]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Display names of remote threads
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #ifndef ELFMAG0
50 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
51 then ELFMAG0 will have been defined. If it didn't get included by
52 gdb_proc_service.h then including it will likely introduce a duplicate
53 definition of elf_fpregset_t. */
54 #include <elf.h>
55 #endif
56 #include "nat/linux-namespaces.h"
57
58 #ifndef SPUFS_MAGIC
59 #define SPUFS_MAGIC 0x23c9b64e
60 #endif
61
62 #ifdef HAVE_PERSONALITY
63 # include <sys/personality.h>
64 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
65 # define ADDR_NO_RANDOMIZE 0x0040000
66 # endif
67 #endif
68
69 #ifndef O_LARGEFILE
70 #define O_LARGEFILE 0
71 #endif
72
73 /* Some targets did not define these ptrace constants from the start,
74 so gdbserver defines them locally here. In the future, these may
75 be removed after they are added to asm/ptrace.h. */
76 #if !(defined(PT_TEXT_ADDR) \
77 || defined(PT_DATA_ADDR) \
78 || defined(PT_TEXT_END_ADDR))
79 #if defined(__mcoldfire__)
80 /* These are still undefined in 3.10 kernels. */
81 #define PT_TEXT_ADDR 49*4
82 #define PT_DATA_ADDR 50*4
83 #define PT_TEXT_END_ADDR 51*4
84 /* BFIN already defines these since at least 2.6.32 kernels. */
85 #elif defined(BFIN)
86 #define PT_TEXT_ADDR 220
87 #define PT_TEXT_END_ADDR 224
88 #define PT_DATA_ADDR 228
89 /* These are still undefined in 3.10 kernels. */
90 #elif defined(__TMS320C6X__)
91 #define PT_TEXT_ADDR (0x10000*4)
92 #define PT_DATA_ADDR (0x10004*4)
93 #define PT_TEXT_END_ADDR (0x10008*4)
94 #endif
95 #endif
96
97 #ifdef HAVE_LINUX_BTRACE
98 # include "nat/linux-btrace.h"
99 # include "btrace-common.h"
100 #endif
101
102 #ifndef HAVE_ELF32_AUXV_T
103 /* Copied from glibc's elf.h. */
104 typedef struct
105 {
106 uint32_t a_type; /* Entry type */
107 union
108 {
109 uint32_t a_val; /* Integer value */
110 /* We use to have pointer elements added here. We cannot do that,
111 though, since it does not work when using 32-bit definitions
112 on 64-bit platforms and vice versa. */
113 } a_un;
114 } Elf32_auxv_t;
115 #endif
116
117 #ifndef HAVE_ELF64_AUXV_T
118 /* Copied from glibc's elf.h. */
119 typedef struct
120 {
121 uint64_t a_type; /* Entry type */
122 union
123 {
124 uint64_t a_val; /* Integer value */
125 /* We use to have pointer elements added here. We cannot do that,
126 though, since it does not work when using 32-bit definitions
127 on 64-bit platforms and vice versa. */
128 } a_un;
129 } Elf64_auxv_t;
130 #endif
131
132 /* Does the current host support PTRACE_GETREGSET? */
133 int have_ptrace_getregset = -1;
134
135 /* LWP accessors. */
136
137 /* See nat/linux-nat.h. */
138
139 ptid_t
140 ptid_of_lwp (struct lwp_info *lwp)
141 {
142 return ptid_of (get_lwp_thread (lwp));
143 }
144
145 /* See nat/linux-nat.h. */
146
147 void
148 lwp_set_arch_private_info (struct lwp_info *lwp,
149 struct arch_lwp_info *info)
150 {
151 lwp->arch_private = info;
152 }
153
154 /* See nat/linux-nat.h. */
155
156 struct arch_lwp_info *
157 lwp_arch_private_info (struct lwp_info *lwp)
158 {
159 return lwp->arch_private;
160 }
161
162 /* See nat/linux-nat.h. */
163
164 int
165 lwp_is_stopped (struct lwp_info *lwp)
166 {
167 return lwp->stopped;
168 }
169
170 /* See nat/linux-nat.h. */
171
172 enum target_stop_reason
173 lwp_stop_reason (struct lwp_info *lwp)
174 {
175 return lwp->stop_reason;
176 }
177
178 /* A list of all unknown processes which receive stop signals. Some
179 other process will presumably claim each of these as forked
180 children momentarily. */
181
182 struct simple_pid_list
183 {
184 /* The process ID. */
185 int pid;
186
187 /* The status as reported by waitpid. */
188 int status;
189
190 /* Next in chain. */
191 struct simple_pid_list *next;
192 };
193 struct simple_pid_list *stopped_pids;
194
195 /* Trivial list manipulation functions to keep track of a list of new
196 stopped processes. */
197
198 static void
199 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
200 {
201 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
202
203 new_pid->pid = pid;
204 new_pid->status = status;
205 new_pid->next = *listp;
206 *listp = new_pid;
207 }
208
209 static int
210 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
211 {
212 struct simple_pid_list **p;
213
214 for (p = listp; *p != NULL; p = &(*p)->next)
215 if ((*p)->pid == pid)
216 {
217 struct simple_pid_list *next = (*p)->next;
218
219 *statusp = (*p)->status;
220 xfree (*p);
221 *p = next;
222 return 1;
223 }
224 return 0;
225 }
226
227 enum stopping_threads_kind
228 {
229 /* Not stopping threads presently. */
230 NOT_STOPPING_THREADS,
231
232 /* Stopping threads. */
233 STOPPING_THREADS,
234
235 /* Stopping and suspending threads. */
236 STOPPING_AND_SUSPENDING_THREADS
237 };
238
239 /* This is set while stop_all_lwps is in effect. */
240 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
241
242 /* FIXME make into a target method? */
243 int using_threads = 1;
244
245 /* True if we're presently stabilizing threads (moving them out of
246 jump pads). */
247 static int stabilizing_threads;
248
249 static void linux_resume_one_lwp (struct lwp_info *lwp,
250 int step, int signal, siginfo_t *info);
251 static void linux_resume (struct thread_resume *resume_info, size_t n);
252 static void stop_all_lwps (int suspend, struct lwp_info *except);
253 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
254 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
255 int *wstat, int options);
256 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
257 static struct lwp_info *add_lwp (ptid_t ptid);
258 static void linux_mourn (struct process_info *process);
259 static int linux_stopped_by_watchpoint (void);
260 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
261 static int lwp_is_marked_dead (struct lwp_info *lwp);
262 static void proceed_all_lwps (void);
263 static int finish_step_over (struct lwp_info *lwp);
264 static int kill_lwp (unsigned long lwpid, int signo);
265 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
266 static void complete_ongoing_step_over (void);
267
268 /* When the event-loop is doing a step-over, this points at the thread
269 being stepped. */
270 ptid_t step_over_bkpt;
271
272 /* True if the low target can hardware single-step. Such targets
273 don't need a BREAKPOINT_REINSERT_ADDR callback. */
274
275 static int
276 can_hardware_single_step (void)
277 {
278 return (the_low_target.breakpoint_reinsert_addr == NULL);
279 }
280
281 /* True if the low target supports memory breakpoints. If so, we'll
282 have a GET_PC implementation. */
283
284 static int
285 supports_breakpoints (void)
286 {
287 return (the_low_target.get_pc != NULL);
288 }
289
290 /* Returns true if this target can support fast tracepoints. This
291 does not mean that the in-process agent has been loaded in the
292 inferior. */
293
294 static int
295 supports_fast_tracepoints (void)
296 {
297 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
298 }
299
300 /* True if LWP is stopped in its stepping range. */
301
302 static int
303 lwp_in_step_range (struct lwp_info *lwp)
304 {
305 CORE_ADDR pc = lwp->stop_pc;
306
307 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
308 }
309
310 struct pending_signals
311 {
312 int signal;
313 siginfo_t info;
314 struct pending_signals *prev;
315 };
316
317 /* The read/write ends of the pipe registered as waitable file in the
318 event loop. */
319 static int linux_event_pipe[2] = { -1, -1 };
320
321 /* True if we're currently in async mode. */
322 #define target_is_async_p() (linux_event_pipe[0] != -1)
323
324 static void send_sigstop (struct lwp_info *lwp);
325 static void wait_for_sigstop (void);
326
327 /* Return non-zero if HEADER is a 64-bit ELF file. */
328
329 static int
330 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
331 {
332 if (header->e_ident[EI_MAG0] == ELFMAG0
333 && header->e_ident[EI_MAG1] == ELFMAG1
334 && header->e_ident[EI_MAG2] == ELFMAG2
335 && header->e_ident[EI_MAG3] == ELFMAG3)
336 {
337 *machine = header->e_machine;
338 return header->e_ident[EI_CLASS] == ELFCLASS64;
339
340 }
341 *machine = EM_NONE;
342 return -1;
343 }
344
345 /* Return non-zero if FILE is a 64-bit ELF file,
346 zero if the file is not a 64-bit ELF file,
347 and -1 if the file is not accessible or doesn't exist. */
348
349 static int
350 elf_64_file_p (const char *file, unsigned int *machine)
351 {
352 Elf64_Ehdr header;
353 int fd;
354
355 fd = open (file, O_RDONLY);
356 if (fd < 0)
357 return -1;
358
359 if (read (fd, &header, sizeof (header)) != sizeof (header))
360 {
361 close (fd);
362 return 0;
363 }
364 close (fd);
365
366 return elf_64_header_p (&header, machine);
367 }
368
369 /* Accepts an integer PID; Returns true if the executable PID is
370 running is a 64-bit ELF file.. */
371
372 int
373 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
374 {
375 char file[PATH_MAX];
376
377 sprintf (file, "/proc/%d/exe", pid);
378 return elf_64_file_p (file, machine);
379 }
380
381 static void
382 delete_lwp (struct lwp_info *lwp)
383 {
384 struct thread_info *thr = get_lwp_thread (lwp);
385
386 if (debug_threads)
387 debug_printf ("deleting %ld\n", lwpid_of (thr));
388
389 remove_thread (thr);
390 free (lwp->arch_private);
391 free (lwp);
392 }
393
394 /* Add a process to the common process list, and set its private
395 data. */
396
397 static struct process_info *
398 linux_add_process (int pid, int attached)
399 {
400 struct process_info *proc;
401
402 proc = add_process (pid, attached);
403 proc->priv = XCNEW (struct process_info_private);
404
405 if (the_low_target.new_process != NULL)
406 proc->priv->arch_private = the_low_target.new_process ();
407
408 return proc;
409 }
410
411 static CORE_ADDR get_pc (struct lwp_info *lwp);
412
413 /* Implement the arch_setup target_ops method. */
414
415 static void
416 linux_arch_setup (void)
417 {
418 the_low_target.arch_setup ();
419 }
420
421 /* Call the target arch_setup function on THREAD. */
422
423 static void
424 linux_arch_setup_thread (struct thread_info *thread)
425 {
426 struct thread_info *saved_thread;
427
428 saved_thread = current_thread;
429 current_thread = thread;
430
431 linux_arch_setup ();
432
433 current_thread = saved_thread;
434 }
435
436 /* Handle a GNU/Linux extended wait response. If we see a clone,
437 fork, or vfork event, we need to add the new LWP to our list
438 (and return 0 so as not to report the trap to higher layers).
439 If we see an exec event, we will modify ORIG_EVENT_LWP to point
440 to a new LWP representing the new program. */
441
442 static int
443 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
444 {
445 struct lwp_info *event_lwp = *orig_event_lwp;
446 int event = linux_ptrace_get_extended_event (wstat);
447 struct thread_info *event_thr = get_lwp_thread (event_lwp);
448 struct lwp_info *new_lwp;
449
450 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
451 || (event == PTRACE_EVENT_CLONE))
452 {
453 ptid_t ptid;
454 unsigned long new_pid;
455 int ret, status;
456
457 /* Get the pid of the new lwp. */
458 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
459 &new_pid);
460
461 /* If we haven't already seen the new PID stop, wait for it now. */
462 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
463 {
464 /* The new child has a pending SIGSTOP. We can't affect it until it
465 hits the SIGSTOP, but we're already attached. */
466
467 ret = my_waitpid (new_pid, &status, __WALL);
468
469 if (ret == -1)
470 perror_with_name ("waiting for new child");
471 else if (ret != new_pid)
472 warning ("wait returned unexpected PID %d", ret);
473 else if (!WIFSTOPPED (status))
474 warning ("wait returned unexpected status 0x%x", status);
475 }
476
477 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
478 {
479 struct process_info *parent_proc;
480 struct process_info *child_proc;
481 struct lwp_info *child_lwp;
482 struct thread_info *child_thr;
483 struct target_desc *tdesc;
484
485 ptid = ptid_build (new_pid, new_pid, 0);
486
487 if (debug_threads)
488 {
489 debug_printf ("HEW: Got fork event from LWP %ld, "
490 "new child is %d\n",
491 ptid_get_lwp (ptid_of (event_thr)),
492 ptid_get_pid (ptid));
493 }
494
495 /* Add the new process to the tables and clone the breakpoint
496 lists of the parent. We need to do this even if the new process
497 will be detached, since we will need the process object and the
498 breakpoints to remove any breakpoints from memory when we
499 detach, and the client side will access registers. */
500 child_proc = linux_add_process (new_pid, 0);
501 gdb_assert (child_proc != NULL);
502 child_lwp = add_lwp (ptid);
503 gdb_assert (child_lwp != NULL);
504 child_lwp->stopped = 1;
505 child_lwp->must_set_ptrace_flags = 1;
506 child_lwp->status_pending_p = 0;
507 child_thr = get_lwp_thread (child_lwp);
508 child_thr->last_resume_kind = resume_stop;
509 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
510
511 /* If we're suspending all threads, leave this one suspended
512 too. */
513 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
514 {
515 if (debug_threads)
516 debug_printf ("HEW: leaving child suspended\n");
517 child_lwp->suspended = 1;
518 }
519
520 parent_proc = get_thread_process (event_thr);
521 child_proc->attached = parent_proc->attached;
522 clone_all_breakpoints (&child_proc->breakpoints,
523 &child_proc->raw_breakpoints,
524 parent_proc->breakpoints);
525
526 tdesc = XNEW (struct target_desc);
527 copy_target_description (tdesc, parent_proc->tdesc);
528 child_proc->tdesc = tdesc;
529
530 /* Clone arch-specific process data. */
531 if (the_low_target.new_fork != NULL)
532 the_low_target.new_fork (parent_proc, child_proc);
533
534 /* Save fork info in the parent thread. */
535 if (event == PTRACE_EVENT_FORK)
536 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
537 else if (event == PTRACE_EVENT_VFORK)
538 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
539
540 event_lwp->waitstatus.value.related_pid = ptid;
541
542 /* The status_pending field contains bits denoting the
543 extended event, so when the pending event is handled,
544 the handler will look at lwp->waitstatus. */
545 event_lwp->status_pending_p = 1;
546 event_lwp->status_pending = wstat;
547
548 /* Report the event. */
549 return 0;
550 }
551
552 if (debug_threads)
553 debug_printf ("HEW: Got clone event "
554 "from LWP %ld, new child is LWP %ld\n",
555 lwpid_of (event_thr), new_pid);
556
557 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
558 new_lwp = add_lwp (ptid);
559
560 /* Either we're going to immediately resume the new thread
561 or leave it stopped. linux_resume_one_lwp is a nop if it
562 thinks the thread is currently running, so set this first
563 before calling linux_resume_one_lwp. */
564 new_lwp->stopped = 1;
565
566 /* If we're suspending all threads, leave this one suspended
567 too. */
568 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
569 new_lwp->suspended = 1;
570
571 /* Normally we will get the pending SIGSTOP. But in some cases
572 we might get another signal delivered to the group first.
573 If we do get another signal, be sure not to lose it. */
574 if (WSTOPSIG (status) != SIGSTOP)
575 {
576 new_lwp->stop_expected = 1;
577 new_lwp->status_pending_p = 1;
578 new_lwp->status_pending = status;
579 }
580
581 /* Don't report the event. */
582 return 1;
583 }
584 else if (event == PTRACE_EVENT_VFORK_DONE)
585 {
586 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
587
588 /* Report the event. */
589 return 0;
590 }
591 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
592 {
593 struct process_info *proc;
594 ptid_t event_ptid;
595 pid_t event_pid;
596
597 if (debug_threads)
598 {
599 debug_printf ("HEW: Got exec event from LWP %ld\n",
600 lwpid_of (event_thr));
601 }
602
603 /* Get the event ptid. */
604 event_ptid = ptid_of (event_thr);
605 event_pid = ptid_get_pid (event_ptid);
606
607 /* Delete the execing process and all its threads. */
608 proc = get_thread_process (event_thr);
609 linux_mourn (proc);
610 current_thread = NULL;
611
612 /* Create a new process/lwp/thread. */
613 proc = linux_add_process (event_pid, 0);
614 event_lwp = add_lwp (event_ptid);
615 event_thr = get_lwp_thread (event_lwp);
616 gdb_assert (current_thread == event_thr);
617 linux_arch_setup_thread (event_thr);
618
619 /* Set the event status. */
620 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
621 event_lwp->waitstatus.value.execd_pathname
622 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
623
624 /* Mark the exec status as pending. */
625 event_lwp->stopped = 1;
626 event_lwp->status_pending_p = 1;
627 event_lwp->status_pending = wstat;
628 event_thr->last_resume_kind = resume_continue;
629 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
630
631 /* Report the event. */
632 *orig_event_lwp = event_lwp;
633 return 0;
634 }
635
636 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
637 }
638
639 /* Return the PC as read from the regcache of LWP, without any
640 adjustment. */
641
642 static CORE_ADDR
643 get_pc (struct lwp_info *lwp)
644 {
645 struct thread_info *saved_thread;
646 struct regcache *regcache;
647 CORE_ADDR pc;
648
649 if (the_low_target.get_pc == NULL)
650 return 0;
651
652 saved_thread = current_thread;
653 current_thread = get_lwp_thread (lwp);
654
655 regcache = get_thread_regcache (current_thread, 1);
656 pc = (*the_low_target.get_pc) (regcache);
657
658 if (debug_threads)
659 debug_printf ("pc is 0x%lx\n", (long) pc);
660
661 current_thread = saved_thread;
662 return pc;
663 }
664
665 /* This function should only be called if LWP got a SIGTRAP.
666 The SIGTRAP could mean several things.
667
668 On i386, where decr_pc_after_break is non-zero:
669
670 If we were single-stepping this process using PTRACE_SINGLESTEP, we
671 will get only the one SIGTRAP. The value of $eip will be the next
672 instruction. If the instruction we stepped over was a breakpoint,
673 we need to decrement the PC.
674
675 If we continue the process using PTRACE_CONT, we will get a
676 SIGTRAP when we hit a breakpoint. The value of $eip will be
677 the instruction after the breakpoint (i.e. needs to be
678 decremented). If we report the SIGTRAP to GDB, we must also
679 report the undecremented PC. If the breakpoint is removed, we
680 must resume at the decremented PC.
681
682 On a non-decr_pc_after_break machine with hardware or kernel
683 single-step:
684
685 If we either single-step a breakpoint instruction, or continue and
686 hit a breakpoint instruction, our PC will point at the breakpoint
687 instruction. */
688
689 static int
690 check_stopped_by_breakpoint (struct lwp_info *lwp)
691 {
692 CORE_ADDR pc;
693 CORE_ADDR sw_breakpoint_pc;
694 struct thread_info *saved_thread;
695 #if USE_SIGTRAP_SIGINFO
696 siginfo_t siginfo;
697 #endif
698
699 if (the_low_target.get_pc == NULL)
700 return 0;
701
702 pc = get_pc (lwp);
703 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
704
705 /* breakpoint_at reads from the current thread. */
706 saved_thread = current_thread;
707 current_thread = get_lwp_thread (lwp);
708
709 #if USE_SIGTRAP_SIGINFO
710 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
711 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
712 {
713 if (siginfo.si_signo == SIGTRAP)
714 {
715 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
716 {
717 if (debug_threads)
718 {
719 struct thread_info *thr = get_lwp_thread (lwp);
720
721 debug_printf ("CSBB: %s stopped by software breakpoint\n",
722 target_pid_to_str (ptid_of (thr)));
723 }
724
725 /* Back up the PC if necessary. */
726 if (pc != sw_breakpoint_pc)
727 {
728 struct regcache *regcache
729 = get_thread_regcache (current_thread, 1);
730 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
731 }
732
733 lwp->stop_pc = sw_breakpoint_pc;
734 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
735 current_thread = saved_thread;
736 return 1;
737 }
738 else if (siginfo.si_code == TRAP_HWBKPT)
739 {
740 if (debug_threads)
741 {
742 struct thread_info *thr = get_lwp_thread (lwp);
743
744 debug_printf ("CSBB: %s stopped by hardware "
745 "breakpoint/watchpoint\n",
746 target_pid_to_str (ptid_of (thr)));
747 }
748
749 lwp->stop_pc = pc;
750 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
751 current_thread = saved_thread;
752 return 1;
753 }
754 else if (siginfo.si_code == TRAP_TRACE)
755 {
756 if (debug_threads)
757 {
758 struct thread_info *thr = get_lwp_thread (lwp);
759
760 debug_printf ("CSBB: %s stopped by trace\n",
761 target_pid_to_str (ptid_of (thr)));
762 }
763
764 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
765 }
766 }
767 }
768 #else
769 /* We may have just stepped a breakpoint instruction. E.g., in
770 non-stop mode, GDB first tells the thread A to step a range, and
771 then the user inserts a breakpoint inside the range. In that
772 case we need to report the breakpoint PC. */
773 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
774 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
775 {
776 if (debug_threads)
777 {
778 struct thread_info *thr = get_lwp_thread (lwp);
779
780 debug_printf ("CSBB: %s stopped by software breakpoint\n",
781 target_pid_to_str (ptid_of (thr)));
782 }
783
784 /* Back up the PC if necessary. */
785 if (pc != sw_breakpoint_pc)
786 {
787 struct regcache *regcache
788 = get_thread_regcache (current_thread, 1);
789 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
790 }
791
792 lwp->stop_pc = sw_breakpoint_pc;
793 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
794 current_thread = saved_thread;
795 return 1;
796 }
797
798 if (hardware_breakpoint_inserted_here (pc))
799 {
800 if (debug_threads)
801 {
802 struct thread_info *thr = get_lwp_thread (lwp);
803
804 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
805 target_pid_to_str (ptid_of (thr)));
806 }
807
808 lwp->stop_pc = pc;
809 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
810 current_thread = saved_thread;
811 return 1;
812 }
813 #endif
814
815 current_thread = saved_thread;
816 return 0;
817 }
818
819 static struct lwp_info *
820 add_lwp (ptid_t ptid)
821 {
822 struct lwp_info *lwp;
823
824 lwp = XCNEW (struct lwp_info);
825
826 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
827
828 if (the_low_target.new_thread != NULL)
829 the_low_target.new_thread (lwp);
830
831 lwp->thread = add_thread (ptid, lwp);
832
833 return lwp;
834 }
835
836 /* Start an inferior process and returns its pid.
837 ALLARGS is a vector of program-name and args. */
838
839 static int
840 linux_create_inferior (char *program, char **allargs)
841 {
842 struct lwp_info *new_lwp;
843 int pid;
844 ptid_t ptid;
845 struct cleanup *restore_personality
846 = maybe_disable_address_space_randomization (disable_randomization);
847
848 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
849 pid = vfork ();
850 #else
851 pid = fork ();
852 #endif
853 if (pid < 0)
854 perror_with_name ("fork");
855
856 if (pid == 0)
857 {
858 close_most_fds ();
859 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
860
861 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
862 signal (__SIGRTMIN + 1, SIG_DFL);
863 #endif
864
865 setpgid (0, 0);
866
867 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
868 stdout to stderr so that inferior i/o doesn't corrupt the connection.
869 Also, redirect stdin to /dev/null. */
870 if (remote_connection_is_stdio ())
871 {
872 close (0);
873 open ("/dev/null", O_RDONLY);
874 dup2 (2, 1);
875 if (write (2, "stdin/stdout redirected\n",
876 sizeof ("stdin/stdout redirected\n") - 1) < 0)
877 {
878 /* Errors ignored. */;
879 }
880 }
881
882 execv (program, allargs);
883 if (errno == ENOENT)
884 execvp (program, allargs);
885
886 fprintf (stderr, "Cannot exec %s: %s.\n", program,
887 strerror (errno));
888 fflush (stderr);
889 _exit (0177);
890 }
891
892 do_cleanups (restore_personality);
893
894 linux_add_process (pid, 0);
895
896 ptid = ptid_build (pid, pid, 0);
897 new_lwp = add_lwp (ptid);
898 new_lwp->must_set_ptrace_flags = 1;
899
900 return pid;
901 }
902
903 /* Attach to an inferior process. Returns 0 on success, ERRNO on
904 error. */
905
906 int
907 linux_attach_lwp (ptid_t ptid)
908 {
909 struct lwp_info *new_lwp;
910 int lwpid = ptid_get_lwp (ptid);
911
912 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
913 != 0)
914 return errno;
915
916 new_lwp = add_lwp (ptid);
917
918 /* We need to wait for SIGSTOP before being able to make the next
919 ptrace call on this LWP. */
920 new_lwp->must_set_ptrace_flags = 1;
921
922 if (linux_proc_pid_is_stopped (lwpid))
923 {
924 if (debug_threads)
925 debug_printf ("Attached to a stopped process\n");
926
927 /* The process is definitely stopped. It is in a job control
928 stop, unless the kernel predates the TASK_STOPPED /
929 TASK_TRACED distinction, in which case it might be in a
930 ptrace stop. Make sure it is in a ptrace stop; from there we
931 can kill it, signal it, et cetera.
932
933 First make sure there is a pending SIGSTOP. Since we are
934 already attached, the process can not transition from stopped
935 to running without a PTRACE_CONT; so we know this signal will
936 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
937 probably already in the queue (unless this kernel is old
938 enough to use TASK_STOPPED for ptrace stops); but since
939 SIGSTOP is not an RT signal, it can only be queued once. */
940 kill_lwp (lwpid, SIGSTOP);
941
942 /* Finally, resume the stopped process. This will deliver the
943 SIGSTOP (or a higher priority signal, just like normal
944 PTRACE_ATTACH), which we'll catch later on. */
945 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
946 }
947
948 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
949 brings it to a halt.
950
951 There are several cases to consider here:
952
953 1) gdbserver has already attached to the process and is being notified
954 of a new thread that is being created.
955 In this case we should ignore that SIGSTOP and resume the
956 process. This is handled below by setting stop_expected = 1,
957 and the fact that add_thread sets last_resume_kind ==
958 resume_continue.
959
960 2) This is the first thread (the process thread), and we're attaching
961 to it via attach_inferior.
962 In this case we want the process thread to stop.
963 This is handled by having linux_attach set last_resume_kind ==
964 resume_stop after we return.
965
966 If the pid we are attaching to is also the tgid, we attach to and
967 stop all the existing threads. Otherwise, we attach to pid and
968 ignore any other threads in the same group as this pid.
969
970 3) GDB is connecting to gdbserver and is requesting an enumeration of all
971 existing threads.
972 In this case we want the thread to stop.
973 FIXME: This case is currently not properly handled.
974 We should wait for the SIGSTOP but don't. Things work apparently
975 because enough time passes between when we ptrace (ATTACH) and when
976 gdb makes the next ptrace call on the thread.
977
978 On the other hand, if we are currently trying to stop all threads, we
979 should treat the new thread as if we had sent it a SIGSTOP. This works
980 because we are guaranteed that the add_lwp call above added us to the
981 end of the list, and so the new thread has not yet reached
982 wait_for_sigstop (but will). */
983 new_lwp->stop_expected = 1;
984
985 return 0;
986 }
987
988 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
989 already attached. Returns true if a new LWP is found, false
990 otherwise. */
991
992 static int
993 attach_proc_task_lwp_callback (ptid_t ptid)
994 {
995 /* Is this a new thread? */
996 if (find_thread_ptid (ptid) == NULL)
997 {
998 int lwpid = ptid_get_lwp (ptid);
999 int err;
1000
1001 if (debug_threads)
1002 debug_printf ("Found new lwp %d\n", lwpid);
1003
1004 err = linux_attach_lwp (ptid);
1005
1006 /* Be quiet if we simply raced with the thread exiting. EPERM
1007 is returned if the thread's task still exists, and is marked
1008 as exited or zombie, as well as other conditions, so in that
1009 case, confirm the status in /proc/PID/status. */
1010 if (err == ESRCH
1011 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1012 {
1013 if (debug_threads)
1014 {
1015 debug_printf ("Cannot attach to lwp %d: "
1016 "thread is gone (%d: %s)\n",
1017 lwpid, err, strerror (err));
1018 }
1019 }
1020 else if (err != 0)
1021 {
1022 warning (_("Cannot attach to lwp %d: %s"),
1023 lwpid,
1024 linux_ptrace_attach_fail_reason_string (ptid, err));
1025 }
1026
1027 return 1;
1028 }
1029 return 0;
1030 }
1031
1032 /* Attach to PID. If PID is the tgid, attach to it and all
1033 of its threads. */
1034
1035 static int
1036 linux_attach (unsigned long pid)
1037 {
1038 ptid_t ptid = ptid_build (pid, pid, 0);
1039 int err;
1040
1041 /* Attach to PID. We will check for other threads
1042 soon. */
1043 err = linux_attach_lwp (ptid);
1044 if (err != 0)
1045 error ("Cannot attach to process %ld: %s",
1046 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1047
1048 linux_add_process (pid, 1);
1049
1050 if (!non_stop)
1051 {
1052 struct thread_info *thread;
1053
1054 /* Don't ignore the initial SIGSTOP if we just attached to this
1055 process. It will be collected by wait shortly. */
1056 thread = find_thread_ptid (ptid_build (pid, pid, 0));
1057 thread->last_resume_kind = resume_stop;
1058 }
1059
1060 /* We must attach to every LWP. If /proc is mounted, use that to
1061 find them now. On the one hand, the inferior may be using raw
1062 clone instead of using pthreads. On the other hand, even if it
1063 is using pthreads, GDB may not be connected yet (thread_db needs
1064 to do symbol lookups, through qSymbol). Also, thread_db walks
1065 structures in the inferior's address space to find the list of
1066 threads/LWPs, and those structures may well be corrupted. Note
1067 that once thread_db is loaded, we'll still use it to list threads
1068 and associate pthread info with each LWP. */
1069 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1070 return 0;
1071 }
1072
1073 struct counter
1074 {
1075 int pid;
1076 int count;
1077 };
1078
1079 static int
1080 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1081 {
1082 struct counter *counter = (struct counter *) args;
1083
1084 if (ptid_get_pid (entry->id) == counter->pid)
1085 {
1086 if (++counter->count > 1)
1087 return 1;
1088 }
1089
1090 return 0;
1091 }
1092
1093 static int
1094 last_thread_of_process_p (int pid)
1095 {
1096 struct counter counter = { pid , 0 };
1097
1098 return (find_inferior (&all_threads,
1099 second_thread_of_pid_p, &counter) == NULL);
1100 }
1101
1102 /* Kill LWP. */
1103
1104 static void
1105 linux_kill_one_lwp (struct lwp_info *lwp)
1106 {
1107 struct thread_info *thr = get_lwp_thread (lwp);
1108 int pid = lwpid_of (thr);
1109
1110 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1111 there is no signal context, and ptrace(PTRACE_KILL) (or
1112 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1113 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1114 alternative is to kill with SIGKILL. We only need one SIGKILL
1115 per process, not one for each thread. But since we still support
1116 linuxthreads, and we also support debugging programs using raw
1117 clone without CLONE_THREAD, we send one for each thread. For
1118 years, we used PTRACE_KILL only, so we're being a bit paranoid
1119 about some old kernels where PTRACE_KILL might work better
1120 (dubious if there are any such, but that's why it's paranoia), so
1121 we try SIGKILL first, PTRACE_KILL second, and so we're fine
1122 everywhere. */
1123
1124 errno = 0;
1125 kill_lwp (pid, SIGKILL);
1126 if (debug_threads)
1127 {
1128 int save_errno = errno;
1129
1130 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1131 target_pid_to_str (ptid_of (thr)),
1132 save_errno ? strerror (save_errno) : "OK");
1133 }
1134
1135 errno = 0;
1136 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1137 if (debug_threads)
1138 {
1139 int save_errno = errno;
1140
1141 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1142 target_pid_to_str (ptid_of (thr)),
1143 save_errno ? strerror (save_errno) : "OK");
1144 }
1145 }
1146
1147 /* Kill LWP and wait for it to die. */
1148
1149 static void
1150 kill_wait_lwp (struct lwp_info *lwp)
1151 {
1152 struct thread_info *thr = get_lwp_thread (lwp);
1153 int pid = ptid_get_pid (ptid_of (thr));
1154 int lwpid = ptid_get_lwp (ptid_of (thr));
1155 int wstat;
1156 int res;
1157
1158 if (debug_threads)
1159 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1160
1161 do
1162 {
1163 linux_kill_one_lwp (lwp);
1164
1165 /* Make sure it died. Notes:
1166
1167 - The loop is most likely unnecessary.
1168
1169 - We don't use linux_wait_for_event as that could delete lwps
1170 while we're iterating over them. We're not interested in
1171 any pending status at this point, only in making sure all
1172 wait status on the kernel side are collected until the
1173 process is reaped.
1174
1175 - We don't use __WALL here as the __WALL emulation relies on
1176 SIGCHLD, and killing a stopped process doesn't generate
1177 one, nor an exit status.
1178 */
1179 res = my_waitpid (lwpid, &wstat, 0);
1180 if (res == -1 && errno == ECHILD)
1181 res = my_waitpid (lwpid, &wstat, __WCLONE);
1182 } while (res > 0 && WIFSTOPPED (wstat));
1183
1184 /* Even if it was stopped, the child may have already disappeared.
1185 E.g., if it was killed by SIGKILL. */
1186 if (res < 0 && errno != ECHILD)
1187 perror_with_name ("kill_wait_lwp");
1188 }
1189
1190 /* Callback for `find_inferior'. Kills an lwp of a given process,
1191 except the leader. */
1192
1193 static int
1194 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1195 {
1196 struct thread_info *thread = (struct thread_info *) entry;
1197 struct lwp_info *lwp = get_thread_lwp (thread);
1198 int pid = * (int *) args;
1199
1200 if (ptid_get_pid (entry->id) != pid)
1201 return 0;
1202
1203 /* We avoid killing the first thread here, because of a Linux kernel (at
1204 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1205 the children get a chance to be reaped, it will remain a zombie
1206 forever. */
1207
1208 if (lwpid_of (thread) == pid)
1209 {
1210 if (debug_threads)
1211 debug_printf ("lkop: is last of process %s\n",
1212 target_pid_to_str (entry->id));
1213 return 0;
1214 }
1215
1216 kill_wait_lwp (lwp);
1217 return 0;
1218 }
1219
1220 static int
1221 linux_kill (int pid)
1222 {
1223 struct process_info *process;
1224 struct lwp_info *lwp;
1225
1226 process = find_process_pid (pid);
1227 if (process == NULL)
1228 return -1;
1229
1230 /* If we're killing a running inferior, make sure it is stopped
1231 first, as PTRACE_KILL will not work otherwise. */
1232 stop_all_lwps (0, NULL);
1233
1234 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1235
1236 /* See the comment in linux_kill_one_lwp. We did not kill the first
1237 thread in the list, so do so now. */
1238 lwp = find_lwp_pid (pid_to_ptid (pid));
1239
1240 if (lwp == NULL)
1241 {
1242 if (debug_threads)
1243 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1244 pid);
1245 }
1246 else
1247 kill_wait_lwp (lwp);
1248
1249 the_target->mourn (process);
1250
1251 /* Since we presently can only stop all lwps of all processes, we
1252 need to unstop lwps of other processes. */
1253 unstop_all_lwps (0, NULL);
1254 return 0;
1255 }
1256
1257 /* Get pending signal of THREAD, for detaching purposes. This is the
1258 signal the thread last stopped for, which we need to deliver to the
1259 thread when detaching, otherwise, it'd be suppressed/lost. */
1260
1261 static int
1262 get_detach_signal (struct thread_info *thread)
1263 {
1264 enum gdb_signal signo = GDB_SIGNAL_0;
1265 int status;
1266 struct lwp_info *lp = get_thread_lwp (thread);
1267
1268 if (lp->status_pending_p)
1269 status = lp->status_pending;
1270 else
1271 {
1272 /* If the thread had been suspended by gdbserver, and it stopped
1273 cleanly, then it'll have stopped with SIGSTOP. But we don't
1274 want to deliver that SIGSTOP. */
1275 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1276 || thread->last_status.value.sig == GDB_SIGNAL_0)
1277 return 0;
1278
1279 /* Otherwise, we may need to deliver the signal we
1280 intercepted. */
1281 status = lp->last_status;
1282 }
1283
1284 if (!WIFSTOPPED (status))
1285 {
1286 if (debug_threads)
1287 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1288 target_pid_to_str (ptid_of (thread)));
1289 return 0;
1290 }
1291
1292 /* Extended wait statuses aren't real SIGTRAPs. */
1293 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1294 {
1295 if (debug_threads)
1296 debug_printf ("GPS: lwp %s had stopped with extended "
1297 "status: no pending signal\n",
1298 target_pid_to_str (ptid_of (thread)));
1299 return 0;
1300 }
1301
1302 signo = gdb_signal_from_host (WSTOPSIG (status));
1303
1304 if (program_signals_p && !program_signals[signo])
1305 {
1306 if (debug_threads)
1307 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1308 target_pid_to_str (ptid_of (thread)),
1309 gdb_signal_to_string (signo));
1310 return 0;
1311 }
1312 else if (!program_signals_p
1313 /* If we have no way to know which signals GDB does not
1314 want to have passed to the program, assume
1315 SIGTRAP/SIGINT, which is GDB's default. */
1316 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1317 {
1318 if (debug_threads)
1319 debug_printf ("GPS: lwp %s had signal %s, "
1320 "but we don't know if we should pass it. "
1321 "Default to not.\n",
1322 target_pid_to_str (ptid_of (thread)),
1323 gdb_signal_to_string (signo));
1324 return 0;
1325 }
1326 else
1327 {
1328 if (debug_threads)
1329 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1330 target_pid_to_str (ptid_of (thread)),
1331 gdb_signal_to_string (signo));
1332
1333 return WSTOPSIG (status);
1334 }
1335 }
1336
1337 static int
1338 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1339 {
1340 struct thread_info *thread = (struct thread_info *) entry;
1341 struct lwp_info *lwp = get_thread_lwp (thread);
1342 int pid = * (int *) args;
1343 int sig;
1344
1345 if (ptid_get_pid (entry->id) != pid)
1346 return 0;
1347
1348 /* If there is a pending SIGSTOP, get rid of it. */
1349 if (lwp->stop_expected)
1350 {
1351 if (debug_threads)
1352 debug_printf ("Sending SIGCONT to %s\n",
1353 target_pid_to_str (ptid_of (thread)));
1354
1355 kill_lwp (lwpid_of (thread), SIGCONT);
1356 lwp->stop_expected = 0;
1357 }
1358
1359 /* Flush any pending changes to the process's registers. */
1360 regcache_invalidate_thread (thread);
1361
1362 /* Pass on any pending signal for this thread. */
1363 sig = get_detach_signal (thread);
1364
1365 /* Finally, let it resume. */
1366 if (the_low_target.prepare_to_resume != NULL)
1367 the_low_target.prepare_to_resume (lwp);
1368 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1369 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1370 error (_("Can't detach %s: %s"),
1371 target_pid_to_str (ptid_of (thread)),
1372 strerror (errno));
1373
1374 delete_lwp (lwp);
1375 return 0;
1376 }
1377
1378 static int
1379 linux_detach (int pid)
1380 {
1381 struct process_info *process;
1382
1383 process = find_process_pid (pid);
1384 if (process == NULL)
1385 return -1;
1386
1387 /* As there's a step over already in progress, let it finish first,
1388 otherwise nesting a stabilize_threads operation on top gets real
1389 messy. */
1390 complete_ongoing_step_over ();
1391
1392 /* Stop all threads before detaching. First, ptrace requires that
1393 the thread is stopped to sucessfully detach. Second, thread_db
1394 may need to uninstall thread event breakpoints from memory, which
1395 only works with a stopped process anyway. */
1396 stop_all_lwps (0, NULL);
1397
1398 #ifdef USE_THREAD_DB
1399 thread_db_detach (process);
1400 #endif
1401
1402 /* Stabilize threads (move out of jump pads). */
1403 stabilize_threads ();
1404
1405 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1406
1407 the_target->mourn (process);
1408
1409 /* Since we presently can only stop all lwps of all processes, we
1410 need to unstop lwps of other processes. */
1411 unstop_all_lwps (0, NULL);
1412 return 0;
1413 }
1414
1415 /* Remove all LWPs that belong to process PROC from the lwp list. */
1416
1417 static int
1418 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1419 {
1420 struct thread_info *thread = (struct thread_info *) entry;
1421 struct lwp_info *lwp = get_thread_lwp (thread);
1422 struct process_info *process = (struct process_info *) proc;
1423
1424 if (pid_of (thread) == pid_of (process))
1425 delete_lwp (lwp);
1426
1427 return 0;
1428 }
1429
1430 static void
1431 linux_mourn (struct process_info *process)
1432 {
1433 struct process_info_private *priv;
1434
1435 #ifdef USE_THREAD_DB
1436 thread_db_mourn (process);
1437 #endif
1438
1439 find_inferior (&all_threads, delete_lwp_callback, process);
1440
1441 /* Freeing all private data. */
1442 priv = process->priv;
1443 free (priv->arch_private);
1444 free (priv);
1445 process->priv = NULL;
1446
1447 remove_process (process);
1448 }
1449
1450 static void
1451 linux_join (int pid)
1452 {
1453 int status, ret;
1454
1455 do {
1456 ret = my_waitpid (pid, &status, 0);
1457 if (WIFEXITED (status) || WIFSIGNALED (status))
1458 break;
1459 } while (ret != -1 || errno != ECHILD);
1460 }
1461
1462 /* Return nonzero if the given thread is still alive. */
1463 static int
1464 linux_thread_alive (ptid_t ptid)
1465 {
1466 struct lwp_info *lwp = find_lwp_pid (ptid);
1467
1468 /* We assume we always know if a thread exits. If a whole process
1469 exited but we still haven't been able to report it to GDB, we'll
1470 hold on to the last lwp of the dead process. */
1471 if (lwp != NULL)
1472 return !lwp_is_marked_dead (lwp);
1473 else
1474 return 0;
1475 }
1476
1477 /* Return 1 if this lwp still has an interesting status pending. If
1478 not (e.g., it had stopped for a breakpoint that is gone), return
1479 false. */
1480
1481 static int
1482 thread_still_has_status_pending_p (struct thread_info *thread)
1483 {
1484 struct lwp_info *lp = get_thread_lwp (thread);
1485
1486 if (!lp->status_pending_p)
1487 return 0;
1488
1489 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1490 report any status pending the LWP may have. */
1491 if (thread->last_resume_kind == resume_stop
1492 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1493 return 0;
1494
1495 if (thread->last_resume_kind != resume_stop
1496 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1497 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1498 {
1499 struct thread_info *saved_thread;
1500 CORE_ADDR pc;
1501 int discard = 0;
1502
1503 gdb_assert (lp->last_status != 0);
1504
1505 pc = get_pc (lp);
1506
1507 saved_thread = current_thread;
1508 current_thread = thread;
1509
1510 if (pc != lp->stop_pc)
1511 {
1512 if (debug_threads)
1513 debug_printf ("PC of %ld changed\n",
1514 lwpid_of (thread));
1515 discard = 1;
1516 }
1517
1518 #if !USE_SIGTRAP_SIGINFO
1519 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1520 && !(*the_low_target.breakpoint_at) (pc))
1521 {
1522 if (debug_threads)
1523 debug_printf ("previous SW breakpoint of %ld gone\n",
1524 lwpid_of (thread));
1525 discard = 1;
1526 }
1527 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1528 && !hardware_breakpoint_inserted_here (pc))
1529 {
1530 if (debug_threads)
1531 debug_printf ("previous HW breakpoint of %ld gone\n",
1532 lwpid_of (thread));
1533 discard = 1;
1534 }
1535 #endif
1536
1537 current_thread = saved_thread;
1538
1539 if (discard)
1540 {
1541 if (debug_threads)
1542 debug_printf ("discarding pending breakpoint status\n");
1543 lp->status_pending_p = 0;
1544 return 0;
1545 }
1546 }
1547
1548 return 1;
1549 }
1550
1551 /* Return 1 if this lwp has an interesting status pending. */
1552 static int
1553 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1554 {
1555 struct thread_info *thread = (struct thread_info *) entry;
1556 struct lwp_info *lp = get_thread_lwp (thread);
1557 ptid_t ptid = * (ptid_t *) arg;
1558
1559 /* Check if we're only interested in events from a specific process
1560 or a specific LWP. */
1561 if (!ptid_match (ptid_of (thread), ptid))
1562 return 0;
1563
1564 if (lp->status_pending_p
1565 && !thread_still_has_status_pending_p (thread))
1566 {
1567 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1568 return 0;
1569 }
1570
1571 return lp->status_pending_p;
1572 }
1573
1574 static int
1575 same_lwp (struct inferior_list_entry *entry, void *data)
1576 {
1577 ptid_t ptid = *(ptid_t *) data;
1578 int lwp;
1579
1580 if (ptid_get_lwp (ptid) != 0)
1581 lwp = ptid_get_lwp (ptid);
1582 else
1583 lwp = ptid_get_pid (ptid);
1584
1585 if (ptid_get_lwp (entry->id) == lwp)
1586 return 1;
1587
1588 return 0;
1589 }
1590
1591 struct lwp_info *
1592 find_lwp_pid (ptid_t ptid)
1593 {
1594 struct inferior_list_entry *thread
1595 = find_inferior (&all_threads, same_lwp, &ptid);
1596
1597 if (thread == NULL)
1598 return NULL;
1599
1600 return get_thread_lwp ((struct thread_info *) thread);
1601 }
1602
1603 /* Return the number of known LWPs in the tgid given by PID. */
1604
1605 static int
1606 num_lwps (int pid)
1607 {
1608 struct inferior_list_entry *inf, *tmp;
1609 int count = 0;
1610
1611 ALL_INFERIORS (&all_threads, inf, tmp)
1612 {
1613 if (ptid_get_pid (inf->id) == pid)
1614 count++;
1615 }
1616
1617 return count;
1618 }
1619
1620 /* The arguments passed to iterate_over_lwps. */
1621
1622 struct iterate_over_lwps_args
1623 {
1624 /* The FILTER argument passed to iterate_over_lwps. */
1625 ptid_t filter;
1626
1627 /* The CALLBACK argument passed to iterate_over_lwps. */
1628 iterate_over_lwps_ftype *callback;
1629
1630 /* The DATA argument passed to iterate_over_lwps. */
1631 void *data;
1632 };
1633
1634 /* Callback for find_inferior used by iterate_over_lwps to filter
1635 calls to the callback supplied to that function. Returning a
1636 nonzero value causes find_inferiors to stop iterating and return
1637 the current inferior_list_entry. Returning zero indicates that
1638 find_inferiors should continue iterating. */
1639
1640 static int
1641 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1642 {
1643 struct iterate_over_lwps_args *args
1644 = (struct iterate_over_lwps_args *) args_p;
1645
1646 if (ptid_match (entry->id, args->filter))
1647 {
1648 struct thread_info *thr = (struct thread_info *) entry;
1649 struct lwp_info *lwp = get_thread_lwp (thr);
1650
1651 return (*args->callback) (lwp, args->data);
1652 }
1653
1654 return 0;
1655 }
1656
1657 /* See nat/linux-nat.h. */
1658
1659 struct lwp_info *
1660 iterate_over_lwps (ptid_t filter,
1661 iterate_over_lwps_ftype callback,
1662 void *data)
1663 {
1664 struct iterate_over_lwps_args args = {filter, callback, data};
1665 struct inferior_list_entry *entry;
1666
1667 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1668 if (entry == NULL)
1669 return NULL;
1670
1671 return get_thread_lwp ((struct thread_info *) entry);
1672 }
1673
1674 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1675 their exits until all other threads in the group have exited. */
1676
1677 static void
1678 check_zombie_leaders (void)
1679 {
1680 struct process_info *proc, *tmp;
1681
1682 ALL_PROCESSES (proc, tmp)
1683 {
1684 pid_t leader_pid = pid_of (proc);
1685 struct lwp_info *leader_lp;
1686
1687 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1688
1689 if (debug_threads)
1690 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1691 "num_lwps=%d, zombie=%d\n",
1692 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1693 linux_proc_pid_is_zombie (leader_pid));
1694
1695 if (leader_lp != NULL && !leader_lp->stopped
1696 /* Check if there are other threads in the group, as we may
1697 have raced with the inferior simply exiting. */
1698 && !last_thread_of_process_p (leader_pid)
1699 && linux_proc_pid_is_zombie (leader_pid))
1700 {
1701 /* A leader zombie can mean one of two things:
1702
1703 - It exited, and there's an exit status pending
1704 available, or only the leader exited (not the whole
1705 program). In the latter case, we can't waitpid the
1706 leader's exit status until all other threads are gone.
1707
1708 - There are 3 or more threads in the group, and a thread
1709 other than the leader exec'd. On an exec, the Linux
1710 kernel destroys all other threads (except the execing
1711 one) in the thread group, and resets the execing thread's
1712 tid to the tgid. No exit notification is sent for the
1713 execing thread -- from the ptracer's perspective, it
1714 appears as though the execing thread just vanishes.
1715 Until we reap all other threads except the leader and the
1716 execing thread, the leader will be zombie, and the
1717 execing thread will be in `D (disc sleep)'. As soon as
1718 all other threads are reaped, the execing thread changes
1719 it's tid to the tgid, and the previous (zombie) leader
1720 vanishes, giving place to the "new" leader. We could try
1721 distinguishing the exit and exec cases, by waiting once
1722 more, and seeing if something comes out, but it doesn't
1723 sound useful. The previous leader _does_ go away, and
1724 we'll re-add the new one once we see the exec event
1725 (which is just the same as what would happen if the
1726 previous leader did exit voluntarily before some other
1727 thread execs). */
1728
1729 if (debug_threads)
1730 fprintf (stderr,
1731 "CZL: Thread group leader %d zombie "
1732 "(it exited, or another thread execd).\n",
1733 leader_pid);
1734
1735 delete_lwp (leader_lp);
1736 }
1737 }
1738 }
1739
1740 /* Callback for `find_inferior'. Returns the first LWP that is not
1741 stopped. ARG is a PTID filter. */
1742
1743 static int
1744 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1745 {
1746 struct thread_info *thr = (struct thread_info *) entry;
1747 struct lwp_info *lwp;
1748 ptid_t filter = *(ptid_t *) arg;
1749
1750 if (!ptid_match (ptid_of (thr), filter))
1751 return 0;
1752
1753 lwp = get_thread_lwp (thr);
1754 if (!lwp->stopped)
1755 return 1;
1756
1757 return 0;
1758 }
1759
1760 /* Increment LWP's suspend count. */
1761
1762 static void
1763 lwp_suspended_inc (struct lwp_info *lwp)
1764 {
1765 lwp->suspended++;
1766
1767 if (debug_threads && lwp->suspended > 4)
1768 {
1769 struct thread_info *thread = get_lwp_thread (lwp);
1770
1771 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1772 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1773 }
1774 }
1775
1776 /* Decrement LWP's suspend count. */
1777
1778 static void
1779 lwp_suspended_decr (struct lwp_info *lwp)
1780 {
1781 lwp->suspended--;
1782
1783 if (lwp->suspended < 0)
1784 {
1785 struct thread_info *thread = get_lwp_thread (lwp);
1786
1787 internal_error (__FILE__, __LINE__,
1788 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1789 lwp->suspended);
1790 }
1791 }
1792
1793 /* This function should only be called if the LWP got a SIGTRAP.
1794
1795 Handle any tracepoint steps or hits. Return true if a tracepoint
1796 event was handled, 0 otherwise. */
1797
1798 static int
1799 handle_tracepoints (struct lwp_info *lwp)
1800 {
1801 struct thread_info *tinfo = get_lwp_thread (lwp);
1802 int tpoint_related_event = 0;
1803
1804 gdb_assert (lwp->suspended == 0);
1805
1806 /* If this tracepoint hit causes a tracing stop, we'll immediately
1807 uninsert tracepoints. To do this, we temporarily pause all
1808 threads, unpatch away, and then unpause threads. We need to make
1809 sure the unpausing doesn't resume LWP too. */
1810 lwp_suspended_inc (lwp);
1811
1812 /* And we need to be sure that any all-threads-stopping doesn't try
1813 to move threads out of the jump pads, as it could deadlock the
1814 inferior (LWP could be in the jump pad, maybe even holding the
1815 lock.) */
1816
1817 /* Do any necessary step collect actions. */
1818 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1819
1820 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1821
1822 /* See if we just hit a tracepoint and do its main collect
1823 actions. */
1824 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1825
1826 lwp_suspended_decr (lwp);
1827
1828 gdb_assert (lwp->suspended == 0);
1829 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1830
1831 if (tpoint_related_event)
1832 {
1833 if (debug_threads)
1834 debug_printf ("got a tracepoint event\n");
1835 return 1;
1836 }
1837
1838 return 0;
1839 }
1840
1841 /* Convenience wrapper. Returns true if LWP is presently collecting a
1842 fast tracepoint. */
1843
1844 static int
1845 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1846 struct fast_tpoint_collect_status *status)
1847 {
1848 CORE_ADDR thread_area;
1849 struct thread_info *thread = get_lwp_thread (lwp);
1850
1851 if (the_low_target.get_thread_area == NULL)
1852 return 0;
1853
1854 /* Get the thread area address. This is used to recognize which
1855 thread is which when tracing with the in-process agent library.
1856 We don't read anything from the address, and treat it as opaque;
1857 it's the address itself that we assume is unique per-thread. */
1858 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1859 return 0;
1860
1861 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1862 }
1863
1864 /* The reason we resume in the caller, is because we want to be able
1865 to pass lwp->status_pending as WSTAT, and we need to clear
1866 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1867 refuses to resume. */
1868
1869 static int
1870 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1871 {
1872 struct thread_info *saved_thread;
1873
1874 saved_thread = current_thread;
1875 current_thread = get_lwp_thread (lwp);
1876
1877 if ((wstat == NULL
1878 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1879 && supports_fast_tracepoints ()
1880 && agent_loaded_p ())
1881 {
1882 struct fast_tpoint_collect_status status;
1883 int r;
1884
1885 if (debug_threads)
1886 debug_printf ("Checking whether LWP %ld needs to move out of the "
1887 "jump pad.\n",
1888 lwpid_of (current_thread));
1889
1890 r = linux_fast_tracepoint_collecting (lwp, &status);
1891
1892 if (wstat == NULL
1893 || (WSTOPSIG (*wstat) != SIGILL
1894 && WSTOPSIG (*wstat) != SIGFPE
1895 && WSTOPSIG (*wstat) != SIGSEGV
1896 && WSTOPSIG (*wstat) != SIGBUS))
1897 {
1898 lwp->collecting_fast_tracepoint = r;
1899
1900 if (r != 0)
1901 {
1902 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1903 {
1904 /* Haven't executed the original instruction yet.
1905 Set breakpoint there, and wait till it's hit,
1906 then single-step until exiting the jump pad. */
1907 lwp->exit_jump_pad_bkpt
1908 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1909 }
1910
1911 if (debug_threads)
1912 debug_printf ("Checking whether LWP %ld needs to move out of "
1913 "the jump pad...it does\n",
1914 lwpid_of (current_thread));
1915 current_thread = saved_thread;
1916
1917 return 1;
1918 }
1919 }
1920 else
1921 {
1922 /* If we get a synchronous signal while collecting, *and*
1923 while executing the (relocated) original instruction,
1924 reset the PC to point at the tpoint address, before
1925 reporting to GDB. Otherwise, it's an IPA lib bug: just
1926 report the signal to GDB, and pray for the best. */
1927
1928 lwp->collecting_fast_tracepoint = 0;
1929
1930 if (r != 0
1931 && (status.adjusted_insn_addr <= lwp->stop_pc
1932 && lwp->stop_pc < status.adjusted_insn_addr_end))
1933 {
1934 siginfo_t info;
1935 struct regcache *regcache;
1936
1937 /* The si_addr on a few signals references the address
1938 of the faulting instruction. Adjust that as
1939 well. */
1940 if ((WSTOPSIG (*wstat) == SIGILL
1941 || WSTOPSIG (*wstat) == SIGFPE
1942 || WSTOPSIG (*wstat) == SIGBUS
1943 || WSTOPSIG (*wstat) == SIGSEGV)
1944 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
1945 (PTRACE_TYPE_ARG3) 0, &info) == 0
1946 /* Final check just to make sure we don't clobber
1947 the siginfo of non-kernel-sent signals. */
1948 && (uintptr_t) info.si_addr == lwp->stop_pc)
1949 {
1950 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1951 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
1952 (PTRACE_TYPE_ARG3) 0, &info);
1953 }
1954
1955 regcache = get_thread_regcache (current_thread, 1);
1956 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1957 lwp->stop_pc = status.tpoint_addr;
1958
1959 /* Cancel any fast tracepoint lock this thread was
1960 holding. */
1961 force_unlock_trace_buffer ();
1962 }
1963
1964 if (lwp->exit_jump_pad_bkpt != NULL)
1965 {
1966 if (debug_threads)
1967 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
1968 "stopping all threads momentarily.\n");
1969
1970 stop_all_lwps (1, lwp);
1971
1972 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1973 lwp->exit_jump_pad_bkpt = NULL;
1974
1975 unstop_all_lwps (1, lwp);
1976
1977 gdb_assert (lwp->suspended >= 0);
1978 }
1979 }
1980 }
1981
1982 if (debug_threads)
1983 debug_printf ("Checking whether LWP %ld needs to move out of the "
1984 "jump pad...no\n",
1985 lwpid_of (current_thread));
1986
1987 current_thread = saved_thread;
1988 return 0;
1989 }
1990
1991 /* Enqueue one signal in the "signals to report later when out of the
1992 jump pad" list. */
1993
1994 static void
1995 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1996 {
1997 struct pending_signals *p_sig;
1998 struct thread_info *thread = get_lwp_thread (lwp);
1999
2000 if (debug_threads)
2001 debug_printf ("Deferring signal %d for LWP %ld.\n",
2002 WSTOPSIG (*wstat), lwpid_of (thread));
2003
2004 if (debug_threads)
2005 {
2006 struct pending_signals *sig;
2007
2008 for (sig = lwp->pending_signals_to_report;
2009 sig != NULL;
2010 sig = sig->prev)
2011 debug_printf (" Already queued %d\n",
2012 sig->signal);
2013
2014 debug_printf (" (no more currently queued signals)\n");
2015 }
2016
2017 /* Don't enqueue non-RT signals if they are already in the deferred
2018 queue. (SIGSTOP being the easiest signal to see ending up here
2019 twice) */
2020 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2021 {
2022 struct pending_signals *sig;
2023
2024 for (sig = lwp->pending_signals_to_report;
2025 sig != NULL;
2026 sig = sig->prev)
2027 {
2028 if (sig->signal == WSTOPSIG (*wstat))
2029 {
2030 if (debug_threads)
2031 debug_printf ("Not requeuing already queued non-RT signal %d"
2032 " for LWP %ld\n",
2033 sig->signal,
2034 lwpid_of (thread));
2035 return;
2036 }
2037 }
2038 }
2039
2040 p_sig = XCNEW (struct pending_signals);
2041 p_sig->prev = lwp->pending_signals_to_report;
2042 p_sig->signal = WSTOPSIG (*wstat);
2043
2044 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2045 &p_sig->info);
2046
2047 lwp->pending_signals_to_report = p_sig;
2048 }
2049
2050 /* Dequeue one signal from the "signals to report later when out of
2051 the jump pad" list. */
2052
2053 static int
2054 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2055 {
2056 struct thread_info *thread = get_lwp_thread (lwp);
2057
2058 if (lwp->pending_signals_to_report != NULL)
2059 {
2060 struct pending_signals **p_sig;
2061
2062 p_sig = &lwp->pending_signals_to_report;
2063 while ((*p_sig)->prev != NULL)
2064 p_sig = &(*p_sig)->prev;
2065
2066 *wstat = W_STOPCODE ((*p_sig)->signal);
2067 if ((*p_sig)->info.si_signo != 0)
2068 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2069 &(*p_sig)->info);
2070 free (*p_sig);
2071 *p_sig = NULL;
2072
2073 if (debug_threads)
2074 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2075 WSTOPSIG (*wstat), lwpid_of (thread));
2076
2077 if (debug_threads)
2078 {
2079 struct pending_signals *sig;
2080
2081 for (sig = lwp->pending_signals_to_report;
2082 sig != NULL;
2083 sig = sig->prev)
2084 debug_printf (" Still queued %d\n",
2085 sig->signal);
2086
2087 debug_printf (" (no more queued signals)\n");
2088 }
2089
2090 return 1;
2091 }
2092
2093 return 0;
2094 }
2095
2096 /* Fetch the possibly triggered data watchpoint info and store it in
2097 CHILD.
2098
2099 On some archs, like x86, that use debug registers to set
2100 watchpoints, it's possible that the way to know which watched
2101 address trapped, is to check the register that is used to select
2102 which address to watch. Problem is, between setting the watchpoint
2103 and reading back which data address trapped, the user may change
2104 the set of watchpoints, and, as a consequence, GDB changes the
2105 debug registers in the inferior. To avoid reading back a stale
2106 stopped-data-address when that happens, we cache in LP the fact
2107 that a watchpoint trapped, and the corresponding data address, as
2108 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2109 registers meanwhile, we have the cached data we can rely on. */
2110
2111 static int
2112 check_stopped_by_watchpoint (struct lwp_info *child)
2113 {
2114 if (the_low_target.stopped_by_watchpoint != NULL)
2115 {
2116 struct thread_info *saved_thread;
2117
2118 saved_thread = current_thread;
2119 current_thread = get_lwp_thread (child);
2120
2121 if (the_low_target.stopped_by_watchpoint ())
2122 {
2123 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2124
2125 if (the_low_target.stopped_data_address != NULL)
2126 child->stopped_data_address
2127 = the_low_target.stopped_data_address ();
2128 else
2129 child->stopped_data_address = 0;
2130 }
2131
2132 current_thread = saved_thread;
2133 }
2134
2135 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2136 }
2137
2138 /* Return the ptrace options that we want to try to enable. */
2139
2140 static int
2141 linux_low_ptrace_options (int attached)
2142 {
2143 int options = 0;
2144
2145 if (!attached)
2146 options |= PTRACE_O_EXITKILL;
2147
2148 if (report_fork_events)
2149 options |= PTRACE_O_TRACEFORK;
2150
2151 if (report_vfork_events)
2152 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2153
2154 if (report_exec_events)
2155 options |= PTRACE_O_TRACEEXEC;
2156
2157 return options;
2158 }
2159
2160 /* Do low-level handling of the event, and check if we should go on
2161 and pass it to caller code. Return the affected lwp if we are, or
2162 NULL otherwise. */
2163
2164 static struct lwp_info *
2165 linux_low_filter_event (int lwpid, int wstat)
2166 {
2167 struct lwp_info *child;
2168 struct thread_info *thread;
2169 int have_stop_pc = 0;
2170
2171 child = find_lwp_pid (pid_to_ptid (lwpid));
2172
2173 /* Check for stop events reported by a process we didn't already
2174 know about - anything not already in our LWP list.
2175
2176 If we're expecting to receive stopped processes after
2177 fork, vfork, and clone events, then we'll just add the
2178 new one to our list and go back to waiting for the event
2179 to be reported - the stopped process might be returned
2180 from waitpid before or after the event is.
2181
2182 But note the case of a non-leader thread exec'ing after the
2183 leader having exited, and gone from our lists (because
2184 check_zombie_leaders deleted it). The non-leader thread
2185 changes its tid to the tgid. */
2186
2187 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2188 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2189 {
2190 ptid_t child_ptid;
2191
2192 /* A multi-thread exec after we had seen the leader exiting. */
2193 if (debug_threads)
2194 {
2195 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2196 "after exec.\n", lwpid);
2197 }
2198
2199 child_ptid = ptid_build (lwpid, lwpid, 0);
2200 child = add_lwp (child_ptid);
2201 child->stopped = 1;
2202 current_thread = child->thread;
2203 }
2204
2205 /* If we didn't find a process, one of two things presumably happened:
2206 - A process we started and then detached from has exited. Ignore it.
2207 - A process we are controlling has forked and the new child's stop
2208 was reported to us by the kernel. Save its PID. */
2209 if (child == NULL && WIFSTOPPED (wstat))
2210 {
2211 add_to_pid_list (&stopped_pids, lwpid, wstat);
2212 return NULL;
2213 }
2214 else if (child == NULL)
2215 return NULL;
2216
2217 thread = get_lwp_thread (child);
2218
2219 child->stopped = 1;
2220
2221 child->last_status = wstat;
2222
2223 /* Check if the thread has exited. */
2224 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2225 {
2226 if (debug_threads)
2227 debug_printf ("LLFE: %d exited.\n", lwpid);
2228 if (num_lwps (pid_of (thread)) > 1)
2229 {
2230
2231 /* If there is at least one more LWP, then the exit signal was
2232 not the end of the debugged application and should be
2233 ignored. */
2234 delete_lwp (child);
2235 return NULL;
2236 }
2237 else
2238 {
2239 /* This was the last lwp in the process. Since events are
2240 serialized to GDB core, and we can't report this one
2241 right now, but GDB core and the other target layers will
2242 want to be notified about the exit code/signal, leave the
2243 status pending for the next time we're able to report
2244 it. */
2245 mark_lwp_dead (child, wstat);
2246 return child;
2247 }
2248 }
2249
2250 gdb_assert (WIFSTOPPED (wstat));
2251
2252 if (WIFSTOPPED (wstat))
2253 {
2254 struct process_info *proc;
2255
2256 /* Architecture-specific setup after inferior is running. */
2257 proc = find_process_pid (pid_of (thread));
2258 if (proc->tdesc == NULL)
2259 {
2260 if (proc->attached)
2261 {
2262 /* This needs to happen after we have attached to the
2263 inferior and it is stopped for the first time, but
2264 before we access any inferior registers. */
2265 linux_arch_setup_thread (thread);
2266 }
2267 else
2268 {
2269 /* The process is started, but GDBserver will do
2270 architecture-specific setup after the program stops at
2271 the first instruction. */
2272 child->status_pending_p = 1;
2273 child->status_pending = wstat;
2274 return child;
2275 }
2276 }
2277 }
2278
2279 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2280 {
2281 struct process_info *proc = find_process_pid (pid_of (thread));
2282 int options = linux_low_ptrace_options (proc->attached);
2283
2284 linux_enable_event_reporting (lwpid, options);
2285 child->must_set_ptrace_flags = 0;
2286 }
2287
2288 /* Be careful to not overwrite stop_pc until
2289 check_stopped_by_breakpoint is called. */
2290 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2291 && linux_is_extended_waitstatus (wstat))
2292 {
2293 child->stop_pc = get_pc (child);
2294 if (handle_extended_wait (&child, wstat))
2295 {
2296 /* The event has been handled, so just return without
2297 reporting it. */
2298 return NULL;
2299 }
2300 }
2301
2302 /* Check first whether this was a SW/HW breakpoint before checking
2303 watchpoints, because at least s390 can't tell the data address of
2304 hardware watchpoint hits, and returns stopped-by-watchpoint as
2305 long as there's a watchpoint set. */
2306 if (WIFSTOPPED (wstat) && linux_wstatus_maybe_breakpoint (wstat))
2307 {
2308 if (check_stopped_by_breakpoint (child))
2309 have_stop_pc = 1;
2310 }
2311
2312 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2313 or hardware watchpoint. Check which is which if we got
2314 TARGET_STOPPED_BY_HW_BREAKPOINT. Likewise, we may have single
2315 stepped an instruction that triggered a watchpoint. In that
2316 case, on some architectures (such as x86), instead of
2317 TRAP_HWBKPT, si_code indicates TRAP_TRACE, and we need to check
2318 the debug registers separately. */
2319 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2320 && child->stop_reason != TARGET_STOPPED_BY_SW_BREAKPOINT)
2321 check_stopped_by_watchpoint (child);
2322
2323 if (!have_stop_pc)
2324 child->stop_pc = get_pc (child);
2325
2326 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2327 && child->stop_expected)
2328 {
2329 if (debug_threads)
2330 debug_printf ("Expected stop.\n");
2331 child->stop_expected = 0;
2332
2333 if (thread->last_resume_kind == resume_stop)
2334 {
2335 /* We want to report the stop to the core. Treat the
2336 SIGSTOP as a normal event. */
2337 if (debug_threads)
2338 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2339 target_pid_to_str (ptid_of (thread)));
2340 }
2341 else if (stopping_threads != NOT_STOPPING_THREADS)
2342 {
2343 /* Stopping threads. We don't want this SIGSTOP to end up
2344 pending. */
2345 if (debug_threads)
2346 debug_printf ("LLW: SIGSTOP caught for %s "
2347 "while stopping threads.\n",
2348 target_pid_to_str (ptid_of (thread)));
2349 return NULL;
2350 }
2351 else
2352 {
2353 /* This is a delayed SIGSTOP. Filter out the event. */
2354 if (debug_threads)
2355 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2356 child->stepping ? "step" : "continue",
2357 target_pid_to_str (ptid_of (thread)));
2358
2359 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2360 return NULL;
2361 }
2362 }
2363
2364 child->status_pending_p = 1;
2365 child->status_pending = wstat;
2366 return child;
2367 }
2368
2369 /* Resume LWPs that are currently stopped without any pending status
2370 to report, but are resumed from the core's perspective. */
2371
2372 static void
2373 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2374 {
2375 struct thread_info *thread = (struct thread_info *) entry;
2376 struct lwp_info *lp = get_thread_lwp (thread);
2377
2378 if (lp->stopped
2379 && !lp->suspended
2380 && !lp->status_pending_p
2381 && thread->last_resume_kind != resume_stop
2382 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2383 {
2384 int step = thread->last_resume_kind == resume_step;
2385
2386 if (debug_threads)
2387 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2388 target_pid_to_str (ptid_of (thread)),
2389 paddress (lp->stop_pc),
2390 step);
2391
2392 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2393 }
2394 }
2395
2396 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2397 match FILTER_PTID (leaving others pending). The PTIDs can be:
2398 minus_one_ptid, to specify any child; a pid PTID, specifying all
2399 lwps of a thread group; or a PTID representing a single lwp. Store
2400 the stop status through the status pointer WSTAT. OPTIONS is
2401 passed to the waitpid call. Return 0 if no event was found and
2402 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2403 was found. Return the PID of the stopped child otherwise. */
2404
2405 static int
2406 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2407 int *wstatp, int options)
2408 {
2409 struct thread_info *event_thread;
2410 struct lwp_info *event_child, *requested_child;
2411 sigset_t block_mask, prev_mask;
2412
2413 retry:
2414 /* N.B. event_thread points to the thread_info struct that contains
2415 event_child. Keep them in sync. */
2416 event_thread = NULL;
2417 event_child = NULL;
2418 requested_child = NULL;
2419
2420 /* Check for a lwp with a pending status. */
2421
2422 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2423 {
2424 event_thread = (struct thread_info *)
2425 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2426 if (event_thread != NULL)
2427 event_child = get_thread_lwp (event_thread);
2428 if (debug_threads && event_thread)
2429 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2430 }
2431 else if (!ptid_equal (filter_ptid, null_ptid))
2432 {
2433 requested_child = find_lwp_pid (filter_ptid);
2434
2435 if (stopping_threads == NOT_STOPPING_THREADS
2436 && requested_child->status_pending_p
2437 && requested_child->collecting_fast_tracepoint)
2438 {
2439 enqueue_one_deferred_signal (requested_child,
2440 &requested_child->status_pending);
2441 requested_child->status_pending_p = 0;
2442 requested_child->status_pending = 0;
2443 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2444 }
2445
2446 if (requested_child->suspended
2447 && requested_child->status_pending_p)
2448 {
2449 internal_error (__FILE__, __LINE__,
2450 "requesting an event out of a"
2451 " suspended child?");
2452 }
2453
2454 if (requested_child->status_pending_p)
2455 {
2456 event_child = requested_child;
2457 event_thread = get_lwp_thread (event_child);
2458 }
2459 }
2460
2461 if (event_child != NULL)
2462 {
2463 if (debug_threads)
2464 debug_printf ("Got an event from pending child %ld (%04x)\n",
2465 lwpid_of (event_thread), event_child->status_pending);
2466 *wstatp = event_child->status_pending;
2467 event_child->status_pending_p = 0;
2468 event_child->status_pending = 0;
2469 current_thread = event_thread;
2470 return lwpid_of (event_thread);
2471 }
2472
2473 /* But if we don't find a pending event, we'll have to wait.
2474
2475 We only enter this loop if no process has a pending wait status.
2476 Thus any action taken in response to a wait status inside this
2477 loop is responding as soon as we detect the status, not after any
2478 pending events. */
2479
2480 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2481 all signals while here. */
2482 sigfillset (&block_mask);
2483 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2484
2485 /* Always pull all events out of the kernel. We'll randomly select
2486 an event LWP out of all that have events, to prevent
2487 starvation. */
2488 while (event_child == NULL)
2489 {
2490 pid_t ret = 0;
2491
2492 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2493 quirks:
2494
2495 - If the thread group leader exits while other threads in the
2496 thread group still exist, waitpid(TGID, ...) hangs. That
2497 waitpid won't return an exit status until the other threads
2498 in the group are reaped.
2499
2500 - When a non-leader thread execs, that thread just vanishes
2501 without reporting an exit (so we'd hang if we waited for it
2502 explicitly in that case). The exec event is reported to
2503 the TGID pid. */
2504 errno = 0;
2505 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2506
2507 if (debug_threads)
2508 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2509 ret, errno ? strerror (errno) : "ERRNO-OK");
2510
2511 if (ret > 0)
2512 {
2513 if (debug_threads)
2514 {
2515 debug_printf ("LLW: waitpid %ld received %s\n",
2516 (long) ret, status_to_str (*wstatp));
2517 }
2518
2519 /* Filter all events. IOW, leave all events pending. We'll
2520 randomly select an event LWP out of all that have events
2521 below. */
2522 linux_low_filter_event (ret, *wstatp);
2523 /* Retry until nothing comes out of waitpid. A single
2524 SIGCHLD can indicate more than one child stopped. */
2525 continue;
2526 }
2527
2528 /* Now that we've pulled all events out of the kernel, resume
2529 LWPs that don't have an interesting event to report. */
2530 if (stopping_threads == NOT_STOPPING_THREADS)
2531 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2532
2533 /* ... and find an LWP with a status to report to the core, if
2534 any. */
2535 event_thread = (struct thread_info *)
2536 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2537 if (event_thread != NULL)
2538 {
2539 event_child = get_thread_lwp (event_thread);
2540 *wstatp = event_child->status_pending;
2541 event_child->status_pending_p = 0;
2542 event_child->status_pending = 0;
2543 break;
2544 }
2545
2546 /* Check for zombie thread group leaders. Those can't be reaped
2547 until all other threads in the thread group are. */
2548 check_zombie_leaders ();
2549
2550 /* If there are no resumed children left in the set of LWPs we
2551 want to wait for, bail. We can't just block in
2552 waitpid/sigsuspend, because lwps might have been left stopped
2553 in trace-stop state, and we'd be stuck forever waiting for
2554 their status to change (which would only happen if we resumed
2555 them). Even if WNOHANG is set, this return code is preferred
2556 over 0 (below), as it is more detailed. */
2557 if ((find_inferior (&all_threads,
2558 not_stopped_callback,
2559 &wait_ptid) == NULL))
2560 {
2561 if (debug_threads)
2562 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2563 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2564 return -1;
2565 }
2566
2567 /* No interesting event to report to the caller. */
2568 if ((options & WNOHANG))
2569 {
2570 if (debug_threads)
2571 debug_printf ("WNOHANG set, no event found\n");
2572
2573 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2574 return 0;
2575 }
2576
2577 /* Block until we get an event reported with SIGCHLD. */
2578 if (debug_threads)
2579 debug_printf ("sigsuspend'ing\n");
2580
2581 sigsuspend (&prev_mask);
2582 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2583 goto retry;
2584 }
2585
2586 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2587
2588 current_thread = event_thread;
2589
2590 /* Check for thread exit. */
2591 if (! WIFSTOPPED (*wstatp))
2592 {
2593 gdb_assert (last_thread_of_process_p (pid_of (event_thread)));
2594
2595 if (debug_threads)
2596 debug_printf ("LWP %d is the last lwp of process. "
2597 "Process %ld exiting.\n",
2598 pid_of (event_thread), lwpid_of (event_thread));
2599 return lwpid_of (event_thread);
2600 }
2601
2602 return lwpid_of (event_thread);
2603 }
2604
2605 /* Wait for an event from child(ren) PTID. PTIDs can be:
2606 minus_one_ptid, to specify any child; a pid PTID, specifying all
2607 lwps of a thread group; or a PTID representing a single lwp. Store
2608 the stop status through the status pointer WSTAT. OPTIONS is
2609 passed to the waitpid call. Return 0 if no event was found and
2610 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2611 was found. Return the PID of the stopped child otherwise. */
2612
2613 static int
2614 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2615 {
2616 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2617 }
2618
2619 /* Count the LWP's that have had events. */
2620
2621 static int
2622 count_events_callback (struct inferior_list_entry *entry, void *data)
2623 {
2624 struct thread_info *thread = (struct thread_info *) entry;
2625 struct lwp_info *lp = get_thread_lwp (thread);
2626 int *count = (int *) data;
2627
2628 gdb_assert (count != NULL);
2629
2630 /* Count only resumed LWPs that have an event pending. */
2631 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2632 && lp->status_pending_p)
2633 (*count)++;
2634
2635 return 0;
2636 }
2637
2638 /* Select the LWP (if any) that is currently being single-stepped. */
2639
2640 static int
2641 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2642 {
2643 struct thread_info *thread = (struct thread_info *) entry;
2644 struct lwp_info *lp = get_thread_lwp (thread);
2645
2646 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2647 && thread->last_resume_kind == resume_step
2648 && lp->status_pending_p)
2649 return 1;
2650 else
2651 return 0;
2652 }
2653
2654 /* Select the Nth LWP that has had an event. */
2655
2656 static int
2657 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2658 {
2659 struct thread_info *thread = (struct thread_info *) entry;
2660 struct lwp_info *lp = get_thread_lwp (thread);
2661 int *selector = (int *) data;
2662
2663 gdb_assert (selector != NULL);
2664
2665 /* Select only resumed LWPs that have an event pending. */
2666 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2667 && lp->status_pending_p)
2668 if ((*selector)-- == 0)
2669 return 1;
2670
2671 return 0;
2672 }
2673
2674 /* Select one LWP out of those that have events pending. */
2675
2676 static void
2677 select_event_lwp (struct lwp_info **orig_lp)
2678 {
2679 int num_events = 0;
2680 int random_selector;
2681 struct thread_info *event_thread = NULL;
2682
2683 /* In all-stop, give preference to the LWP that is being
2684 single-stepped. There will be at most one, and it's the LWP that
2685 the core is most interested in. If we didn't do this, then we'd
2686 have to handle pending step SIGTRAPs somehow in case the core
2687 later continues the previously-stepped thread, otherwise we'd
2688 report the pending SIGTRAP, and the core, not having stepped the
2689 thread, wouldn't understand what the trap was for, and therefore
2690 would report it to the user as a random signal. */
2691 if (!non_stop)
2692 {
2693 event_thread
2694 = (struct thread_info *) find_inferior (&all_threads,
2695 select_singlestep_lwp_callback,
2696 NULL);
2697 if (event_thread != NULL)
2698 {
2699 if (debug_threads)
2700 debug_printf ("SEL: Select single-step %s\n",
2701 target_pid_to_str (ptid_of (event_thread)));
2702 }
2703 }
2704 if (event_thread == NULL)
2705 {
2706 /* No single-stepping LWP. Select one at random, out of those
2707 which have had events. */
2708
2709 /* First see how many events we have. */
2710 find_inferior (&all_threads, count_events_callback, &num_events);
2711 gdb_assert (num_events > 0);
2712
2713 /* Now randomly pick a LWP out of those that have had
2714 events. */
2715 random_selector = (int)
2716 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2717
2718 if (debug_threads && num_events > 1)
2719 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2720 num_events, random_selector);
2721
2722 event_thread
2723 = (struct thread_info *) find_inferior (&all_threads,
2724 select_event_lwp_callback,
2725 &random_selector);
2726 }
2727
2728 if (event_thread != NULL)
2729 {
2730 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2731
2732 /* Switch the event LWP. */
2733 *orig_lp = event_lp;
2734 }
2735 }
2736
2737 /* Decrement the suspend count of an LWP. */
2738
2739 static int
2740 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2741 {
2742 struct thread_info *thread = (struct thread_info *) entry;
2743 struct lwp_info *lwp = get_thread_lwp (thread);
2744
2745 /* Ignore EXCEPT. */
2746 if (lwp == except)
2747 return 0;
2748
2749 lwp_suspended_decr (lwp);
2750 return 0;
2751 }
2752
2753 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2754 NULL. */
2755
2756 static void
2757 unsuspend_all_lwps (struct lwp_info *except)
2758 {
2759 find_inferior (&all_threads, unsuspend_one_lwp, except);
2760 }
2761
2762 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2763 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2764 void *data);
2765 static int lwp_running (struct inferior_list_entry *entry, void *data);
2766 static ptid_t linux_wait_1 (ptid_t ptid,
2767 struct target_waitstatus *ourstatus,
2768 int target_options);
2769
2770 /* Stabilize threads (move out of jump pads).
2771
2772 If a thread is midway collecting a fast tracepoint, we need to
2773 finish the collection and move it out of the jump pad before
2774 reporting the signal.
2775
2776 This avoids recursion while collecting (when a signal arrives
2777 midway, and the signal handler itself collects), which would trash
2778 the trace buffer. In case the user set a breakpoint in a signal
2779 handler, this avoids the backtrace showing the jump pad, etc..
2780 Most importantly, there are certain things we can't do safely if
2781 threads are stopped in a jump pad (or in its callee's). For
2782 example:
2783
2784 - starting a new trace run. A thread still collecting the
2785 previous run, could trash the trace buffer when resumed. The trace
2786 buffer control structures would have been reset but the thread had
2787 no way to tell. The thread could even midway memcpy'ing to the
2788 buffer, which would mean that when resumed, it would clobber the
2789 trace buffer that had been set for a new run.
2790
2791 - we can't rewrite/reuse the jump pads for new tracepoints
2792 safely. Say you do tstart while a thread is stopped midway while
2793 collecting. When the thread is later resumed, it finishes the
2794 collection, and returns to the jump pad, to execute the original
2795 instruction that was under the tracepoint jump at the time the
2796 older run had been started. If the jump pad had been rewritten
2797 since for something else in the new run, the thread would now
2798 execute the wrong / random instructions. */
2799
2800 static void
2801 linux_stabilize_threads (void)
2802 {
2803 struct thread_info *saved_thread;
2804 struct thread_info *thread_stuck;
2805
2806 thread_stuck
2807 = (struct thread_info *) find_inferior (&all_threads,
2808 stuck_in_jump_pad_callback,
2809 NULL);
2810 if (thread_stuck != NULL)
2811 {
2812 if (debug_threads)
2813 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2814 lwpid_of (thread_stuck));
2815 return;
2816 }
2817
2818 saved_thread = current_thread;
2819
2820 stabilizing_threads = 1;
2821
2822 /* Kick 'em all. */
2823 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2824
2825 /* Loop until all are stopped out of the jump pads. */
2826 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2827 {
2828 struct target_waitstatus ourstatus;
2829 struct lwp_info *lwp;
2830 int wstat;
2831
2832 /* Note that we go through the full wait even loop. While
2833 moving threads out of jump pad, we need to be able to step
2834 over internal breakpoints and such. */
2835 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2836
2837 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2838 {
2839 lwp = get_thread_lwp (current_thread);
2840
2841 /* Lock it. */
2842 lwp_suspended_inc (lwp);
2843
2844 if (ourstatus.value.sig != GDB_SIGNAL_0
2845 || current_thread->last_resume_kind == resume_stop)
2846 {
2847 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2848 enqueue_one_deferred_signal (lwp, &wstat);
2849 }
2850 }
2851 }
2852
2853 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2854
2855 stabilizing_threads = 0;
2856
2857 current_thread = saved_thread;
2858
2859 if (debug_threads)
2860 {
2861 thread_stuck
2862 = (struct thread_info *) find_inferior (&all_threads,
2863 stuck_in_jump_pad_callback,
2864 NULL);
2865 if (thread_stuck != NULL)
2866 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2867 lwpid_of (thread_stuck));
2868 }
2869 }
2870
2871 static void async_file_mark (void);
2872
2873 /* Convenience function that is called when the kernel reports an
2874 event that is not passed out to GDB. */
2875
2876 static ptid_t
2877 ignore_event (struct target_waitstatus *ourstatus)
2878 {
2879 /* If we got an event, there may still be others, as a single
2880 SIGCHLD can indicate more than one child stopped. This forces
2881 another target_wait call. */
2882 async_file_mark ();
2883
2884 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2885 return null_ptid;
2886 }
2887
2888 /* Wait for process, returns status. */
2889
2890 static ptid_t
2891 linux_wait_1 (ptid_t ptid,
2892 struct target_waitstatus *ourstatus, int target_options)
2893 {
2894 int w;
2895 struct lwp_info *event_child;
2896 int options;
2897 int pid;
2898 int step_over_finished;
2899 int bp_explains_trap;
2900 int maybe_internal_trap;
2901 int report_to_gdb;
2902 int trace_event;
2903 int in_step_range;
2904
2905 if (debug_threads)
2906 {
2907 debug_enter ();
2908 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
2909 }
2910
2911 /* Translate generic target options into linux options. */
2912 options = __WALL;
2913 if (target_options & TARGET_WNOHANG)
2914 options |= WNOHANG;
2915
2916 bp_explains_trap = 0;
2917 trace_event = 0;
2918 in_step_range = 0;
2919 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2920
2921 if (ptid_equal (step_over_bkpt, null_ptid))
2922 pid = linux_wait_for_event (ptid, &w, options);
2923 else
2924 {
2925 if (debug_threads)
2926 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
2927 target_pid_to_str (step_over_bkpt));
2928 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2929 }
2930
2931 if (pid == 0)
2932 {
2933 gdb_assert (target_options & TARGET_WNOHANG);
2934
2935 if (debug_threads)
2936 {
2937 debug_printf ("linux_wait_1 ret = null_ptid, "
2938 "TARGET_WAITKIND_IGNORE\n");
2939 debug_exit ();
2940 }
2941
2942 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2943 return null_ptid;
2944 }
2945 else if (pid == -1)
2946 {
2947 if (debug_threads)
2948 {
2949 debug_printf ("linux_wait_1 ret = null_ptid, "
2950 "TARGET_WAITKIND_NO_RESUMED\n");
2951 debug_exit ();
2952 }
2953
2954 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
2955 return null_ptid;
2956 }
2957
2958 event_child = get_thread_lwp (current_thread);
2959
2960 /* linux_wait_for_event only returns an exit status for the last
2961 child of a process. Report it. */
2962 if (WIFEXITED (w) || WIFSIGNALED (w))
2963 {
2964 if (WIFEXITED (w))
2965 {
2966 ourstatus->kind = TARGET_WAITKIND_EXITED;
2967 ourstatus->value.integer = WEXITSTATUS (w);
2968
2969 if (debug_threads)
2970 {
2971 debug_printf ("linux_wait_1 ret = %s, exited with "
2972 "retcode %d\n",
2973 target_pid_to_str (ptid_of (current_thread)),
2974 WEXITSTATUS (w));
2975 debug_exit ();
2976 }
2977 }
2978 else
2979 {
2980 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2981 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
2982
2983 if (debug_threads)
2984 {
2985 debug_printf ("linux_wait_1 ret = %s, terminated with "
2986 "signal %d\n",
2987 target_pid_to_str (ptid_of (current_thread)),
2988 WTERMSIG (w));
2989 debug_exit ();
2990 }
2991 }
2992
2993 return ptid_of (current_thread);
2994 }
2995
2996 /* If step-over executes a breakpoint instruction, it means a
2997 gdb/gdbserver breakpoint had been planted on top of a permanent
2998 breakpoint. The PC has been adjusted by
2999 check_stopped_by_breakpoint to point at the breakpoint address.
3000 Advance the PC manually past the breakpoint, otherwise the
3001 program would keep trapping the permanent breakpoint forever. */
3002 if (!ptid_equal (step_over_bkpt, null_ptid)
3003 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
3004 {
3005 int increment_pc = 0;
3006 int breakpoint_kind = 0;
3007 CORE_ADDR stop_pc = event_child->stop_pc;
3008
3009 breakpoint_kind = the_target->breakpoint_kind_from_pc (&stop_pc);
3010 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3011
3012 if (debug_threads)
3013 {
3014 debug_printf ("step-over for %s executed software breakpoint\n",
3015 target_pid_to_str (ptid_of (current_thread)));
3016 }
3017
3018 if (increment_pc != 0)
3019 {
3020 struct regcache *regcache
3021 = get_thread_regcache (current_thread, 1);
3022
3023 event_child->stop_pc += increment_pc;
3024 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3025
3026 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3027 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3028 }
3029 }
3030
3031 /* If this event was not handled before, and is not a SIGTRAP, we
3032 report it. SIGILL and SIGSEGV are also treated as traps in case
3033 a breakpoint is inserted at the current PC. If this target does
3034 not support internal breakpoints at all, we also report the
3035 SIGTRAP without further processing; it's of no concern to us. */
3036 maybe_internal_trap
3037 = (supports_breakpoints ()
3038 && (WSTOPSIG (w) == SIGTRAP
3039 || ((WSTOPSIG (w) == SIGILL
3040 || WSTOPSIG (w) == SIGSEGV)
3041 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3042
3043 if (maybe_internal_trap)
3044 {
3045 /* Handle anything that requires bookkeeping before deciding to
3046 report the event or continue waiting. */
3047
3048 /* First check if we can explain the SIGTRAP with an internal
3049 breakpoint, or if we should possibly report the event to GDB.
3050 Do this before anything that may remove or insert a
3051 breakpoint. */
3052 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3053
3054 /* We have a SIGTRAP, possibly a step-over dance has just
3055 finished. If so, tweak the state machine accordingly,
3056 reinsert breakpoints and delete any reinsert (software
3057 single-step) breakpoints. */
3058 step_over_finished = finish_step_over (event_child);
3059
3060 /* Now invoke the callbacks of any internal breakpoints there. */
3061 check_breakpoints (event_child->stop_pc);
3062
3063 /* Handle tracepoint data collecting. This may overflow the
3064 trace buffer, and cause a tracing stop, removing
3065 breakpoints. */
3066 trace_event = handle_tracepoints (event_child);
3067
3068 if (bp_explains_trap)
3069 {
3070 /* If we stepped or ran into an internal breakpoint, we've
3071 already handled it. So next time we resume (from this
3072 PC), we should step over it. */
3073 if (debug_threads)
3074 debug_printf ("Hit a gdbserver breakpoint.\n");
3075
3076 if (breakpoint_here (event_child->stop_pc))
3077 event_child->need_step_over = 1;
3078 }
3079 }
3080 else
3081 {
3082 /* We have some other signal, possibly a step-over dance was in
3083 progress, and it should be cancelled too. */
3084 step_over_finished = finish_step_over (event_child);
3085 }
3086
3087 /* We have all the data we need. Either report the event to GDB, or
3088 resume threads and keep waiting for more. */
3089
3090 /* If we're collecting a fast tracepoint, finish the collection and
3091 move out of the jump pad before delivering a signal. See
3092 linux_stabilize_threads. */
3093
3094 if (WIFSTOPPED (w)
3095 && WSTOPSIG (w) != SIGTRAP
3096 && supports_fast_tracepoints ()
3097 && agent_loaded_p ())
3098 {
3099 if (debug_threads)
3100 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3101 "to defer or adjust it.\n",
3102 WSTOPSIG (w), lwpid_of (current_thread));
3103
3104 /* Allow debugging the jump pad itself. */
3105 if (current_thread->last_resume_kind != resume_step
3106 && maybe_move_out_of_jump_pad (event_child, &w))
3107 {
3108 enqueue_one_deferred_signal (event_child, &w);
3109
3110 if (debug_threads)
3111 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3112 WSTOPSIG (w), lwpid_of (current_thread));
3113
3114 linux_resume_one_lwp (event_child, 0, 0, NULL);
3115
3116 return ignore_event (ourstatus);
3117 }
3118 }
3119
3120 if (event_child->collecting_fast_tracepoint)
3121 {
3122 if (debug_threads)
3123 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3124 "Check if we're already there.\n",
3125 lwpid_of (current_thread),
3126 event_child->collecting_fast_tracepoint);
3127
3128 trace_event = 1;
3129
3130 event_child->collecting_fast_tracepoint
3131 = linux_fast_tracepoint_collecting (event_child, NULL);
3132
3133 if (event_child->collecting_fast_tracepoint != 1)
3134 {
3135 /* No longer need this breakpoint. */
3136 if (event_child->exit_jump_pad_bkpt != NULL)
3137 {
3138 if (debug_threads)
3139 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3140 "stopping all threads momentarily.\n");
3141
3142 /* Other running threads could hit this breakpoint.
3143 We don't handle moribund locations like GDB does,
3144 instead we always pause all threads when removing
3145 breakpoints, so that any step-over or
3146 decr_pc_after_break adjustment is always taken
3147 care of while the breakpoint is still
3148 inserted. */
3149 stop_all_lwps (1, event_child);
3150
3151 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3152 event_child->exit_jump_pad_bkpt = NULL;
3153
3154 unstop_all_lwps (1, event_child);
3155
3156 gdb_assert (event_child->suspended >= 0);
3157 }
3158 }
3159
3160 if (event_child->collecting_fast_tracepoint == 0)
3161 {
3162 if (debug_threads)
3163 debug_printf ("fast tracepoint finished "
3164 "collecting successfully.\n");
3165
3166 /* We may have a deferred signal to report. */
3167 if (dequeue_one_deferred_signal (event_child, &w))
3168 {
3169 if (debug_threads)
3170 debug_printf ("dequeued one signal.\n");
3171 }
3172 else
3173 {
3174 if (debug_threads)
3175 debug_printf ("no deferred signals.\n");
3176
3177 if (stabilizing_threads)
3178 {
3179 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3180 ourstatus->value.sig = GDB_SIGNAL_0;
3181
3182 if (debug_threads)
3183 {
3184 debug_printf ("linux_wait_1 ret = %s, stopped "
3185 "while stabilizing threads\n",
3186 target_pid_to_str (ptid_of (current_thread)));
3187 debug_exit ();
3188 }
3189
3190 return ptid_of (current_thread);
3191 }
3192 }
3193 }
3194 }
3195
3196 /* Check whether GDB would be interested in this event. */
3197
3198 /* If GDB is not interested in this signal, don't stop other
3199 threads, and don't report it to GDB. Just resume the inferior
3200 right away. We do this for threading-related signals as well as
3201 any that GDB specifically requested we ignore. But never ignore
3202 SIGSTOP if we sent it ourselves, and do not ignore signals when
3203 stepping - they may require special handling to skip the signal
3204 handler. Also never ignore signals that could be caused by a
3205 breakpoint. */
3206 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
3207 thread library? */
3208 if (WIFSTOPPED (w)
3209 && current_thread->last_resume_kind != resume_step
3210 && (
3211 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3212 (current_process ()->priv->thread_db != NULL
3213 && (WSTOPSIG (w) == __SIGRTMIN
3214 || WSTOPSIG (w) == __SIGRTMIN + 1))
3215 ||
3216 #endif
3217 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3218 && !(WSTOPSIG (w) == SIGSTOP
3219 && current_thread->last_resume_kind == resume_stop)
3220 && !linux_wstatus_maybe_breakpoint (w))))
3221 {
3222 siginfo_t info, *info_p;
3223
3224 if (debug_threads)
3225 debug_printf ("Ignored signal %d for LWP %ld.\n",
3226 WSTOPSIG (w), lwpid_of (current_thread));
3227
3228 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3229 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3230 info_p = &info;
3231 else
3232 info_p = NULL;
3233
3234 if (step_over_finished)
3235 {
3236 /* We cancelled this thread's step-over above. We still
3237 need to unsuspend all other LWPs, and set them back
3238 running again while the signal handler runs. */
3239 unsuspend_all_lwps (event_child);
3240
3241 /* Enqueue the pending signal info so that proceed_all_lwps
3242 doesn't lose it. */
3243 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3244
3245 proceed_all_lwps ();
3246 }
3247 else
3248 {
3249 linux_resume_one_lwp (event_child, event_child->stepping,
3250 WSTOPSIG (w), info_p);
3251 }
3252 return ignore_event (ourstatus);
3253 }
3254
3255 /* Note that all addresses are always "out of the step range" when
3256 there's no range to begin with. */
3257 in_step_range = lwp_in_step_range (event_child);
3258
3259 /* If GDB wanted this thread to single step, and the thread is out
3260 of the step range, we always want to report the SIGTRAP, and let
3261 GDB handle it. Watchpoints should always be reported. So should
3262 signals we can't explain. A SIGTRAP we can't explain could be a
3263 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3264 do, we're be able to handle GDB breakpoints on top of internal
3265 breakpoints, by handling the internal breakpoint and still
3266 reporting the event to GDB. If we don't, we're out of luck, GDB
3267 won't see the breakpoint hit. If we see a single-step event but
3268 the thread should be continuing, don't pass the trap to gdb.
3269 That indicates that we had previously finished a single-step but
3270 left the single-step pending -- see
3271 complete_ongoing_step_over. */
3272 report_to_gdb = (!maybe_internal_trap
3273 || (current_thread->last_resume_kind == resume_step
3274 && !in_step_range)
3275 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3276 || (!in_step_range
3277 && !bp_explains_trap
3278 && !trace_event
3279 && !step_over_finished
3280 && !(current_thread->last_resume_kind == resume_continue
3281 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3282 || (gdb_breakpoint_here (event_child->stop_pc)
3283 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3284 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3285 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3286
3287 run_breakpoint_commands (event_child->stop_pc);
3288
3289 /* We found no reason GDB would want us to stop. We either hit one
3290 of our own breakpoints, or finished an internal step GDB
3291 shouldn't know about. */
3292 if (!report_to_gdb)
3293 {
3294 if (debug_threads)
3295 {
3296 if (bp_explains_trap)
3297 debug_printf ("Hit a gdbserver breakpoint.\n");
3298 if (step_over_finished)
3299 debug_printf ("Step-over finished.\n");
3300 if (trace_event)
3301 debug_printf ("Tracepoint event.\n");
3302 if (lwp_in_step_range (event_child))
3303 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3304 paddress (event_child->stop_pc),
3305 paddress (event_child->step_range_start),
3306 paddress (event_child->step_range_end));
3307 }
3308
3309 /* We're not reporting this breakpoint to GDB, so apply the
3310 decr_pc_after_break adjustment to the inferior's regcache
3311 ourselves. */
3312
3313 if (the_low_target.set_pc != NULL)
3314 {
3315 struct regcache *regcache
3316 = get_thread_regcache (current_thread, 1);
3317 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3318 }
3319
3320 /* We may have finished stepping over a breakpoint. If so,
3321 we've stopped and suspended all LWPs momentarily except the
3322 stepping one. This is where we resume them all again. We're
3323 going to keep waiting, so use proceed, which handles stepping
3324 over the next breakpoint. */
3325 if (debug_threads)
3326 debug_printf ("proceeding all threads.\n");
3327
3328 if (step_over_finished)
3329 unsuspend_all_lwps (event_child);
3330
3331 proceed_all_lwps ();
3332 return ignore_event (ourstatus);
3333 }
3334
3335 if (debug_threads)
3336 {
3337 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3338 {
3339 char *str;
3340
3341 str = target_waitstatus_to_string (&event_child->waitstatus);
3342 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3343 lwpid_of (get_lwp_thread (event_child)), str);
3344 xfree (str);
3345 }
3346 if (current_thread->last_resume_kind == resume_step)
3347 {
3348 if (event_child->step_range_start == event_child->step_range_end)
3349 debug_printf ("GDB wanted to single-step, reporting event.\n");
3350 else if (!lwp_in_step_range (event_child))
3351 debug_printf ("Out of step range, reporting event.\n");
3352 }
3353 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3354 debug_printf ("Stopped by watchpoint.\n");
3355 else if (gdb_breakpoint_here (event_child->stop_pc))
3356 debug_printf ("Stopped by GDB breakpoint.\n");
3357 if (debug_threads)
3358 debug_printf ("Hit a non-gdbserver trap event.\n");
3359 }
3360
3361 /* Alright, we're going to report a stop. */
3362
3363 if (!stabilizing_threads)
3364 {
3365 /* In all-stop, stop all threads. */
3366 if (!non_stop)
3367 stop_all_lwps (0, NULL);
3368
3369 /* If we're not waiting for a specific LWP, choose an event LWP
3370 from among those that have had events. Giving equal priority
3371 to all LWPs that have had events helps prevent
3372 starvation. */
3373 if (ptid_equal (ptid, minus_one_ptid))
3374 {
3375 event_child->status_pending_p = 1;
3376 event_child->status_pending = w;
3377
3378 select_event_lwp (&event_child);
3379
3380 /* current_thread and event_child must stay in sync. */
3381 current_thread = get_lwp_thread (event_child);
3382
3383 event_child->status_pending_p = 0;
3384 w = event_child->status_pending;
3385 }
3386
3387 if (step_over_finished)
3388 {
3389 if (!non_stop)
3390 {
3391 /* If we were doing a step-over, all other threads but
3392 the stepping one had been paused in start_step_over,
3393 with their suspend counts incremented. We don't want
3394 to do a full unstop/unpause, because we're in
3395 all-stop mode (so we want threads stopped), but we
3396 still need to unsuspend the other threads, to
3397 decrement their `suspended' count back. */
3398 unsuspend_all_lwps (event_child);
3399 }
3400 else
3401 {
3402 /* If we just finished a step-over, then all threads had
3403 been momentarily paused. In all-stop, that's fine,
3404 we want threads stopped by now anyway. In non-stop,
3405 we need to re-resume threads that GDB wanted to be
3406 running. */
3407 unstop_all_lwps (1, event_child);
3408 }
3409 }
3410
3411 /* Stabilize threads (move out of jump pads). */
3412 if (!non_stop)
3413 stabilize_threads ();
3414 }
3415 else
3416 {
3417 /* If we just finished a step-over, then all threads had been
3418 momentarily paused. In all-stop, that's fine, we want
3419 threads stopped by now anyway. In non-stop, we need to
3420 re-resume threads that GDB wanted to be running. */
3421 if (step_over_finished)
3422 unstop_all_lwps (1, event_child);
3423 }
3424
3425 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3426 {
3427 /* If the reported event is an exit, fork, vfork or exec, let
3428 GDB know. */
3429 *ourstatus = event_child->waitstatus;
3430 /* Clear the event lwp's waitstatus since we handled it already. */
3431 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3432 }
3433 else
3434 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3435
3436 /* Now that we've selected our final event LWP, un-adjust its PC if
3437 it was a software breakpoint, and the client doesn't know we can
3438 adjust the breakpoint ourselves. */
3439 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3440 && !swbreak_feature)
3441 {
3442 int decr_pc = the_low_target.decr_pc_after_break;
3443
3444 if (decr_pc != 0)
3445 {
3446 struct regcache *regcache
3447 = get_thread_regcache (current_thread, 1);
3448 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3449 }
3450 }
3451
3452 if (current_thread->last_resume_kind == resume_stop
3453 && WSTOPSIG (w) == SIGSTOP)
3454 {
3455 /* A thread that has been requested to stop by GDB with vCont;t,
3456 and it stopped cleanly, so report as SIG0. The use of
3457 SIGSTOP is an implementation detail. */
3458 ourstatus->value.sig = GDB_SIGNAL_0;
3459 }
3460 else if (current_thread->last_resume_kind == resume_stop
3461 && WSTOPSIG (w) != SIGSTOP)
3462 {
3463 /* A thread that has been requested to stop by GDB with vCont;t,
3464 but, it stopped for other reasons. */
3465 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3466 }
3467 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3468 {
3469 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3470 }
3471
3472 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3473
3474 if (debug_threads)
3475 {
3476 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3477 target_pid_to_str (ptid_of (current_thread)),
3478 ourstatus->kind, ourstatus->value.sig);
3479 debug_exit ();
3480 }
3481
3482 return ptid_of (current_thread);
3483 }
3484
3485 /* Get rid of any pending event in the pipe. */
3486 static void
3487 async_file_flush (void)
3488 {
3489 int ret;
3490 char buf;
3491
3492 do
3493 ret = read (linux_event_pipe[0], &buf, 1);
3494 while (ret >= 0 || (ret == -1 && errno == EINTR));
3495 }
3496
3497 /* Put something in the pipe, so the event loop wakes up. */
3498 static void
3499 async_file_mark (void)
3500 {
3501 int ret;
3502
3503 async_file_flush ();
3504
3505 do
3506 ret = write (linux_event_pipe[1], "+", 1);
3507 while (ret == 0 || (ret == -1 && errno == EINTR));
3508
3509 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3510 be awakened anyway. */
3511 }
3512
3513 static ptid_t
3514 linux_wait (ptid_t ptid,
3515 struct target_waitstatus *ourstatus, int target_options)
3516 {
3517 ptid_t event_ptid;
3518
3519 /* Flush the async file first. */
3520 if (target_is_async_p ())
3521 async_file_flush ();
3522
3523 do
3524 {
3525 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3526 }
3527 while ((target_options & TARGET_WNOHANG) == 0
3528 && ptid_equal (event_ptid, null_ptid)
3529 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3530
3531 /* If at least one stop was reported, there may be more. A single
3532 SIGCHLD can signal more than one child stop. */
3533 if (target_is_async_p ()
3534 && (target_options & TARGET_WNOHANG) != 0
3535 && !ptid_equal (event_ptid, null_ptid))
3536 async_file_mark ();
3537
3538 return event_ptid;
3539 }
3540
3541 /* Send a signal to an LWP. */
3542
3543 static int
3544 kill_lwp (unsigned long lwpid, int signo)
3545 {
3546 /* Use tkill, if possible, in case we are using nptl threads. If tkill
3547 fails, then we are not using nptl threads and we should be using kill. */
3548
3549 #ifdef __NR_tkill
3550 {
3551 static int tkill_failed;
3552
3553 if (!tkill_failed)
3554 {
3555 int ret;
3556
3557 errno = 0;
3558 ret = syscall (__NR_tkill, lwpid, signo);
3559 if (errno != ENOSYS)
3560 return ret;
3561 tkill_failed = 1;
3562 }
3563 }
3564 #endif
3565
3566 return kill (lwpid, signo);
3567 }
3568
3569 void
3570 linux_stop_lwp (struct lwp_info *lwp)
3571 {
3572 send_sigstop (lwp);
3573 }
3574
3575 static void
3576 send_sigstop (struct lwp_info *lwp)
3577 {
3578 int pid;
3579
3580 pid = lwpid_of (get_lwp_thread (lwp));
3581
3582 /* If we already have a pending stop signal for this process, don't
3583 send another. */
3584 if (lwp->stop_expected)
3585 {
3586 if (debug_threads)
3587 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3588
3589 return;
3590 }
3591
3592 if (debug_threads)
3593 debug_printf ("Sending sigstop to lwp %d\n", pid);
3594
3595 lwp->stop_expected = 1;
3596 kill_lwp (pid, SIGSTOP);
3597 }
3598
3599 static int
3600 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3601 {
3602 struct thread_info *thread = (struct thread_info *) entry;
3603 struct lwp_info *lwp = get_thread_lwp (thread);
3604
3605 /* Ignore EXCEPT. */
3606 if (lwp == except)
3607 return 0;
3608
3609 if (lwp->stopped)
3610 return 0;
3611
3612 send_sigstop (lwp);
3613 return 0;
3614 }
3615
3616 /* Increment the suspend count of an LWP, and stop it, if not stopped
3617 yet. */
3618 static int
3619 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3620 void *except)
3621 {
3622 struct thread_info *thread = (struct thread_info *) entry;
3623 struct lwp_info *lwp = get_thread_lwp (thread);
3624
3625 /* Ignore EXCEPT. */
3626 if (lwp == except)
3627 return 0;
3628
3629 lwp_suspended_inc (lwp);
3630
3631 return send_sigstop_callback (entry, except);
3632 }
3633
3634 static void
3635 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3636 {
3637 /* Store the exit status for later. */
3638 lwp->status_pending_p = 1;
3639 lwp->status_pending = wstat;
3640
3641 /* Store in waitstatus as well, as there's nothing else to process
3642 for this event. */
3643 if (WIFEXITED (wstat))
3644 {
3645 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3646 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3647 }
3648 else if (WIFSIGNALED (wstat))
3649 {
3650 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3651 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3652 }
3653
3654 /* Prevent trying to stop it. */
3655 lwp->stopped = 1;
3656
3657 /* No further stops are expected from a dead lwp. */
3658 lwp->stop_expected = 0;
3659 }
3660
3661 /* Return true if LWP has exited already, and has a pending exit event
3662 to report to GDB. */
3663
3664 static int
3665 lwp_is_marked_dead (struct lwp_info *lwp)
3666 {
3667 return (lwp->status_pending_p
3668 && (WIFEXITED (lwp->status_pending)
3669 || WIFSIGNALED (lwp->status_pending)));
3670 }
3671
3672 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3673
3674 static void
3675 wait_for_sigstop (void)
3676 {
3677 struct thread_info *saved_thread;
3678 ptid_t saved_tid;
3679 int wstat;
3680 int ret;
3681
3682 saved_thread = current_thread;
3683 if (saved_thread != NULL)
3684 saved_tid = saved_thread->entry.id;
3685 else
3686 saved_tid = null_ptid; /* avoid bogus unused warning */
3687
3688 if (debug_threads)
3689 debug_printf ("wait_for_sigstop: pulling events\n");
3690
3691 /* Passing NULL_PTID as filter indicates we want all events to be
3692 left pending. Eventually this returns when there are no
3693 unwaited-for children left. */
3694 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3695 &wstat, __WALL);
3696 gdb_assert (ret == -1);
3697
3698 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3699 current_thread = saved_thread;
3700 else
3701 {
3702 if (debug_threads)
3703 debug_printf ("Previously current thread died.\n");
3704
3705 /* We can't change the current inferior behind GDB's back,
3706 otherwise, a subsequent command may apply to the wrong
3707 process. */
3708 current_thread = NULL;
3709 }
3710 }
3711
3712 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3713 move it out, because we need to report the stop event to GDB. For
3714 example, if the user puts a breakpoint in the jump pad, it's
3715 because she wants to debug it. */
3716
3717 static int
3718 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3719 {
3720 struct thread_info *thread = (struct thread_info *) entry;
3721 struct lwp_info *lwp = get_thread_lwp (thread);
3722
3723 if (lwp->suspended != 0)
3724 {
3725 internal_error (__FILE__, __LINE__,
3726 "LWP %ld is suspended, suspended=%d\n",
3727 lwpid_of (thread), lwp->suspended);
3728 }
3729 gdb_assert (lwp->stopped);
3730
3731 /* Allow debugging the jump pad, gdb_collect, etc.. */
3732 return (supports_fast_tracepoints ()
3733 && agent_loaded_p ()
3734 && (gdb_breakpoint_here (lwp->stop_pc)
3735 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3736 || thread->last_resume_kind == resume_step)
3737 && linux_fast_tracepoint_collecting (lwp, NULL));
3738 }
3739
3740 static void
3741 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3742 {
3743 struct thread_info *thread = (struct thread_info *) entry;
3744 struct thread_info *saved_thread;
3745 struct lwp_info *lwp = get_thread_lwp (thread);
3746 int *wstat;
3747
3748 if (lwp->suspended != 0)
3749 {
3750 internal_error (__FILE__, __LINE__,
3751 "LWP %ld is suspended, suspended=%d\n",
3752 lwpid_of (thread), lwp->suspended);
3753 }
3754 gdb_assert (lwp->stopped);
3755
3756 /* For gdb_breakpoint_here. */
3757 saved_thread = current_thread;
3758 current_thread = thread;
3759
3760 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3761
3762 /* Allow debugging the jump pad, gdb_collect, etc. */
3763 if (!gdb_breakpoint_here (lwp->stop_pc)
3764 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3765 && thread->last_resume_kind != resume_step
3766 && maybe_move_out_of_jump_pad (lwp, wstat))
3767 {
3768 if (debug_threads)
3769 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3770 lwpid_of (thread));
3771
3772 if (wstat)
3773 {
3774 lwp->status_pending_p = 0;
3775 enqueue_one_deferred_signal (lwp, wstat);
3776
3777 if (debug_threads)
3778 debug_printf ("Signal %d for LWP %ld deferred "
3779 "(in jump pad)\n",
3780 WSTOPSIG (*wstat), lwpid_of (thread));
3781 }
3782
3783 linux_resume_one_lwp (lwp, 0, 0, NULL);
3784 }
3785 else
3786 lwp_suspended_inc (lwp);
3787
3788 current_thread = saved_thread;
3789 }
3790
3791 static int
3792 lwp_running (struct inferior_list_entry *entry, void *data)
3793 {
3794 struct thread_info *thread = (struct thread_info *) entry;
3795 struct lwp_info *lwp = get_thread_lwp (thread);
3796
3797 if (lwp_is_marked_dead (lwp))
3798 return 0;
3799 if (lwp->stopped)
3800 return 0;
3801 return 1;
3802 }
3803
3804 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3805 If SUSPEND, then also increase the suspend count of every LWP,
3806 except EXCEPT. */
3807
3808 static void
3809 stop_all_lwps (int suspend, struct lwp_info *except)
3810 {
3811 /* Should not be called recursively. */
3812 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3813
3814 if (debug_threads)
3815 {
3816 debug_enter ();
3817 debug_printf ("stop_all_lwps (%s, except=%s)\n",
3818 suspend ? "stop-and-suspend" : "stop",
3819 except != NULL
3820 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
3821 : "none");
3822 }
3823
3824 stopping_threads = (suspend
3825 ? STOPPING_AND_SUSPENDING_THREADS
3826 : STOPPING_THREADS);
3827
3828 if (suspend)
3829 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
3830 else
3831 find_inferior (&all_threads, send_sigstop_callback, except);
3832 wait_for_sigstop ();
3833 stopping_threads = NOT_STOPPING_THREADS;
3834
3835 if (debug_threads)
3836 {
3837 debug_printf ("stop_all_lwps done, setting stopping_threads "
3838 "back to !stopping\n");
3839 debug_exit ();
3840 }
3841 }
3842
3843 /* Enqueue one signal in the chain of signals which need to be
3844 delivered to this process on next resume. */
3845
3846 static void
3847 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
3848 {
3849 struct pending_signals *p_sig = XNEW (struct pending_signals);
3850
3851 p_sig->prev = lwp->pending_signals;
3852 p_sig->signal = signal;
3853 if (info == NULL)
3854 memset (&p_sig->info, 0, sizeof (siginfo_t));
3855 else
3856 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3857 lwp->pending_signals = p_sig;
3858 }
3859
3860 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
3861 SIGNAL is nonzero, give it that signal. */
3862
3863 static void
3864 linux_resume_one_lwp_throw (struct lwp_info *lwp,
3865 int step, int signal, siginfo_t *info)
3866 {
3867 struct thread_info *thread = get_lwp_thread (lwp);
3868 struct thread_info *saved_thread;
3869 int fast_tp_collecting;
3870 struct process_info *proc = get_thread_process (thread);
3871
3872 /* Note that target description may not be initialised
3873 (proc->tdesc == NULL) at this point because the program hasn't
3874 stopped at the first instruction yet. It means GDBserver skips
3875 the extra traps from the wrapper program (see option --wrapper).
3876 Code in this function that requires register access should be
3877 guarded by proc->tdesc == NULL or something else. */
3878
3879 if (lwp->stopped == 0)
3880 return;
3881
3882 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3883
3884 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3885
3886 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3887 user used the "jump" command, or "set $pc = foo"). */
3888 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
3889 {
3890 /* Collecting 'while-stepping' actions doesn't make sense
3891 anymore. */
3892 release_while_stepping_state_list (thread);
3893 }
3894
3895 /* If we have pending signals or status, and a new signal, enqueue the
3896 signal. Also enqueue the signal if we are waiting to reinsert a
3897 breakpoint; it will be picked up again below. */
3898 if (signal != 0
3899 && (lwp->status_pending_p
3900 || lwp->pending_signals != NULL
3901 || lwp->bp_reinsert != 0
3902 || fast_tp_collecting))
3903 {
3904 struct pending_signals *p_sig = XNEW (struct pending_signals);
3905
3906 p_sig->prev = lwp->pending_signals;
3907 p_sig->signal = signal;
3908 if (info == NULL)
3909 memset (&p_sig->info, 0, sizeof (siginfo_t));
3910 else
3911 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3912 lwp->pending_signals = p_sig;
3913 }
3914
3915 if (lwp->status_pending_p)
3916 {
3917 if (debug_threads)
3918 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
3919 " has pending status\n",
3920 lwpid_of (thread), step ? "step" : "continue", signal,
3921 lwp->stop_expected ? "expected" : "not expected");
3922 return;
3923 }
3924
3925 saved_thread = current_thread;
3926 current_thread = thread;
3927
3928 if (debug_threads)
3929 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
3930 lwpid_of (thread), step ? "step" : "continue", signal,
3931 lwp->stop_expected ? "expected" : "not expected");
3932
3933 /* This bit needs some thinking about. If we get a signal that
3934 we must report while a single-step reinsert is still pending,
3935 we often end up resuming the thread. It might be better to
3936 (ew) allow a stack of pending events; then we could be sure that
3937 the reinsert happened right away and not lose any signals.
3938
3939 Making this stack would also shrink the window in which breakpoints are
3940 uninserted (see comment in linux_wait_for_lwp) but not enough for
3941 complete correctness, so it won't solve that problem. It may be
3942 worthwhile just to solve this one, however. */
3943 if (lwp->bp_reinsert != 0)
3944 {
3945 if (debug_threads)
3946 debug_printf (" pending reinsert at 0x%s\n",
3947 paddress (lwp->bp_reinsert));
3948
3949 if (can_hardware_single_step ())
3950 {
3951 if (fast_tp_collecting == 0)
3952 {
3953 if (step == 0)
3954 fprintf (stderr, "BAD - reinserting but not stepping.\n");
3955 if (lwp->suspended)
3956 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
3957 lwp->suspended);
3958 }
3959
3960 step = 1;
3961 }
3962
3963 /* Postpone any pending signal. It was enqueued above. */
3964 signal = 0;
3965 }
3966
3967 if (fast_tp_collecting == 1)
3968 {
3969 if (debug_threads)
3970 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3971 " (exit-jump-pad-bkpt)\n",
3972 lwpid_of (thread));
3973
3974 /* Postpone any pending signal. It was enqueued above. */
3975 signal = 0;
3976 }
3977 else if (fast_tp_collecting == 2)
3978 {
3979 if (debug_threads)
3980 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3981 " single-stepping\n",
3982 lwpid_of (thread));
3983
3984 if (can_hardware_single_step ())
3985 step = 1;
3986 else
3987 {
3988 internal_error (__FILE__, __LINE__,
3989 "moving out of jump pad single-stepping"
3990 " not implemented on this target");
3991 }
3992
3993 /* Postpone any pending signal. It was enqueued above. */
3994 signal = 0;
3995 }
3996
3997 /* If we have while-stepping actions in this thread set it stepping.
3998 If we have a signal to deliver, it may or may not be set to
3999 SIG_IGN, we don't know. Assume so, and allow collecting
4000 while-stepping into a signal handler. A possible smart thing to
4001 do would be to set an internal breakpoint at the signal return
4002 address, continue, and carry on catching this while-stepping
4003 action only when that breakpoint is hit. A future
4004 enhancement. */
4005 if (thread->while_stepping != NULL
4006 && can_hardware_single_step ())
4007 {
4008 if (debug_threads)
4009 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4010 lwpid_of (thread));
4011 step = 1;
4012 }
4013
4014 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4015 {
4016 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4017
4018 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4019
4020 if (debug_threads)
4021 {
4022 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4023 (long) lwp->stop_pc);
4024 }
4025 }
4026
4027 /* If we have pending signals, consume one unless we are trying to
4028 reinsert a breakpoint or we're trying to finish a fast tracepoint
4029 collect. */
4030 if (lwp->pending_signals != NULL
4031 && lwp->bp_reinsert == 0
4032 && fast_tp_collecting == 0)
4033 {
4034 struct pending_signals **p_sig;
4035
4036 p_sig = &lwp->pending_signals;
4037 while ((*p_sig)->prev != NULL)
4038 p_sig = &(*p_sig)->prev;
4039
4040 signal = (*p_sig)->signal;
4041 if ((*p_sig)->info.si_signo != 0)
4042 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4043 &(*p_sig)->info);
4044
4045 free (*p_sig);
4046 *p_sig = NULL;
4047 }
4048
4049 if (the_low_target.prepare_to_resume != NULL)
4050 the_low_target.prepare_to_resume (lwp);
4051
4052 regcache_invalidate_thread (thread);
4053 errno = 0;
4054 lwp->stepping = step;
4055 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (thread),
4056 (PTRACE_TYPE_ARG3) 0,
4057 /* Coerce to a uintptr_t first to avoid potential gcc warning
4058 of coercing an 8 byte integer to a 4 byte pointer. */
4059 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4060
4061 current_thread = saved_thread;
4062 if (errno)
4063 perror_with_name ("resuming thread");
4064
4065 /* Successfully resumed. Clear state that no longer makes sense,
4066 and mark the LWP as running. Must not do this before resuming
4067 otherwise if that fails other code will be confused. E.g., we'd
4068 later try to stop the LWP and hang forever waiting for a stop
4069 status. Note that we must not throw after this is cleared,
4070 otherwise handle_zombie_lwp_error would get confused. */
4071 lwp->stopped = 0;
4072 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4073 }
4074
4075 /* Called when we try to resume a stopped LWP and that errors out. If
4076 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4077 or about to become), discard the error, clear any pending status
4078 the LWP may have, and return true (we'll collect the exit status
4079 soon enough). Otherwise, return false. */
4080
4081 static int
4082 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4083 {
4084 struct thread_info *thread = get_lwp_thread (lp);
4085
4086 /* If we get an error after resuming the LWP successfully, we'd
4087 confuse !T state for the LWP being gone. */
4088 gdb_assert (lp->stopped);
4089
4090 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4091 because even if ptrace failed with ESRCH, the tracee may be "not
4092 yet fully dead", but already refusing ptrace requests. In that
4093 case the tracee has 'R (Running)' state for a little bit
4094 (observed in Linux 3.18). See also the note on ESRCH in the
4095 ptrace(2) man page. Instead, check whether the LWP has any state
4096 other than ptrace-stopped. */
4097
4098 /* Don't assume anything if /proc/PID/status can't be read. */
4099 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4100 {
4101 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4102 lp->status_pending_p = 0;
4103 return 1;
4104 }
4105 return 0;
4106 }
4107
4108 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4109 disappears while we try to resume it. */
4110
4111 static void
4112 linux_resume_one_lwp (struct lwp_info *lwp,
4113 int step, int signal, siginfo_t *info)
4114 {
4115 TRY
4116 {
4117 linux_resume_one_lwp_throw (lwp, step, signal, info);
4118 }
4119 CATCH (ex, RETURN_MASK_ERROR)
4120 {
4121 if (!check_ptrace_stopped_lwp_gone (lwp))
4122 throw_exception (ex);
4123 }
4124 END_CATCH
4125 }
4126
4127 struct thread_resume_array
4128 {
4129 struct thread_resume *resume;
4130 size_t n;
4131 };
4132
4133 /* This function is called once per thread via find_inferior.
4134 ARG is a pointer to a thread_resume_array struct.
4135 We look up the thread specified by ENTRY in ARG, and mark the thread
4136 with a pointer to the appropriate resume request.
4137
4138 This algorithm is O(threads * resume elements), but resume elements
4139 is small (and will remain small at least until GDB supports thread
4140 suspension). */
4141
4142 static int
4143 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4144 {
4145 struct thread_info *thread = (struct thread_info *) entry;
4146 struct lwp_info *lwp = get_thread_lwp (thread);
4147 int ndx;
4148 struct thread_resume_array *r;
4149
4150 r = (struct thread_resume_array *) arg;
4151
4152 for (ndx = 0; ndx < r->n; ndx++)
4153 {
4154 ptid_t ptid = r->resume[ndx].thread;
4155 if (ptid_equal (ptid, minus_one_ptid)
4156 || ptid_equal (ptid, entry->id)
4157 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4158 of PID'. */
4159 || (ptid_get_pid (ptid) == pid_of (thread)
4160 && (ptid_is_pid (ptid)
4161 || ptid_get_lwp (ptid) == -1)))
4162 {
4163 if (r->resume[ndx].kind == resume_stop
4164 && thread->last_resume_kind == resume_stop)
4165 {
4166 if (debug_threads)
4167 debug_printf ("already %s LWP %ld at GDB's request\n",
4168 (thread->last_status.kind
4169 == TARGET_WAITKIND_STOPPED)
4170 ? "stopped"
4171 : "stopping",
4172 lwpid_of (thread));
4173
4174 continue;
4175 }
4176
4177 lwp->resume = &r->resume[ndx];
4178 thread->last_resume_kind = lwp->resume->kind;
4179
4180 lwp->step_range_start = lwp->resume->step_range_start;
4181 lwp->step_range_end = lwp->resume->step_range_end;
4182
4183 /* If we had a deferred signal to report, dequeue one now.
4184 This can happen if LWP gets more than one signal while
4185 trying to get out of a jump pad. */
4186 if (lwp->stopped
4187 && !lwp->status_pending_p
4188 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4189 {
4190 lwp->status_pending_p = 1;
4191
4192 if (debug_threads)
4193 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4194 "leaving status pending.\n",
4195 WSTOPSIG (lwp->status_pending),
4196 lwpid_of (thread));
4197 }
4198
4199 return 0;
4200 }
4201 }
4202
4203 /* No resume action for this thread. */
4204 lwp->resume = NULL;
4205
4206 return 0;
4207 }
4208
4209 /* find_inferior callback for linux_resume.
4210 Set *FLAG_P if this lwp has an interesting status pending. */
4211
4212 static int
4213 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4214 {
4215 struct thread_info *thread = (struct thread_info *) entry;
4216 struct lwp_info *lwp = get_thread_lwp (thread);
4217
4218 /* LWPs which will not be resumed are not interesting, because
4219 we might not wait for them next time through linux_wait. */
4220 if (lwp->resume == NULL)
4221 return 0;
4222
4223 if (thread_still_has_status_pending_p (thread))
4224 * (int *) flag_p = 1;
4225
4226 return 0;
4227 }
4228
4229 /* Return 1 if this lwp that GDB wants running is stopped at an
4230 internal breakpoint that we need to step over. It assumes that any
4231 required STOP_PC adjustment has already been propagated to the
4232 inferior's regcache. */
4233
4234 static int
4235 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4236 {
4237 struct thread_info *thread = (struct thread_info *) entry;
4238 struct lwp_info *lwp = get_thread_lwp (thread);
4239 struct thread_info *saved_thread;
4240 CORE_ADDR pc;
4241 struct process_info *proc = get_thread_process (thread);
4242
4243 /* GDBserver is skipping the extra traps from the wrapper program,
4244 don't have to do step over. */
4245 if (proc->tdesc == NULL)
4246 return 0;
4247
4248 /* LWPs which will not be resumed are not interesting, because we
4249 might not wait for them next time through linux_wait. */
4250
4251 if (!lwp->stopped)
4252 {
4253 if (debug_threads)
4254 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4255 lwpid_of (thread));
4256 return 0;
4257 }
4258
4259 if (thread->last_resume_kind == resume_stop)
4260 {
4261 if (debug_threads)
4262 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4263 " stopped\n",
4264 lwpid_of (thread));
4265 return 0;
4266 }
4267
4268 gdb_assert (lwp->suspended >= 0);
4269
4270 if (lwp->suspended)
4271 {
4272 if (debug_threads)
4273 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4274 lwpid_of (thread));
4275 return 0;
4276 }
4277
4278 if (!lwp->need_step_over)
4279 {
4280 if (debug_threads)
4281 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
4282 }
4283
4284 if (lwp->status_pending_p)
4285 {
4286 if (debug_threads)
4287 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4288 " status.\n",
4289 lwpid_of (thread));
4290 return 0;
4291 }
4292
4293 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4294 or we have. */
4295 pc = get_pc (lwp);
4296
4297 /* If the PC has changed since we stopped, then don't do anything,
4298 and let the breakpoint/tracepoint be hit. This happens if, for
4299 instance, GDB handled the decr_pc_after_break subtraction itself,
4300 GDB is OOL stepping this thread, or the user has issued a "jump"
4301 command, or poked thread's registers herself. */
4302 if (pc != lwp->stop_pc)
4303 {
4304 if (debug_threads)
4305 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4306 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4307 lwpid_of (thread),
4308 paddress (lwp->stop_pc), paddress (pc));
4309
4310 lwp->need_step_over = 0;
4311 return 0;
4312 }
4313
4314 saved_thread = current_thread;
4315 current_thread = thread;
4316
4317 /* We can only step over breakpoints we know about. */
4318 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4319 {
4320 /* Don't step over a breakpoint that GDB expects to hit
4321 though. If the condition is being evaluated on the target's side
4322 and it evaluate to false, step over this breakpoint as well. */
4323 if (gdb_breakpoint_here (pc)
4324 && gdb_condition_true_at_breakpoint (pc)
4325 && gdb_no_commands_at_breakpoint (pc))
4326 {
4327 if (debug_threads)
4328 debug_printf ("Need step over [LWP %ld]? yes, but found"
4329 " GDB breakpoint at 0x%s; skipping step over\n",
4330 lwpid_of (thread), paddress (pc));
4331
4332 current_thread = saved_thread;
4333 return 0;
4334 }
4335 else
4336 {
4337 if (debug_threads)
4338 debug_printf ("Need step over [LWP %ld]? yes, "
4339 "found breakpoint at 0x%s\n",
4340 lwpid_of (thread), paddress (pc));
4341
4342 /* We've found an lwp that needs stepping over --- return 1 so
4343 that find_inferior stops looking. */
4344 current_thread = saved_thread;
4345
4346 /* If the step over is cancelled, this is set again. */
4347 lwp->need_step_over = 0;
4348 return 1;
4349 }
4350 }
4351
4352 current_thread = saved_thread;
4353
4354 if (debug_threads)
4355 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4356 " at 0x%s\n",
4357 lwpid_of (thread), paddress (pc));
4358
4359 return 0;
4360 }
4361
4362 /* Start a step-over operation on LWP. When LWP stopped at a
4363 breakpoint, to make progress, we need to remove the breakpoint out
4364 of the way. If we let other threads run while we do that, they may
4365 pass by the breakpoint location and miss hitting it. To avoid
4366 that, a step-over momentarily stops all threads while LWP is
4367 single-stepped while the breakpoint is temporarily uninserted from
4368 the inferior. When the single-step finishes, we reinsert the
4369 breakpoint, and let all threads that are supposed to be running,
4370 run again.
4371
4372 On targets that don't support hardware single-step, we don't
4373 currently support full software single-stepping. Instead, we only
4374 support stepping over the thread event breakpoint, by asking the
4375 low target where to place a reinsert breakpoint. Since this
4376 routine assumes the breakpoint being stepped over is a thread event
4377 breakpoint, it usually assumes the return address of the current
4378 function is a good enough place to set the reinsert breakpoint. */
4379
4380 static int
4381 start_step_over (struct lwp_info *lwp)
4382 {
4383 struct thread_info *thread = get_lwp_thread (lwp);
4384 struct thread_info *saved_thread;
4385 CORE_ADDR pc;
4386 int step;
4387
4388 if (debug_threads)
4389 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4390 lwpid_of (thread));
4391
4392 stop_all_lwps (1, lwp);
4393
4394 if (lwp->suspended != 0)
4395 {
4396 internal_error (__FILE__, __LINE__,
4397 "LWP %ld suspended=%d\n", lwpid_of (thread),
4398 lwp->suspended);
4399 }
4400
4401 if (debug_threads)
4402 debug_printf ("Done stopping all threads for step-over.\n");
4403
4404 /* Note, we should always reach here with an already adjusted PC,
4405 either by GDB (if we're resuming due to GDB's request), or by our
4406 caller, if we just finished handling an internal breakpoint GDB
4407 shouldn't care about. */
4408 pc = get_pc (lwp);
4409
4410 saved_thread = current_thread;
4411 current_thread = thread;
4412
4413 lwp->bp_reinsert = pc;
4414 uninsert_breakpoints_at (pc);
4415 uninsert_fast_tracepoint_jumps_at (pc);
4416
4417 if (can_hardware_single_step ())
4418 {
4419 step = 1;
4420 }
4421 else
4422 {
4423 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
4424 set_reinsert_breakpoint (raddr);
4425 step = 0;
4426 }
4427
4428 current_thread = saved_thread;
4429
4430 linux_resume_one_lwp (lwp, step, 0, NULL);
4431
4432 /* Require next event from this LWP. */
4433 step_over_bkpt = thread->entry.id;
4434 return 1;
4435 }
4436
4437 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4438 start_step_over, if still there, and delete any reinsert
4439 breakpoints we've set, on non hardware single-step targets. */
4440
4441 static int
4442 finish_step_over (struct lwp_info *lwp)
4443 {
4444 if (lwp->bp_reinsert != 0)
4445 {
4446 if (debug_threads)
4447 debug_printf ("Finished step over.\n");
4448
4449 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4450 may be no breakpoint to reinsert there by now. */
4451 reinsert_breakpoints_at (lwp->bp_reinsert);
4452 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4453
4454 lwp->bp_reinsert = 0;
4455
4456 /* Delete any software-single-step reinsert breakpoints. No
4457 longer needed. We don't have to worry about other threads
4458 hitting this trap, and later not being able to explain it,
4459 because we were stepping over a breakpoint, and we hold all
4460 threads but LWP stopped while doing that. */
4461 if (!can_hardware_single_step ())
4462 delete_reinsert_breakpoints ();
4463
4464 step_over_bkpt = null_ptid;
4465 return 1;
4466 }
4467 else
4468 return 0;
4469 }
4470
4471 /* If there's a step over in progress, wait until all threads stop
4472 (that is, until the stepping thread finishes its step), and
4473 unsuspend all lwps. The stepping thread ends with its status
4474 pending, which is processed later when we get back to processing
4475 events. */
4476
4477 static void
4478 complete_ongoing_step_over (void)
4479 {
4480 if (!ptid_equal (step_over_bkpt, null_ptid))
4481 {
4482 struct lwp_info *lwp;
4483 int wstat;
4484 int ret;
4485
4486 if (debug_threads)
4487 debug_printf ("detach: step over in progress, finish it first\n");
4488
4489 /* Passing NULL_PTID as filter indicates we want all events to
4490 be left pending. Eventually this returns when there are no
4491 unwaited-for children left. */
4492 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4493 &wstat, __WALL);
4494 gdb_assert (ret == -1);
4495
4496 lwp = find_lwp_pid (step_over_bkpt);
4497 if (lwp != NULL)
4498 finish_step_over (lwp);
4499 step_over_bkpt = null_ptid;
4500 unsuspend_all_lwps (lwp);
4501 }
4502 }
4503
4504 /* This function is called once per thread. We check the thread's resume
4505 request, which will tell us whether to resume, step, or leave the thread
4506 stopped; and what signal, if any, it should be sent.
4507
4508 For threads which we aren't explicitly told otherwise, we preserve
4509 the stepping flag; this is used for stepping over gdbserver-placed
4510 breakpoints.
4511
4512 If pending_flags was set in any thread, we queue any needed
4513 signals, since we won't actually resume. We already have a pending
4514 event to report, so we don't need to preserve any step requests;
4515 they should be re-issued if necessary. */
4516
4517 static int
4518 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
4519 {
4520 struct thread_info *thread = (struct thread_info *) entry;
4521 struct lwp_info *lwp = get_thread_lwp (thread);
4522 int step;
4523 int leave_all_stopped = * (int *) arg;
4524 int leave_pending;
4525
4526 if (lwp->resume == NULL)
4527 return 0;
4528
4529 if (lwp->resume->kind == resume_stop)
4530 {
4531 if (debug_threads)
4532 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4533
4534 if (!lwp->stopped)
4535 {
4536 if (debug_threads)
4537 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4538
4539 /* Stop the thread, and wait for the event asynchronously,
4540 through the event loop. */
4541 send_sigstop (lwp);
4542 }
4543 else
4544 {
4545 if (debug_threads)
4546 debug_printf ("already stopped LWP %ld\n",
4547 lwpid_of (thread));
4548
4549 /* The LWP may have been stopped in an internal event that
4550 was not meant to be notified back to GDB (e.g., gdbserver
4551 breakpoint), so we should be reporting a stop event in
4552 this case too. */
4553
4554 /* If the thread already has a pending SIGSTOP, this is a
4555 no-op. Otherwise, something later will presumably resume
4556 the thread and this will cause it to cancel any pending
4557 operation, due to last_resume_kind == resume_stop. If
4558 the thread already has a pending status to report, we
4559 will still report it the next time we wait - see
4560 status_pending_p_callback. */
4561
4562 /* If we already have a pending signal to report, then
4563 there's no need to queue a SIGSTOP, as this means we're
4564 midway through moving the LWP out of the jumppad, and we
4565 will report the pending signal as soon as that is
4566 finished. */
4567 if (lwp->pending_signals_to_report == NULL)
4568 send_sigstop (lwp);
4569 }
4570
4571 /* For stop requests, we're done. */
4572 lwp->resume = NULL;
4573 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4574 return 0;
4575 }
4576
4577 /* If this thread which is about to be resumed has a pending status,
4578 then don't resume it - we can just report the pending status.
4579 Likewise if it is suspended, because e.g., another thread is
4580 stepping past a breakpoint. Make sure to queue any signals that
4581 would otherwise be sent. In all-stop mode, we do this decision
4582 based on if *any* thread has a pending status. If there's a
4583 thread that needs the step-over-breakpoint dance, then don't
4584 resume any other thread but that particular one. */
4585 leave_pending = (lwp->suspended
4586 || lwp->status_pending_p
4587 || leave_all_stopped);
4588
4589 if (!leave_pending)
4590 {
4591 if (debug_threads)
4592 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4593
4594 step = (lwp->resume->kind == resume_step);
4595 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
4596 }
4597 else
4598 {
4599 if (debug_threads)
4600 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4601
4602 /* If we have a new signal, enqueue the signal. */
4603 if (lwp->resume->sig != 0)
4604 {
4605 struct pending_signals *p_sig = XCNEW (struct pending_signals);
4606
4607 p_sig->prev = lwp->pending_signals;
4608 p_sig->signal = lwp->resume->sig;
4609
4610 /* If this is the same signal we were previously stopped by,
4611 make sure to queue its siginfo. We can ignore the return
4612 value of ptrace; if it fails, we'll skip
4613 PTRACE_SETSIGINFO. */
4614 if (WIFSTOPPED (lwp->last_status)
4615 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
4616 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4617 &p_sig->info);
4618
4619 lwp->pending_signals = p_sig;
4620 }
4621 }
4622
4623 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4624 lwp->resume = NULL;
4625 return 0;
4626 }
4627
4628 static void
4629 linux_resume (struct thread_resume *resume_info, size_t n)
4630 {
4631 struct thread_resume_array array = { resume_info, n };
4632 struct thread_info *need_step_over = NULL;
4633 int any_pending;
4634 int leave_all_stopped;
4635
4636 if (debug_threads)
4637 {
4638 debug_enter ();
4639 debug_printf ("linux_resume:\n");
4640 }
4641
4642 find_inferior (&all_threads, linux_set_resume_request, &array);
4643
4644 /* If there is a thread which would otherwise be resumed, which has
4645 a pending status, then don't resume any threads - we can just
4646 report the pending status. Make sure to queue any signals that
4647 would otherwise be sent. In non-stop mode, we'll apply this
4648 logic to each thread individually. We consume all pending events
4649 before considering to start a step-over (in all-stop). */
4650 any_pending = 0;
4651 if (!non_stop)
4652 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4653
4654 /* If there is a thread which would otherwise be resumed, which is
4655 stopped at a breakpoint that needs stepping over, then don't
4656 resume any threads - have it step over the breakpoint with all
4657 other threads stopped, then resume all threads again. Make sure
4658 to queue any signals that would otherwise be delivered or
4659 queued. */
4660 if (!any_pending && supports_breakpoints ())
4661 need_step_over
4662 = (struct thread_info *) find_inferior (&all_threads,
4663 need_step_over_p, NULL);
4664
4665 leave_all_stopped = (need_step_over != NULL || any_pending);
4666
4667 if (debug_threads)
4668 {
4669 if (need_step_over != NULL)
4670 debug_printf ("Not resuming all, need step over\n");
4671 else if (any_pending)
4672 debug_printf ("Not resuming, all-stop and found "
4673 "an LWP with pending status\n");
4674 else
4675 debug_printf ("Resuming, no pending status or step over needed\n");
4676 }
4677
4678 /* Even if we're leaving threads stopped, queue all signals we'd
4679 otherwise deliver. */
4680 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4681
4682 if (need_step_over)
4683 start_step_over (get_thread_lwp (need_step_over));
4684
4685 if (debug_threads)
4686 {
4687 debug_printf ("linux_resume done\n");
4688 debug_exit ();
4689 }
4690 }
4691
4692 /* This function is called once per thread. We check the thread's
4693 last resume request, which will tell us whether to resume, step, or
4694 leave the thread stopped. Any signal the client requested to be
4695 delivered has already been enqueued at this point.
4696
4697 If any thread that GDB wants running is stopped at an internal
4698 breakpoint that needs stepping over, we start a step-over operation
4699 on that particular thread, and leave all others stopped. */
4700
4701 static int
4702 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4703 {
4704 struct thread_info *thread = (struct thread_info *) entry;
4705 struct lwp_info *lwp = get_thread_lwp (thread);
4706 int step;
4707
4708 if (lwp == except)
4709 return 0;
4710
4711 if (debug_threads)
4712 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4713
4714 if (!lwp->stopped)
4715 {
4716 if (debug_threads)
4717 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4718 return 0;
4719 }
4720
4721 if (thread->last_resume_kind == resume_stop
4722 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4723 {
4724 if (debug_threads)
4725 debug_printf (" client wants LWP to remain %ld stopped\n",
4726 lwpid_of (thread));
4727 return 0;
4728 }
4729
4730 if (lwp->status_pending_p)
4731 {
4732 if (debug_threads)
4733 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4734 lwpid_of (thread));
4735 return 0;
4736 }
4737
4738 gdb_assert (lwp->suspended >= 0);
4739
4740 if (lwp->suspended)
4741 {
4742 if (debug_threads)
4743 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4744 return 0;
4745 }
4746
4747 if (thread->last_resume_kind == resume_stop
4748 && lwp->pending_signals_to_report == NULL
4749 && lwp->collecting_fast_tracepoint == 0)
4750 {
4751 /* We haven't reported this LWP as stopped yet (otherwise, the
4752 last_status.kind check above would catch it, and we wouldn't
4753 reach here. This LWP may have been momentarily paused by a
4754 stop_all_lwps call while handling for example, another LWP's
4755 step-over. In that case, the pending expected SIGSTOP signal
4756 that was queued at vCont;t handling time will have already
4757 been consumed by wait_for_sigstop, and so we need to requeue
4758 another one here. Note that if the LWP already has a SIGSTOP
4759 pending, this is a no-op. */
4760
4761 if (debug_threads)
4762 debug_printf ("Client wants LWP %ld to stop. "
4763 "Making sure it has a SIGSTOP pending\n",
4764 lwpid_of (thread));
4765
4766 send_sigstop (lwp);
4767 }
4768
4769 if (thread->last_resume_kind == resume_step)
4770 {
4771 if (debug_threads)
4772 debug_printf (" stepping LWP %ld, client wants it stepping\n",
4773 lwpid_of (thread));
4774 step = 1;
4775 }
4776 else if (lwp->bp_reinsert != 0)
4777 {
4778 if (debug_threads)
4779 debug_printf (" stepping LWP %ld, reinsert set\n",
4780 lwpid_of (thread));
4781 step = 1;
4782 }
4783 else
4784 step = 0;
4785
4786 linux_resume_one_lwp (lwp, step, 0, NULL);
4787 return 0;
4788 }
4789
4790 static int
4791 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4792 {
4793 struct thread_info *thread = (struct thread_info *) entry;
4794 struct lwp_info *lwp = get_thread_lwp (thread);
4795
4796 if (lwp == except)
4797 return 0;
4798
4799 lwp_suspended_decr (lwp);
4800
4801 return proceed_one_lwp (entry, except);
4802 }
4803
4804 /* When we finish a step-over, set threads running again. If there's
4805 another thread that may need a step-over, now's the time to start
4806 it. Eventually, we'll move all threads past their breakpoints. */
4807
4808 static void
4809 proceed_all_lwps (void)
4810 {
4811 struct thread_info *need_step_over;
4812
4813 /* If there is a thread which would otherwise be resumed, which is
4814 stopped at a breakpoint that needs stepping over, then don't
4815 resume any threads - have it step over the breakpoint with all
4816 other threads stopped, then resume all threads again. */
4817
4818 if (supports_breakpoints ())
4819 {
4820 need_step_over
4821 = (struct thread_info *) find_inferior (&all_threads,
4822 need_step_over_p, NULL);
4823
4824 if (need_step_over != NULL)
4825 {
4826 if (debug_threads)
4827 debug_printf ("proceed_all_lwps: found "
4828 "thread %ld needing a step-over\n",
4829 lwpid_of (need_step_over));
4830
4831 start_step_over (get_thread_lwp (need_step_over));
4832 return;
4833 }
4834 }
4835
4836 if (debug_threads)
4837 debug_printf ("Proceeding, no step-over needed\n");
4838
4839 find_inferior (&all_threads, proceed_one_lwp, NULL);
4840 }
4841
4842 /* Stopped LWPs that the client wanted to be running, that don't have
4843 pending statuses, are set to run again, except for EXCEPT, if not
4844 NULL. This undoes a stop_all_lwps call. */
4845
4846 static void
4847 unstop_all_lwps (int unsuspend, struct lwp_info *except)
4848 {
4849 if (debug_threads)
4850 {
4851 debug_enter ();
4852 if (except)
4853 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
4854 lwpid_of (get_lwp_thread (except)));
4855 else
4856 debug_printf ("unstopping all lwps\n");
4857 }
4858
4859 if (unsuspend)
4860 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
4861 else
4862 find_inferior (&all_threads, proceed_one_lwp, except);
4863
4864 if (debug_threads)
4865 {
4866 debug_printf ("unstop_all_lwps done\n");
4867 debug_exit ();
4868 }
4869 }
4870
4871
4872 #ifdef HAVE_LINUX_REGSETS
4873
4874 #define use_linux_regsets 1
4875
4876 /* Returns true if REGSET has been disabled. */
4877
4878 static int
4879 regset_disabled (struct regsets_info *info, struct regset_info *regset)
4880 {
4881 return (info->disabled_regsets != NULL
4882 && info->disabled_regsets[regset - info->regsets]);
4883 }
4884
4885 /* Disable REGSET. */
4886
4887 static void
4888 disable_regset (struct regsets_info *info, struct regset_info *regset)
4889 {
4890 int dr_offset;
4891
4892 dr_offset = regset - info->regsets;
4893 if (info->disabled_regsets == NULL)
4894 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
4895 info->disabled_regsets[dr_offset] = 1;
4896 }
4897
4898 static int
4899 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
4900 struct regcache *regcache)
4901 {
4902 struct regset_info *regset;
4903 int saw_general_regs = 0;
4904 int pid;
4905 struct iovec iov;
4906
4907 pid = lwpid_of (current_thread);
4908 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4909 {
4910 void *buf, *data;
4911 int nt_type, res;
4912
4913 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4914 continue;
4915
4916 buf = xmalloc (regset->size);
4917
4918 nt_type = regset->nt_type;
4919 if (nt_type)
4920 {
4921 iov.iov_base = buf;
4922 iov.iov_len = regset->size;
4923 data = (void *) &iov;
4924 }
4925 else
4926 data = buf;
4927
4928 #ifndef __sparc__
4929 res = ptrace (regset->get_request, pid,
4930 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4931 #else
4932 res = ptrace (regset->get_request, pid, data, nt_type);
4933 #endif
4934 if (res < 0)
4935 {
4936 if (errno == EIO)
4937 {
4938 /* If we get EIO on a regset, do not try it again for
4939 this process mode. */
4940 disable_regset (regsets_info, regset);
4941 }
4942 else if (errno == ENODATA)
4943 {
4944 /* ENODATA may be returned if the regset is currently
4945 not "active". This can happen in normal operation,
4946 so suppress the warning in this case. */
4947 }
4948 else
4949 {
4950 char s[256];
4951 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
4952 pid);
4953 perror (s);
4954 }
4955 }
4956 else
4957 {
4958 if (regset->type == GENERAL_REGS)
4959 saw_general_regs = 1;
4960 regset->store_function (regcache, buf);
4961 }
4962 free (buf);
4963 }
4964 if (saw_general_regs)
4965 return 0;
4966 else
4967 return 1;
4968 }
4969
4970 static int
4971 regsets_store_inferior_registers (struct regsets_info *regsets_info,
4972 struct regcache *regcache)
4973 {
4974 struct regset_info *regset;
4975 int saw_general_regs = 0;
4976 int pid;
4977 struct iovec iov;
4978
4979 pid = lwpid_of (current_thread);
4980 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4981 {
4982 void *buf, *data;
4983 int nt_type, res;
4984
4985 if (regset->size == 0 || regset_disabled (regsets_info, regset)
4986 || regset->fill_function == NULL)
4987 continue;
4988
4989 buf = xmalloc (regset->size);
4990
4991 /* First fill the buffer with the current register set contents,
4992 in case there are any items in the kernel's regset that are
4993 not in gdbserver's regcache. */
4994
4995 nt_type = regset->nt_type;
4996 if (nt_type)
4997 {
4998 iov.iov_base = buf;
4999 iov.iov_len = regset->size;
5000 data = (void *) &iov;
5001 }
5002 else
5003 data = buf;
5004
5005 #ifndef __sparc__
5006 res = ptrace (regset->get_request, pid,
5007 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5008 #else
5009 res = ptrace (regset->get_request, pid, data, nt_type);
5010 #endif
5011
5012 if (res == 0)
5013 {
5014 /* Then overlay our cached registers on that. */
5015 regset->fill_function (regcache, buf);
5016
5017 /* Only now do we write the register set. */
5018 #ifndef __sparc__
5019 res = ptrace (regset->set_request, pid,
5020 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5021 #else
5022 res = ptrace (regset->set_request, pid, data, nt_type);
5023 #endif
5024 }
5025
5026 if (res < 0)
5027 {
5028 if (errno == EIO)
5029 {
5030 /* If we get EIO on a regset, do not try it again for
5031 this process mode. */
5032 disable_regset (regsets_info, regset);
5033 }
5034 else if (errno == ESRCH)
5035 {
5036 /* At this point, ESRCH should mean the process is
5037 already gone, in which case we simply ignore attempts
5038 to change its registers. See also the related
5039 comment in linux_resume_one_lwp. */
5040 free (buf);
5041 return 0;
5042 }
5043 else
5044 {
5045 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5046 }
5047 }
5048 else if (regset->type == GENERAL_REGS)
5049 saw_general_regs = 1;
5050 free (buf);
5051 }
5052 if (saw_general_regs)
5053 return 0;
5054 else
5055 return 1;
5056 }
5057
5058 #else /* !HAVE_LINUX_REGSETS */
5059
5060 #define use_linux_regsets 0
5061 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5062 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5063
5064 #endif
5065
5066 /* Return 1 if register REGNO is supported by one of the regset ptrace
5067 calls or 0 if it has to be transferred individually. */
5068
5069 static int
5070 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5071 {
5072 unsigned char mask = 1 << (regno % 8);
5073 size_t index = regno / 8;
5074
5075 return (use_linux_regsets
5076 && (regs_info->regset_bitmap == NULL
5077 || (regs_info->regset_bitmap[index] & mask) != 0));
5078 }
5079
5080 #ifdef HAVE_LINUX_USRREGS
5081
5082 int
5083 register_addr (const struct usrregs_info *usrregs, int regnum)
5084 {
5085 int addr;
5086
5087 if (regnum < 0 || regnum >= usrregs->num_regs)
5088 error ("Invalid register number %d.", regnum);
5089
5090 addr = usrregs->regmap[regnum];
5091
5092 return addr;
5093 }
5094
5095 /* Fetch one register. */
5096 static void
5097 fetch_register (const struct usrregs_info *usrregs,
5098 struct regcache *regcache, int regno)
5099 {
5100 CORE_ADDR regaddr;
5101 int i, size;
5102 char *buf;
5103 int pid;
5104
5105 if (regno >= usrregs->num_regs)
5106 return;
5107 if ((*the_low_target.cannot_fetch_register) (regno))
5108 return;
5109
5110 regaddr = register_addr (usrregs, regno);
5111 if (regaddr == -1)
5112 return;
5113
5114 size = ((register_size (regcache->tdesc, regno)
5115 + sizeof (PTRACE_XFER_TYPE) - 1)
5116 & -sizeof (PTRACE_XFER_TYPE));
5117 buf = (char *) alloca (size);
5118
5119 pid = lwpid_of (current_thread);
5120 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5121 {
5122 errno = 0;
5123 *(PTRACE_XFER_TYPE *) (buf + i) =
5124 ptrace (PTRACE_PEEKUSER, pid,
5125 /* Coerce to a uintptr_t first to avoid potential gcc warning
5126 of coercing an 8 byte integer to a 4 byte pointer. */
5127 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5128 regaddr += sizeof (PTRACE_XFER_TYPE);
5129 if (errno != 0)
5130 error ("reading register %d: %s", regno, strerror (errno));
5131 }
5132
5133 if (the_low_target.supply_ptrace_register)
5134 the_low_target.supply_ptrace_register (regcache, regno, buf);
5135 else
5136 supply_register (regcache, regno, buf);
5137 }
5138
5139 /* Store one register. */
5140 static void
5141 store_register (const struct usrregs_info *usrregs,
5142 struct regcache *regcache, int regno)
5143 {
5144 CORE_ADDR regaddr;
5145 int i, size;
5146 char *buf;
5147 int pid;
5148
5149 if (regno >= usrregs->num_regs)
5150 return;
5151 if ((*the_low_target.cannot_store_register) (regno))
5152 return;
5153
5154 regaddr = register_addr (usrregs, regno);
5155 if (regaddr == -1)
5156 return;
5157
5158 size = ((register_size (regcache->tdesc, regno)
5159 + sizeof (PTRACE_XFER_TYPE) - 1)
5160 & -sizeof (PTRACE_XFER_TYPE));
5161 buf = (char *) alloca (size);
5162 memset (buf, 0, size);
5163
5164 if (the_low_target.collect_ptrace_register)
5165 the_low_target.collect_ptrace_register (regcache, regno, buf);
5166 else
5167 collect_register (regcache, regno, buf);
5168
5169 pid = lwpid_of (current_thread);
5170 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5171 {
5172 errno = 0;
5173 ptrace (PTRACE_POKEUSER, pid,
5174 /* Coerce to a uintptr_t first to avoid potential gcc warning
5175 about coercing an 8 byte integer to a 4 byte pointer. */
5176 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5177 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5178 if (errno != 0)
5179 {
5180 /* At this point, ESRCH should mean the process is
5181 already gone, in which case we simply ignore attempts
5182 to change its registers. See also the related
5183 comment in linux_resume_one_lwp. */
5184 if (errno == ESRCH)
5185 return;
5186
5187 if ((*the_low_target.cannot_store_register) (regno) == 0)
5188 error ("writing register %d: %s", regno, strerror (errno));
5189 }
5190 regaddr += sizeof (PTRACE_XFER_TYPE);
5191 }
5192 }
5193
5194 /* Fetch all registers, or just one, from the child process.
5195 If REGNO is -1, do this for all registers, skipping any that are
5196 assumed to have been retrieved by regsets_fetch_inferior_registers,
5197 unless ALL is non-zero.
5198 Otherwise, REGNO specifies which register (so we can save time). */
5199 static void
5200 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5201 struct regcache *regcache, int regno, int all)
5202 {
5203 struct usrregs_info *usr = regs_info->usrregs;
5204
5205 if (regno == -1)
5206 {
5207 for (regno = 0; regno < usr->num_regs; regno++)
5208 if (all || !linux_register_in_regsets (regs_info, regno))
5209 fetch_register (usr, regcache, regno);
5210 }
5211 else
5212 fetch_register (usr, regcache, regno);
5213 }
5214
5215 /* Store our register values back into the inferior.
5216 If REGNO is -1, do this for all registers, skipping any that are
5217 assumed to have been saved by regsets_store_inferior_registers,
5218 unless ALL is non-zero.
5219 Otherwise, REGNO specifies which register (so we can save time). */
5220 static void
5221 usr_store_inferior_registers (const struct regs_info *regs_info,
5222 struct regcache *regcache, int regno, int all)
5223 {
5224 struct usrregs_info *usr = regs_info->usrregs;
5225
5226 if (regno == -1)
5227 {
5228 for (regno = 0; regno < usr->num_regs; regno++)
5229 if (all || !linux_register_in_regsets (regs_info, regno))
5230 store_register (usr, regcache, regno);
5231 }
5232 else
5233 store_register (usr, regcache, regno);
5234 }
5235
5236 #else /* !HAVE_LINUX_USRREGS */
5237
5238 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5239 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5240
5241 #endif
5242
5243
5244 void
5245 linux_fetch_registers (struct regcache *regcache, int regno)
5246 {
5247 int use_regsets;
5248 int all = 0;
5249 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5250
5251 if (regno == -1)
5252 {
5253 if (the_low_target.fetch_register != NULL
5254 && regs_info->usrregs != NULL)
5255 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5256 (*the_low_target.fetch_register) (regcache, regno);
5257
5258 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5259 if (regs_info->usrregs != NULL)
5260 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5261 }
5262 else
5263 {
5264 if (the_low_target.fetch_register != NULL
5265 && (*the_low_target.fetch_register) (regcache, regno))
5266 return;
5267
5268 use_regsets = linux_register_in_regsets (regs_info, regno);
5269 if (use_regsets)
5270 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5271 regcache);
5272 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5273 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5274 }
5275 }
5276
5277 void
5278 linux_store_registers (struct regcache *regcache, int regno)
5279 {
5280 int use_regsets;
5281 int all = 0;
5282 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5283
5284 if (regno == -1)
5285 {
5286 all = regsets_store_inferior_registers (regs_info->regsets_info,
5287 regcache);
5288 if (regs_info->usrregs != NULL)
5289 usr_store_inferior_registers (regs_info, regcache, regno, all);
5290 }
5291 else
5292 {
5293 use_regsets = linux_register_in_regsets (regs_info, regno);
5294 if (use_regsets)
5295 all = regsets_store_inferior_registers (regs_info->regsets_info,
5296 regcache);
5297 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5298 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5299 }
5300 }
5301
5302
5303 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5304 to debugger memory starting at MYADDR. */
5305
5306 static int
5307 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5308 {
5309 int pid = lwpid_of (current_thread);
5310 register PTRACE_XFER_TYPE *buffer;
5311 register CORE_ADDR addr;
5312 register int count;
5313 char filename[64];
5314 register int i;
5315 int ret;
5316 int fd;
5317
5318 /* Try using /proc. Don't bother for one word. */
5319 if (len >= 3 * sizeof (long))
5320 {
5321 int bytes;
5322
5323 /* We could keep this file open and cache it - possibly one per
5324 thread. That requires some juggling, but is even faster. */
5325 sprintf (filename, "/proc/%d/mem", pid);
5326 fd = open (filename, O_RDONLY | O_LARGEFILE);
5327 if (fd == -1)
5328 goto no_proc;
5329
5330 /* If pread64 is available, use it. It's faster if the kernel
5331 supports it (only one syscall), and it's 64-bit safe even on
5332 32-bit platforms (for instance, SPARC debugging a SPARC64
5333 application). */
5334 #ifdef HAVE_PREAD64
5335 bytes = pread64 (fd, myaddr, len, memaddr);
5336 #else
5337 bytes = -1;
5338 if (lseek (fd, memaddr, SEEK_SET) != -1)
5339 bytes = read (fd, myaddr, len);
5340 #endif
5341
5342 close (fd);
5343 if (bytes == len)
5344 return 0;
5345
5346 /* Some data was read, we'll try to get the rest with ptrace. */
5347 if (bytes > 0)
5348 {
5349 memaddr += bytes;
5350 myaddr += bytes;
5351 len -= bytes;
5352 }
5353 }
5354
5355 no_proc:
5356 /* Round starting address down to longword boundary. */
5357 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5358 /* Round ending address up; get number of longwords that makes. */
5359 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5360 / sizeof (PTRACE_XFER_TYPE));
5361 /* Allocate buffer of that many longwords. */
5362 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5363
5364 /* Read all the longwords */
5365 errno = 0;
5366 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5367 {
5368 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5369 about coercing an 8 byte integer to a 4 byte pointer. */
5370 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5371 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5372 (PTRACE_TYPE_ARG4) 0);
5373 if (errno)
5374 break;
5375 }
5376 ret = errno;
5377
5378 /* Copy appropriate bytes out of the buffer. */
5379 if (i > 0)
5380 {
5381 i *= sizeof (PTRACE_XFER_TYPE);
5382 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5383 memcpy (myaddr,
5384 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5385 i < len ? i : len);
5386 }
5387
5388 return ret;
5389 }
5390
5391 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5392 memory at MEMADDR. On failure (cannot write to the inferior)
5393 returns the value of errno. Always succeeds if LEN is zero. */
5394
5395 static int
5396 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5397 {
5398 register int i;
5399 /* Round starting address down to longword boundary. */
5400 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5401 /* Round ending address up; get number of longwords that makes. */
5402 register int count
5403 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5404 / sizeof (PTRACE_XFER_TYPE);
5405
5406 /* Allocate buffer of that many longwords. */
5407 register PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5408
5409 int pid = lwpid_of (current_thread);
5410
5411 if (len == 0)
5412 {
5413 /* Zero length write always succeeds. */
5414 return 0;
5415 }
5416
5417 if (debug_threads)
5418 {
5419 /* Dump up to four bytes. */
5420 char str[4 * 2 + 1];
5421 char *p = str;
5422 int dump = len < 4 ? len : 4;
5423
5424 for (i = 0; i < dump; i++)
5425 {
5426 sprintf (p, "%02x", myaddr[i]);
5427 p += 2;
5428 }
5429 *p = '\0';
5430
5431 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5432 str, (long) memaddr, pid);
5433 }
5434
5435 /* Fill start and end extra bytes of buffer with existing memory data. */
5436
5437 errno = 0;
5438 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5439 about coercing an 8 byte integer to a 4 byte pointer. */
5440 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5441 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5442 (PTRACE_TYPE_ARG4) 0);
5443 if (errno)
5444 return errno;
5445
5446 if (count > 1)
5447 {
5448 errno = 0;
5449 buffer[count - 1]
5450 = ptrace (PTRACE_PEEKTEXT, pid,
5451 /* Coerce to a uintptr_t first to avoid potential gcc warning
5452 about coercing an 8 byte integer to a 4 byte pointer. */
5453 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5454 * sizeof (PTRACE_XFER_TYPE)),
5455 (PTRACE_TYPE_ARG4) 0);
5456 if (errno)
5457 return errno;
5458 }
5459
5460 /* Copy data to be written over corresponding part of buffer. */
5461
5462 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5463 myaddr, len);
5464
5465 /* Write the entire buffer. */
5466
5467 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5468 {
5469 errno = 0;
5470 ptrace (PTRACE_POKETEXT, pid,
5471 /* Coerce to a uintptr_t first to avoid potential gcc warning
5472 about coercing an 8 byte integer to a 4 byte pointer. */
5473 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5474 (PTRACE_TYPE_ARG4) buffer[i]);
5475 if (errno)
5476 return errno;
5477 }
5478
5479 return 0;
5480 }
5481
5482 static void
5483 linux_look_up_symbols (void)
5484 {
5485 #ifdef USE_THREAD_DB
5486 struct process_info *proc = current_process ();
5487
5488 if (proc->priv->thread_db != NULL)
5489 return;
5490
5491 /* If the kernel supports tracing clones, then we don't need to
5492 use the magic thread event breakpoint to learn about
5493 threads. */
5494 thread_db_init (!linux_supports_traceclone ());
5495 #endif
5496 }
5497
5498 static void
5499 linux_request_interrupt (void)
5500 {
5501 extern unsigned long signal_pid;
5502
5503 /* Send a SIGINT to the process group. This acts just like the user
5504 typed a ^C on the controlling terminal. */
5505 kill (-signal_pid, SIGINT);
5506 }
5507
5508 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5509 to debugger memory starting at MYADDR. */
5510
5511 static int
5512 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5513 {
5514 char filename[PATH_MAX];
5515 int fd, n;
5516 int pid = lwpid_of (current_thread);
5517
5518 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5519
5520 fd = open (filename, O_RDONLY);
5521 if (fd < 0)
5522 return -1;
5523
5524 if (offset != (CORE_ADDR) 0
5525 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5526 n = -1;
5527 else
5528 n = read (fd, myaddr, len);
5529
5530 close (fd);
5531
5532 return n;
5533 }
5534
5535 /* These breakpoint and watchpoint related wrapper functions simply
5536 pass on the function call if the target has registered a
5537 corresponding function. */
5538
5539 static int
5540 linux_supports_z_point_type (char z_type)
5541 {
5542 return (the_low_target.supports_z_point_type != NULL
5543 && the_low_target.supports_z_point_type (z_type));
5544 }
5545
5546 static int
5547 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5548 int size, struct raw_breakpoint *bp)
5549 {
5550 if (type == raw_bkpt_type_sw)
5551 return insert_memory_breakpoint (bp);
5552 else if (the_low_target.insert_point != NULL)
5553 return the_low_target.insert_point (type, addr, size, bp);
5554 else
5555 /* Unsupported (see target.h). */
5556 return 1;
5557 }
5558
5559 static int
5560 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5561 int size, struct raw_breakpoint *bp)
5562 {
5563 if (type == raw_bkpt_type_sw)
5564 return remove_memory_breakpoint (bp);
5565 else if (the_low_target.remove_point != NULL)
5566 return the_low_target.remove_point (type, addr, size, bp);
5567 else
5568 /* Unsupported (see target.h). */
5569 return 1;
5570 }
5571
5572 /* Implement the to_stopped_by_sw_breakpoint target_ops
5573 method. */
5574
5575 static int
5576 linux_stopped_by_sw_breakpoint (void)
5577 {
5578 struct lwp_info *lwp = get_thread_lwp (current_thread);
5579
5580 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5581 }
5582
5583 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5584 method. */
5585
5586 static int
5587 linux_supports_stopped_by_sw_breakpoint (void)
5588 {
5589 return USE_SIGTRAP_SIGINFO;
5590 }
5591
5592 /* Implement the to_stopped_by_hw_breakpoint target_ops
5593 method. */
5594
5595 static int
5596 linux_stopped_by_hw_breakpoint (void)
5597 {
5598 struct lwp_info *lwp = get_thread_lwp (current_thread);
5599
5600 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5601 }
5602
5603 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
5604 method. */
5605
5606 static int
5607 linux_supports_stopped_by_hw_breakpoint (void)
5608 {
5609 return USE_SIGTRAP_SIGINFO;
5610 }
5611
5612 /* Implement the supports_hardware_single_step target_ops method. */
5613
5614 static int
5615 linux_supports_hardware_single_step (void)
5616 {
5617 return can_hardware_single_step ();
5618 }
5619
5620 static int
5621 linux_stopped_by_watchpoint (void)
5622 {
5623 struct lwp_info *lwp = get_thread_lwp (current_thread);
5624
5625 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5626 }
5627
5628 static CORE_ADDR
5629 linux_stopped_data_address (void)
5630 {
5631 struct lwp_info *lwp = get_thread_lwp (current_thread);
5632
5633 return lwp->stopped_data_address;
5634 }
5635
5636 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5637 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5638 && defined(PT_TEXT_END_ADDR)
5639
5640 /* This is only used for targets that define PT_TEXT_ADDR,
5641 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5642 the target has different ways of acquiring this information, like
5643 loadmaps. */
5644
5645 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5646 to tell gdb about. */
5647
5648 static int
5649 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5650 {
5651 unsigned long text, text_end, data;
5652 int pid = lwpid_of (current_thread);
5653
5654 errno = 0;
5655
5656 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5657 (PTRACE_TYPE_ARG4) 0);
5658 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5659 (PTRACE_TYPE_ARG4) 0);
5660 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5661 (PTRACE_TYPE_ARG4) 0);
5662
5663 if (errno == 0)
5664 {
5665 /* Both text and data offsets produced at compile-time (and so
5666 used by gdb) are relative to the beginning of the program,
5667 with the data segment immediately following the text segment.
5668 However, the actual runtime layout in memory may put the data
5669 somewhere else, so when we send gdb a data base-address, we
5670 use the real data base address and subtract the compile-time
5671 data base-address from it (which is just the length of the
5672 text segment). BSS immediately follows data in both
5673 cases. */
5674 *text_p = text;
5675 *data_p = data - (text_end - text);
5676
5677 return 1;
5678 }
5679 return 0;
5680 }
5681 #endif
5682
5683 static int
5684 linux_qxfer_osdata (const char *annex,
5685 unsigned char *readbuf, unsigned const char *writebuf,
5686 CORE_ADDR offset, int len)
5687 {
5688 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5689 }
5690
5691 /* Convert a native/host siginfo object, into/from the siginfo in the
5692 layout of the inferiors' architecture. */
5693
5694 static void
5695 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
5696 {
5697 int done = 0;
5698
5699 if (the_low_target.siginfo_fixup != NULL)
5700 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5701
5702 /* If there was no callback, or the callback didn't do anything,
5703 then just do a straight memcpy. */
5704 if (!done)
5705 {
5706 if (direction == 1)
5707 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5708 else
5709 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5710 }
5711 }
5712
5713 static int
5714 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5715 unsigned const char *writebuf, CORE_ADDR offset, int len)
5716 {
5717 int pid;
5718 siginfo_t siginfo;
5719 char inf_siginfo[sizeof (siginfo_t)];
5720
5721 if (current_thread == NULL)
5722 return -1;
5723
5724 pid = lwpid_of (current_thread);
5725
5726 if (debug_threads)
5727 debug_printf ("%s siginfo for lwp %d.\n",
5728 readbuf != NULL ? "Reading" : "Writing",
5729 pid);
5730
5731 if (offset >= sizeof (siginfo))
5732 return -1;
5733
5734 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5735 return -1;
5736
5737 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5738 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5739 inferior with a 64-bit GDBSERVER should look the same as debugging it
5740 with a 32-bit GDBSERVER, we need to convert it. */
5741 siginfo_fixup (&siginfo, inf_siginfo, 0);
5742
5743 if (offset + len > sizeof (siginfo))
5744 len = sizeof (siginfo) - offset;
5745
5746 if (readbuf != NULL)
5747 memcpy (readbuf, inf_siginfo + offset, len);
5748 else
5749 {
5750 memcpy (inf_siginfo + offset, writebuf, len);
5751
5752 /* Convert back to ptrace layout before flushing it out. */
5753 siginfo_fixup (&siginfo, inf_siginfo, 1);
5754
5755 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5756 return -1;
5757 }
5758
5759 return len;
5760 }
5761
5762 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5763 so we notice when children change state; as the handler for the
5764 sigsuspend in my_waitpid. */
5765
5766 static void
5767 sigchld_handler (int signo)
5768 {
5769 int old_errno = errno;
5770
5771 if (debug_threads)
5772 {
5773 do
5774 {
5775 /* fprintf is not async-signal-safe, so call write
5776 directly. */
5777 if (write (2, "sigchld_handler\n",
5778 sizeof ("sigchld_handler\n") - 1) < 0)
5779 break; /* just ignore */
5780 } while (0);
5781 }
5782
5783 if (target_is_async_p ())
5784 async_file_mark (); /* trigger a linux_wait */
5785
5786 errno = old_errno;
5787 }
5788
5789 static int
5790 linux_supports_non_stop (void)
5791 {
5792 return 1;
5793 }
5794
5795 static int
5796 linux_async (int enable)
5797 {
5798 int previous = target_is_async_p ();
5799
5800 if (debug_threads)
5801 debug_printf ("linux_async (%d), previous=%d\n",
5802 enable, previous);
5803
5804 if (previous != enable)
5805 {
5806 sigset_t mask;
5807 sigemptyset (&mask);
5808 sigaddset (&mask, SIGCHLD);
5809
5810 sigprocmask (SIG_BLOCK, &mask, NULL);
5811
5812 if (enable)
5813 {
5814 if (pipe (linux_event_pipe) == -1)
5815 {
5816 linux_event_pipe[0] = -1;
5817 linux_event_pipe[1] = -1;
5818 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5819
5820 warning ("creating event pipe failed.");
5821 return previous;
5822 }
5823
5824 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
5825 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
5826
5827 /* Register the event loop handler. */
5828 add_file_handler (linux_event_pipe[0],
5829 handle_target_event, NULL);
5830
5831 /* Always trigger a linux_wait. */
5832 async_file_mark ();
5833 }
5834 else
5835 {
5836 delete_file_handler (linux_event_pipe[0]);
5837
5838 close (linux_event_pipe[0]);
5839 close (linux_event_pipe[1]);
5840 linux_event_pipe[0] = -1;
5841 linux_event_pipe[1] = -1;
5842 }
5843
5844 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5845 }
5846
5847 return previous;
5848 }
5849
5850 static int
5851 linux_start_non_stop (int nonstop)
5852 {
5853 /* Register or unregister from event-loop accordingly. */
5854 linux_async (nonstop);
5855
5856 if (target_is_async_p () != (nonstop != 0))
5857 return -1;
5858
5859 return 0;
5860 }
5861
5862 static int
5863 linux_supports_multi_process (void)
5864 {
5865 return 1;
5866 }
5867
5868 /* Check if fork events are supported. */
5869
5870 static int
5871 linux_supports_fork_events (void)
5872 {
5873 return linux_supports_tracefork ();
5874 }
5875
5876 /* Check if vfork events are supported. */
5877
5878 static int
5879 linux_supports_vfork_events (void)
5880 {
5881 return linux_supports_tracefork ();
5882 }
5883
5884 /* Check if exec events are supported. */
5885
5886 static int
5887 linux_supports_exec_events (void)
5888 {
5889 return linux_supports_traceexec ();
5890 }
5891
5892 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
5893 options for the specified lwp. */
5894
5895 static int
5896 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
5897 void *args)
5898 {
5899 struct thread_info *thread = (struct thread_info *) entry;
5900 struct lwp_info *lwp = get_thread_lwp (thread);
5901
5902 if (!lwp->stopped)
5903 {
5904 /* Stop the lwp so we can modify its ptrace options. */
5905 lwp->must_set_ptrace_flags = 1;
5906 linux_stop_lwp (lwp);
5907 }
5908 else
5909 {
5910 /* Already stopped; go ahead and set the ptrace options. */
5911 struct process_info *proc = find_process_pid (pid_of (thread));
5912 int options = linux_low_ptrace_options (proc->attached);
5913
5914 linux_enable_event_reporting (lwpid_of (thread), options);
5915 lwp->must_set_ptrace_flags = 0;
5916 }
5917
5918 return 0;
5919 }
5920
5921 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
5922 ptrace flags for all inferiors. This is in case the new GDB connection
5923 doesn't support the same set of events that the previous one did. */
5924
5925 static void
5926 linux_handle_new_gdb_connection (void)
5927 {
5928 pid_t pid;
5929
5930 /* Request that all the lwps reset their ptrace options. */
5931 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
5932 }
5933
5934 static int
5935 linux_supports_disable_randomization (void)
5936 {
5937 #ifdef HAVE_PERSONALITY
5938 return 1;
5939 #else
5940 return 0;
5941 #endif
5942 }
5943
5944 static int
5945 linux_supports_agent (void)
5946 {
5947 return 1;
5948 }
5949
5950 static int
5951 linux_supports_range_stepping (void)
5952 {
5953 if (*the_low_target.supports_range_stepping == NULL)
5954 return 0;
5955
5956 return (*the_low_target.supports_range_stepping) ();
5957 }
5958
5959 /* Enumerate spufs IDs for process PID. */
5960 static int
5961 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
5962 {
5963 int pos = 0;
5964 int written = 0;
5965 char path[128];
5966 DIR *dir;
5967 struct dirent *entry;
5968
5969 sprintf (path, "/proc/%ld/fd", pid);
5970 dir = opendir (path);
5971 if (!dir)
5972 return -1;
5973
5974 rewinddir (dir);
5975 while ((entry = readdir (dir)) != NULL)
5976 {
5977 struct stat st;
5978 struct statfs stfs;
5979 int fd;
5980
5981 fd = atoi (entry->d_name);
5982 if (!fd)
5983 continue;
5984
5985 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
5986 if (stat (path, &st) != 0)
5987 continue;
5988 if (!S_ISDIR (st.st_mode))
5989 continue;
5990
5991 if (statfs (path, &stfs) != 0)
5992 continue;
5993 if (stfs.f_type != SPUFS_MAGIC)
5994 continue;
5995
5996 if (pos >= offset && pos + 4 <= offset + len)
5997 {
5998 *(unsigned int *)(buf + pos - offset) = fd;
5999 written += 4;
6000 }
6001 pos += 4;
6002 }
6003
6004 closedir (dir);
6005 return written;
6006 }
6007
6008 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6009 object type, using the /proc file system. */
6010 static int
6011 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6012 unsigned const char *writebuf,
6013 CORE_ADDR offset, int len)
6014 {
6015 long pid = lwpid_of (current_thread);
6016 char buf[128];
6017 int fd = 0;
6018 int ret = 0;
6019
6020 if (!writebuf && !readbuf)
6021 return -1;
6022
6023 if (!*annex)
6024 {
6025 if (!readbuf)
6026 return -1;
6027 else
6028 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6029 }
6030
6031 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6032 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6033 if (fd <= 0)
6034 return -1;
6035
6036 if (offset != 0
6037 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6038 {
6039 close (fd);
6040 return 0;
6041 }
6042
6043 if (writebuf)
6044 ret = write (fd, writebuf, (size_t) len);
6045 else
6046 ret = read (fd, readbuf, (size_t) len);
6047
6048 close (fd);
6049 return ret;
6050 }
6051
6052 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6053 struct target_loadseg
6054 {
6055 /* Core address to which the segment is mapped. */
6056 Elf32_Addr addr;
6057 /* VMA recorded in the program header. */
6058 Elf32_Addr p_vaddr;
6059 /* Size of this segment in memory. */
6060 Elf32_Word p_memsz;
6061 };
6062
6063 # if defined PT_GETDSBT
6064 struct target_loadmap
6065 {
6066 /* Protocol version number, must be zero. */
6067 Elf32_Word version;
6068 /* Pointer to the DSBT table, its size, and the DSBT index. */
6069 unsigned *dsbt_table;
6070 unsigned dsbt_size, dsbt_index;
6071 /* Number of segments in this map. */
6072 Elf32_Word nsegs;
6073 /* The actual memory map. */
6074 struct target_loadseg segs[/*nsegs*/];
6075 };
6076 # define LINUX_LOADMAP PT_GETDSBT
6077 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6078 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6079 # else
6080 struct target_loadmap
6081 {
6082 /* Protocol version number, must be zero. */
6083 Elf32_Half version;
6084 /* Number of segments in this map. */
6085 Elf32_Half nsegs;
6086 /* The actual memory map. */
6087 struct target_loadseg segs[/*nsegs*/];
6088 };
6089 # define LINUX_LOADMAP PTRACE_GETFDPIC
6090 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6091 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6092 # endif
6093
6094 static int
6095 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6096 unsigned char *myaddr, unsigned int len)
6097 {
6098 int pid = lwpid_of (current_thread);
6099 int addr = -1;
6100 struct target_loadmap *data = NULL;
6101 unsigned int actual_length, copy_length;
6102
6103 if (strcmp (annex, "exec") == 0)
6104 addr = (int) LINUX_LOADMAP_EXEC;
6105 else if (strcmp (annex, "interp") == 0)
6106 addr = (int) LINUX_LOADMAP_INTERP;
6107 else
6108 return -1;
6109
6110 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6111 return -1;
6112
6113 if (data == NULL)
6114 return -1;
6115
6116 actual_length = sizeof (struct target_loadmap)
6117 + sizeof (struct target_loadseg) * data->nsegs;
6118
6119 if (offset < 0 || offset > actual_length)
6120 return -1;
6121
6122 copy_length = actual_length - offset < len ? actual_length - offset : len;
6123 memcpy (myaddr, (char *) data + offset, copy_length);
6124 return copy_length;
6125 }
6126 #else
6127 # define linux_read_loadmap NULL
6128 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6129
6130 static void
6131 linux_process_qsupported (char **features, int count)
6132 {
6133 if (the_low_target.process_qsupported != NULL)
6134 the_low_target.process_qsupported (features, count);
6135 }
6136
6137 static int
6138 linux_supports_tracepoints (void)
6139 {
6140 if (*the_low_target.supports_tracepoints == NULL)
6141 return 0;
6142
6143 return (*the_low_target.supports_tracepoints) ();
6144 }
6145
6146 static CORE_ADDR
6147 linux_read_pc (struct regcache *regcache)
6148 {
6149 if (the_low_target.get_pc == NULL)
6150 return 0;
6151
6152 return (*the_low_target.get_pc) (regcache);
6153 }
6154
6155 static void
6156 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6157 {
6158 gdb_assert (the_low_target.set_pc != NULL);
6159
6160 (*the_low_target.set_pc) (regcache, pc);
6161 }
6162
6163 static int
6164 linux_thread_stopped (struct thread_info *thread)
6165 {
6166 return get_thread_lwp (thread)->stopped;
6167 }
6168
6169 /* This exposes stop-all-threads functionality to other modules. */
6170
6171 static void
6172 linux_pause_all (int freeze)
6173 {
6174 stop_all_lwps (freeze, NULL);
6175 }
6176
6177 /* This exposes unstop-all-threads functionality to other gdbserver
6178 modules. */
6179
6180 static void
6181 linux_unpause_all (int unfreeze)
6182 {
6183 unstop_all_lwps (unfreeze, NULL);
6184 }
6185
6186 static int
6187 linux_prepare_to_access_memory (void)
6188 {
6189 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6190 running LWP. */
6191 if (non_stop)
6192 linux_pause_all (1);
6193 return 0;
6194 }
6195
6196 static void
6197 linux_done_accessing_memory (void)
6198 {
6199 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6200 running LWP. */
6201 if (non_stop)
6202 linux_unpause_all (1);
6203 }
6204
6205 static int
6206 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6207 CORE_ADDR collector,
6208 CORE_ADDR lockaddr,
6209 ULONGEST orig_size,
6210 CORE_ADDR *jump_entry,
6211 CORE_ADDR *trampoline,
6212 ULONGEST *trampoline_size,
6213 unsigned char *jjump_pad_insn,
6214 ULONGEST *jjump_pad_insn_size,
6215 CORE_ADDR *adjusted_insn_addr,
6216 CORE_ADDR *adjusted_insn_addr_end,
6217 char *err)
6218 {
6219 return (*the_low_target.install_fast_tracepoint_jump_pad)
6220 (tpoint, tpaddr, collector, lockaddr, orig_size,
6221 jump_entry, trampoline, trampoline_size,
6222 jjump_pad_insn, jjump_pad_insn_size,
6223 adjusted_insn_addr, adjusted_insn_addr_end,
6224 err);
6225 }
6226
6227 static struct emit_ops *
6228 linux_emit_ops (void)
6229 {
6230 if (the_low_target.emit_ops != NULL)
6231 return (*the_low_target.emit_ops) ();
6232 else
6233 return NULL;
6234 }
6235
6236 static int
6237 linux_get_min_fast_tracepoint_insn_len (void)
6238 {
6239 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6240 }
6241
6242 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6243
6244 static int
6245 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6246 CORE_ADDR *phdr_memaddr, int *num_phdr)
6247 {
6248 char filename[PATH_MAX];
6249 int fd;
6250 const int auxv_size = is_elf64
6251 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6252 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6253
6254 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6255
6256 fd = open (filename, O_RDONLY);
6257 if (fd < 0)
6258 return 1;
6259
6260 *phdr_memaddr = 0;
6261 *num_phdr = 0;
6262 while (read (fd, buf, auxv_size) == auxv_size
6263 && (*phdr_memaddr == 0 || *num_phdr == 0))
6264 {
6265 if (is_elf64)
6266 {
6267 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6268
6269 switch (aux->a_type)
6270 {
6271 case AT_PHDR:
6272 *phdr_memaddr = aux->a_un.a_val;
6273 break;
6274 case AT_PHNUM:
6275 *num_phdr = aux->a_un.a_val;
6276 break;
6277 }
6278 }
6279 else
6280 {
6281 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6282
6283 switch (aux->a_type)
6284 {
6285 case AT_PHDR:
6286 *phdr_memaddr = aux->a_un.a_val;
6287 break;
6288 case AT_PHNUM:
6289 *num_phdr = aux->a_un.a_val;
6290 break;
6291 }
6292 }
6293 }
6294
6295 close (fd);
6296
6297 if (*phdr_memaddr == 0 || *num_phdr == 0)
6298 {
6299 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6300 "phdr_memaddr = %ld, phdr_num = %d",
6301 (long) *phdr_memaddr, *num_phdr);
6302 return 2;
6303 }
6304
6305 return 0;
6306 }
6307
6308 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6309
6310 static CORE_ADDR
6311 get_dynamic (const int pid, const int is_elf64)
6312 {
6313 CORE_ADDR phdr_memaddr, relocation;
6314 int num_phdr, i;
6315 unsigned char *phdr_buf;
6316 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6317
6318 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6319 return 0;
6320
6321 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6322 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6323
6324 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6325 return 0;
6326
6327 /* Compute relocation: it is expected to be 0 for "regular" executables,
6328 non-zero for PIE ones. */
6329 relocation = -1;
6330 for (i = 0; relocation == -1 && i < num_phdr; i++)
6331 if (is_elf64)
6332 {
6333 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6334
6335 if (p->p_type == PT_PHDR)
6336 relocation = phdr_memaddr - p->p_vaddr;
6337 }
6338 else
6339 {
6340 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6341
6342 if (p->p_type == PT_PHDR)
6343 relocation = phdr_memaddr - p->p_vaddr;
6344 }
6345
6346 if (relocation == -1)
6347 {
6348 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6349 any real world executables, including PIE executables, have always
6350 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6351 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6352 or present DT_DEBUG anyway (fpc binaries are statically linked).
6353
6354 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6355
6356 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6357
6358 return 0;
6359 }
6360
6361 for (i = 0; i < num_phdr; i++)
6362 {
6363 if (is_elf64)
6364 {
6365 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6366
6367 if (p->p_type == PT_DYNAMIC)
6368 return p->p_vaddr + relocation;
6369 }
6370 else
6371 {
6372 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6373
6374 if (p->p_type == PT_DYNAMIC)
6375 return p->p_vaddr + relocation;
6376 }
6377 }
6378
6379 return 0;
6380 }
6381
6382 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6383 can be 0 if the inferior does not yet have the library list initialized.
6384 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6385 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6386
6387 static CORE_ADDR
6388 get_r_debug (const int pid, const int is_elf64)
6389 {
6390 CORE_ADDR dynamic_memaddr;
6391 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6392 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6393 CORE_ADDR map = -1;
6394
6395 dynamic_memaddr = get_dynamic (pid, is_elf64);
6396 if (dynamic_memaddr == 0)
6397 return map;
6398
6399 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6400 {
6401 if (is_elf64)
6402 {
6403 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6404 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6405 union
6406 {
6407 Elf64_Xword map;
6408 unsigned char buf[sizeof (Elf64_Xword)];
6409 }
6410 rld_map;
6411 #endif
6412 #ifdef DT_MIPS_RLD_MAP
6413 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6414 {
6415 if (linux_read_memory (dyn->d_un.d_val,
6416 rld_map.buf, sizeof (rld_map.buf)) == 0)
6417 return rld_map.map;
6418 else
6419 break;
6420 }
6421 #endif /* DT_MIPS_RLD_MAP */
6422 #ifdef DT_MIPS_RLD_MAP_REL
6423 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6424 {
6425 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6426 rld_map.buf, sizeof (rld_map.buf)) == 0)
6427 return rld_map.map;
6428 else
6429 break;
6430 }
6431 #endif /* DT_MIPS_RLD_MAP_REL */
6432
6433 if (dyn->d_tag == DT_DEBUG && map == -1)
6434 map = dyn->d_un.d_val;
6435
6436 if (dyn->d_tag == DT_NULL)
6437 break;
6438 }
6439 else
6440 {
6441 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6442 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6443 union
6444 {
6445 Elf32_Word map;
6446 unsigned char buf[sizeof (Elf32_Word)];
6447 }
6448 rld_map;
6449 #endif
6450 #ifdef DT_MIPS_RLD_MAP
6451 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6452 {
6453 if (linux_read_memory (dyn->d_un.d_val,
6454 rld_map.buf, sizeof (rld_map.buf)) == 0)
6455 return rld_map.map;
6456 else
6457 break;
6458 }
6459 #endif /* DT_MIPS_RLD_MAP */
6460 #ifdef DT_MIPS_RLD_MAP_REL
6461 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6462 {
6463 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6464 rld_map.buf, sizeof (rld_map.buf)) == 0)
6465 return rld_map.map;
6466 else
6467 break;
6468 }
6469 #endif /* DT_MIPS_RLD_MAP_REL */
6470
6471 if (dyn->d_tag == DT_DEBUG && map == -1)
6472 map = dyn->d_un.d_val;
6473
6474 if (dyn->d_tag == DT_NULL)
6475 break;
6476 }
6477
6478 dynamic_memaddr += dyn_size;
6479 }
6480
6481 return map;
6482 }
6483
6484 /* Read one pointer from MEMADDR in the inferior. */
6485
6486 static int
6487 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6488 {
6489 int ret;
6490
6491 /* Go through a union so this works on either big or little endian
6492 hosts, when the inferior's pointer size is smaller than the size
6493 of CORE_ADDR. It is assumed the inferior's endianness is the
6494 same of the superior's. */
6495 union
6496 {
6497 CORE_ADDR core_addr;
6498 unsigned int ui;
6499 unsigned char uc;
6500 } addr;
6501
6502 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6503 if (ret == 0)
6504 {
6505 if (ptr_size == sizeof (CORE_ADDR))
6506 *ptr = addr.core_addr;
6507 else if (ptr_size == sizeof (unsigned int))
6508 *ptr = addr.ui;
6509 else
6510 gdb_assert_not_reached ("unhandled pointer size");
6511 }
6512 return ret;
6513 }
6514
6515 struct link_map_offsets
6516 {
6517 /* Offset and size of r_debug.r_version. */
6518 int r_version_offset;
6519
6520 /* Offset and size of r_debug.r_map. */
6521 int r_map_offset;
6522
6523 /* Offset to l_addr field in struct link_map. */
6524 int l_addr_offset;
6525
6526 /* Offset to l_name field in struct link_map. */
6527 int l_name_offset;
6528
6529 /* Offset to l_ld field in struct link_map. */
6530 int l_ld_offset;
6531
6532 /* Offset to l_next field in struct link_map. */
6533 int l_next_offset;
6534
6535 /* Offset to l_prev field in struct link_map. */
6536 int l_prev_offset;
6537 };
6538
6539 /* Construct qXfer:libraries-svr4:read reply. */
6540
6541 static int
6542 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6543 unsigned const char *writebuf,
6544 CORE_ADDR offset, int len)
6545 {
6546 char *document;
6547 unsigned document_len;
6548 struct process_info_private *const priv = current_process ()->priv;
6549 char filename[PATH_MAX];
6550 int pid, is_elf64;
6551
6552 static const struct link_map_offsets lmo_32bit_offsets =
6553 {
6554 0, /* r_version offset. */
6555 4, /* r_debug.r_map offset. */
6556 0, /* l_addr offset in link_map. */
6557 4, /* l_name offset in link_map. */
6558 8, /* l_ld offset in link_map. */
6559 12, /* l_next offset in link_map. */
6560 16 /* l_prev offset in link_map. */
6561 };
6562
6563 static const struct link_map_offsets lmo_64bit_offsets =
6564 {
6565 0, /* r_version offset. */
6566 8, /* r_debug.r_map offset. */
6567 0, /* l_addr offset in link_map. */
6568 8, /* l_name offset in link_map. */
6569 16, /* l_ld offset in link_map. */
6570 24, /* l_next offset in link_map. */
6571 32 /* l_prev offset in link_map. */
6572 };
6573 const struct link_map_offsets *lmo;
6574 unsigned int machine;
6575 int ptr_size;
6576 CORE_ADDR lm_addr = 0, lm_prev = 0;
6577 int allocated = 1024;
6578 char *p;
6579 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6580 int header_done = 0;
6581
6582 if (writebuf != NULL)
6583 return -2;
6584 if (readbuf == NULL)
6585 return -1;
6586
6587 pid = lwpid_of (current_thread);
6588 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6589 is_elf64 = elf_64_file_p (filename, &machine);
6590 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6591 ptr_size = is_elf64 ? 8 : 4;
6592
6593 while (annex[0] != '\0')
6594 {
6595 const char *sep;
6596 CORE_ADDR *addrp;
6597 int len;
6598
6599 sep = strchr (annex, '=');
6600 if (sep == NULL)
6601 break;
6602
6603 len = sep - annex;
6604 if (len == 5 && startswith (annex, "start"))
6605 addrp = &lm_addr;
6606 else if (len == 4 && startswith (annex, "prev"))
6607 addrp = &lm_prev;
6608 else
6609 {
6610 annex = strchr (sep, ';');
6611 if (annex == NULL)
6612 break;
6613 annex++;
6614 continue;
6615 }
6616
6617 annex = decode_address_to_semicolon (addrp, sep + 1);
6618 }
6619
6620 if (lm_addr == 0)
6621 {
6622 int r_version = 0;
6623
6624 if (priv->r_debug == 0)
6625 priv->r_debug = get_r_debug (pid, is_elf64);
6626
6627 /* We failed to find DT_DEBUG. Such situation will not change
6628 for this inferior - do not retry it. Report it to GDB as
6629 E01, see for the reasons at the GDB solib-svr4.c side. */
6630 if (priv->r_debug == (CORE_ADDR) -1)
6631 return -1;
6632
6633 if (priv->r_debug != 0)
6634 {
6635 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6636 (unsigned char *) &r_version,
6637 sizeof (r_version)) != 0
6638 || r_version != 1)
6639 {
6640 warning ("unexpected r_debug version %d", r_version);
6641 }
6642 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6643 &lm_addr, ptr_size) != 0)
6644 {
6645 warning ("unable to read r_map from 0x%lx",
6646 (long) priv->r_debug + lmo->r_map_offset);
6647 }
6648 }
6649 }
6650
6651 document = (char *) xmalloc (allocated);
6652 strcpy (document, "<library-list-svr4 version=\"1.0\"");
6653 p = document + strlen (document);
6654
6655 while (lm_addr
6656 && read_one_ptr (lm_addr + lmo->l_name_offset,
6657 &l_name, ptr_size) == 0
6658 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6659 &l_addr, ptr_size) == 0
6660 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6661 &l_ld, ptr_size) == 0
6662 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6663 &l_prev, ptr_size) == 0
6664 && read_one_ptr (lm_addr + lmo->l_next_offset,
6665 &l_next, ptr_size) == 0)
6666 {
6667 unsigned char libname[PATH_MAX];
6668
6669 if (lm_prev != l_prev)
6670 {
6671 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6672 (long) lm_prev, (long) l_prev);
6673 break;
6674 }
6675
6676 /* Ignore the first entry even if it has valid name as the first entry
6677 corresponds to the main executable. The first entry should not be
6678 skipped if the dynamic loader was loaded late by a static executable
6679 (see solib-svr4.c parameter ignore_first). But in such case the main
6680 executable does not have PT_DYNAMIC present and this function already
6681 exited above due to failed get_r_debug. */
6682 if (lm_prev == 0)
6683 {
6684 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6685 p = p + strlen (p);
6686 }
6687 else
6688 {
6689 /* Not checking for error because reading may stop before
6690 we've got PATH_MAX worth of characters. */
6691 libname[0] = '\0';
6692 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6693 libname[sizeof (libname) - 1] = '\0';
6694 if (libname[0] != '\0')
6695 {
6696 /* 6x the size for xml_escape_text below. */
6697 size_t len = 6 * strlen ((char *) libname);
6698 char *name;
6699
6700 if (!header_done)
6701 {
6702 /* Terminate `<library-list-svr4'. */
6703 *p++ = '>';
6704 header_done = 1;
6705 }
6706
6707 while (allocated < p - document + len + 200)
6708 {
6709 /* Expand to guarantee sufficient storage. */
6710 uintptr_t document_len = p - document;
6711
6712 document = (char *) xrealloc (document, 2 * allocated);
6713 allocated *= 2;
6714 p = document + document_len;
6715 }
6716
6717 name = xml_escape_text ((char *) libname);
6718 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
6719 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6720 name, (unsigned long) lm_addr,
6721 (unsigned long) l_addr, (unsigned long) l_ld);
6722 free (name);
6723 }
6724 }
6725
6726 lm_prev = lm_addr;
6727 lm_addr = l_next;
6728 }
6729
6730 if (!header_done)
6731 {
6732 /* Empty list; terminate `<library-list-svr4'. */
6733 strcpy (p, "/>");
6734 }
6735 else
6736 strcpy (p, "</library-list-svr4>");
6737
6738 document_len = strlen (document);
6739 if (offset < document_len)
6740 document_len -= offset;
6741 else
6742 document_len = 0;
6743 if (len > document_len)
6744 len = document_len;
6745
6746 memcpy (readbuf, document + offset, len);
6747 xfree (document);
6748
6749 return len;
6750 }
6751
6752 #ifdef HAVE_LINUX_BTRACE
6753
6754 /* See to_disable_btrace target method. */
6755
6756 static int
6757 linux_low_disable_btrace (struct btrace_target_info *tinfo)
6758 {
6759 enum btrace_error err;
6760
6761 err = linux_disable_btrace (tinfo);
6762 return (err == BTRACE_ERR_NONE ? 0 : -1);
6763 }
6764
6765 /* Encode an Intel(R) Processor Trace configuration. */
6766
6767 static void
6768 linux_low_encode_pt_config (struct buffer *buffer,
6769 const struct btrace_data_pt_config *config)
6770 {
6771 buffer_grow_str (buffer, "<pt-config>\n");
6772
6773 switch (config->cpu.vendor)
6774 {
6775 case CV_INTEL:
6776 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
6777 "model=\"%u\" stepping=\"%u\"/>\n",
6778 config->cpu.family, config->cpu.model,
6779 config->cpu.stepping);
6780 break;
6781
6782 default:
6783 break;
6784 }
6785
6786 buffer_grow_str (buffer, "</pt-config>\n");
6787 }
6788
6789 /* Encode a raw buffer. */
6790
6791 static void
6792 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
6793 unsigned int size)
6794 {
6795 if (size == 0)
6796 return;
6797
6798 /* We use hex encoding - see common/rsp-low.h. */
6799 buffer_grow_str (buffer, "<raw>\n");
6800
6801 while (size-- > 0)
6802 {
6803 char elem[2];
6804
6805 elem[0] = tohex ((*data >> 4) & 0xf);
6806 elem[1] = tohex (*data++ & 0xf);
6807
6808 buffer_grow (buffer, elem, 2);
6809 }
6810
6811 buffer_grow_str (buffer, "</raw>\n");
6812 }
6813
6814 /* See to_read_btrace target method. */
6815
6816 static int
6817 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
6818 enum btrace_read_type type)
6819 {
6820 struct btrace_data btrace;
6821 struct btrace_block *block;
6822 enum btrace_error err;
6823 int i;
6824
6825 btrace_data_init (&btrace);
6826
6827 err = linux_read_btrace (&btrace, tinfo, type);
6828 if (err != BTRACE_ERR_NONE)
6829 {
6830 if (err == BTRACE_ERR_OVERFLOW)
6831 buffer_grow_str0 (buffer, "E.Overflow.");
6832 else
6833 buffer_grow_str0 (buffer, "E.Generic Error.");
6834
6835 goto err;
6836 }
6837
6838 switch (btrace.format)
6839 {
6840 case BTRACE_FORMAT_NONE:
6841 buffer_grow_str0 (buffer, "E.No Trace.");
6842 goto err;
6843
6844 case BTRACE_FORMAT_BTS:
6845 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6846 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6847
6848 for (i = 0;
6849 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
6850 i++)
6851 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
6852 paddress (block->begin), paddress (block->end));
6853
6854 buffer_grow_str0 (buffer, "</btrace>\n");
6855 break;
6856
6857 case BTRACE_FORMAT_PT:
6858 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6859 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6860 buffer_grow_str (buffer, "<pt>\n");
6861
6862 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
6863
6864 linux_low_encode_raw (buffer, btrace.variant.pt.data,
6865 btrace.variant.pt.size);
6866
6867 buffer_grow_str (buffer, "</pt>\n");
6868 buffer_grow_str0 (buffer, "</btrace>\n");
6869 break;
6870
6871 default:
6872 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
6873 goto err;
6874 }
6875
6876 btrace_data_fini (&btrace);
6877 return 0;
6878
6879 err:
6880 btrace_data_fini (&btrace);
6881 return -1;
6882 }
6883
6884 /* See to_btrace_conf target method. */
6885
6886 static int
6887 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
6888 struct buffer *buffer)
6889 {
6890 const struct btrace_config *conf;
6891
6892 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
6893 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
6894
6895 conf = linux_btrace_conf (tinfo);
6896 if (conf != NULL)
6897 {
6898 switch (conf->format)
6899 {
6900 case BTRACE_FORMAT_NONE:
6901 break;
6902
6903 case BTRACE_FORMAT_BTS:
6904 buffer_xml_printf (buffer, "<bts");
6905 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
6906 buffer_xml_printf (buffer, " />\n");
6907 break;
6908
6909 case BTRACE_FORMAT_PT:
6910 buffer_xml_printf (buffer, "<pt");
6911 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
6912 buffer_xml_printf (buffer, "/>\n");
6913 break;
6914 }
6915 }
6916
6917 buffer_grow_str0 (buffer, "</btrace-conf>\n");
6918 return 0;
6919 }
6920 #endif /* HAVE_LINUX_BTRACE */
6921
6922 /* See nat/linux-nat.h. */
6923
6924 ptid_t
6925 current_lwp_ptid (void)
6926 {
6927 return ptid_of (current_thread);
6928 }
6929
6930 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
6931
6932 static int
6933 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
6934 {
6935 if (the_low_target.breakpoint_kind_from_pc != NULL)
6936 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
6937 else
6938 return default_breakpoint_kind_from_pc (pcptr);
6939 }
6940
6941 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
6942
6943 static const gdb_byte *
6944 linux_sw_breakpoint_from_kind (int kind, int *size)
6945 {
6946 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
6947
6948 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
6949 }
6950
6951 static struct target_ops linux_target_ops = {
6952 linux_create_inferior,
6953 linux_arch_setup,
6954 linux_attach,
6955 linux_kill,
6956 linux_detach,
6957 linux_mourn,
6958 linux_join,
6959 linux_thread_alive,
6960 linux_resume,
6961 linux_wait,
6962 linux_fetch_registers,
6963 linux_store_registers,
6964 linux_prepare_to_access_memory,
6965 linux_done_accessing_memory,
6966 linux_read_memory,
6967 linux_write_memory,
6968 linux_look_up_symbols,
6969 linux_request_interrupt,
6970 linux_read_auxv,
6971 linux_supports_z_point_type,
6972 linux_insert_point,
6973 linux_remove_point,
6974 linux_stopped_by_sw_breakpoint,
6975 linux_supports_stopped_by_sw_breakpoint,
6976 linux_stopped_by_hw_breakpoint,
6977 linux_supports_stopped_by_hw_breakpoint,
6978 linux_supports_hardware_single_step,
6979 linux_stopped_by_watchpoint,
6980 linux_stopped_data_address,
6981 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6982 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6983 && defined(PT_TEXT_END_ADDR)
6984 linux_read_offsets,
6985 #else
6986 NULL,
6987 #endif
6988 #ifdef USE_THREAD_DB
6989 thread_db_get_tls_address,
6990 #else
6991 NULL,
6992 #endif
6993 linux_qxfer_spu,
6994 hostio_last_error_from_errno,
6995 linux_qxfer_osdata,
6996 linux_xfer_siginfo,
6997 linux_supports_non_stop,
6998 linux_async,
6999 linux_start_non_stop,
7000 linux_supports_multi_process,
7001 linux_supports_fork_events,
7002 linux_supports_vfork_events,
7003 linux_supports_exec_events,
7004 linux_handle_new_gdb_connection,
7005 #ifdef USE_THREAD_DB
7006 thread_db_handle_monitor_command,
7007 #else
7008 NULL,
7009 #endif
7010 linux_common_core_of_thread,
7011 linux_read_loadmap,
7012 linux_process_qsupported,
7013 linux_supports_tracepoints,
7014 linux_read_pc,
7015 linux_write_pc,
7016 linux_thread_stopped,
7017 NULL,
7018 linux_pause_all,
7019 linux_unpause_all,
7020 linux_stabilize_threads,
7021 linux_install_fast_tracepoint_jump_pad,
7022 linux_emit_ops,
7023 linux_supports_disable_randomization,
7024 linux_get_min_fast_tracepoint_insn_len,
7025 linux_qxfer_libraries_svr4,
7026 linux_supports_agent,
7027 #ifdef HAVE_LINUX_BTRACE
7028 linux_supports_btrace,
7029 linux_enable_btrace,
7030 linux_low_disable_btrace,
7031 linux_low_read_btrace,
7032 linux_low_btrace_conf,
7033 #else
7034 NULL,
7035 NULL,
7036 NULL,
7037 NULL,
7038 NULL,
7039 #endif
7040 linux_supports_range_stepping,
7041 linux_proc_pid_to_exec_file,
7042 linux_mntns_open_cloexec,
7043 linux_mntns_unlink,
7044 linux_mntns_readlink,
7045 linux_breakpoint_kind_from_pc,
7046 linux_sw_breakpoint_from_kind,
7047 linux_proc_tid_get_name,
7048 };
7049
7050 static void
7051 linux_init_signals ()
7052 {
7053 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
7054 to find what the cancel signal actually is. */
7055 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
7056 signal (__SIGRTMIN+1, SIG_IGN);
7057 #endif
7058 }
7059
7060 #ifdef HAVE_LINUX_REGSETS
7061 void
7062 initialize_regsets_info (struct regsets_info *info)
7063 {
7064 for (info->num_regsets = 0;
7065 info->regsets[info->num_regsets].size >= 0;
7066 info->num_regsets++)
7067 ;
7068 }
7069 #endif
7070
7071 void
7072 initialize_low (void)
7073 {
7074 struct sigaction sigchld_action;
7075
7076 memset (&sigchld_action, 0, sizeof (sigchld_action));
7077 set_target_ops (&linux_target_ops);
7078
7079 linux_init_signals ();
7080 linux_ptrace_init_warnings ();
7081
7082 sigchld_action.sa_handler = sigchld_handler;
7083 sigemptyset (&sigchld_action.sa_mask);
7084 sigchld_action.sa_flags = SA_RESTART;
7085 sigaction (SIGCHLD, &sigchld_action, NULL);
7086
7087 initialize_low_arch ();
7088
7089 linux_check_ptrace_features ();
7090 }