *p;
1641 size_t offset = 0;
1642
1643 if (list == NULL)
1644 return "(null)";
1645
1646 ret[0] = '\0';
1647 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1648 {
1649 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1650 offset += 2 + s;
1651 }
1652
1653 if (offset > 0)
1654 {
1655 gdb_assert (offset - 2 < sizeof (ret));
1656 ret[offset - 2] = '\0';
1657 }
1658
1659 return ret;
1660 }
1661
1662 EOF
1663
1664 # gdbarch open the gdbarch object
1665 printf "\n"
1666 printf "/* Maintain the struct gdbarch object. */\n"
1667 printf "\n"
1668 printf "struct gdbarch\n"
1669 printf "{\n"
1670 printf " /* Has this architecture been fully initialized? */\n"
1671 printf " int initialized_p;\n"
1672 printf "\n"
1673 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1674 printf " struct obstack *obstack;\n"
1675 printf "\n"
1676 printf " /* basic architectural information. */\n"
1677 function_list | while do_read
1678 do
1679 if class_is_info_p
1680 then
1681 printf " ${returntype} ${function};\n"
1682 fi
1683 done
1684 printf "\n"
1685 printf " /* target specific vector. */\n"
1686 printf " struct gdbarch_tdep *tdep;\n"
1687 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1688 printf "\n"
1689 printf " /* per-architecture data-pointers. */\n"
1690 printf " unsigned nr_data;\n"
1691 printf " void **data;\n"
1692 printf "\n"
1693 cat <<EOF
1694 /* Multi-arch values.
1695
1696 When extending this structure you must:
1697
1698 Add the field below.
1699
1700 Declare set/get functions and define the corresponding
1701 macro in gdbarch.h.
1702
1703 gdbarch_alloc(): If zero/NULL is not a suitable default,
1704 initialize the new field.
1705
1706 verify_gdbarch(): Confirm that the target updated the field
1707 correctly.
1708
1709 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1710 field is dumped out
1711
1712 get_gdbarch(): Implement the set/get functions (probably using
1713 the macro's as shortcuts).
1714
1715 */
1716
1717 EOF
1718 function_list | while do_read
1719 do
1720 if class_is_variable_p
1721 then
1722 printf " ${returntype} ${function};\n"
1723 elif class_is_function_p
1724 then
1725 printf " gdbarch_${function}_ftype *${function};\n"
1726 fi
1727 done
1728 printf "};\n"
1729
1730 # Create a new gdbarch struct
1731 cat <<EOF
1732
1733 /* Create a new \`\`struct gdbarch'' based on information provided by
1734 \`\`struct gdbarch_info''. */
1735 EOF
1736 printf "\n"
1737 cat <<EOF
1738 struct gdbarch *
1739 gdbarch_alloc (const struct gdbarch_info *info,
1740 struct gdbarch_tdep *tdep)
1741 {
1742 struct gdbarch *gdbarch;
1743
1744 /* Create an obstack for allocating all the per-architecture memory,
1745 then use that to allocate the architecture vector. */
1746 struct obstack *obstack = XNEW (struct obstack);
1747 obstack_init (obstack);
1748 gdbarch = XOBNEW (obstack, struct gdbarch);
1749 memset (gdbarch, 0, sizeof (*gdbarch));
1750 gdbarch->obstack = obstack;
1751
1752 alloc_gdbarch_data (gdbarch);
1753
1754 gdbarch->tdep = tdep;
1755 EOF
1756 printf "\n"
1757 function_list | while do_read
1758 do
1759 if class_is_info_p
1760 then
1761 printf " gdbarch->${function} = info->${function};\n"
1762 fi
1763 done
1764 printf "\n"
1765 printf " /* Force the explicit initialization of these. */\n"
1766 function_list | while do_read
1767 do
1768 if class_is_function_p || class_is_variable_p
1769 then
1770 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1771 then
1772 printf " gdbarch->${function} = ${predefault};\n"
1773 fi
1774 fi
1775 done
1776 cat <<EOF
1777 /* gdbarch_alloc() */
1778
1779 return gdbarch;
1780 }
1781 EOF
1782
1783 # Free a gdbarch struct.
1784 printf "\n"
1785 printf "\n"
1786 cat <<EOF
1787 /* Allocate extra space using the per-architecture obstack. */
1788
1789 void *
1790 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1791 {
1792 void *data = obstack_alloc (arch->obstack, size);
1793
1794 memset (data, 0, size);
1795 return data;
1796 }
1797
1798 /* See gdbarch.h. */
1799
1800 char *
1801 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1802 {
1803 return obstack_strdup (arch->obstack, string);
1804 }
1805
1806
1807 /* Free a gdbarch struct. This should never happen in normal
1808 operation --- once you've created a gdbarch, you keep it around.
1809 However, if an architecture's init function encounters an error
1810 building the structure, it may need to clean up a partially
1811 constructed gdbarch. */
1812
1813 void
1814 gdbarch_free (struct gdbarch *arch)
1815 {
1816 struct obstack *obstack;
1817
1818 gdb_assert (arch != NULL);
1819 gdb_assert (!arch->initialized_p);
1820 obstack = arch->obstack;
1821 obstack_free (obstack, 0); /* Includes the ARCH. */
1822 xfree (obstack);
1823 }
1824 EOF
1825
1826 # verify a new architecture
1827 cat <<EOF
1828
1829
1830 /* Ensure that all values in a GDBARCH are reasonable. */
1831
1832 static void
1833 verify_gdbarch (struct gdbarch *gdbarch)
1834 {
1835 struct ui_file *log;
1836 struct cleanup *cleanups;
1837 long length;
1838 char *buf;
1839
1840 log = mem_fileopen ();
1841 cleanups = make_cleanup_ui_file_delete (log);
1842 /* fundamental */
1843 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1844 fprintf_unfiltered (log, "\n\tbyte-order");
1845 if (gdbarch->bfd_arch_info == NULL)
1846 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1847 /* Check those that need to be defined for the given multi-arch level. */
1848 EOF
1849 function_list | while do_read
1850 do
1851 if class_is_function_p || class_is_variable_p
1852 then
1853 if [ "x${invalid_p}" = "x0" ]
1854 then
1855 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1856 elif class_is_predicate_p
1857 then
1858 printf " /* Skip verify of ${function}, has predicate. */\n"
1859 # FIXME: See do_read for potential simplification
1860 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1861 then
1862 printf " if (${invalid_p})\n"
1863 printf " gdbarch->${function} = ${postdefault};\n"
1864 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1865 then
1866 printf " if (gdbarch->${function} == ${predefault})\n"
1867 printf " gdbarch->${function} = ${postdefault};\n"
1868 elif [ -n "${postdefault}" ]
1869 then
1870 printf " if (gdbarch->${function} == 0)\n"
1871 printf " gdbarch->${function} = ${postdefault};\n"
1872 elif [ -n "${invalid_p}" ]
1873 then
1874 printf " if (${invalid_p})\n"
1875 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1876 elif [ -n "${predefault}" ]
1877 then
1878 printf " if (gdbarch->${function} == ${predefault})\n"
1879 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1880 fi
1881 fi
1882 done
1883 cat <<EOF
1884 buf = ui_file_xstrdup (log, &length);
1885 make_cleanup (xfree, buf);
1886 if (length > 0)
1887 internal_error (__FILE__, __LINE__,
1888 _("verify_gdbarch: the following are invalid ...%s"),
1889 buf);
1890 do_cleanups (cleanups);
1891 }
1892 EOF
1893
1894 # dump the structure
1895 printf "\n"
1896 printf "\n"
1897 cat <<EOF
1898 /* Print out the details of the current architecture. */
1899
1900 void
1901 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1902 {
1903 const char *gdb_nm_file = "<not-defined>";
1904
1905 #if defined (GDB_NM_FILE)
1906 gdb_nm_file = GDB_NM_FILE;
1907 #endif
1908 fprintf_unfiltered (file,
1909 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1910 gdb_nm_file);
1911 EOF
1912 function_list | sort -t: -k 3 | while do_read
1913 do
1914 # First the predicate
1915 if class_is_predicate_p
1916 then
1917 printf " fprintf_unfiltered (file,\n"
1918 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1919 printf " gdbarch_${function}_p (gdbarch));\n"
1920 fi
1921 # Print the corresponding value.
1922 if class_is_function_p
1923 then
1924 printf " fprintf_unfiltered (file,\n"
1925 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1926 printf " host_address_to_string (gdbarch->${function}));\n"
1927 else
1928 # It is a variable
1929 case "${print}:${returntype}" in
1930 :CORE_ADDR )
1931 fmt="%s"
1932 print="core_addr_to_string_nz (gdbarch->${function})"
1933 ;;
1934 :* )
1935 fmt="%s"
1936 print="plongest (gdbarch->${function})"
1937 ;;
1938 * )
1939 fmt="%s"
1940 ;;
1941 esac
1942 printf " fprintf_unfiltered (file,\n"
1943 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1944 printf " ${print});\n"
1945 fi
1946 done
1947 cat <<EOF
1948 if (gdbarch->dump_tdep != NULL)
1949 gdbarch->dump_tdep (gdbarch, file);
1950 }
1951 EOF
1952
1953
1954 # GET/SET
1955 printf "\n"
1956 cat <<EOF
1957 struct gdbarch_tdep *
1958 gdbarch_tdep (struct gdbarch *gdbarch)
1959 {
1960 if (gdbarch_debug >= 2)
1961 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1962 return gdbarch->tdep;
1963 }
1964 EOF
1965 printf "\n"
1966 function_list | while do_read
1967 do
1968 if class_is_predicate_p
1969 then
1970 printf "\n"
1971 printf "int\n"
1972 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1973 printf "{\n"
1974 printf " gdb_assert (gdbarch != NULL);\n"
1975 printf " return ${predicate};\n"
1976 printf "}\n"
1977 fi
1978 if class_is_function_p
1979 then
1980 printf "\n"
1981 printf "${returntype}\n"
1982 if [ "x${formal}" = "xvoid" ]
1983 then
1984 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1985 else
1986 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1987 fi
1988 printf "{\n"
1989 printf " gdb_assert (gdbarch != NULL);\n"
1990 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1991 if class_is_predicate_p && test -n "${predefault}"
1992 then
1993 # Allow a call to a function with a predicate.
1994 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1995 fi
1996 printf " if (gdbarch_debug >= 2)\n"
1997 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1998 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1999 then
2000 if class_is_multiarch_p
2001 then
2002 params="gdbarch"
2003 else
2004 params=""
2005 fi
2006 else
2007 if class_is_multiarch_p
2008 then
2009 params="gdbarch, ${actual}"
2010 else
2011 params="${actual}"
2012 fi
2013 fi
2014 if [ "x${returntype}" = "xvoid" ]
2015 then
2016 printf " gdbarch->${function} (${params});\n"
2017 else
2018 printf " return gdbarch->${function} (${params});\n"
2019 fi
2020 printf "}\n"
2021 printf "\n"
2022 printf "void\n"
2023 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2024 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2025 printf "{\n"
2026 printf " gdbarch->${function} = ${function};\n"
2027 printf "}\n"
2028 elif class_is_variable_p
2029 then
2030 printf "\n"
2031 printf "${returntype}\n"
2032 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2033 printf "{\n"
2034 printf " gdb_assert (gdbarch != NULL);\n"
2035 if [ "x${invalid_p}" = "x0" ]
2036 then
2037 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2038 elif [ -n "${invalid_p}" ]
2039 then
2040 printf " /* Check variable is valid. */\n"
2041 printf " gdb_assert (!(${invalid_p}));\n"
2042 elif [ -n "${predefault}" ]
2043 then
2044 printf " /* Check variable changed from pre-default. */\n"
2045 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2046 fi
2047 printf " if (gdbarch_debug >= 2)\n"
2048 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2049 printf " return gdbarch->${function};\n"
2050 printf "}\n"
2051 printf "\n"
2052 printf "void\n"
2053 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2054 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2055 printf "{\n"
2056 printf " gdbarch->${function} = ${function};\n"
2057 printf "}\n"
2058 elif class_is_info_p
2059 then
2060 printf "\n"
2061 printf "${returntype}\n"
2062 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2063 printf "{\n"
2064 printf " gdb_assert (gdbarch != NULL);\n"
2065 printf " if (gdbarch_debug >= 2)\n"
2066 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2067 printf " return gdbarch->${function};\n"
2068 printf "}\n"
2069 fi
2070 done
2071
2072 # All the trailing guff
2073 cat <<EOF
2074
2075
2076 /* Keep a registry of per-architecture data-pointers required by GDB
2077 modules. */
2078
2079 struct gdbarch_data
2080 {
2081 unsigned index;
2082 int init_p;
2083 gdbarch_data_pre_init_ftype *pre_init;
2084 gdbarch_data_post_init_ftype *post_init;
2085 };
2086
2087 struct gdbarch_data_registration
2088 {
2089 struct gdbarch_data *data;
2090 struct gdbarch_data_registration *next;
2091 };
2092
2093 struct gdbarch_data_registry
2094 {
2095 unsigned nr;
2096 struct gdbarch_data_registration *registrations;
2097 };
2098
2099 struct gdbarch_data_registry gdbarch_data_registry =
2100 {
2101 0, NULL,
2102 };
2103
2104 static struct gdbarch_data *
2105 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2106 gdbarch_data_post_init_ftype *post_init)
2107 {
2108 struct gdbarch_data_registration **curr;
2109
2110 /* Append the new registration. */
2111 for (curr = &gdbarch_data_registry.registrations;
2112 (*curr) != NULL;
2113 curr = &(*curr)->next);
2114 (*curr) = XNEW (struct gdbarch_data_registration);
2115 (*curr)->next = NULL;
2116 (*curr)->data = XNEW (struct gdbarch_data);
2117 (*curr)->data->index = gdbarch_data_registry.nr++;
2118 (*curr)->data->pre_init = pre_init;
2119 (*curr)->data->post_init = post_init;
2120 (*curr)->data->init_p = 1;
2121 return (*curr)->data;
2122 }
2123
2124 struct gdbarch_data *
2125 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2126 {
2127 return gdbarch_data_register (pre_init, NULL);
2128 }
2129
2130 struct gdbarch_data *
2131 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2132 {
2133 return gdbarch_data_register (NULL, post_init);
2134 }
2135
2136 /* Create/delete the gdbarch data vector. */
2137
2138 static void
2139 alloc_gdbarch_data (struct gdbarch *gdbarch)
2140 {
2141 gdb_assert (gdbarch->data == NULL);
2142 gdbarch->nr_data = gdbarch_data_registry.nr;
2143 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2144 }
2145
2146 /* Initialize the current value of the specified per-architecture
2147 data-pointer. */
2148
2149 void
2150 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2151 struct gdbarch_data *data,
2152 void *pointer)
2153 {
2154 gdb_assert (data->index < gdbarch->nr_data);
2155 gdb_assert (gdbarch->data[data->index] == NULL);
2156 gdb_assert (data->pre_init == NULL);
2157 gdbarch->data[data->index] = pointer;
2158 }
2159
2160 /* Return the current value of the specified per-architecture
2161 data-pointer. */
2162
2163 void *
2164 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2165 {
2166 gdb_assert (data->index < gdbarch->nr_data);
2167 if (gdbarch->data[data->index] == NULL)
2168 {
2169 /* The data-pointer isn't initialized, call init() to get a
2170 value. */
2171 if (data->pre_init != NULL)
2172 /* Mid architecture creation: pass just the obstack, and not
2173 the entire architecture, as that way it isn't possible for
2174 pre-init code to refer to undefined architecture
2175 fields. */
2176 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2177 else if (gdbarch->initialized_p
2178 && data->post_init != NULL)
2179 /* Post architecture creation: pass the entire architecture
2180 (as all fields are valid), but be careful to also detect
2181 recursive references. */
2182 {
2183 gdb_assert (data->init_p);
2184 data->init_p = 0;
2185 gdbarch->data[data->index] = data->post_init (gdbarch);
2186 data->init_p = 1;
2187 }
2188 else
2189 /* The architecture initialization hasn't completed - punt -
2190 hope that the caller knows what they are doing. Once
2191 deprecated_set_gdbarch_data has been initialized, this can be
2192 changed to an internal error. */
2193 return NULL;
2194 gdb_assert (gdbarch->data[data->index] != NULL);
2195 }
2196 return gdbarch->data[data->index];
2197 }
2198
2199
2200 /* Keep a registry of the architectures known by GDB. */
2201
2202 struct gdbarch_registration
2203 {
2204 enum bfd_architecture bfd_architecture;
2205 gdbarch_init_ftype *init;
2206 gdbarch_dump_tdep_ftype *dump_tdep;
2207 struct gdbarch_list *arches;
2208 struct gdbarch_registration *next;
2209 };
2210
2211 static struct gdbarch_registration *gdbarch_registry = NULL;
2212
2213 static void
2214 append_name (const char ***buf, int *nr, const char *name)
2215 {
2216 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2217 (*buf)[*nr] = name;
2218 *nr += 1;
2219 }
2220
2221 const char **
2222 gdbarch_printable_names (void)
2223 {
2224 /* Accumulate a list of names based on the registed list of
2225 architectures. */
2226 int nr_arches = 0;
2227 const char **arches = NULL;
2228 struct gdbarch_registration *rego;
2229
2230 for (rego = gdbarch_registry;
2231 rego != NULL;
2232 rego = rego->next)
2233 {
2234 const struct bfd_arch_info *ap;
2235 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2236 if (ap == NULL)
2237 internal_error (__FILE__, __LINE__,
2238 _("gdbarch_architecture_names: multi-arch unknown"));
2239 do
2240 {
2241 append_name (&arches, &nr_arches, ap->printable_name);
2242 ap = ap->next;
2243 }
2244 while (ap != NULL);
2245 }
2246 append_name (&arches, &nr_arches, NULL);
2247 return arches;
2248 }
2249
2250
2251 void
2252 gdbarch_register (enum bfd_architecture bfd_architecture,
2253 gdbarch_init_ftype *init,
2254 gdbarch_dump_tdep_ftype *dump_tdep)
2255 {
2256 struct gdbarch_registration **curr;
2257 const struct bfd_arch_info *bfd_arch_info;
2258
2259 /* Check that BFD recognizes this architecture */
2260 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2261 if (bfd_arch_info == NULL)
2262 {
2263 internal_error (__FILE__, __LINE__,
2264 _("gdbarch: Attempt to register "
2265 "unknown architecture (%d)"),
2266 bfd_architecture);
2267 }
2268 /* Check that we haven't seen this architecture before. */
2269 for (curr = &gdbarch_registry;
2270 (*curr) != NULL;
2271 curr = &(*curr)->next)
2272 {
2273 if (bfd_architecture == (*curr)->bfd_architecture)
2274 internal_error (__FILE__, __LINE__,
2275 _("gdbarch: Duplicate registration "
2276 "of architecture (%s)"),
2277 bfd_arch_info->printable_name);
2278 }
2279 /* log it */
2280 if (gdbarch_debug)
2281 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2282 bfd_arch_info->printable_name,
2283 host_address_to_string (init));
2284 /* Append it */
2285 (*curr) = XNEW (struct gdbarch_registration);
2286 (*curr)->bfd_architecture = bfd_architecture;
2287 (*curr)->init = init;
2288 (*curr)->dump_tdep = dump_tdep;
2289 (*curr)->arches = NULL;
2290 (*curr)->next = NULL;
2291 }
2292
2293 void
2294 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2295 gdbarch_init_ftype *init)
2296 {
2297 gdbarch_register (bfd_architecture, init, NULL);
2298 }
2299
2300
2301 /* Look for an architecture using gdbarch_info. */
2302
2303 struct gdbarch_list *
2304 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2305 const struct gdbarch_info *info)
2306 {
2307 for (; arches != NULL; arches = arches->next)
2308 {
2309 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2310 continue;
2311 if (info->byte_order != arches->gdbarch->byte_order)
2312 continue;
2313 if (info->osabi != arches->gdbarch->osabi)
2314 continue;
2315 if (info->target_desc != arches->gdbarch->target_desc)
2316 continue;
2317 return arches;
2318 }
2319 return NULL;
2320 }
2321
2322
2323 /* Find an architecture that matches the specified INFO. Create a new
2324 architecture if needed. Return that new architecture. */
2325
2326 struct gdbarch *
2327 gdbarch_find_by_info (struct gdbarch_info info)
2328 {
2329 struct gdbarch *new_gdbarch;
2330 struct gdbarch_registration *rego;
2331
2332 /* Fill in missing parts of the INFO struct using a number of
2333 sources: "set ..."; INFOabfd supplied; and the global
2334 defaults. */
2335 gdbarch_info_fill (&info);
2336
2337 /* Must have found some sort of architecture. */
2338 gdb_assert (info.bfd_arch_info != NULL);
2339
2340 if (gdbarch_debug)
2341 {
2342 fprintf_unfiltered (gdb_stdlog,
2343 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2344 (info.bfd_arch_info != NULL
2345 ? info.bfd_arch_info->printable_name
2346 : "(null)"));
2347 fprintf_unfiltered (gdb_stdlog,
2348 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2349 info.byte_order,
2350 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2351 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2352 : "default"));
2353 fprintf_unfiltered (gdb_stdlog,
2354 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2355 info.osabi, gdbarch_osabi_name (info.osabi));
2356 fprintf_unfiltered (gdb_stdlog,
2357 "gdbarch_find_by_info: info.abfd %s\n",
2358 host_address_to_string (info.abfd));
2359 fprintf_unfiltered (gdb_stdlog,
2360 "gdbarch_find_by_info: info.tdep_info %s\n",
2361 host_address_to_string (info.tdep_info));
2362 }
2363
2364 /* Find the tdep code that knows about this architecture. */
2365 for (rego = gdbarch_registry;
2366 rego != NULL;
2367 rego = rego->next)
2368 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2369 break;
2370 if (rego == NULL)
2371 {
2372 if (gdbarch_debug)
2373 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2374 "No matching architecture\n");
2375 return 0;
2376 }
2377
2378 /* Ask the tdep code for an architecture that matches "info". */
2379 new_gdbarch = rego->init (info, rego->arches);
2380
2381 /* Did the tdep code like it? No. Reject the change and revert to
2382 the old architecture. */
2383 if (new_gdbarch == NULL)
2384 {
2385 if (gdbarch_debug)
2386 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2387 "Target rejected architecture\n");
2388 return NULL;
2389 }
2390
2391 /* Is this a pre-existing architecture (as determined by already
2392 being initialized)? Move it to the front of the architecture
2393 list (keeping the list sorted Most Recently Used). */
2394 if (new_gdbarch->initialized_p)
2395 {
2396 struct gdbarch_list **list;
2397 struct gdbarch_list *self;
2398 if (gdbarch_debug)
2399 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2400 "Previous architecture %s (%s) selected\n",
2401 host_address_to_string (new_gdbarch),
2402 new_gdbarch->bfd_arch_info->printable_name);
2403 /* Find the existing arch in the list. */
2404 for (list = &rego->arches;
2405 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2406 list = &(*list)->next);
2407 /* It had better be in the list of architectures. */
2408 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2409 /* Unlink SELF. */
2410 self = (*list);
2411 (*list) = self->next;
2412 /* Insert SELF at the front. */
2413 self->next = rego->arches;
2414 rego->arches = self;
2415 /* Return it. */
2416 return new_gdbarch;
2417 }
2418
2419 /* It's a new architecture. */
2420 if (gdbarch_debug)
2421 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2422 "New architecture %s (%s) selected\n",
2423 host_address_to_string (new_gdbarch),
2424 new_gdbarch->bfd_arch_info->printable_name);
2425
2426 /* Insert the new architecture into the front of the architecture
2427 list (keep the list sorted Most Recently Used). */
2428 {
2429 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2430 self->next = rego->arches;
2431 self->gdbarch = new_gdbarch;
2432 rego->arches = self;
2433 }
2434
2435 /* Check that the newly installed architecture is valid. Plug in
2436 any post init values. */
2437 new_gdbarch->dump_tdep = rego->dump_tdep;
2438 verify_gdbarch (new_gdbarch);
2439 new_gdbarch->initialized_p = 1;
2440
2441 if (gdbarch_debug)
2442 gdbarch_dump (new_gdbarch, gdb_stdlog);
2443
2444 return new_gdbarch;
2445 }
2446
2447 /* Make the specified architecture current. */
2448
2449 void
2450 set_target_gdbarch (struct gdbarch *new_gdbarch)
2451 {
2452 gdb_assert (new_gdbarch != NULL);
2453 gdb_assert (new_gdbarch->initialized_p);
2454 current_inferior ()->gdbarch = new_gdbarch;
2455 observer_notify_architecture_changed (new_gdbarch);
2456 registers_changed ();
2457 }
2458
2459 /* Return the current inferior's arch. */
2460
2461 struct gdbarch *
2462 target_gdbarch (void)
2463 {
2464 return current_inferior ()->gdbarch;
2465 }
2466
2467 extern void _initialize_gdbarch (void);
2468
2469 void
2470 _initialize_gdbarch (void)
2471 {
2472 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2473 Set architecture debugging."), _("\\
2474 Show architecture debugging."), _("\\
2475 When non-zero, architecture debugging is enabled."),
2476 NULL,
2477 show_gdbarch_debug,
2478 &setdebuglist, &showdebuglist);
2479 }
2480 EOF
2481
2482 # close things off
2483 exec 1>&2
2484 #../move-if-change new-gdbarch.c gdbarch.c
2485 compare_new gdbarch.c