]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
* gdbarch.sh (stab_reg_to_regnum, dwarf_reg_to_regnum)
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
346 # Number of bits in a char or unsigned char for the target machine.
347 # Just like CHAR_BIT in <limits.h> but describes the target machine.
348 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
349 #
350 # Number of bits in a short or unsigned short for the target machine.
351 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
352 # Number of bits in an int or unsigned int for the target machine.
353 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
354 # Number of bits in a long or unsigned long for the target machine.
355 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
356 # Number of bits in a long long or unsigned long long for the target
357 # machine.
358 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
359
360 # The ABI default bit-size and format for "float", "double", and "long
361 # double". These bit/format pairs should eventually be combined into
362 # a single object. For the moment, just initialize them as a pair.
363 # Each format describes both the big and little endian layouts (if
364 # useful).
365
366 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
367 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
368 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
369 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
370 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
371 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
372
373 # For most targets, a pointer on the target and its representation as an
374 # address in GDB have the same size and "look the same". For such a
375 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
376 # / addr_bit will be set from it.
377 #
378 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
379 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
380 # as well.
381 #
382 # ptr_bit is the size of a pointer on the target
383 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
384 # addr_bit is the size of a target address as represented in gdb
385 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
386 #
387 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
388 v:int:char_signed:::1:-1:1
389 #
390 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
391 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
392 # Function for getting target's idea of a frame pointer. FIXME: GDB's
393 # whole scheme for dealing with "frames" and "frame pointers" needs a
394 # serious shakedown.
395 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
396 #
397 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
398 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
399 #
400 v:int:num_regs:::0:-1
401 # This macro gives the number of pseudo-registers that live in the
402 # register namespace but do not get fetched or stored on the target.
403 # These pseudo-registers may be aliases for other registers,
404 # combinations of other registers, or they may be computed by GDB.
405 v:int:num_pseudo_regs:::0:0::0
406
407 # GDB's standard (or well known) register numbers. These can map onto
408 # a real register or a pseudo (computed) register or not be defined at
409 # all (-1).
410 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
411 v:int:sp_regnum:::-1:-1::0
412 v:int:pc_regnum:::-1:-1::0
413 v:int:ps_regnum:::-1:-1::0
414 v:int:fp0_regnum:::0:-1::0
415 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
416 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
417 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
418 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
419 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
420 m:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
421 # Convert from an sdb register number to an internal gdb register number.
422 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
423 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
424 m:const char *:register_name:int regnr:regnr::0
425
426 # Return the type of a register specified by the architecture. Only
427 # the register cache should call this function directly; others should
428 # use "register_type".
429 M:struct type *:register_type:int reg_nr:reg_nr
430
431 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
432 M:struct frame_id:unwind_dummy_id:struct frame_info *info:info
433 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
434 # deprecated_fp_regnum.
435 v:int:deprecated_fp_regnum:::-1:-1::0
436
437 # See gdbint.texinfo. See infcall.c.
438 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
439 v:int:call_dummy_location::::AT_ENTRY_POINT::0
440 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
441
442 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
443 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
444 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
445 # MAP a GDB RAW register number onto a simulator register number. See
446 # also include/...-sim.h.
447 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
448 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
449 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
450 # setjmp/longjmp support.
451 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
452 #
453 v:int:believe_pcc_promotion:::::::
454 #
455 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
456 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
457 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
458 # Construct a value representing the contents of register REGNUM in
459 # frame FRAME, interpreted as type TYPE. The routine needs to
460 # allocate and return a struct value with all value attributes
461 # (but not the value contents) filled in.
462 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
463 #
464 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
465 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
466 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
467
468 # It has been suggested that this, well actually its predecessor,
469 # should take the type/value of the function to be called and not the
470 # return type. This is left as an exercise for the reader.
471
472 M:enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf
473
474 f:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
475 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
476 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
477 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
478 f:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
479 f:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
480 v:CORE_ADDR:decr_pc_after_break:::0:::0
481
482 # A function can be addressed by either it's "pointer" (possibly a
483 # descriptor address) or "entry point" (first executable instruction).
484 # The method "convert_from_func_ptr_addr" converting the former to the
485 # latter. gdbarch_deprecated_function_start_offset is being used to implement
486 # a simplified subset of that functionality - the function's address
487 # corresponds to the "function pointer" and the function's start
488 # corresponds to the "function entry point" - and hence is redundant.
489
490 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
491
492 # Return the remote protocol register number associated with this
493 # register. Normally the identity mapping.
494 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
495
496 # Fetch the target specific address used to represent a load module.
497 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
498 #
499 v:CORE_ADDR:frame_args_skip:::0:::0
500 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
501 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
502 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
503 # frame-base. Enable frame-base before frame-unwind.
504 F:int:frame_num_args:struct frame_info *frame:frame
505 #
506 M:CORE_ADDR:frame_align:CORE_ADDR address:address
507 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
508 v:int:frame_red_zone_size
509 #
510 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
511 # On some machines there are bits in addresses which are not really
512 # part of the address, but are used by the kernel, the hardware, etc.
513 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
514 # we get a "real" address such as one would find in a symbol table.
515 # This is used only for addresses of instructions, and even then I'm
516 # not sure it's used in all contexts. It exists to deal with there
517 # being a few stray bits in the PC which would mislead us, not as some
518 # sort of generic thing to handle alignment or segmentation (it's
519 # possible it should be in TARGET_READ_PC instead).
520 f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
521 # It is not at all clear why gdbarch_smash_text_address is not folded into
522 # gdbarch_addr_bits_remove.
523 f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
524
525 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
526 # indicates if the target needs software single step. An ISA method to
527 # implement it.
528 #
529 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
530 # breakpoints using the breakpoint system instead of blatting memory directly
531 # (as with rs6000).
532 #
533 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
534 # target can single step. If not, then implement single step using breakpoints.
535 #
536 # A return value of 1 means that the software_single_step breakpoints
537 # were inserted; 0 means they were not.
538 F:int:software_single_step:struct frame_info *frame:frame
539
540 # Return non-zero if the processor is executing a delay slot and a
541 # further single-step is needed before the instruction finishes.
542 M:int:single_step_through_delay:struct frame_info *frame:frame
543 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
544 # disassembler. Perhaps objdump can handle it?
545 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
546 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
547
548
549 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
550 # evaluates non-zero, this is the address where the debugger will place
551 # a step-resume breakpoint to get us past the dynamic linker.
552 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
553 # Some systems also have trampoline code for returning from shared libs.
554 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
555
556 # A target might have problems with watchpoints as soon as the stack
557 # frame of the current function has been destroyed. This mostly happens
558 # as the first action in a funtion's epilogue. in_function_epilogue_p()
559 # is defined to return a non-zero value if either the given addr is one
560 # instruction after the stack destroying instruction up to the trailing
561 # return instruction or if we can figure out that the stack frame has
562 # already been invalidated regardless of the value of addr. Targets
563 # which don't suffer from that problem could just let this functionality
564 # untouched.
565 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
566 # Given a vector of command-line arguments, return a newly allocated
567 # string which, when passed to the create_inferior function, will be
568 # parsed (on Unix systems, by the shell) to yield the same vector.
569 # This function should call error() if the argument vector is not
570 # representable for this target or if this target does not support
571 # command-line arguments.
572 # ARGC is the number of elements in the vector.
573 # ARGV is an array of strings, one per argument.
574 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
575 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
576 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
577 v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
578 v:int:cannot_step_breakpoint:::0:0::0
579 v:int:have_nonsteppable_watchpoint:::0:0::0
580 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
581 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
582 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
583 # Is a register in a group
584 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
585 # Fetch the pointer to the ith function argument.
586 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
587
588 # Return the appropriate register set for a core file section with
589 # name SECT_NAME and size SECT_SIZE.
590 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
591
592 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
593 # core file into buffer READBUF with length LEN.
594 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
595
596 # If the elements of C++ vtables are in-place function descriptors rather
597 # than normal function pointers (which may point to code or a descriptor),
598 # set this to one.
599 v:int:vtable_function_descriptors:::0:0::0
600
601 # Set if the least significant bit of the delta is used instead of the least
602 # significant bit of the pfn for pointers to virtual member functions.
603 v:int:vbit_in_delta:::0:0::0
604
605 # Advance PC to next instruction in order to skip a permanent breakpoint.
606 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
607
608 # Refresh overlay mapped state for section OSECT.
609 F:void:overlay_update:struct obj_section *osect:osect
610
611 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
612
613 # Handle special encoding of static variables in stabs debug info.
614 F:char *:static_transform_name:char *name:name
615 # Set if the address in N_SO or N_FUN stabs may be zero.
616 v:int:sofun_address_maybe_missing:::0:0::0
617 EOF
618 }
619
620 #
621 # The .log file
622 #
623 exec > new-gdbarch.log
624 function_list | while do_read
625 do
626 cat <<EOF
627 ${class} ${returntype} ${function} ($formal)
628 EOF
629 for r in ${read}
630 do
631 eval echo \"\ \ \ \ ${r}=\${${r}}\"
632 done
633 if class_is_predicate_p && fallback_default_p
634 then
635 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
636 kill $$
637 exit 1
638 fi
639 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
640 then
641 echo "Error: postdefault is useless when invalid_p=0" 1>&2
642 kill $$
643 exit 1
644 fi
645 if class_is_multiarch_p
646 then
647 if class_is_predicate_p ; then :
648 elif test "x${predefault}" = "x"
649 then
650 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
651 kill $$
652 exit 1
653 fi
654 fi
655 echo ""
656 done
657
658 exec 1>&2
659 compare_new gdbarch.log
660
661
662 copyright ()
663 {
664 cat <<EOF
665 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
666
667 /* Dynamic architecture support for GDB, the GNU debugger.
668
669 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
670 Free Software Foundation, Inc.
671
672 This file is part of GDB.
673
674 This program is free software; you can redistribute it and/or modify
675 it under the terms of the GNU General Public License as published by
676 the Free Software Foundation; either version 3 of the License, or
677 (at your option) any later version.
678
679 This program is distributed in the hope that it will be useful,
680 but WITHOUT ANY WARRANTY; without even the implied warranty of
681 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
682 GNU General Public License for more details.
683
684 You should have received a copy of the GNU General Public License
685 along with this program. If not, see <http://www.gnu.org/licenses/>. */
686
687 /* This file was created with the aid of \`\`gdbarch.sh''.
688
689 The Bourne shell script \`\`gdbarch.sh'' creates the files
690 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
691 against the existing \`\`gdbarch.[hc]''. Any differences found
692 being reported.
693
694 If editing this file, please also run gdbarch.sh and merge any
695 changes into that script. Conversely, when making sweeping changes
696 to this file, modifying gdbarch.sh and using its output may prove
697 easier. */
698
699 EOF
700 }
701
702 #
703 # The .h file
704 #
705
706 exec > new-gdbarch.h
707 copyright
708 cat <<EOF
709 #ifndef GDBARCH_H
710 #define GDBARCH_H
711
712 struct floatformat;
713 struct ui_file;
714 struct frame_info;
715 struct value;
716 struct objfile;
717 struct obj_section;
718 struct minimal_symbol;
719 struct regcache;
720 struct reggroup;
721 struct regset;
722 struct disassemble_info;
723 struct target_ops;
724 struct obstack;
725 struct bp_target_info;
726 struct target_desc;
727
728 extern struct gdbarch *current_gdbarch;
729 EOF
730
731 # function typedef's
732 printf "\n"
733 printf "\n"
734 printf "/* The following are pre-initialized by GDBARCH. */\n"
735 function_list | while do_read
736 do
737 if class_is_info_p
738 then
739 printf "\n"
740 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
741 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
742 fi
743 done
744
745 # function typedef's
746 printf "\n"
747 printf "\n"
748 printf "/* The following are initialized by the target dependent code. */\n"
749 function_list | while do_read
750 do
751 if [ -n "${comment}" ]
752 then
753 echo "${comment}" | sed \
754 -e '2 s,#,/*,' \
755 -e '3,$ s,#, ,' \
756 -e '$ s,$, */,'
757 fi
758
759 if class_is_predicate_p
760 then
761 printf "\n"
762 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
763 fi
764 if class_is_variable_p
765 then
766 printf "\n"
767 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
768 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
769 fi
770 if class_is_function_p
771 then
772 printf "\n"
773 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
774 then
775 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
776 elif class_is_multiarch_p
777 then
778 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
779 else
780 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
781 fi
782 if [ "x${formal}" = "xvoid" ]
783 then
784 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
785 else
786 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
787 fi
788 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
789 fi
790 done
791
792 # close it off
793 cat <<EOF
794
795 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
796
797
798 /* Mechanism for co-ordinating the selection of a specific
799 architecture.
800
801 GDB targets (*-tdep.c) can register an interest in a specific
802 architecture. Other GDB components can register a need to maintain
803 per-architecture data.
804
805 The mechanisms below ensures that there is only a loose connection
806 between the set-architecture command and the various GDB
807 components. Each component can independently register their need
808 to maintain architecture specific data with gdbarch.
809
810 Pragmatics:
811
812 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
813 didn't scale.
814
815 The more traditional mega-struct containing architecture specific
816 data for all the various GDB components was also considered. Since
817 GDB is built from a variable number of (fairly independent)
818 components it was determined that the global aproach was not
819 applicable. */
820
821
822 /* Register a new architectural family with GDB.
823
824 Register support for the specified ARCHITECTURE with GDB. When
825 gdbarch determines that the specified architecture has been
826 selected, the corresponding INIT function is called.
827
828 --
829
830 The INIT function takes two parameters: INFO which contains the
831 information available to gdbarch about the (possibly new)
832 architecture; ARCHES which is a list of the previously created
833 \`\`struct gdbarch'' for this architecture.
834
835 The INFO parameter is, as far as possible, be pre-initialized with
836 information obtained from INFO.ABFD or the global defaults.
837
838 The ARCHES parameter is a linked list (sorted most recently used)
839 of all the previously created architures for this architecture
840 family. The (possibly NULL) ARCHES->gdbarch can used to access
841 values from the previously selected architecture for this
842 architecture family. The global \`\`current_gdbarch'' shall not be
843 used.
844
845 The INIT function shall return any of: NULL - indicating that it
846 doesn't recognize the selected architecture; an existing \`\`struct
847 gdbarch'' from the ARCHES list - indicating that the new
848 architecture is just a synonym for an earlier architecture (see
849 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
850 - that describes the selected architecture (see gdbarch_alloc()).
851
852 The DUMP_TDEP function shall print out all target specific values.
853 Care should be taken to ensure that the function works in both the
854 multi-arch and non- multi-arch cases. */
855
856 struct gdbarch_list
857 {
858 struct gdbarch *gdbarch;
859 struct gdbarch_list *next;
860 };
861
862 struct gdbarch_info
863 {
864 /* Use default: NULL (ZERO). */
865 const struct bfd_arch_info *bfd_arch_info;
866
867 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
868 int byte_order;
869
870 /* Use default: NULL (ZERO). */
871 bfd *abfd;
872
873 /* Use default: NULL (ZERO). */
874 struct gdbarch_tdep_info *tdep_info;
875
876 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
877 enum gdb_osabi osabi;
878
879 /* Use default: NULL (ZERO). */
880 const struct target_desc *target_desc;
881 };
882
883 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
884 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
885
886 /* DEPRECATED - use gdbarch_register() */
887 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
888
889 extern void gdbarch_register (enum bfd_architecture architecture,
890 gdbarch_init_ftype *,
891 gdbarch_dump_tdep_ftype *);
892
893
894 /* Return a freshly allocated, NULL terminated, array of the valid
895 architecture names. Since architectures are registered during the
896 _initialize phase this function only returns useful information
897 once initialization has been completed. */
898
899 extern const char **gdbarch_printable_names (void);
900
901
902 /* Helper function. Search the list of ARCHES for a GDBARCH that
903 matches the information provided by INFO. */
904
905 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
906
907
908 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
909 basic initialization using values obtained from the INFO and TDEP
910 parameters. set_gdbarch_*() functions are called to complete the
911 initialization of the object. */
912
913 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
914
915
916 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
917 It is assumed that the caller freeds the \`\`struct
918 gdbarch_tdep''. */
919
920 extern void gdbarch_free (struct gdbarch *);
921
922
923 /* Helper function. Allocate memory from the \`\`struct gdbarch''
924 obstack. The memory is freed when the corresponding architecture
925 is also freed. */
926
927 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
928 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
929 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
930
931
932 /* Helper function. Force an update of the current architecture.
933
934 The actual architecture selected is determined by INFO, \`\`(gdb) set
935 architecture'' et.al., the existing architecture and BFD's default
936 architecture. INFO should be initialized to zero and then selected
937 fields should be updated.
938
939 Returns non-zero if the update succeeds */
940
941 extern int gdbarch_update_p (struct gdbarch_info info);
942
943
944 /* Helper function. Find an architecture matching info.
945
946 INFO should be initialized using gdbarch_info_init, relevant fields
947 set, and then finished using gdbarch_info_fill.
948
949 Returns the corresponding architecture, or NULL if no matching
950 architecture was found. "current_gdbarch" is not updated. */
951
952 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
953
954
955 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
956
957 FIXME: kettenis/20031124: Of the functions that follow, only
958 gdbarch_from_bfd is supposed to survive. The others will
959 dissappear since in the future GDB will (hopefully) be truly
960 multi-arch. However, for now we're still stuck with the concept of
961 a single active architecture. */
962
963 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
964
965
966 /* Register per-architecture data-pointer.
967
968 Reserve space for a per-architecture data-pointer. An identifier
969 for the reserved data-pointer is returned. That identifer should
970 be saved in a local static variable.
971
972 Memory for the per-architecture data shall be allocated using
973 gdbarch_obstack_zalloc. That memory will be deleted when the
974 corresponding architecture object is deleted.
975
976 When a previously created architecture is re-selected, the
977 per-architecture data-pointer for that previous architecture is
978 restored. INIT() is not re-called.
979
980 Multiple registrarants for any architecture are allowed (and
981 strongly encouraged). */
982
983 struct gdbarch_data;
984
985 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
986 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
987 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
988 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
989 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
990 struct gdbarch_data *data,
991 void *pointer);
992
993 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
994
995
996 /* Set the dynamic target-system-dependent parameters (architecture,
997 byte-order, ...) using information found in the BFD */
998
999 extern void set_gdbarch_from_file (bfd *);
1000
1001
1002 /* Initialize the current architecture to the "first" one we find on
1003 our list. */
1004
1005 extern void initialize_current_architecture (void);
1006
1007 /* gdbarch trace variable */
1008 extern int gdbarch_debug;
1009
1010 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1011
1012 #endif
1013 EOF
1014 exec 1>&2
1015 #../move-if-change new-gdbarch.h gdbarch.h
1016 compare_new gdbarch.h
1017
1018
1019 #
1020 # C file
1021 #
1022
1023 exec > new-gdbarch.c
1024 copyright
1025 cat <<EOF
1026
1027 #include "defs.h"
1028 #include "arch-utils.h"
1029
1030 #include "gdbcmd.h"
1031 #include "inferior.h"
1032 #include "symcat.h"
1033
1034 #include "floatformat.h"
1035
1036 #include "gdb_assert.h"
1037 #include "gdb_string.h"
1038 #include "gdb-events.h"
1039 #include "reggroups.h"
1040 #include "osabi.h"
1041 #include "gdb_obstack.h"
1042
1043 /* Static function declarations */
1044
1045 static void alloc_gdbarch_data (struct gdbarch *);
1046
1047 /* Non-zero if we want to trace architecture code. */
1048
1049 #ifndef GDBARCH_DEBUG
1050 #define GDBARCH_DEBUG 0
1051 #endif
1052 int gdbarch_debug = GDBARCH_DEBUG;
1053 static void
1054 show_gdbarch_debug (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056 {
1057 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1058 }
1059
1060 static const char *
1061 pformat (const struct floatformat **format)
1062 {
1063 if (format == NULL)
1064 return "(null)";
1065 else
1066 /* Just print out one of them - this is only for diagnostics. */
1067 return format[0]->name;
1068 }
1069
1070 EOF
1071
1072 # gdbarch open the gdbarch object
1073 printf "\n"
1074 printf "/* Maintain the struct gdbarch object */\n"
1075 printf "\n"
1076 printf "struct gdbarch\n"
1077 printf "{\n"
1078 printf " /* Has this architecture been fully initialized? */\n"
1079 printf " int initialized_p;\n"
1080 printf "\n"
1081 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1082 printf " struct obstack *obstack;\n"
1083 printf "\n"
1084 printf " /* basic architectural information */\n"
1085 function_list | while do_read
1086 do
1087 if class_is_info_p
1088 then
1089 printf " ${returntype} ${function};\n"
1090 fi
1091 done
1092 printf "\n"
1093 printf " /* target specific vector. */\n"
1094 printf " struct gdbarch_tdep *tdep;\n"
1095 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1096 printf "\n"
1097 printf " /* per-architecture data-pointers */\n"
1098 printf " unsigned nr_data;\n"
1099 printf " void **data;\n"
1100 printf "\n"
1101 printf " /* per-architecture swap-regions */\n"
1102 printf " struct gdbarch_swap *swap;\n"
1103 printf "\n"
1104 cat <<EOF
1105 /* Multi-arch values.
1106
1107 When extending this structure you must:
1108
1109 Add the field below.
1110
1111 Declare set/get functions and define the corresponding
1112 macro in gdbarch.h.
1113
1114 gdbarch_alloc(): If zero/NULL is not a suitable default,
1115 initialize the new field.
1116
1117 verify_gdbarch(): Confirm that the target updated the field
1118 correctly.
1119
1120 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1121 field is dumped out
1122
1123 \`\`startup_gdbarch()'': Append an initial value to the static
1124 variable (base values on the host's c-type system).
1125
1126 get_gdbarch(): Implement the set/get functions (probably using
1127 the macro's as shortcuts).
1128
1129 */
1130
1131 EOF
1132 function_list | while do_read
1133 do
1134 if class_is_variable_p
1135 then
1136 printf " ${returntype} ${function};\n"
1137 elif class_is_function_p
1138 then
1139 printf " gdbarch_${function}_ftype *${function};\n"
1140 fi
1141 done
1142 printf "};\n"
1143
1144 # A pre-initialized vector
1145 printf "\n"
1146 printf "\n"
1147 cat <<EOF
1148 /* The default architecture uses host values (for want of a better
1149 choice). */
1150 EOF
1151 printf "\n"
1152 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1153 printf "\n"
1154 printf "struct gdbarch startup_gdbarch =\n"
1155 printf "{\n"
1156 printf " 1, /* Always initialized. */\n"
1157 printf " NULL, /* The obstack. */\n"
1158 printf " /* basic architecture information */\n"
1159 function_list | while do_read
1160 do
1161 if class_is_info_p
1162 then
1163 printf " ${staticdefault}, /* ${function} */\n"
1164 fi
1165 done
1166 cat <<EOF
1167 /* target specific vector and its dump routine */
1168 NULL, NULL,
1169 /*per-architecture data-pointers and swap regions */
1170 0, NULL, NULL,
1171 /* Multi-arch values */
1172 EOF
1173 function_list | while do_read
1174 do
1175 if class_is_function_p || class_is_variable_p
1176 then
1177 printf " ${staticdefault}, /* ${function} */\n"
1178 fi
1179 done
1180 cat <<EOF
1181 /* startup_gdbarch() */
1182 };
1183
1184 struct gdbarch *current_gdbarch = &startup_gdbarch;
1185 EOF
1186
1187 # Create a new gdbarch struct
1188 cat <<EOF
1189
1190 /* Create a new \`\`struct gdbarch'' based on information provided by
1191 \`\`struct gdbarch_info''. */
1192 EOF
1193 printf "\n"
1194 cat <<EOF
1195 struct gdbarch *
1196 gdbarch_alloc (const struct gdbarch_info *info,
1197 struct gdbarch_tdep *tdep)
1198 {
1199 struct gdbarch *gdbarch;
1200
1201 /* Create an obstack for allocating all the per-architecture memory,
1202 then use that to allocate the architecture vector. */
1203 struct obstack *obstack = XMALLOC (struct obstack);
1204 obstack_init (obstack);
1205 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1206 memset (gdbarch, 0, sizeof (*gdbarch));
1207 gdbarch->obstack = obstack;
1208
1209 alloc_gdbarch_data (gdbarch);
1210
1211 gdbarch->tdep = tdep;
1212 EOF
1213 printf "\n"
1214 function_list | while do_read
1215 do
1216 if class_is_info_p
1217 then
1218 printf " gdbarch->${function} = info->${function};\n"
1219 fi
1220 done
1221 printf "\n"
1222 printf " /* Force the explicit initialization of these. */\n"
1223 function_list | while do_read
1224 do
1225 if class_is_function_p || class_is_variable_p
1226 then
1227 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1228 then
1229 printf " gdbarch->${function} = ${predefault};\n"
1230 fi
1231 fi
1232 done
1233 cat <<EOF
1234 /* gdbarch_alloc() */
1235
1236 return gdbarch;
1237 }
1238 EOF
1239
1240 # Free a gdbarch struct.
1241 printf "\n"
1242 printf "\n"
1243 cat <<EOF
1244 /* Allocate extra space using the per-architecture obstack. */
1245
1246 void *
1247 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1248 {
1249 void *data = obstack_alloc (arch->obstack, size);
1250 memset (data, 0, size);
1251 return data;
1252 }
1253
1254
1255 /* Free a gdbarch struct. This should never happen in normal
1256 operation --- once you've created a gdbarch, you keep it around.
1257 However, if an architecture's init function encounters an error
1258 building the structure, it may need to clean up a partially
1259 constructed gdbarch. */
1260
1261 void
1262 gdbarch_free (struct gdbarch *arch)
1263 {
1264 struct obstack *obstack;
1265 gdb_assert (arch != NULL);
1266 gdb_assert (!arch->initialized_p);
1267 obstack = arch->obstack;
1268 obstack_free (obstack, 0); /* Includes the ARCH. */
1269 xfree (obstack);
1270 }
1271 EOF
1272
1273 # verify a new architecture
1274 cat <<EOF
1275
1276
1277 /* Ensure that all values in a GDBARCH are reasonable. */
1278
1279 static void
1280 verify_gdbarch (struct gdbarch *gdbarch)
1281 {
1282 struct ui_file *log;
1283 struct cleanup *cleanups;
1284 long dummy;
1285 char *buf;
1286 log = mem_fileopen ();
1287 cleanups = make_cleanup_ui_file_delete (log);
1288 /* fundamental */
1289 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1290 fprintf_unfiltered (log, "\n\tbyte-order");
1291 if (gdbarch->bfd_arch_info == NULL)
1292 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1293 /* Check those that need to be defined for the given multi-arch level. */
1294 EOF
1295 function_list | while do_read
1296 do
1297 if class_is_function_p || class_is_variable_p
1298 then
1299 if [ "x${invalid_p}" = "x0" ]
1300 then
1301 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1302 elif class_is_predicate_p
1303 then
1304 printf " /* Skip verify of ${function}, has predicate */\n"
1305 # FIXME: See do_read for potential simplification
1306 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1307 then
1308 printf " if (${invalid_p})\n"
1309 printf " gdbarch->${function} = ${postdefault};\n"
1310 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1311 then
1312 printf " if (gdbarch->${function} == ${predefault})\n"
1313 printf " gdbarch->${function} = ${postdefault};\n"
1314 elif [ -n "${postdefault}" ]
1315 then
1316 printf " if (gdbarch->${function} == 0)\n"
1317 printf " gdbarch->${function} = ${postdefault};\n"
1318 elif [ -n "${invalid_p}" ]
1319 then
1320 printf " if (${invalid_p})\n"
1321 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1322 elif [ -n "${predefault}" ]
1323 then
1324 printf " if (gdbarch->${function} == ${predefault})\n"
1325 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1326 fi
1327 fi
1328 done
1329 cat <<EOF
1330 buf = ui_file_xstrdup (log, &dummy);
1331 make_cleanup (xfree, buf);
1332 if (strlen (buf) > 0)
1333 internal_error (__FILE__, __LINE__,
1334 _("verify_gdbarch: the following are invalid ...%s"),
1335 buf);
1336 do_cleanups (cleanups);
1337 }
1338 EOF
1339
1340 # dump the structure
1341 printf "\n"
1342 printf "\n"
1343 cat <<EOF
1344 /* Print out the details of the current architecture. */
1345
1346 void
1347 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1348 {
1349 const char *gdb_nm_file = "<not-defined>";
1350 #if defined (GDB_NM_FILE)
1351 gdb_nm_file = GDB_NM_FILE;
1352 #endif
1353 fprintf_unfiltered (file,
1354 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1355 gdb_nm_file);
1356 EOF
1357 function_list | sort -t: -k 3 | while do_read
1358 do
1359 # First the predicate
1360 if class_is_predicate_p
1361 then
1362 printf " fprintf_unfiltered (file,\n"
1363 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1364 printf " gdbarch_${function}_p (gdbarch));\n"
1365 fi
1366 # Print the corresponding value.
1367 if class_is_function_p
1368 then
1369 printf " fprintf_unfiltered (file,\n"
1370 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1371 printf " (long) gdbarch->${function});\n"
1372 else
1373 # It is a variable
1374 case "${print}:${returntype}" in
1375 :CORE_ADDR )
1376 fmt="0x%s"
1377 print="paddr_nz (gdbarch->${function})"
1378 ;;
1379 :* )
1380 fmt="%s"
1381 print="paddr_d (gdbarch->${function})"
1382 ;;
1383 * )
1384 fmt="%s"
1385 ;;
1386 esac
1387 printf " fprintf_unfiltered (file,\n"
1388 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1389 printf " ${print});\n"
1390 fi
1391 done
1392 cat <<EOF
1393 if (gdbarch->dump_tdep != NULL)
1394 gdbarch->dump_tdep (gdbarch, file);
1395 }
1396 EOF
1397
1398
1399 # GET/SET
1400 printf "\n"
1401 cat <<EOF
1402 struct gdbarch_tdep *
1403 gdbarch_tdep (struct gdbarch *gdbarch)
1404 {
1405 if (gdbarch_debug >= 2)
1406 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1407 return gdbarch->tdep;
1408 }
1409 EOF
1410 printf "\n"
1411 function_list | while do_read
1412 do
1413 if class_is_predicate_p
1414 then
1415 printf "\n"
1416 printf "int\n"
1417 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1418 printf "{\n"
1419 printf " gdb_assert (gdbarch != NULL);\n"
1420 printf " return ${predicate};\n"
1421 printf "}\n"
1422 fi
1423 if class_is_function_p
1424 then
1425 printf "\n"
1426 printf "${returntype}\n"
1427 if [ "x${formal}" = "xvoid" ]
1428 then
1429 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1430 else
1431 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1432 fi
1433 printf "{\n"
1434 printf " gdb_assert (gdbarch != NULL);\n"
1435 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1436 if class_is_predicate_p && test -n "${predefault}"
1437 then
1438 # Allow a call to a function with a predicate.
1439 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1440 fi
1441 printf " if (gdbarch_debug >= 2)\n"
1442 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1443 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1444 then
1445 if class_is_multiarch_p
1446 then
1447 params="gdbarch"
1448 else
1449 params=""
1450 fi
1451 else
1452 if class_is_multiarch_p
1453 then
1454 params="gdbarch, ${actual}"
1455 else
1456 params="${actual}"
1457 fi
1458 fi
1459 if [ "x${returntype}" = "xvoid" ]
1460 then
1461 printf " gdbarch->${function} (${params});\n"
1462 else
1463 printf " return gdbarch->${function} (${params});\n"
1464 fi
1465 printf "}\n"
1466 printf "\n"
1467 printf "void\n"
1468 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1469 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1470 printf "{\n"
1471 printf " gdbarch->${function} = ${function};\n"
1472 printf "}\n"
1473 elif class_is_variable_p
1474 then
1475 printf "\n"
1476 printf "${returntype}\n"
1477 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1478 printf "{\n"
1479 printf " gdb_assert (gdbarch != NULL);\n"
1480 if [ "x${invalid_p}" = "x0" ]
1481 then
1482 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1483 elif [ -n "${invalid_p}" ]
1484 then
1485 printf " /* Check variable is valid. */\n"
1486 printf " gdb_assert (!(${invalid_p}));\n"
1487 elif [ -n "${predefault}" ]
1488 then
1489 printf " /* Check variable changed from pre-default. */\n"
1490 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1491 fi
1492 printf " if (gdbarch_debug >= 2)\n"
1493 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1494 printf " return gdbarch->${function};\n"
1495 printf "}\n"
1496 printf "\n"
1497 printf "void\n"
1498 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1499 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1500 printf "{\n"
1501 printf " gdbarch->${function} = ${function};\n"
1502 printf "}\n"
1503 elif class_is_info_p
1504 then
1505 printf "\n"
1506 printf "${returntype}\n"
1507 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1508 printf "{\n"
1509 printf " gdb_assert (gdbarch != NULL);\n"
1510 printf " if (gdbarch_debug >= 2)\n"
1511 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1512 printf " return gdbarch->${function};\n"
1513 printf "}\n"
1514 fi
1515 done
1516
1517 # All the trailing guff
1518 cat <<EOF
1519
1520
1521 /* Keep a registry of per-architecture data-pointers required by GDB
1522 modules. */
1523
1524 struct gdbarch_data
1525 {
1526 unsigned index;
1527 int init_p;
1528 gdbarch_data_pre_init_ftype *pre_init;
1529 gdbarch_data_post_init_ftype *post_init;
1530 };
1531
1532 struct gdbarch_data_registration
1533 {
1534 struct gdbarch_data *data;
1535 struct gdbarch_data_registration *next;
1536 };
1537
1538 struct gdbarch_data_registry
1539 {
1540 unsigned nr;
1541 struct gdbarch_data_registration *registrations;
1542 };
1543
1544 struct gdbarch_data_registry gdbarch_data_registry =
1545 {
1546 0, NULL,
1547 };
1548
1549 static struct gdbarch_data *
1550 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1551 gdbarch_data_post_init_ftype *post_init)
1552 {
1553 struct gdbarch_data_registration **curr;
1554 /* Append the new registraration. */
1555 for (curr = &gdbarch_data_registry.registrations;
1556 (*curr) != NULL;
1557 curr = &(*curr)->next);
1558 (*curr) = XMALLOC (struct gdbarch_data_registration);
1559 (*curr)->next = NULL;
1560 (*curr)->data = XMALLOC (struct gdbarch_data);
1561 (*curr)->data->index = gdbarch_data_registry.nr++;
1562 (*curr)->data->pre_init = pre_init;
1563 (*curr)->data->post_init = post_init;
1564 (*curr)->data->init_p = 1;
1565 return (*curr)->data;
1566 }
1567
1568 struct gdbarch_data *
1569 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1570 {
1571 return gdbarch_data_register (pre_init, NULL);
1572 }
1573
1574 struct gdbarch_data *
1575 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1576 {
1577 return gdbarch_data_register (NULL, post_init);
1578 }
1579
1580 /* Create/delete the gdbarch data vector. */
1581
1582 static void
1583 alloc_gdbarch_data (struct gdbarch *gdbarch)
1584 {
1585 gdb_assert (gdbarch->data == NULL);
1586 gdbarch->nr_data = gdbarch_data_registry.nr;
1587 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1588 }
1589
1590 /* Initialize the current value of the specified per-architecture
1591 data-pointer. */
1592
1593 void
1594 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1595 struct gdbarch_data *data,
1596 void *pointer)
1597 {
1598 gdb_assert (data->index < gdbarch->nr_data);
1599 gdb_assert (gdbarch->data[data->index] == NULL);
1600 gdb_assert (data->pre_init == NULL);
1601 gdbarch->data[data->index] = pointer;
1602 }
1603
1604 /* Return the current value of the specified per-architecture
1605 data-pointer. */
1606
1607 void *
1608 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1609 {
1610 gdb_assert (data->index < gdbarch->nr_data);
1611 if (gdbarch->data[data->index] == NULL)
1612 {
1613 /* The data-pointer isn't initialized, call init() to get a
1614 value. */
1615 if (data->pre_init != NULL)
1616 /* Mid architecture creation: pass just the obstack, and not
1617 the entire architecture, as that way it isn't possible for
1618 pre-init code to refer to undefined architecture
1619 fields. */
1620 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1621 else if (gdbarch->initialized_p
1622 && data->post_init != NULL)
1623 /* Post architecture creation: pass the entire architecture
1624 (as all fields are valid), but be careful to also detect
1625 recursive references. */
1626 {
1627 gdb_assert (data->init_p);
1628 data->init_p = 0;
1629 gdbarch->data[data->index] = data->post_init (gdbarch);
1630 data->init_p = 1;
1631 }
1632 else
1633 /* The architecture initialization hasn't completed - punt -
1634 hope that the caller knows what they are doing. Once
1635 deprecated_set_gdbarch_data has been initialized, this can be
1636 changed to an internal error. */
1637 return NULL;
1638 gdb_assert (gdbarch->data[data->index] != NULL);
1639 }
1640 return gdbarch->data[data->index];
1641 }
1642
1643
1644 /* Keep a registry of the architectures known by GDB. */
1645
1646 struct gdbarch_registration
1647 {
1648 enum bfd_architecture bfd_architecture;
1649 gdbarch_init_ftype *init;
1650 gdbarch_dump_tdep_ftype *dump_tdep;
1651 struct gdbarch_list *arches;
1652 struct gdbarch_registration *next;
1653 };
1654
1655 static struct gdbarch_registration *gdbarch_registry = NULL;
1656
1657 static void
1658 append_name (const char ***buf, int *nr, const char *name)
1659 {
1660 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1661 (*buf)[*nr] = name;
1662 *nr += 1;
1663 }
1664
1665 const char **
1666 gdbarch_printable_names (void)
1667 {
1668 /* Accumulate a list of names based on the registed list of
1669 architectures. */
1670 enum bfd_architecture a;
1671 int nr_arches = 0;
1672 const char **arches = NULL;
1673 struct gdbarch_registration *rego;
1674 for (rego = gdbarch_registry;
1675 rego != NULL;
1676 rego = rego->next)
1677 {
1678 const struct bfd_arch_info *ap;
1679 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1680 if (ap == NULL)
1681 internal_error (__FILE__, __LINE__,
1682 _("gdbarch_architecture_names: multi-arch unknown"));
1683 do
1684 {
1685 append_name (&arches, &nr_arches, ap->printable_name);
1686 ap = ap->next;
1687 }
1688 while (ap != NULL);
1689 }
1690 append_name (&arches, &nr_arches, NULL);
1691 return arches;
1692 }
1693
1694
1695 void
1696 gdbarch_register (enum bfd_architecture bfd_architecture,
1697 gdbarch_init_ftype *init,
1698 gdbarch_dump_tdep_ftype *dump_tdep)
1699 {
1700 struct gdbarch_registration **curr;
1701 const struct bfd_arch_info *bfd_arch_info;
1702 /* Check that BFD recognizes this architecture */
1703 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1704 if (bfd_arch_info == NULL)
1705 {
1706 internal_error (__FILE__, __LINE__,
1707 _("gdbarch: Attempt to register unknown architecture (%d)"),
1708 bfd_architecture);
1709 }
1710 /* Check that we haven't seen this architecture before */
1711 for (curr = &gdbarch_registry;
1712 (*curr) != NULL;
1713 curr = &(*curr)->next)
1714 {
1715 if (bfd_architecture == (*curr)->bfd_architecture)
1716 internal_error (__FILE__, __LINE__,
1717 _("gdbarch: Duplicate registraration of architecture (%s)"),
1718 bfd_arch_info->printable_name);
1719 }
1720 /* log it */
1721 if (gdbarch_debug)
1722 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1723 bfd_arch_info->printable_name,
1724 (long) init);
1725 /* Append it */
1726 (*curr) = XMALLOC (struct gdbarch_registration);
1727 (*curr)->bfd_architecture = bfd_architecture;
1728 (*curr)->init = init;
1729 (*curr)->dump_tdep = dump_tdep;
1730 (*curr)->arches = NULL;
1731 (*curr)->next = NULL;
1732 }
1733
1734 void
1735 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1736 gdbarch_init_ftype *init)
1737 {
1738 gdbarch_register (bfd_architecture, init, NULL);
1739 }
1740
1741
1742 /* Look for an architecture using gdbarch_info. */
1743
1744 struct gdbarch_list *
1745 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1746 const struct gdbarch_info *info)
1747 {
1748 for (; arches != NULL; arches = arches->next)
1749 {
1750 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1751 continue;
1752 if (info->byte_order != arches->gdbarch->byte_order)
1753 continue;
1754 if (info->osabi != arches->gdbarch->osabi)
1755 continue;
1756 if (info->target_desc != arches->gdbarch->target_desc)
1757 continue;
1758 return arches;
1759 }
1760 return NULL;
1761 }
1762
1763
1764 /* Find an architecture that matches the specified INFO. Create a new
1765 architecture if needed. Return that new architecture. Assumes
1766 that there is no current architecture. */
1767
1768 static struct gdbarch *
1769 find_arch_by_info (struct gdbarch_info info)
1770 {
1771 struct gdbarch *new_gdbarch;
1772 struct gdbarch_registration *rego;
1773
1774 /* The existing architecture has been swapped out - all this code
1775 works from a clean slate. */
1776 gdb_assert (current_gdbarch == NULL);
1777
1778 /* Fill in missing parts of the INFO struct using a number of
1779 sources: "set ..."; INFOabfd supplied; and the global
1780 defaults. */
1781 gdbarch_info_fill (&info);
1782
1783 /* Must have found some sort of architecture. */
1784 gdb_assert (info.bfd_arch_info != NULL);
1785
1786 if (gdbarch_debug)
1787 {
1788 fprintf_unfiltered (gdb_stdlog,
1789 "find_arch_by_info: info.bfd_arch_info %s\n",
1790 (info.bfd_arch_info != NULL
1791 ? info.bfd_arch_info->printable_name
1792 : "(null)"));
1793 fprintf_unfiltered (gdb_stdlog,
1794 "find_arch_by_info: info.byte_order %d (%s)\n",
1795 info.byte_order,
1796 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1797 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1798 : "default"));
1799 fprintf_unfiltered (gdb_stdlog,
1800 "find_arch_by_info: info.osabi %d (%s)\n",
1801 info.osabi, gdbarch_osabi_name (info.osabi));
1802 fprintf_unfiltered (gdb_stdlog,
1803 "find_arch_by_info: info.abfd 0x%lx\n",
1804 (long) info.abfd);
1805 fprintf_unfiltered (gdb_stdlog,
1806 "find_arch_by_info: info.tdep_info 0x%lx\n",
1807 (long) info.tdep_info);
1808 }
1809
1810 /* Find the tdep code that knows about this architecture. */
1811 for (rego = gdbarch_registry;
1812 rego != NULL;
1813 rego = rego->next)
1814 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1815 break;
1816 if (rego == NULL)
1817 {
1818 if (gdbarch_debug)
1819 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1820 "No matching architecture\n");
1821 return 0;
1822 }
1823
1824 /* Ask the tdep code for an architecture that matches "info". */
1825 new_gdbarch = rego->init (info, rego->arches);
1826
1827 /* Did the tdep code like it? No. Reject the change and revert to
1828 the old architecture. */
1829 if (new_gdbarch == NULL)
1830 {
1831 if (gdbarch_debug)
1832 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1833 "Target rejected architecture\n");
1834 return NULL;
1835 }
1836
1837 /* Is this a pre-existing architecture (as determined by already
1838 being initialized)? Move it to the front of the architecture
1839 list (keeping the list sorted Most Recently Used). */
1840 if (new_gdbarch->initialized_p)
1841 {
1842 struct gdbarch_list **list;
1843 struct gdbarch_list *this;
1844 if (gdbarch_debug)
1845 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1846 "Previous architecture 0x%08lx (%s) selected\n",
1847 (long) new_gdbarch,
1848 new_gdbarch->bfd_arch_info->printable_name);
1849 /* Find the existing arch in the list. */
1850 for (list = &rego->arches;
1851 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1852 list = &(*list)->next);
1853 /* It had better be in the list of architectures. */
1854 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1855 /* Unlink THIS. */
1856 this = (*list);
1857 (*list) = this->next;
1858 /* Insert THIS at the front. */
1859 this->next = rego->arches;
1860 rego->arches = this;
1861 /* Return it. */
1862 return new_gdbarch;
1863 }
1864
1865 /* It's a new architecture. */
1866 if (gdbarch_debug)
1867 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1868 "New architecture 0x%08lx (%s) selected\n",
1869 (long) new_gdbarch,
1870 new_gdbarch->bfd_arch_info->printable_name);
1871
1872 /* Insert the new architecture into the front of the architecture
1873 list (keep the list sorted Most Recently Used). */
1874 {
1875 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1876 this->next = rego->arches;
1877 this->gdbarch = new_gdbarch;
1878 rego->arches = this;
1879 }
1880
1881 /* Check that the newly installed architecture is valid. Plug in
1882 any post init values. */
1883 new_gdbarch->dump_tdep = rego->dump_tdep;
1884 verify_gdbarch (new_gdbarch);
1885 new_gdbarch->initialized_p = 1;
1886
1887 if (gdbarch_debug)
1888 gdbarch_dump (new_gdbarch, gdb_stdlog);
1889
1890 return new_gdbarch;
1891 }
1892
1893 struct gdbarch *
1894 gdbarch_find_by_info (struct gdbarch_info info)
1895 {
1896 struct gdbarch *new_gdbarch;
1897
1898 /* Save the previously selected architecture, setting the global to
1899 NULL. This stops things like gdbarch->init() trying to use the
1900 previous architecture's configuration. The previous architecture
1901 may not even be of the same architecture family. The most recent
1902 architecture of the same family is found at the head of the
1903 rego->arches list. */
1904 struct gdbarch *old_gdbarch = current_gdbarch;
1905 current_gdbarch = NULL;
1906
1907 /* Find the specified architecture. */
1908 new_gdbarch = find_arch_by_info (info);
1909
1910 /* Restore the existing architecture. */
1911 gdb_assert (current_gdbarch == NULL);
1912 current_gdbarch = old_gdbarch;
1913
1914 return new_gdbarch;
1915 }
1916
1917 /* Make the specified architecture current. */
1918
1919 void
1920 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
1921 {
1922 gdb_assert (new_gdbarch != NULL);
1923 gdb_assert (current_gdbarch != NULL);
1924 gdb_assert (new_gdbarch->initialized_p);
1925 current_gdbarch = new_gdbarch;
1926 architecture_changed_event ();
1927 reinit_frame_cache ();
1928 }
1929
1930 extern void _initialize_gdbarch (void);
1931
1932 void
1933 _initialize_gdbarch (void)
1934 {
1935 struct cmd_list_element *c;
1936
1937 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
1938 Set architecture debugging."), _("\\
1939 Show architecture debugging."), _("\\
1940 When non-zero, architecture debugging is enabled."),
1941 NULL,
1942 show_gdbarch_debug,
1943 &setdebuglist, &showdebuglist);
1944 }
1945 EOF
1946
1947 # close things off
1948 exec 1>&2
1949 #../move-if-change new-gdbarch.c gdbarch.c
1950 compare_new gdbarch.c