]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Fix inconsistent breakpoint kinds between breakpoints and tracepoints in GDBServer.
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #ifndef ELFMAG0
50 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
51 then ELFMAG0 will have been defined. If it didn't get included by
52 gdb_proc_service.h then including it will likely introduce a duplicate
53 definition of elf_fpregset_t. */
54 #include <elf.h>
55 #endif
56 #include "nat/linux-namespaces.h"
57
58 #ifndef SPUFS_MAGIC
59 #define SPUFS_MAGIC 0x23c9b64e
60 #endif
61
62 #ifdef HAVE_PERSONALITY
63 # include <sys/personality.h>
64 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
65 # define ADDR_NO_RANDOMIZE 0x0040000
66 # endif
67 #endif
68
69 #ifndef O_LARGEFILE
70 #define O_LARGEFILE 0
71 #endif
72
73 #ifndef W_STOPCODE
74 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
75 #endif
76
77 /* This is the kernel's hard limit. Not to be confused with
78 SIGRTMIN. */
79 #ifndef __SIGRTMIN
80 #define __SIGRTMIN 32
81 #endif
82
83 /* Some targets did not define these ptrace constants from the start,
84 so gdbserver defines them locally here. In the future, these may
85 be removed after they are added to asm/ptrace.h. */
86 #if !(defined(PT_TEXT_ADDR) \
87 || defined(PT_DATA_ADDR) \
88 || defined(PT_TEXT_END_ADDR))
89 #if defined(__mcoldfire__)
90 /* These are still undefined in 3.10 kernels. */
91 #define PT_TEXT_ADDR 49*4
92 #define PT_DATA_ADDR 50*4
93 #define PT_TEXT_END_ADDR 51*4
94 /* BFIN already defines these since at least 2.6.32 kernels. */
95 #elif defined(BFIN)
96 #define PT_TEXT_ADDR 220
97 #define PT_TEXT_END_ADDR 224
98 #define PT_DATA_ADDR 228
99 /* These are still undefined in 3.10 kernels. */
100 #elif defined(__TMS320C6X__)
101 #define PT_TEXT_ADDR (0x10000*4)
102 #define PT_DATA_ADDR (0x10004*4)
103 #define PT_TEXT_END_ADDR (0x10008*4)
104 #endif
105 #endif
106
107 #ifdef HAVE_LINUX_BTRACE
108 # include "nat/linux-btrace.h"
109 # include "btrace-common.h"
110 #endif
111
112 #ifndef HAVE_ELF32_AUXV_T
113 /* Copied from glibc's elf.h. */
114 typedef struct
115 {
116 uint32_t a_type; /* Entry type */
117 union
118 {
119 uint32_t a_val; /* Integer value */
120 /* We use to have pointer elements added here. We cannot do that,
121 though, since it does not work when using 32-bit definitions
122 on 64-bit platforms and vice versa. */
123 } a_un;
124 } Elf32_auxv_t;
125 #endif
126
127 #ifndef HAVE_ELF64_AUXV_T
128 /* Copied from glibc's elf.h. */
129 typedef struct
130 {
131 uint64_t a_type; /* Entry type */
132 union
133 {
134 uint64_t a_val; /* Integer value */
135 /* We use to have pointer elements added here. We cannot do that,
136 though, since it does not work when using 32-bit definitions
137 on 64-bit platforms and vice versa. */
138 } a_un;
139 } Elf64_auxv_t;
140 #endif
141
142 /* Does the current host support PTRACE_GETREGSET? */
143 int have_ptrace_getregset = -1;
144
145 /* LWP accessors. */
146
147 /* See nat/linux-nat.h. */
148
149 ptid_t
150 ptid_of_lwp (struct lwp_info *lwp)
151 {
152 return ptid_of (get_lwp_thread (lwp));
153 }
154
155 /* See nat/linux-nat.h. */
156
157 void
158 lwp_set_arch_private_info (struct lwp_info *lwp,
159 struct arch_lwp_info *info)
160 {
161 lwp->arch_private = info;
162 }
163
164 /* See nat/linux-nat.h. */
165
166 struct arch_lwp_info *
167 lwp_arch_private_info (struct lwp_info *lwp)
168 {
169 return lwp->arch_private;
170 }
171
172 /* See nat/linux-nat.h. */
173
174 int
175 lwp_is_stopped (struct lwp_info *lwp)
176 {
177 return lwp->stopped;
178 }
179
180 /* See nat/linux-nat.h. */
181
182 enum target_stop_reason
183 lwp_stop_reason (struct lwp_info *lwp)
184 {
185 return lwp->stop_reason;
186 }
187
188 /* A list of all unknown processes which receive stop signals. Some
189 other process will presumably claim each of these as forked
190 children momentarily. */
191
192 struct simple_pid_list
193 {
194 /* The process ID. */
195 int pid;
196
197 /* The status as reported by waitpid. */
198 int status;
199
200 /* Next in chain. */
201 struct simple_pid_list *next;
202 };
203 struct simple_pid_list *stopped_pids;
204
205 /* Trivial list manipulation functions to keep track of a list of new
206 stopped processes. */
207
208 static void
209 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
210 {
211 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
212
213 new_pid->pid = pid;
214 new_pid->status = status;
215 new_pid->next = *listp;
216 *listp = new_pid;
217 }
218
219 static int
220 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
221 {
222 struct simple_pid_list **p;
223
224 for (p = listp; *p != NULL; p = &(*p)->next)
225 if ((*p)->pid == pid)
226 {
227 struct simple_pid_list *next = (*p)->next;
228
229 *statusp = (*p)->status;
230 xfree (*p);
231 *p = next;
232 return 1;
233 }
234 return 0;
235 }
236
237 enum stopping_threads_kind
238 {
239 /* Not stopping threads presently. */
240 NOT_STOPPING_THREADS,
241
242 /* Stopping threads. */
243 STOPPING_THREADS,
244
245 /* Stopping and suspending threads. */
246 STOPPING_AND_SUSPENDING_THREADS
247 };
248
249 /* This is set while stop_all_lwps is in effect. */
250 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
251
252 /* FIXME make into a target method? */
253 int using_threads = 1;
254
255 /* True if we're presently stabilizing threads (moving them out of
256 jump pads). */
257 static int stabilizing_threads;
258
259 static void linux_resume_one_lwp (struct lwp_info *lwp,
260 int step, int signal, siginfo_t *info);
261 static void linux_resume (struct thread_resume *resume_info, size_t n);
262 static void stop_all_lwps (int suspend, struct lwp_info *except);
263 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
264 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
265 int *wstat, int options);
266 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
267 static struct lwp_info *add_lwp (ptid_t ptid);
268 static void linux_mourn (struct process_info *process);
269 static int linux_stopped_by_watchpoint (void);
270 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
271 static int lwp_is_marked_dead (struct lwp_info *lwp);
272 static void proceed_all_lwps (void);
273 static int finish_step_over (struct lwp_info *lwp);
274 static int kill_lwp (unsigned long lwpid, int signo);
275 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
276 static void complete_ongoing_step_over (void);
277
278 /* When the event-loop is doing a step-over, this points at the thread
279 being stepped. */
280 ptid_t step_over_bkpt;
281
282 /* True if the low target can hardware single-step. Such targets
283 don't need a BREAKPOINT_REINSERT_ADDR callback. */
284
285 static int
286 can_hardware_single_step (void)
287 {
288 return (the_low_target.breakpoint_reinsert_addr == NULL);
289 }
290
291 /* True if the low target supports memory breakpoints. If so, we'll
292 have a GET_PC implementation. */
293
294 static int
295 supports_breakpoints (void)
296 {
297 return (the_low_target.get_pc != NULL);
298 }
299
300 /* Returns true if this target can support fast tracepoints. This
301 does not mean that the in-process agent has been loaded in the
302 inferior. */
303
304 static int
305 supports_fast_tracepoints (void)
306 {
307 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
308 }
309
310 /* True if LWP is stopped in its stepping range. */
311
312 static int
313 lwp_in_step_range (struct lwp_info *lwp)
314 {
315 CORE_ADDR pc = lwp->stop_pc;
316
317 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
318 }
319
320 struct pending_signals
321 {
322 int signal;
323 siginfo_t info;
324 struct pending_signals *prev;
325 };
326
327 /* The read/write ends of the pipe registered as waitable file in the
328 event loop. */
329 static int linux_event_pipe[2] = { -1, -1 };
330
331 /* True if we're currently in async mode. */
332 #define target_is_async_p() (linux_event_pipe[0] != -1)
333
334 static void send_sigstop (struct lwp_info *lwp);
335 static void wait_for_sigstop (void);
336
337 /* Return non-zero if HEADER is a 64-bit ELF file. */
338
339 static int
340 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
341 {
342 if (header->e_ident[EI_MAG0] == ELFMAG0
343 && header->e_ident[EI_MAG1] == ELFMAG1
344 && header->e_ident[EI_MAG2] == ELFMAG2
345 && header->e_ident[EI_MAG3] == ELFMAG3)
346 {
347 *machine = header->e_machine;
348 return header->e_ident[EI_CLASS] == ELFCLASS64;
349
350 }
351 *machine = EM_NONE;
352 return -1;
353 }
354
355 /* Return non-zero if FILE is a 64-bit ELF file,
356 zero if the file is not a 64-bit ELF file,
357 and -1 if the file is not accessible or doesn't exist. */
358
359 static int
360 elf_64_file_p (const char *file, unsigned int *machine)
361 {
362 Elf64_Ehdr header;
363 int fd;
364
365 fd = open (file, O_RDONLY);
366 if (fd < 0)
367 return -1;
368
369 if (read (fd, &header, sizeof (header)) != sizeof (header))
370 {
371 close (fd);
372 return 0;
373 }
374 close (fd);
375
376 return elf_64_header_p (&header, machine);
377 }
378
379 /* Accepts an integer PID; Returns true if the executable PID is
380 running is a 64-bit ELF file.. */
381
382 int
383 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
384 {
385 char file[PATH_MAX];
386
387 sprintf (file, "/proc/%d/exe", pid);
388 return elf_64_file_p (file, machine);
389 }
390
391 static void
392 delete_lwp (struct lwp_info *lwp)
393 {
394 struct thread_info *thr = get_lwp_thread (lwp);
395
396 if (debug_threads)
397 debug_printf ("deleting %ld\n", lwpid_of (thr));
398
399 remove_thread (thr);
400 free (lwp->arch_private);
401 free (lwp);
402 }
403
404 /* Add a process to the common process list, and set its private
405 data. */
406
407 static struct process_info *
408 linux_add_process (int pid, int attached)
409 {
410 struct process_info *proc;
411
412 proc = add_process (pid, attached);
413 proc->priv = XCNEW (struct process_info_private);
414
415 if (the_low_target.new_process != NULL)
416 proc->priv->arch_private = the_low_target.new_process ();
417
418 return proc;
419 }
420
421 static CORE_ADDR get_pc (struct lwp_info *lwp);
422
423 /* Implement the arch_setup target_ops method. */
424
425 static void
426 linux_arch_setup (void)
427 {
428 the_low_target.arch_setup ();
429 }
430
431 /* Call the target arch_setup function on THREAD. */
432
433 static void
434 linux_arch_setup_thread (struct thread_info *thread)
435 {
436 struct thread_info *saved_thread;
437
438 saved_thread = current_thread;
439 current_thread = thread;
440
441 linux_arch_setup ();
442
443 current_thread = saved_thread;
444 }
445
446 /* Handle a GNU/Linux extended wait response. If we see a clone,
447 fork, or vfork event, we need to add the new LWP to our list
448 (and return 0 so as not to report the trap to higher layers).
449 If we see an exec event, we will modify ORIG_EVENT_LWP to point
450 to a new LWP representing the new program. */
451
452 static int
453 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
454 {
455 struct lwp_info *event_lwp = *orig_event_lwp;
456 int event = linux_ptrace_get_extended_event (wstat);
457 struct thread_info *event_thr = get_lwp_thread (event_lwp);
458 struct lwp_info *new_lwp;
459
460 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
461 || (event == PTRACE_EVENT_CLONE))
462 {
463 ptid_t ptid;
464 unsigned long new_pid;
465 int ret, status;
466
467 /* Get the pid of the new lwp. */
468 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
469 &new_pid);
470
471 /* If we haven't already seen the new PID stop, wait for it now. */
472 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
473 {
474 /* The new child has a pending SIGSTOP. We can't affect it until it
475 hits the SIGSTOP, but we're already attached. */
476
477 ret = my_waitpid (new_pid, &status, __WALL);
478
479 if (ret == -1)
480 perror_with_name ("waiting for new child");
481 else if (ret != new_pid)
482 warning ("wait returned unexpected PID %d", ret);
483 else if (!WIFSTOPPED (status))
484 warning ("wait returned unexpected status 0x%x", status);
485 }
486
487 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
488 {
489 struct process_info *parent_proc;
490 struct process_info *child_proc;
491 struct lwp_info *child_lwp;
492 struct thread_info *child_thr;
493 struct target_desc *tdesc;
494
495 ptid = ptid_build (new_pid, new_pid, 0);
496
497 if (debug_threads)
498 {
499 debug_printf ("HEW: Got fork event from LWP %ld, "
500 "new child is %d\n",
501 ptid_get_lwp (ptid_of (event_thr)),
502 ptid_get_pid (ptid));
503 }
504
505 /* Add the new process to the tables and clone the breakpoint
506 lists of the parent. We need to do this even if the new process
507 will be detached, since we will need the process object and the
508 breakpoints to remove any breakpoints from memory when we
509 detach, and the client side will access registers. */
510 child_proc = linux_add_process (new_pid, 0);
511 gdb_assert (child_proc != NULL);
512 child_lwp = add_lwp (ptid);
513 gdb_assert (child_lwp != NULL);
514 child_lwp->stopped = 1;
515 child_lwp->must_set_ptrace_flags = 1;
516 child_lwp->status_pending_p = 0;
517 child_thr = get_lwp_thread (child_lwp);
518 child_thr->last_resume_kind = resume_stop;
519 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
520
521 /* If we're suspending all threads, leave this one suspended
522 too. */
523 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
524 {
525 if (debug_threads)
526 debug_printf ("HEW: leaving child suspended\n");
527 child_lwp->suspended = 1;
528 }
529
530 parent_proc = get_thread_process (event_thr);
531 child_proc->attached = parent_proc->attached;
532 clone_all_breakpoints (&child_proc->breakpoints,
533 &child_proc->raw_breakpoints,
534 parent_proc->breakpoints);
535
536 tdesc = XNEW (struct target_desc);
537 copy_target_description (tdesc, parent_proc->tdesc);
538 child_proc->tdesc = tdesc;
539
540 /* Clone arch-specific process data. */
541 if (the_low_target.new_fork != NULL)
542 the_low_target.new_fork (parent_proc, child_proc);
543
544 /* Save fork info in the parent thread. */
545 if (event == PTRACE_EVENT_FORK)
546 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
547 else if (event == PTRACE_EVENT_VFORK)
548 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
549
550 event_lwp->waitstatus.value.related_pid = ptid;
551
552 /* The status_pending field contains bits denoting the
553 extended event, so when the pending event is handled,
554 the handler will look at lwp->waitstatus. */
555 event_lwp->status_pending_p = 1;
556 event_lwp->status_pending = wstat;
557
558 /* Report the event. */
559 return 0;
560 }
561
562 if (debug_threads)
563 debug_printf ("HEW: Got clone event "
564 "from LWP %ld, new child is LWP %ld\n",
565 lwpid_of (event_thr), new_pid);
566
567 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
568 new_lwp = add_lwp (ptid);
569
570 /* Either we're going to immediately resume the new thread
571 or leave it stopped. linux_resume_one_lwp is a nop if it
572 thinks the thread is currently running, so set this first
573 before calling linux_resume_one_lwp. */
574 new_lwp->stopped = 1;
575
576 /* If we're suspending all threads, leave this one suspended
577 too. */
578 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
579 new_lwp->suspended = 1;
580
581 /* Normally we will get the pending SIGSTOP. But in some cases
582 we might get another signal delivered to the group first.
583 If we do get another signal, be sure not to lose it. */
584 if (WSTOPSIG (status) != SIGSTOP)
585 {
586 new_lwp->stop_expected = 1;
587 new_lwp->status_pending_p = 1;
588 new_lwp->status_pending = status;
589 }
590
591 /* Don't report the event. */
592 return 1;
593 }
594 else if (event == PTRACE_EVENT_VFORK_DONE)
595 {
596 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
597
598 /* Report the event. */
599 return 0;
600 }
601 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
602 {
603 struct process_info *proc;
604 ptid_t event_ptid;
605 pid_t event_pid;
606
607 if (debug_threads)
608 {
609 debug_printf ("HEW: Got exec event from LWP %ld\n",
610 lwpid_of (event_thr));
611 }
612
613 /* Get the event ptid. */
614 event_ptid = ptid_of (event_thr);
615 event_pid = ptid_get_pid (event_ptid);
616
617 /* Delete the execing process and all its threads. */
618 proc = get_thread_process (event_thr);
619 linux_mourn (proc);
620 current_thread = NULL;
621
622 /* Create a new process/lwp/thread. */
623 proc = linux_add_process (event_pid, 0);
624 event_lwp = add_lwp (event_ptid);
625 event_thr = get_lwp_thread (event_lwp);
626 gdb_assert (current_thread == event_thr);
627 linux_arch_setup_thread (event_thr);
628
629 /* Set the event status. */
630 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
631 event_lwp->waitstatus.value.execd_pathname
632 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
633
634 /* Mark the exec status as pending. */
635 event_lwp->stopped = 1;
636 event_lwp->status_pending_p = 1;
637 event_lwp->status_pending = wstat;
638 event_thr->last_resume_kind = resume_continue;
639 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
640
641 /* Report the event. */
642 *orig_event_lwp = event_lwp;
643 return 0;
644 }
645
646 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
647 }
648
649 /* Return the PC as read from the regcache of LWP, without any
650 adjustment. */
651
652 static CORE_ADDR
653 get_pc (struct lwp_info *lwp)
654 {
655 struct thread_info *saved_thread;
656 struct regcache *regcache;
657 CORE_ADDR pc;
658
659 if (the_low_target.get_pc == NULL)
660 return 0;
661
662 saved_thread = current_thread;
663 current_thread = get_lwp_thread (lwp);
664
665 regcache = get_thread_regcache (current_thread, 1);
666 pc = (*the_low_target.get_pc) (regcache);
667
668 if (debug_threads)
669 debug_printf ("pc is 0x%lx\n", (long) pc);
670
671 current_thread = saved_thread;
672 return pc;
673 }
674
675 /* This function should only be called if LWP got a SIGTRAP.
676 The SIGTRAP could mean several things.
677
678 On i386, where decr_pc_after_break is non-zero:
679
680 If we were single-stepping this process using PTRACE_SINGLESTEP, we
681 will get only the one SIGTRAP. The value of $eip will be the next
682 instruction. If the instruction we stepped over was a breakpoint,
683 we need to decrement the PC.
684
685 If we continue the process using PTRACE_CONT, we will get a
686 SIGTRAP when we hit a breakpoint. The value of $eip will be
687 the instruction after the breakpoint (i.e. needs to be
688 decremented). If we report the SIGTRAP to GDB, we must also
689 report the undecremented PC. If the breakpoint is removed, we
690 must resume at the decremented PC.
691
692 On a non-decr_pc_after_break machine with hardware or kernel
693 single-step:
694
695 If we either single-step a breakpoint instruction, or continue and
696 hit a breakpoint instruction, our PC will point at the breakpoint
697 instruction. */
698
699 static int
700 check_stopped_by_breakpoint (struct lwp_info *lwp)
701 {
702 CORE_ADDR pc;
703 CORE_ADDR sw_breakpoint_pc;
704 struct thread_info *saved_thread;
705 #if USE_SIGTRAP_SIGINFO
706 siginfo_t siginfo;
707 #endif
708
709 if (the_low_target.get_pc == NULL)
710 return 0;
711
712 pc = get_pc (lwp);
713 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
714
715 /* breakpoint_at reads from the current thread. */
716 saved_thread = current_thread;
717 current_thread = get_lwp_thread (lwp);
718
719 #if USE_SIGTRAP_SIGINFO
720 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
721 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
722 {
723 if (siginfo.si_signo == SIGTRAP)
724 {
725 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
726 {
727 if (debug_threads)
728 {
729 struct thread_info *thr = get_lwp_thread (lwp);
730
731 debug_printf ("CSBB: %s stopped by software breakpoint\n",
732 target_pid_to_str (ptid_of (thr)));
733 }
734
735 /* Back up the PC if necessary. */
736 if (pc != sw_breakpoint_pc)
737 {
738 struct regcache *regcache
739 = get_thread_regcache (current_thread, 1);
740 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
741 }
742
743 lwp->stop_pc = sw_breakpoint_pc;
744 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
745 current_thread = saved_thread;
746 return 1;
747 }
748 else if (siginfo.si_code == TRAP_HWBKPT)
749 {
750 if (debug_threads)
751 {
752 struct thread_info *thr = get_lwp_thread (lwp);
753
754 debug_printf ("CSBB: %s stopped by hardware "
755 "breakpoint/watchpoint\n",
756 target_pid_to_str (ptid_of (thr)));
757 }
758
759 lwp->stop_pc = pc;
760 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
761 current_thread = saved_thread;
762 return 1;
763 }
764 else if (siginfo.si_code == TRAP_TRACE)
765 {
766 if (debug_threads)
767 {
768 struct thread_info *thr = get_lwp_thread (lwp);
769
770 debug_printf ("CSBB: %s stopped by trace\n",
771 target_pid_to_str (ptid_of (thr)));
772 }
773
774 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
775 }
776 }
777 }
778 #else
779 /* We may have just stepped a breakpoint instruction. E.g., in
780 non-stop mode, GDB first tells the thread A to step a range, and
781 then the user inserts a breakpoint inside the range. In that
782 case we need to report the breakpoint PC. */
783 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
784 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
785 {
786 if (debug_threads)
787 {
788 struct thread_info *thr = get_lwp_thread (lwp);
789
790 debug_printf ("CSBB: %s stopped by software breakpoint\n",
791 target_pid_to_str (ptid_of (thr)));
792 }
793
794 /* Back up the PC if necessary. */
795 if (pc != sw_breakpoint_pc)
796 {
797 struct regcache *regcache
798 = get_thread_regcache (current_thread, 1);
799 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
800 }
801
802 lwp->stop_pc = sw_breakpoint_pc;
803 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
804 current_thread = saved_thread;
805 return 1;
806 }
807
808 if (hardware_breakpoint_inserted_here (pc))
809 {
810 if (debug_threads)
811 {
812 struct thread_info *thr = get_lwp_thread (lwp);
813
814 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
815 target_pid_to_str (ptid_of (thr)));
816 }
817
818 lwp->stop_pc = pc;
819 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
820 current_thread = saved_thread;
821 return 1;
822 }
823 #endif
824
825 current_thread = saved_thread;
826 return 0;
827 }
828
829 static struct lwp_info *
830 add_lwp (ptid_t ptid)
831 {
832 struct lwp_info *lwp;
833
834 lwp = XCNEW (struct lwp_info);
835
836 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
837
838 if (the_low_target.new_thread != NULL)
839 the_low_target.new_thread (lwp);
840
841 lwp->thread = add_thread (ptid, lwp);
842
843 return lwp;
844 }
845
846 /* Start an inferior process and returns its pid.
847 ALLARGS is a vector of program-name and args. */
848
849 static int
850 linux_create_inferior (char *program, char **allargs)
851 {
852 struct lwp_info *new_lwp;
853 int pid;
854 ptid_t ptid;
855 struct cleanup *restore_personality
856 = maybe_disable_address_space_randomization (disable_randomization);
857
858 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
859 pid = vfork ();
860 #else
861 pid = fork ();
862 #endif
863 if (pid < 0)
864 perror_with_name ("fork");
865
866 if (pid == 0)
867 {
868 close_most_fds ();
869 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
870
871 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
872 signal (__SIGRTMIN + 1, SIG_DFL);
873 #endif
874
875 setpgid (0, 0);
876
877 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
878 stdout to stderr so that inferior i/o doesn't corrupt the connection.
879 Also, redirect stdin to /dev/null. */
880 if (remote_connection_is_stdio ())
881 {
882 close (0);
883 open ("/dev/null", O_RDONLY);
884 dup2 (2, 1);
885 if (write (2, "stdin/stdout redirected\n",
886 sizeof ("stdin/stdout redirected\n") - 1) < 0)
887 {
888 /* Errors ignored. */;
889 }
890 }
891
892 execv (program, allargs);
893 if (errno == ENOENT)
894 execvp (program, allargs);
895
896 fprintf (stderr, "Cannot exec %s: %s.\n", program,
897 strerror (errno));
898 fflush (stderr);
899 _exit (0177);
900 }
901
902 do_cleanups (restore_personality);
903
904 linux_add_process (pid, 0);
905
906 ptid = ptid_build (pid, pid, 0);
907 new_lwp = add_lwp (ptid);
908 new_lwp->must_set_ptrace_flags = 1;
909
910 return pid;
911 }
912
913 /* Attach to an inferior process. Returns 0 on success, ERRNO on
914 error. */
915
916 int
917 linux_attach_lwp (ptid_t ptid)
918 {
919 struct lwp_info *new_lwp;
920 int lwpid = ptid_get_lwp (ptid);
921
922 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
923 != 0)
924 return errno;
925
926 new_lwp = add_lwp (ptid);
927
928 /* We need to wait for SIGSTOP before being able to make the next
929 ptrace call on this LWP. */
930 new_lwp->must_set_ptrace_flags = 1;
931
932 if (linux_proc_pid_is_stopped (lwpid))
933 {
934 if (debug_threads)
935 debug_printf ("Attached to a stopped process\n");
936
937 /* The process is definitely stopped. It is in a job control
938 stop, unless the kernel predates the TASK_STOPPED /
939 TASK_TRACED distinction, in which case it might be in a
940 ptrace stop. Make sure it is in a ptrace stop; from there we
941 can kill it, signal it, et cetera.
942
943 First make sure there is a pending SIGSTOP. Since we are
944 already attached, the process can not transition from stopped
945 to running without a PTRACE_CONT; so we know this signal will
946 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
947 probably already in the queue (unless this kernel is old
948 enough to use TASK_STOPPED for ptrace stops); but since
949 SIGSTOP is not an RT signal, it can only be queued once. */
950 kill_lwp (lwpid, SIGSTOP);
951
952 /* Finally, resume the stopped process. This will deliver the
953 SIGSTOP (or a higher priority signal, just like normal
954 PTRACE_ATTACH), which we'll catch later on. */
955 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
956 }
957
958 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
959 brings it to a halt.
960
961 There are several cases to consider here:
962
963 1) gdbserver has already attached to the process and is being notified
964 of a new thread that is being created.
965 In this case we should ignore that SIGSTOP and resume the
966 process. This is handled below by setting stop_expected = 1,
967 and the fact that add_thread sets last_resume_kind ==
968 resume_continue.
969
970 2) This is the first thread (the process thread), and we're attaching
971 to it via attach_inferior.
972 In this case we want the process thread to stop.
973 This is handled by having linux_attach set last_resume_kind ==
974 resume_stop after we return.
975
976 If the pid we are attaching to is also the tgid, we attach to and
977 stop all the existing threads. Otherwise, we attach to pid and
978 ignore any other threads in the same group as this pid.
979
980 3) GDB is connecting to gdbserver and is requesting an enumeration of all
981 existing threads.
982 In this case we want the thread to stop.
983 FIXME: This case is currently not properly handled.
984 We should wait for the SIGSTOP but don't. Things work apparently
985 because enough time passes between when we ptrace (ATTACH) and when
986 gdb makes the next ptrace call on the thread.
987
988 On the other hand, if we are currently trying to stop all threads, we
989 should treat the new thread as if we had sent it a SIGSTOP. This works
990 because we are guaranteed that the add_lwp call above added us to the
991 end of the list, and so the new thread has not yet reached
992 wait_for_sigstop (but will). */
993 new_lwp->stop_expected = 1;
994
995 return 0;
996 }
997
998 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
999 already attached. Returns true if a new LWP is found, false
1000 otherwise. */
1001
1002 static int
1003 attach_proc_task_lwp_callback (ptid_t ptid)
1004 {
1005 /* Is this a new thread? */
1006 if (find_thread_ptid (ptid) == NULL)
1007 {
1008 int lwpid = ptid_get_lwp (ptid);
1009 int err;
1010
1011 if (debug_threads)
1012 debug_printf ("Found new lwp %d\n", lwpid);
1013
1014 err = linux_attach_lwp (ptid);
1015
1016 /* Be quiet if we simply raced with the thread exiting. EPERM
1017 is returned if the thread's task still exists, and is marked
1018 as exited or zombie, as well as other conditions, so in that
1019 case, confirm the status in /proc/PID/status. */
1020 if (err == ESRCH
1021 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1022 {
1023 if (debug_threads)
1024 {
1025 debug_printf ("Cannot attach to lwp %d: "
1026 "thread is gone (%d: %s)\n",
1027 lwpid, err, strerror (err));
1028 }
1029 }
1030 else if (err != 0)
1031 {
1032 warning (_("Cannot attach to lwp %d: %s"),
1033 lwpid,
1034 linux_ptrace_attach_fail_reason_string (ptid, err));
1035 }
1036
1037 return 1;
1038 }
1039 return 0;
1040 }
1041
1042 /* Attach to PID. If PID is the tgid, attach to it and all
1043 of its threads. */
1044
1045 static int
1046 linux_attach (unsigned long pid)
1047 {
1048 ptid_t ptid = ptid_build (pid, pid, 0);
1049 int err;
1050
1051 /* Attach to PID. We will check for other threads
1052 soon. */
1053 err = linux_attach_lwp (ptid);
1054 if (err != 0)
1055 error ("Cannot attach to process %ld: %s",
1056 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1057
1058 linux_add_process (pid, 1);
1059
1060 if (!non_stop)
1061 {
1062 struct thread_info *thread;
1063
1064 /* Don't ignore the initial SIGSTOP if we just attached to this
1065 process. It will be collected by wait shortly. */
1066 thread = find_thread_ptid (ptid_build (pid, pid, 0));
1067 thread->last_resume_kind = resume_stop;
1068 }
1069
1070 /* We must attach to every LWP. If /proc is mounted, use that to
1071 find them now. On the one hand, the inferior may be using raw
1072 clone instead of using pthreads. On the other hand, even if it
1073 is using pthreads, GDB may not be connected yet (thread_db needs
1074 to do symbol lookups, through qSymbol). Also, thread_db walks
1075 structures in the inferior's address space to find the list of
1076 threads/LWPs, and those structures may well be corrupted. Note
1077 that once thread_db is loaded, we'll still use it to list threads
1078 and associate pthread info with each LWP. */
1079 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1080 return 0;
1081 }
1082
1083 struct counter
1084 {
1085 int pid;
1086 int count;
1087 };
1088
1089 static int
1090 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1091 {
1092 struct counter *counter = (struct counter *) args;
1093
1094 if (ptid_get_pid (entry->id) == counter->pid)
1095 {
1096 if (++counter->count > 1)
1097 return 1;
1098 }
1099
1100 return 0;
1101 }
1102
1103 static int
1104 last_thread_of_process_p (int pid)
1105 {
1106 struct counter counter = { pid , 0 };
1107
1108 return (find_inferior (&all_threads,
1109 second_thread_of_pid_p, &counter) == NULL);
1110 }
1111
1112 /* Kill LWP. */
1113
1114 static void
1115 linux_kill_one_lwp (struct lwp_info *lwp)
1116 {
1117 struct thread_info *thr = get_lwp_thread (lwp);
1118 int pid = lwpid_of (thr);
1119
1120 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1121 there is no signal context, and ptrace(PTRACE_KILL) (or
1122 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1123 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1124 alternative is to kill with SIGKILL. We only need one SIGKILL
1125 per process, not one for each thread. But since we still support
1126 linuxthreads, and we also support debugging programs using raw
1127 clone without CLONE_THREAD, we send one for each thread. For
1128 years, we used PTRACE_KILL only, so we're being a bit paranoid
1129 about some old kernels where PTRACE_KILL might work better
1130 (dubious if there are any such, but that's why it's paranoia), so
1131 we try SIGKILL first, PTRACE_KILL second, and so we're fine
1132 everywhere. */
1133
1134 errno = 0;
1135 kill_lwp (pid, SIGKILL);
1136 if (debug_threads)
1137 {
1138 int save_errno = errno;
1139
1140 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1141 target_pid_to_str (ptid_of (thr)),
1142 save_errno ? strerror (save_errno) : "OK");
1143 }
1144
1145 errno = 0;
1146 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1147 if (debug_threads)
1148 {
1149 int save_errno = errno;
1150
1151 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1152 target_pid_to_str (ptid_of (thr)),
1153 save_errno ? strerror (save_errno) : "OK");
1154 }
1155 }
1156
1157 /* Kill LWP and wait for it to die. */
1158
1159 static void
1160 kill_wait_lwp (struct lwp_info *lwp)
1161 {
1162 struct thread_info *thr = get_lwp_thread (lwp);
1163 int pid = ptid_get_pid (ptid_of (thr));
1164 int lwpid = ptid_get_lwp (ptid_of (thr));
1165 int wstat;
1166 int res;
1167
1168 if (debug_threads)
1169 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1170
1171 do
1172 {
1173 linux_kill_one_lwp (lwp);
1174
1175 /* Make sure it died. Notes:
1176
1177 - The loop is most likely unnecessary.
1178
1179 - We don't use linux_wait_for_event as that could delete lwps
1180 while we're iterating over them. We're not interested in
1181 any pending status at this point, only in making sure all
1182 wait status on the kernel side are collected until the
1183 process is reaped.
1184
1185 - We don't use __WALL here as the __WALL emulation relies on
1186 SIGCHLD, and killing a stopped process doesn't generate
1187 one, nor an exit status.
1188 */
1189 res = my_waitpid (lwpid, &wstat, 0);
1190 if (res == -1 && errno == ECHILD)
1191 res = my_waitpid (lwpid, &wstat, __WCLONE);
1192 } while (res > 0 && WIFSTOPPED (wstat));
1193
1194 /* Even if it was stopped, the child may have already disappeared.
1195 E.g., if it was killed by SIGKILL. */
1196 if (res < 0 && errno != ECHILD)
1197 perror_with_name ("kill_wait_lwp");
1198 }
1199
1200 /* Callback for `find_inferior'. Kills an lwp of a given process,
1201 except the leader. */
1202
1203 static int
1204 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1205 {
1206 struct thread_info *thread = (struct thread_info *) entry;
1207 struct lwp_info *lwp = get_thread_lwp (thread);
1208 int pid = * (int *) args;
1209
1210 if (ptid_get_pid (entry->id) != pid)
1211 return 0;
1212
1213 /* We avoid killing the first thread here, because of a Linux kernel (at
1214 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1215 the children get a chance to be reaped, it will remain a zombie
1216 forever. */
1217
1218 if (lwpid_of (thread) == pid)
1219 {
1220 if (debug_threads)
1221 debug_printf ("lkop: is last of process %s\n",
1222 target_pid_to_str (entry->id));
1223 return 0;
1224 }
1225
1226 kill_wait_lwp (lwp);
1227 return 0;
1228 }
1229
1230 static int
1231 linux_kill (int pid)
1232 {
1233 struct process_info *process;
1234 struct lwp_info *lwp;
1235
1236 process = find_process_pid (pid);
1237 if (process == NULL)
1238 return -1;
1239
1240 /* If we're killing a running inferior, make sure it is stopped
1241 first, as PTRACE_KILL will not work otherwise. */
1242 stop_all_lwps (0, NULL);
1243
1244 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1245
1246 /* See the comment in linux_kill_one_lwp. We did not kill the first
1247 thread in the list, so do so now. */
1248 lwp = find_lwp_pid (pid_to_ptid (pid));
1249
1250 if (lwp == NULL)
1251 {
1252 if (debug_threads)
1253 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1254 pid);
1255 }
1256 else
1257 kill_wait_lwp (lwp);
1258
1259 the_target->mourn (process);
1260
1261 /* Since we presently can only stop all lwps of all processes, we
1262 need to unstop lwps of other processes. */
1263 unstop_all_lwps (0, NULL);
1264 return 0;
1265 }
1266
1267 /* Get pending signal of THREAD, for detaching purposes. This is the
1268 signal the thread last stopped for, which we need to deliver to the
1269 thread when detaching, otherwise, it'd be suppressed/lost. */
1270
1271 static int
1272 get_detach_signal (struct thread_info *thread)
1273 {
1274 enum gdb_signal signo = GDB_SIGNAL_0;
1275 int status;
1276 struct lwp_info *lp = get_thread_lwp (thread);
1277
1278 if (lp->status_pending_p)
1279 status = lp->status_pending;
1280 else
1281 {
1282 /* If the thread had been suspended by gdbserver, and it stopped
1283 cleanly, then it'll have stopped with SIGSTOP. But we don't
1284 want to deliver that SIGSTOP. */
1285 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1286 || thread->last_status.value.sig == GDB_SIGNAL_0)
1287 return 0;
1288
1289 /* Otherwise, we may need to deliver the signal we
1290 intercepted. */
1291 status = lp->last_status;
1292 }
1293
1294 if (!WIFSTOPPED (status))
1295 {
1296 if (debug_threads)
1297 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1298 target_pid_to_str (ptid_of (thread)));
1299 return 0;
1300 }
1301
1302 /* Extended wait statuses aren't real SIGTRAPs. */
1303 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1304 {
1305 if (debug_threads)
1306 debug_printf ("GPS: lwp %s had stopped with extended "
1307 "status: no pending signal\n",
1308 target_pid_to_str (ptid_of (thread)));
1309 return 0;
1310 }
1311
1312 signo = gdb_signal_from_host (WSTOPSIG (status));
1313
1314 if (program_signals_p && !program_signals[signo])
1315 {
1316 if (debug_threads)
1317 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1318 target_pid_to_str (ptid_of (thread)),
1319 gdb_signal_to_string (signo));
1320 return 0;
1321 }
1322 else if (!program_signals_p
1323 /* If we have no way to know which signals GDB does not
1324 want to have passed to the program, assume
1325 SIGTRAP/SIGINT, which is GDB's default. */
1326 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1327 {
1328 if (debug_threads)
1329 debug_printf ("GPS: lwp %s had signal %s, "
1330 "but we don't know if we should pass it. "
1331 "Default to not.\n",
1332 target_pid_to_str (ptid_of (thread)),
1333 gdb_signal_to_string (signo));
1334 return 0;
1335 }
1336 else
1337 {
1338 if (debug_threads)
1339 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1340 target_pid_to_str (ptid_of (thread)),
1341 gdb_signal_to_string (signo));
1342
1343 return WSTOPSIG (status);
1344 }
1345 }
1346
1347 static int
1348 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1349 {
1350 struct thread_info *thread = (struct thread_info *) entry;
1351 struct lwp_info *lwp = get_thread_lwp (thread);
1352 int pid = * (int *) args;
1353 int sig;
1354
1355 if (ptid_get_pid (entry->id) != pid)
1356 return 0;
1357
1358 /* If there is a pending SIGSTOP, get rid of it. */
1359 if (lwp->stop_expected)
1360 {
1361 if (debug_threads)
1362 debug_printf ("Sending SIGCONT to %s\n",
1363 target_pid_to_str (ptid_of (thread)));
1364
1365 kill_lwp (lwpid_of (thread), SIGCONT);
1366 lwp->stop_expected = 0;
1367 }
1368
1369 /* Flush any pending changes to the process's registers. */
1370 regcache_invalidate_thread (thread);
1371
1372 /* Pass on any pending signal for this thread. */
1373 sig = get_detach_signal (thread);
1374
1375 /* Finally, let it resume. */
1376 if (the_low_target.prepare_to_resume != NULL)
1377 the_low_target.prepare_to_resume (lwp);
1378 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1379 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1380 error (_("Can't detach %s: %s"),
1381 target_pid_to_str (ptid_of (thread)),
1382 strerror (errno));
1383
1384 delete_lwp (lwp);
1385 return 0;
1386 }
1387
1388 static int
1389 linux_detach (int pid)
1390 {
1391 struct process_info *process;
1392
1393 process = find_process_pid (pid);
1394 if (process == NULL)
1395 return -1;
1396
1397 /* As there's a step over already in progress, let it finish first,
1398 otherwise nesting a stabilize_threads operation on top gets real
1399 messy. */
1400 complete_ongoing_step_over ();
1401
1402 /* Stop all threads before detaching. First, ptrace requires that
1403 the thread is stopped to sucessfully detach. Second, thread_db
1404 may need to uninstall thread event breakpoints from memory, which
1405 only works with a stopped process anyway. */
1406 stop_all_lwps (0, NULL);
1407
1408 #ifdef USE_THREAD_DB
1409 thread_db_detach (process);
1410 #endif
1411
1412 /* Stabilize threads (move out of jump pads). */
1413 stabilize_threads ();
1414
1415 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1416
1417 the_target->mourn (process);
1418
1419 /* Since we presently can only stop all lwps of all processes, we
1420 need to unstop lwps of other processes. */
1421 unstop_all_lwps (0, NULL);
1422 return 0;
1423 }
1424
1425 /* Remove all LWPs that belong to process PROC from the lwp list. */
1426
1427 static int
1428 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1429 {
1430 struct thread_info *thread = (struct thread_info *) entry;
1431 struct lwp_info *lwp = get_thread_lwp (thread);
1432 struct process_info *process = (struct process_info *) proc;
1433
1434 if (pid_of (thread) == pid_of (process))
1435 delete_lwp (lwp);
1436
1437 return 0;
1438 }
1439
1440 static void
1441 linux_mourn (struct process_info *process)
1442 {
1443 struct process_info_private *priv;
1444
1445 #ifdef USE_THREAD_DB
1446 thread_db_mourn (process);
1447 #endif
1448
1449 find_inferior (&all_threads, delete_lwp_callback, process);
1450
1451 /* Freeing all private data. */
1452 priv = process->priv;
1453 free (priv->arch_private);
1454 free (priv);
1455 process->priv = NULL;
1456
1457 remove_process (process);
1458 }
1459
1460 static void
1461 linux_join (int pid)
1462 {
1463 int status, ret;
1464
1465 do {
1466 ret = my_waitpid (pid, &status, 0);
1467 if (WIFEXITED (status) || WIFSIGNALED (status))
1468 break;
1469 } while (ret != -1 || errno != ECHILD);
1470 }
1471
1472 /* Return nonzero if the given thread is still alive. */
1473 static int
1474 linux_thread_alive (ptid_t ptid)
1475 {
1476 struct lwp_info *lwp = find_lwp_pid (ptid);
1477
1478 /* We assume we always know if a thread exits. If a whole process
1479 exited but we still haven't been able to report it to GDB, we'll
1480 hold on to the last lwp of the dead process. */
1481 if (lwp != NULL)
1482 return !lwp_is_marked_dead (lwp);
1483 else
1484 return 0;
1485 }
1486
1487 /* Return 1 if this lwp still has an interesting status pending. If
1488 not (e.g., it had stopped for a breakpoint that is gone), return
1489 false. */
1490
1491 static int
1492 thread_still_has_status_pending_p (struct thread_info *thread)
1493 {
1494 struct lwp_info *lp = get_thread_lwp (thread);
1495
1496 if (!lp->status_pending_p)
1497 return 0;
1498
1499 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1500 report any status pending the LWP may have. */
1501 if (thread->last_resume_kind == resume_stop
1502 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1503 return 0;
1504
1505 if (thread->last_resume_kind != resume_stop
1506 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1507 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1508 {
1509 struct thread_info *saved_thread;
1510 CORE_ADDR pc;
1511 int discard = 0;
1512
1513 gdb_assert (lp->last_status != 0);
1514
1515 pc = get_pc (lp);
1516
1517 saved_thread = current_thread;
1518 current_thread = thread;
1519
1520 if (pc != lp->stop_pc)
1521 {
1522 if (debug_threads)
1523 debug_printf ("PC of %ld changed\n",
1524 lwpid_of (thread));
1525 discard = 1;
1526 }
1527
1528 #if !USE_SIGTRAP_SIGINFO
1529 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1530 && !(*the_low_target.breakpoint_at) (pc))
1531 {
1532 if (debug_threads)
1533 debug_printf ("previous SW breakpoint of %ld gone\n",
1534 lwpid_of (thread));
1535 discard = 1;
1536 }
1537 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1538 && !hardware_breakpoint_inserted_here (pc))
1539 {
1540 if (debug_threads)
1541 debug_printf ("previous HW breakpoint of %ld gone\n",
1542 lwpid_of (thread));
1543 discard = 1;
1544 }
1545 #endif
1546
1547 current_thread = saved_thread;
1548
1549 if (discard)
1550 {
1551 if (debug_threads)
1552 debug_printf ("discarding pending breakpoint status\n");
1553 lp->status_pending_p = 0;
1554 return 0;
1555 }
1556 }
1557
1558 return 1;
1559 }
1560
1561 /* Return 1 if this lwp has an interesting status pending. */
1562 static int
1563 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1564 {
1565 struct thread_info *thread = (struct thread_info *) entry;
1566 struct lwp_info *lp = get_thread_lwp (thread);
1567 ptid_t ptid = * (ptid_t *) arg;
1568
1569 /* Check if we're only interested in events from a specific process
1570 or a specific LWP. */
1571 if (!ptid_match (ptid_of (thread), ptid))
1572 return 0;
1573
1574 if (lp->status_pending_p
1575 && !thread_still_has_status_pending_p (thread))
1576 {
1577 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1578 return 0;
1579 }
1580
1581 return lp->status_pending_p;
1582 }
1583
1584 static int
1585 same_lwp (struct inferior_list_entry *entry, void *data)
1586 {
1587 ptid_t ptid = *(ptid_t *) data;
1588 int lwp;
1589
1590 if (ptid_get_lwp (ptid) != 0)
1591 lwp = ptid_get_lwp (ptid);
1592 else
1593 lwp = ptid_get_pid (ptid);
1594
1595 if (ptid_get_lwp (entry->id) == lwp)
1596 return 1;
1597
1598 return 0;
1599 }
1600
1601 struct lwp_info *
1602 find_lwp_pid (ptid_t ptid)
1603 {
1604 struct inferior_list_entry *thread
1605 = find_inferior (&all_threads, same_lwp, &ptid);
1606
1607 if (thread == NULL)
1608 return NULL;
1609
1610 return get_thread_lwp ((struct thread_info *) thread);
1611 }
1612
1613 /* Return the number of known LWPs in the tgid given by PID. */
1614
1615 static int
1616 num_lwps (int pid)
1617 {
1618 struct inferior_list_entry *inf, *tmp;
1619 int count = 0;
1620
1621 ALL_INFERIORS (&all_threads, inf, tmp)
1622 {
1623 if (ptid_get_pid (inf->id) == pid)
1624 count++;
1625 }
1626
1627 return count;
1628 }
1629
1630 /* The arguments passed to iterate_over_lwps. */
1631
1632 struct iterate_over_lwps_args
1633 {
1634 /* The FILTER argument passed to iterate_over_lwps. */
1635 ptid_t filter;
1636
1637 /* The CALLBACK argument passed to iterate_over_lwps. */
1638 iterate_over_lwps_ftype *callback;
1639
1640 /* The DATA argument passed to iterate_over_lwps. */
1641 void *data;
1642 };
1643
1644 /* Callback for find_inferior used by iterate_over_lwps to filter
1645 calls to the callback supplied to that function. Returning a
1646 nonzero value causes find_inferiors to stop iterating and return
1647 the current inferior_list_entry. Returning zero indicates that
1648 find_inferiors should continue iterating. */
1649
1650 static int
1651 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1652 {
1653 struct iterate_over_lwps_args *args
1654 = (struct iterate_over_lwps_args *) args_p;
1655
1656 if (ptid_match (entry->id, args->filter))
1657 {
1658 struct thread_info *thr = (struct thread_info *) entry;
1659 struct lwp_info *lwp = get_thread_lwp (thr);
1660
1661 return (*args->callback) (lwp, args->data);
1662 }
1663
1664 return 0;
1665 }
1666
1667 /* See nat/linux-nat.h. */
1668
1669 struct lwp_info *
1670 iterate_over_lwps (ptid_t filter,
1671 iterate_over_lwps_ftype callback,
1672 void *data)
1673 {
1674 struct iterate_over_lwps_args args = {filter, callback, data};
1675 struct inferior_list_entry *entry;
1676
1677 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1678 if (entry == NULL)
1679 return NULL;
1680
1681 return get_thread_lwp ((struct thread_info *) entry);
1682 }
1683
1684 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1685 their exits until all other threads in the group have exited. */
1686
1687 static void
1688 check_zombie_leaders (void)
1689 {
1690 struct process_info *proc, *tmp;
1691
1692 ALL_PROCESSES (proc, tmp)
1693 {
1694 pid_t leader_pid = pid_of (proc);
1695 struct lwp_info *leader_lp;
1696
1697 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1698
1699 if (debug_threads)
1700 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1701 "num_lwps=%d, zombie=%d\n",
1702 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1703 linux_proc_pid_is_zombie (leader_pid));
1704
1705 if (leader_lp != NULL && !leader_lp->stopped
1706 /* Check if there are other threads in the group, as we may
1707 have raced with the inferior simply exiting. */
1708 && !last_thread_of_process_p (leader_pid)
1709 && linux_proc_pid_is_zombie (leader_pid))
1710 {
1711 /* A leader zombie can mean one of two things:
1712
1713 - It exited, and there's an exit status pending
1714 available, or only the leader exited (not the whole
1715 program). In the latter case, we can't waitpid the
1716 leader's exit status until all other threads are gone.
1717
1718 - There are 3 or more threads in the group, and a thread
1719 other than the leader exec'd. On an exec, the Linux
1720 kernel destroys all other threads (except the execing
1721 one) in the thread group, and resets the execing thread's
1722 tid to the tgid. No exit notification is sent for the
1723 execing thread -- from the ptracer's perspective, it
1724 appears as though the execing thread just vanishes.
1725 Until we reap all other threads except the leader and the
1726 execing thread, the leader will be zombie, and the
1727 execing thread will be in `D (disc sleep)'. As soon as
1728 all other threads are reaped, the execing thread changes
1729 it's tid to the tgid, and the previous (zombie) leader
1730 vanishes, giving place to the "new" leader. We could try
1731 distinguishing the exit and exec cases, by waiting once
1732 more, and seeing if something comes out, but it doesn't
1733 sound useful. The previous leader _does_ go away, and
1734 we'll re-add the new one once we see the exec event
1735 (which is just the same as what would happen if the
1736 previous leader did exit voluntarily before some other
1737 thread execs). */
1738
1739 if (debug_threads)
1740 fprintf (stderr,
1741 "CZL: Thread group leader %d zombie "
1742 "(it exited, or another thread execd).\n",
1743 leader_pid);
1744
1745 delete_lwp (leader_lp);
1746 }
1747 }
1748 }
1749
1750 /* Callback for `find_inferior'. Returns the first LWP that is not
1751 stopped. ARG is a PTID filter. */
1752
1753 static int
1754 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1755 {
1756 struct thread_info *thr = (struct thread_info *) entry;
1757 struct lwp_info *lwp;
1758 ptid_t filter = *(ptid_t *) arg;
1759
1760 if (!ptid_match (ptid_of (thr), filter))
1761 return 0;
1762
1763 lwp = get_thread_lwp (thr);
1764 if (!lwp->stopped)
1765 return 1;
1766
1767 return 0;
1768 }
1769
1770 /* Increment LWP's suspend count. */
1771
1772 static void
1773 lwp_suspended_inc (struct lwp_info *lwp)
1774 {
1775 lwp->suspended++;
1776
1777 if (debug_threads && lwp->suspended > 4)
1778 {
1779 struct thread_info *thread = get_lwp_thread (lwp);
1780
1781 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1782 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1783 }
1784 }
1785
1786 /* Decrement LWP's suspend count. */
1787
1788 static void
1789 lwp_suspended_decr (struct lwp_info *lwp)
1790 {
1791 lwp->suspended--;
1792
1793 if (lwp->suspended < 0)
1794 {
1795 struct thread_info *thread = get_lwp_thread (lwp);
1796
1797 internal_error (__FILE__, __LINE__,
1798 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1799 lwp->suspended);
1800 }
1801 }
1802
1803 /* This function should only be called if the LWP got a SIGTRAP.
1804
1805 Handle any tracepoint steps or hits. Return true if a tracepoint
1806 event was handled, 0 otherwise. */
1807
1808 static int
1809 handle_tracepoints (struct lwp_info *lwp)
1810 {
1811 struct thread_info *tinfo = get_lwp_thread (lwp);
1812 int tpoint_related_event = 0;
1813
1814 gdb_assert (lwp->suspended == 0);
1815
1816 /* If this tracepoint hit causes a tracing stop, we'll immediately
1817 uninsert tracepoints. To do this, we temporarily pause all
1818 threads, unpatch away, and then unpause threads. We need to make
1819 sure the unpausing doesn't resume LWP too. */
1820 lwp_suspended_inc (lwp);
1821
1822 /* And we need to be sure that any all-threads-stopping doesn't try
1823 to move threads out of the jump pads, as it could deadlock the
1824 inferior (LWP could be in the jump pad, maybe even holding the
1825 lock.) */
1826
1827 /* Do any necessary step collect actions. */
1828 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1829
1830 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1831
1832 /* See if we just hit a tracepoint and do its main collect
1833 actions. */
1834 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1835
1836 lwp_suspended_decr (lwp);
1837
1838 gdb_assert (lwp->suspended == 0);
1839 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1840
1841 if (tpoint_related_event)
1842 {
1843 if (debug_threads)
1844 debug_printf ("got a tracepoint event\n");
1845 return 1;
1846 }
1847
1848 return 0;
1849 }
1850
1851 /* Convenience wrapper. Returns true if LWP is presently collecting a
1852 fast tracepoint. */
1853
1854 static int
1855 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1856 struct fast_tpoint_collect_status *status)
1857 {
1858 CORE_ADDR thread_area;
1859 struct thread_info *thread = get_lwp_thread (lwp);
1860
1861 if (the_low_target.get_thread_area == NULL)
1862 return 0;
1863
1864 /* Get the thread area address. This is used to recognize which
1865 thread is which when tracing with the in-process agent library.
1866 We don't read anything from the address, and treat it as opaque;
1867 it's the address itself that we assume is unique per-thread. */
1868 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1869 return 0;
1870
1871 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1872 }
1873
1874 /* The reason we resume in the caller, is because we want to be able
1875 to pass lwp->status_pending as WSTAT, and we need to clear
1876 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1877 refuses to resume. */
1878
1879 static int
1880 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1881 {
1882 struct thread_info *saved_thread;
1883
1884 saved_thread = current_thread;
1885 current_thread = get_lwp_thread (lwp);
1886
1887 if ((wstat == NULL
1888 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1889 && supports_fast_tracepoints ()
1890 && agent_loaded_p ())
1891 {
1892 struct fast_tpoint_collect_status status;
1893 int r;
1894
1895 if (debug_threads)
1896 debug_printf ("Checking whether LWP %ld needs to move out of the "
1897 "jump pad.\n",
1898 lwpid_of (current_thread));
1899
1900 r = linux_fast_tracepoint_collecting (lwp, &status);
1901
1902 if (wstat == NULL
1903 || (WSTOPSIG (*wstat) != SIGILL
1904 && WSTOPSIG (*wstat) != SIGFPE
1905 && WSTOPSIG (*wstat) != SIGSEGV
1906 && WSTOPSIG (*wstat) != SIGBUS))
1907 {
1908 lwp->collecting_fast_tracepoint = r;
1909
1910 if (r != 0)
1911 {
1912 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1913 {
1914 /* Haven't executed the original instruction yet.
1915 Set breakpoint there, and wait till it's hit,
1916 then single-step until exiting the jump pad. */
1917 lwp->exit_jump_pad_bkpt
1918 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1919 }
1920
1921 if (debug_threads)
1922 debug_printf ("Checking whether LWP %ld needs to move out of "
1923 "the jump pad...it does\n",
1924 lwpid_of (current_thread));
1925 current_thread = saved_thread;
1926
1927 return 1;
1928 }
1929 }
1930 else
1931 {
1932 /* If we get a synchronous signal while collecting, *and*
1933 while executing the (relocated) original instruction,
1934 reset the PC to point at the tpoint address, before
1935 reporting to GDB. Otherwise, it's an IPA lib bug: just
1936 report the signal to GDB, and pray for the best. */
1937
1938 lwp->collecting_fast_tracepoint = 0;
1939
1940 if (r != 0
1941 && (status.adjusted_insn_addr <= lwp->stop_pc
1942 && lwp->stop_pc < status.adjusted_insn_addr_end))
1943 {
1944 siginfo_t info;
1945 struct regcache *regcache;
1946
1947 /* The si_addr on a few signals references the address
1948 of the faulting instruction. Adjust that as
1949 well. */
1950 if ((WSTOPSIG (*wstat) == SIGILL
1951 || WSTOPSIG (*wstat) == SIGFPE
1952 || WSTOPSIG (*wstat) == SIGBUS
1953 || WSTOPSIG (*wstat) == SIGSEGV)
1954 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
1955 (PTRACE_TYPE_ARG3) 0, &info) == 0
1956 /* Final check just to make sure we don't clobber
1957 the siginfo of non-kernel-sent signals. */
1958 && (uintptr_t) info.si_addr == lwp->stop_pc)
1959 {
1960 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1961 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
1962 (PTRACE_TYPE_ARG3) 0, &info);
1963 }
1964
1965 regcache = get_thread_regcache (current_thread, 1);
1966 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1967 lwp->stop_pc = status.tpoint_addr;
1968
1969 /* Cancel any fast tracepoint lock this thread was
1970 holding. */
1971 force_unlock_trace_buffer ();
1972 }
1973
1974 if (lwp->exit_jump_pad_bkpt != NULL)
1975 {
1976 if (debug_threads)
1977 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
1978 "stopping all threads momentarily.\n");
1979
1980 stop_all_lwps (1, lwp);
1981
1982 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1983 lwp->exit_jump_pad_bkpt = NULL;
1984
1985 unstop_all_lwps (1, lwp);
1986
1987 gdb_assert (lwp->suspended >= 0);
1988 }
1989 }
1990 }
1991
1992 if (debug_threads)
1993 debug_printf ("Checking whether LWP %ld needs to move out of the "
1994 "jump pad...no\n",
1995 lwpid_of (current_thread));
1996
1997 current_thread = saved_thread;
1998 return 0;
1999 }
2000
2001 /* Enqueue one signal in the "signals to report later when out of the
2002 jump pad" list. */
2003
2004 static void
2005 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2006 {
2007 struct pending_signals *p_sig;
2008 struct thread_info *thread = get_lwp_thread (lwp);
2009
2010 if (debug_threads)
2011 debug_printf ("Deferring signal %d for LWP %ld.\n",
2012 WSTOPSIG (*wstat), lwpid_of (thread));
2013
2014 if (debug_threads)
2015 {
2016 struct pending_signals *sig;
2017
2018 for (sig = lwp->pending_signals_to_report;
2019 sig != NULL;
2020 sig = sig->prev)
2021 debug_printf (" Already queued %d\n",
2022 sig->signal);
2023
2024 debug_printf (" (no more currently queued signals)\n");
2025 }
2026
2027 /* Don't enqueue non-RT signals if they are already in the deferred
2028 queue. (SIGSTOP being the easiest signal to see ending up here
2029 twice) */
2030 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2031 {
2032 struct pending_signals *sig;
2033
2034 for (sig = lwp->pending_signals_to_report;
2035 sig != NULL;
2036 sig = sig->prev)
2037 {
2038 if (sig->signal == WSTOPSIG (*wstat))
2039 {
2040 if (debug_threads)
2041 debug_printf ("Not requeuing already queued non-RT signal %d"
2042 " for LWP %ld\n",
2043 sig->signal,
2044 lwpid_of (thread));
2045 return;
2046 }
2047 }
2048 }
2049
2050 p_sig = XCNEW (struct pending_signals);
2051 p_sig->prev = lwp->pending_signals_to_report;
2052 p_sig->signal = WSTOPSIG (*wstat);
2053
2054 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2055 &p_sig->info);
2056
2057 lwp->pending_signals_to_report = p_sig;
2058 }
2059
2060 /* Dequeue one signal from the "signals to report later when out of
2061 the jump pad" list. */
2062
2063 static int
2064 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2065 {
2066 struct thread_info *thread = get_lwp_thread (lwp);
2067
2068 if (lwp->pending_signals_to_report != NULL)
2069 {
2070 struct pending_signals **p_sig;
2071
2072 p_sig = &lwp->pending_signals_to_report;
2073 while ((*p_sig)->prev != NULL)
2074 p_sig = &(*p_sig)->prev;
2075
2076 *wstat = W_STOPCODE ((*p_sig)->signal);
2077 if ((*p_sig)->info.si_signo != 0)
2078 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2079 &(*p_sig)->info);
2080 free (*p_sig);
2081 *p_sig = NULL;
2082
2083 if (debug_threads)
2084 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2085 WSTOPSIG (*wstat), lwpid_of (thread));
2086
2087 if (debug_threads)
2088 {
2089 struct pending_signals *sig;
2090
2091 for (sig = lwp->pending_signals_to_report;
2092 sig != NULL;
2093 sig = sig->prev)
2094 debug_printf (" Still queued %d\n",
2095 sig->signal);
2096
2097 debug_printf (" (no more queued signals)\n");
2098 }
2099
2100 return 1;
2101 }
2102
2103 return 0;
2104 }
2105
2106 /* Fetch the possibly triggered data watchpoint info and store it in
2107 CHILD.
2108
2109 On some archs, like x86, that use debug registers to set
2110 watchpoints, it's possible that the way to know which watched
2111 address trapped, is to check the register that is used to select
2112 which address to watch. Problem is, between setting the watchpoint
2113 and reading back which data address trapped, the user may change
2114 the set of watchpoints, and, as a consequence, GDB changes the
2115 debug registers in the inferior. To avoid reading back a stale
2116 stopped-data-address when that happens, we cache in LP the fact
2117 that a watchpoint trapped, and the corresponding data address, as
2118 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2119 registers meanwhile, we have the cached data we can rely on. */
2120
2121 static int
2122 check_stopped_by_watchpoint (struct lwp_info *child)
2123 {
2124 if (the_low_target.stopped_by_watchpoint != NULL)
2125 {
2126 struct thread_info *saved_thread;
2127
2128 saved_thread = current_thread;
2129 current_thread = get_lwp_thread (child);
2130
2131 if (the_low_target.stopped_by_watchpoint ())
2132 {
2133 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2134
2135 if (the_low_target.stopped_data_address != NULL)
2136 child->stopped_data_address
2137 = the_low_target.stopped_data_address ();
2138 else
2139 child->stopped_data_address = 0;
2140 }
2141
2142 current_thread = saved_thread;
2143 }
2144
2145 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2146 }
2147
2148 /* Return the ptrace options that we want to try to enable. */
2149
2150 static int
2151 linux_low_ptrace_options (int attached)
2152 {
2153 int options = 0;
2154
2155 if (!attached)
2156 options |= PTRACE_O_EXITKILL;
2157
2158 if (report_fork_events)
2159 options |= PTRACE_O_TRACEFORK;
2160
2161 if (report_vfork_events)
2162 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2163
2164 if (report_exec_events)
2165 options |= PTRACE_O_TRACEEXEC;
2166
2167 return options;
2168 }
2169
2170 /* Do low-level handling of the event, and check if we should go on
2171 and pass it to caller code. Return the affected lwp if we are, or
2172 NULL otherwise. */
2173
2174 static struct lwp_info *
2175 linux_low_filter_event (int lwpid, int wstat)
2176 {
2177 struct lwp_info *child;
2178 struct thread_info *thread;
2179 int have_stop_pc = 0;
2180
2181 child = find_lwp_pid (pid_to_ptid (lwpid));
2182
2183 /* Check for stop events reported by a process we didn't already
2184 know about - anything not already in our LWP list.
2185
2186 If we're expecting to receive stopped processes after
2187 fork, vfork, and clone events, then we'll just add the
2188 new one to our list and go back to waiting for the event
2189 to be reported - the stopped process might be returned
2190 from waitpid before or after the event is.
2191
2192 But note the case of a non-leader thread exec'ing after the
2193 leader having exited, and gone from our lists (because
2194 check_zombie_leaders deleted it). The non-leader thread
2195 changes its tid to the tgid. */
2196
2197 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2198 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2199 {
2200 ptid_t child_ptid;
2201
2202 /* A multi-thread exec after we had seen the leader exiting. */
2203 if (debug_threads)
2204 {
2205 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2206 "after exec.\n", lwpid);
2207 }
2208
2209 child_ptid = ptid_build (lwpid, lwpid, 0);
2210 child = add_lwp (child_ptid);
2211 child->stopped = 1;
2212 current_thread = child->thread;
2213 }
2214
2215 /* If we didn't find a process, one of two things presumably happened:
2216 - A process we started and then detached from has exited. Ignore it.
2217 - A process we are controlling has forked and the new child's stop
2218 was reported to us by the kernel. Save its PID. */
2219 if (child == NULL && WIFSTOPPED (wstat))
2220 {
2221 add_to_pid_list (&stopped_pids, lwpid, wstat);
2222 return NULL;
2223 }
2224 else if (child == NULL)
2225 return NULL;
2226
2227 thread = get_lwp_thread (child);
2228
2229 child->stopped = 1;
2230
2231 child->last_status = wstat;
2232
2233 /* Check if the thread has exited. */
2234 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2235 {
2236 if (debug_threads)
2237 debug_printf ("LLFE: %d exited.\n", lwpid);
2238 if (num_lwps (pid_of (thread)) > 1)
2239 {
2240
2241 /* If there is at least one more LWP, then the exit signal was
2242 not the end of the debugged application and should be
2243 ignored. */
2244 delete_lwp (child);
2245 return NULL;
2246 }
2247 else
2248 {
2249 /* This was the last lwp in the process. Since events are
2250 serialized to GDB core, and we can't report this one
2251 right now, but GDB core and the other target layers will
2252 want to be notified about the exit code/signal, leave the
2253 status pending for the next time we're able to report
2254 it. */
2255 mark_lwp_dead (child, wstat);
2256 return child;
2257 }
2258 }
2259
2260 gdb_assert (WIFSTOPPED (wstat));
2261
2262 if (WIFSTOPPED (wstat))
2263 {
2264 struct process_info *proc;
2265
2266 /* Architecture-specific setup after inferior is running. */
2267 proc = find_process_pid (pid_of (thread));
2268 if (proc->tdesc == NULL)
2269 {
2270 if (proc->attached)
2271 {
2272 /* This needs to happen after we have attached to the
2273 inferior and it is stopped for the first time, but
2274 before we access any inferior registers. */
2275 linux_arch_setup_thread (thread);
2276 }
2277 else
2278 {
2279 /* The process is started, but GDBserver will do
2280 architecture-specific setup after the program stops at
2281 the first instruction. */
2282 child->status_pending_p = 1;
2283 child->status_pending = wstat;
2284 return child;
2285 }
2286 }
2287 }
2288
2289 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2290 {
2291 struct process_info *proc = find_process_pid (pid_of (thread));
2292 int options = linux_low_ptrace_options (proc->attached);
2293
2294 linux_enable_event_reporting (lwpid, options);
2295 child->must_set_ptrace_flags = 0;
2296 }
2297
2298 /* Be careful to not overwrite stop_pc until
2299 check_stopped_by_breakpoint is called. */
2300 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2301 && linux_is_extended_waitstatus (wstat))
2302 {
2303 child->stop_pc = get_pc (child);
2304 if (handle_extended_wait (&child, wstat))
2305 {
2306 /* The event has been handled, so just return without
2307 reporting it. */
2308 return NULL;
2309 }
2310 }
2311
2312 /* Check first whether this was a SW/HW breakpoint before checking
2313 watchpoints, because at least s390 can't tell the data address of
2314 hardware watchpoint hits, and returns stopped-by-watchpoint as
2315 long as there's a watchpoint set. */
2316 if (WIFSTOPPED (wstat) && linux_wstatus_maybe_breakpoint (wstat))
2317 {
2318 if (check_stopped_by_breakpoint (child))
2319 have_stop_pc = 1;
2320 }
2321
2322 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2323 or hardware watchpoint. Check which is which if we got
2324 TARGET_STOPPED_BY_HW_BREAKPOINT. Likewise, we may have single
2325 stepped an instruction that triggered a watchpoint. In that
2326 case, on some architectures (such as x86), instead of
2327 TRAP_HWBKPT, si_code indicates TRAP_TRACE, and we need to check
2328 the debug registers separately. */
2329 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2330 && child->stop_reason != TARGET_STOPPED_BY_SW_BREAKPOINT)
2331 check_stopped_by_watchpoint (child);
2332
2333 if (!have_stop_pc)
2334 child->stop_pc = get_pc (child);
2335
2336 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2337 && child->stop_expected)
2338 {
2339 if (debug_threads)
2340 debug_printf ("Expected stop.\n");
2341 child->stop_expected = 0;
2342
2343 if (thread->last_resume_kind == resume_stop)
2344 {
2345 /* We want to report the stop to the core. Treat the
2346 SIGSTOP as a normal event. */
2347 if (debug_threads)
2348 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2349 target_pid_to_str (ptid_of (thread)));
2350 }
2351 else if (stopping_threads != NOT_STOPPING_THREADS)
2352 {
2353 /* Stopping threads. We don't want this SIGSTOP to end up
2354 pending. */
2355 if (debug_threads)
2356 debug_printf ("LLW: SIGSTOP caught for %s "
2357 "while stopping threads.\n",
2358 target_pid_to_str (ptid_of (thread)));
2359 return NULL;
2360 }
2361 else
2362 {
2363 /* This is a delayed SIGSTOP. Filter out the event. */
2364 if (debug_threads)
2365 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2366 child->stepping ? "step" : "continue",
2367 target_pid_to_str (ptid_of (thread)));
2368
2369 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2370 return NULL;
2371 }
2372 }
2373
2374 child->status_pending_p = 1;
2375 child->status_pending = wstat;
2376 return child;
2377 }
2378
2379 /* Resume LWPs that are currently stopped without any pending status
2380 to report, but are resumed from the core's perspective. */
2381
2382 static void
2383 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2384 {
2385 struct thread_info *thread = (struct thread_info *) entry;
2386 struct lwp_info *lp = get_thread_lwp (thread);
2387
2388 if (lp->stopped
2389 && !lp->suspended
2390 && !lp->status_pending_p
2391 && thread->last_resume_kind != resume_stop
2392 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2393 {
2394 int step = thread->last_resume_kind == resume_step;
2395
2396 if (debug_threads)
2397 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2398 target_pid_to_str (ptid_of (thread)),
2399 paddress (lp->stop_pc),
2400 step);
2401
2402 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2403 }
2404 }
2405
2406 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2407 match FILTER_PTID (leaving others pending). The PTIDs can be:
2408 minus_one_ptid, to specify any child; a pid PTID, specifying all
2409 lwps of a thread group; or a PTID representing a single lwp. Store
2410 the stop status through the status pointer WSTAT. OPTIONS is
2411 passed to the waitpid call. Return 0 if no event was found and
2412 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2413 was found. Return the PID of the stopped child otherwise. */
2414
2415 static int
2416 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2417 int *wstatp, int options)
2418 {
2419 struct thread_info *event_thread;
2420 struct lwp_info *event_child, *requested_child;
2421 sigset_t block_mask, prev_mask;
2422
2423 retry:
2424 /* N.B. event_thread points to the thread_info struct that contains
2425 event_child. Keep them in sync. */
2426 event_thread = NULL;
2427 event_child = NULL;
2428 requested_child = NULL;
2429
2430 /* Check for a lwp with a pending status. */
2431
2432 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2433 {
2434 event_thread = (struct thread_info *)
2435 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2436 if (event_thread != NULL)
2437 event_child = get_thread_lwp (event_thread);
2438 if (debug_threads && event_thread)
2439 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2440 }
2441 else if (!ptid_equal (filter_ptid, null_ptid))
2442 {
2443 requested_child = find_lwp_pid (filter_ptid);
2444
2445 if (stopping_threads == NOT_STOPPING_THREADS
2446 && requested_child->status_pending_p
2447 && requested_child->collecting_fast_tracepoint)
2448 {
2449 enqueue_one_deferred_signal (requested_child,
2450 &requested_child->status_pending);
2451 requested_child->status_pending_p = 0;
2452 requested_child->status_pending = 0;
2453 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2454 }
2455
2456 if (requested_child->suspended
2457 && requested_child->status_pending_p)
2458 {
2459 internal_error (__FILE__, __LINE__,
2460 "requesting an event out of a"
2461 " suspended child?");
2462 }
2463
2464 if (requested_child->status_pending_p)
2465 {
2466 event_child = requested_child;
2467 event_thread = get_lwp_thread (event_child);
2468 }
2469 }
2470
2471 if (event_child != NULL)
2472 {
2473 if (debug_threads)
2474 debug_printf ("Got an event from pending child %ld (%04x)\n",
2475 lwpid_of (event_thread), event_child->status_pending);
2476 *wstatp = event_child->status_pending;
2477 event_child->status_pending_p = 0;
2478 event_child->status_pending = 0;
2479 current_thread = event_thread;
2480 return lwpid_of (event_thread);
2481 }
2482
2483 /* But if we don't find a pending event, we'll have to wait.
2484
2485 We only enter this loop if no process has a pending wait status.
2486 Thus any action taken in response to a wait status inside this
2487 loop is responding as soon as we detect the status, not after any
2488 pending events. */
2489
2490 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2491 all signals while here. */
2492 sigfillset (&block_mask);
2493 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2494
2495 /* Always pull all events out of the kernel. We'll randomly select
2496 an event LWP out of all that have events, to prevent
2497 starvation. */
2498 while (event_child == NULL)
2499 {
2500 pid_t ret = 0;
2501
2502 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2503 quirks:
2504
2505 - If the thread group leader exits while other threads in the
2506 thread group still exist, waitpid(TGID, ...) hangs. That
2507 waitpid won't return an exit status until the other threads
2508 in the group are reaped.
2509
2510 - When a non-leader thread execs, that thread just vanishes
2511 without reporting an exit (so we'd hang if we waited for it
2512 explicitly in that case). The exec event is reported to
2513 the TGID pid. */
2514 errno = 0;
2515 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2516
2517 if (debug_threads)
2518 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2519 ret, errno ? strerror (errno) : "ERRNO-OK");
2520
2521 if (ret > 0)
2522 {
2523 if (debug_threads)
2524 {
2525 debug_printf ("LLW: waitpid %ld received %s\n",
2526 (long) ret, status_to_str (*wstatp));
2527 }
2528
2529 /* Filter all events. IOW, leave all events pending. We'll
2530 randomly select an event LWP out of all that have events
2531 below. */
2532 linux_low_filter_event (ret, *wstatp);
2533 /* Retry until nothing comes out of waitpid. A single
2534 SIGCHLD can indicate more than one child stopped. */
2535 continue;
2536 }
2537
2538 /* Now that we've pulled all events out of the kernel, resume
2539 LWPs that don't have an interesting event to report. */
2540 if (stopping_threads == NOT_STOPPING_THREADS)
2541 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2542
2543 /* ... and find an LWP with a status to report to the core, if
2544 any. */
2545 event_thread = (struct thread_info *)
2546 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2547 if (event_thread != NULL)
2548 {
2549 event_child = get_thread_lwp (event_thread);
2550 *wstatp = event_child->status_pending;
2551 event_child->status_pending_p = 0;
2552 event_child->status_pending = 0;
2553 break;
2554 }
2555
2556 /* Check for zombie thread group leaders. Those can't be reaped
2557 until all other threads in the thread group are. */
2558 check_zombie_leaders ();
2559
2560 /* If there are no resumed children left in the set of LWPs we
2561 want to wait for, bail. We can't just block in
2562 waitpid/sigsuspend, because lwps might have been left stopped
2563 in trace-stop state, and we'd be stuck forever waiting for
2564 their status to change (which would only happen if we resumed
2565 them). Even if WNOHANG is set, this return code is preferred
2566 over 0 (below), as it is more detailed. */
2567 if ((find_inferior (&all_threads,
2568 not_stopped_callback,
2569 &wait_ptid) == NULL))
2570 {
2571 if (debug_threads)
2572 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2573 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2574 return -1;
2575 }
2576
2577 /* No interesting event to report to the caller. */
2578 if ((options & WNOHANG))
2579 {
2580 if (debug_threads)
2581 debug_printf ("WNOHANG set, no event found\n");
2582
2583 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2584 return 0;
2585 }
2586
2587 /* Block until we get an event reported with SIGCHLD. */
2588 if (debug_threads)
2589 debug_printf ("sigsuspend'ing\n");
2590
2591 sigsuspend (&prev_mask);
2592 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2593 goto retry;
2594 }
2595
2596 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2597
2598 current_thread = event_thread;
2599
2600 /* Check for thread exit. */
2601 if (! WIFSTOPPED (*wstatp))
2602 {
2603 gdb_assert (last_thread_of_process_p (pid_of (event_thread)));
2604
2605 if (debug_threads)
2606 debug_printf ("LWP %d is the last lwp of process. "
2607 "Process %ld exiting.\n",
2608 pid_of (event_thread), lwpid_of (event_thread));
2609 return lwpid_of (event_thread);
2610 }
2611
2612 return lwpid_of (event_thread);
2613 }
2614
2615 /* Wait for an event from child(ren) PTID. PTIDs can be:
2616 minus_one_ptid, to specify any child; a pid PTID, specifying all
2617 lwps of a thread group; or a PTID representing a single lwp. Store
2618 the stop status through the status pointer WSTAT. OPTIONS is
2619 passed to the waitpid call. Return 0 if no event was found and
2620 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2621 was found. Return the PID of the stopped child otherwise. */
2622
2623 static int
2624 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2625 {
2626 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2627 }
2628
2629 /* Count the LWP's that have had events. */
2630
2631 static int
2632 count_events_callback (struct inferior_list_entry *entry, void *data)
2633 {
2634 struct thread_info *thread = (struct thread_info *) entry;
2635 struct lwp_info *lp = get_thread_lwp (thread);
2636 int *count = (int *) data;
2637
2638 gdb_assert (count != NULL);
2639
2640 /* Count only resumed LWPs that have an event pending. */
2641 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2642 && lp->status_pending_p)
2643 (*count)++;
2644
2645 return 0;
2646 }
2647
2648 /* Select the LWP (if any) that is currently being single-stepped. */
2649
2650 static int
2651 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2652 {
2653 struct thread_info *thread = (struct thread_info *) entry;
2654 struct lwp_info *lp = get_thread_lwp (thread);
2655
2656 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2657 && thread->last_resume_kind == resume_step
2658 && lp->status_pending_p)
2659 return 1;
2660 else
2661 return 0;
2662 }
2663
2664 /* Select the Nth LWP that has had an event. */
2665
2666 static int
2667 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2668 {
2669 struct thread_info *thread = (struct thread_info *) entry;
2670 struct lwp_info *lp = get_thread_lwp (thread);
2671 int *selector = (int *) data;
2672
2673 gdb_assert (selector != NULL);
2674
2675 /* Select only resumed LWPs that have an event pending. */
2676 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2677 && lp->status_pending_p)
2678 if ((*selector)-- == 0)
2679 return 1;
2680
2681 return 0;
2682 }
2683
2684 /* Select one LWP out of those that have events pending. */
2685
2686 static void
2687 select_event_lwp (struct lwp_info **orig_lp)
2688 {
2689 int num_events = 0;
2690 int random_selector;
2691 struct thread_info *event_thread = NULL;
2692
2693 /* In all-stop, give preference to the LWP that is being
2694 single-stepped. There will be at most one, and it's the LWP that
2695 the core is most interested in. If we didn't do this, then we'd
2696 have to handle pending step SIGTRAPs somehow in case the core
2697 later continues the previously-stepped thread, otherwise we'd
2698 report the pending SIGTRAP, and the core, not having stepped the
2699 thread, wouldn't understand what the trap was for, and therefore
2700 would report it to the user as a random signal. */
2701 if (!non_stop)
2702 {
2703 event_thread
2704 = (struct thread_info *) find_inferior (&all_threads,
2705 select_singlestep_lwp_callback,
2706 NULL);
2707 if (event_thread != NULL)
2708 {
2709 if (debug_threads)
2710 debug_printf ("SEL: Select single-step %s\n",
2711 target_pid_to_str (ptid_of (event_thread)));
2712 }
2713 }
2714 if (event_thread == NULL)
2715 {
2716 /* No single-stepping LWP. Select one at random, out of those
2717 which have had events. */
2718
2719 /* First see how many events we have. */
2720 find_inferior (&all_threads, count_events_callback, &num_events);
2721 gdb_assert (num_events > 0);
2722
2723 /* Now randomly pick a LWP out of those that have had
2724 events. */
2725 random_selector = (int)
2726 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2727
2728 if (debug_threads && num_events > 1)
2729 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2730 num_events, random_selector);
2731
2732 event_thread
2733 = (struct thread_info *) find_inferior (&all_threads,
2734 select_event_lwp_callback,
2735 &random_selector);
2736 }
2737
2738 if (event_thread != NULL)
2739 {
2740 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2741
2742 /* Switch the event LWP. */
2743 *orig_lp = event_lp;
2744 }
2745 }
2746
2747 /* Decrement the suspend count of an LWP. */
2748
2749 static int
2750 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2751 {
2752 struct thread_info *thread = (struct thread_info *) entry;
2753 struct lwp_info *lwp = get_thread_lwp (thread);
2754
2755 /* Ignore EXCEPT. */
2756 if (lwp == except)
2757 return 0;
2758
2759 lwp_suspended_decr (lwp);
2760 return 0;
2761 }
2762
2763 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2764 NULL. */
2765
2766 static void
2767 unsuspend_all_lwps (struct lwp_info *except)
2768 {
2769 find_inferior (&all_threads, unsuspend_one_lwp, except);
2770 }
2771
2772 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2773 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2774 void *data);
2775 static int lwp_running (struct inferior_list_entry *entry, void *data);
2776 static ptid_t linux_wait_1 (ptid_t ptid,
2777 struct target_waitstatus *ourstatus,
2778 int target_options);
2779
2780 /* Stabilize threads (move out of jump pads).
2781
2782 If a thread is midway collecting a fast tracepoint, we need to
2783 finish the collection and move it out of the jump pad before
2784 reporting the signal.
2785
2786 This avoids recursion while collecting (when a signal arrives
2787 midway, and the signal handler itself collects), which would trash
2788 the trace buffer. In case the user set a breakpoint in a signal
2789 handler, this avoids the backtrace showing the jump pad, etc..
2790 Most importantly, there are certain things we can't do safely if
2791 threads are stopped in a jump pad (or in its callee's). For
2792 example:
2793
2794 - starting a new trace run. A thread still collecting the
2795 previous run, could trash the trace buffer when resumed. The trace
2796 buffer control structures would have been reset but the thread had
2797 no way to tell. The thread could even midway memcpy'ing to the
2798 buffer, which would mean that when resumed, it would clobber the
2799 trace buffer that had been set for a new run.
2800
2801 - we can't rewrite/reuse the jump pads for new tracepoints
2802 safely. Say you do tstart while a thread is stopped midway while
2803 collecting. When the thread is later resumed, it finishes the
2804 collection, and returns to the jump pad, to execute the original
2805 instruction that was under the tracepoint jump at the time the
2806 older run had been started. If the jump pad had been rewritten
2807 since for something else in the new run, the thread would now
2808 execute the wrong / random instructions. */
2809
2810 static void
2811 linux_stabilize_threads (void)
2812 {
2813 struct thread_info *saved_thread;
2814 struct thread_info *thread_stuck;
2815
2816 thread_stuck
2817 = (struct thread_info *) find_inferior (&all_threads,
2818 stuck_in_jump_pad_callback,
2819 NULL);
2820 if (thread_stuck != NULL)
2821 {
2822 if (debug_threads)
2823 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2824 lwpid_of (thread_stuck));
2825 return;
2826 }
2827
2828 saved_thread = current_thread;
2829
2830 stabilizing_threads = 1;
2831
2832 /* Kick 'em all. */
2833 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2834
2835 /* Loop until all are stopped out of the jump pads. */
2836 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2837 {
2838 struct target_waitstatus ourstatus;
2839 struct lwp_info *lwp;
2840 int wstat;
2841
2842 /* Note that we go through the full wait even loop. While
2843 moving threads out of jump pad, we need to be able to step
2844 over internal breakpoints and such. */
2845 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2846
2847 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2848 {
2849 lwp = get_thread_lwp (current_thread);
2850
2851 /* Lock it. */
2852 lwp_suspended_inc (lwp);
2853
2854 if (ourstatus.value.sig != GDB_SIGNAL_0
2855 || current_thread->last_resume_kind == resume_stop)
2856 {
2857 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2858 enqueue_one_deferred_signal (lwp, &wstat);
2859 }
2860 }
2861 }
2862
2863 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2864
2865 stabilizing_threads = 0;
2866
2867 current_thread = saved_thread;
2868
2869 if (debug_threads)
2870 {
2871 thread_stuck
2872 = (struct thread_info *) find_inferior (&all_threads,
2873 stuck_in_jump_pad_callback,
2874 NULL);
2875 if (thread_stuck != NULL)
2876 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2877 lwpid_of (thread_stuck));
2878 }
2879 }
2880
2881 static void async_file_mark (void);
2882
2883 /* Convenience function that is called when the kernel reports an
2884 event that is not passed out to GDB. */
2885
2886 static ptid_t
2887 ignore_event (struct target_waitstatus *ourstatus)
2888 {
2889 /* If we got an event, there may still be others, as a single
2890 SIGCHLD can indicate more than one child stopped. This forces
2891 another target_wait call. */
2892 async_file_mark ();
2893
2894 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2895 return null_ptid;
2896 }
2897
2898 /* Wait for process, returns status. */
2899
2900 static ptid_t
2901 linux_wait_1 (ptid_t ptid,
2902 struct target_waitstatus *ourstatus, int target_options)
2903 {
2904 int w;
2905 struct lwp_info *event_child;
2906 int options;
2907 int pid;
2908 int step_over_finished;
2909 int bp_explains_trap;
2910 int maybe_internal_trap;
2911 int report_to_gdb;
2912 int trace_event;
2913 int in_step_range;
2914
2915 if (debug_threads)
2916 {
2917 debug_enter ();
2918 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
2919 }
2920
2921 /* Translate generic target options into linux options. */
2922 options = __WALL;
2923 if (target_options & TARGET_WNOHANG)
2924 options |= WNOHANG;
2925
2926 bp_explains_trap = 0;
2927 trace_event = 0;
2928 in_step_range = 0;
2929 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2930
2931 if (ptid_equal (step_over_bkpt, null_ptid))
2932 pid = linux_wait_for_event (ptid, &w, options);
2933 else
2934 {
2935 if (debug_threads)
2936 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
2937 target_pid_to_str (step_over_bkpt));
2938 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2939 }
2940
2941 if (pid == 0)
2942 {
2943 gdb_assert (target_options & TARGET_WNOHANG);
2944
2945 if (debug_threads)
2946 {
2947 debug_printf ("linux_wait_1 ret = null_ptid, "
2948 "TARGET_WAITKIND_IGNORE\n");
2949 debug_exit ();
2950 }
2951
2952 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2953 return null_ptid;
2954 }
2955 else if (pid == -1)
2956 {
2957 if (debug_threads)
2958 {
2959 debug_printf ("linux_wait_1 ret = null_ptid, "
2960 "TARGET_WAITKIND_NO_RESUMED\n");
2961 debug_exit ();
2962 }
2963
2964 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
2965 return null_ptid;
2966 }
2967
2968 event_child = get_thread_lwp (current_thread);
2969
2970 /* linux_wait_for_event only returns an exit status for the last
2971 child of a process. Report it. */
2972 if (WIFEXITED (w) || WIFSIGNALED (w))
2973 {
2974 if (WIFEXITED (w))
2975 {
2976 ourstatus->kind = TARGET_WAITKIND_EXITED;
2977 ourstatus->value.integer = WEXITSTATUS (w);
2978
2979 if (debug_threads)
2980 {
2981 debug_printf ("linux_wait_1 ret = %s, exited with "
2982 "retcode %d\n",
2983 target_pid_to_str (ptid_of (current_thread)),
2984 WEXITSTATUS (w));
2985 debug_exit ();
2986 }
2987 }
2988 else
2989 {
2990 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2991 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
2992
2993 if (debug_threads)
2994 {
2995 debug_printf ("linux_wait_1 ret = %s, terminated with "
2996 "signal %d\n",
2997 target_pid_to_str (ptid_of (current_thread)),
2998 WTERMSIG (w));
2999 debug_exit ();
3000 }
3001 }
3002
3003 return ptid_of (current_thread);
3004 }
3005
3006 /* If step-over executes a breakpoint instruction, it means a
3007 gdb/gdbserver breakpoint had been planted on top of a permanent
3008 breakpoint. The PC has been adjusted by
3009 check_stopped_by_breakpoint to point at the breakpoint address.
3010 Advance the PC manually past the breakpoint, otherwise the
3011 program would keep trapping the permanent breakpoint forever. */
3012 if (!ptid_equal (step_over_bkpt, null_ptid)
3013 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
3014 {
3015 int increment_pc = 0;
3016 int breakpoint_kind = 0;
3017 CORE_ADDR stop_pc = event_child->stop_pc;
3018
3019 breakpoint_kind = the_target->breakpoint_kind_from_pc (&stop_pc);
3020 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3021
3022 if (debug_threads)
3023 {
3024 debug_printf ("step-over for %s executed software breakpoint\n",
3025 target_pid_to_str (ptid_of (current_thread)));
3026 }
3027
3028 if (increment_pc != 0)
3029 {
3030 struct regcache *regcache
3031 = get_thread_regcache (current_thread, 1);
3032
3033 event_child->stop_pc += increment_pc;
3034 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3035
3036 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3037 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3038 }
3039 }
3040
3041 /* If this event was not handled before, and is not a SIGTRAP, we
3042 report it. SIGILL and SIGSEGV are also treated as traps in case
3043 a breakpoint is inserted at the current PC. If this target does
3044 not support internal breakpoints at all, we also report the
3045 SIGTRAP without further processing; it's of no concern to us. */
3046 maybe_internal_trap
3047 = (supports_breakpoints ()
3048 && (WSTOPSIG (w) == SIGTRAP
3049 || ((WSTOPSIG (w) == SIGILL
3050 || WSTOPSIG (w) == SIGSEGV)
3051 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3052
3053 if (maybe_internal_trap)
3054 {
3055 /* Handle anything that requires bookkeeping before deciding to
3056 report the event or continue waiting. */
3057
3058 /* First check if we can explain the SIGTRAP with an internal
3059 breakpoint, or if we should possibly report the event to GDB.
3060 Do this before anything that may remove or insert a
3061 breakpoint. */
3062 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3063
3064 /* We have a SIGTRAP, possibly a step-over dance has just
3065 finished. If so, tweak the state machine accordingly,
3066 reinsert breakpoints and delete any reinsert (software
3067 single-step) breakpoints. */
3068 step_over_finished = finish_step_over (event_child);
3069
3070 /* Now invoke the callbacks of any internal breakpoints there. */
3071 check_breakpoints (event_child->stop_pc);
3072
3073 /* Handle tracepoint data collecting. This may overflow the
3074 trace buffer, and cause a tracing stop, removing
3075 breakpoints. */
3076 trace_event = handle_tracepoints (event_child);
3077
3078 if (bp_explains_trap)
3079 {
3080 /* If we stepped or ran into an internal breakpoint, we've
3081 already handled it. So next time we resume (from this
3082 PC), we should step over it. */
3083 if (debug_threads)
3084 debug_printf ("Hit a gdbserver breakpoint.\n");
3085
3086 if (breakpoint_here (event_child->stop_pc))
3087 event_child->need_step_over = 1;
3088 }
3089 }
3090 else
3091 {
3092 /* We have some other signal, possibly a step-over dance was in
3093 progress, and it should be cancelled too. */
3094 step_over_finished = finish_step_over (event_child);
3095 }
3096
3097 /* We have all the data we need. Either report the event to GDB, or
3098 resume threads and keep waiting for more. */
3099
3100 /* If we're collecting a fast tracepoint, finish the collection and
3101 move out of the jump pad before delivering a signal. See
3102 linux_stabilize_threads. */
3103
3104 if (WIFSTOPPED (w)
3105 && WSTOPSIG (w) != SIGTRAP
3106 && supports_fast_tracepoints ()
3107 && agent_loaded_p ())
3108 {
3109 if (debug_threads)
3110 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3111 "to defer or adjust it.\n",
3112 WSTOPSIG (w), lwpid_of (current_thread));
3113
3114 /* Allow debugging the jump pad itself. */
3115 if (current_thread->last_resume_kind != resume_step
3116 && maybe_move_out_of_jump_pad (event_child, &w))
3117 {
3118 enqueue_one_deferred_signal (event_child, &w);
3119
3120 if (debug_threads)
3121 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3122 WSTOPSIG (w), lwpid_of (current_thread));
3123
3124 linux_resume_one_lwp (event_child, 0, 0, NULL);
3125
3126 return ignore_event (ourstatus);
3127 }
3128 }
3129
3130 if (event_child->collecting_fast_tracepoint)
3131 {
3132 if (debug_threads)
3133 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3134 "Check if we're already there.\n",
3135 lwpid_of (current_thread),
3136 event_child->collecting_fast_tracepoint);
3137
3138 trace_event = 1;
3139
3140 event_child->collecting_fast_tracepoint
3141 = linux_fast_tracepoint_collecting (event_child, NULL);
3142
3143 if (event_child->collecting_fast_tracepoint != 1)
3144 {
3145 /* No longer need this breakpoint. */
3146 if (event_child->exit_jump_pad_bkpt != NULL)
3147 {
3148 if (debug_threads)
3149 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3150 "stopping all threads momentarily.\n");
3151
3152 /* Other running threads could hit this breakpoint.
3153 We don't handle moribund locations like GDB does,
3154 instead we always pause all threads when removing
3155 breakpoints, so that any step-over or
3156 decr_pc_after_break adjustment is always taken
3157 care of while the breakpoint is still
3158 inserted. */
3159 stop_all_lwps (1, event_child);
3160
3161 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3162 event_child->exit_jump_pad_bkpt = NULL;
3163
3164 unstop_all_lwps (1, event_child);
3165
3166 gdb_assert (event_child->suspended >= 0);
3167 }
3168 }
3169
3170 if (event_child->collecting_fast_tracepoint == 0)
3171 {
3172 if (debug_threads)
3173 debug_printf ("fast tracepoint finished "
3174 "collecting successfully.\n");
3175
3176 /* We may have a deferred signal to report. */
3177 if (dequeue_one_deferred_signal (event_child, &w))
3178 {
3179 if (debug_threads)
3180 debug_printf ("dequeued one signal.\n");
3181 }
3182 else
3183 {
3184 if (debug_threads)
3185 debug_printf ("no deferred signals.\n");
3186
3187 if (stabilizing_threads)
3188 {
3189 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3190 ourstatus->value.sig = GDB_SIGNAL_0;
3191
3192 if (debug_threads)
3193 {
3194 debug_printf ("linux_wait_1 ret = %s, stopped "
3195 "while stabilizing threads\n",
3196 target_pid_to_str (ptid_of (current_thread)));
3197 debug_exit ();
3198 }
3199
3200 return ptid_of (current_thread);
3201 }
3202 }
3203 }
3204 }
3205
3206 /* Check whether GDB would be interested in this event. */
3207
3208 /* If GDB is not interested in this signal, don't stop other
3209 threads, and don't report it to GDB. Just resume the inferior
3210 right away. We do this for threading-related signals as well as
3211 any that GDB specifically requested we ignore. But never ignore
3212 SIGSTOP if we sent it ourselves, and do not ignore signals when
3213 stepping - they may require special handling to skip the signal
3214 handler. Also never ignore signals that could be caused by a
3215 breakpoint. */
3216 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
3217 thread library? */
3218 if (WIFSTOPPED (w)
3219 && current_thread->last_resume_kind != resume_step
3220 && (
3221 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3222 (current_process ()->priv->thread_db != NULL
3223 && (WSTOPSIG (w) == __SIGRTMIN
3224 || WSTOPSIG (w) == __SIGRTMIN + 1))
3225 ||
3226 #endif
3227 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3228 && !(WSTOPSIG (w) == SIGSTOP
3229 && current_thread->last_resume_kind == resume_stop)
3230 && !linux_wstatus_maybe_breakpoint (w))))
3231 {
3232 siginfo_t info, *info_p;
3233
3234 if (debug_threads)
3235 debug_printf ("Ignored signal %d for LWP %ld.\n",
3236 WSTOPSIG (w), lwpid_of (current_thread));
3237
3238 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3239 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3240 info_p = &info;
3241 else
3242 info_p = NULL;
3243
3244 if (step_over_finished)
3245 {
3246 /* We cancelled this thread's step-over above. We still
3247 need to unsuspend all other LWPs, and set them back
3248 running again while the signal handler runs. */
3249 unsuspend_all_lwps (event_child);
3250
3251 /* Enqueue the pending signal info so that proceed_all_lwps
3252 doesn't lose it. */
3253 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3254
3255 proceed_all_lwps ();
3256 }
3257 else
3258 {
3259 linux_resume_one_lwp (event_child, event_child->stepping,
3260 WSTOPSIG (w), info_p);
3261 }
3262 return ignore_event (ourstatus);
3263 }
3264
3265 /* Note that all addresses are always "out of the step range" when
3266 there's no range to begin with. */
3267 in_step_range = lwp_in_step_range (event_child);
3268
3269 /* If GDB wanted this thread to single step, and the thread is out
3270 of the step range, we always want to report the SIGTRAP, and let
3271 GDB handle it. Watchpoints should always be reported. So should
3272 signals we can't explain. A SIGTRAP we can't explain could be a
3273 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3274 do, we're be able to handle GDB breakpoints on top of internal
3275 breakpoints, by handling the internal breakpoint and still
3276 reporting the event to GDB. If we don't, we're out of luck, GDB
3277 won't see the breakpoint hit. If we see a single-step event but
3278 the thread should be continuing, don't pass the trap to gdb.
3279 That indicates that we had previously finished a single-step but
3280 left the single-step pending -- see
3281 complete_ongoing_step_over. */
3282 report_to_gdb = (!maybe_internal_trap
3283 || (current_thread->last_resume_kind == resume_step
3284 && !in_step_range)
3285 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3286 || (!in_step_range
3287 && !bp_explains_trap
3288 && !trace_event
3289 && !step_over_finished
3290 && !(current_thread->last_resume_kind == resume_continue
3291 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3292 || (gdb_breakpoint_here (event_child->stop_pc)
3293 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3294 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3295 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3296
3297 run_breakpoint_commands (event_child->stop_pc);
3298
3299 /* We found no reason GDB would want us to stop. We either hit one
3300 of our own breakpoints, or finished an internal step GDB
3301 shouldn't know about. */
3302 if (!report_to_gdb)
3303 {
3304 if (debug_threads)
3305 {
3306 if (bp_explains_trap)
3307 debug_printf ("Hit a gdbserver breakpoint.\n");
3308 if (step_over_finished)
3309 debug_printf ("Step-over finished.\n");
3310 if (trace_event)
3311 debug_printf ("Tracepoint event.\n");
3312 if (lwp_in_step_range (event_child))
3313 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3314 paddress (event_child->stop_pc),
3315 paddress (event_child->step_range_start),
3316 paddress (event_child->step_range_end));
3317 }
3318
3319 /* We're not reporting this breakpoint to GDB, so apply the
3320 decr_pc_after_break adjustment to the inferior's regcache
3321 ourselves. */
3322
3323 if (the_low_target.set_pc != NULL)
3324 {
3325 struct regcache *regcache
3326 = get_thread_regcache (current_thread, 1);
3327 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3328 }
3329
3330 /* We may have finished stepping over a breakpoint. If so,
3331 we've stopped and suspended all LWPs momentarily except the
3332 stepping one. This is where we resume them all again. We're
3333 going to keep waiting, so use proceed, which handles stepping
3334 over the next breakpoint. */
3335 if (debug_threads)
3336 debug_printf ("proceeding all threads.\n");
3337
3338 if (step_over_finished)
3339 unsuspend_all_lwps (event_child);
3340
3341 proceed_all_lwps ();
3342 return ignore_event (ourstatus);
3343 }
3344
3345 if (debug_threads)
3346 {
3347 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3348 {
3349 char *str;
3350
3351 str = target_waitstatus_to_string (&event_child->waitstatus);
3352 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3353 lwpid_of (get_lwp_thread (event_child)), str);
3354 xfree (str);
3355 }
3356 if (current_thread->last_resume_kind == resume_step)
3357 {
3358 if (event_child->step_range_start == event_child->step_range_end)
3359 debug_printf ("GDB wanted to single-step, reporting event.\n");
3360 else if (!lwp_in_step_range (event_child))
3361 debug_printf ("Out of step range, reporting event.\n");
3362 }
3363 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3364 debug_printf ("Stopped by watchpoint.\n");
3365 else if (gdb_breakpoint_here (event_child->stop_pc))
3366 debug_printf ("Stopped by GDB breakpoint.\n");
3367 if (debug_threads)
3368 debug_printf ("Hit a non-gdbserver trap event.\n");
3369 }
3370
3371 /* Alright, we're going to report a stop. */
3372
3373 if (!stabilizing_threads)
3374 {
3375 /* In all-stop, stop all threads. */
3376 if (!non_stop)
3377 stop_all_lwps (0, NULL);
3378
3379 /* If we're not waiting for a specific LWP, choose an event LWP
3380 from among those that have had events. Giving equal priority
3381 to all LWPs that have had events helps prevent
3382 starvation. */
3383 if (ptid_equal (ptid, minus_one_ptid))
3384 {
3385 event_child->status_pending_p = 1;
3386 event_child->status_pending = w;
3387
3388 select_event_lwp (&event_child);
3389
3390 /* current_thread and event_child must stay in sync. */
3391 current_thread = get_lwp_thread (event_child);
3392
3393 event_child->status_pending_p = 0;
3394 w = event_child->status_pending;
3395 }
3396
3397 if (step_over_finished)
3398 {
3399 if (!non_stop)
3400 {
3401 /* If we were doing a step-over, all other threads but
3402 the stepping one had been paused in start_step_over,
3403 with their suspend counts incremented. We don't want
3404 to do a full unstop/unpause, because we're in
3405 all-stop mode (so we want threads stopped), but we
3406 still need to unsuspend the other threads, to
3407 decrement their `suspended' count back. */
3408 unsuspend_all_lwps (event_child);
3409 }
3410 else
3411 {
3412 /* If we just finished a step-over, then all threads had
3413 been momentarily paused. In all-stop, that's fine,
3414 we want threads stopped by now anyway. In non-stop,
3415 we need to re-resume threads that GDB wanted to be
3416 running. */
3417 unstop_all_lwps (1, event_child);
3418 }
3419 }
3420
3421 /* Stabilize threads (move out of jump pads). */
3422 if (!non_stop)
3423 stabilize_threads ();
3424 }
3425 else
3426 {
3427 /* If we just finished a step-over, then all threads had been
3428 momentarily paused. In all-stop, that's fine, we want
3429 threads stopped by now anyway. In non-stop, we need to
3430 re-resume threads that GDB wanted to be running. */
3431 if (step_over_finished)
3432 unstop_all_lwps (1, event_child);
3433 }
3434
3435 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3436 {
3437 /* If the reported event is an exit, fork, vfork or exec, let
3438 GDB know. */
3439 *ourstatus = event_child->waitstatus;
3440 /* Clear the event lwp's waitstatus since we handled it already. */
3441 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3442 }
3443 else
3444 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3445
3446 /* Now that we've selected our final event LWP, un-adjust its PC if
3447 it was a software breakpoint, and the client doesn't know we can
3448 adjust the breakpoint ourselves. */
3449 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3450 && !swbreak_feature)
3451 {
3452 int decr_pc = the_low_target.decr_pc_after_break;
3453
3454 if (decr_pc != 0)
3455 {
3456 struct regcache *regcache
3457 = get_thread_regcache (current_thread, 1);
3458 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3459 }
3460 }
3461
3462 if (current_thread->last_resume_kind == resume_stop
3463 && WSTOPSIG (w) == SIGSTOP)
3464 {
3465 /* A thread that has been requested to stop by GDB with vCont;t,
3466 and it stopped cleanly, so report as SIG0. The use of
3467 SIGSTOP is an implementation detail. */
3468 ourstatus->value.sig = GDB_SIGNAL_0;
3469 }
3470 else if (current_thread->last_resume_kind == resume_stop
3471 && WSTOPSIG (w) != SIGSTOP)
3472 {
3473 /* A thread that has been requested to stop by GDB with vCont;t,
3474 but, it stopped for other reasons. */
3475 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3476 }
3477 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3478 {
3479 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3480 }
3481
3482 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3483
3484 if (debug_threads)
3485 {
3486 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3487 target_pid_to_str (ptid_of (current_thread)),
3488 ourstatus->kind, ourstatus->value.sig);
3489 debug_exit ();
3490 }
3491
3492 return ptid_of (current_thread);
3493 }
3494
3495 /* Get rid of any pending event in the pipe. */
3496 static void
3497 async_file_flush (void)
3498 {
3499 int ret;
3500 char buf;
3501
3502 do
3503 ret = read (linux_event_pipe[0], &buf, 1);
3504 while (ret >= 0 || (ret == -1 && errno == EINTR));
3505 }
3506
3507 /* Put something in the pipe, so the event loop wakes up. */
3508 static void
3509 async_file_mark (void)
3510 {
3511 int ret;
3512
3513 async_file_flush ();
3514
3515 do
3516 ret = write (linux_event_pipe[1], "+", 1);
3517 while (ret == 0 || (ret == -1 && errno == EINTR));
3518
3519 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3520 be awakened anyway. */
3521 }
3522
3523 static ptid_t
3524 linux_wait (ptid_t ptid,
3525 struct target_waitstatus *ourstatus, int target_options)
3526 {
3527 ptid_t event_ptid;
3528
3529 /* Flush the async file first. */
3530 if (target_is_async_p ())
3531 async_file_flush ();
3532
3533 do
3534 {
3535 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3536 }
3537 while ((target_options & TARGET_WNOHANG) == 0
3538 && ptid_equal (event_ptid, null_ptid)
3539 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3540
3541 /* If at least one stop was reported, there may be more. A single
3542 SIGCHLD can signal more than one child stop. */
3543 if (target_is_async_p ()
3544 && (target_options & TARGET_WNOHANG) != 0
3545 && !ptid_equal (event_ptid, null_ptid))
3546 async_file_mark ();
3547
3548 return event_ptid;
3549 }
3550
3551 /* Send a signal to an LWP. */
3552
3553 static int
3554 kill_lwp (unsigned long lwpid, int signo)
3555 {
3556 /* Use tkill, if possible, in case we are using nptl threads. If tkill
3557 fails, then we are not using nptl threads and we should be using kill. */
3558
3559 #ifdef __NR_tkill
3560 {
3561 static int tkill_failed;
3562
3563 if (!tkill_failed)
3564 {
3565 int ret;
3566
3567 errno = 0;
3568 ret = syscall (__NR_tkill, lwpid, signo);
3569 if (errno != ENOSYS)
3570 return ret;
3571 tkill_failed = 1;
3572 }
3573 }
3574 #endif
3575
3576 return kill (lwpid, signo);
3577 }
3578
3579 void
3580 linux_stop_lwp (struct lwp_info *lwp)
3581 {
3582 send_sigstop (lwp);
3583 }
3584
3585 static void
3586 send_sigstop (struct lwp_info *lwp)
3587 {
3588 int pid;
3589
3590 pid = lwpid_of (get_lwp_thread (lwp));
3591
3592 /* If we already have a pending stop signal for this process, don't
3593 send another. */
3594 if (lwp->stop_expected)
3595 {
3596 if (debug_threads)
3597 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3598
3599 return;
3600 }
3601
3602 if (debug_threads)
3603 debug_printf ("Sending sigstop to lwp %d\n", pid);
3604
3605 lwp->stop_expected = 1;
3606 kill_lwp (pid, SIGSTOP);
3607 }
3608
3609 static int
3610 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3611 {
3612 struct thread_info *thread = (struct thread_info *) entry;
3613 struct lwp_info *lwp = get_thread_lwp (thread);
3614
3615 /* Ignore EXCEPT. */
3616 if (lwp == except)
3617 return 0;
3618
3619 if (lwp->stopped)
3620 return 0;
3621
3622 send_sigstop (lwp);
3623 return 0;
3624 }
3625
3626 /* Increment the suspend count of an LWP, and stop it, if not stopped
3627 yet. */
3628 static int
3629 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3630 void *except)
3631 {
3632 struct thread_info *thread = (struct thread_info *) entry;
3633 struct lwp_info *lwp = get_thread_lwp (thread);
3634
3635 /* Ignore EXCEPT. */
3636 if (lwp == except)
3637 return 0;
3638
3639 lwp_suspended_inc (lwp);
3640
3641 return send_sigstop_callback (entry, except);
3642 }
3643
3644 static void
3645 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3646 {
3647 /* Store the exit status for later. */
3648 lwp->status_pending_p = 1;
3649 lwp->status_pending = wstat;
3650
3651 /* Store in waitstatus as well, as there's nothing else to process
3652 for this event. */
3653 if (WIFEXITED (wstat))
3654 {
3655 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3656 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3657 }
3658 else if (WIFSIGNALED (wstat))
3659 {
3660 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3661 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3662 }
3663
3664 /* Prevent trying to stop it. */
3665 lwp->stopped = 1;
3666
3667 /* No further stops are expected from a dead lwp. */
3668 lwp->stop_expected = 0;
3669 }
3670
3671 /* Return true if LWP has exited already, and has a pending exit event
3672 to report to GDB. */
3673
3674 static int
3675 lwp_is_marked_dead (struct lwp_info *lwp)
3676 {
3677 return (lwp->status_pending_p
3678 && (WIFEXITED (lwp->status_pending)
3679 || WIFSIGNALED (lwp->status_pending)));
3680 }
3681
3682 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3683
3684 static void
3685 wait_for_sigstop (void)
3686 {
3687 struct thread_info *saved_thread;
3688 ptid_t saved_tid;
3689 int wstat;
3690 int ret;
3691
3692 saved_thread = current_thread;
3693 if (saved_thread != NULL)
3694 saved_tid = saved_thread->entry.id;
3695 else
3696 saved_tid = null_ptid; /* avoid bogus unused warning */
3697
3698 if (debug_threads)
3699 debug_printf ("wait_for_sigstop: pulling events\n");
3700
3701 /* Passing NULL_PTID as filter indicates we want all events to be
3702 left pending. Eventually this returns when there are no
3703 unwaited-for children left. */
3704 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3705 &wstat, __WALL);
3706 gdb_assert (ret == -1);
3707
3708 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3709 current_thread = saved_thread;
3710 else
3711 {
3712 if (debug_threads)
3713 debug_printf ("Previously current thread died.\n");
3714
3715 /* We can't change the current inferior behind GDB's back,
3716 otherwise, a subsequent command may apply to the wrong
3717 process. */
3718 current_thread = NULL;
3719 }
3720 }
3721
3722 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3723 move it out, because we need to report the stop event to GDB. For
3724 example, if the user puts a breakpoint in the jump pad, it's
3725 because she wants to debug it. */
3726
3727 static int
3728 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3729 {
3730 struct thread_info *thread = (struct thread_info *) entry;
3731 struct lwp_info *lwp = get_thread_lwp (thread);
3732
3733 if (lwp->suspended != 0)
3734 {
3735 internal_error (__FILE__, __LINE__,
3736 "LWP %ld is suspended, suspended=%d\n",
3737 lwpid_of (thread), lwp->suspended);
3738 }
3739 gdb_assert (lwp->stopped);
3740
3741 /* Allow debugging the jump pad, gdb_collect, etc.. */
3742 return (supports_fast_tracepoints ()
3743 && agent_loaded_p ()
3744 && (gdb_breakpoint_here (lwp->stop_pc)
3745 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3746 || thread->last_resume_kind == resume_step)
3747 && linux_fast_tracepoint_collecting (lwp, NULL));
3748 }
3749
3750 static void
3751 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3752 {
3753 struct thread_info *thread = (struct thread_info *) entry;
3754 struct thread_info *saved_thread;
3755 struct lwp_info *lwp = get_thread_lwp (thread);
3756 int *wstat;
3757
3758 if (lwp->suspended != 0)
3759 {
3760 internal_error (__FILE__, __LINE__,
3761 "LWP %ld is suspended, suspended=%d\n",
3762 lwpid_of (thread), lwp->suspended);
3763 }
3764 gdb_assert (lwp->stopped);
3765
3766 /* For gdb_breakpoint_here. */
3767 saved_thread = current_thread;
3768 current_thread = thread;
3769
3770 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3771
3772 /* Allow debugging the jump pad, gdb_collect, etc. */
3773 if (!gdb_breakpoint_here (lwp->stop_pc)
3774 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3775 && thread->last_resume_kind != resume_step
3776 && maybe_move_out_of_jump_pad (lwp, wstat))
3777 {
3778 if (debug_threads)
3779 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3780 lwpid_of (thread));
3781
3782 if (wstat)
3783 {
3784 lwp->status_pending_p = 0;
3785 enqueue_one_deferred_signal (lwp, wstat);
3786
3787 if (debug_threads)
3788 debug_printf ("Signal %d for LWP %ld deferred "
3789 "(in jump pad)\n",
3790 WSTOPSIG (*wstat), lwpid_of (thread));
3791 }
3792
3793 linux_resume_one_lwp (lwp, 0, 0, NULL);
3794 }
3795 else
3796 lwp_suspended_inc (lwp);
3797
3798 current_thread = saved_thread;
3799 }
3800
3801 static int
3802 lwp_running (struct inferior_list_entry *entry, void *data)
3803 {
3804 struct thread_info *thread = (struct thread_info *) entry;
3805 struct lwp_info *lwp = get_thread_lwp (thread);
3806
3807 if (lwp_is_marked_dead (lwp))
3808 return 0;
3809 if (lwp->stopped)
3810 return 0;
3811 return 1;
3812 }
3813
3814 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3815 If SUSPEND, then also increase the suspend count of every LWP,
3816 except EXCEPT. */
3817
3818 static void
3819 stop_all_lwps (int suspend, struct lwp_info *except)
3820 {
3821 /* Should not be called recursively. */
3822 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3823
3824 if (debug_threads)
3825 {
3826 debug_enter ();
3827 debug_printf ("stop_all_lwps (%s, except=%s)\n",
3828 suspend ? "stop-and-suspend" : "stop",
3829 except != NULL
3830 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
3831 : "none");
3832 }
3833
3834 stopping_threads = (suspend
3835 ? STOPPING_AND_SUSPENDING_THREADS
3836 : STOPPING_THREADS);
3837
3838 if (suspend)
3839 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
3840 else
3841 find_inferior (&all_threads, send_sigstop_callback, except);
3842 wait_for_sigstop ();
3843 stopping_threads = NOT_STOPPING_THREADS;
3844
3845 if (debug_threads)
3846 {
3847 debug_printf ("stop_all_lwps done, setting stopping_threads "
3848 "back to !stopping\n");
3849 debug_exit ();
3850 }
3851 }
3852
3853 /* Enqueue one signal in the chain of signals which need to be
3854 delivered to this process on next resume. */
3855
3856 static void
3857 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
3858 {
3859 struct pending_signals *p_sig = XNEW (struct pending_signals);
3860
3861 p_sig->prev = lwp->pending_signals;
3862 p_sig->signal = signal;
3863 if (info == NULL)
3864 memset (&p_sig->info, 0, sizeof (siginfo_t));
3865 else
3866 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3867 lwp->pending_signals = p_sig;
3868 }
3869
3870 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
3871 SIGNAL is nonzero, give it that signal. */
3872
3873 static void
3874 linux_resume_one_lwp_throw (struct lwp_info *lwp,
3875 int step, int signal, siginfo_t *info)
3876 {
3877 struct thread_info *thread = get_lwp_thread (lwp);
3878 struct thread_info *saved_thread;
3879 int fast_tp_collecting;
3880 struct process_info *proc = get_thread_process (thread);
3881
3882 /* Note that target description may not be initialised
3883 (proc->tdesc == NULL) at this point because the program hasn't
3884 stopped at the first instruction yet. It means GDBserver skips
3885 the extra traps from the wrapper program (see option --wrapper).
3886 Code in this function that requires register access should be
3887 guarded by proc->tdesc == NULL or something else. */
3888
3889 if (lwp->stopped == 0)
3890 return;
3891
3892 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3893
3894 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3895
3896 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3897 user used the "jump" command, or "set $pc = foo"). */
3898 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
3899 {
3900 /* Collecting 'while-stepping' actions doesn't make sense
3901 anymore. */
3902 release_while_stepping_state_list (thread);
3903 }
3904
3905 /* If we have pending signals or status, and a new signal, enqueue the
3906 signal. Also enqueue the signal if we are waiting to reinsert a
3907 breakpoint; it will be picked up again below. */
3908 if (signal != 0
3909 && (lwp->status_pending_p
3910 || lwp->pending_signals != NULL
3911 || lwp->bp_reinsert != 0
3912 || fast_tp_collecting))
3913 {
3914 struct pending_signals *p_sig = XNEW (struct pending_signals);
3915
3916 p_sig->prev = lwp->pending_signals;
3917 p_sig->signal = signal;
3918 if (info == NULL)
3919 memset (&p_sig->info, 0, sizeof (siginfo_t));
3920 else
3921 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3922 lwp->pending_signals = p_sig;
3923 }
3924
3925 if (lwp->status_pending_p)
3926 {
3927 if (debug_threads)
3928 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
3929 " has pending status\n",
3930 lwpid_of (thread), step ? "step" : "continue", signal,
3931 lwp->stop_expected ? "expected" : "not expected");
3932 return;
3933 }
3934
3935 saved_thread = current_thread;
3936 current_thread = thread;
3937
3938 if (debug_threads)
3939 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
3940 lwpid_of (thread), step ? "step" : "continue", signal,
3941 lwp->stop_expected ? "expected" : "not expected");
3942
3943 /* This bit needs some thinking about. If we get a signal that
3944 we must report while a single-step reinsert is still pending,
3945 we often end up resuming the thread. It might be better to
3946 (ew) allow a stack of pending events; then we could be sure that
3947 the reinsert happened right away and not lose any signals.
3948
3949 Making this stack would also shrink the window in which breakpoints are
3950 uninserted (see comment in linux_wait_for_lwp) but not enough for
3951 complete correctness, so it won't solve that problem. It may be
3952 worthwhile just to solve this one, however. */
3953 if (lwp->bp_reinsert != 0)
3954 {
3955 if (debug_threads)
3956 debug_printf (" pending reinsert at 0x%s\n",
3957 paddress (lwp->bp_reinsert));
3958
3959 if (can_hardware_single_step ())
3960 {
3961 if (fast_tp_collecting == 0)
3962 {
3963 if (step == 0)
3964 fprintf (stderr, "BAD - reinserting but not stepping.\n");
3965 if (lwp->suspended)
3966 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
3967 lwp->suspended);
3968 }
3969
3970 step = 1;
3971 }
3972
3973 /* Postpone any pending signal. It was enqueued above. */
3974 signal = 0;
3975 }
3976
3977 if (fast_tp_collecting == 1)
3978 {
3979 if (debug_threads)
3980 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3981 " (exit-jump-pad-bkpt)\n",
3982 lwpid_of (thread));
3983
3984 /* Postpone any pending signal. It was enqueued above. */
3985 signal = 0;
3986 }
3987 else if (fast_tp_collecting == 2)
3988 {
3989 if (debug_threads)
3990 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3991 " single-stepping\n",
3992 lwpid_of (thread));
3993
3994 if (can_hardware_single_step ())
3995 step = 1;
3996 else
3997 {
3998 internal_error (__FILE__, __LINE__,
3999 "moving out of jump pad single-stepping"
4000 " not implemented on this target");
4001 }
4002
4003 /* Postpone any pending signal. It was enqueued above. */
4004 signal = 0;
4005 }
4006
4007 /* If we have while-stepping actions in this thread set it stepping.
4008 If we have a signal to deliver, it may or may not be set to
4009 SIG_IGN, we don't know. Assume so, and allow collecting
4010 while-stepping into a signal handler. A possible smart thing to
4011 do would be to set an internal breakpoint at the signal return
4012 address, continue, and carry on catching this while-stepping
4013 action only when that breakpoint is hit. A future
4014 enhancement. */
4015 if (thread->while_stepping != NULL
4016 && can_hardware_single_step ())
4017 {
4018 if (debug_threads)
4019 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4020 lwpid_of (thread));
4021 step = 1;
4022 }
4023
4024 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4025 {
4026 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4027
4028 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4029
4030 if (debug_threads)
4031 {
4032 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4033 (long) lwp->stop_pc);
4034 }
4035 }
4036
4037 /* If we have pending signals, consume one unless we are trying to
4038 reinsert a breakpoint or we're trying to finish a fast tracepoint
4039 collect. */
4040 if (lwp->pending_signals != NULL
4041 && lwp->bp_reinsert == 0
4042 && fast_tp_collecting == 0)
4043 {
4044 struct pending_signals **p_sig;
4045
4046 p_sig = &lwp->pending_signals;
4047 while ((*p_sig)->prev != NULL)
4048 p_sig = &(*p_sig)->prev;
4049
4050 signal = (*p_sig)->signal;
4051 if ((*p_sig)->info.si_signo != 0)
4052 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4053 &(*p_sig)->info);
4054
4055 free (*p_sig);
4056 *p_sig = NULL;
4057 }
4058
4059 if (the_low_target.prepare_to_resume != NULL)
4060 the_low_target.prepare_to_resume (lwp);
4061
4062 regcache_invalidate_thread (thread);
4063 errno = 0;
4064 lwp->stepping = step;
4065 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (thread),
4066 (PTRACE_TYPE_ARG3) 0,
4067 /* Coerce to a uintptr_t first to avoid potential gcc warning
4068 of coercing an 8 byte integer to a 4 byte pointer. */
4069 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4070
4071 current_thread = saved_thread;
4072 if (errno)
4073 perror_with_name ("resuming thread");
4074
4075 /* Successfully resumed. Clear state that no longer makes sense,
4076 and mark the LWP as running. Must not do this before resuming
4077 otherwise if that fails other code will be confused. E.g., we'd
4078 later try to stop the LWP and hang forever waiting for a stop
4079 status. Note that we must not throw after this is cleared,
4080 otherwise handle_zombie_lwp_error would get confused. */
4081 lwp->stopped = 0;
4082 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4083 }
4084
4085 /* Called when we try to resume a stopped LWP and that errors out. If
4086 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4087 or about to become), discard the error, clear any pending status
4088 the LWP may have, and return true (we'll collect the exit status
4089 soon enough). Otherwise, return false. */
4090
4091 static int
4092 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4093 {
4094 struct thread_info *thread = get_lwp_thread (lp);
4095
4096 /* If we get an error after resuming the LWP successfully, we'd
4097 confuse !T state for the LWP being gone. */
4098 gdb_assert (lp->stopped);
4099
4100 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4101 because even if ptrace failed with ESRCH, the tracee may be "not
4102 yet fully dead", but already refusing ptrace requests. In that
4103 case the tracee has 'R (Running)' state for a little bit
4104 (observed in Linux 3.18). See also the note on ESRCH in the
4105 ptrace(2) man page. Instead, check whether the LWP has any state
4106 other than ptrace-stopped. */
4107
4108 /* Don't assume anything if /proc/PID/status can't be read. */
4109 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4110 {
4111 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4112 lp->status_pending_p = 0;
4113 return 1;
4114 }
4115 return 0;
4116 }
4117
4118 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4119 disappears while we try to resume it. */
4120
4121 static void
4122 linux_resume_one_lwp (struct lwp_info *lwp,
4123 int step, int signal, siginfo_t *info)
4124 {
4125 TRY
4126 {
4127 linux_resume_one_lwp_throw (lwp, step, signal, info);
4128 }
4129 CATCH (ex, RETURN_MASK_ERROR)
4130 {
4131 if (!check_ptrace_stopped_lwp_gone (lwp))
4132 throw_exception (ex);
4133 }
4134 END_CATCH
4135 }
4136
4137 struct thread_resume_array
4138 {
4139 struct thread_resume *resume;
4140 size_t n;
4141 };
4142
4143 /* This function is called once per thread via find_inferior.
4144 ARG is a pointer to a thread_resume_array struct.
4145 We look up the thread specified by ENTRY in ARG, and mark the thread
4146 with a pointer to the appropriate resume request.
4147
4148 This algorithm is O(threads * resume elements), but resume elements
4149 is small (and will remain small at least until GDB supports thread
4150 suspension). */
4151
4152 static int
4153 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4154 {
4155 struct thread_info *thread = (struct thread_info *) entry;
4156 struct lwp_info *lwp = get_thread_lwp (thread);
4157 int ndx;
4158 struct thread_resume_array *r;
4159
4160 r = (struct thread_resume_array *) arg;
4161
4162 for (ndx = 0; ndx < r->n; ndx++)
4163 {
4164 ptid_t ptid = r->resume[ndx].thread;
4165 if (ptid_equal (ptid, minus_one_ptid)
4166 || ptid_equal (ptid, entry->id)
4167 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4168 of PID'. */
4169 || (ptid_get_pid (ptid) == pid_of (thread)
4170 && (ptid_is_pid (ptid)
4171 || ptid_get_lwp (ptid) == -1)))
4172 {
4173 if (r->resume[ndx].kind == resume_stop
4174 && thread->last_resume_kind == resume_stop)
4175 {
4176 if (debug_threads)
4177 debug_printf ("already %s LWP %ld at GDB's request\n",
4178 (thread->last_status.kind
4179 == TARGET_WAITKIND_STOPPED)
4180 ? "stopped"
4181 : "stopping",
4182 lwpid_of (thread));
4183
4184 continue;
4185 }
4186
4187 lwp->resume = &r->resume[ndx];
4188 thread->last_resume_kind = lwp->resume->kind;
4189
4190 lwp->step_range_start = lwp->resume->step_range_start;
4191 lwp->step_range_end = lwp->resume->step_range_end;
4192
4193 /* If we had a deferred signal to report, dequeue one now.
4194 This can happen if LWP gets more than one signal while
4195 trying to get out of a jump pad. */
4196 if (lwp->stopped
4197 && !lwp->status_pending_p
4198 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4199 {
4200 lwp->status_pending_p = 1;
4201
4202 if (debug_threads)
4203 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4204 "leaving status pending.\n",
4205 WSTOPSIG (lwp->status_pending),
4206 lwpid_of (thread));
4207 }
4208
4209 return 0;
4210 }
4211 }
4212
4213 /* No resume action for this thread. */
4214 lwp->resume = NULL;
4215
4216 return 0;
4217 }
4218
4219 /* find_inferior callback for linux_resume.
4220 Set *FLAG_P if this lwp has an interesting status pending. */
4221
4222 static int
4223 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4224 {
4225 struct thread_info *thread = (struct thread_info *) entry;
4226 struct lwp_info *lwp = get_thread_lwp (thread);
4227
4228 /* LWPs which will not be resumed are not interesting, because
4229 we might not wait for them next time through linux_wait. */
4230 if (lwp->resume == NULL)
4231 return 0;
4232
4233 if (thread_still_has_status_pending_p (thread))
4234 * (int *) flag_p = 1;
4235
4236 return 0;
4237 }
4238
4239 /* Return 1 if this lwp that GDB wants running is stopped at an
4240 internal breakpoint that we need to step over. It assumes that any
4241 required STOP_PC adjustment has already been propagated to the
4242 inferior's regcache. */
4243
4244 static int
4245 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4246 {
4247 struct thread_info *thread = (struct thread_info *) entry;
4248 struct lwp_info *lwp = get_thread_lwp (thread);
4249 struct thread_info *saved_thread;
4250 CORE_ADDR pc;
4251 struct process_info *proc = get_thread_process (thread);
4252
4253 /* GDBserver is skipping the extra traps from the wrapper program,
4254 don't have to do step over. */
4255 if (proc->tdesc == NULL)
4256 return 0;
4257
4258 /* LWPs which will not be resumed are not interesting, because we
4259 might not wait for them next time through linux_wait. */
4260
4261 if (!lwp->stopped)
4262 {
4263 if (debug_threads)
4264 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4265 lwpid_of (thread));
4266 return 0;
4267 }
4268
4269 if (thread->last_resume_kind == resume_stop)
4270 {
4271 if (debug_threads)
4272 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4273 " stopped\n",
4274 lwpid_of (thread));
4275 return 0;
4276 }
4277
4278 gdb_assert (lwp->suspended >= 0);
4279
4280 if (lwp->suspended)
4281 {
4282 if (debug_threads)
4283 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4284 lwpid_of (thread));
4285 return 0;
4286 }
4287
4288 if (!lwp->need_step_over)
4289 {
4290 if (debug_threads)
4291 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
4292 }
4293
4294 if (lwp->status_pending_p)
4295 {
4296 if (debug_threads)
4297 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4298 " status.\n",
4299 lwpid_of (thread));
4300 return 0;
4301 }
4302
4303 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4304 or we have. */
4305 pc = get_pc (lwp);
4306
4307 /* If the PC has changed since we stopped, then don't do anything,
4308 and let the breakpoint/tracepoint be hit. This happens if, for
4309 instance, GDB handled the decr_pc_after_break subtraction itself,
4310 GDB is OOL stepping this thread, or the user has issued a "jump"
4311 command, or poked thread's registers herself. */
4312 if (pc != lwp->stop_pc)
4313 {
4314 if (debug_threads)
4315 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4316 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4317 lwpid_of (thread),
4318 paddress (lwp->stop_pc), paddress (pc));
4319
4320 lwp->need_step_over = 0;
4321 return 0;
4322 }
4323
4324 saved_thread = current_thread;
4325 current_thread = thread;
4326
4327 /* We can only step over breakpoints we know about. */
4328 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4329 {
4330 /* Don't step over a breakpoint that GDB expects to hit
4331 though. If the condition is being evaluated on the target's side
4332 and it evaluate to false, step over this breakpoint as well. */
4333 if (gdb_breakpoint_here (pc)
4334 && gdb_condition_true_at_breakpoint (pc)
4335 && gdb_no_commands_at_breakpoint (pc))
4336 {
4337 if (debug_threads)
4338 debug_printf ("Need step over [LWP %ld]? yes, but found"
4339 " GDB breakpoint at 0x%s; skipping step over\n",
4340 lwpid_of (thread), paddress (pc));
4341
4342 current_thread = saved_thread;
4343 return 0;
4344 }
4345 else
4346 {
4347 if (debug_threads)
4348 debug_printf ("Need step over [LWP %ld]? yes, "
4349 "found breakpoint at 0x%s\n",
4350 lwpid_of (thread), paddress (pc));
4351
4352 /* We've found an lwp that needs stepping over --- return 1 so
4353 that find_inferior stops looking. */
4354 current_thread = saved_thread;
4355
4356 /* If the step over is cancelled, this is set again. */
4357 lwp->need_step_over = 0;
4358 return 1;
4359 }
4360 }
4361
4362 current_thread = saved_thread;
4363
4364 if (debug_threads)
4365 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4366 " at 0x%s\n",
4367 lwpid_of (thread), paddress (pc));
4368
4369 return 0;
4370 }
4371
4372 /* Start a step-over operation on LWP. When LWP stopped at a
4373 breakpoint, to make progress, we need to remove the breakpoint out
4374 of the way. If we let other threads run while we do that, they may
4375 pass by the breakpoint location and miss hitting it. To avoid
4376 that, a step-over momentarily stops all threads while LWP is
4377 single-stepped while the breakpoint is temporarily uninserted from
4378 the inferior. When the single-step finishes, we reinsert the
4379 breakpoint, and let all threads that are supposed to be running,
4380 run again.
4381
4382 On targets that don't support hardware single-step, we don't
4383 currently support full software single-stepping. Instead, we only
4384 support stepping over the thread event breakpoint, by asking the
4385 low target where to place a reinsert breakpoint. Since this
4386 routine assumes the breakpoint being stepped over is a thread event
4387 breakpoint, it usually assumes the return address of the current
4388 function is a good enough place to set the reinsert breakpoint. */
4389
4390 static int
4391 start_step_over (struct lwp_info *lwp)
4392 {
4393 struct thread_info *thread = get_lwp_thread (lwp);
4394 struct thread_info *saved_thread;
4395 CORE_ADDR pc;
4396 int step;
4397
4398 if (debug_threads)
4399 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4400 lwpid_of (thread));
4401
4402 stop_all_lwps (1, lwp);
4403
4404 if (lwp->suspended != 0)
4405 {
4406 internal_error (__FILE__, __LINE__,
4407 "LWP %ld suspended=%d\n", lwpid_of (thread),
4408 lwp->suspended);
4409 }
4410
4411 if (debug_threads)
4412 debug_printf ("Done stopping all threads for step-over.\n");
4413
4414 /* Note, we should always reach here with an already adjusted PC,
4415 either by GDB (if we're resuming due to GDB's request), or by our
4416 caller, if we just finished handling an internal breakpoint GDB
4417 shouldn't care about. */
4418 pc = get_pc (lwp);
4419
4420 saved_thread = current_thread;
4421 current_thread = thread;
4422
4423 lwp->bp_reinsert = pc;
4424 uninsert_breakpoints_at (pc);
4425 uninsert_fast_tracepoint_jumps_at (pc);
4426
4427 if (can_hardware_single_step ())
4428 {
4429 step = 1;
4430 }
4431 else
4432 {
4433 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
4434 set_reinsert_breakpoint (raddr);
4435 step = 0;
4436 }
4437
4438 current_thread = saved_thread;
4439
4440 linux_resume_one_lwp (lwp, step, 0, NULL);
4441
4442 /* Require next event from this LWP. */
4443 step_over_bkpt = thread->entry.id;
4444 return 1;
4445 }
4446
4447 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4448 start_step_over, if still there, and delete any reinsert
4449 breakpoints we've set, on non hardware single-step targets. */
4450
4451 static int
4452 finish_step_over (struct lwp_info *lwp)
4453 {
4454 if (lwp->bp_reinsert != 0)
4455 {
4456 if (debug_threads)
4457 debug_printf ("Finished step over.\n");
4458
4459 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4460 may be no breakpoint to reinsert there by now. */
4461 reinsert_breakpoints_at (lwp->bp_reinsert);
4462 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4463
4464 lwp->bp_reinsert = 0;
4465
4466 /* Delete any software-single-step reinsert breakpoints. No
4467 longer needed. We don't have to worry about other threads
4468 hitting this trap, and later not being able to explain it,
4469 because we were stepping over a breakpoint, and we hold all
4470 threads but LWP stopped while doing that. */
4471 if (!can_hardware_single_step ())
4472 delete_reinsert_breakpoints ();
4473
4474 step_over_bkpt = null_ptid;
4475 return 1;
4476 }
4477 else
4478 return 0;
4479 }
4480
4481 /* If there's a step over in progress, wait until all threads stop
4482 (that is, until the stepping thread finishes its step), and
4483 unsuspend all lwps. The stepping thread ends with its status
4484 pending, which is processed later when we get back to processing
4485 events. */
4486
4487 static void
4488 complete_ongoing_step_over (void)
4489 {
4490 if (!ptid_equal (step_over_bkpt, null_ptid))
4491 {
4492 struct lwp_info *lwp;
4493 int wstat;
4494 int ret;
4495
4496 if (debug_threads)
4497 debug_printf ("detach: step over in progress, finish it first\n");
4498
4499 /* Passing NULL_PTID as filter indicates we want all events to
4500 be left pending. Eventually this returns when there are no
4501 unwaited-for children left. */
4502 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4503 &wstat, __WALL);
4504 gdb_assert (ret == -1);
4505
4506 lwp = find_lwp_pid (step_over_bkpt);
4507 if (lwp != NULL)
4508 finish_step_over (lwp);
4509 step_over_bkpt = null_ptid;
4510 unsuspend_all_lwps (lwp);
4511 }
4512 }
4513
4514 /* This function is called once per thread. We check the thread's resume
4515 request, which will tell us whether to resume, step, or leave the thread
4516 stopped; and what signal, if any, it should be sent.
4517
4518 For threads which we aren't explicitly told otherwise, we preserve
4519 the stepping flag; this is used for stepping over gdbserver-placed
4520 breakpoints.
4521
4522 If pending_flags was set in any thread, we queue any needed
4523 signals, since we won't actually resume. We already have a pending
4524 event to report, so we don't need to preserve any step requests;
4525 they should be re-issued if necessary. */
4526
4527 static int
4528 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
4529 {
4530 struct thread_info *thread = (struct thread_info *) entry;
4531 struct lwp_info *lwp = get_thread_lwp (thread);
4532 int step;
4533 int leave_all_stopped = * (int *) arg;
4534 int leave_pending;
4535
4536 if (lwp->resume == NULL)
4537 return 0;
4538
4539 if (lwp->resume->kind == resume_stop)
4540 {
4541 if (debug_threads)
4542 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4543
4544 if (!lwp->stopped)
4545 {
4546 if (debug_threads)
4547 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4548
4549 /* Stop the thread, and wait for the event asynchronously,
4550 through the event loop. */
4551 send_sigstop (lwp);
4552 }
4553 else
4554 {
4555 if (debug_threads)
4556 debug_printf ("already stopped LWP %ld\n",
4557 lwpid_of (thread));
4558
4559 /* The LWP may have been stopped in an internal event that
4560 was not meant to be notified back to GDB (e.g., gdbserver
4561 breakpoint), so we should be reporting a stop event in
4562 this case too. */
4563
4564 /* If the thread already has a pending SIGSTOP, this is a
4565 no-op. Otherwise, something later will presumably resume
4566 the thread and this will cause it to cancel any pending
4567 operation, due to last_resume_kind == resume_stop. If
4568 the thread already has a pending status to report, we
4569 will still report it the next time we wait - see
4570 status_pending_p_callback. */
4571
4572 /* If we already have a pending signal to report, then
4573 there's no need to queue a SIGSTOP, as this means we're
4574 midway through moving the LWP out of the jumppad, and we
4575 will report the pending signal as soon as that is
4576 finished. */
4577 if (lwp->pending_signals_to_report == NULL)
4578 send_sigstop (lwp);
4579 }
4580
4581 /* For stop requests, we're done. */
4582 lwp->resume = NULL;
4583 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4584 return 0;
4585 }
4586
4587 /* If this thread which is about to be resumed has a pending status,
4588 then don't resume it - we can just report the pending status.
4589 Likewise if it is suspended, because e.g., another thread is
4590 stepping past a breakpoint. Make sure to queue any signals that
4591 would otherwise be sent. In all-stop mode, we do this decision
4592 based on if *any* thread has a pending status. If there's a
4593 thread that needs the step-over-breakpoint dance, then don't
4594 resume any other thread but that particular one. */
4595 leave_pending = (lwp->suspended
4596 || lwp->status_pending_p
4597 || leave_all_stopped);
4598
4599 if (!leave_pending)
4600 {
4601 if (debug_threads)
4602 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4603
4604 step = (lwp->resume->kind == resume_step);
4605 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
4606 }
4607 else
4608 {
4609 if (debug_threads)
4610 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4611
4612 /* If we have a new signal, enqueue the signal. */
4613 if (lwp->resume->sig != 0)
4614 {
4615 struct pending_signals *p_sig = XCNEW (struct pending_signals);
4616
4617 p_sig->prev = lwp->pending_signals;
4618 p_sig->signal = lwp->resume->sig;
4619
4620 /* If this is the same signal we were previously stopped by,
4621 make sure to queue its siginfo. We can ignore the return
4622 value of ptrace; if it fails, we'll skip
4623 PTRACE_SETSIGINFO. */
4624 if (WIFSTOPPED (lwp->last_status)
4625 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
4626 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4627 &p_sig->info);
4628
4629 lwp->pending_signals = p_sig;
4630 }
4631 }
4632
4633 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4634 lwp->resume = NULL;
4635 return 0;
4636 }
4637
4638 static void
4639 linux_resume (struct thread_resume *resume_info, size_t n)
4640 {
4641 struct thread_resume_array array = { resume_info, n };
4642 struct thread_info *need_step_over = NULL;
4643 int any_pending;
4644 int leave_all_stopped;
4645
4646 if (debug_threads)
4647 {
4648 debug_enter ();
4649 debug_printf ("linux_resume:\n");
4650 }
4651
4652 find_inferior (&all_threads, linux_set_resume_request, &array);
4653
4654 /* If there is a thread which would otherwise be resumed, which has
4655 a pending status, then don't resume any threads - we can just
4656 report the pending status. Make sure to queue any signals that
4657 would otherwise be sent. In non-stop mode, we'll apply this
4658 logic to each thread individually. We consume all pending events
4659 before considering to start a step-over (in all-stop). */
4660 any_pending = 0;
4661 if (!non_stop)
4662 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4663
4664 /* If there is a thread which would otherwise be resumed, which is
4665 stopped at a breakpoint that needs stepping over, then don't
4666 resume any threads - have it step over the breakpoint with all
4667 other threads stopped, then resume all threads again. Make sure
4668 to queue any signals that would otherwise be delivered or
4669 queued. */
4670 if (!any_pending && supports_breakpoints ())
4671 need_step_over
4672 = (struct thread_info *) find_inferior (&all_threads,
4673 need_step_over_p, NULL);
4674
4675 leave_all_stopped = (need_step_over != NULL || any_pending);
4676
4677 if (debug_threads)
4678 {
4679 if (need_step_over != NULL)
4680 debug_printf ("Not resuming all, need step over\n");
4681 else if (any_pending)
4682 debug_printf ("Not resuming, all-stop and found "
4683 "an LWP with pending status\n");
4684 else
4685 debug_printf ("Resuming, no pending status or step over needed\n");
4686 }
4687
4688 /* Even if we're leaving threads stopped, queue all signals we'd
4689 otherwise deliver. */
4690 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4691
4692 if (need_step_over)
4693 start_step_over (get_thread_lwp (need_step_over));
4694
4695 if (debug_threads)
4696 {
4697 debug_printf ("linux_resume done\n");
4698 debug_exit ();
4699 }
4700 }
4701
4702 /* This function is called once per thread. We check the thread's
4703 last resume request, which will tell us whether to resume, step, or
4704 leave the thread stopped. Any signal the client requested to be
4705 delivered has already been enqueued at this point.
4706
4707 If any thread that GDB wants running is stopped at an internal
4708 breakpoint that needs stepping over, we start a step-over operation
4709 on that particular thread, and leave all others stopped. */
4710
4711 static int
4712 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4713 {
4714 struct thread_info *thread = (struct thread_info *) entry;
4715 struct lwp_info *lwp = get_thread_lwp (thread);
4716 int step;
4717
4718 if (lwp == except)
4719 return 0;
4720
4721 if (debug_threads)
4722 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4723
4724 if (!lwp->stopped)
4725 {
4726 if (debug_threads)
4727 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4728 return 0;
4729 }
4730
4731 if (thread->last_resume_kind == resume_stop
4732 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4733 {
4734 if (debug_threads)
4735 debug_printf (" client wants LWP to remain %ld stopped\n",
4736 lwpid_of (thread));
4737 return 0;
4738 }
4739
4740 if (lwp->status_pending_p)
4741 {
4742 if (debug_threads)
4743 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4744 lwpid_of (thread));
4745 return 0;
4746 }
4747
4748 gdb_assert (lwp->suspended >= 0);
4749
4750 if (lwp->suspended)
4751 {
4752 if (debug_threads)
4753 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4754 return 0;
4755 }
4756
4757 if (thread->last_resume_kind == resume_stop
4758 && lwp->pending_signals_to_report == NULL
4759 && lwp->collecting_fast_tracepoint == 0)
4760 {
4761 /* We haven't reported this LWP as stopped yet (otherwise, the
4762 last_status.kind check above would catch it, and we wouldn't
4763 reach here. This LWP may have been momentarily paused by a
4764 stop_all_lwps call while handling for example, another LWP's
4765 step-over. In that case, the pending expected SIGSTOP signal
4766 that was queued at vCont;t handling time will have already
4767 been consumed by wait_for_sigstop, and so we need to requeue
4768 another one here. Note that if the LWP already has a SIGSTOP
4769 pending, this is a no-op. */
4770
4771 if (debug_threads)
4772 debug_printf ("Client wants LWP %ld to stop. "
4773 "Making sure it has a SIGSTOP pending\n",
4774 lwpid_of (thread));
4775
4776 send_sigstop (lwp);
4777 }
4778
4779 if (thread->last_resume_kind == resume_step)
4780 {
4781 if (debug_threads)
4782 debug_printf (" stepping LWP %ld, client wants it stepping\n",
4783 lwpid_of (thread));
4784 step = 1;
4785 }
4786 else if (lwp->bp_reinsert != 0)
4787 {
4788 if (debug_threads)
4789 debug_printf (" stepping LWP %ld, reinsert set\n",
4790 lwpid_of (thread));
4791 step = 1;
4792 }
4793 else
4794 step = 0;
4795
4796 linux_resume_one_lwp (lwp, step, 0, NULL);
4797 return 0;
4798 }
4799
4800 static int
4801 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4802 {
4803 struct thread_info *thread = (struct thread_info *) entry;
4804 struct lwp_info *lwp = get_thread_lwp (thread);
4805
4806 if (lwp == except)
4807 return 0;
4808
4809 lwp_suspended_decr (lwp);
4810
4811 return proceed_one_lwp (entry, except);
4812 }
4813
4814 /* When we finish a step-over, set threads running again. If there's
4815 another thread that may need a step-over, now's the time to start
4816 it. Eventually, we'll move all threads past their breakpoints. */
4817
4818 static void
4819 proceed_all_lwps (void)
4820 {
4821 struct thread_info *need_step_over;
4822
4823 /* If there is a thread which would otherwise be resumed, which is
4824 stopped at a breakpoint that needs stepping over, then don't
4825 resume any threads - have it step over the breakpoint with all
4826 other threads stopped, then resume all threads again. */
4827
4828 if (supports_breakpoints ())
4829 {
4830 need_step_over
4831 = (struct thread_info *) find_inferior (&all_threads,
4832 need_step_over_p, NULL);
4833
4834 if (need_step_over != NULL)
4835 {
4836 if (debug_threads)
4837 debug_printf ("proceed_all_lwps: found "
4838 "thread %ld needing a step-over\n",
4839 lwpid_of (need_step_over));
4840
4841 start_step_over (get_thread_lwp (need_step_over));
4842 return;
4843 }
4844 }
4845
4846 if (debug_threads)
4847 debug_printf ("Proceeding, no step-over needed\n");
4848
4849 find_inferior (&all_threads, proceed_one_lwp, NULL);
4850 }
4851
4852 /* Stopped LWPs that the client wanted to be running, that don't have
4853 pending statuses, are set to run again, except for EXCEPT, if not
4854 NULL. This undoes a stop_all_lwps call. */
4855
4856 static void
4857 unstop_all_lwps (int unsuspend, struct lwp_info *except)
4858 {
4859 if (debug_threads)
4860 {
4861 debug_enter ();
4862 if (except)
4863 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
4864 lwpid_of (get_lwp_thread (except)));
4865 else
4866 debug_printf ("unstopping all lwps\n");
4867 }
4868
4869 if (unsuspend)
4870 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
4871 else
4872 find_inferior (&all_threads, proceed_one_lwp, except);
4873
4874 if (debug_threads)
4875 {
4876 debug_printf ("unstop_all_lwps done\n");
4877 debug_exit ();
4878 }
4879 }
4880
4881
4882 #ifdef HAVE_LINUX_REGSETS
4883
4884 #define use_linux_regsets 1
4885
4886 /* Returns true if REGSET has been disabled. */
4887
4888 static int
4889 regset_disabled (struct regsets_info *info, struct regset_info *regset)
4890 {
4891 return (info->disabled_regsets != NULL
4892 && info->disabled_regsets[regset - info->regsets]);
4893 }
4894
4895 /* Disable REGSET. */
4896
4897 static void
4898 disable_regset (struct regsets_info *info, struct regset_info *regset)
4899 {
4900 int dr_offset;
4901
4902 dr_offset = regset - info->regsets;
4903 if (info->disabled_regsets == NULL)
4904 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
4905 info->disabled_regsets[dr_offset] = 1;
4906 }
4907
4908 static int
4909 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
4910 struct regcache *regcache)
4911 {
4912 struct regset_info *regset;
4913 int saw_general_regs = 0;
4914 int pid;
4915 struct iovec iov;
4916
4917 pid = lwpid_of (current_thread);
4918 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4919 {
4920 void *buf, *data;
4921 int nt_type, res;
4922
4923 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4924 continue;
4925
4926 buf = xmalloc (regset->size);
4927
4928 nt_type = regset->nt_type;
4929 if (nt_type)
4930 {
4931 iov.iov_base = buf;
4932 iov.iov_len = regset->size;
4933 data = (void *) &iov;
4934 }
4935 else
4936 data = buf;
4937
4938 #ifndef __sparc__
4939 res = ptrace (regset->get_request, pid,
4940 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4941 #else
4942 res = ptrace (regset->get_request, pid, data, nt_type);
4943 #endif
4944 if (res < 0)
4945 {
4946 if (errno == EIO)
4947 {
4948 /* If we get EIO on a regset, do not try it again for
4949 this process mode. */
4950 disable_regset (regsets_info, regset);
4951 }
4952 else if (errno == ENODATA)
4953 {
4954 /* ENODATA may be returned if the regset is currently
4955 not "active". This can happen in normal operation,
4956 so suppress the warning in this case. */
4957 }
4958 else
4959 {
4960 char s[256];
4961 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
4962 pid);
4963 perror (s);
4964 }
4965 }
4966 else
4967 {
4968 if (regset->type == GENERAL_REGS)
4969 saw_general_regs = 1;
4970 regset->store_function (regcache, buf);
4971 }
4972 free (buf);
4973 }
4974 if (saw_general_regs)
4975 return 0;
4976 else
4977 return 1;
4978 }
4979
4980 static int
4981 regsets_store_inferior_registers (struct regsets_info *regsets_info,
4982 struct regcache *regcache)
4983 {
4984 struct regset_info *regset;
4985 int saw_general_regs = 0;
4986 int pid;
4987 struct iovec iov;
4988
4989 pid = lwpid_of (current_thread);
4990 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4991 {
4992 void *buf, *data;
4993 int nt_type, res;
4994
4995 if (regset->size == 0 || regset_disabled (regsets_info, regset)
4996 || regset->fill_function == NULL)
4997 continue;
4998
4999 buf = xmalloc (regset->size);
5000
5001 /* First fill the buffer with the current register set contents,
5002 in case there are any items in the kernel's regset that are
5003 not in gdbserver's regcache. */
5004
5005 nt_type = regset->nt_type;
5006 if (nt_type)
5007 {
5008 iov.iov_base = buf;
5009 iov.iov_len = regset->size;
5010 data = (void *) &iov;
5011 }
5012 else
5013 data = buf;
5014
5015 #ifndef __sparc__
5016 res = ptrace (regset->get_request, pid,
5017 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5018 #else
5019 res = ptrace (regset->get_request, pid, data, nt_type);
5020 #endif
5021
5022 if (res == 0)
5023 {
5024 /* Then overlay our cached registers on that. */
5025 regset->fill_function (regcache, buf);
5026
5027 /* Only now do we write the register set. */
5028 #ifndef __sparc__
5029 res = ptrace (regset->set_request, pid,
5030 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5031 #else
5032 res = ptrace (regset->set_request, pid, data, nt_type);
5033 #endif
5034 }
5035
5036 if (res < 0)
5037 {
5038 if (errno == EIO)
5039 {
5040 /* If we get EIO on a regset, do not try it again for
5041 this process mode. */
5042 disable_regset (regsets_info, regset);
5043 }
5044 else if (errno == ESRCH)
5045 {
5046 /* At this point, ESRCH should mean the process is
5047 already gone, in which case we simply ignore attempts
5048 to change its registers. See also the related
5049 comment in linux_resume_one_lwp. */
5050 free (buf);
5051 return 0;
5052 }
5053 else
5054 {
5055 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5056 }
5057 }
5058 else if (regset->type == GENERAL_REGS)
5059 saw_general_regs = 1;
5060 free (buf);
5061 }
5062 if (saw_general_regs)
5063 return 0;
5064 else
5065 return 1;
5066 }
5067
5068 #else /* !HAVE_LINUX_REGSETS */
5069
5070 #define use_linux_regsets 0
5071 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5072 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5073
5074 #endif
5075
5076 /* Return 1 if register REGNO is supported by one of the regset ptrace
5077 calls or 0 if it has to be transferred individually. */
5078
5079 static int
5080 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5081 {
5082 unsigned char mask = 1 << (regno % 8);
5083 size_t index = regno / 8;
5084
5085 return (use_linux_regsets
5086 && (regs_info->regset_bitmap == NULL
5087 || (regs_info->regset_bitmap[index] & mask) != 0));
5088 }
5089
5090 #ifdef HAVE_LINUX_USRREGS
5091
5092 int
5093 register_addr (const struct usrregs_info *usrregs, int regnum)
5094 {
5095 int addr;
5096
5097 if (regnum < 0 || regnum >= usrregs->num_regs)
5098 error ("Invalid register number %d.", regnum);
5099
5100 addr = usrregs->regmap[regnum];
5101
5102 return addr;
5103 }
5104
5105 /* Fetch one register. */
5106 static void
5107 fetch_register (const struct usrregs_info *usrregs,
5108 struct regcache *regcache, int regno)
5109 {
5110 CORE_ADDR regaddr;
5111 int i, size;
5112 char *buf;
5113 int pid;
5114
5115 if (regno >= usrregs->num_regs)
5116 return;
5117 if ((*the_low_target.cannot_fetch_register) (regno))
5118 return;
5119
5120 regaddr = register_addr (usrregs, regno);
5121 if (regaddr == -1)
5122 return;
5123
5124 size = ((register_size (regcache->tdesc, regno)
5125 + sizeof (PTRACE_XFER_TYPE) - 1)
5126 & -sizeof (PTRACE_XFER_TYPE));
5127 buf = (char *) alloca (size);
5128
5129 pid = lwpid_of (current_thread);
5130 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5131 {
5132 errno = 0;
5133 *(PTRACE_XFER_TYPE *) (buf + i) =
5134 ptrace (PTRACE_PEEKUSER, pid,
5135 /* Coerce to a uintptr_t first to avoid potential gcc warning
5136 of coercing an 8 byte integer to a 4 byte pointer. */
5137 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5138 regaddr += sizeof (PTRACE_XFER_TYPE);
5139 if (errno != 0)
5140 error ("reading register %d: %s", regno, strerror (errno));
5141 }
5142
5143 if (the_low_target.supply_ptrace_register)
5144 the_low_target.supply_ptrace_register (regcache, regno, buf);
5145 else
5146 supply_register (regcache, regno, buf);
5147 }
5148
5149 /* Store one register. */
5150 static void
5151 store_register (const struct usrregs_info *usrregs,
5152 struct regcache *regcache, int regno)
5153 {
5154 CORE_ADDR regaddr;
5155 int i, size;
5156 char *buf;
5157 int pid;
5158
5159 if (regno >= usrregs->num_regs)
5160 return;
5161 if ((*the_low_target.cannot_store_register) (regno))
5162 return;
5163
5164 regaddr = register_addr (usrregs, regno);
5165 if (regaddr == -1)
5166 return;
5167
5168 size = ((register_size (regcache->tdesc, regno)
5169 + sizeof (PTRACE_XFER_TYPE) - 1)
5170 & -sizeof (PTRACE_XFER_TYPE));
5171 buf = (char *) alloca (size);
5172 memset (buf, 0, size);
5173
5174 if (the_low_target.collect_ptrace_register)
5175 the_low_target.collect_ptrace_register (regcache, regno, buf);
5176 else
5177 collect_register (regcache, regno, buf);
5178
5179 pid = lwpid_of (current_thread);
5180 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5181 {
5182 errno = 0;
5183 ptrace (PTRACE_POKEUSER, pid,
5184 /* Coerce to a uintptr_t first to avoid potential gcc warning
5185 about coercing an 8 byte integer to a 4 byte pointer. */
5186 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5187 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5188 if (errno != 0)
5189 {
5190 /* At this point, ESRCH should mean the process is
5191 already gone, in which case we simply ignore attempts
5192 to change its registers. See also the related
5193 comment in linux_resume_one_lwp. */
5194 if (errno == ESRCH)
5195 return;
5196
5197 if ((*the_low_target.cannot_store_register) (regno) == 0)
5198 error ("writing register %d: %s", regno, strerror (errno));
5199 }
5200 regaddr += sizeof (PTRACE_XFER_TYPE);
5201 }
5202 }
5203
5204 /* Fetch all registers, or just one, from the child process.
5205 If REGNO is -1, do this for all registers, skipping any that are
5206 assumed to have been retrieved by regsets_fetch_inferior_registers,
5207 unless ALL is non-zero.
5208 Otherwise, REGNO specifies which register (so we can save time). */
5209 static void
5210 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5211 struct regcache *regcache, int regno, int all)
5212 {
5213 struct usrregs_info *usr = regs_info->usrregs;
5214
5215 if (regno == -1)
5216 {
5217 for (regno = 0; regno < usr->num_regs; regno++)
5218 if (all || !linux_register_in_regsets (regs_info, regno))
5219 fetch_register (usr, regcache, regno);
5220 }
5221 else
5222 fetch_register (usr, regcache, regno);
5223 }
5224
5225 /* Store our register values back into the inferior.
5226 If REGNO is -1, do this for all registers, skipping any that are
5227 assumed to have been saved by regsets_store_inferior_registers,
5228 unless ALL is non-zero.
5229 Otherwise, REGNO specifies which register (so we can save time). */
5230 static void
5231 usr_store_inferior_registers (const struct regs_info *regs_info,
5232 struct regcache *regcache, int regno, int all)
5233 {
5234 struct usrregs_info *usr = regs_info->usrregs;
5235
5236 if (regno == -1)
5237 {
5238 for (regno = 0; regno < usr->num_regs; regno++)
5239 if (all || !linux_register_in_regsets (regs_info, regno))
5240 store_register (usr, regcache, regno);
5241 }
5242 else
5243 store_register (usr, regcache, regno);
5244 }
5245
5246 #else /* !HAVE_LINUX_USRREGS */
5247
5248 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5249 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5250
5251 #endif
5252
5253
5254 void
5255 linux_fetch_registers (struct regcache *regcache, int regno)
5256 {
5257 int use_regsets;
5258 int all = 0;
5259 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5260
5261 if (regno == -1)
5262 {
5263 if (the_low_target.fetch_register != NULL
5264 && regs_info->usrregs != NULL)
5265 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5266 (*the_low_target.fetch_register) (regcache, regno);
5267
5268 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5269 if (regs_info->usrregs != NULL)
5270 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5271 }
5272 else
5273 {
5274 if (the_low_target.fetch_register != NULL
5275 && (*the_low_target.fetch_register) (regcache, regno))
5276 return;
5277
5278 use_regsets = linux_register_in_regsets (regs_info, regno);
5279 if (use_regsets)
5280 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5281 regcache);
5282 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5283 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5284 }
5285 }
5286
5287 void
5288 linux_store_registers (struct regcache *regcache, int regno)
5289 {
5290 int use_regsets;
5291 int all = 0;
5292 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5293
5294 if (regno == -1)
5295 {
5296 all = regsets_store_inferior_registers (regs_info->regsets_info,
5297 regcache);
5298 if (regs_info->usrregs != NULL)
5299 usr_store_inferior_registers (regs_info, regcache, regno, all);
5300 }
5301 else
5302 {
5303 use_regsets = linux_register_in_regsets (regs_info, regno);
5304 if (use_regsets)
5305 all = regsets_store_inferior_registers (regs_info->regsets_info,
5306 regcache);
5307 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5308 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5309 }
5310 }
5311
5312
5313 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5314 to debugger memory starting at MYADDR. */
5315
5316 static int
5317 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5318 {
5319 int pid = lwpid_of (current_thread);
5320 register PTRACE_XFER_TYPE *buffer;
5321 register CORE_ADDR addr;
5322 register int count;
5323 char filename[64];
5324 register int i;
5325 int ret;
5326 int fd;
5327
5328 /* Try using /proc. Don't bother for one word. */
5329 if (len >= 3 * sizeof (long))
5330 {
5331 int bytes;
5332
5333 /* We could keep this file open and cache it - possibly one per
5334 thread. That requires some juggling, but is even faster. */
5335 sprintf (filename, "/proc/%d/mem", pid);
5336 fd = open (filename, O_RDONLY | O_LARGEFILE);
5337 if (fd == -1)
5338 goto no_proc;
5339
5340 /* If pread64 is available, use it. It's faster if the kernel
5341 supports it (only one syscall), and it's 64-bit safe even on
5342 32-bit platforms (for instance, SPARC debugging a SPARC64
5343 application). */
5344 #ifdef HAVE_PREAD64
5345 bytes = pread64 (fd, myaddr, len, memaddr);
5346 #else
5347 bytes = -1;
5348 if (lseek (fd, memaddr, SEEK_SET) != -1)
5349 bytes = read (fd, myaddr, len);
5350 #endif
5351
5352 close (fd);
5353 if (bytes == len)
5354 return 0;
5355
5356 /* Some data was read, we'll try to get the rest with ptrace. */
5357 if (bytes > 0)
5358 {
5359 memaddr += bytes;
5360 myaddr += bytes;
5361 len -= bytes;
5362 }
5363 }
5364
5365 no_proc:
5366 /* Round starting address down to longword boundary. */
5367 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5368 /* Round ending address up; get number of longwords that makes. */
5369 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5370 / sizeof (PTRACE_XFER_TYPE));
5371 /* Allocate buffer of that many longwords. */
5372 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5373
5374 /* Read all the longwords */
5375 errno = 0;
5376 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5377 {
5378 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5379 about coercing an 8 byte integer to a 4 byte pointer. */
5380 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5381 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5382 (PTRACE_TYPE_ARG4) 0);
5383 if (errno)
5384 break;
5385 }
5386 ret = errno;
5387
5388 /* Copy appropriate bytes out of the buffer. */
5389 if (i > 0)
5390 {
5391 i *= sizeof (PTRACE_XFER_TYPE);
5392 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5393 memcpy (myaddr,
5394 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5395 i < len ? i : len);
5396 }
5397
5398 return ret;
5399 }
5400
5401 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5402 memory at MEMADDR. On failure (cannot write to the inferior)
5403 returns the value of errno. Always succeeds if LEN is zero. */
5404
5405 static int
5406 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5407 {
5408 register int i;
5409 /* Round starting address down to longword boundary. */
5410 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5411 /* Round ending address up; get number of longwords that makes. */
5412 register int count
5413 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5414 / sizeof (PTRACE_XFER_TYPE);
5415
5416 /* Allocate buffer of that many longwords. */
5417 register PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5418
5419 int pid = lwpid_of (current_thread);
5420
5421 if (len == 0)
5422 {
5423 /* Zero length write always succeeds. */
5424 return 0;
5425 }
5426
5427 if (debug_threads)
5428 {
5429 /* Dump up to four bytes. */
5430 char str[4 * 2 + 1];
5431 char *p = str;
5432 int dump = len < 4 ? len : 4;
5433
5434 for (i = 0; i < dump; i++)
5435 {
5436 sprintf (p, "%02x", myaddr[i]);
5437 p += 2;
5438 }
5439 *p = '\0';
5440
5441 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5442 str, (long) memaddr, pid);
5443 }
5444
5445 /* Fill start and end extra bytes of buffer with existing memory data. */
5446
5447 errno = 0;
5448 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5449 about coercing an 8 byte integer to a 4 byte pointer. */
5450 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5451 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5452 (PTRACE_TYPE_ARG4) 0);
5453 if (errno)
5454 return errno;
5455
5456 if (count > 1)
5457 {
5458 errno = 0;
5459 buffer[count - 1]
5460 = ptrace (PTRACE_PEEKTEXT, pid,
5461 /* Coerce to a uintptr_t first to avoid potential gcc warning
5462 about coercing an 8 byte integer to a 4 byte pointer. */
5463 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5464 * sizeof (PTRACE_XFER_TYPE)),
5465 (PTRACE_TYPE_ARG4) 0);
5466 if (errno)
5467 return errno;
5468 }
5469
5470 /* Copy data to be written over corresponding part of buffer. */
5471
5472 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5473 myaddr, len);
5474
5475 /* Write the entire buffer. */
5476
5477 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5478 {
5479 errno = 0;
5480 ptrace (PTRACE_POKETEXT, pid,
5481 /* Coerce to a uintptr_t first to avoid potential gcc warning
5482 about coercing an 8 byte integer to a 4 byte pointer. */
5483 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5484 (PTRACE_TYPE_ARG4) buffer[i]);
5485 if (errno)
5486 return errno;
5487 }
5488
5489 return 0;
5490 }
5491
5492 static void
5493 linux_look_up_symbols (void)
5494 {
5495 #ifdef USE_THREAD_DB
5496 struct process_info *proc = current_process ();
5497
5498 if (proc->priv->thread_db != NULL)
5499 return;
5500
5501 /* If the kernel supports tracing clones, then we don't need to
5502 use the magic thread event breakpoint to learn about
5503 threads. */
5504 thread_db_init (!linux_supports_traceclone ());
5505 #endif
5506 }
5507
5508 static void
5509 linux_request_interrupt (void)
5510 {
5511 extern unsigned long signal_pid;
5512
5513 /* Send a SIGINT to the process group. This acts just like the user
5514 typed a ^C on the controlling terminal. */
5515 kill (-signal_pid, SIGINT);
5516 }
5517
5518 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5519 to debugger memory starting at MYADDR. */
5520
5521 static int
5522 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5523 {
5524 char filename[PATH_MAX];
5525 int fd, n;
5526 int pid = lwpid_of (current_thread);
5527
5528 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5529
5530 fd = open (filename, O_RDONLY);
5531 if (fd < 0)
5532 return -1;
5533
5534 if (offset != (CORE_ADDR) 0
5535 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5536 n = -1;
5537 else
5538 n = read (fd, myaddr, len);
5539
5540 close (fd);
5541
5542 return n;
5543 }
5544
5545 /* These breakpoint and watchpoint related wrapper functions simply
5546 pass on the function call if the target has registered a
5547 corresponding function. */
5548
5549 static int
5550 linux_supports_z_point_type (char z_type)
5551 {
5552 return (the_low_target.supports_z_point_type != NULL
5553 && the_low_target.supports_z_point_type (z_type));
5554 }
5555
5556 static int
5557 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5558 int size, struct raw_breakpoint *bp)
5559 {
5560 if (type == raw_bkpt_type_sw)
5561 return insert_memory_breakpoint (bp);
5562 else if (the_low_target.insert_point != NULL)
5563 return the_low_target.insert_point (type, addr, size, bp);
5564 else
5565 /* Unsupported (see target.h). */
5566 return 1;
5567 }
5568
5569 static int
5570 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5571 int size, struct raw_breakpoint *bp)
5572 {
5573 if (type == raw_bkpt_type_sw)
5574 return remove_memory_breakpoint (bp);
5575 else if (the_low_target.remove_point != NULL)
5576 return the_low_target.remove_point (type, addr, size, bp);
5577 else
5578 /* Unsupported (see target.h). */
5579 return 1;
5580 }
5581
5582 /* Implement the to_stopped_by_sw_breakpoint target_ops
5583 method. */
5584
5585 static int
5586 linux_stopped_by_sw_breakpoint (void)
5587 {
5588 struct lwp_info *lwp = get_thread_lwp (current_thread);
5589
5590 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5591 }
5592
5593 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5594 method. */
5595
5596 static int
5597 linux_supports_stopped_by_sw_breakpoint (void)
5598 {
5599 return USE_SIGTRAP_SIGINFO;
5600 }
5601
5602 /* Implement the to_stopped_by_hw_breakpoint target_ops
5603 method. */
5604
5605 static int
5606 linux_stopped_by_hw_breakpoint (void)
5607 {
5608 struct lwp_info *lwp = get_thread_lwp (current_thread);
5609
5610 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5611 }
5612
5613 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
5614 method. */
5615
5616 static int
5617 linux_supports_stopped_by_hw_breakpoint (void)
5618 {
5619 return USE_SIGTRAP_SIGINFO;
5620 }
5621
5622 /* Implement the supports_hardware_single_step target_ops method. */
5623
5624 static int
5625 linux_supports_hardware_single_step (void)
5626 {
5627 return can_hardware_single_step ();
5628 }
5629
5630 static int
5631 linux_stopped_by_watchpoint (void)
5632 {
5633 struct lwp_info *lwp = get_thread_lwp (current_thread);
5634
5635 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5636 }
5637
5638 static CORE_ADDR
5639 linux_stopped_data_address (void)
5640 {
5641 struct lwp_info *lwp = get_thread_lwp (current_thread);
5642
5643 return lwp->stopped_data_address;
5644 }
5645
5646 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5647 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5648 && defined(PT_TEXT_END_ADDR)
5649
5650 /* This is only used for targets that define PT_TEXT_ADDR,
5651 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5652 the target has different ways of acquiring this information, like
5653 loadmaps. */
5654
5655 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5656 to tell gdb about. */
5657
5658 static int
5659 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5660 {
5661 unsigned long text, text_end, data;
5662 int pid = lwpid_of (current_thread);
5663
5664 errno = 0;
5665
5666 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5667 (PTRACE_TYPE_ARG4) 0);
5668 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5669 (PTRACE_TYPE_ARG4) 0);
5670 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5671 (PTRACE_TYPE_ARG4) 0);
5672
5673 if (errno == 0)
5674 {
5675 /* Both text and data offsets produced at compile-time (and so
5676 used by gdb) are relative to the beginning of the program,
5677 with the data segment immediately following the text segment.
5678 However, the actual runtime layout in memory may put the data
5679 somewhere else, so when we send gdb a data base-address, we
5680 use the real data base address and subtract the compile-time
5681 data base-address from it (which is just the length of the
5682 text segment). BSS immediately follows data in both
5683 cases. */
5684 *text_p = text;
5685 *data_p = data - (text_end - text);
5686
5687 return 1;
5688 }
5689 return 0;
5690 }
5691 #endif
5692
5693 static int
5694 linux_qxfer_osdata (const char *annex,
5695 unsigned char *readbuf, unsigned const char *writebuf,
5696 CORE_ADDR offset, int len)
5697 {
5698 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5699 }
5700
5701 /* Convert a native/host siginfo object, into/from the siginfo in the
5702 layout of the inferiors' architecture. */
5703
5704 static void
5705 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
5706 {
5707 int done = 0;
5708
5709 if (the_low_target.siginfo_fixup != NULL)
5710 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5711
5712 /* If there was no callback, or the callback didn't do anything,
5713 then just do a straight memcpy. */
5714 if (!done)
5715 {
5716 if (direction == 1)
5717 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5718 else
5719 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5720 }
5721 }
5722
5723 static int
5724 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5725 unsigned const char *writebuf, CORE_ADDR offset, int len)
5726 {
5727 int pid;
5728 siginfo_t siginfo;
5729 char inf_siginfo[sizeof (siginfo_t)];
5730
5731 if (current_thread == NULL)
5732 return -1;
5733
5734 pid = lwpid_of (current_thread);
5735
5736 if (debug_threads)
5737 debug_printf ("%s siginfo for lwp %d.\n",
5738 readbuf != NULL ? "Reading" : "Writing",
5739 pid);
5740
5741 if (offset >= sizeof (siginfo))
5742 return -1;
5743
5744 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5745 return -1;
5746
5747 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5748 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5749 inferior with a 64-bit GDBSERVER should look the same as debugging it
5750 with a 32-bit GDBSERVER, we need to convert it. */
5751 siginfo_fixup (&siginfo, inf_siginfo, 0);
5752
5753 if (offset + len > sizeof (siginfo))
5754 len = sizeof (siginfo) - offset;
5755
5756 if (readbuf != NULL)
5757 memcpy (readbuf, inf_siginfo + offset, len);
5758 else
5759 {
5760 memcpy (inf_siginfo + offset, writebuf, len);
5761
5762 /* Convert back to ptrace layout before flushing it out. */
5763 siginfo_fixup (&siginfo, inf_siginfo, 1);
5764
5765 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5766 return -1;
5767 }
5768
5769 return len;
5770 }
5771
5772 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5773 so we notice when children change state; as the handler for the
5774 sigsuspend in my_waitpid. */
5775
5776 static void
5777 sigchld_handler (int signo)
5778 {
5779 int old_errno = errno;
5780
5781 if (debug_threads)
5782 {
5783 do
5784 {
5785 /* fprintf is not async-signal-safe, so call write
5786 directly. */
5787 if (write (2, "sigchld_handler\n",
5788 sizeof ("sigchld_handler\n") - 1) < 0)
5789 break; /* just ignore */
5790 } while (0);
5791 }
5792
5793 if (target_is_async_p ())
5794 async_file_mark (); /* trigger a linux_wait */
5795
5796 errno = old_errno;
5797 }
5798
5799 static int
5800 linux_supports_non_stop (void)
5801 {
5802 return 1;
5803 }
5804
5805 static int
5806 linux_async (int enable)
5807 {
5808 int previous = target_is_async_p ();
5809
5810 if (debug_threads)
5811 debug_printf ("linux_async (%d), previous=%d\n",
5812 enable, previous);
5813
5814 if (previous != enable)
5815 {
5816 sigset_t mask;
5817 sigemptyset (&mask);
5818 sigaddset (&mask, SIGCHLD);
5819
5820 sigprocmask (SIG_BLOCK, &mask, NULL);
5821
5822 if (enable)
5823 {
5824 if (pipe (linux_event_pipe) == -1)
5825 {
5826 linux_event_pipe[0] = -1;
5827 linux_event_pipe[1] = -1;
5828 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5829
5830 warning ("creating event pipe failed.");
5831 return previous;
5832 }
5833
5834 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
5835 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
5836
5837 /* Register the event loop handler. */
5838 add_file_handler (linux_event_pipe[0],
5839 handle_target_event, NULL);
5840
5841 /* Always trigger a linux_wait. */
5842 async_file_mark ();
5843 }
5844 else
5845 {
5846 delete_file_handler (linux_event_pipe[0]);
5847
5848 close (linux_event_pipe[0]);
5849 close (linux_event_pipe[1]);
5850 linux_event_pipe[0] = -1;
5851 linux_event_pipe[1] = -1;
5852 }
5853
5854 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5855 }
5856
5857 return previous;
5858 }
5859
5860 static int
5861 linux_start_non_stop (int nonstop)
5862 {
5863 /* Register or unregister from event-loop accordingly. */
5864 linux_async (nonstop);
5865
5866 if (target_is_async_p () != (nonstop != 0))
5867 return -1;
5868
5869 return 0;
5870 }
5871
5872 static int
5873 linux_supports_multi_process (void)
5874 {
5875 return 1;
5876 }
5877
5878 /* Check if fork events are supported. */
5879
5880 static int
5881 linux_supports_fork_events (void)
5882 {
5883 return linux_supports_tracefork ();
5884 }
5885
5886 /* Check if vfork events are supported. */
5887
5888 static int
5889 linux_supports_vfork_events (void)
5890 {
5891 return linux_supports_tracefork ();
5892 }
5893
5894 /* Check if exec events are supported. */
5895
5896 static int
5897 linux_supports_exec_events (void)
5898 {
5899 return linux_supports_traceexec ();
5900 }
5901
5902 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
5903 options for the specified lwp. */
5904
5905 static int
5906 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
5907 void *args)
5908 {
5909 struct thread_info *thread = (struct thread_info *) entry;
5910 struct lwp_info *lwp = get_thread_lwp (thread);
5911
5912 if (!lwp->stopped)
5913 {
5914 /* Stop the lwp so we can modify its ptrace options. */
5915 lwp->must_set_ptrace_flags = 1;
5916 linux_stop_lwp (lwp);
5917 }
5918 else
5919 {
5920 /* Already stopped; go ahead and set the ptrace options. */
5921 struct process_info *proc = find_process_pid (pid_of (thread));
5922 int options = linux_low_ptrace_options (proc->attached);
5923
5924 linux_enable_event_reporting (lwpid_of (thread), options);
5925 lwp->must_set_ptrace_flags = 0;
5926 }
5927
5928 return 0;
5929 }
5930
5931 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
5932 ptrace flags for all inferiors. This is in case the new GDB connection
5933 doesn't support the same set of events that the previous one did. */
5934
5935 static void
5936 linux_handle_new_gdb_connection (void)
5937 {
5938 pid_t pid;
5939
5940 /* Request that all the lwps reset their ptrace options. */
5941 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
5942 }
5943
5944 static int
5945 linux_supports_disable_randomization (void)
5946 {
5947 #ifdef HAVE_PERSONALITY
5948 return 1;
5949 #else
5950 return 0;
5951 #endif
5952 }
5953
5954 static int
5955 linux_supports_agent (void)
5956 {
5957 return 1;
5958 }
5959
5960 static int
5961 linux_supports_range_stepping (void)
5962 {
5963 if (*the_low_target.supports_range_stepping == NULL)
5964 return 0;
5965
5966 return (*the_low_target.supports_range_stepping) ();
5967 }
5968
5969 /* Enumerate spufs IDs for process PID. */
5970 static int
5971 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
5972 {
5973 int pos = 0;
5974 int written = 0;
5975 char path[128];
5976 DIR *dir;
5977 struct dirent *entry;
5978
5979 sprintf (path, "/proc/%ld/fd", pid);
5980 dir = opendir (path);
5981 if (!dir)
5982 return -1;
5983
5984 rewinddir (dir);
5985 while ((entry = readdir (dir)) != NULL)
5986 {
5987 struct stat st;
5988 struct statfs stfs;
5989 int fd;
5990
5991 fd = atoi (entry->d_name);
5992 if (!fd)
5993 continue;
5994
5995 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
5996 if (stat (path, &st) != 0)
5997 continue;
5998 if (!S_ISDIR (st.st_mode))
5999 continue;
6000
6001 if (statfs (path, &stfs) != 0)
6002 continue;
6003 if (stfs.f_type != SPUFS_MAGIC)
6004 continue;
6005
6006 if (pos >= offset && pos + 4 <= offset + len)
6007 {
6008 *(unsigned int *)(buf + pos - offset) = fd;
6009 written += 4;
6010 }
6011 pos += 4;
6012 }
6013
6014 closedir (dir);
6015 return written;
6016 }
6017
6018 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6019 object type, using the /proc file system. */
6020 static int
6021 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6022 unsigned const char *writebuf,
6023 CORE_ADDR offset, int len)
6024 {
6025 long pid = lwpid_of (current_thread);
6026 char buf[128];
6027 int fd = 0;
6028 int ret = 0;
6029
6030 if (!writebuf && !readbuf)
6031 return -1;
6032
6033 if (!*annex)
6034 {
6035 if (!readbuf)
6036 return -1;
6037 else
6038 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6039 }
6040
6041 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6042 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6043 if (fd <= 0)
6044 return -1;
6045
6046 if (offset != 0
6047 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6048 {
6049 close (fd);
6050 return 0;
6051 }
6052
6053 if (writebuf)
6054 ret = write (fd, writebuf, (size_t) len);
6055 else
6056 ret = read (fd, readbuf, (size_t) len);
6057
6058 close (fd);
6059 return ret;
6060 }
6061
6062 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6063 struct target_loadseg
6064 {
6065 /* Core address to which the segment is mapped. */
6066 Elf32_Addr addr;
6067 /* VMA recorded in the program header. */
6068 Elf32_Addr p_vaddr;
6069 /* Size of this segment in memory. */
6070 Elf32_Word p_memsz;
6071 };
6072
6073 # if defined PT_GETDSBT
6074 struct target_loadmap
6075 {
6076 /* Protocol version number, must be zero. */
6077 Elf32_Word version;
6078 /* Pointer to the DSBT table, its size, and the DSBT index. */
6079 unsigned *dsbt_table;
6080 unsigned dsbt_size, dsbt_index;
6081 /* Number of segments in this map. */
6082 Elf32_Word nsegs;
6083 /* The actual memory map. */
6084 struct target_loadseg segs[/*nsegs*/];
6085 };
6086 # define LINUX_LOADMAP PT_GETDSBT
6087 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6088 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6089 # else
6090 struct target_loadmap
6091 {
6092 /* Protocol version number, must be zero. */
6093 Elf32_Half version;
6094 /* Number of segments in this map. */
6095 Elf32_Half nsegs;
6096 /* The actual memory map. */
6097 struct target_loadseg segs[/*nsegs*/];
6098 };
6099 # define LINUX_LOADMAP PTRACE_GETFDPIC
6100 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6101 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6102 # endif
6103
6104 static int
6105 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6106 unsigned char *myaddr, unsigned int len)
6107 {
6108 int pid = lwpid_of (current_thread);
6109 int addr = -1;
6110 struct target_loadmap *data = NULL;
6111 unsigned int actual_length, copy_length;
6112
6113 if (strcmp (annex, "exec") == 0)
6114 addr = (int) LINUX_LOADMAP_EXEC;
6115 else if (strcmp (annex, "interp") == 0)
6116 addr = (int) LINUX_LOADMAP_INTERP;
6117 else
6118 return -1;
6119
6120 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6121 return -1;
6122
6123 if (data == NULL)
6124 return -1;
6125
6126 actual_length = sizeof (struct target_loadmap)
6127 + sizeof (struct target_loadseg) * data->nsegs;
6128
6129 if (offset < 0 || offset > actual_length)
6130 return -1;
6131
6132 copy_length = actual_length - offset < len ? actual_length - offset : len;
6133 memcpy (myaddr, (char *) data + offset, copy_length);
6134 return copy_length;
6135 }
6136 #else
6137 # define linux_read_loadmap NULL
6138 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6139
6140 static void
6141 linux_process_qsupported (const char *query)
6142 {
6143 if (the_low_target.process_qsupported != NULL)
6144 the_low_target.process_qsupported (query);
6145 }
6146
6147 static int
6148 linux_supports_tracepoints (void)
6149 {
6150 if (*the_low_target.supports_tracepoints == NULL)
6151 return 0;
6152
6153 return (*the_low_target.supports_tracepoints) ();
6154 }
6155
6156 static CORE_ADDR
6157 linux_read_pc (struct regcache *regcache)
6158 {
6159 if (the_low_target.get_pc == NULL)
6160 return 0;
6161
6162 return (*the_low_target.get_pc) (regcache);
6163 }
6164
6165 static void
6166 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6167 {
6168 gdb_assert (the_low_target.set_pc != NULL);
6169
6170 (*the_low_target.set_pc) (regcache, pc);
6171 }
6172
6173 static int
6174 linux_thread_stopped (struct thread_info *thread)
6175 {
6176 return get_thread_lwp (thread)->stopped;
6177 }
6178
6179 /* This exposes stop-all-threads functionality to other modules. */
6180
6181 static void
6182 linux_pause_all (int freeze)
6183 {
6184 stop_all_lwps (freeze, NULL);
6185 }
6186
6187 /* This exposes unstop-all-threads functionality to other gdbserver
6188 modules. */
6189
6190 static void
6191 linux_unpause_all (int unfreeze)
6192 {
6193 unstop_all_lwps (unfreeze, NULL);
6194 }
6195
6196 static int
6197 linux_prepare_to_access_memory (void)
6198 {
6199 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6200 running LWP. */
6201 if (non_stop)
6202 linux_pause_all (1);
6203 return 0;
6204 }
6205
6206 static void
6207 linux_done_accessing_memory (void)
6208 {
6209 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6210 running LWP. */
6211 if (non_stop)
6212 linux_unpause_all (1);
6213 }
6214
6215 static int
6216 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6217 CORE_ADDR collector,
6218 CORE_ADDR lockaddr,
6219 ULONGEST orig_size,
6220 CORE_ADDR *jump_entry,
6221 CORE_ADDR *trampoline,
6222 ULONGEST *trampoline_size,
6223 unsigned char *jjump_pad_insn,
6224 ULONGEST *jjump_pad_insn_size,
6225 CORE_ADDR *adjusted_insn_addr,
6226 CORE_ADDR *adjusted_insn_addr_end,
6227 char *err)
6228 {
6229 return (*the_low_target.install_fast_tracepoint_jump_pad)
6230 (tpoint, tpaddr, collector, lockaddr, orig_size,
6231 jump_entry, trampoline, trampoline_size,
6232 jjump_pad_insn, jjump_pad_insn_size,
6233 adjusted_insn_addr, adjusted_insn_addr_end,
6234 err);
6235 }
6236
6237 static struct emit_ops *
6238 linux_emit_ops (void)
6239 {
6240 if (the_low_target.emit_ops != NULL)
6241 return (*the_low_target.emit_ops) ();
6242 else
6243 return NULL;
6244 }
6245
6246 static int
6247 linux_get_min_fast_tracepoint_insn_len (void)
6248 {
6249 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6250 }
6251
6252 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6253
6254 static int
6255 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6256 CORE_ADDR *phdr_memaddr, int *num_phdr)
6257 {
6258 char filename[PATH_MAX];
6259 int fd;
6260 const int auxv_size = is_elf64
6261 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6262 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6263
6264 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6265
6266 fd = open (filename, O_RDONLY);
6267 if (fd < 0)
6268 return 1;
6269
6270 *phdr_memaddr = 0;
6271 *num_phdr = 0;
6272 while (read (fd, buf, auxv_size) == auxv_size
6273 && (*phdr_memaddr == 0 || *num_phdr == 0))
6274 {
6275 if (is_elf64)
6276 {
6277 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6278
6279 switch (aux->a_type)
6280 {
6281 case AT_PHDR:
6282 *phdr_memaddr = aux->a_un.a_val;
6283 break;
6284 case AT_PHNUM:
6285 *num_phdr = aux->a_un.a_val;
6286 break;
6287 }
6288 }
6289 else
6290 {
6291 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6292
6293 switch (aux->a_type)
6294 {
6295 case AT_PHDR:
6296 *phdr_memaddr = aux->a_un.a_val;
6297 break;
6298 case AT_PHNUM:
6299 *num_phdr = aux->a_un.a_val;
6300 break;
6301 }
6302 }
6303 }
6304
6305 close (fd);
6306
6307 if (*phdr_memaddr == 0 || *num_phdr == 0)
6308 {
6309 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6310 "phdr_memaddr = %ld, phdr_num = %d",
6311 (long) *phdr_memaddr, *num_phdr);
6312 return 2;
6313 }
6314
6315 return 0;
6316 }
6317
6318 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6319
6320 static CORE_ADDR
6321 get_dynamic (const int pid, const int is_elf64)
6322 {
6323 CORE_ADDR phdr_memaddr, relocation;
6324 int num_phdr, i;
6325 unsigned char *phdr_buf;
6326 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6327
6328 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6329 return 0;
6330
6331 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6332 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6333
6334 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6335 return 0;
6336
6337 /* Compute relocation: it is expected to be 0 for "regular" executables,
6338 non-zero for PIE ones. */
6339 relocation = -1;
6340 for (i = 0; relocation == -1 && i < num_phdr; i++)
6341 if (is_elf64)
6342 {
6343 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6344
6345 if (p->p_type == PT_PHDR)
6346 relocation = phdr_memaddr - p->p_vaddr;
6347 }
6348 else
6349 {
6350 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6351
6352 if (p->p_type == PT_PHDR)
6353 relocation = phdr_memaddr - p->p_vaddr;
6354 }
6355
6356 if (relocation == -1)
6357 {
6358 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6359 any real world executables, including PIE executables, have always
6360 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6361 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6362 or present DT_DEBUG anyway (fpc binaries are statically linked).
6363
6364 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6365
6366 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6367
6368 return 0;
6369 }
6370
6371 for (i = 0; i < num_phdr; i++)
6372 {
6373 if (is_elf64)
6374 {
6375 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6376
6377 if (p->p_type == PT_DYNAMIC)
6378 return p->p_vaddr + relocation;
6379 }
6380 else
6381 {
6382 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6383
6384 if (p->p_type == PT_DYNAMIC)
6385 return p->p_vaddr + relocation;
6386 }
6387 }
6388
6389 return 0;
6390 }
6391
6392 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6393 can be 0 if the inferior does not yet have the library list initialized.
6394 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6395 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6396
6397 static CORE_ADDR
6398 get_r_debug (const int pid, const int is_elf64)
6399 {
6400 CORE_ADDR dynamic_memaddr;
6401 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6402 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6403 CORE_ADDR map = -1;
6404
6405 dynamic_memaddr = get_dynamic (pid, is_elf64);
6406 if (dynamic_memaddr == 0)
6407 return map;
6408
6409 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6410 {
6411 if (is_elf64)
6412 {
6413 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6414 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6415 union
6416 {
6417 Elf64_Xword map;
6418 unsigned char buf[sizeof (Elf64_Xword)];
6419 }
6420 rld_map;
6421 #endif
6422 #ifdef DT_MIPS_RLD_MAP
6423 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6424 {
6425 if (linux_read_memory (dyn->d_un.d_val,
6426 rld_map.buf, sizeof (rld_map.buf)) == 0)
6427 return rld_map.map;
6428 else
6429 break;
6430 }
6431 #endif /* DT_MIPS_RLD_MAP */
6432 #ifdef DT_MIPS_RLD_MAP_REL
6433 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6434 {
6435 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6436 rld_map.buf, sizeof (rld_map.buf)) == 0)
6437 return rld_map.map;
6438 else
6439 break;
6440 }
6441 #endif /* DT_MIPS_RLD_MAP_REL */
6442
6443 if (dyn->d_tag == DT_DEBUG && map == -1)
6444 map = dyn->d_un.d_val;
6445
6446 if (dyn->d_tag == DT_NULL)
6447 break;
6448 }
6449 else
6450 {
6451 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6452 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6453 union
6454 {
6455 Elf32_Word map;
6456 unsigned char buf[sizeof (Elf32_Word)];
6457 }
6458 rld_map;
6459 #endif
6460 #ifdef DT_MIPS_RLD_MAP
6461 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6462 {
6463 if (linux_read_memory (dyn->d_un.d_val,
6464 rld_map.buf, sizeof (rld_map.buf)) == 0)
6465 return rld_map.map;
6466 else
6467 break;
6468 }
6469 #endif /* DT_MIPS_RLD_MAP */
6470 #ifdef DT_MIPS_RLD_MAP_REL
6471 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6472 {
6473 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6474 rld_map.buf, sizeof (rld_map.buf)) == 0)
6475 return rld_map.map;
6476 else
6477 break;
6478 }
6479 #endif /* DT_MIPS_RLD_MAP_REL */
6480
6481 if (dyn->d_tag == DT_DEBUG && map == -1)
6482 map = dyn->d_un.d_val;
6483
6484 if (dyn->d_tag == DT_NULL)
6485 break;
6486 }
6487
6488 dynamic_memaddr += dyn_size;
6489 }
6490
6491 return map;
6492 }
6493
6494 /* Read one pointer from MEMADDR in the inferior. */
6495
6496 static int
6497 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6498 {
6499 int ret;
6500
6501 /* Go through a union so this works on either big or little endian
6502 hosts, when the inferior's pointer size is smaller than the size
6503 of CORE_ADDR. It is assumed the inferior's endianness is the
6504 same of the superior's. */
6505 union
6506 {
6507 CORE_ADDR core_addr;
6508 unsigned int ui;
6509 unsigned char uc;
6510 } addr;
6511
6512 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6513 if (ret == 0)
6514 {
6515 if (ptr_size == sizeof (CORE_ADDR))
6516 *ptr = addr.core_addr;
6517 else if (ptr_size == sizeof (unsigned int))
6518 *ptr = addr.ui;
6519 else
6520 gdb_assert_not_reached ("unhandled pointer size");
6521 }
6522 return ret;
6523 }
6524
6525 struct link_map_offsets
6526 {
6527 /* Offset and size of r_debug.r_version. */
6528 int r_version_offset;
6529
6530 /* Offset and size of r_debug.r_map. */
6531 int r_map_offset;
6532
6533 /* Offset to l_addr field in struct link_map. */
6534 int l_addr_offset;
6535
6536 /* Offset to l_name field in struct link_map. */
6537 int l_name_offset;
6538
6539 /* Offset to l_ld field in struct link_map. */
6540 int l_ld_offset;
6541
6542 /* Offset to l_next field in struct link_map. */
6543 int l_next_offset;
6544
6545 /* Offset to l_prev field in struct link_map. */
6546 int l_prev_offset;
6547 };
6548
6549 /* Construct qXfer:libraries-svr4:read reply. */
6550
6551 static int
6552 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6553 unsigned const char *writebuf,
6554 CORE_ADDR offset, int len)
6555 {
6556 char *document;
6557 unsigned document_len;
6558 struct process_info_private *const priv = current_process ()->priv;
6559 char filename[PATH_MAX];
6560 int pid, is_elf64;
6561
6562 static const struct link_map_offsets lmo_32bit_offsets =
6563 {
6564 0, /* r_version offset. */
6565 4, /* r_debug.r_map offset. */
6566 0, /* l_addr offset in link_map. */
6567 4, /* l_name offset in link_map. */
6568 8, /* l_ld offset in link_map. */
6569 12, /* l_next offset in link_map. */
6570 16 /* l_prev offset in link_map. */
6571 };
6572
6573 static const struct link_map_offsets lmo_64bit_offsets =
6574 {
6575 0, /* r_version offset. */
6576 8, /* r_debug.r_map offset. */
6577 0, /* l_addr offset in link_map. */
6578 8, /* l_name offset in link_map. */
6579 16, /* l_ld offset in link_map. */
6580 24, /* l_next offset in link_map. */
6581 32 /* l_prev offset in link_map. */
6582 };
6583 const struct link_map_offsets *lmo;
6584 unsigned int machine;
6585 int ptr_size;
6586 CORE_ADDR lm_addr = 0, lm_prev = 0;
6587 int allocated = 1024;
6588 char *p;
6589 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6590 int header_done = 0;
6591
6592 if (writebuf != NULL)
6593 return -2;
6594 if (readbuf == NULL)
6595 return -1;
6596
6597 pid = lwpid_of (current_thread);
6598 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6599 is_elf64 = elf_64_file_p (filename, &machine);
6600 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6601 ptr_size = is_elf64 ? 8 : 4;
6602
6603 while (annex[0] != '\0')
6604 {
6605 const char *sep;
6606 CORE_ADDR *addrp;
6607 int len;
6608
6609 sep = strchr (annex, '=');
6610 if (sep == NULL)
6611 break;
6612
6613 len = sep - annex;
6614 if (len == 5 && startswith (annex, "start"))
6615 addrp = &lm_addr;
6616 else if (len == 4 && startswith (annex, "prev"))
6617 addrp = &lm_prev;
6618 else
6619 {
6620 annex = strchr (sep, ';');
6621 if (annex == NULL)
6622 break;
6623 annex++;
6624 continue;
6625 }
6626
6627 annex = decode_address_to_semicolon (addrp, sep + 1);
6628 }
6629
6630 if (lm_addr == 0)
6631 {
6632 int r_version = 0;
6633
6634 if (priv->r_debug == 0)
6635 priv->r_debug = get_r_debug (pid, is_elf64);
6636
6637 /* We failed to find DT_DEBUG. Such situation will not change
6638 for this inferior - do not retry it. Report it to GDB as
6639 E01, see for the reasons at the GDB solib-svr4.c side. */
6640 if (priv->r_debug == (CORE_ADDR) -1)
6641 return -1;
6642
6643 if (priv->r_debug != 0)
6644 {
6645 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6646 (unsigned char *) &r_version,
6647 sizeof (r_version)) != 0
6648 || r_version != 1)
6649 {
6650 warning ("unexpected r_debug version %d", r_version);
6651 }
6652 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6653 &lm_addr, ptr_size) != 0)
6654 {
6655 warning ("unable to read r_map from 0x%lx",
6656 (long) priv->r_debug + lmo->r_map_offset);
6657 }
6658 }
6659 }
6660
6661 document = (char *) xmalloc (allocated);
6662 strcpy (document, "<library-list-svr4 version=\"1.0\"");
6663 p = document + strlen (document);
6664
6665 while (lm_addr
6666 && read_one_ptr (lm_addr + lmo->l_name_offset,
6667 &l_name, ptr_size) == 0
6668 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6669 &l_addr, ptr_size) == 0
6670 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6671 &l_ld, ptr_size) == 0
6672 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6673 &l_prev, ptr_size) == 0
6674 && read_one_ptr (lm_addr + lmo->l_next_offset,
6675 &l_next, ptr_size) == 0)
6676 {
6677 unsigned char libname[PATH_MAX];
6678
6679 if (lm_prev != l_prev)
6680 {
6681 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6682 (long) lm_prev, (long) l_prev);
6683 break;
6684 }
6685
6686 /* Ignore the first entry even if it has valid name as the first entry
6687 corresponds to the main executable. The first entry should not be
6688 skipped if the dynamic loader was loaded late by a static executable
6689 (see solib-svr4.c parameter ignore_first). But in such case the main
6690 executable does not have PT_DYNAMIC present and this function already
6691 exited above due to failed get_r_debug. */
6692 if (lm_prev == 0)
6693 {
6694 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6695 p = p + strlen (p);
6696 }
6697 else
6698 {
6699 /* Not checking for error because reading may stop before
6700 we've got PATH_MAX worth of characters. */
6701 libname[0] = '\0';
6702 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6703 libname[sizeof (libname) - 1] = '\0';
6704 if (libname[0] != '\0')
6705 {
6706 /* 6x the size for xml_escape_text below. */
6707 size_t len = 6 * strlen ((char *) libname);
6708 char *name;
6709
6710 if (!header_done)
6711 {
6712 /* Terminate `<library-list-svr4'. */
6713 *p++ = '>';
6714 header_done = 1;
6715 }
6716
6717 while (allocated < p - document + len + 200)
6718 {
6719 /* Expand to guarantee sufficient storage. */
6720 uintptr_t document_len = p - document;
6721
6722 document = (char *) xrealloc (document, 2 * allocated);
6723 allocated *= 2;
6724 p = document + document_len;
6725 }
6726
6727 name = xml_escape_text ((char *) libname);
6728 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
6729 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6730 name, (unsigned long) lm_addr,
6731 (unsigned long) l_addr, (unsigned long) l_ld);
6732 free (name);
6733 }
6734 }
6735
6736 lm_prev = lm_addr;
6737 lm_addr = l_next;
6738 }
6739
6740 if (!header_done)
6741 {
6742 /* Empty list; terminate `<library-list-svr4'. */
6743 strcpy (p, "/>");
6744 }
6745 else
6746 strcpy (p, "</library-list-svr4>");
6747
6748 document_len = strlen (document);
6749 if (offset < document_len)
6750 document_len -= offset;
6751 else
6752 document_len = 0;
6753 if (len > document_len)
6754 len = document_len;
6755
6756 memcpy (readbuf, document + offset, len);
6757 xfree (document);
6758
6759 return len;
6760 }
6761
6762 #ifdef HAVE_LINUX_BTRACE
6763
6764 /* See to_disable_btrace target method. */
6765
6766 static int
6767 linux_low_disable_btrace (struct btrace_target_info *tinfo)
6768 {
6769 enum btrace_error err;
6770
6771 err = linux_disable_btrace (tinfo);
6772 return (err == BTRACE_ERR_NONE ? 0 : -1);
6773 }
6774
6775 /* Encode an Intel(R) Processor Trace configuration. */
6776
6777 static void
6778 linux_low_encode_pt_config (struct buffer *buffer,
6779 const struct btrace_data_pt_config *config)
6780 {
6781 buffer_grow_str (buffer, "<pt-config>\n");
6782
6783 switch (config->cpu.vendor)
6784 {
6785 case CV_INTEL:
6786 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
6787 "model=\"%u\" stepping=\"%u\"/>\n",
6788 config->cpu.family, config->cpu.model,
6789 config->cpu.stepping);
6790 break;
6791
6792 default:
6793 break;
6794 }
6795
6796 buffer_grow_str (buffer, "</pt-config>\n");
6797 }
6798
6799 /* Encode a raw buffer. */
6800
6801 static void
6802 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
6803 unsigned int size)
6804 {
6805 if (size == 0)
6806 return;
6807
6808 /* We use hex encoding - see common/rsp-low.h. */
6809 buffer_grow_str (buffer, "<raw>\n");
6810
6811 while (size-- > 0)
6812 {
6813 char elem[2];
6814
6815 elem[0] = tohex ((*data >> 4) & 0xf);
6816 elem[1] = tohex (*data++ & 0xf);
6817
6818 buffer_grow (buffer, elem, 2);
6819 }
6820
6821 buffer_grow_str (buffer, "</raw>\n");
6822 }
6823
6824 /* See to_read_btrace target method. */
6825
6826 static int
6827 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
6828 int type)
6829 {
6830 struct btrace_data btrace;
6831 struct btrace_block *block;
6832 enum btrace_error err;
6833 int i;
6834
6835 btrace_data_init (&btrace);
6836
6837 err = linux_read_btrace (&btrace, tinfo, type);
6838 if (err != BTRACE_ERR_NONE)
6839 {
6840 if (err == BTRACE_ERR_OVERFLOW)
6841 buffer_grow_str0 (buffer, "E.Overflow.");
6842 else
6843 buffer_grow_str0 (buffer, "E.Generic Error.");
6844
6845 goto err;
6846 }
6847
6848 switch (btrace.format)
6849 {
6850 case BTRACE_FORMAT_NONE:
6851 buffer_grow_str0 (buffer, "E.No Trace.");
6852 goto err;
6853
6854 case BTRACE_FORMAT_BTS:
6855 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6856 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6857
6858 for (i = 0;
6859 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
6860 i++)
6861 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
6862 paddress (block->begin), paddress (block->end));
6863
6864 buffer_grow_str0 (buffer, "</btrace>\n");
6865 break;
6866
6867 case BTRACE_FORMAT_PT:
6868 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6869 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6870 buffer_grow_str (buffer, "<pt>\n");
6871
6872 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
6873
6874 linux_low_encode_raw (buffer, btrace.variant.pt.data,
6875 btrace.variant.pt.size);
6876
6877 buffer_grow_str (buffer, "</pt>\n");
6878 buffer_grow_str0 (buffer, "</btrace>\n");
6879 break;
6880
6881 default:
6882 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
6883 goto err;
6884 }
6885
6886 btrace_data_fini (&btrace);
6887 return 0;
6888
6889 err:
6890 btrace_data_fini (&btrace);
6891 return -1;
6892 }
6893
6894 /* See to_btrace_conf target method. */
6895
6896 static int
6897 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
6898 struct buffer *buffer)
6899 {
6900 const struct btrace_config *conf;
6901
6902 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
6903 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
6904
6905 conf = linux_btrace_conf (tinfo);
6906 if (conf != NULL)
6907 {
6908 switch (conf->format)
6909 {
6910 case BTRACE_FORMAT_NONE:
6911 break;
6912
6913 case BTRACE_FORMAT_BTS:
6914 buffer_xml_printf (buffer, "<bts");
6915 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
6916 buffer_xml_printf (buffer, " />\n");
6917 break;
6918
6919 case BTRACE_FORMAT_PT:
6920 buffer_xml_printf (buffer, "<pt");
6921 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
6922 buffer_xml_printf (buffer, "/>\n");
6923 break;
6924 }
6925 }
6926
6927 buffer_grow_str0 (buffer, "</btrace-conf>\n");
6928 return 0;
6929 }
6930 #endif /* HAVE_LINUX_BTRACE */
6931
6932 /* See nat/linux-nat.h. */
6933
6934 ptid_t
6935 current_lwp_ptid (void)
6936 {
6937 return ptid_of (current_thread);
6938 }
6939
6940 /* Return the default breakpoint kind as the size of the breakpoint. */
6941
6942 static int
6943 default_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
6944 {
6945 int size = 0;
6946
6947 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
6948
6949 (*the_low_target.sw_breakpoint_from_kind) (0, &size);
6950 return size;
6951 }
6952
6953 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
6954
6955 static int
6956 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
6957 {
6958 if (the_low_target.breakpoint_kind_from_pc != NULL)
6959 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
6960 else
6961 return default_breakpoint_kind_from_pc (pcptr);
6962 }
6963
6964 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
6965
6966 static const gdb_byte *
6967 linux_sw_breakpoint_from_kind (int kind, int *size)
6968 {
6969 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
6970
6971 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
6972 }
6973
6974 static struct target_ops linux_target_ops = {
6975 linux_create_inferior,
6976 linux_arch_setup,
6977 linux_attach,
6978 linux_kill,
6979 linux_detach,
6980 linux_mourn,
6981 linux_join,
6982 linux_thread_alive,
6983 linux_resume,
6984 linux_wait,
6985 linux_fetch_registers,
6986 linux_store_registers,
6987 linux_prepare_to_access_memory,
6988 linux_done_accessing_memory,
6989 linux_read_memory,
6990 linux_write_memory,
6991 linux_look_up_symbols,
6992 linux_request_interrupt,
6993 linux_read_auxv,
6994 linux_supports_z_point_type,
6995 linux_insert_point,
6996 linux_remove_point,
6997 linux_stopped_by_sw_breakpoint,
6998 linux_supports_stopped_by_sw_breakpoint,
6999 linux_stopped_by_hw_breakpoint,
7000 linux_supports_stopped_by_hw_breakpoint,
7001 linux_supports_hardware_single_step,
7002 linux_stopped_by_watchpoint,
7003 linux_stopped_data_address,
7004 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7005 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7006 && defined(PT_TEXT_END_ADDR)
7007 linux_read_offsets,
7008 #else
7009 NULL,
7010 #endif
7011 #ifdef USE_THREAD_DB
7012 thread_db_get_tls_address,
7013 #else
7014 NULL,
7015 #endif
7016 linux_qxfer_spu,
7017 hostio_last_error_from_errno,
7018 linux_qxfer_osdata,
7019 linux_xfer_siginfo,
7020 linux_supports_non_stop,
7021 linux_async,
7022 linux_start_non_stop,
7023 linux_supports_multi_process,
7024 linux_supports_fork_events,
7025 linux_supports_vfork_events,
7026 linux_supports_exec_events,
7027 linux_handle_new_gdb_connection,
7028 #ifdef USE_THREAD_DB
7029 thread_db_handle_monitor_command,
7030 #else
7031 NULL,
7032 #endif
7033 linux_common_core_of_thread,
7034 linux_read_loadmap,
7035 linux_process_qsupported,
7036 linux_supports_tracepoints,
7037 linux_read_pc,
7038 linux_write_pc,
7039 linux_thread_stopped,
7040 NULL,
7041 linux_pause_all,
7042 linux_unpause_all,
7043 linux_stabilize_threads,
7044 linux_install_fast_tracepoint_jump_pad,
7045 linux_emit_ops,
7046 linux_supports_disable_randomization,
7047 linux_get_min_fast_tracepoint_insn_len,
7048 linux_qxfer_libraries_svr4,
7049 linux_supports_agent,
7050 #ifdef HAVE_LINUX_BTRACE
7051 linux_supports_btrace,
7052 linux_enable_btrace,
7053 linux_low_disable_btrace,
7054 linux_low_read_btrace,
7055 linux_low_btrace_conf,
7056 #else
7057 NULL,
7058 NULL,
7059 NULL,
7060 NULL,
7061 NULL,
7062 #endif
7063 linux_supports_range_stepping,
7064 linux_proc_pid_to_exec_file,
7065 linux_mntns_open_cloexec,
7066 linux_mntns_unlink,
7067 linux_mntns_readlink,
7068 linux_breakpoint_kind_from_pc,
7069 linux_sw_breakpoint_from_kind
7070 };
7071
7072 static void
7073 linux_init_signals ()
7074 {
7075 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
7076 to find what the cancel signal actually is. */
7077 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
7078 signal (__SIGRTMIN+1, SIG_IGN);
7079 #endif
7080 }
7081
7082 #ifdef HAVE_LINUX_REGSETS
7083 void
7084 initialize_regsets_info (struct regsets_info *info)
7085 {
7086 for (info->num_regsets = 0;
7087 info->regsets[info->num_regsets].size >= 0;
7088 info->num_regsets++)
7089 ;
7090 }
7091 #endif
7092
7093 void
7094 initialize_low (void)
7095 {
7096 struct sigaction sigchld_action;
7097
7098 memset (&sigchld_action, 0, sizeof (sigchld_action));
7099 set_target_ops (&linux_target_ops);
7100
7101 linux_init_signals ();
7102 linux_ptrace_init_warnings ();
7103
7104 sigchld_action.sa_handler = sigchld_handler;
7105 sigemptyset (&sigchld_action.sa_mask);
7106 sigchld_action.sa_flags = SA_RESTART;
7107 sigaction (SIGCHLD, &sigchld_action, NULL);
7108
7109 initialize_low_arch ();
7110
7111 linux_check_ptrace_features ();
7112 }