]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Make target_waitstatus_to_string return an std::string
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (struct inferior_list_entry *entry, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417 free (lwp->arch_private);
418 free (lwp);
419 }
420
421 /* Add a process to the common process list, and set its private
422 data. */
423
424 static struct process_info *
425 linux_add_process (int pid, int attached)
426 {
427 struct process_info *proc;
428
429 proc = add_process (pid, attached);
430 proc->priv = XCNEW (struct process_info_private);
431
432 if (the_low_target.new_process != NULL)
433 proc->priv->arch_private = the_low_target.new_process ();
434
435 return proc;
436 }
437
438 static CORE_ADDR get_pc (struct lwp_info *lwp);
439
440 /* Call the target arch_setup function on the current thread. */
441
442 static void
443 linux_arch_setup (void)
444 {
445 the_low_target.arch_setup ();
446 }
447
448 /* Call the target arch_setup function on THREAD. */
449
450 static void
451 linux_arch_setup_thread (struct thread_info *thread)
452 {
453 struct thread_info *saved_thread;
454
455 saved_thread = current_thread;
456 current_thread = thread;
457
458 linux_arch_setup ();
459
460 current_thread = saved_thread;
461 }
462
463 /* Handle a GNU/Linux extended wait response. If we see a clone,
464 fork, or vfork event, we need to add the new LWP to our list
465 (and return 0 so as not to report the trap to higher layers).
466 If we see an exec event, we will modify ORIG_EVENT_LWP to point
467 to a new LWP representing the new program. */
468
469 static int
470 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
471 {
472 struct lwp_info *event_lwp = *orig_event_lwp;
473 int event = linux_ptrace_get_extended_event (wstat);
474 struct thread_info *event_thr = get_lwp_thread (event_lwp);
475 struct lwp_info *new_lwp;
476
477 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
478
479 /* All extended events we currently use are mid-syscall. Only
480 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
481 you have to be using PTRACE_SEIZE to get that. */
482 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
483
484 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
485 || (event == PTRACE_EVENT_CLONE))
486 {
487 ptid_t ptid;
488 unsigned long new_pid;
489 int ret, status;
490
491 /* Get the pid of the new lwp. */
492 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
493 &new_pid);
494
495 /* If we haven't already seen the new PID stop, wait for it now. */
496 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
497 {
498 /* The new child has a pending SIGSTOP. We can't affect it until it
499 hits the SIGSTOP, but we're already attached. */
500
501 ret = my_waitpid (new_pid, &status, __WALL);
502
503 if (ret == -1)
504 perror_with_name ("waiting for new child");
505 else if (ret != new_pid)
506 warning ("wait returned unexpected PID %d", ret);
507 else if (!WIFSTOPPED (status))
508 warning ("wait returned unexpected status 0x%x", status);
509 }
510
511 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
512 {
513 struct process_info *parent_proc;
514 struct process_info *child_proc;
515 struct lwp_info *child_lwp;
516 struct thread_info *child_thr;
517 struct target_desc *tdesc;
518
519 ptid = ptid_build (new_pid, new_pid, 0);
520
521 if (debug_threads)
522 {
523 debug_printf ("HEW: Got fork event from LWP %ld, "
524 "new child is %d\n",
525 ptid_get_lwp (ptid_of (event_thr)),
526 ptid_get_pid (ptid));
527 }
528
529 /* Add the new process to the tables and clone the breakpoint
530 lists of the parent. We need to do this even if the new process
531 will be detached, since we will need the process object and the
532 breakpoints to remove any breakpoints from memory when we
533 detach, and the client side will access registers. */
534 child_proc = linux_add_process (new_pid, 0);
535 gdb_assert (child_proc != NULL);
536 child_lwp = add_lwp (ptid);
537 gdb_assert (child_lwp != NULL);
538 child_lwp->stopped = 1;
539 child_lwp->must_set_ptrace_flags = 1;
540 child_lwp->status_pending_p = 0;
541 child_thr = get_lwp_thread (child_lwp);
542 child_thr->last_resume_kind = resume_stop;
543 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
544
545 /* If we're suspending all threads, leave this one suspended
546 too. If the fork/clone parent is stepping over a breakpoint,
547 all other threads have been suspended already. Leave the
548 child suspended too. */
549 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
550 || event_lwp->bp_reinsert != 0)
551 {
552 if (debug_threads)
553 debug_printf ("HEW: leaving child suspended\n");
554 child_lwp->suspended = 1;
555 }
556
557 parent_proc = get_thread_process (event_thr);
558 child_proc->attached = parent_proc->attached;
559
560 if (event_lwp->bp_reinsert != 0
561 && can_software_single_step ()
562 && event == PTRACE_EVENT_VFORK)
563 {
564 /* If we leave single-step breakpoints there, child will
565 hit it, so uninsert single-step breakpoints from parent
566 (and child). Once vfork child is done, reinsert
567 them back to parent. */
568 uninsert_single_step_breakpoints (event_thr);
569 }
570
571 clone_all_breakpoints (child_thr, event_thr);
572
573 tdesc = XNEW (struct target_desc);
574 copy_target_description (tdesc, parent_proc->tdesc);
575 child_proc->tdesc = tdesc;
576
577 /* Clone arch-specific process data. */
578 if (the_low_target.new_fork != NULL)
579 the_low_target.new_fork (parent_proc, child_proc);
580
581 /* Save fork info in the parent thread. */
582 if (event == PTRACE_EVENT_FORK)
583 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
584 else if (event == PTRACE_EVENT_VFORK)
585 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
586
587 event_lwp->waitstatus.value.related_pid = ptid;
588
589 /* The status_pending field contains bits denoting the
590 extended event, so when the pending event is handled,
591 the handler will look at lwp->waitstatus. */
592 event_lwp->status_pending_p = 1;
593 event_lwp->status_pending = wstat;
594
595 /* Link the threads until the parent event is passed on to
596 higher layers. */
597 event_lwp->fork_relative = child_lwp;
598 child_lwp->fork_relative = event_lwp;
599
600 /* If the parent thread is doing step-over with single-step
601 breakpoints, the list of single-step breakpoints are cloned
602 from the parent's. Remove them from the child process.
603 In case of vfork, we'll reinsert them back once vforked
604 child is done. */
605 if (event_lwp->bp_reinsert != 0
606 && can_software_single_step ())
607 {
608 /* The child process is forked and stopped, so it is safe
609 to access its memory without stopping all other threads
610 from other processes. */
611 delete_single_step_breakpoints (child_thr);
612
613 gdb_assert (has_single_step_breakpoints (event_thr));
614 gdb_assert (!has_single_step_breakpoints (child_thr));
615 }
616
617 /* Report the event. */
618 return 0;
619 }
620
621 if (debug_threads)
622 debug_printf ("HEW: Got clone event "
623 "from LWP %ld, new child is LWP %ld\n",
624 lwpid_of (event_thr), new_pid);
625
626 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
627 new_lwp = add_lwp (ptid);
628
629 /* Either we're going to immediately resume the new thread
630 or leave it stopped. linux_resume_one_lwp is a nop if it
631 thinks the thread is currently running, so set this first
632 before calling linux_resume_one_lwp. */
633 new_lwp->stopped = 1;
634
635 /* If we're suspending all threads, leave this one suspended
636 too. If the fork/clone parent is stepping over a breakpoint,
637 all other threads have been suspended already. Leave the
638 child suspended too. */
639 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
640 || event_lwp->bp_reinsert != 0)
641 new_lwp->suspended = 1;
642
643 /* Normally we will get the pending SIGSTOP. But in some cases
644 we might get another signal delivered to the group first.
645 If we do get another signal, be sure not to lose it. */
646 if (WSTOPSIG (status) != SIGSTOP)
647 {
648 new_lwp->stop_expected = 1;
649 new_lwp->status_pending_p = 1;
650 new_lwp->status_pending = status;
651 }
652 else if (report_thread_events)
653 {
654 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
655 new_lwp->status_pending_p = 1;
656 new_lwp->status_pending = status;
657 }
658
659 /* Don't report the event. */
660 return 1;
661 }
662 else if (event == PTRACE_EVENT_VFORK_DONE)
663 {
664 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
665
666 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
667 {
668 reinsert_single_step_breakpoints (event_thr);
669
670 gdb_assert (has_single_step_breakpoints (event_thr));
671 }
672
673 /* Report the event. */
674 return 0;
675 }
676 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
677 {
678 struct process_info *proc;
679 VEC (int) *syscalls_to_catch;
680 ptid_t event_ptid;
681 pid_t event_pid;
682
683 if (debug_threads)
684 {
685 debug_printf ("HEW: Got exec event from LWP %ld\n",
686 lwpid_of (event_thr));
687 }
688
689 /* Get the event ptid. */
690 event_ptid = ptid_of (event_thr);
691 event_pid = ptid_get_pid (event_ptid);
692
693 /* Save the syscall list from the execing process. */
694 proc = get_thread_process (event_thr);
695 syscalls_to_catch = proc->syscalls_to_catch;
696 proc->syscalls_to_catch = NULL;
697
698 /* Delete the execing process and all its threads. */
699 linux_mourn (proc);
700 current_thread = NULL;
701
702 /* Create a new process/lwp/thread. */
703 proc = linux_add_process (event_pid, 0);
704 event_lwp = add_lwp (event_ptid);
705 event_thr = get_lwp_thread (event_lwp);
706 gdb_assert (current_thread == event_thr);
707 linux_arch_setup_thread (event_thr);
708
709 /* Set the event status. */
710 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
711 event_lwp->waitstatus.value.execd_pathname
712 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
713
714 /* Mark the exec status as pending. */
715 event_lwp->stopped = 1;
716 event_lwp->status_pending_p = 1;
717 event_lwp->status_pending = wstat;
718 event_thr->last_resume_kind = resume_continue;
719 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
720
721 /* Update syscall state in the new lwp, effectively mid-syscall too. */
722 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
723
724 /* Restore the list to catch. Don't rely on the client, which is free
725 to avoid sending a new list when the architecture doesn't change.
726 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
727 proc->syscalls_to_catch = syscalls_to_catch;
728
729 /* Report the event. */
730 *orig_event_lwp = event_lwp;
731 return 0;
732 }
733
734 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
735 }
736
737 /* Return the PC as read from the regcache of LWP, without any
738 adjustment. */
739
740 static CORE_ADDR
741 get_pc (struct lwp_info *lwp)
742 {
743 struct thread_info *saved_thread;
744 struct regcache *regcache;
745 CORE_ADDR pc;
746
747 if (the_low_target.get_pc == NULL)
748 return 0;
749
750 saved_thread = current_thread;
751 current_thread = get_lwp_thread (lwp);
752
753 regcache = get_thread_regcache (current_thread, 1);
754 pc = (*the_low_target.get_pc) (regcache);
755
756 if (debug_threads)
757 debug_printf ("pc is 0x%lx\n", (long) pc);
758
759 current_thread = saved_thread;
760 return pc;
761 }
762
763 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
764 Fill *SYSNO with the syscall nr trapped. */
765
766 static void
767 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
768 {
769 struct thread_info *saved_thread;
770 struct regcache *regcache;
771
772 if (the_low_target.get_syscall_trapinfo == NULL)
773 {
774 /* If we cannot get the syscall trapinfo, report an unknown
775 system call number. */
776 *sysno = UNKNOWN_SYSCALL;
777 return;
778 }
779
780 saved_thread = current_thread;
781 current_thread = get_lwp_thread (lwp);
782
783 regcache = get_thread_regcache (current_thread, 1);
784 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
785
786 if (debug_threads)
787 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
788
789 current_thread = saved_thread;
790 }
791
792 static int check_stopped_by_watchpoint (struct lwp_info *child);
793
794 /* Called when the LWP stopped for a signal/trap. If it stopped for a
795 trap check what caused it (breakpoint, watchpoint, trace, etc.),
796 and save the result in the LWP's stop_reason field. If it stopped
797 for a breakpoint, decrement the PC if necessary on the lwp's
798 architecture. Returns true if we now have the LWP's stop PC. */
799
800 static int
801 save_stop_reason (struct lwp_info *lwp)
802 {
803 CORE_ADDR pc;
804 CORE_ADDR sw_breakpoint_pc;
805 struct thread_info *saved_thread;
806 #if USE_SIGTRAP_SIGINFO
807 siginfo_t siginfo;
808 #endif
809
810 if (the_low_target.get_pc == NULL)
811 return 0;
812
813 pc = get_pc (lwp);
814 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
815
816 /* breakpoint_at reads from the current thread. */
817 saved_thread = current_thread;
818 current_thread = get_lwp_thread (lwp);
819
820 #if USE_SIGTRAP_SIGINFO
821 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
822 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
823 {
824 if (siginfo.si_signo == SIGTRAP)
825 {
826 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
827 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
828 {
829 /* The si_code is ambiguous on this arch -- check debug
830 registers. */
831 if (!check_stopped_by_watchpoint (lwp))
832 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
833 }
834 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
835 {
836 /* If we determine the LWP stopped for a SW breakpoint,
837 trust it. Particularly don't check watchpoint
838 registers, because at least on s390, we'd find
839 stopped-by-watchpoint as long as there's a watchpoint
840 set. */
841 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
842 }
843 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
844 {
845 /* This can indicate either a hardware breakpoint or
846 hardware watchpoint. Check debug registers. */
847 if (!check_stopped_by_watchpoint (lwp))
848 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
849 }
850 else if (siginfo.si_code == TRAP_TRACE)
851 {
852 /* We may have single stepped an instruction that
853 triggered a watchpoint. In that case, on some
854 architectures (such as x86), instead of TRAP_HWBKPT,
855 si_code indicates TRAP_TRACE, and we need to check
856 the debug registers separately. */
857 if (!check_stopped_by_watchpoint (lwp))
858 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
859 }
860 }
861 }
862 #else
863 /* We may have just stepped a breakpoint instruction. E.g., in
864 non-stop mode, GDB first tells the thread A to step a range, and
865 then the user inserts a breakpoint inside the range. In that
866 case we need to report the breakpoint PC. */
867 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
868 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
869 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
870
871 if (hardware_breakpoint_inserted_here (pc))
872 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
873
874 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
875 check_stopped_by_watchpoint (lwp);
876 #endif
877
878 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
879 {
880 if (debug_threads)
881 {
882 struct thread_info *thr = get_lwp_thread (lwp);
883
884 debug_printf ("CSBB: %s stopped by software breakpoint\n",
885 target_pid_to_str (ptid_of (thr)));
886 }
887
888 /* Back up the PC if necessary. */
889 if (pc != sw_breakpoint_pc)
890 {
891 struct regcache *regcache
892 = get_thread_regcache (current_thread, 1);
893 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
894 }
895
896 /* Update this so we record the correct stop PC below. */
897 pc = sw_breakpoint_pc;
898 }
899 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
900 {
901 if (debug_threads)
902 {
903 struct thread_info *thr = get_lwp_thread (lwp);
904
905 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
906 target_pid_to_str (ptid_of (thr)));
907 }
908 }
909 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
910 {
911 if (debug_threads)
912 {
913 struct thread_info *thr = get_lwp_thread (lwp);
914
915 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
916 target_pid_to_str (ptid_of (thr)));
917 }
918 }
919 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
920 {
921 if (debug_threads)
922 {
923 struct thread_info *thr = get_lwp_thread (lwp);
924
925 debug_printf ("CSBB: %s stopped by trace\n",
926 target_pid_to_str (ptid_of (thr)));
927 }
928 }
929
930 lwp->stop_pc = pc;
931 current_thread = saved_thread;
932 return 1;
933 }
934
935 static struct lwp_info *
936 add_lwp (ptid_t ptid)
937 {
938 struct lwp_info *lwp;
939
940 lwp = XCNEW (struct lwp_info);
941
942 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
943
944 if (the_low_target.new_thread != NULL)
945 the_low_target.new_thread (lwp);
946
947 lwp->thread = add_thread (ptid, lwp);
948
949 return lwp;
950 }
951
952 /* Callback to be used when calling fork_inferior, responsible for
953 actually initiating the tracing of the inferior. */
954
955 static void
956 linux_ptrace_fun ()
957 {
958 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
959 (PTRACE_TYPE_ARG4) 0) < 0)
960 trace_start_error_with_name ("ptrace");
961
962 if (setpgid (0, 0) < 0)
963 trace_start_error_with_name ("setpgid");
964
965 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
966 stdout to stderr so that inferior i/o doesn't corrupt the connection.
967 Also, redirect stdin to /dev/null. */
968 if (remote_connection_is_stdio ())
969 {
970 if (close (0) < 0)
971 trace_start_error_with_name ("close");
972 if (open ("/dev/null", O_RDONLY) < 0)
973 trace_start_error_with_name ("open");
974 if (dup2 (2, 1) < 0)
975 trace_start_error_with_name ("dup2");
976 if (write (2, "stdin/stdout redirected\n",
977 sizeof ("stdin/stdout redirected\n") - 1) < 0)
978 {
979 /* Errors ignored. */;
980 }
981 }
982 }
983
984 /* Start an inferior process and returns its pid.
985 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
986 are its arguments. */
987
988 static int
989 linux_create_inferior (const char *program,
990 const std::vector<char *> &program_args)
991 {
992 struct lwp_info *new_lwp;
993 int pid;
994 ptid_t ptid;
995 struct cleanup *restore_personality
996 = maybe_disable_address_space_randomization (disable_randomization);
997 std::string str_program_args = stringify_argv (program_args);
998
999 pid = fork_inferior (program,
1000 str_program_args.c_str (),
1001 get_environ ()->envp (), linux_ptrace_fun,
1002 NULL, NULL, NULL, NULL);
1003
1004 do_cleanups (restore_personality);
1005
1006 linux_add_process (pid, 0);
1007
1008 ptid = ptid_build (pid, pid, 0);
1009 new_lwp = add_lwp (ptid);
1010 new_lwp->must_set_ptrace_flags = 1;
1011
1012 post_fork_inferior (pid, program);
1013
1014 return pid;
1015 }
1016
1017 /* Implement the post_create_inferior target_ops method. */
1018
1019 static void
1020 linux_post_create_inferior (void)
1021 {
1022 struct lwp_info *lwp = get_thread_lwp (current_thread);
1023
1024 linux_arch_setup ();
1025
1026 if (lwp->must_set_ptrace_flags)
1027 {
1028 struct process_info *proc = current_process ();
1029 int options = linux_low_ptrace_options (proc->attached);
1030
1031 linux_enable_event_reporting (lwpid_of (current_thread), options);
1032 lwp->must_set_ptrace_flags = 0;
1033 }
1034 }
1035
1036 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1037 error. */
1038
1039 int
1040 linux_attach_lwp (ptid_t ptid)
1041 {
1042 struct lwp_info *new_lwp;
1043 int lwpid = ptid_get_lwp (ptid);
1044
1045 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1046 != 0)
1047 return errno;
1048
1049 new_lwp = add_lwp (ptid);
1050
1051 /* We need to wait for SIGSTOP before being able to make the next
1052 ptrace call on this LWP. */
1053 new_lwp->must_set_ptrace_flags = 1;
1054
1055 if (linux_proc_pid_is_stopped (lwpid))
1056 {
1057 if (debug_threads)
1058 debug_printf ("Attached to a stopped process\n");
1059
1060 /* The process is definitely stopped. It is in a job control
1061 stop, unless the kernel predates the TASK_STOPPED /
1062 TASK_TRACED distinction, in which case it might be in a
1063 ptrace stop. Make sure it is in a ptrace stop; from there we
1064 can kill it, signal it, et cetera.
1065
1066 First make sure there is a pending SIGSTOP. Since we are
1067 already attached, the process can not transition from stopped
1068 to running without a PTRACE_CONT; so we know this signal will
1069 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1070 probably already in the queue (unless this kernel is old
1071 enough to use TASK_STOPPED for ptrace stops); but since
1072 SIGSTOP is not an RT signal, it can only be queued once. */
1073 kill_lwp (lwpid, SIGSTOP);
1074
1075 /* Finally, resume the stopped process. This will deliver the
1076 SIGSTOP (or a higher priority signal, just like normal
1077 PTRACE_ATTACH), which we'll catch later on. */
1078 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1079 }
1080
1081 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1082 brings it to a halt.
1083
1084 There are several cases to consider here:
1085
1086 1) gdbserver has already attached to the process and is being notified
1087 of a new thread that is being created.
1088 In this case we should ignore that SIGSTOP and resume the
1089 process. This is handled below by setting stop_expected = 1,
1090 and the fact that add_thread sets last_resume_kind ==
1091 resume_continue.
1092
1093 2) This is the first thread (the process thread), and we're attaching
1094 to it via attach_inferior.
1095 In this case we want the process thread to stop.
1096 This is handled by having linux_attach set last_resume_kind ==
1097 resume_stop after we return.
1098
1099 If the pid we are attaching to is also the tgid, we attach to and
1100 stop all the existing threads. Otherwise, we attach to pid and
1101 ignore any other threads in the same group as this pid.
1102
1103 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1104 existing threads.
1105 In this case we want the thread to stop.
1106 FIXME: This case is currently not properly handled.
1107 We should wait for the SIGSTOP but don't. Things work apparently
1108 because enough time passes between when we ptrace (ATTACH) and when
1109 gdb makes the next ptrace call on the thread.
1110
1111 On the other hand, if we are currently trying to stop all threads, we
1112 should treat the new thread as if we had sent it a SIGSTOP. This works
1113 because we are guaranteed that the add_lwp call above added us to the
1114 end of the list, and so the new thread has not yet reached
1115 wait_for_sigstop (but will). */
1116 new_lwp->stop_expected = 1;
1117
1118 return 0;
1119 }
1120
1121 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1122 already attached. Returns true if a new LWP is found, false
1123 otherwise. */
1124
1125 static int
1126 attach_proc_task_lwp_callback (ptid_t ptid)
1127 {
1128 /* Is this a new thread? */
1129 if (find_thread_ptid (ptid) == NULL)
1130 {
1131 int lwpid = ptid_get_lwp (ptid);
1132 int err;
1133
1134 if (debug_threads)
1135 debug_printf ("Found new lwp %d\n", lwpid);
1136
1137 err = linux_attach_lwp (ptid);
1138
1139 /* Be quiet if we simply raced with the thread exiting. EPERM
1140 is returned if the thread's task still exists, and is marked
1141 as exited or zombie, as well as other conditions, so in that
1142 case, confirm the status in /proc/PID/status. */
1143 if (err == ESRCH
1144 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1145 {
1146 if (debug_threads)
1147 {
1148 debug_printf ("Cannot attach to lwp %d: "
1149 "thread is gone (%d: %s)\n",
1150 lwpid, err, strerror (err));
1151 }
1152 }
1153 else if (err != 0)
1154 {
1155 warning (_("Cannot attach to lwp %d: %s"),
1156 lwpid,
1157 linux_ptrace_attach_fail_reason_string (ptid, err));
1158 }
1159
1160 return 1;
1161 }
1162 return 0;
1163 }
1164
1165 static void async_file_mark (void);
1166
1167 /* Attach to PID. If PID is the tgid, attach to it and all
1168 of its threads. */
1169
1170 static int
1171 linux_attach (unsigned long pid)
1172 {
1173 struct process_info *proc;
1174 struct thread_info *initial_thread;
1175 ptid_t ptid = ptid_build (pid, pid, 0);
1176 int err;
1177
1178 /* Attach to PID. We will check for other threads
1179 soon. */
1180 err = linux_attach_lwp (ptid);
1181 if (err != 0)
1182 error ("Cannot attach to process %ld: %s",
1183 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1184
1185 proc = linux_add_process (pid, 1);
1186
1187 /* Don't ignore the initial SIGSTOP if we just attached to this
1188 process. It will be collected by wait shortly. */
1189 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1190 initial_thread->last_resume_kind = resume_stop;
1191
1192 /* We must attach to every LWP. If /proc is mounted, use that to
1193 find them now. On the one hand, the inferior may be using raw
1194 clone instead of using pthreads. On the other hand, even if it
1195 is using pthreads, GDB may not be connected yet (thread_db needs
1196 to do symbol lookups, through qSymbol). Also, thread_db walks
1197 structures in the inferior's address space to find the list of
1198 threads/LWPs, and those structures may well be corrupted. Note
1199 that once thread_db is loaded, we'll still use it to list threads
1200 and associate pthread info with each LWP. */
1201 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1202
1203 /* GDB will shortly read the xml target description for this
1204 process, to figure out the process' architecture. But the target
1205 description is only filled in when the first process/thread in
1206 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1207 that now, otherwise, if GDB is fast enough, it could read the
1208 target description _before_ that initial stop. */
1209 if (non_stop)
1210 {
1211 struct lwp_info *lwp;
1212 int wstat, lwpid;
1213 ptid_t pid_ptid = pid_to_ptid (pid);
1214
1215 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1216 &wstat, __WALL);
1217 gdb_assert (lwpid > 0);
1218
1219 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1220
1221 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1222 {
1223 lwp->status_pending_p = 1;
1224 lwp->status_pending = wstat;
1225 }
1226
1227 initial_thread->last_resume_kind = resume_continue;
1228
1229 async_file_mark ();
1230
1231 gdb_assert (proc->tdesc != NULL);
1232 }
1233
1234 return 0;
1235 }
1236
1237 struct counter
1238 {
1239 int pid;
1240 int count;
1241 };
1242
1243 static int
1244 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1245 {
1246 struct counter *counter = (struct counter *) args;
1247
1248 if (ptid_get_pid (entry->id) == counter->pid)
1249 {
1250 if (++counter->count > 1)
1251 return 1;
1252 }
1253
1254 return 0;
1255 }
1256
1257 static int
1258 last_thread_of_process_p (int pid)
1259 {
1260 struct counter counter = { pid , 0 };
1261
1262 return (find_inferior (&all_threads,
1263 second_thread_of_pid_p, &counter) == NULL);
1264 }
1265
1266 /* Kill LWP. */
1267
1268 static void
1269 linux_kill_one_lwp (struct lwp_info *lwp)
1270 {
1271 struct thread_info *thr = get_lwp_thread (lwp);
1272 int pid = lwpid_of (thr);
1273
1274 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1275 there is no signal context, and ptrace(PTRACE_KILL) (or
1276 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1277 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1278 alternative is to kill with SIGKILL. We only need one SIGKILL
1279 per process, not one for each thread. But since we still support
1280 support debugging programs using raw clone without CLONE_THREAD,
1281 we send one for each thread. For years, we used PTRACE_KILL
1282 only, so we're being a bit paranoid about some old kernels where
1283 PTRACE_KILL might work better (dubious if there are any such, but
1284 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1285 second, and so we're fine everywhere. */
1286
1287 errno = 0;
1288 kill_lwp (pid, SIGKILL);
1289 if (debug_threads)
1290 {
1291 int save_errno = errno;
1292
1293 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1294 target_pid_to_str (ptid_of (thr)),
1295 save_errno ? strerror (save_errno) : "OK");
1296 }
1297
1298 errno = 0;
1299 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1300 if (debug_threads)
1301 {
1302 int save_errno = errno;
1303
1304 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1305 target_pid_to_str (ptid_of (thr)),
1306 save_errno ? strerror (save_errno) : "OK");
1307 }
1308 }
1309
1310 /* Kill LWP and wait for it to die. */
1311
1312 static void
1313 kill_wait_lwp (struct lwp_info *lwp)
1314 {
1315 struct thread_info *thr = get_lwp_thread (lwp);
1316 int pid = ptid_get_pid (ptid_of (thr));
1317 int lwpid = ptid_get_lwp (ptid_of (thr));
1318 int wstat;
1319 int res;
1320
1321 if (debug_threads)
1322 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1323
1324 do
1325 {
1326 linux_kill_one_lwp (lwp);
1327
1328 /* Make sure it died. Notes:
1329
1330 - The loop is most likely unnecessary.
1331
1332 - We don't use linux_wait_for_event as that could delete lwps
1333 while we're iterating over them. We're not interested in
1334 any pending status at this point, only in making sure all
1335 wait status on the kernel side are collected until the
1336 process is reaped.
1337
1338 - We don't use __WALL here as the __WALL emulation relies on
1339 SIGCHLD, and killing a stopped process doesn't generate
1340 one, nor an exit status.
1341 */
1342 res = my_waitpid (lwpid, &wstat, 0);
1343 if (res == -1 && errno == ECHILD)
1344 res = my_waitpid (lwpid, &wstat, __WCLONE);
1345 } while (res > 0 && WIFSTOPPED (wstat));
1346
1347 /* Even if it was stopped, the child may have already disappeared.
1348 E.g., if it was killed by SIGKILL. */
1349 if (res < 0 && errno != ECHILD)
1350 perror_with_name ("kill_wait_lwp");
1351 }
1352
1353 /* Callback for `find_inferior'. Kills an lwp of a given process,
1354 except the leader. */
1355
1356 static int
1357 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1358 {
1359 struct thread_info *thread = (struct thread_info *) entry;
1360 struct lwp_info *lwp = get_thread_lwp (thread);
1361 int pid = * (int *) args;
1362
1363 if (ptid_get_pid (entry->id) != pid)
1364 return 0;
1365
1366 /* We avoid killing the first thread here, because of a Linux kernel (at
1367 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1368 the children get a chance to be reaped, it will remain a zombie
1369 forever. */
1370
1371 if (lwpid_of (thread) == pid)
1372 {
1373 if (debug_threads)
1374 debug_printf ("lkop: is last of process %s\n",
1375 target_pid_to_str (entry->id));
1376 return 0;
1377 }
1378
1379 kill_wait_lwp (lwp);
1380 return 0;
1381 }
1382
1383 static int
1384 linux_kill (int pid)
1385 {
1386 struct process_info *process;
1387 struct lwp_info *lwp;
1388
1389 process = find_process_pid (pid);
1390 if (process == NULL)
1391 return -1;
1392
1393 /* If we're killing a running inferior, make sure it is stopped
1394 first, as PTRACE_KILL will not work otherwise. */
1395 stop_all_lwps (0, NULL);
1396
1397 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1398
1399 /* See the comment in linux_kill_one_lwp. We did not kill the first
1400 thread in the list, so do so now. */
1401 lwp = find_lwp_pid (pid_to_ptid (pid));
1402
1403 if (lwp == NULL)
1404 {
1405 if (debug_threads)
1406 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1407 pid);
1408 }
1409 else
1410 kill_wait_lwp (lwp);
1411
1412 the_target->mourn (process);
1413
1414 /* Since we presently can only stop all lwps of all processes, we
1415 need to unstop lwps of other processes. */
1416 unstop_all_lwps (0, NULL);
1417 return 0;
1418 }
1419
1420 /* Get pending signal of THREAD, for detaching purposes. This is the
1421 signal the thread last stopped for, which we need to deliver to the
1422 thread when detaching, otherwise, it'd be suppressed/lost. */
1423
1424 static int
1425 get_detach_signal (struct thread_info *thread)
1426 {
1427 enum gdb_signal signo = GDB_SIGNAL_0;
1428 int status;
1429 struct lwp_info *lp = get_thread_lwp (thread);
1430
1431 if (lp->status_pending_p)
1432 status = lp->status_pending;
1433 else
1434 {
1435 /* If the thread had been suspended by gdbserver, and it stopped
1436 cleanly, then it'll have stopped with SIGSTOP. But we don't
1437 want to deliver that SIGSTOP. */
1438 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1439 || thread->last_status.value.sig == GDB_SIGNAL_0)
1440 return 0;
1441
1442 /* Otherwise, we may need to deliver the signal we
1443 intercepted. */
1444 status = lp->last_status;
1445 }
1446
1447 if (!WIFSTOPPED (status))
1448 {
1449 if (debug_threads)
1450 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1451 target_pid_to_str (ptid_of (thread)));
1452 return 0;
1453 }
1454
1455 /* Extended wait statuses aren't real SIGTRAPs. */
1456 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1457 {
1458 if (debug_threads)
1459 debug_printf ("GPS: lwp %s had stopped with extended "
1460 "status: no pending signal\n",
1461 target_pid_to_str (ptid_of (thread)));
1462 return 0;
1463 }
1464
1465 signo = gdb_signal_from_host (WSTOPSIG (status));
1466
1467 if (program_signals_p && !program_signals[signo])
1468 {
1469 if (debug_threads)
1470 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1471 target_pid_to_str (ptid_of (thread)),
1472 gdb_signal_to_string (signo));
1473 return 0;
1474 }
1475 else if (!program_signals_p
1476 /* If we have no way to know which signals GDB does not
1477 want to have passed to the program, assume
1478 SIGTRAP/SIGINT, which is GDB's default. */
1479 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1480 {
1481 if (debug_threads)
1482 debug_printf ("GPS: lwp %s had signal %s, "
1483 "but we don't know if we should pass it. "
1484 "Default to not.\n",
1485 target_pid_to_str (ptid_of (thread)),
1486 gdb_signal_to_string (signo));
1487 return 0;
1488 }
1489 else
1490 {
1491 if (debug_threads)
1492 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1493 target_pid_to_str (ptid_of (thread)),
1494 gdb_signal_to_string (signo));
1495
1496 return WSTOPSIG (status);
1497 }
1498 }
1499
1500 /* Detach from LWP. */
1501
1502 static void
1503 linux_detach_one_lwp (struct lwp_info *lwp)
1504 {
1505 struct thread_info *thread = get_lwp_thread (lwp);
1506 int sig;
1507 int lwpid;
1508
1509 /* If there is a pending SIGSTOP, get rid of it. */
1510 if (lwp->stop_expected)
1511 {
1512 if (debug_threads)
1513 debug_printf ("Sending SIGCONT to %s\n",
1514 target_pid_to_str (ptid_of (thread)));
1515
1516 kill_lwp (lwpid_of (thread), SIGCONT);
1517 lwp->stop_expected = 0;
1518 }
1519
1520 /* Pass on any pending signal for this thread. */
1521 sig = get_detach_signal (thread);
1522
1523 /* Preparing to resume may try to write registers, and fail if the
1524 lwp is zombie. If that happens, ignore the error. We'll handle
1525 it below, when detach fails with ESRCH. */
1526 TRY
1527 {
1528 /* Flush any pending changes to the process's registers. */
1529 regcache_invalidate_thread (thread);
1530
1531 /* Finally, let it resume. */
1532 if (the_low_target.prepare_to_resume != NULL)
1533 the_low_target.prepare_to_resume (lwp);
1534 }
1535 CATCH (ex, RETURN_MASK_ERROR)
1536 {
1537 if (!check_ptrace_stopped_lwp_gone (lwp))
1538 throw_exception (ex);
1539 }
1540 END_CATCH
1541
1542 lwpid = lwpid_of (thread);
1543 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1544 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1545 {
1546 int save_errno = errno;
1547
1548 /* We know the thread exists, so ESRCH must mean the lwp is
1549 zombie. This can happen if one of the already-detached
1550 threads exits the whole thread group. In that case we're
1551 still attached, and must reap the lwp. */
1552 if (save_errno == ESRCH)
1553 {
1554 int ret, status;
1555
1556 ret = my_waitpid (lwpid, &status, __WALL);
1557 if (ret == -1)
1558 {
1559 warning (_("Couldn't reap LWP %d while detaching: %s"),
1560 lwpid, strerror (errno));
1561 }
1562 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1563 {
1564 warning (_("Reaping LWP %d while detaching "
1565 "returned unexpected status 0x%x"),
1566 lwpid, status);
1567 }
1568 }
1569 else
1570 {
1571 error (_("Can't detach %s: %s"),
1572 target_pid_to_str (ptid_of (thread)),
1573 strerror (save_errno));
1574 }
1575 }
1576 else if (debug_threads)
1577 {
1578 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1579 target_pid_to_str (ptid_of (thread)),
1580 strsignal (sig));
1581 }
1582
1583 delete_lwp (lwp);
1584 }
1585
1586 /* Callback for find_inferior. Detaches from non-leader threads of a
1587 given process. */
1588
1589 static int
1590 linux_detach_lwp_callback (struct inferior_list_entry *entry, void *args)
1591 {
1592 struct thread_info *thread = (struct thread_info *) entry;
1593 struct lwp_info *lwp = get_thread_lwp (thread);
1594 int pid = *(int *) args;
1595 int lwpid = lwpid_of (thread);
1596
1597 /* Skip other processes. */
1598 if (ptid_get_pid (entry->id) != pid)
1599 return 0;
1600
1601 /* We don't actually detach from the thread group leader just yet.
1602 If the thread group exits, we must reap the zombie clone lwps
1603 before we're able to reap the leader. */
1604 if (ptid_get_pid (entry->id) == lwpid)
1605 return 0;
1606
1607 linux_detach_one_lwp (lwp);
1608 return 0;
1609 }
1610
1611 static int
1612 linux_detach (int pid)
1613 {
1614 struct process_info *process;
1615 struct lwp_info *main_lwp;
1616
1617 process = find_process_pid (pid);
1618 if (process == NULL)
1619 return -1;
1620
1621 /* As there's a step over already in progress, let it finish first,
1622 otherwise nesting a stabilize_threads operation on top gets real
1623 messy. */
1624 complete_ongoing_step_over ();
1625
1626 /* Stop all threads before detaching. First, ptrace requires that
1627 the thread is stopped to sucessfully detach. Second, thread_db
1628 may need to uninstall thread event breakpoints from memory, which
1629 only works with a stopped process anyway. */
1630 stop_all_lwps (0, NULL);
1631
1632 #ifdef USE_THREAD_DB
1633 thread_db_detach (process);
1634 #endif
1635
1636 /* Stabilize threads (move out of jump pads). */
1637 stabilize_threads ();
1638
1639 /* Detach from the clone lwps first. If the thread group exits just
1640 while we're detaching, we must reap the clone lwps before we're
1641 able to reap the leader. */
1642 find_inferior (&all_threads, linux_detach_lwp_callback, &pid);
1643
1644 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1645 linux_detach_one_lwp (main_lwp);
1646
1647 the_target->mourn (process);
1648
1649 /* Since we presently can only stop all lwps of all processes, we
1650 need to unstop lwps of other processes. */
1651 unstop_all_lwps (0, NULL);
1652 return 0;
1653 }
1654
1655 /* Remove all LWPs that belong to process PROC from the lwp list. */
1656
1657 static int
1658 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1659 {
1660 struct thread_info *thread = (struct thread_info *) entry;
1661 struct lwp_info *lwp = get_thread_lwp (thread);
1662 struct process_info *process = (struct process_info *) proc;
1663
1664 if (pid_of (thread) == pid_of (process))
1665 delete_lwp (lwp);
1666
1667 return 0;
1668 }
1669
1670 static void
1671 linux_mourn (struct process_info *process)
1672 {
1673 struct process_info_private *priv;
1674
1675 #ifdef USE_THREAD_DB
1676 thread_db_mourn (process);
1677 #endif
1678
1679 find_inferior (&all_threads, delete_lwp_callback, process);
1680
1681 /* Freeing all private data. */
1682 priv = process->priv;
1683 free (priv->arch_private);
1684 free (priv);
1685 process->priv = NULL;
1686
1687 remove_process (process);
1688 }
1689
1690 static void
1691 linux_join (int pid)
1692 {
1693 int status, ret;
1694
1695 do {
1696 ret = my_waitpid (pid, &status, 0);
1697 if (WIFEXITED (status) || WIFSIGNALED (status))
1698 break;
1699 } while (ret != -1 || errno != ECHILD);
1700 }
1701
1702 /* Return nonzero if the given thread is still alive. */
1703 static int
1704 linux_thread_alive (ptid_t ptid)
1705 {
1706 struct lwp_info *lwp = find_lwp_pid (ptid);
1707
1708 /* We assume we always know if a thread exits. If a whole process
1709 exited but we still haven't been able to report it to GDB, we'll
1710 hold on to the last lwp of the dead process. */
1711 if (lwp != NULL)
1712 return !lwp_is_marked_dead (lwp);
1713 else
1714 return 0;
1715 }
1716
1717 /* Return 1 if this lwp still has an interesting status pending. If
1718 not (e.g., it had stopped for a breakpoint that is gone), return
1719 false. */
1720
1721 static int
1722 thread_still_has_status_pending_p (struct thread_info *thread)
1723 {
1724 struct lwp_info *lp = get_thread_lwp (thread);
1725
1726 if (!lp->status_pending_p)
1727 return 0;
1728
1729 if (thread->last_resume_kind != resume_stop
1730 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1731 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1732 {
1733 struct thread_info *saved_thread;
1734 CORE_ADDR pc;
1735 int discard = 0;
1736
1737 gdb_assert (lp->last_status != 0);
1738
1739 pc = get_pc (lp);
1740
1741 saved_thread = current_thread;
1742 current_thread = thread;
1743
1744 if (pc != lp->stop_pc)
1745 {
1746 if (debug_threads)
1747 debug_printf ("PC of %ld changed\n",
1748 lwpid_of (thread));
1749 discard = 1;
1750 }
1751
1752 #if !USE_SIGTRAP_SIGINFO
1753 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1754 && !(*the_low_target.breakpoint_at) (pc))
1755 {
1756 if (debug_threads)
1757 debug_printf ("previous SW breakpoint of %ld gone\n",
1758 lwpid_of (thread));
1759 discard = 1;
1760 }
1761 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1762 && !hardware_breakpoint_inserted_here (pc))
1763 {
1764 if (debug_threads)
1765 debug_printf ("previous HW breakpoint of %ld gone\n",
1766 lwpid_of (thread));
1767 discard = 1;
1768 }
1769 #endif
1770
1771 current_thread = saved_thread;
1772
1773 if (discard)
1774 {
1775 if (debug_threads)
1776 debug_printf ("discarding pending breakpoint status\n");
1777 lp->status_pending_p = 0;
1778 return 0;
1779 }
1780 }
1781
1782 return 1;
1783 }
1784
1785 /* Returns true if LWP is resumed from the client's perspective. */
1786
1787 static int
1788 lwp_resumed (struct lwp_info *lwp)
1789 {
1790 struct thread_info *thread = get_lwp_thread (lwp);
1791
1792 if (thread->last_resume_kind != resume_stop)
1793 return 1;
1794
1795 /* Did gdb send us a `vCont;t', but we haven't reported the
1796 corresponding stop to gdb yet? If so, the thread is still
1797 resumed/running from gdb's perspective. */
1798 if (thread->last_resume_kind == resume_stop
1799 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1800 return 1;
1801
1802 return 0;
1803 }
1804
1805 /* Return 1 if this lwp has an interesting status pending. */
1806 static int
1807 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1808 {
1809 struct thread_info *thread = (struct thread_info *) entry;
1810 struct lwp_info *lp = get_thread_lwp (thread);
1811 ptid_t ptid = * (ptid_t *) arg;
1812
1813 /* Check if we're only interested in events from a specific process
1814 or a specific LWP. */
1815 if (!ptid_match (ptid_of (thread), ptid))
1816 return 0;
1817
1818 if (!lwp_resumed (lp))
1819 return 0;
1820
1821 if (lp->status_pending_p
1822 && !thread_still_has_status_pending_p (thread))
1823 {
1824 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1825 return 0;
1826 }
1827
1828 return lp->status_pending_p;
1829 }
1830
1831 static int
1832 same_lwp (struct inferior_list_entry *entry, void *data)
1833 {
1834 ptid_t ptid = *(ptid_t *) data;
1835 int lwp;
1836
1837 if (ptid_get_lwp (ptid) != 0)
1838 lwp = ptid_get_lwp (ptid);
1839 else
1840 lwp = ptid_get_pid (ptid);
1841
1842 if (ptid_get_lwp (entry->id) == lwp)
1843 return 1;
1844
1845 return 0;
1846 }
1847
1848 struct lwp_info *
1849 find_lwp_pid (ptid_t ptid)
1850 {
1851 struct inferior_list_entry *thread
1852 = find_inferior (&all_threads, same_lwp, &ptid);
1853
1854 if (thread == NULL)
1855 return NULL;
1856
1857 return get_thread_lwp ((struct thread_info *) thread);
1858 }
1859
1860 /* Return the number of known LWPs in the tgid given by PID. */
1861
1862 static int
1863 num_lwps (int pid)
1864 {
1865 struct inferior_list_entry *inf, *tmp;
1866 int count = 0;
1867
1868 ALL_INFERIORS (&all_threads, inf, tmp)
1869 {
1870 if (ptid_get_pid (inf->id) == pid)
1871 count++;
1872 }
1873
1874 return count;
1875 }
1876
1877 /* The arguments passed to iterate_over_lwps. */
1878
1879 struct iterate_over_lwps_args
1880 {
1881 /* The FILTER argument passed to iterate_over_lwps. */
1882 ptid_t filter;
1883
1884 /* The CALLBACK argument passed to iterate_over_lwps. */
1885 iterate_over_lwps_ftype *callback;
1886
1887 /* The DATA argument passed to iterate_over_lwps. */
1888 void *data;
1889 };
1890
1891 /* Callback for find_inferior used by iterate_over_lwps to filter
1892 calls to the callback supplied to that function. Returning a
1893 nonzero value causes find_inferiors to stop iterating and return
1894 the current inferior_list_entry. Returning zero indicates that
1895 find_inferiors should continue iterating. */
1896
1897 static int
1898 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1899 {
1900 struct iterate_over_lwps_args *args
1901 = (struct iterate_over_lwps_args *) args_p;
1902
1903 if (ptid_match (entry->id, args->filter))
1904 {
1905 struct thread_info *thr = (struct thread_info *) entry;
1906 struct lwp_info *lwp = get_thread_lwp (thr);
1907
1908 return (*args->callback) (lwp, args->data);
1909 }
1910
1911 return 0;
1912 }
1913
1914 /* See nat/linux-nat.h. */
1915
1916 struct lwp_info *
1917 iterate_over_lwps (ptid_t filter,
1918 iterate_over_lwps_ftype callback,
1919 void *data)
1920 {
1921 struct iterate_over_lwps_args args = {filter, callback, data};
1922 struct inferior_list_entry *entry;
1923
1924 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1925 if (entry == NULL)
1926 return NULL;
1927
1928 return get_thread_lwp ((struct thread_info *) entry);
1929 }
1930
1931 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1932 their exits until all other threads in the group have exited. */
1933
1934 static void
1935 check_zombie_leaders (void)
1936 {
1937 struct process_info *proc, *tmp;
1938
1939 ALL_PROCESSES (proc, tmp)
1940 {
1941 pid_t leader_pid = pid_of (proc);
1942 struct lwp_info *leader_lp;
1943
1944 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1945
1946 if (debug_threads)
1947 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1948 "num_lwps=%d, zombie=%d\n",
1949 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1950 linux_proc_pid_is_zombie (leader_pid));
1951
1952 if (leader_lp != NULL && !leader_lp->stopped
1953 /* Check if there are other threads in the group, as we may
1954 have raced with the inferior simply exiting. */
1955 && !last_thread_of_process_p (leader_pid)
1956 && linux_proc_pid_is_zombie (leader_pid))
1957 {
1958 /* A leader zombie can mean one of two things:
1959
1960 - It exited, and there's an exit status pending
1961 available, or only the leader exited (not the whole
1962 program). In the latter case, we can't waitpid the
1963 leader's exit status until all other threads are gone.
1964
1965 - There are 3 or more threads in the group, and a thread
1966 other than the leader exec'd. On an exec, the Linux
1967 kernel destroys all other threads (except the execing
1968 one) in the thread group, and resets the execing thread's
1969 tid to the tgid. No exit notification is sent for the
1970 execing thread -- from the ptracer's perspective, it
1971 appears as though the execing thread just vanishes.
1972 Until we reap all other threads except the leader and the
1973 execing thread, the leader will be zombie, and the
1974 execing thread will be in `D (disc sleep)'. As soon as
1975 all other threads are reaped, the execing thread changes
1976 it's tid to the tgid, and the previous (zombie) leader
1977 vanishes, giving place to the "new" leader. We could try
1978 distinguishing the exit and exec cases, by waiting once
1979 more, and seeing if something comes out, but it doesn't
1980 sound useful. The previous leader _does_ go away, and
1981 we'll re-add the new one once we see the exec event
1982 (which is just the same as what would happen if the
1983 previous leader did exit voluntarily before some other
1984 thread execs). */
1985
1986 if (debug_threads)
1987 debug_printf ("CZL: Thread group leader %d zombie "
1988 "(it exited, or another thread execd).\n",
1989 leader_pid);
1990
1991 delete_lwp (leader_lp);
1992 }
1993 }
1994 }
1995
1996 /* Callback for `find_inferior'. Returns the first LWP that is not
1997 stopped. ARG is a PTID filter. */
1998
1999 static int
2000 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
2001 {
2002 struct thread_info *thr = (struct thread_info *) entry;
2003 struct lwp_info *lwp;
2004 ptid_t filter = *(ptid_t *) arg;
2005
2006 if (!ptid_match (ptid_of (thr), filter))
2007 return 0;
2008
2009 lwp = get_thread_lwp (thr);
2010 if (!lwp->stopped)
2011 return 1;
2012
2013 return 0;
2014 }
2015
2016 /* Increment LWP's suspend count. */
2017
2018 static void
2019 lwp_suspended_inc (struct lwp_info *lwp)
2020 {
2021 lwp->suspended++;
2022
2023 if (debug_threads && lwp->suspended > 4)
2024 {
2025 struct thread_info *thread = get_lwp_thread (lwp);
2026
2027 debug_printf ("LWP %ld has a suspiciously high suspend count,"
2028 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
2029 }
2030 }
2031
2032 /* Decrement LWP's suspend count. */
2033
2034 static void
2035 lwp_suspended_decr (struct lwp_info *lwp)
2036 {
2037 lwp->suspended--;
2038
2039 if (lwp->suspended < 0)
2040 {
2041 struct thread_info *thread = get_lwp_thread (lwp);
2042
2043 internal_error (__FILE__, __LINE__,
2044 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
2045 lwp->suspended);
2046 }
2047 }
2048
2049 /* This function should only be called if the LWP got a SIGTRAP.
2050
2051 Handle any tracepoint steps or hits. Return true if a tracepoint
2052 event was handled, 0 otherwise. */
2053
2054 static int
2055 handle_tracepoints (struct lwp_info *lwp)
2056 {
2057 struct thread_info *tinfo = get_lwp_thread (lwp);
2058 int tpoint_related_event = 0;
2059
2060 gdb_assert (lwp->suspended == 0);
2061
2062 /* If this tracepoint hit causes a tracing stop, we'll immediately
2063 uninsert tracepoints. To do this, we temporarily pause all
2064 threads, unpatch away, and then unpause threads. We need to make
2065 sure the unpausing doesn't resume LWP too. */
2066 lwp_suspended_inc (lwp);
2067
2068 /* And we need to be sure that any all-threads-stopping doesn't try
2069 to move threads out of the jump pads, as it could deadlock the
2070 inferior (LWP could be in the jump pad, maybe even holding the
2071 lock.) */
2072
2073 /* Do any necessary step collect actions. */
2074 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2075
2076 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2077
2078 /* See if we just hit a tracepoint and do its main collect
2079 actions. */
2080 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2081
2082 lwp_suspended_decr (lwp);
2083
2084 gdb_assert (lwp->suspended == 0);
2085 gdb_assert (!stabilizing_threads
2086 || (lwp->collecting_fast_tracepoint
2087 != fast_tpoint_collect_result::not_collecting));
2088
2089 if (tpoint_related_event)
2090 {
2091 if (debug_threads)
2092 debug_printf ("got a tracepoint event\n");
2093 return 1;
2094 }
2095
2096 return 0;
2097 }
2098
2099 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2100 collection status. */
2101
2102 static fast_tpoint_collect_result
2103 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2104 struct fast_tpoint_collect_status *status)
2105 {
2106 CORE_ADDR thread_area;
2107 struct thread_info *thread = get_lwp_thread (lwp);
2108
2109 if (the_low_target.get_thread_area == NULL)
2110 return fast_tpoint_collect_result::not_collecting;
2111
2112 /* Get the thread area address. This is used to recognize which
2113 thread is which when tracing with the in-process agent library.
2114 We don't read anything from the address, and treat it as opaque;
2115 it's the address itself that we assume is unique per-thread. */
2116 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2117 return fast_tpoint_collect_result::not_collecting;
2118
2119 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2120 }
2121
2122 /* The reason we resume in the caller, is because we want to be able
2123 to pass lwp->status_pending as WSTAT, and we need to clear
2124 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2125 refuses to resume. */
2126
2127 static int
2128 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2129 {
2130 struct thread_info *saved_thread;
2131
2132 saved_thread = current_thread;
2133 current_thread = get_lwp_thread (lwp);
2134
2135 if ((wstat == NULL
2136 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2137 && supports_fast_tracepoints ()
2138 && agent_loaded_p ())
2139 {
2140 struct fast_tpoint_collect_status status;
2141
2142 if (debug_threads)
2143 debug_printf ("Checking whether LWP %ld needs to move out of the "
2144 "jump pad.\n",
2145 lwpid_of (current_thread));
2146
2147 fast_tpoint_collect_result r
2148 = linux_fast_tracepoint_collecting (lwp, &status);
2149
2150 if (wstat == NULL
2151 || (WSTOPSIG (*wstat) != SIGILL
2152 && WSTOPSIG (*wstat) != SIGFPE
2153 && WSTOPSIG (*wstat) != SIGSEGV
2154 && WSTOPSIG (*wstat) != SIGBUS))
2155 {
2156 lwp->collecting_fast_tracepoint = r;
2157
2158 if (r != fast_tpoint_collect_result::not_collecting)
2159 {
2160 if (r == fast_tpoint_collect_result::before_insn
2161 && lwp->exit_jump_pad_bkpt == NULL)
2162 {
2163 /* Haven't executed the original instruction yet.
2164 Set breakpoint there, and wait till it's hit,
2165 then single-step until exiting the jump pad. */
2166 lwp->exit_jump_pad_bkpt
2167 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2168 }
2169
2170 if (debug_threads)
2171 debug_printf ("Checking whether LWP %ld needs to move out of "
2172 "the jump pad...it does\n",
2173 lwpid_of (current_thread));
2174 current_thread = saved_thread;
2175
2176 return 1;
2177 }
2178 }
2179 else
2180 {
2181 /* If we get a synchronous signal while collecting, *and*
2182 while executing the (relocated) original instruction,
2183 reset the PC to point at the tpoint address, before
2184 reporting to GDB. Otherwise, it's an IPA lib bug: just
2185 report the signal to GDB, and pray for the best. */
2186
2187 lwp->collecting_fast_tracepoint
2188 = fast_tpoint_collect_result::not_collecting;
2189
2190 if (r != fast_tpoint_collect_result::not_collecting
2191 && (status.adjusted_insn_addr <= lwp->stop_pc
2192 && lwp->stop_pc < status.adjusted_insn_addr_end))
2193 {
2194 siginfo_t info;
2195 struct regcache *regcache;
2196
2197 /* The si_addr on a few signals references the address
2198 of the faulting instruction. Adjust that as
2199 well. */
2200 if ((WSTOPSIG (*wstat) == SIGILL
2201 || WSTOPSIG (*wstat) == SIGFPE
2202 || WSTOPSIG (*wstat) == SIGBUS
2203 || WSTOPSIG (*wstat) == SIGSEGV)
2204 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2205 (PTRACE_TYPE_ARG3) 0, &info) == 0
2206 /* Final check just to make sure we don't clobber
2207 the siginfo of non-kernel-sent signals. */
2208 && (uintptr_t) info.si_addr == lwp->stop_pc)
2209 {
2210 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2211 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2212 (PTRACE_TYPE_ARG3) 0, &info);
2213 }
2214
2215 regcache = get_thread_regcache (current_thread, 1);
2216 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2217 lwp->stop_pc = status.tpoint_addr;
2218
2219 /* Cancel any fast tracepoint lock this thread was
2220 holding. */
2221 force_unlock_trace_buffer ();
2222 }
2223
2224 if (lwp->exit_jump_pad_bkpt != NULL)
2225 {
2226 if (debug_threads)
2227 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2228 "stopping all threads momentarily.\n");
2229
2230 stop_all_lwps (1, lwp);
2231
2232 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2233 lwp->exit_jump_pad_bkpt = NULL;
2234
2235 unstop_all_lwps (1, lwp);
2236
2237 gdb_assert (lwp->suspended >= 0);
2238 }
2239 }
2240 }
2241
2242 if (debug_threads)
2243 debug_printf ("Checking whether LWP %ld needs to move out of the "
2244 "jump pad...no\n",
2245 lwpid_of (current_thread));
2246
2247 current_thread = saved_thread;
2248 return 0;
2249 }
2250
2251 /* Enqueue one signal in the "signals to report later when out of the
2252 jump pad" list. */
2253
2254 static void
2255 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2256 {
2257 struct pending_signals *p_sig;
2258 struct thread_info *thread = get_lwp_thread (lwp);
2259
2260 if (debug_threads)
2261 debug_printf ("Deferring signal %d for LWP %ld.\n",
2262 WSTOPSIG (*wstat), lwpid_of (thread));
2263
2264 if (debug_threads)
2265 {
2266 struct pending_signals *sig;
2267
2268 for (sig = lwp->pending_signals_to_report;
2269 sig != NULL;
2270 sig = sig->prev)
2271 debug_printf (" Already queued %d\n",
2272 sig->signal);
2273
2274 debug_printf (" (no more currently queued signals)\n");
2275 }
2276
2277 /* Don't enqueue non-RT signals if they are already in the deferred
2278 queue. (SIGSTOP being the easiest signal to see ending up here
2279 twice) */
2280 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2281 {
2282 struct pending_signals *sig;
2283
2284 for (sig = lwp->pending_signals_to_report;
2285 sig != NULL;
2286 sig = sig->prev)
2287 {
2288 if (sig->signal == WSTOPSIG (*wstat))
2289 {
2290 if (debug_threads)
2291 debug_printf ("Not requeuing already queued non-RT signal %d"
2292 " for LWP %ld\n",
2293 sig->signal,
2294 lwpid_of (thread));
2295 return;
2296 }
2297 }
2298 }
2299
2300 p_sig = XCNEW (struct pending_signals);
2301 p_sig->prev = lwp->pending_signals_to_report;
2302 p_sig->signal = WSTOPSIG (*wstat);
2303
2304 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2305 &p_sig->info);
2306
2307 lwp->pending_signals_to_report = p_sig;
2308 }
2309
2310 /* Dequeue one signal from the "signals to report later when out of
2311 the jump pad" list. */
2312
2313 static int
2314 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2315 {
2316 struct thread_info *thread = get_lwp_thread (lwp);
2317
2318 if (lwp->pending_signals_to_report != NULL)
2319 {
2320 struct pending_signals **p_sig;
2321
2322 p_sig = &lwp->pending_signals_to_report;
2323 while ((*p_sig)->prev != NULL)
2324 p_sig = &(*p_sig)->prev;
2325
2326 *wstat = W_STOPCODE ((*p_sig)->signal);
2327 if ((*p_sig)->info.si_signo != 0)
2328 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2329 &(*p_sig)->info);
2330 free (*p_sig);
2331 *p_sig = NULL;
2332
2333 if (debug_threads)
2334 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2335 WSTOPSIG (*wstat), lwpid_of (thread));
2336
2337 if (debug_threads)
2338 {
2339 struct pending_signals *sig;
2340
2341 for (sig = lwp->pending_signals_to_report;
2342 sig != NULL;
2343 sig = sig->prev)
2344 debug_printf (" Still queued %d\n",
2345 sig->signal);
2346
2347 debug_printf (" (no more queued signals)\n");
2348 }
2349
2350 return 1;
2351 }
2352
2353 return 0;
2354 }
2355
2356 /* Fetch the possibly triggered data watchpoint info and store it in
2357 CHILD.
2358
2359 On some archs, like x86, that use debug registers to set
2360 watchpoints, it's possible that the way to know which watched
2361 address trapped, is to check the register that is used to select
2362 which address to watch. Problem is, between setting the watchpoint
2363 and reading back which data address trapped, the user may change
2364 the set of watchpoints, and, as a consequence, GDB changes the
2365 debug registers in the inferior. To avoid reading back a stale
2366 stopped-data-address when that happens, we cache in LP the fact
2367 that a watchpoint trapped, and the corresponding data address, as
2368 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2369 registers meanwhile, we have the cached data we can rely on. */
2370
2371 static int
2372 check_stopped_by_watchpoint (struct lwp_info *child)
2373 {
2374 if (the_low_target.stopped_by_watchpoint != NULL)
2375 {
2376 struct thread_info *saved_thread;
2377
2378 saved_thread = current_thread;
2379 current_thread = get_lwp_thread (child);
2380
2381 if (the_low_target.stopped_by_watchpoint ())
2382 {
2383 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2384
2385 if (the_low_target.stopped_data_address != NULL)
2386 child->stopped_data_address
2387 = the_low_target.stopped_data_address ();
2388 else
2389 child->stopped_data_address = 0;
2390 }
2391
2392 current_thread = saved_thread;
2393 }
2394
2395 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2396 }
2397
2398 /* Return the ptrace options that we want to try to enable. */
2399
2400 static int
2401 linux_low_ptrace_options (int attached)
2402 {
2403 int options = 0;
2404
2405 if (!attached)
2406 options |= PTRACE_O_EXITKILL;
2407
2408 if (report_fork_events)
2409 options |= PTRACE_O_TRACEFORK;
2410
2411 if (report_vfork_events)
2412 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2413
2414 if (report_exec_events)
2415 options |= PTRACE_O_TRACEEXEC;
2416
2417 options |= PTRACE_O_TRACESYSGOOD;
2418
2419 return options;
2420 }
2421
2422 /* Do low-level handling of the event, and check if we should go on
2423 and pass it to caller code. Return the affected lwp if we are, or
2424 NULL otherwise. */
2425
2426 static struct lwp_info *
2427 linux_low_filter_event (int lwpid, int wstat)
2428 {
2429 struct lwp_info *child;
2430 struct thread_info *thread;
2431 int have_stop_pc = 0;
2432
2433 child = find_lwp_pid (pid_to_ptid (lwpid));
2434
2435 /* Check for stop events reported by a process we didn't already
2436 know about - anything not already in our LWP list.
2437
2438 If we're expecting to receive stopped processes after
2439 fork, vfork, and clone events, then we'll just add the
2440 new one to our list and go back to waiting for the event
2441 to be reported - the stopped process might be returned
2442 from waitpid before or after the event is.
2443
2444 But note the case of a non-leader thread exec'ing after the
2445 leader having exited, and gone from our lists (because
2446 check_zombie_leaders deleted it). The non-leader thread
2447 changes its tid to the tgid. */
2448
2449 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2450 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2451 {
2452 ptid_t child_ptid;
2453
2454 /* A multi-thread exec after we had seen the leader exiting. */
2455 if (debug_threads)
2456 {
2457 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2458 "after exec.\n", lwpid);
2459 }
2460
2461 child_ptid = ptid_build (lwpid, lwpid, 0);
2462 child = add_lwp (child_ptid);
2463 child->stopped = 1;
2464 current_thread = child->thread;
2465 }
2466
2467 /* If we didn't find a process, one of two things presumably happened:
2468 - A process we started and then detached from has exited. Ignore it.
2469 - A process we are controlling has forked and the new child's stop
2470 was reported to us by the kernel. Save its PID. */
2471 if (child == NULL && WIFSTOPPED (wstat))
2472 {
2473 add_to_pid_list (&stopped_pids, lwpid, wstat);
2474 return NULL;
2475 }
2476 else if (child == NULL)
2477 return NULL;
2478
2479 thread = get_lwp_thread (child);
2480
2481 child->stopped = 1;
2482
2483 child->last_status = wstat;
2484
2485 /* Check if the thread has exited. */
2486 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2487 {
2488 if (debug_threads)
2489 debug_printf ("LLFE: %d exited.\n", lwpid);
2490
2491 if (finish_step_over (child))
2492 {
2493 /* Unsuspend all other LWPs, and set them back running again. */
2494 unsuspend_all_lwps (child);
2495 }
2496
2497 /* If there is at least one more LWP, then the exit signal was
2498 not the end of the debugged application and should be
2499 ignored, unless GDB wants to hear about thread exits. */
2500 if (report_thread_events
2501 || last_thread_of_process_p (pid_of (thread)))
2502 {
2503 /* Since events are serialized to GDB core, and we can't
2504 report this one right now. Leave the status pending for
2505 the next time we're able to report it. */
2506 mark_lwp_dead (child, wstat);
2507 return child;
2508 }
2509 else
2510 {
2511 delete_lwp (child);
2512 return NULL;
2513 }
2514 }
2515
2516 gdb_assert (WIFSTOPPED (wstat));
2517
2518 if (WIFSTOPPED (wstat))
2519 {
2520 struct process_info *proc;
2521
2522 /* Architecture-specific setup after inferior is running. */
2523 proc = find_process_pid (pid_of (thread));
2524 if (proc->tdesc == NULL)
2525 {
2526 if (proc->attached)
2527 {
2528 /* This needs to happen after we have attached to the
2529 inferior and it is stopped for the first time, but
2530 before we access any inferior registers. */
2531 linux_arch_setup_thread (thread);
2532 }
2533 else
2534 {
2535 /* The process is started, but GDBserver will do
2536 architecture-specific setup after the program stops at
2537 the first instruction. */
2538 child->status_pending_p = 1;
2539 child->status_pending = wstat;
2540 return child;
2541 }
2542 }
2543 }
2544
2545 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2546 {
2547 struct process_info *proc = find_process_pid (pid_of (thread));
2548 int options = linux_low_ptrace_options (proc->attached);
2549
2550 linux_enable_event_reporting (lwpid, options);
2551 child->must_set_ptrace_flags = 0;
2552 }
2553
2554 /* Always update syscall_state, even if it will be filtered later. */
2555 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2556 {
2557 child->syscall_state
2558 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2559 ? TARGET_WAITKIND_SYSCALL_RETURN
2560 : TARGET_WAITKIND_SYSCALL_ENTRY);
2561 }
2562 else
2563 {
2564 /* Almost all other ptrace-stops are known to be outside of system
2565 calls, with further exceptions in handle_extended_wait. */
2566 child->syscall_state = TARGET_WAITKIND_IGNORE;
2567 }
2568
2569 /* Be careful to not overwrite stop_pc until save_stop_reason is
2570 called. */
2571 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2572 && linux_is_extended_waitstatus (wstat))
2573 {
2574 child->stop_pc = get_pc (child);
2575 if (handle_extended_wait (&child, wstat))
2576 {
2577 /* The event has been handled, so just return without
2578 reporting it. */
2579 return NULL;
2580 }
2581 }
2582
2583 if (linux_wstatus_maybe_breakpoint (wstat))
2584 {
2585 if (save_stop_reason (child))
2586 have_stop_pc = 1;
2587 }
2588
2589 if (!have_stop_pc)
2590 child->stop_pc = get_pc (child);
2591
2592 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2593 && child->stop_expected)
2594 {
2595 if (debug_threads)
2596 debug_printf ("Expected stop.\n");
2597 child->stop_expected = 0;
2598
2599 if (thread->last_resume_kind == resume_stop)
2600 {
2601 /* We want to report the stop to the core. Treat the
2602 SIGSTOP as a normal event. */
2603 if (debug_threads)
2604 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2605 target_pid_to_str (ptid_of (thread)));
2606 }
2607 else if (stopping_threads != NOT_STOPPING_THREADS)
2608 {
2609 /* Stopping threads. We don't want this SIGSTOP to end up
2610 pending. */
2611 if (debug_threads)
2612 debug_printf ("LLW: SIGSTOP caught for %s "
2613 "while stopping threads.\n",
2614 target_pid_to_str (ptid_of (thread)));
2615 return NULL;
2616 }
2617 else
2618 {
2619 /* This is a delayed SIGSTOP. Filter out the event. */
2620 if (debug_threads)
2621 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2622 child->stepping ? "step" : "continue",
2623 target_pid_to_str (ptid_of (thread)));
2624
2625 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2626 return NULL;
2627 }
2628 }
2629
2630 child->status_pending_p = 1;
2631 child->status_pending = wstat;
2632 return child;
2633 }
2634
2635 /* Return true if THREAD is doing hardware single step. */
2636
2637 static int
2638 maybe_hw_step (struct thread_info *thread)
2639 {
2640 if (can_hardware_single_step ())
2641 return 1;
2642 else
2643 {
2644 /* GDBserver must insert single-step breakpoint for software
2645 single step. */
2646 gdb_assert (has_single_step_breakpoints (thread));
2647 return 0;
2648 }
2649 }
2650
2651 /* Resume LWPs that are currently stopped without any pending status
2652 to report, but are resumed from the core's perspective. */
2653
2654 static void
2655 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2656 {
2657 struct thread_info *thread = (struct thread_info *) entry;
2658 struct lwp_info *lp = get_thread_lwp (thread);
2659
2660 if (lp->stopped
2661 && !lp->suspended
2662 && !lp->status_pending_p
2663 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2664 {
2665 int step = 0;
2666
2667 if (thread->last_resume_kind == resume_step)
2668 step = maybe_hw_step (thread);
2669
2670 if (debug_threads)
2671 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2672 target_pid_to_str (ptid_of (thread)),
2673 paddress (lp->stop_pc),
2674 step);
2675
2676 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2677 }
2678 }
2679
2680 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2681 match FILTER_PTID (leaving others pending). The PTIDs can be:
2682 minus_one_ptid, to specify any child; a pid PTID, specifying all
2683 lwps of a thread group; or a PTID representing a single lwp. Store
2684 the stop status through the status pointer WSTAT. OPTIONS is
2685 passed to the waitpid call. Return 0 if no event was found and
2686 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2687 was found. Return the PID of the stopped child otherwise. */
2688
2689 static int
2690 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2691 int *wstatp, int options)
2692 {
2693 struct thread_info *event_thread;
2694 struct lwp_info *event_child, *requested_child;
2695 sigset_t block_mask, prev_mask;
2696
2697 retry:
2698 /* N.B. event_thread points to the thread_info struct that contains
2699 event_child. Keep them in sync. */
2700 event_thread = NULL;
2701 event_child = NULL;
2702 requested_child = NULL;
2703
2704 /* Check for a lwp with a pending status. */
2705
2706 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2707 {
2708 event_thread = (struct thread_info *)
2709 find_inferior_in_random (&all_threads, status_pending_p_callback,
2710 &filter_ptid);
2711 if (event_thread != NULL)
2712 event_child = get_thread_lwp (event_thread);
2713 if (debug_threads && event_thread)
2714 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2715 }
2716 else if (!ptid_equal (filter_ptid, null_ptid))
2717 {
2718 requested_child = find_lwp_pid (filter_ptid);
2719
2720 if (stopping_threads == NOT_STOPPING_THREADS
2721 && requested_child->status_pending_p
2722 && (requested_child->collecting_fast_tracepoint
2723 != fast_tpoint_collect_result::not_collecting))
2724 {
2725 enqueue_one_deferred_signal (requested_child,
2726 &requested_child->status_pending);
2727 requested_child->status_pending_p = 0;
2728 requested_child->status_pending = 0;
2729 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2730 }
2731
2732 if (requested_child->suspended
2733 && requested_child->status_pending_p)
2734 {
2735 internal_error (__FILE__, __LINE__,
2736 "requesting an event out of a"
2737 " suspended child?");
2738 }
2739
2740 if (requested_child->status_pending_p)
2741 {
2742 event_child = requested_child;
2743 event_thread = get_lwp_thread (event_child);
2744 }
2745 }
2746
2747 if (event_child != NULL)
2748 {
2749 if (debug_threads)
2750 debug_printf ("Got an event from pending child %ld (%04x)\n",
2751 lwpid_of (event_thread), event_child->status_pending);
2752 *wstatp = event_child->status_pending;
2753 event_child->status_pending_p = 0;
2754 event_child->status_pending = 0;
2755 current_thread = event_thread;
2756 return lwpid_of (event_thread);
2757 }
2758
2759 /* But if we don't find a pending event, we'll have to wait.
2760
2761 We only enter this loop if no process has a pending wait status.
2762 Thus any action taken in response to a wait status inside this
2763 loop is responding as soon as we detect the status, not after any
2764 pending events. */
2765
2766 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2767 all signals while here. */
2768 sigfillset (&block_mask);
2769 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2770
2771 /* Always pull all events out of the kernel. We'll randomly select
2772 an event LWP out of all that have events, to prevent
2773 starvation. */
2774 while (event_child == NULL)
2775 {
2776 pid_t ret = 0;
2777
2778 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2779 quirks:
2780
2781 - If the thread group leader exits while other threads in the
2782 thread group still exist, waitpid(TGID, ...) hangs. That
2783 waitpid won't return an exit status until the other threads
2784 in the group are reaped.
2785
2786 - When a non-leader thread execs, that thread just vanishes
2787 without reporting an exit (so we'd hang if we waited for it
2788 explicitly in that case). The exec event is reported to
2789 the TGID pid. */
2790 errno = 0;
2791 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2792
2793 if (debug_threads)
2794 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2795 ret, errno ? strerror (errno) : "ERRNO-OK");
2796
2797 if (ret > 0)
2798 {
2799 if (debug_threads)
2800 {
2801 debug_printf ("LLW: waitpid %ld received %s\n",
2802 (long) ret, status_to_str (*wstatp));
2803 }
2804
2805 /* Filter all events. IOW, leave all events pending. We'll
2806 randomly select an event LWP out of all that have events
2807 below. */
2808 linux_low_filter_event (ret, *wstatp);
2809 /* Retry until nothing comes out of waitpid. A single
2810 SIGCHLD can indicate more than one child stopped. */
2811 continue;
2812 }
2813
2814 /* Now that we've pulled all events out of the kernel, resume
2815 LWPs that don't have an interesting event to report. */
2816 if (stopping_threads == NOT_STOPPING_THREADS)
2817 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2818
2819 /* ... and find an LWP with a status to report to the core, if
2820 any. */
2821 event_thread = (struct thread_info *)
2822 find_inferior_in_random (&all_threads, status_pending_p_callback,
2823 &filter_ptid);
2824 if (event_thread != NULL)
2825 {
2826 event_child = get_thread_lwp (event_thread);
2827 *wstatp = event_child->status_pending;
2828 event_child->status_pending_p = 0;
2829 event_child->status_pending = 0;
2830 break;
2831 }
2832
2833 /* Check for zombie thread group leaders. Those can't be reaped
2834 until all other threads in the thread group are. */
2835 check_zombie_leaders ();
2836
2837 /* If there are no resumed children left in the set of LWPs we
2838 want to wait for, bail. We can't just block in
2839 waitpid/sigsuspend, because lwps might have been left stopped
2840 in trace-stop state, and we'd be stuck forever waiting for
2841 their status to change (which would only happen if we resumed
2842 them). Even if WNOHANG is set, this return code is preferred
2843 over 0 (below), as it is more detailed. */
2844 if ((find_inferior (&all_threads,
2845 not_stopped_callback,
2846 &wait_ptid) == NULL))
2847 {
2848 if (debug_threads)
2849 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2850 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2851 return -1;
2852 }
2853
2854 /* No interesting event to report to the caller. */
2855 if ((options & WNOHANG))
2856 {
2857 if (debug_threads)
2858 debug_printf ("WNOHANG set, no event found\n");
2859
2860 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2861 return 0;
2862 }
2863
2864 /* Block until we get an event reported with SIGCHLD. */
2865 if (debug_threads)
2866 debug_printf ("sigsuspend'ing\n");
2867
2868 sigsuspend (&prev_mask);
2869 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2870 goto retry;
2871 }
2872
2873 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2874
2875 current_thread = event_thread;
2876
2877 return lwpid_of (event_thread);
2878 }
2879
2880 /* Wait for an event from child(ren) PTID. PTIDs can be:
2881 minus_one_ptid, to specify any child; a pid PTID, specifying all
2882 lwps of a thread group; or a PTID representing a single lwp. Store
2883 the stop status through the status pointer WSTAT. OPTIONS is
2884 passed to the waitpid call. Return 0 if no event was found and
2885 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2886 was found. Return the PID of the stopped child otherwise. */
2887
2888 static int
2889 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2890 {
2891 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2892 }
2893
2894 /* Count the LWP's that have had events. */
2895
2896 static int
2897 count_events_callback (struct inferior_list_entry *entry, void *data)
2898 {
2899 struct thread_info *thread = (struct thread_info *) entry;
2900 struct lwp_info *lp = get_thread_lwp (thread);
2901 int *count = (int *) data;
2902
2903 gdb_assert (count != NULL);
2904
2905 /* Count only resumed LWPs that have an event pending. */
2906 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2907 && lp->status_pending_p)
2908 (*count)++;
2909
2910 return 0;
2911 }
2912
2913 /* Select the LWP (if any) that is currently being single-stepped. */
2914
2915 static int
2916 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2917 {
2918 struct thread_info *thread = (struct thread_info *) entry;
2919 struct lwp_info *lp = get_thread_lwp (thread);
2920
2921 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2922 && thread->last_resume_kind == resume_step
2923 && lp->status_pending_p)
2924 return 1;
2925 else
2926 return 0;
2927 }
2928
2929 /* Select the Nth LWP that has had an event. */
2930
2931 static int
2932 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2933 {
2934 struct thread_info *thread = (struct thread_info *) entry;
2935 struct lwp_info *lp = get_thread_lwp (thread);
2936 int *selector = (int *) data;
2937
2938 gdb_assert (selector != NULL);
2939
2940 /* Select only resumed LWPs that have an event pending. */
2941 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2942 && lp->status_pending_p)
2943 if ((*selector)-- == 0)
2944 return 1;
2945
2946 return 0;
2947 }
2948
2949 /* Select one LWP out of those that have events pending. */
2950
2951 static void
2952 select_event_lwp (struct lwp_info **orig_lp)
2953 {
2954 int num_events = 0;
2955 int random_selector;
2956 struct thread_info *event_thread = NULL;
2957
2958 /* In all-stop, give preference to the LWP that is being
2959 single-stepped. There will be at most one, and it's the LWP that
2960 the core is most interested in. If we didn't do this, then we'd
2961 have to handle pending step SIGTRAPs somehow in case the core
2962 later continues the previously-stepped thread, otherwise we'd
2963 report the pending SIGTRAP, and the core, not having stepped the
2964 thread, wouldn't understand what the trap was for, and therefore
2965 would report it to the user as a random signal. */
2966 if (!non_stop)
2967 {
2968 event_thread
2969 = (struct thread_info *) find_inferior (&all_threads,
2970 select_singlestep_lwp_callback,
2971 NULL);
2972 if (event_thread != NULL)
2973 {
2974 if (debug_threads)
2975 debug_printf ("SEL: Select single-step %s\n",
2976 target_pid_to_str (ptid_of (event_thread)));
2977 }
2978 }
2979 if (event_thread == NULL)
2980 {
2981 /* No single-stepping LWP. Select one at random, out of those
2982 which have had events. */
2983
2984 /* First see how many events we have. */
2985 find_inferior (&all_threads, count_events_callback, &num_events);
2986 gdb_assert (num_events > 0);
2987
2988 /* Now randomly pick a LWP out of those that have had
2989 events. */
2990 random_selector = (int)
2991 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2992
2993 if (debug_threads && num_events > 1)
2994 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2995 num_events, random_selector);
2996
2997 event_thread
2998 = (struct thread_info *) find_inferior (&all_threads,
2999 select_event_lwp_callback,
3000 &random_selector);
3001 }
3002
3003 if (event_thread != NULL)
3004 {
3005 struct lwp_info *event_lp = get_thread_lwp (event_thread);
3006
3007 /* Switch the event LWP. */
3008 *orig_lp = event_lp;
3009 }
3010 }
3011
3012 /* Decrement the suspend count of an LWP. */
3013
3014 static int
3015 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
3016 {
3017 struct thread_info *thread = (struct thread_info *) entry;
3018 struct lwp_info *lwp = get_thread_lwp (thread);
3019
3020 /* Ignore EXCEPT. */
3021 if (lwp == except)
3022 return 0;
3023
3024 lwp_suspended_decr (lwp);
3025 return 0;
3026 }
3027
3028 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
3029 NULL. */
3030
3031 static void
3032 unsuspend_all_lwps (struct lwp_info *except)
3033 {
3034 find_inferior (&all_threads, unsuspend_one_lwp, except);
3035 }
3036
3037 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
3038 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
3039 void *data);
3040 static int lwp_running (struct inferior_list_entry *entry, void *data);
3041 static ptid_t linux_wait_1 (ptid_t ptid,
3042 struct target_waitstatus *ourstatus,
3043 int target_options);
3044
3045 /* Stabilize threads (move out of jump pads).
3046
3047 If a thread is midway collecting a fast tracepoint, we need to
3048 finish the collection and move it out of the jump pad before
3049 reporting the signal.
3050
3051 This avoids recursion while collecting (when a signal arrives
3052 midway, and the signal handler itself collects), which would trash
3053 the trace buffer. In case the user set a breakpoint in a signal
3054 handler, this avoids the backtrace showing the jump pad, etc..
3055 Most importantly, there are certain things we can't do safely if
3056 threads are stopped in a jump pad (or in its callee's). For
3057 example:
3058
3059 - starting a new trace run. A thread still collecting the
3060 previous run, could trash the trace buffer when resumed. The trace
3061 buffer control structures would have been reset but the thread had
3062 no way to tell. The thread could even midway memcpy'ing to the
3063 buffer, which would mean that when resumed, it would clobber the
3064 trace buffer that had been set for a new run.
3065
3066 - we can't rewrite/reuse the jump pads for new tracepoints
3067 safely. Say you do tstart while a thread is stopped midway while
3068 collecting. When the thread is later resumed, it finishes the
3069 collection, and returns to the jump pad, to execute the original
3070 instruction that was under the tracepoint jump at the time the
3071 older run had been started. If the jump pad had been rewritten
3072 since for something else in the new run, the thread would now
3073 execute the wrong / random instructions. */
3074
3075 static void
3076 linux_stabilize_threads (void)
3077 {
3078 struct thread_info *saved_thread;
3079 struct thread_info *thread_stuck;
3080
3081 thread_stuck
3082 = (struct thread_info *) find_inferior (&all_threads,
3083 stuck_in_jump_pad_callback,
3084 NULL);
3085 if (thread_stuck != NULL)
3086 {
3087 if (debug_threads)
3088 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
3089 lwpid_of (thread_stuck));
3090 return;
3091 }
3092
3093 saved_thread = current_thread;
3094
3095 stabilizing_threads = 1;
3096
3097 /* Kick 'em all. */
3098 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
3099
3100 /* Loop until all are stopped out of the jump pads. */
3101 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
3102 {
3103 struct target_waitstatus ourstatus;
3104 struct lwp_info *lwp;
3105 int wstat;
3106
3107 /* Note that we go through the full wait even loop. While
3108 moving threads out of jump pad, we need to be able to step
3109 over internal breakpoints and such. */
3110 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
3111
3112 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
3113 {
3114 lwp = get_thread_lwp (current_thread);
3115
3116 /* Lock it. */
3117 lwp_suspended_inc (lwp);
3118
3119 if (ourstatus.value.sig != GDB_SIGNAL_0
3120 || current_thread->last_resume_kind == resume_stop)
3121 {
3122 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3123 enqueue_one_deferred_signal (lwp, &wstat);
3124 }
3125 }
3126 }
3127
3128 unsuspend_all_lwps (NULL);
3129
3130 stabilizing_threads = 0;
3131
3132 current_thread = saved_thread;
3133
3134 if (debug_threads)
3135 {
3136 thread_stuck
3137 = (struct thread_info *) find_inferior (&all_threads,
3138 stuck_in_jump_pad_callback,
3139 NULL);
3140 if (thread_stuck != NULL)
3141 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3142 lwpid_of (thread_stuck));
3143 }
3144 }
3145
3146 /* Convenience function that is called when the kernel reports an
3147 event that is not passed out to GDB. */
3148
3149 static ptid_t
3150 ignore_event (struct target_waitstatus *ourstatus)
3151 {
3152 /* If we got an event, there may still be others, as a single
3153 SIGCHLD can indicate more than one child stopped. This forces
3154 another target_wait call. */
3155 async_file_mark ();
3156
3157 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3158 return null_ptid;
3159 }
3160
3161 /* Convenience function that is called when the kernel reports an exit
3162 event. This decides whether to report the event to GDB as a
3163 process exit event, a thread exit event, or to suppress the
3164 event. */
3165
3166 static ptid_t
3167 filter_exit_event (struct lwp_info *event_child,
3168 struct target_waitstatus *ourstatus)
3169 {
3170 struct thread_info *thread = get_lwp_thread (event_child);
3171 ptid_t ptid = ptid_of (thread);
3172
3173 if (!last_thread_of_process_p (pid_of (thread)))
3174 {
3175 if (report_thread_events)
3176 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3177 else
3178 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3179
3180 delete_lwp (event_child);
3181 }
3182 return ptid;
3183 }
3184
3185 /* Returns 1 if GDB is interested in any event_child syscalls. */
3186
3187 static int
3188 gdb_catching_syscalls_p (struct lwp_info *event_child)
3189 {
3190 struct thread_info *thread = get_lwp_thread (event_child);
3191 struct process_info *proc = get_thread_process (thread);
3192
3193 return !VEC_empty (int, proc->syscalls_to_catch);
3194 }
3195
3196 /* Returns 1 if GDB is interested in the event_child syscall.
3197 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3198
3199 static int
3200 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3201 {
3202 int i, iter;
3203 int sysno;
3204 struct thread_info *thread = get_lwp_thread (event_child);
3205 struct process_info *proc = get_thread_process (thread);
3206
3207 if (VEC_empty (int, proc->syscalls_to_catch))
3208 return 0;
3209
3210 if (VEC_index (int, proc->syscalls_to_catch, 0) == ANY_SYSCALL)
3211 return 1;
3212
3213 get_syscall_trapinfo (event_child, &sysno);
3214 for (i = 0;
3215 VEC_iterate (int, proc->syscalls_to_catch, i, iter);
3216 i++)
3217 if (iter == sysno)
3218 return 1;
3219
3220 return 0;
3221 }
3222
3223 /* Wait for process, returns status. */
3224
3225 static ptid_t
3226 linux_wait_1 (ptid_t ptid,
3227 struct target_waitstatus *ourstatus, int target_options)
3228 {
3229 int w;
3230 struct lwp_info *event_child;
3231 int options;
3232 int pid;
3233 int step_over_finished;
3234 int bp_explains_trap;
3235 int maybe_internal_trap;
3236 int report_to_gdb;
3237 int trace_event;
3238 int in_step_range;
3239 int any_resumed;
3240
3241 if (debug_threads)
3242 {
3243 debug_enter ();
3244 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3245 }
3246
3247 /* Translate generic target options into linux options. */
3248 options = __WALL;
3249 if (target_options & TARGET_WNOHANG)
3250 options |= WNOHANG;
3251
3252 bp_explains_trap = 0;
3253 trace_event = 0;
3254 in_step_range = 0;
3255 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3256
3257 /* Find a resumed LWP, if any. */
3258 if (find_inferior (&all_threads,
3259 status_pending_p_callback,
3260 &minus_one_ptid) != NULL)
3261 any_resumed = 1;
3262 else if ((find_inferior (&all_threads,
3263 not_stopped_callback,
3264 &minus_one_ptid) != NULL))
3265 any_resumed = 1;
3266 else
3267 any_resumed = 0;
3268
3269 if (ptid_equal (step_over_bkpt, null_ptid))
3270 pid = linux_wait_for_event (ptid, &w, options);
3271 else
3272 {
3273 if (debug_threads)
3274 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3275 target_pid_to_str (step_over_bkpt));
3276 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3277 }
3278
3279 if (pid == 0 || (pid == -1 && !any_resumed))
3280 {
3281 gdb_assert (target_options & TARGET_WNOHANG);
3282
3283 if (debug_threads)
3284 {
3285 debug_printf ("linux_wait_1 ret = null_ptid, "
3286 "TARGET_WAITKIND_IGNORE\n");
3287 debug_exit ();
3288 }
3289
3290 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3291 return null_ptid;
3292 }
3293 else if (pid == -1)
3294 {
3295 if (debug_threads)
3296 {
3297 debug_printf ("linux_wait_1 ret = null_ptid, "
3298 "TARGET_WAITKIND_NO_RESUMED\n");
3299 debug_exit ();
3300 }
3301
3302 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3303 return null_ptid;
3304 }
3305
3306 event_child = get_thread_lwp (current_thread);
3307
3308 /* linux_wait_for_event only returns an exit status for the last
3309 child of a process. Report it. */
3310 if (WIFEXITED (w) || WIFSIGNALED (w))
3311 {
3312 if (WIFEXITED (w))
3313 {
3314 ourstatus->kind = TARGET_WAITKIND_EXITED;
3315 ourstatus->value.integer = WEXITSTATUS (w);
3316
3317 if (debug_threads)
3318 {
3319 debug_printf ("linux_wait_1 ret = %s, exited with "
3320 "retcode %d\n",
3321 target_pid_to_str (ptid_of (current_thread)),
3322 WEXITSTATUS (w));
3323 debug_exit ();
3324 }
3325 }
3326 else
3327 {
3328 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3329 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3330
3331 if (debug_threads)
3332 {
3333 debug_printf ("linux_wait_1 ret = %s, terminated with "
3334 "signal %d\n",
3335 target_pid_to_str (ptid_of (current_thread)),
3336 WTERMSIG (w));
3337 debug_exit ();
3338 }
3339 }
3340
3341 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3342 return filter_exit_event (event_child, ourstatus);
3343
3344 return ptid_of (current_thread);
3345 }
3346
3347 /* If step-over executes a breakpoint instruction, in the case of a
3348 hardware single step it means a gdb/gdbserver breakpoint had been
3349 planted on top of a permanent breakpoint, in the case of a software
3350 single step it may just mean that gdbserver hit the reinsert breakpoint.
3351 The PC has been adjusted by save_stop_reason to point at
3352 the breakpoint address.
3353 So in the case of the hardware single step advance the PC manually
3354 past the breakpoint and in the case of software single step advance only
3355 if it's not the single_step_breakpoint we are hitting.
3356 This avoids that a program would keep trapping a permanent breakpoint
3357 forever. */
3358 if (!ptid_equal (step_over_bkpt, null_ptid)
3359 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3360 && (event_child->stepping
3361 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3362 {
3363 int increment_pc = 0;
3364 int breakpoint_kind = 0;
3365 CORE_ADDR stop_pc = event_child->stop_pc;
3366
3367 breakpoint_kind =
3368 the_target->breakpoint_kind_from_current_state (&stop_pc);
3369 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3370
3371 if (debug_threads)
3372 {
3373 debug_printf ("step-over for %s executed software breakpoint\n",
3374 target_pid_to_str (ptid_of (current_thread)));
3375 }
3376
3377 if (increment_pc != 0)
3378 {
3379 struct regcache *regcache
3380 = get_thread_regcache (current_thread, 1);
3381
3382 event_child->stop_pc += increment_pc;
3383 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3384
3385 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3386 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3387 }
3388 }
3389
3390 /* If this event was not handled before, and is not a SIGTRAP, we
3391 report it. SIGILL and SIGSEGV are also treated as traps in case
3392 a breakpoint is inserted at the current PC. If this target does
3393 not support internal breakpoints at all, we also report the
3394 SIGTRAP without further processing; it's of no concern to us. */
3395 maybe_internal_trap
3396 = (supports_breakpoints ()
3397 && (WSTOPSIG (w) == SIGTRAP
3398 || ((WSTOPSIG (w) == SIGILL
3399 || WSTOPSIG (w) == SIGSEGV)
3400 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3401
3402 if (maybe_internal_trap)
3403 {
3404 /* Handle anything that requires bookkeeping before deciding to
3405 report the event or continue waiting. */
3406
3407 /* First check if we can explain the SIGTRAP with an internal
3408 breakpoint, or if we should possibly report the event to GDB.
3409 Do this before anything that may remove or insert a
3410 breakpoint. */
3411 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3412
3413 /* We have a SIGTRAP, possibly a step-over dance has just
3414 finished. If so, tweak the state machine accordingly,
3415 reinsert breakpoints and delete any single-step
3416 breakpoints. */
3417 step_over_finished = finish_step_over (event_child);
3418
3419 /* Now invoke the callbacks of any internal breakpoints there. */
3420 check_breakpoints (event_child->stop_pc);
3421
3422 /* Handle tracepoint data collecting. This may overflow the
3423 trace buffer, and cause a tracing stop, removing
3424 breakpoints. */
3425 trace_event = handle_tracepoints (event_child);
3426
3427 if (bp_explains_trap)
3428 {
3429 if (debug_threads)
3430 debug_printf ("Hit a gdbserver breakpoint.\n");
3431 }
3432 }
3433 else
3434 {
3435 /* We have some other signal, possibly a step-over dance was in
3436 progress, and it should be cancelled too. */
3437 step_over_finished = finish_step_over (event_child);
3438 }
3439
3440 /* We have all the data we need. Either report the event to GDB, or
3441 resume threads and keep waiting for more. */
3442
3443 /* If we're collecting a fast tracepoint, finish the collection and
3444 move out of the jump pad before delivering a signal. See
3445 linux_stabilize_threads. */
3446
3447 if (WIFSTOPPED (w)
3448 && WSTOPSIG (w) != SIGTRAP
3449 && supports_fast_tracepoints ()
3450 && agent_loaded_p ())
3451 {
3452 if (debug_threads)
3453 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3454 "to defer or adjust it.\n",
3455 WSTOPSIG (w), lwpid_of (current_thread));
3456
3457 /* Allow debugging the jump pad itself. */
3458 if (current_thread->last_resume_kind != resume_step
3459 && maybe_move_out_of_jump_pad (event_child, &w))
3460 {
3461 enqueue_one_deferred_signal (event_child, &w);
3462
3463 if (debug_threads)
3464 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3465 WSTOPSIG (w), lwpid_of (current_thread));
3466
3467 linux_resume_one_lwp (event_child, 0, 0, NULL);
3468
3469 if (debug_threads)
3470 debug_exit ();
3471 return ignore_event (ourstatus);
3472 }
3473 }
3474
3475 if (event_child->collecting_fast_tracepoint
3476 != fast_tpoint_collect_result::not_collecting)
3477 {
3478 if (debug_threads)
3479 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3480 "Check if we're already there.\n",
3481 lwpid_of (current_thread),
3482 (int) event_child->collecting_fast_tracepoint);
3483
3484 trace_event = 1;
3485
3486 event_child->collecting_fast_tracepoint
3487 = linux_fast_tracepoint_collecting (event_child, NULL);
3488
3489 if (event_child->collecting_fast_tracepoint
3490 != fast_tpoint_collect_result::before_insn)
3491 {
3492 /* No longer need this breakpoint. */
3493 if (event_child->exit_jump_pad_bkpt != NULL)
3494 {
3495 if (debug_threads)
3496 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3497 "stopping all threads momentarily.\n");
3498
3499 /* Other running threads could hit this breakpoint.
3500 We don't handle moribund locations like GDB does,
3501 instead we always pause all threads when removing
3502 breakpoints, so that any step-over or
3503 decr_pc_after_break adjustment is always taken
3504 care of while the breakpoint is still
3505 inserted. */
3506 stop_all_lwps (1, event_child);
3507
3508 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3509 event_child->exit_jump_pad_bkpt = NULL;
3510
3511 unstop_all_lwps (1, event_child);
3512
3513 gdb_assert (event_child->suspended >= 0);
3514 }
3515 }
3516
3517 if (event_child->collecting_fast_tracepoint
3518 == fast_tpoint_collect_result::not_collecting)
3519 {
3520 if (debug_threads)
3521 debug_printf ("fast tracepoint finished "
3522 "collecting successfully.\n");
3523
3524 /* We may have a deferred signal to report. */
3525 if (dequeue_one_deferred_signal (event_child, &w))
3526 {
3527 if (debug_threads)
3528 debug_printf ("dequeued one signal.\n");
3529 }
3530 else
3531 {
3532 if (debug_threads)
3533 debug_printf ("no deferred signals.\n");
3534
3535 if (stabilizing_threads)
3536 {
3537 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3538 ourstatus->value.sig = GDB_SIGNAL_0;
3539
3540 if (debug_threads)
3541 {
3542 debug_printf ("linux_wait_1 ret = %s, stopped "
3543 "while stabilizing threads\n",
3544 target_pid_to_str (ptid_of (current_thread)));
3545 debug_exit ();
3546 }
3547
3548 return ptid_of (current_thread);
3549 }
3550 }
3551 }
3552 }
3553
3554 /* Check whether GDB would be interested in this event. */
3555
3556 /* Check if GDB is interested in this syscall. */
3557 if (WIFSTOPPED (w)
3558 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3559 && !gdb_catch_this_syscall_p (event_child))
3560 {
3561 if (debug_threads)
3562 {
3563 debug_printf ("Ignored syscall for LWP %ld.\n",
3564 lwpid_of (current_thread));
3565 }
3566
3567 linux_resume_one_lwp (event_child, event_child->stepping,
3568 0, NULL);
3569
3570 if (debug_threads)
3571 debug_exit ();
3572 return ignore_event (ourstatus);
3573 }
3574
3575 /* If GDB is not interested in this signal, don't stop other
3576 threads, and don't report it to GDB. Just resume the inferior
3577 right away. We do this for threading-related signals as well as
3578 any that GDB specifically requested we ignore. But never ignore
3579 SIGSTOP if we sent it ourselves, and do not ignore signals when
3580 stepping - they may require special handling to skip the signal
3581 handler. Also never ignore signals that could be caused by a
3582 breakpoint. */
3583 if (WIFSTOPPED (w)
3584 && current_thread->last_resume_kind != resume_step
3585 && (
3586 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3587 (current_process ()->priv->thread_db != NULL
3588 && (WSTOPSIG (w) == __SIGRTMIN
3589 || WSTOPSIG (w) == __SIGRTMIN + 1))
3590 ||
3591 #endif
3592 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3593 && !(WSTOPSIG (w) == SIGSTOP
3594 && current_thread->last_resume_kind == resume_stop)
3595 && !linux_wstatus_maybe_breakpoint (w))))
3596 {
3597 siginfo_t info, *info_p;
3598
3599 if (debug_threads)
3600 debug_printf ("Ignored signal %d for LWP %ld.\n",
3601 WSTOPSIG (w), lwpid_of (current_thread));
3602
3603 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3604 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3605 info_p = &info;
3606 else
3607 info_p = NULL;
3608
3609 if (step_over_finished)
3610 {
3611 /* We cancelled this thread's step-over above. We still
3612 need to unsuspend all other LWPs, and set them back
3613 running again while the signal handler runs. */
3614 unsuspend_all_lwps (event_child);
3615
3616 /* Enqueue the pending signal info so that proceed_all_lwps
3617 doesn't lose it. */
3618 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3619
3620 proceed_all_lwps ();
3621 }
3622 else
3623 {
3624 linux_resume_one_lwp (event_child, event_child->stepping,
3625 WSTOPSIG (w), info_p);
3626 }
3627
3628 if (debug_threads)
3629 debug_exit ();
3630
3631 return ignore_event (ourstatus);
3632 }
3633
3634 /* Note that all addresses are always "out of the step range" when
3635 there's no range to begin with. */
3636 in_step_range = lwp_in_step_range (event_child);
3637
3638 /* If GDB wanted this thread to single step, and the thread is out
3639 of the step range, we always want to report the SIGTRAP, and let
3640 GDB handle it. Watchpoints should always be reported. So should
3641 signals we can't explain. A SIGTRAP we can't explain could be a
3642 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3643 do, we're be able to handle GDB breakpoints on top of internal
3644 breakpoints, by handling the internal breakpoint and still
3645 reporting the event to GDB. If we don't, we're out of luck, GDB
3646 won't see the breakpoint hit. If we see a single-step event but
3647 the thread should be continuing, don't pass the trap to gdb.
3648 That indicates that we had previously finished a single-step but
3649 left the single-step pending -- see
3650 complete_ongoing_step_over. */
3651 report_to_gdb = (!maybe_internal_trap
3652 || (current_thread->last_resume_kind == resume_step
3653 && !in_step_range)
3654 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3655 || (!in_step_range
3656 && !bp_explains_trap
3657 && !trace_event
3658 && !step_over_finished
3659 && !(current_thread->last_resume_kind == resume_continue
3660 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3661 || (gdb_breakpoint_here (event_child->stop_pc)
3662 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3663 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3664 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3665
3666 run_breakpoint_commands (event_child->stop_pc);
3667
3668 /* We found no reason GDB would want us to stop. We either hit one
3669 of our own breakpoints, or finished an internal step GDB
3670 shouldn't know about. */
3671 if (!report_to_gdb)
3672 {
3673 if (debug_threads)
3674 {
3675 if (bp_explains_trap)
3676 debug_printf ("Hit a gdbserver breakpoint.\n");
3677 if (step_over_finished)
3678 debug_printf ("Step-over finished.\n");
3679 if (trace_event)
3680 debug_printf ("Tracepoint event.\n");
3681 if (lwp_in_step_range (event_child))
3682 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3683 paddress (event_child->stop_pc),
3684 paddress (event_child->step_range_start),
3685 paddress (event_child->step_range_end));
3686 }
3687
3688 /* We're not reporting this breakpoint to GDB, so apply the
3689 decr_pc_after_break adjustment to the inferior's regcache
3690 ourselves. */
3691
3692 if (the_low_target.set_pc != NULL)
3693 {
3694 struct regcache *regcache
3695 = get_thread_regcache (current_thread, 1);
3696 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3697 }
3698
3699 if (step_over_finished)
3700 {
3701 /* If we have finished stepping over a breakpoint, we've
3702 stopped and suspended all LWPs momentarily except the
3703 stepping one. This is where we resume them all again.
3704 We're going to keep waiting, so use proceed, which
3705 handles stepping over the next breakpoint. */
3706 unsuspend_all_lwps (event_child);
3707 }
3708 else
3709 {
3710 /* Remove the single-step breakpoints if any. Note that
3711 there isn't single-step breakpoint if we finished stepping
3712 over. */
3713 if (can_software_single_step ()
3714 && has_single_step_breakpoints (current_thread))
3715 {
3716 stop_all_lwps (0, event_child);
3717 delete_single_step_breakpoints (current_thread);
3718 unstop_all_lwps (0, event_child);
3719 }
3720 }
3721
3722 if (debug_threads)
3723 debug_printf ("proceeding all threads.\n");
3724 proceed_all_lwps ();
3725
3726 if (debug_threads)
3727 debug_exit ();
3728
3729 return ignore_event (ourstatus);
3730 }
3731
3732 if (debug_threads)
3733 {
3734 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3735 {
3736 std::string str
3737 = target_waitstatus_to_string (&event_child->waitstatus);
3738
3739 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3740 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3741 }
3742 if (current_thread->last_resume_kind == resume_step)
3743 {
3744 if (event_child->step_range_start == event_child->step_range_end)
3745 debug_printf ("GDB wanted to single-step, reporting event.\n");
3746 else if (!lwp_in_step_range (event_child))
3747 debug_printf ("Out of step range, reporting event.\n");
3748 }
3749 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3750 debug_printf ("Stopped by watchpoint.\n");
3751 else if (gdb_breakpoint_here (event_child->stop_pc))
3752 debug_printf ("Stopped by GDB breakpoint.\n");
3753 if (debug_threads)
3754 debug_printf ("Hit a non-gdbserver trap event.\n");
3755 }
3756
3757 /* Alright, we're going to report a stop. */
3758
3759 /* Remove single-step breakpoints. */
3760 if (can_software_single_step ())
3761 {
3762 /* Remove single-step breakpoints or not. It it is true, stop all
3763 lwps, so that other threads won't hit the breakpoint in the
3764 staled memory. */
3765 int remove_single_step_breakpoints_p = 0;
3766
3767 if (non_stop)
3768 {
3769 remove_single_step_breakpoints_p
3770 = has_single_step_breakpoints (current_thread);
3771 }
3772 else
3773 {
3774 /* In all-stop, a stop reply cancels all previous resume
3775 requests. Delete all single-step breakpoints. */
3776 struct inferior_list_entry *inf, *tmp;
3777
3778 ALL_INFERIORS (&all_threads, inf, tmp)
3779 {
3780 struct thread_info *thread = (struct thread_info *) inf;
3781
3782 if (has_single_step_breakpoints (thread))
3783 {
3784 remove_single_step_breakpoints_p = 1;
3785 break;
3786 }
3787 }
3788 }
3789
3790 if (remove_single_step_breakpoints_p)
3791 {
3792 /* If we remove single-step breakpoints from memory, stop all lwps,
3793 so that other threads won't hit the breakpoint in the staled
3794 memory. */
3795 stop_all_lwps (0, event_child);
3796
3797 if (non_stop)
3798 {
3799 gdb_assert (has_single_step_breakpoints (current_thread));
3800 delete_single_step_breakpoints (current_thread);
3801 }
3802 else
3803 {
3804 struct inferior_list_entry *inf, *tmp;
3805
3806 ALL_INFERIORS (&all_threads, inf, tmp)
3807 {
3808 struct thread_info *thread = (struct thread_info *) inf;
3809
3810 if (has_single_step_breakpoints (thread))
3811 delete_single_step_breakpoints (thread);
3812 }
3813 }
3814
3815 unstop_all_lwps (0, event_child);
3816 }
3817 }
3818
3819 if (!stabilizing_threads)
3820 {
3821 /* In all-stop, stop all threads. */
3822 if (!non_stop)
3823 stop_all_lwps (0, NULL);
3824
3825 if (step_over_finished)
3826 {
3827 if (!non_stop)
3828 {
3829 /* If we were doing a step-over, all other threads but
3830 the stepping one had been paused in start_step_over,
3831 with their suspend counts incremented. We don't want
3832 to do a full unstop/unpause, because we're in
3833 all-stop mode (so we want threads stopped), but we
3834 still need to unsuspend the other threads, to
3835 decrement their `suspended' count back. */
3836 unsuspend_all_lwps (event_child);
3837 }
3838 else
3839 {
3840 /* If we just finished a step-over, then all threads had
3841 been momentarily paused. In all-stop, that's fine,
3842 we want threads stopped by now anyway. In non-stop,
3843 we need to re-resume threads that GDB wanted to be
3844 running. */
3845 unstop_all_lwps (1, event_child);
3846 }
3847 }
3848
3849 /* If we're not waiting for a specific LWP, choose an event LWP
3850 from among those that have had events. Giving equal priority
3851 to all LWPs that have had events helps prevent
3852 starvation. */
3853 if (ptid_equal (ptid, minus_one_ptid))
3854 {
3855 event_child->status_pending_p = 1;
3856 event_child->status_pending = w;
3857
3858 select_event_lwp (&event_child);
3859
3860 /* current_thread and event_child must stay in sync. */
3861 current_thread = get_lwp_thread (event_child);
3862
3863 event_child->status_pending_p = 0;
3864 w = event_child->status_pending;
3865 }
3866
3867
3868 /* Stabilize threads (move out of jump pads). */
3869 if (!non_stop)
3870 stabilize_threads ();
3871 }
3872 else
3873 {
3874 /* If we just finished a step-over, then all threads had been
3875 momentarily paused. In all-stop, that's fine, we want
3876 threads stopped by now anyway. In non-stop, we need to
3877 re-resume threads that GDB wanted to be running. */
3878 if (step_over_finished)
3879 unstop_all_lwps (1, event_child);
3880 }
3881
3882 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3883 {
3884 /* If the reported event is an exit, fork, vfork or exec, let
3885 GDB know. */
3886
3887 /* Break the unreported fork relationship chain. */
3888 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3889 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3890 {
3891 event_child->fork_relative->fork_relative = NULL;
3892 event_child->fork_relative = NULL;
3893 }
3894
3895 *ourstatus = event_child->waitstatus;
3896 /* Clear the event lwp's waitstatus since we handled it already. */
3897 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3898 }
3899 else
3900 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3901
3902 /* Now that we've selected our final event LWP, un-adjust its PC if
3903 it was a software breakpoint, and the client doesn't know we can
3904 adjust the breakpoint ourselves. */
3905 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3906 && !swbreak_feature)
3907 {
3908 int decr_pc = the_low_target.decr_pc_after_break;
3909
3910 if (decr_pc != 0)
3911 {
3912 struct regcache *regcache
3913 = get_thread_regcache (current_thread, 1);
3914 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3915 }
3916 }
3917
3918 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3919 {
3920 get_syscall_trapinfo (event_child,
3921 &ourstatus->value.syscall_number);
3922 ourstatus->kind = event_child->syscall_state;
3923 }
3924 else if (current_thread->last_resume_kind == resume_stop
3925 && WSTOPSIG (w) == SIGSTOP)
3926 {
3927 /* A thread that has been requested to stop by GDB with vCont;t,
3928 and it stopped cleanly, so report as SIG0. The use of
3929 SIGSTOP is an implementation detail. */
3930 ourstatus->value.sig = GDB_SIGNAL_0;
3931 }
3932 else if (current_thread->last_resume_kind == resume_stop
3933 && WSTOPSIG (w) != SIGSTOP)
3934 {
3935 /* A thread that has been requested to stop by GDB with vCont;t,
3936 but, it stopped for other reasons. */
3937 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3938 }
3939 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3940 {
3941 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3942 }
3943
3944 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3945
3946 if (debug_threads)
3947 {
3948 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3949 target_pid_to_str (ptid_of (current_thread)),
3950 ourstatus->kind, ourstatus->value.sig);
3951 debug_exit ();
3952 }
3953
3954 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3955 return filter_exit_event (event_child, ourstatus);
3956
3957 return ptid_of (current_thread);
3958 }
3959
3960 /* Get rid of any pending event in the pipe. */
3961 static void
3962 async_file_flush (void)
3963 {
3964 int ret;
3965 char buf;
3966
3967 do
3968 ret = read (linux_event_pipe[0], &buf, 1);
3969 while (ret >= 0 || (ret == -1 && errno == EINTR));
3970 }
3971
3972 /* Put something in the pipe, so the event loop wakes up. */
3973 static void
3974 async_file_mark (void)
3975 {
3976 int ret;
3977
3978 async_file_flush ();
3979
3980 do
3981 ret = write (linux_event_pipe[1], "+", 1);
3982 while (ret == 0 || (ret == -1 && errno == EINTR));
3983
3984 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3985 be awakened anyway. */
3986 }
3987
3988 static ptid_t
3989 linux_wait (ptid_t ptid,
3990 struct target_waitstatus *ourstatus, int target_options)
3991 {
3992 ptid_t event_ptid;
3993
3994 /* Flush the async file first. */
3995 if (target_is_async_p ())
3996 async_file_flush ();
3997
3998 do
3999 {
4000 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
4001 }
4002 while ((target_options & TARGET_WNOHANG) == 0
4003 && ptid_equal (event_ptid, null_ptid)
4004 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
4005
4006 /* If at least one stop was reported, there may be more. A single
4007 SIGCHLD can signal more than one child stop. */
4008 if (target_is_async_p ()
4009 && (target_options & TARGET_WNOHANG) != 0
4010 && !ptid_equal (event_ptid, null_ptid))
4011 async_file_mark ();
4012
4013 return event_ptid;
4014 }
4015
4016 /* Send a signal to an LWP. */
4017
4018 static int
4019 kill_lwp (unsigned long lwpid, int signo)
4020 {
4021 int ret;
4022
4023 errno = 0;
4024 ret = syscall (__NR_tkill, lwpid, signo);
4025 if (errno == ENOSYS)
4026 {
4027 /* If tkill fails, then we are not using nptl threads, a
4028 configuration we no longer support. */
4029 perror_with_name (("tkill"));
4030 }
4031 return ret;
4032 }
4033
4034 void
4035 linux_stop_lwp (struct lwp_info *lwp)
4036 {
4037 send_sigstop (lwp);
4038 }
4039
4040 static void
4041 send_sigstop (struct lwp_info *lwp)
4042 {
4043 int pid;
4044
4045 pid = lwpid_of (get_lwp_thread (lwp));
4046
4047 /* If we already have a pending stop signal for this process, don't
4048 send another. */
4049 if (lwp->stop_expected)
4050 {
4051 if (debug_threads)
4052 debug_printf ("Have pending sigstop for lwp %d\n", pid);
4053
4054 return;
4055 }
4056
4057 if (debug_threads)
4058 debug_printf ("Sending sigstop to lwp %d\n", pid);
4059
4060 lwp->stop_expected = 1;
4061 kill_lwp (pid, SIGSTOP);
4062 }
4063
4064 static int
4065 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
4066 {
4067 struct thread_info *thread = (struct thread_info *) entry;
4068 struct lwp_info *lwp = get_thread_lwp (thread);
4069
4070 /* Ignore EXCEPT. */
4071 if (lwp == except)
4072 return 0;
4073
4074 if (lwp->stopped)
4075 return 0;
4076
4077 send_sigstop (lwp);
4078 return 0;
4079 }
4080
4081 /* Increment the suspend count of an LWP, and stop it, if not stopped
4082 yet. */
4083 static int
4084 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
4085 void *except)
4086 {
4087 struct thread_info *thread = (struct thread_info *) entry;
4088 struct lwp_info *lwp = get_thread_lwp (thread);
4089
4090 /* Ignore EXCEPT. */
4091 if (lwp == except)
4092 return 0;
4093
4094 lwp_suspended_inc (lwp);
4095
4096 return send_sigstop_callback (entry, except);
4097 }
4098
4099 static void
4100 mark_lwp_dead (struct lwp_info *lwp, int wstat)
4101 {
4102 /* Store the exit status for later. */
4103 lwp->status_pending_p = 1;
4104 lwp->status_pending = wstat;
4105
4106 /* Store in waitstatus as well, as there's nothing else to process
4107 for this event. */
4108 if (WIFEXITED (wstat))
4109 {
4110 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
4111 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
4112 }
4113 else if (WIFSIGNALED (wstat))
4114 {
4115 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
4116 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
4117 }
4118
4119 /* Prevent trying to stop it. */
4120 lwp->stopped = 1;
4121
4122 /* No further stops are expected from a dead lwp. */
4123 lwp->stop_expected = 0;
4124 }
4125
4126 /* Return true if LWP has exited already, and has a pending exit event
4127 to report to GDB. */
4128
4129 static int
4130 lwp_is_marked_dead (struct lwp_info *lwp)
4131 {
4132 return (lwp->status_pending_p
4133 && (WIFEXITED (lwp->status_pending)
4134 || WIFSIGNALED (lwp->status_pending)));
4135 }
4136
4137 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4138
4139 static void
4140 wait_for_sigstop (void)
4141 {
4142 struct thread_info *saved_thread;
4143 ptid_t saved_tid;
4144 int wstat;
4145 int ret;
4146
4147 saved_thread = current_thread;
4148 if (saved_thread != NULL)
4149 saved_tid = saved_thread->entry.id;
4150 else
4151 saved_tid = null_ptid; /* avoid bogus unused warning */
4152
4153 if (debug_threads)
4154 debug_printf ("wait_for_sigstop: pulling events\n");
4155
4156 /* Passing NULL_PTID as filter indicates we want all events to be
4157 left pending. Eventually this returns when there are no
4158 unwaited-for children left. */
4159 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4160 &wstat, __WALL);
4161 gdb_assert (ret == -1);
4162
4163 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4164 current_thread = saved_thread;
4165 else
4166 {
4167 if (debug_threads)
4168 debug_printf ("Previously current thread died.\n");
4169
4170 /* We can't change the current inferior behind GDB's back,
4171 otherwise, a subsequent command may apply to the wrong
4172 process. */
4173 current_thread = NULL;
4174 }
4175 }
4176
4177 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
4178 move it out, because we need to report the stop event to GDB. For
4179 example, if the user puts a breakpoint in the jump pad, it's
4180 because she wants to debug it. */
4181
4182 static int
4183 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
4184 {
4185 struct thread_info *thread = (struct thread_info *) entry;
4186 struct lwp_info *lwp = get_thread_lwp (thread);
4187
4188 if (lwp->suspended != 0)
4189 {
4190 internal_error (__FILE__, __LINE__,
4191 "LWP %ld is suspended, suspended=%d\n",
4192 lwpid_of (thread), lwp->suspended);
4193 }
4194 gdb_assert (lwp->stopped);
4195
4196 /* Allow debugging the jump pad, gdb_collect, etc.. */
4197 return (supports_fast_tracepoints ()
4198 && agent_loaded_p ()
4199 && (gdb_breakpoint_here (lwp->stop_pc)
4200 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4201 || thread->last_resume_kind == resume_step)
4202 && (linux_fast_tracepoint_collecting (lwp, NULL)
4203 != fast_tpoint_collect_result::not_collecting));
4204 }
4205
4206 static void
4207 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
4208 {
4209 struct thread_info *thread = (struct thread_info *) entry;
4210 struct thread_info *saved_thread;
4211 struct lwp_info *lwp = get_thread_lwp (thread);
4212 int *wstat;
4213
4214 if (lwp->suspended != 0)
4215 {
4216 internal_error (__FILE__, __LINE__,
4217 "LWP %ld is suspended, suspended=%d\n",
4218 lwpid_of (thread), lwp->suspended);
4219 }
4220 gdb_assert (lwp->stopped);
4221
4222 /* For gdb_breakpoint_here. */
4223 saved_thread = current_thread;
4224 current_thread = thread;
4225
4226 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4227
4228 /* Allow debugging the jump pad, gdb_collect, etc. */
4229 if (!gdb_breakpoint_here (lwp->stop_pc)
4230 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4231 && thread->last_resume_kind != resume_step
4232 && maybe_move_out_of_jump_pad (lwp, wstat))
4233 {
4234 if (debug_threads)
4235 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4236 lwpid_of (thread));
4237
4238 if (wstat)
4239 {
4240 lwp->status_pending_p = 0;
4241 enqueue_one_deferred_signal (lwp, wstat);
4242
4243 if (debug_threads)
4244 debug_printf ("Signal %d for LWP %ld deferred "
4245 "(in jump pad)\n",
4246 WSTOPSIG (*wstat), lwpid_of (thread));
4247 }
4248
4249 linux_resume_one_lwp (lwp, 0, 0, NULL);
4250 }
4251 else
4252 lwp_suspended_inc (lwp);
4253
4254 current_thread = saved_thread;
4255 }
4256
4257 static int
4258 lwp_running (struct inferior_list_entry *entry, void *data)
4259 {
4260 struct thread_info *thread = (struct thread_info *) entry;
4261 struct lwp_info *lwp = get_thread_lwp (thread);
4262
4263 if (lwp_is_marked_dead (lwp))
4264 return 0;
4265 if (lwp->stopped)
4266 return 0;
4267 return 1;
4268 }
4269
4270 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4271 If SUSPEND, then also increase the suspend count of every LWP,
4272 except EXCEPT. */
4273
4274 static void
4275 stop_all_lwps (int suspend, struct lwp_info *except)
4276 {
4277 /* Should not be called recursively. */
4278 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4279
4280 if (debug_threads)
4281 {
4282 debug_enter ();
4283 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4284 suspend ? "stop-and-suspend" : "stop",
4285 except != NULL
4286 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4287 : "none");
4288 }
4289
4290 stopping_threads = (suspend
4291 ? STOPPING_AND_SUSPENDING_THREADS
4292 : STOPPING_THREADS);
4293
4294 if (suspend)
4295 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4296 else
4297 find_inferior (&all_threads, send_sigstop_callback, except);
4298 wait_for_sigstop ();
4299 stopping_threads = NOT_STOPPING_THREADS;
4300
4301 if (debug_threads)
4302 {
4303 debug_printf ("stop_all_lwps done, setting stopping_threads "
4304 "back to !stopping\n");
4305 debug_exit ();
4306 }
4307 }
4308
4309 /* Enqueue one signal in the chain of signals which need to be
4310 delivered to this process on next resume. */
4311
4312 static void
4313 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4314 {
4315 struct pending_signals *p_sig = XNEW (struct pending_signals);
4316
4317 p_sig->prev = lwp->pending_signals;
4318 p_sig->signal = signal;
4319 if (info == NULL)
4320 memset (&p_sig->info, 0, sizeof (siginfo_t));
4321 else
4322 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4323 lwp->pending_signals = p_sig;
4324 }
4325
4326 /* Install breakpoints for software single stepping. */
4327
4328 static void
4329 install_software_single_step_breakpoints (struct lwp_info *lwp)
4330 {
4331 struct thread_info *thread = get_lwp_thread (lwp);
4332 struct regcache *regcache = get_thread_regcache (thread, 1);
4333 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4334
4335 current_thread = thread;
4336 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4337
4338 for (CORE_ADDR pc : next_pcs)
4339 set_single_step_breakpoint (pc, current_ptid);
4340
4341 do_cleanups (old_chain);
4342 }
4343
4344 /* Single step via hardware or software single step.
4345 Return 1 if hardware single stepping, 0 if software single stepping
4346 or can't single step. */
4347
4348 static int
4349 single_step (struct lwp_info* lwp)
4350 {
4351 int step = 0;
4352
4353 if (can_hardware_single_step ())
4354 {
4355 step = 1;
4356 }
4357 else if (can_software_single_step ())
4358 {
4359 install_software_single_step_breakpoints (lwp);
4360 step = 0;
4361 }
4362 else
4363 {
4364 if (debug_threads)
4365 debug_printf ("stepping is not implemented on this target");
4366 }
4367
4368 return step;
4369 }
4370
4371 /* The signal can be delivered to the inferior if we are not trying to
4372 finish a fast tracepoint collect. Since signal can be delivered in
4373 the step-over, the program may go to signal handler and trap again
4374 after return from the signal handler. We can live with the spurious
4375 double traps. */
4376
4377 static int
4378 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4379 {
4380 return (lwp->collecting_fast_tracepoint
4381 == fast_tpoint_collect_result::not_collecting);
4382 }
4383
4384 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4385 SIGNAL is nonzero, give it that signal. */
4386
4387 static void
4388 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4389 int step, int signal, siginfo_t *info)
4390 {
4391 struct thread_info *thread = get_lwp_thread (lwp);
4392 struct thread_info *saved_thread;
4393 int ptrace_request;
4394 struct process_info *proc = get_thread_process (thread);
4395
4396 /* Note that target description may not be initialised
4397 (proc->tdesc == NULL) at this point because the program hasn't
4398 stopped at the first instruction yet. It means GDBserver skips
4399 the extra traps from the wrapper program (see option --wrapper).
4400 Code in this function that requires register access should be
4401 guarded by proc->tdesc == NULL or something else. */
4402
4403 if (lwp->stopped == 0)
4404 return;
4405
4406 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4407
4408 fast_tpoint_collect_result fast_tp_collecting
4409 = lwp->collecting_fast_tracepoint;
4410
4411 gdb_assert (!stabilizing_threads
4412 || (fast_tp_collecting
4413 != fast_tpoint_collect_result::not_collecting));
4414
4415 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4416 user used the "jump" command, or "set $pc = foo"). */
4417 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4418 {
4419 /* Collecting 'while-stepping' actions doesn't make sense
4420 anymore. */
4421 release_while_stepping_state_list (thread);
4422 }
4423
4424 /* If we have pending signals or status, and a new signal, enqueue the
4425 signal. Also enqueue the signal if it can't be delivered to the
4426 inferior right now. */
4427 if (signal != 0
4428 && (lwp->status_pending_p
4429 || lwp->pending_signals != NULL
4430 || !lwp_signal_can_be_delivered (lwp)))
4431 {
4432 enqueue_pending_signal (lwp, signal, info);
4433
4434 /* Postpone any pending signal. It was enqueued above. */
4435 signal = 0;
4436 }
4437
4438 if (lwp->status_pending_p)
4439 {
4440 if (debug_threads)
4441 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4442 " has pending status\n",
4443 lwpid_of (thread), step ? "step" : "continue",
4444 lwp->stop_expected ? "expected" : "not expected");
4445 return;
4446 }
4447
4448 saved_thread = current_thread;
4449 current_thread = thread;
4450
4451 /* This bit needs some thinking about. If we get a signal that
4452 we must report while a single-step reinsert is still pending,
4453 we often end up resuming the thread. It might be better to
4454 (ew) allow a stack of pending events; then we could be sure that
4455 the reinsert happened right away and not lose any signals.
4456
4457 Making this stack would also shrink the window in which breakpoints are
4458 uninserted (see comment in linux_wait_for_lwp) but not enough for
4459 complete correctness, so it won't solve that problem. It may be
4460 worthwhile just to solve this one, however. */
4461 if (lwp->bp_reinsert != 0)
4462 {
4463 if (debug_threads)
4464 debug_printf (" pending reinsert at 0x%s\n",
4465 paddress (lwp->bp_reinsert));
4466
4467 if (can_hardware_single_step ())
4468 {
4469 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4470 {
4471 if (step == 0)
4472 warning ("BAD - reinserting but not stepping.");
4473 if (lwp->suspended)
4474 warning ("BAD - reinserting and suspended(%d).",
4475 lwp->suspended);
4476 }
4477 }
4478
4479 step = maybe_hw_step (thread);
4480 }
4481
4482 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4483 {
4484 if (debug_threads)
4485 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4486 " (exit-jump-pad-bkpt)\n",
4487 lwpid_of (thread));
4488 }
4489 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4490 {
4491 if (debug_threads)
4492 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4493 " single-stepping\n",
4494 lwpid_of (thread));
4495
4496 if (can_hardware_single_step ())
4497 step = 1;
4498 else
4499 {
4500 internal_error (__FILE__, __LINE__,
4501 "moving out of jump pad single-stepping"
4502 " not implemented on this target");
4503 }
4504 }
4505
4506 /* If we have while-stepping actions in this thread set it stepping.
4507 If we have a signal to deliver, it may or may not be set to
4508 SIG_IGN, we don't know. Assume so, and allow collecting
4509 while-stepping into a signal handler. A possible smart thing to
4510 do would be to set an internal breakpoint at the signal return
4511 address, continue, and carry on catching this while-stepping
4512 action only when that breakpoint is hit. A future
4513 enhancement. */
4514 if (thread->while_stepping != NULL)
4515 {
4516 if (debug_threads)
4517 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4518 lwpid_of (thread));
4519
4520 step = single_step (lwp);
4521 }
4522
4523 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4524 {
4525 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4526
4527 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4528
4529 if (debug_threads)
4530 {
4531 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4532 (long) lwp->stop_pc);
4533 }
4534 }
4535
4536 /* If we have pending signals, consume one if it can be delivered to
4537 the inferior. */
4538 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4539 {
4540 struct pending_signals **p_sig;
4541
4542 p_sig = &lwp->pending_signals;
4543 while ((*p_sig)->prev != NULL)
4544 p_sig = &(*p_sig)->prev;
4545
4546 signal = (*p_sig)->signal;
4547 if ((*p_sig)->info.si_signo != 0)
4548 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4549 &(*p_sig)->info);
4550
4551 free (*p_sig);
4552 *p_sig = NULL;
4553 }
4554
4555 if (debug_threads)
4556 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4557 lwpid_of (thread), step ? "step" : "continue", signal,
4558 lwp->stop_expected ? "expected" : "not expected");
4559
4560 if (the_low_target.prepare_to_resume != NULL)
4561 the_low_target.prepare_to_resume (lwp);
4562
4563 regcache_invalidate_thread (thread);
4564 errno = 0;
4565 lwp->stepping = step;
4566 if (step)
4567 ptrace_request = PTRACE_SINGLESTEP;
4568 else if (gdb_catching_syscalls_p (lwp))
4569 ptrace_request = PTRACE_SYSCALL;
4570 else
4571 ptrace_request = PTRACE_CONT;
4572 ptrace (ptrace_request,
4573 lwpid_of (thread),
4574 (PTRACE_TYPE_ARG3) 0,
4575 /* Coerce to a uintptr_t first to avoid potential gcc warning
4576 of coercing an 8 byte integer to a 4 byte pointer. */
4577 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4578
4579 current_thread = saved_thread;
4580 if (errno)
4581 perror_with_name ("resuming thread");
4582
4583 /* Successfully resumed. Clear state that no longer makes sense,
4584 and mark the LWP as running. Must not do this before resuming
4585 otherwise if that fails other code will be confused. E.g., we'd
4586 later try to stop the LWP and hang forever waiting for a stop
4587 status. Note that we must not throw after this is cleared,
4588 otherwise handle_zombie_lwp_error would get confused. */
4589 lwp->stopped = 0;
4590 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4591 }
4592
4593 /* Called when we try to resume a stopped LWP and that errors out. If
4594 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4595 or about to become), discard the error, clear any pending status
4596 the LWP may have, and return true (we'll collect the exit status
4597 soon enough). Otherwise, return false. */
4598
4599 static int
4600 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4601 {
4602 struct thread_info *thread = get_lwp_thread (lp);
4603
4604 /* If we get an error after resuming the LWP successfully, we'd
4605 confuse !T state for the LWP being gone. */
4606 gdb_assert (lp->stopped);
4607
4608 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4609 because even if ptrace failed with ESRCH, the tracee may be "not
4610 yet fully dead", but already refusing ptrace requests. In that
4611 case the tracee has 'R (Running)' state for a little bit
4612 (observed in Linux 3.18). See also the note on ESRCH in the
4613 ptrace(2) man page. Instead, check whether the LWP has any state
4614 other than ptrace-stopped. */
4615
4616 /* Don't assume anything if /proc/PID/status can't be read. */
4617 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4618 {
4619 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4620 lp->status_pending_p = 0;
4621 return 1;
4622 }
4623 return 0;
4624 }
4625
4626 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4627 disappears while we try to resume it. */
4628
4629 static void
4630 linux_resume_one_lwp (struct lwp_info *lwp,
4631 int step, int signal, siginfo_t *info)
4632 {
4633 TRY
4634 {
4635 linux_resume_one_lwp_throw (lwp, step, signal, info);
4636 }
4637 CATCH (ex, RETURN_MASK_ERROR)
4638 {
4639 if (!check_ptrace_stopped_lwp_gone (lwp))
4640 throw_exception (ex);
4641 }
4642 END_CATCH
4643 }
4644
4645 struct thread_resume_array
4646 {
4647 struct thread_resume *resume;
4648 size_t n;
4649 };
4650
4651 /* This function is called once per thread via find_inferior.
4652 ARG is a pointer to a thread_resume_array struct.
4653 We look up the thread specified by ENTRY in ARG, and mark the thread
4654 with a pointer to the appropriate resume request.
4655
4656 This algorithm is O(threads * resume elements), but resume elements
4657 is small (and will remain small at least until GDB supports thread
4658 suspension). */
4659
4660 static int
4661 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4662 {
4663 struct thread_info *thread = (struct thread_info *) entry;
4664 struct lwp_info *lwp = get_thread_lwp (thread);
4665 int ndx;
4666 struct thread_resume_array *r;
4667
4668 r = (struct thread_resume_array *) arg;
4669
4670 for (ndx = 0; ndx < r->n; ndx++)
4671 {
4672 ptid_t ptid = r->resume[ndx].thread;
4673 if (ptid_equal (ptid, minus_one_ptid)
4674 || ptid_equal (ptid, entry->id)
4675 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4676 of PID'. */
4677 || (ptid_get_pid (ptid) == pid_of (thread)
4678 && (ptid_is_pid (ptid)
4679 || ptid_get_lwp (ptid) == -1)))
4680 {
4681 if (r->resume[ndx].kind == resume_stop
4682 && thread->last_resume_kind == resume_stop)
4683 {
4684 if (debug_threads)
4685 debug_printf ("already %s LWP %ld at GDB's request\n",
4686 (thread->last_status.kind
4687 == TARGET_WAITKIND_STOPPED)
4688 ? "stopped"
4689 : "stopping",
4690 lwpid_of (thread));
4691
4692 continue;
4693 }
4694
4695 /* Ignore (wildcard) resume requests for already-resumed
4696 threads. */
4697 if (r->resume[ndx].kind != resume_stop
4698 && thread->last_resume_kind != resume_stop)
4699 {
4700 if (debug_threads)
4701 debug_printf ("already %s LWP %ld at GDB's request\n",
4702 (thread->last_resume_kind
4703 == resume_step)
4704 ? "stepping"
4705 : "continuing",
4706 lwpid_of (thread));
4707 continue;
4708 }
4709
4710 /* Don't let wildcard resumes resume fork children that GDB
4711 does not yet know are new fork children. */
4712 if (lwp->fork_relative != NULL)
4713 {
4714 struct inferior_list_entry *inf, *tmp;
4715 struct lwp_info *rel = lwp->fork_relative;
4716
4717 if (rel->status_pending_p
4718 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4719 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4720 {
4721 if (debug_threads)
4722 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4723 lwpid_of (thread));
4724 continue;
4725 }
4726 }
4727
4728 /* If the thread has a pending event that has already been
4729 reported to GDBserver core, but GDB has not pulled the
4730 event out of the vStopped queue yet, likewise, ignore the
4731 (wildcard) resume request. */
4732 if (in_queued_stop_replies (entry->id))
4733 {
4734 if (debug_threads)
4735 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4736 lwpid_of (thread));
4737 continue;
4738 }
4739
4740 lwp->resume = &r->resume[ndx];
4741 thread->last_resume_kind = lwp->resume->kind;
4742
4743 lwp->step_range_start = lwp->resume->step_range_start;
4744 lwp->step_range_end = lwp->resume->step_range_end;
4745
4746 /* If we had a deferred signal to report, dequeue one now.
4747 This can happen if LWP gets more than one signal while
4748 trying to get out of a jump pad. */
4749 if (lwp->stopped
4750 && !lwp->status_pending_p
4751 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4752 {
4753 lwp->status_pending_p = 1;
4754
4755 if (debug_threads)
4756 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4757 "leaving status pending.\n",
4758 WSTOPSIG (lwp->status_pending),
4759 lwpid_of (thread));
4760 }
4761
4762 return 0;
4763 }
4764 }
4765
4766 /* No resume action for this thread. */
4767 lwp->resume = NULL;
4768
4769 return 0;
4770 }
4771
4772 /* find_inferior callback for linux_resume.
4773 Set *FLAG_P if this lwp has an interesting status pending. */
4774
4775 static int
4776 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4777 {
4778 struct thread_info *thread = (struct thread_info *) entry;
4779 struct lwp_info *lwp = get_thread_lwp (thread);
4780
4781 /* LWPs which will not be resumed are not interesting, because
4782 we might not wait for them next time through linux_wait. */
4783 if (lwp->resume == NULL)
4784 return 0;
4785
4786 if (thread_still_has_status_pending_p (thread))
4787 * (int *) flag_p = 1;
4788
4789 return 0;
4790 }
4791
4792 /* Return 1 if this lwp that GDB wants running is stopped at an
4793 internal breakpoint that we need to step over. It assumes that any
4794 required STOP_PC adjustment has already been propagated to the
4795 inferior's regcache. */
4796
4797 static int
4798 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4799 {
4800 struct thread_info *thread = (struct thread_info *) entry;
4801 struct lwp_info *lwp = get_thread_lwp (thread);
4802 struct thread_info *saved_thread;
4803 CORE_ADDR pc;
4804 struct process_info *proc = get_thread_process (thread);
4805
4806 /* GDBserver is skipping the extra traps from the wrapper program,
4807 don't have to do step over. */
4808 if (proc->tdesc == NULL)
4809 return 0;
4810
4811 /* LWPs which will not be resumed are not interesting, because we
4812 might not wait for them next time through linux_wait. */
4813
4814 if (!lwp->stopped)
4815 {
4816 if (debug_threads)
4817 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4818 lwpid_of (thread));
4819 return 0;
4820 }
4821
4822 if (thread->last_resume_kind == resume_stop)
4823 {
4824 if (debug_threads)
4825 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4826 " stopped\n",
4827 lwpid_of (thread));
4828 return 0;
4829 }
4830
4831 gdb_assert (lwp->suspended >= 0);
4832
4833 if (lwp->suspended)
4834 {
4835 if (debug_threads)
4836 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4837 lwpid_of (thread));
4838 return 0;
4839 }
4840
4841 if (lwp->status_pending_p)
4842 {
4843 if (debug_threads)
4844 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4845 " status.\n",
4846 lwpid_of (thread));
4847 return 0;
4848 }
4849
4850 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4851 or we have. */
4852 pc = get_pc (lwp);
4853
4854 /* If the PC has changed since we stopped, then don't do anything,
4855 and let the breakpoint/tracepoint be hit. This happens if, for
4856 instance, GDB handled the decr_pc_after_break subtraction itself,
4857 GDB is OOL stepping this thread, or the user has issued a "jump"
4858 command, or poked thread's registers herself. */
4859 if (pc != lwp->stop_pc)
4860 {
4861 if (debug_threads)
4862 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4863 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4864 lwpid_of (thread),
4865 paddress (lwp->stop_pc), paddress (pc));
4866 return 0;
4867 }
4868
4869 /* On software single step target, resume the inferior with signal
4870 rather than stepping over. */
4871 if (can_software_single_step ()
4872 && lwp->pending_signals != NULL
4873 && lwp_signal_can_be_delivered (lwp))
4874 {
4875 if (debug_threads)
4876 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4877 " signals.\n",
4878 lwpid_of (thread));
4879
4880 return 0;
4881 }
4882
4883 saved_thread = current_thread;
4884 current_thread = thread;
4885
4886 /* We can only step over breakpoints we know about. */
4887 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4888 {
4889 /* Don't step over a breakpoint that GDB expects to hit
4890 though. If the condition is being evaluated on the target's side
4891 and it evaluate to false, step over this breakpoint as well. */
4892 if (gdb_breakpoint_here (pc)
4893 && gdb_condition_true_at_breakpoint (pc)
4894 && gdb_no_commands_at_breakpoint (pc))
4895 {
4896 if (debug_threads)
4897 debug_printf ("Need step over [LWP %ld]? yes, but found"
4898 " GDB breakpoint at 0x%s; skipping step over\n",
4899 lwpid_of (thread), paddress (pc));
4900
4901 current_thread = saved_thread;
4902 return 0;
4903 }
4904 else
4905 {
4906 if (debug_threads)
4907 debug_printf ("Need step over [LWP %ld]? yes, "
4908 "found breakpoint at 0x%s\n",
4909 lwpid_of (thread), paddress (pc));
4910
4911 /* We've found an lwp that needs stepping over --- return 1 so
4912 that find_inferior stops looking. */
4913 current_thread = saved_thread;
4914
4915 return 1;
4916 }
4917 }
4918
4919 current_thread = saved_thread;
4920
4921 if (debug_threads)
4922 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4923 " at 0x%s\n",
4924 lwpid_of (thread), paddress (pc));
4925
4926 return 0;
4927 }
4928
4929 /* Start a step-over operation on LWP. When LWP stopped at a
4930 breakpoint, to make progress, we need to remove the breakpoint out
4931 of the way. If we let other threads run while we do that, they may
4932 pass by the breakpoint location and miss hitting it. To avoid
4933 that, a step-over momentarily stops all threads while LWP is
4934 single-stepped by either hardware or software while the breakpoint
4935 is temporarily uninserted from the inferior. When the single-step
4936 finishes, we reinsert the breakpoint, and let all threads that are
4937 supposed to be running, run again. */
4938
4939 static int
4940 start_step_over (struct lwp_info *lwp)
4941 {
4942 struct thread_info *thread = get_lwp_thread (lwp);
4943 struct thread_info *saved_thread;
4944 CORE_ADDR pc;
4945 int step;
4946
4947 if (debug_threads)
4948 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4949 lwpid_of (thread));
4950
4951 stop_all_lwps (1, lwp);
4952
4953 if (lwp->suspended != 0)
4954 {
4955 internal_error (__FILE__, __LINE__,
4956 "LWP %ld suspended=%d\n", lwpid_of (thread),
4957 lwp->suspended);
4958 }
4959
4960 if (debug_threads)
4961 debug_printf ("Done stopping all threads for step-over.\n");
4962
4963 /* Note, we should always reach here with an already adjusted PC,
4964 either by GDB (if we're resuming due to GDB's request), or by our
4965 caller, if we just finished handling an internal breakpoint GDB
4966 shouldn't care about. */
4967 pc = get_pc (lwp);
4968
4969 saved_thread = current_thread;
4970 current_thread = thread;
4971
4972 lwp->bp_reinsert = pc;
4973 uninsert_breakpoints_at (pc);
4974 uninsert_fast_tracepoint_jumps_at (pc);
4975
4976 step = single_step (lwp);
4977
4978 current_thread = saved_thread;
4979
4980 linux_resume_one_lwp (lwp, step, 0, NULL);
4981
4982 /* Require next event from this LWP. */
4983 step_over_bkpt = thread->entry.id;
4984 return 1;
4985 }
4986
4987 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4988 start_step_over, if still there, and delete any single-step
4989 breakpoints we've set, on non hardware single-step targets. */
4990
4991 static int
4992 finish_step_over (struct lwp_info *lwp)
4993 {
4994 if (lwp->bp_reinsert != 0)
4995 {
4996 struct thread_info *saved_thread = current_thread;
4997
4998 if (debug_threads)
4999 debug_printf ("Finished step over.\n");
5000
5001 current_thread = get_lwp_thread (lwp);
5002
5003 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
5004 may be no breakpoint to reinsert there by now. */
5005 reinsert_breakpoints_at (lwp->bp_reinsert);
5006 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
5007
5008 lwp->bp_reinsert = 0;
5009
5010 /* Delete any single-step breakpoints. No longer needed. We
5011 don't have to worry about other threads hitting this trap,
5012 and later not being able to explain it, because we were
5013 stepping over a breakpoint, and we hold all threads but
5014 LWP stopped while doing that. */
5015 if (!can_hardware_single_step ())
5016 {
5017 gdb_assert (has_single_step_breakpoints (current_thread));
5018 delete_single_step_breakpoints (current_thread);
5019 }
5020
5021 step_over_bkpt = null_ptid;
5022 current_thread = saved_thread;
5023 return 1;
5024 }
5025 else
5026 return 0;
5027 }
5028
5029 /* If there's a step over in progress, wait until all threads stop
5030 (that is, until the stepping thread finishes its step), and
5031 unsuspend all lwps. The stepping thread ends with its status
5032 pending, which is processed later when we get back to processing
5033 events. */
5034
5035 static void
5036 complete_ongoing_step_over (void)
5037 {
5038 if (!ptid_equal (step_over_bkpt, null_ptid))
5039 {
5040 struct lwp_info *lwp;
5041 int wstat;
5042 int ret;
5043
5044 if (debug_threads)
5045 debug_printf ("detach: step over in progress, finish it first\n");
5046
5047 /* Passing NULL_PTID as filter indicates we want all events to
5048 be left pending. Eventually this returns when there are no
5049 unwaited-for children left. */
5050 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
5051 &wstat, __WALL);
5052 gdb_assert (ret == -1);
5053
5054 lwp = find_lwp_pid (step_over_bkpt);
5055 if (lwp != NULL)
5056 finish_step_over (lwp);
5057 step_over_bkpt = null_ptid;
5058 unsuspend_all_lwps (lwp);
5059 }
5060 }
5061
5062 /* This function is called once per thread. We check the thread's resume
5063 request, which will tell us whether to resume, step, or leave the thread
5064 stopped; and what signal, if any, it should be sent.
5065
5066 For threads which we aren't explicitly told otherwise, we preserve
5067 the stepping flag; this is used for stepping over gdbserver-placed
5068 breakpoints.
5069
5070 If pending_flags was set in any thread, we queue any needed
5071 signals, since we won't actually resume. We already have a pending
5072 event to report, so we don't need to preserve any step requests;
5073 they should be re-issued if necessary. */
5074
5075 static int
5076 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
5077 {
5078 struct thread_info *thread = (struct thread_info *) entry;
5079 struct lwp_info *lwp = get_thread_lwp (thread);
5080 int leave_all_stopped = * (int *) arg;
5081 int leave_pending;
5082
5083 if (lwp->resume == NULL)
5084 return 0;
5085
5086 if (lwp->resume->kind == resume_stop)
5087 {
5088 if (debug_threads)
5089 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
5090
5091 if (!lwp->stopped)
5092 {
5093 if (debug_threads)
5094 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
5095
5096 /* Stop the thread, and wait for the event asynchronously,
5097 through the event loop. */
5098 send_sigstop (lwp);
5099 }
5100 else
5101 {
5102 if (debug_threads)
5103 debug_printf ("already stopped LWP %ld\n",
5104 lwpid_of (thread));
5105
5106 /* The LWP may have been stopped in an internal event that
5107 was not meant to be notified back to GDB (e.g., gdbserver
5108 breakpoint), so we should be reporting a stop event in
5109 this case too. */
5110
5111 /* If the thread already has a pending SIGSTOP, this is a
5112 no-op. Otherwise, something later will presumably resume
5113 the thread and this will cause it to cancel any pending
5114 operation, due to last_resume_kind == resume_stop. If
5115 the thread already has a pending status to report, we
5116 will still report it the next time we wait - see
5117 status_pending_p_callback. */
5118
5119 /* If we already have a pending signal to report, then
5120 there's no need to queue a SIGSTOP, as this means we're
5121 midway through moving the LWP out of the jumppad, and we
5122 will report the pending signal as soon as that is
5123 finished. */
5124 if (lwp->pending_signals_to_report == NULL)
5125 send_sigstop (lwp);
5126 }
5127
5128 /* For stop requests, we're done. */
5129 lwp->resume = NULL;
5130 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5131 return 0;
5132 }
5133
5134 /* If this thread which is about to be resumed has a pending status,
5135 then don't resume it - we can just report the pending status.
5136 Likewise if it is suspended, because e.g., another thread is
5137 stepping past a breakpoint. Make sure to queue any signals that
5138 would otherwise be sent. In all-stop mode, we do this decision
5139 based on if *any* thread has a pending status. If there's a
5140 thread that needs the step-over-breakpoint dance, then don't
5141 resume any other thread but that particular one. */
5142 leave_pending = (lwp->suspended
5143 || lwp->status_pending_p
5144 || leave_all_stopped);
5145
5146 /* If we have a new signal, enqueue the signal. */
5147 if (lwp->resume->sig != 0)
5148 {
5149 siginfo_t info, *info_p;
5150
5151 /* If this is the same signal we were previously stopped by,
5152 make sure to queue its siginfo. */
5153 if (WIFSTOPPED (lwp->last_status)
5154 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5155 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5156 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5157 info_p = &info;
5158 else
5159 info_p = NULL;
5160
5161 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5162 }
5163
5164 if (!leave_pending)
5165 {
5166 if (debug_threads)
5167 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5168
5169 proceed_one_lwp (entry, NULL);
5170 }
5171 else
5172 {
5173 if (debug_threads)
5174 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5175 }
5176
5177 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5178 lwp->resume = NULL;
5179 return 0;
5180 }
5181
5182 static void
5183 linux_resume (struct thread_resume *resume_info, size_t n)
5184 {
5185 struct thread_resume_array array = { resume_info, n };
5186 struct thread_info *need_step_over = NULL;
5187 int any_pending;
5188 int leave_all_stopped;
5189
5190 if (debug_threads)
5191 {
5192 debug_enter ();
5193 debug_printf ("linux_resume:\n");
5194 }
5195
5196 find_inferior (&all_threads, linux_set_resume_request, &array);
5197
5198 /* If there is a thread which would otherwise be resumed, which has
5199 a pending status, then don't resume any threads - we can just
5200 report the pending status. Make sure to queue any signals that
5201 would otherwise be sent. In non-stop mode, we'll apply this
5202 logic to each thread individually. We consume all pending events
5203 before considering to start a step-over (in all-stop). */
5204 any_pending = 0;
5205 if (!non_stop)
5206 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
5207
5208 /* If there is a thread which would otherwise be resumed, which is
5209 stopped at a breakpoint that needs stepping over, then don't
5210 resume any threads - have it step over the breakpoint with all
5211 other threads stopped, then resume all threads again. Make sure
5212 to queue any signals that would otherwise be delivered or
5213 queued. */
5214 if (!any_pending && supports_breakpoints ())
5215 need_step_over
5216 = (struct thread_info *) find_inferior (&all_threads,
5217 need_step_over_p, NULL);
5218
5219 leave_all_stopped = (need_step_over != NULL || any_pending);
5220
5221 if (debug_threads)
5222 {
5223 if (need_step_over != NULL)
5224 debug_printf ("Not resuming all, need step over\n");
5225 else if (any_pending)
5226 debug_printf ("Not resuming, all-stop and found "
5227 "an LWP with pending status\n");
5228 else
5229 debug_printf ("Resuming, no pending status or step over needed\n");
5230 }
5231
5232 /* Even if we're leaving threads stopped, queue all signals we'd
5233 otherwise deliver. */
5234 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5235
5236 if (need_step_over)
5237 start_step_over (get_thread_lwp (need_step_over));
5238
5239 if (debug_threads)
5240 {
5241 debug_printf ("linux_resume done\n");
5242 debug_exit ();
5243 }
5244
5245 /* We may have events that were pending that can/should be sent to
5246 the client now. Trigger a linux_wait call. */
5247 if (target_is_async_p ())
5248 async_file_mark ();
5249 }
5250
5251 /* This function is called once per thread. We check the thread's
5252 last resume request, which will tell us whether to resume, step, or
5253 leave the thread stopped. Any signal the client requested to be
5254 delivered has already been enqueued at this point.
5255
5256 If any thread that GDB wants running is stopped at an internal
5257 breakpoint that needs stepping over, we start a step-over operation
5258 on that particular thread, and leave all others stopped. */
5259
5260 static int
5261 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5262 {
5263 struct thread_info *thread = (struct thread_info *) entry;
5264 struct lwp_info *lwp = get_thread_lwp (thread);
5265 int step;
5266
5267 if (lwp == except)
5268 return 0;
5269
5270 if (debug_threads)
5271 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5272
5273 if (!lwp->stopped)
5274 {
5275 if (debug_threads)
5276 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5277 return 0;
5278 }
5279
5280 if (thread->last_resume_kind == resume_stop
5281 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5282 {
5283 if (debug_threads)
5284 debug_printf (" client wants LWP to remain %ld stopped\n",
5285 lwpid_of (thread));
5286 return 0;
5287 }
5288
5289 if (lwp->status_pending_p)
5290 {
5291 if (debug_threads)
5292 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5293 lwpid_of (thread));
5294 return 0;
5295 }
5296
5297 gdb_assert (lwp->suspended >= 0);
5298
5299 if (lwp->suspended)
5300 {
5301 if (debug_threads)
5302 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5303 return 0;
5304 }
5305
5306 if (thread->last_resume_kind == resume_stop
5307 && lwp->pending_signals_to_report == NULL
5308 && (lwp->collecting_fast_tracepoint
5309 == fast_tpoint_collect_result::not_collecting))
5310 {
5311 /* We haven't reported this LWP as stopped yet (otherwise, the
5312 last_status.kind check above would catch it, and we wouldn't
5313 reach here. This LWP may have been momentarily paused by a
5314 stop_all_lwps call while handling for example, another LWP's
5315 step-over. In that case, the pending expected SIGSTOP signal
5316 that was queued at vCont;t handling time will have already
5317 been consumed by wait_for_sigstop, and so we need to requeue
5318 another one here. Note that if the LWP already has a SIGSTOP
5319 pending, this is a no-op. */
5320
5321 if (debug_threads)
5322 debug_printf ("Client wants LWP %ld to stop. "
5323 "Making sure it has a SIGSTOP pending\n",
5324 lwpid_of (thread));
5325
5326 send_sigstop (lwp);
5327 }
5328
5329 if (thread->last_resume_kind == resume_step)
5330 {
5331 if (debug_threads)
5332 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5333 lwpid_of (thread));
5334
5335 /* If resume_step is requested by GDB, install single-step
5336 breakpoints when the thread is about to be actually resumed if
5337 the single-step breakpoints weren't removed. */
5338 if (can_software_single_step ()
5339 && !has_single_step_breakpoints (thread))
5340 install_software_single_step_breakpoints (lwp);
5341
5342 step = maybe_hw_step (thread);
5343 }
5344 else if (lwp->bp_reinsert != 0)
5345 {
5346 if (debug_threads)
5347 debug_printf (" stepping LWP %ld, reinsert set\n",
5348 lwpid_of (thread));
5349
5350 step = maybe_hw_step (thread);
5351 }
5352 else
5353 step = 0;
5354
5355 linux_resume_one_lwp (lwp, step, 0, NULL);
5356 return 0;
5357 }
5358
5359 static int
5360 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5361 {
5362 struct thread_info *thread = (struct thread_info *) entry;
5363 struct lwp_info *lwp = get_thread_lwp (thread);
5364
5365 if (lwp == except)
5366 return 0;
5367
5368 lwp_suspended_decr (lwp);
5369
5370 return proceed_one_lwp (entry, except);
5371 }
5372
5373 /* When we finish a step-over, set threads running again. If there's
5374 another thread that may need a step-over, now's the time to start
5375 it. Eventually, we'll move all threads past their breakpoints. */
5376
5377 static void
5378 proceed_all_lwps (void)
5379 {
5380 struct thread_info *need_step_over;
5381
5382 /* If there is a thread which would otherwise be resumed, which is
5383 stopped at a breakpoint that needs stepping over, then don't
5384 resume any threads - have it step over the breakpoint with all
5385 other threads stopped, then resume all threads again. */
5386
5387 if (supports_breakpoints ())
5388 {
5389 need_step_over
5390 = (struct thread_info *) find_inferior (&all_threads,
5391 need_step_over_p, NULL);
5392
5393 if (need_step_over != NULL)
5394 {
5395 if (debug_threads)
5396 debug_printf ("proceed_all_lwps: found "
5397 "thread %ld needing a step-over\n",
5398 lwpid_of (need_step_over));
5399
5400 start_step_over (get_thread_lwp (need_step_over));
5401 return;
5402 }
5403 }
5404
5405 if (debug_threads)
5406 debug_printf ("Proceeding, no step-over needed\n");
5407
5408 find_inferior (&all_threads, proceed_one_lwp, NULL);
5409 }
5410
5411 /* Stopped LWPs that the client wanted to be running, that don't have
5412 pending statuses, are set to run again, except for EXCEPT, if not
5413 NULL. This undoes a stop_all_lwps call. */
5414
5415 static void
5416 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5417 {
5418 if (debug_threads)
5419 {
5420 debug_enter ();
5421 if (except)
5422 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5423 lwpid_of (get_lwp_thread (except)));
5424 else
5425 debug_printf ("unstopping all lwps\n");
5426 }
5427
5428 if (unsuspend)
5429 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5430 else
5431 find_inferior (&all_threads, proceed_one_lwp, except);
5432
5433 if (debug_threads)
5434 {
5435 debug_printf ("unstop_all_lwps done\n");
5436 debug_exit ();
5437 }
5438 }
5439
5440
5441 #ifdef HAVE_LINUX_REGSETS
5442
5443 #define use_linux_regsets 1
5444
5445 /* Returns true if REGSET has been disabled. */
5446
5447 static int
5448 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5449 {
5450 return (info->disabled_regsets != NULL
5451 && info->disabled_regsets[regset - info->regsets]);
5452 }
5453
5454 /* Disable REGSET. */
5455
5456 static void
5457 disable_regset (struct regsets_info *info, struct regset_info *regset)
5458 {
5459 int dr_offset;
5460
5461 dr_offset = regset - info->regsets;
5462 if (info->disabled_regsets == NULL)
5463 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5464 info->disabled_regsets[dr_offset] = 1;
5465 }
5466
5467 static int
5468 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5469 struct regcache *regcache)
5470 {
5471 struct regset_info *regset;
5472 int saw_general_regs = 0;
5473 int pid;
5474 struct iovec iov;
5475
5476 pid = lwpid_of (current_thread);
5477 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5478 {
5479 void *buf, *data;
5480 int nt_type, res;
5481
5482 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5483 continue;
5484
5485 buf = xmalloc (regset->size);
5486
5487 nt_type = regset->nt_type;
5488 if (nt_type)
5489 {
5490 iov.iov_base = buf;
5491 iov.iov_len = regset->size;
5492 data = (void *) &iov;
5493 }
5494 else
5495 data = buf;
5496
5497 #ifndef __sparc__
5498 res = ptrace (regset->get_request, pid,
5499 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5500 #else
5501 res = ptrace (regset->get_request, pid, data, nt_type);
5502 #endif
5503 if (res < 0)
5504 {
5505 if (errno == EIO)
5506 {
5507 /* If we get EIO on a regset, do not try it again for
5508 this process mode. */
5509 disable_regset (regsets_info, regset);
5510 }
5511 else if (errno == ENODATA)
5512 {
5513 /* ENODATA may be returned if the regset is currently
5514 not "active". This can happen in normal operation,
5515 so suppress the warning in this case. */
5516 }
5517 else if (errno == ESRCH)
5518 {
5519 /* At this point, ESRCH should mean the process is
5520 already gone, in which case we simply ignore attempts
5521 to read its registers. */
5522 }
5523 else
5524 {
5525 char s[256];
5526 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5527 pid);
5528 perror (s);
5529 }
5530 }
5531 else
5532 {
5533 if (regset->type == GENERAL_REGS)
5534 saw_general_regs = 1;
5535 regset->store_function (regcache, buf);
5536 }
5537 free (buf);
5538 }
5539 if (saw_general_regs)
5540 return 0;
5541 else
5542 return 1;
5543 }
5544
5545 static int
5546 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5547 struct regcache *regcache)
5548 {
5549 struct regset_info *regset;
5550 int saw_general_regs = 0;
5551 int pid;
5552 struct iovec iov;
5553
5554 pid = lwpid_of (current_thread);
5555 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5556 {
5557 void *buf, *data;
5558 int nt_type, res;
5559
5560 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5561 || regset->fill_function == NULL)
5562 continue;
5563
5564 buf = xmalloc (regset->size);
5565
5566 /* First fill the buffer with the current register set contents,
5567 in case there are any items in the kernel's regset that are
5568 not in gdbserver's regcache. */
5569
5570 nt_type = regset->nt_type;
5571 if (nt_type)
5572 {
5573 iov.iov_base = buf;
5574 iov.iov_len = regset->size;
5575 data = (void *) &iov;
5576 }
5577 else
5578 data = buf;
5579
5580 #ifndef __sparc__
5581 res = ptrace (regset->get_request, pid,
5582 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5583 #else
5584 res = ptrace (regset->get_request, pid, data, nt_type);
5585 #endif
5586
5587 if (res == 0)
5588 {
5589 /* Then overlay our cached registers on that. */
5590 regset->fill_function (regcache, buf);
5591
5592 /* Only now do we write the register set. */
5593 #ifndef __sparc__
5594 res = ptrace (regset->set_request, pid,
5595 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5596 #else
5597 res = ptrace (regset->set_request, pid, data, nt_type);
5598 #endif
5599 }
5600
5601 if (res < 0)
5602 {
5603 if (errno == EIO)
5604 {
5605 /* If we get EIO on a regset, do not try it again for
5606 this process mode. */
5607 disable_regset (regsets_info, regset);
5608 }
5609 else if (errno == ESRCH)
5610 {
5611 /* At this point, ESRCH should mean the process is
5612 already gone, in which case we simply ignore attempts
5613 to change its registers. See also the related
5614 comment in linux_resume_one_lwp. */
5615 free (buf);
5616 return 0;
5617 }
5618 else
5619 {
5620 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5621 }
5622 }
5623 else if (regset->type == GENERAL_REGS)
5624 saw_general_regs = 1;
5625 free (buf);
5626 }
5627 if (saw_general_regs)
5628 return 0;
5629 else
5630 return 1;
5631 }
5632
5633 #else /* !HAVE_LINUX_REGSETS */
5634
5635 #define use_linux_regsets 0
5636 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5637 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5638
5639 #endif
5640
5641 /* Return 1 if register REGNO is supported by one of the regset ptrace
5642 calls or 0 if it has to be transferred individually. */
5643
5644 static int
5645 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5646 {
5647 unsigned char mask = 1 << (regno % 8);
5648 size_t index = regno / 8;
5649
5650 return (use_linux_regsets
5651 && (regs_info->regset_bitmap == NULL
5652 || (regs_info->regset_bitmap[index] & mask) != 0));
5653 }
5654
5655 #ifdef HAVE_LINUX_USRREGS
5656
5657 static int
5658 register_addr (const struct usrregs_info *usrregs, int regnum)
5659 {
5660 int addr;
5661
5662 if (regnum < 0 || regnum >= usrregs->num_regs)
5663 error ("Invalid register number %d.", regnum);
5664
5665 addr = usrregs->regmap[regnum];
5666
5667 return addr;
5668 }
5669
5670 /* Fetch one register. */
5671 static void
5672 fetch_register (const struct usrregs_info *usrregs,
5673 struct regcache *regcache, int regno)
5674 {
5675 CORE_ADDR regaddr;
5676 int i, size;
5677 char *buf;
5678 int pid;
5679
5680 if (regno >= usrregs->num_regs)
5681 return;
5682 if ((*the_low_target.cannot_fetch_register) (regno))
5683 return;
5684
5685 regaddr = register_addr (usrregs, regno);
5686 if (regaddr == -1)
5687 return;
5688
5689 size = ((register_size (regcache->tdesc, regno)
5690 + sizeof (PTRACE_XFER_TYPE) - 1)
5691 & -sizeof (PTRACE_XFER_TYPE));
5692 buf = (char *) alloca (size);
5693
5694 pid = lwpid_of (current_thread);
5695 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5696 {
5697 errno = 0;
5698 *(PTRACE_XFER_TYPE *) (buf + i) =
5699 ptrace (PTRACE_PEEKUSER, pid,
5700 /* Coerce to a uintptr_t first to avoid potential gcc warning
5701 of coercing an 8 byte integer to a 4 byte pointer. */
5702 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5703 regaddr += sizeof (PTRACE_XFER_TYPE);
5704 if (errno != 0)
5705 error ("reading register %d: %s", regno, strerror (errno));
5706 }
5707
5708 if (the_low_target.supply_ptrace_register)
5709 the_low_target.supply_ptrace_register (regcache, regno, buf);
5710 else
5711 supply_register (regcache, regno, buf);
5712 }
5713
5714 /* Store one register. */
5715 static void
5716 store_register (const struct usrregs_info *usrregs,
5717 struct regcache *regcache, int regno)
5718 {
5719 CORE_ADDR regaddr;
5720 int i, size;
5721 char *buf;
5722 int pid;
5723
5724 if (regno >= usrregs->num_regs)
5725 return;
5726 if ((*the_low_target.cannot_store_register) (regno))
5727 return;
5728
5729 regaddr = register_addr (usrregs, regno);
5730 if (regaddr == -1)
5731 return;
5732
5733 size = ((register_size (regcache->tdesc, regno)
5734 + sizeof (PTRACE_XFER_TYPE) - 1)
5735 & -sizeof (PTRACE_XFER_TYPE));
5736 buf = (char *) alloca (size);
5737 memset (buf, 0, size);
5738
5739 if (the_low_target.collect_ptrace_register)
5740 the_low_target.collect_ptrace_register (regcache, regno, buf);
5741 else
5742 collect_register (regcache, regno, buf);
5743
5744 pid = lwpid_of (current_thread);
5745 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5746 {
5747 errno = 0;
5748 ptrace (PTRACE_POKEUSER, pid,
5749 /* Coerce to a uintptr_t first to avoid potential gcc warning
5750 about coercing an 8 byte integer to a 4 byte pointer. */
5751 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5752 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5753 if (errno != 0)
5754 {
5755 /* At this point, ESRCH should mean the process is
5756 already gone, in which case we simply ignore attempts
5757 to change its registers. See also the related
5758 comment in linux_resume_one_lwp. */
5759 if (errno == ESRCH)
5760 return;
5761
5762 if ((*the_low_target.cannot_store_register) (regno) == 0)
5763 error ("writing register %d: %s", regno, strerror (errno));
5764 }
5765 regaddr += sizeof (PTRACE_XFER_TYPE);
5766 }
5767 }
5768
5769 /* Fetch all registers, or just one, from the child process.
5770 If REGNO is -1, do this for all registers, skipping any that are
5771 assumed to have been retrieved by regsets_fetch_inferior_registers,
5772 unless ALL is non-zero.
5773 Otherwise, REGNO specifies which register (so we can save time). */
5774 static void
5775 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5776 struct regcache *regcache, int regno, int all)
5777 {
5778 struct usrregs_info *usr = regs_info->usrregs;
5779
5780 if (regno == -1)
5781 {
5782 for (regno = 0; regno < usr->num_regs; regno++)
5783 if (all || !linux_register_in_regsets (regs_info, regno))
5784 fetch_register (usr, regcache, regno);
5785 }
5786 else
5787 fetch_register (usr, regcache, regno);
5788 }
5789
5790 /* Store our register values back into the inferior.
5791 If REGNO is -1, do this for all registers, skipping any that are
5792 assumed to have been saved by regsets_store_inferior_registers,
5793 unless ALL is non-zero.
5794 Otherwise, REGNO specifies which register (so we can save time). */
5795 static void
5796 usr_store_inferior_registers (const struct regs_info *regs_info,
5797 struct regcache *regcache, int regno, int all)
5798 {
5799 struct usrregs_info *usr = regs_info->usrregs;
5800
5801 if (regno == -1)
5802 {
5803 for (regno = 0; regno < usr->num_regs; regno++)
5804 if (all || !linux_register_in_regsets (regs_info, regno))
5805 store_register (usr, regcache, regno);
5806 }
5807 else
5808 store_register (usr, regcache, regno);
5809 }
5810
5811 #else /* !HAVE_LINUX_USRREGS */
5812
5813 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5814 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5815
5816 #endif
5817
5818
5819 static void
5820 linux_fetch_registers (struct regcache *regcache, int regno)
5821 {
5822 int use_regsets;
5823 int all = 0;
5824 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5825
5826 if (regno == -1)
5827 {
5828 if (the_low_target.fetch_register != NULL
5829 && regs_info->usrregs != NULL)
5830 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5831 (*the_low_target.fetch_register) (regcache, regno);
5832
5833 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5834 if (regs_info->usrregs != NULL)
5835 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5836 }
5837 else
5838 {
5839 if (the_low_target.fetch_register != NULL
5840 && (*the_low_target.fetch_register) (regcache, regno))
5841 return;
5842
5843 use_regsets = linux_register_in_regsets (regs_info, regno);
5844 if (use_regsets)
5845 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5846 regcache);
5847 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5848 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5849 }
5850 }
5851
5852 static void
5853 linux_store_registers (struct regcache *regcache, int regno)
5854 {
5855 int use_regsets;
5856 int all = 0;
5857 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5858
5859 if (regno == -1)
5860 {
5861 all = regsets_store_inferior_registers (regs_info->regsets_info,
5862 regcache);
5863 if (regs_info->usrregs != NULL)
5864 usr_store_inferior_registers (regs_info, regcache, regno, all);
5865 }
5866 else
5867 {
5868 use_regsets = linux_register_in_regsets (regs_info, regno);
5869 if (use_regsets)
5870 all = regsets_store_inferior_registers (regs_info->regsets_info,
5871 regcache);
5872 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5873 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5874 }
5875 }
5876
5877
5878 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5879 to debugger memory starting at MYADDR. */
5880
5881 static int
5882 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5883 {
5884 int pid = lwpid_of (current_thread);
5885 PTRACE_XFER_TYPE *buffer;
5886 CORE_ADDR addr;
5887 int count;
5888 char filename[64];
5889 int i;
5890 int ret;
5891 int fd;
5892
5893 /* Try using /proc. Don't bother for one word. */
5894 if (len >= 3 * sizeof (long))
5895 {
5896 int bytes;
5897
5898 /* We could keep this file open and cache it - possibly one per
5899 thread. That requires some juggling, but is even faster. */
5900 sprintf (filename, "/proc/%d/mem", pid);
5901 fd = open (filename, O_RDONLY | O_LARGEFILE);
5902 if (fd == -1)
5903 goto no_proc;
5904
5905 /* If pread64 is available, use it. It's faster if the kernel
5906 supports it (only one syscall), and it's 64-bit safe even on
5907 32-bit platforms (for instance, SPARC debugging a SPARC64
5908 application). */
5909 #ifdef HAVE_PREAD64
5910 bytes = pread64 (fd, myaddr, len, memaddr);
5911 #else
5912 bytes = -1;
5913 if (lseek (fd, memaddr, SEEK_SET) != -1)
5914 bytes = read (fd, myaddr, len);
5915 #endif
5916
5917 close (fd);
5918 if (bytes == len)
5919 return 0;
5920
5921 /* Some data was read, we'll try to get the rest with ptrace. */
5922 if (bytes > 0)
5923 {
5924 memaddr += bytes;
5925 myaddr += bytes;
5926 len -= bytes;
5927 }
5928 }
5929
5930 no_proc:
5931 /* Round starting address down to longword boundary. */
5932 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5933 /* Round ending address up; get number of longwords that makes. */
5934 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5935 / sizeof (PTRACE_XFER_TYPE));
5936 /* Allocate buffer of that many longwords. */
5937 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5938
5939 /* Read all the longwords */
5940 errno = 0;
5941 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5942 {
5943 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5944 about coercing an 8 byte integer to a 4 byte pointer. */
5945 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5946 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5947 (PTRACE_TYPE_ARG4) 0);
5948 if (errno)
5949 break;
5950 }
5951 ret = errno;
5952
5953 /* Copy appropriate bytes out of the buffer. */
5954 if (i > 0)
5955 {
5956 i *= sizeof (PTRACE_XFER_TYPE);
5957 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5958 memcpy (myaddr,
5959 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5960 i < len ? i : len);
5961 }
5962
5963 return ret;
5964 }
5965
5966 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5967 memory at MEMADDR. On failure (cannot write to the inferior)
5968 returns the value of errno. Always succeeds if LEN is zero. */
5969
5970 static int
5971 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5972 {
5973 int i;
5974 /* Round starting address down to longword boundary. */
5975 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5976 /* Round ending address up; get number of longwords that makes. */
5977 int count
5978 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5979 / sizeof (PTRACE_XFER_TYPE);
5980
5981 /* Allocate buffer of that many longwords. */
5982 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5983
5984 int pid = lwpid_of (current_thread);
5985
5986 if (len == 0)
5987 {
5988 /* Zero length write always succeeds. */
5989 return 0;
5990 }
5991
5992 if (debug_threads)
5993 {
5994 /* Dump up to four bytes. */
5995 char str[4 * 2 + 1];
5996 char *p = str;
5997 int dump = len < 4 ? len : 4;
5998
5999 for (i = 0; i < dump; i++)
6000 {
6001 sprintf (p, "%02x", myaddr[i]);
6002 p += 2;
6003 }
6004 *p = '\0';
6005
6006 debug_printf ("Writing %s to 0x%08lx in process %d\n",
6007 str, (long) memaddr, pid);
6008 }
6009
6010 /* Fill start and end extra bytes of buffer with existing memory data. */
6011
6012 errno = 0;
6013 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
6014 about coercing an 8 byte integer to a 4 byte pointer. */
6015 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
6016 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
6017 (PTRACE_TYPE_ARG4) 0);
6018 if (errno)
6019 return errno;
6020
6021 if (count > 1)
6022 {
6023 errno = 0;
6024 buffer[count - 1]
6025 = ptrace (PTRACE_PEEKTEXT, pid,
6026 /* Coerce to a uintptr_t first to avoid potential gcc warning
6027 about coercing an 8 byte integer to a 4 byte pointer. */
6028 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
6029 * sizeof (PTRACE_XFER_TYPE)),
6030 (PTRACE_TYPE_ARG4) 0);
6031 if (errno)
6032 return errno;
6033 }
6034
6035 /* Copy data to be written over corresponding part of buffer. */
6036
6037 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
6038 myaddr, len);
6039
6040 /* Write the entire buffer. */
6041
6042 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
6043 {
6044 errno = 0;
6045 ptrace (PTRACE_POKETEXT, pid,
6046 /* Coerce to a uintptr_t first to avoid potential gcc warning
6047 about coercing an 8 byte integer to a 4 byte pointer. */
6048 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
6049 (PTRACE_TYPE_ARG4) buffer[i]);
6050 if (errno)
6051 return errno;
6052 }
6053
6054 return 0;
6055 }
6056
6057 static void
6058 linux_look_up_symbols (void)
6059 {
6060 #ifdef USE_THREAD_DB
6061 struct process_info *proc = current_process ();
6062
6063 if (proc->priv->thread_db != NULL)
6064 return;
6065
6066 thread_db_init ();
6067 #endif
6068 }
6069
6070 static void
6071 linux_request_interrupt (void)
6072 {
6073 /* Send a SIGINT to the process group. This acts just like the user
6074 typed a ^C on the controlling terminal. */
6075 kill (-signal_pid, SIGINT);
6076 }
6077
6078 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
6079 to debugger memory starting at MYADDR. */
6080
6081 static int
6082 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
6083 {
6084 char filename[PATH_MAX];
6085 int fd, n;
6086 int pid = lwpid_of (current_thread);
6087
6088 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6089
6090 fd = open (filename, O_RDONLY);
6091 if (fd < 0)
6092 return -1;
6093
6094 if (offset != (CORE_ADDR) 0
6095 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6096 n = -1;
6097 else
6098 n = read (fd, myaddr, len);
6099
6100 close (fd);
6101
6102 return n;
6103 }
6104
6105 /* These breakpoint and watchpoint related wrapper functions simply
6106 pass on the function call if the target has registered a
6107 corresponding function. */
6108
6109 static int
6110 linux_supports_z_point_type (char z_type)
6111 {
6112 return (the_low_target.supports_z_point_type != NULL
6113 && the_low_target.supports_z_point_type (z_type));
6114 }
6115
6116 static int
6117 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
6118 int size, struct raw_breakpoint *bp)
6119 {
6120 if (type == raw_bkpt_type_sw)
6121 return insert_memory_breakpoint (bp);
6122 else if (the_low_target.insert_point != NULL)
6123 return the_low_target.insert_point (type, addr, size, bp);
6124 else
6125 /* Unsupported (see target.h). */
6126 return 1;
6127 }
6128
6129 static int
6130 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
6131 int size, struct raw_breakpoint *bp)
6132 {
6133 if (type == raw_bkpt_type_sw)
6134 return remove_memory_breakpoint (bp);
6135 else if (the_low_target.remove_point != NULL)
6136 return the_low_target.remove_point (type, addr, size, bp);
6137 else
6138 /* Unsupported (see target.h). */
6139 return 1;
6140 }
6141
6142 /* Implement the to_stopped_by_sw_breakpoint target_ops
6143 method. */
6144
6145 static int
6146 linux_stopped_by_sw_breakpoint (void)
6147 {
6148 struct lwp_info *lwp = get_thread_lwp (current_thread);
6149
6150 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6151 }
6152
6153 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6154 method. */
6155
6156 static int
6157 linux_supports_stopped_by_sw_breakpoint (void)
6158 {
6159 return USE_SIGTRAP_SIGINFO;
6160 }
6161
6162 /* Implement the to_stopped_by_hw_breakpoint target_ops
6163 method. */
6164
6165 static int
6166 linux_stopped_by_hw_breakpoint (void)
6167 {
6168 struct lwp_info *lwp = get_thread_lwp (current_thread);
6169
6170 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6171 }
6172
6173 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6174 method. */
6175
6176 static int
6177 linux_supports_stopped_by_hw_breakpoint (void)
6178 {
6179 return USE_SIGTRAP_SIGINFO;
6180 }
6181
6182 /* Implement the supports_hardware_single_step target_ops method. */
6183
6184 static int
6185 linux_supports_hardware_single_step (void)
6186 {
6187 return can_hardware_single_step ();
6188 }
6189
6190 static int
6191 linux_supports_software_single_step (void)
6192 {
6193 return can_software_single_step ();
6194 }
6195
6196 static int
6197 linux_stopped_by_watchpoint (void)
6198 {
6199 struct lwp_info *lwp = get_thread_lwp (current_thread);
6200
6201 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6202 }
6203
6204 static CORE_ADDR
6205 linux_stopped_data_address (void)
6206 {
6207 struct lwp_info *lwp = get_thread_lwp (current_thread);
6208
6209 return lwp->stopped_data_address;
6210 }
6211
6212 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6213 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6214 && defined(PT_TEXT_END_ADDR)
6215
6216 /* This is only used for targets that define PT_TEXT_ADDR,
6217 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6218 the target has different ways of acquiring this information, like
6219 loadmaps. */
6220
6221 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6222 to tell gdb about. */
6223
6224 static int
6225 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6226 {
6227 unsigned long text, text_end, data;
6228 int pid = lwpid_of (current_thread);
6229
6230 errno = 0;
6231
6232 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6233 (PTRACE_TYPE_ARG4) 0);
6234 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6235 (PTRACE_TYPE_ARG4) 0);
6236 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6237 (PTRACE_TYPE_ARG4) 0);
6238
6239 if (errno == 0)
6240 {
6241 /* Both text and data offsets produced at compile-time (and so
6242 used by gdb) are relative to the beginning of the program,
6243 with the data segment immediately following the text segment.
6244 However, the actual runtime layout in memory may put the data
6245 somewhere else, so when we send gdb a data base-address, we
6246 use the real data base address and subtract the compile-time
6247 data base-address from it (which is just the length of the
6248 text segment). BSS immediately follows data in both
6249 cases. */
6250 *text_p = text;
6251 *data_p = data - (text_end - text);
6252
6253 return 1;
6254 }
6255 return 0;
6256 }
6257 #endif
6258
6259 static int
6260 linux_qxfer_osdata (const char *annex,
6261 unsigned char *readbuf, unsigned const char *writebuf,
6262 CORE_ADDR offset, int len)
6263 {
6264 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6265 }
6266
6267 /* Convert a native/host siginfo object, into/from the siginfo in the
6268 layout of the inferiors' architecture. */
6269
6270 static void
6271 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6272 {
6273 int done = 0;
6274
6275 if (the_low_target.siginfo_fixup != NULL)
6276 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6277
6278 /* If there was no callback, or the callback didn't do anything,
6279 then just do a straight memcpy. */
6280 if (!done)
6281 {
6282 if (direction == 1)
6283 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6284 else
6285 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6286 }
6287 }
6288
6289 static int
6290 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6291 unsigned const char *writebuf, CORE_ADDR offset, int len)
6292 {
6293 int pid;
6294 siginfo_t siginfo;
6295 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6296
6297 if (current_thread == NULL)
6298 return -1;
6299
6300 pid = lwpid_of (current_thread);
6301
6302 if (debug_threads)
6303 debug_printf ("%s siginfo for lwp %d.\n",
6304 readbuf != NULL ? "Reading" : "Writing",
6305 pid);
6306
6307 if (offset >= sizeof (siginfo))
6308 return -1;
6309
6310 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6311 return -1;
6312
6313 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6314 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6315 inferior with a 64-bit GDBSERVER should look the same as debugging it
6316 with a 32-bit GDBSERVER, we need to convert it. */
6317 siginfo_fixup (&siginfo, inf_siginfo, 0);
6318
6319 if (offset + len > sizeof (siginfo))
6320 len = sizeof (siginfo) - offset;
6321
6322 if (readbuf != NULL)
6323 memcpy (readbuf, inf_siginfo + offset, len);
6324 else
6325 {
6326 memcpy (inf_siginfo + offset, writebuf, len);
6327
6328 /* Convert back to ptrace layout before flushing it out. */
6329 siginfo_fixup (&siginfo, inf_siginfo, 1);
6330
6331 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6332 return -1;
6333 }
6334
6335 return len;
6336 }
6337
6338 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6339 so we notice when children change state; as the handler for the
6340 sigsuspend in my_waitpid. */
6341
6342 static void
6343 sigchld_handler (int signo)
6344 {
6345 int old_errno = errno;
6346
6347 if (debug_threads)
6348 {
6349 do
6350 {
6351 /* fprintf is not async-signal-safe, so call write
6352 directly. */
6353 if (write (2, "sigchld_handler\n",
6354 sizeof ("sigchld_handler\n") - 1) < 0)
6355 break; /* just ignore */
6356 } while (0);
6357 }
6358
6359 if (target_is_async_p ())
6360 async_file_mark (); /* trigger a linux_wait */
6361
6362 errno = old_errno;
6363 }
6364
6365 static int
6366 linux_supports_non_stop (void)
6367 {
6368 return 1;
6369 }
6370
6371 static int
6372 linux_async (int enable)
6373 {
6374 int previous = target_is_async_p ();
6375
6376 if (debug_threads)
6377 debug_printf ("linux_async (%d), previous=%d\n",
6378 enable, previous);
6379
6380 if (previous != enable)
6381 {
6382 sigset_t mask;
6383 sigemptyset (&mask);
6384 sigaddset (&mask, SIGCHLD);
6385
6386 sigprocmask (SIG_BLOCK, &mask, NULL);
6387
6388 if (enable)
6389 {
6390 if (pipe (linux_event_pipe) == -1)
6391 {
6392 linux_event_pipe[0] = -1;
6393 linux_event_pipe[1] = -1;
6394 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6395
6396 warning ("creating event pipe failed.");
6397 return previous;
6398 }
6399
6400 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6401 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6402
6403 /* Register the event loop handler. */
6404 add_file_handler (linux_event_pipe[0],
6405 handle_target_event, NULL);
6406
6407 /* Always trigger a linux_wait. */
6408 async_file_mark ();
6409 }
6410 else
6411 {
6412 delete_file_handler (linux_event_pipe[0]);
6413
6414 close (linux_event_pipe[0]);
6415 close (linux_event_pipe[1]);
6416 linux_event_pipe[0] = -1;
6417 linux_event_pipe[1] = -1;
6418 }
6419
6420 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6421 }
6422
6423 return previous;
6424 }
6425
6426 static int
6427 linux_start_non_stop (int nonstop)
6428 {
6429 /* Register or unregister from event-loop accordingly. */
6430 linux_async (nonstop);
6431
6432 if (target_is_async_p () != (nonstop != 0))
6433 return -1;
6434
6435 return 0;
6436 }
6437
6438 static int
6439 linux_supports_multi_process (void)
6440 {
6441 return 1;
6442 }
6443
6444 /* Check if fork events are supported. */
6445
6446 static int
6447 linux_supports_fork_events (void)
6448 {
6449 return linux_supports_tracefork ();
6450 }
6451
6452 /* Check if vfork events are supported. */
6453
6454 static int
6455 linux_supports_vfork_events (void)
6456 {
6457 return linux_supports_tracefork ();
6458 }
6459
6460 /* Check if exec events are supported. */
6461
6462 static int
6463 linux_supports_exec_events (void)
6464 {
6465 return linux_supports_traceexec ();
6466 }
6467
6468 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
6469 options for the specified lwp. */
6470
6471 static int
6472 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
6473 void *args)
6474 {
6475 struct thread_info *thread = (struct thread_info *) entry;
6476 struct lwp_info *lwp = get_thread_lwp (thread);
6477
6478 if (!lwp->stopped)
6479 {
6480 /* Stop the lwp so we can modify its ptrace options. */
6481 lwp->must_set_ptrace_flags = 1;
6482 linux_stop_lwp (lwp);
6483 }
6484 else
6485 {
6486 /* Already stopped; go ahead and set the ptrace options. */
6487 struct process_info *proc = find_process_pid (pid_of (thread));
6488 int options = linux_low_ptrace_options (proc->attached);
6489
6490 linux_enable_event_reporting (lwpid_of (thread), options);
6491 lwp->must_set_ptrace_flags = 0;
6492 }
6493
6494 return 0;
6495 }
6496
6497 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6498 ptrace flags for all inferiors. This is in case the new GDB connection
6499 doesn't support the same set of events that the previous one did. */
6500
6501 static void
6502 linux_handle_new_gdb_connection (void)
6503 {
6504 pid_t pid;
6505
6506 /* Request that all the lwps reset their ptrace options. */
6507 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6508 }
6509
6510 static int
6511 linux_supports_disable_randomization (void)
6512 {
6513 #ifdef HAVE_PERSONALITY
6514 return 1;
6515 #else
6516 return 0;
6517 #endif
6518 }
6519
6520 static int
6521 linux_supports_agent (void)
6522 {
6523 return 1;
6524 }
6525
6526 static int
6527 linux_supports_range_stepping (void)
6528 {
6529 if (can_software_single_step ())
6530 return 1;
6531 if (*the_low_target.supports_range_stepping == NULL)
6532 return 0;
6533
6534 return (*the_low_target.supports_range_stepping) ();
6535 }
6536
6537 /* Enumerate spufs IDs for process PID. */
6538 static int
6539 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6540 {
6541 int pos = 0;
6542 int written = 0;
6543 char path[128];
6544 DIR *dir;
6545 struct dirent *entry;
6546
6547 sprintf (path, "/proc/%ld/fd", pid);
6548 dir = opendir (path);
6549 if (!dir)
6550 return -1;
6551
6552 rewinddir (dir);
6553 while ((entry = readdir (dir)) != NULL)
6554 {
6555 struct stat st;
6556 struct statfs stfs;
6557 int fd;
6558
6559 fd = atoi (entry->d_name);
6560 if (!fd)
6561 continue;
6562
6563 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6564 if (stat (path, &st) != 0)
6565 continue;
6566 if (!S_ISDIR (st.st_mode))
6567 continue;
6568
6569 if (statfs (path, &stfs) != 0)
6570 continue;
6571 if (stfs.f_type != SPUFS_MAGIC)
6572 continue;
6573
6574 if (pos >= offset && pos + 4 <= offset + len)
6575 {
6576 *(unsigned int *)(buf + pos - offset) = fd;
6577 written += 4;
6578 }
6579 pos += 4;
6580 }
6581
6582 closedir (dir);
6583 return written;
6584 }
6585
6586 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6587 object type, using the /proc file system. */
6588 static int
6589 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6590 unsigned const char *writebuf,
6591 CORE_ADDR offset, int len)
6592 {
6593 long pid = lwpid_of (current_thread);
6594 char buf[128];
6595 int fd = 0;
6596 int ret = 0;
6597
6598 if (!writebuf && !readbuf)
6599 return -1;
6600
6601 if (!*annex)
6602 {
6603 if (!readbuf)
6604 return -1;
6605 else
6606 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6607 }
6608
6609 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6610 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6611 if (fd <= 0)
6612 return -1;
6613
6614 if (offset != 0
6615 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6616 {
6617 close (fd);
6618 return 0;
6619 }
6620
6621 if (writebuf)
6622 ret = write (fd, writebuf, (size_t) len);
6623 else
6624 ret = read (fd, readbuf, (size_t) len);
6625
6626 close (fd);
6627 return ret;
6628 }
6629
6630 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6631 struct target_loadseg
6632 {
6633 /* Core address to which the segment is mapped. */
6634 Elf32_Addr addr;
6635 /* VMA recorded in the program header. */
6636 Elf32_Addr p_vaddr;
6637 /* Size of this segment in memory. */
6638 Elf32_Word p_memsz;
6639 };
6640
6641 # if defined PT_GETDSBT
6642 struct target_loadmap
6643 {
6644 /* Protocol version number, must be zero. */
6645 Elf32_Word version;
6646 /* Pointer to the DSBT table, its size, and the DSBT index. */
6647 unsigned *dsbt_table;
6648 unsigned dsbt_size, dsbt_index;
6649 /* Number of segments in this map. */
6650 Elf32_Word nsegs;
6651 /* The actual memory map. */
6652 struct target_loadseg segs[/*nsegs*/];
6653 };
6654 # define LINUX_LOADMAP PT_GETDSBT
6655 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6656 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6657 # else
6658 struct target_loadmap
6659 {
6660 /* Protocol version number, must be zero. */
6661 Elf32_Half version;
6662 /* Number of segments in this map. */
6663 Elf32_Half nsegs;
6664 /* The actual memory map. */
6665 struct target_loadseg segs[/*nsegs*/];
6666 };
6667 # define LINUX_LOADMAP PTRACE_GETFDPIC
6668 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6669 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6670 # endif
6671
6672 static int
6673 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6674 unsigned char *myaddr, unsigned int len)
6675 {
6676 int pid = lwpid_of (current_thread);
6677 int addr = -1;
6678 struct target_loadmap *data = NULL;
6679 unsigned int actual_length, copy_length;
6680
6681 if (strcmp (annex, "exec") == 0)
6682 addr = (int) LINUX_LOADMAP_EXEC;
6683 else if (strcmp (annex, "interp") == 0)
6684 addr = (int) LINUX_LOADMAP_INTERP;
6685 else
6686 return -1;
6687
6688 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6689 return -1;
6690
6691 if (data == NULL)
6692 return -1;
6693
6694 actual_length = sizeof (struct target_loadmap)
6695 + sizeof (struct target_loadseg) * data->nsegs;
6696
6697 if (offset < 0 || offset > actual_length)
6698 return -1;
6699
6700 copy_length = actual_length - offset < len ? actual_length - offset : len;
6701 memcpy (myaddr, (char *) data + offset, copy_length);
6702 return copy_length;
6703 }
6704 #else
6705 # define linux_read_loadmap NULL
6706 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6707
6708 static void
6709 linux_process_qsupported (char **features, int count)
6710 {
6711 if (the_low_target.process_qsupported != NULL)
6712 the_low_target.process_qsupported (features, count);
6713 }
6714
6715 static int
6716 linux_supports_catch_syscall (void)
6717 {
6718 return (the_low_target.get_syscall_trapinfo != NULL
6719 && linux_supports_tracesysgood ());
6720 }
6721
6722 static int
6723 linux_get_ipa_tdesc_idx (void)
6724 {
6725 if (the_low_target.get_ipa_tdesc_idx == NULL)
6726 return 0;
6727
6728 return (*the_low_target.get_ipa_tdesc_idx) ();
6729 }
6730
6731 static int
6732 linux_supports_tracepoints (void)
6733 {
6734 if (*the_low_target.supports_tracepoints == NULL)
6735 return 0;
6736
6737 return (*the_low_target.supports_tracepoints) ();
6738 }
6739
6740 static CORE_ADDR
6741 linux_read_pc (struct regcache *regcache)
6742 {
6743 if (the_low_target.get_pc == NULL)
6744 return 0;
6745
6746 return (*the_low_target.get_pc) (regcache);
6747 }
6748
6749 static void
6750 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6751 {
6752 gdb_assert (the_low_target.set_pc != NULL);
6753
6754 (*the_low_target.set_pc) (regcache, pc);
6755 }
6756
6757 static int
6758 linux_thread_stopped (struct thread_info *thread)
6759 {
6760 return get_thread_lwp (thread)->stopped;
6761 }
6762
6763 /* This exposes stop-all-threads functionality to other modules. */
6764
6765 static void
6766 linux_pause_all (int freeze)
6767 {
6768 stop_all_lwps (freeze, NULL);
6769 }
6770
6771 /* This exposes unstop-all-threads functionality to other gdbserver
6772 modules. */
6773
6774 static void
6775 linux_unpause_all (int unfreeze)
6776 {
6777 unstop_all_lwps (unfreeze, NULL);
6778 }
6779
6780 static int
6781 linux_prepare_to_access_memory (void)
6782 {
6783 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6784 running LWP. */
6785 if (non_stop)
6786 linux_pause_all (1);
6787 return 0;
6788 }
6789
6790 static void
6791 linux_done_accessing_memory (void)
6792 {
6793 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6794 running LWP. */
6795 if (non_stop)
6796 linux_unpause_all (1);
6797 }
6798
6799 static int
6800 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6801 CORE_ADDR collector,
6802 CORE_ADDR lockaddr,
6803 ULONGEST orig_size,
6804 CORE_ADDR *jump_entry,
6805 CORE_ADDR *trampoline,
6806 ULONGEST *trampoline_size,
6807 unsigned char *jjump_pad_insn,
6808 ULONGEST *jjump_pad_insn_size,
6809 CORE_ADDR *adjusted_insn_addr,
6810 CORE_ADDR *adjusted_insn_addr_end,
6811 char *err)
6812 {
6813 return (*the_low_target.install_fast_tracepoint_jump_pad)
6814 (tpoint, tpaddr, collector, lockaddr, orig_size,
6815 jump_entry, trampoline, trampoline_size,
6816 jjump_pad_insn, jjump_pad_insn_size,
6817 adjusted_insn_addr, adjusted_insn_addr_end,
6818 err);
6819 }
6820
6821 static struct emit_ops *
6822 linux_emit_ops (void)
6823 {
6824 if (the_low_target.emit_ops != NULL)
6825 return (*the_low_target.emit_ops) ();
6826 else
6827 return NULL;
6828 }
6829
6830 static int
6831 linux_get_min_fast_tracepoint_insn_len (void)
6832 {
6833 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6834 }
6835
6836 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6837
6838 static int
6839 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6840 CORE_ADDR *phdr_memaddr, int *num_phdr)
6841 {
6842 char filename[PATH_MAX];
6843 int fd;
6844 const int auxv_size = is_elf64
6845 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6846 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6847
6848 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6849
6850 fd = open (filename, O_RDONLY);
6851 if (fd < 0)
6852 return 1;
6853
6854 *phdr_memaddr = 0;
6855 *num_phdr = 0;
6856 while (read (fd, buf, auxv_size) == auxv_size
6857 && (*phdr_memaddr == 0 || *num_phdr == 0))
6858 {
6859 if (is_elf64)
6860 {
6861 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6862
6863 switch (aux->a_type)
6864 {
6865 case AT_PHDR:
6866 *phdr_memaddr = aux->a_un.a_val;
6867 break;
6868 case AT_PHNUM:
6869 *num_phdr = aux->a_un.a_val;
6870 break;
6871 }
6872 }
6873 else
6874 {
6875 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6876
6877 switch (aux->a_type)
6878 {
6879 case AT_PHDR:
6880 *phdr_memaddr = aux->a_un.a_val;
6881 break;
6882 case AT_PHNUM:
6883 *num_phdr = aux->a_un.a_val;
6884 break;
6885 }
6886 }
6887 }
6888
6889 close (fd);
6890
6891 if (*phdr_memaddr == 0 || *num_phdr == 0)
6892 {
6893 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6894 "phdr_memaddr = %ld, phdr_num = %d",
6895 (long) *phdr_memaddr, *num_phdr);
6896 return 2;
6897 }
6898
6899 return 0;
6900 }
6901
6902 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6903
6904 static CORE_ADDR
6905 get_dynamic (const int pid, const int is_elf64)
6906 {
6907 CORE_ADDR phdr_memaddr, relocation;
6908 int num_phdr, i;
6909 unsigned char *phdr_buf;
6910 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6911
6912 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6913 return 0;
6914
6915 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6916 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6917
6918 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6919 return 0;
6920
6921 /* Compute relocation: it is expected to be 0 for "regular" executables,
6922 non-zero for PIE ones. */
6923 relocation = -1;
6924 for (i = 0; relocation == -1 && i < num_phdr; i++)
6925 if (is_elf64)
6926 {
6927 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6928
6929 if (p->p_type == PT_PHDR)
6930 relocation = phdr_memaddr - p->p_vaddr;
6931 }
6932 else
6933 {
6934 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6935
6936 if (p->p_type == PT_PHDR)
6937 relocation = phdr_memaddr - p->p_vaddr;
6938 }
6939
6940 if (relocation == -1)
6941 {
6942 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6943 any real world executables, including PIE executables, have always
6944 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6945 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6946 or present DT_DEBUG anyway (fpc binaries are statically linked).
6947
6948 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6949
6950 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6951
6952 return 0;
6953 }
6954
6955 for (i = 0; i < num_phdr; i++)
6956 {
6957 if (is_elf64)
6958 {
6959 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6960
6961 if (p->p_type == PT_DYNAMIC)
6962 return p->p_vaddr + relocation;
6963 }
6964 else
6965 {
6966 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6967
6968 if (p->p_type == PT_DYNAMIC)
6969 return p->p_vaddr + relocation;
6970 }
6971 }
6972
6973 return 0;
6974 }
6975
6976 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6977 can be 0 if the inferior does not yet have the library list initialized.
6978 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6979 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6980
6981 static CORE_ADDR
6982 get_r_debug (const int pid, const int is_elf64)
6983 {
6984 CORE_ADDR dynamic_memaddr;
6985 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6986 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6987 CORE_ADDR map = -1;
6988
6989 dynamic_memaddr = get_dynamic (pid, is_elf64);
6990 if (dynamic_memaddr == 0)
6991 return map;
6992
6993 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6994 {
6995 if (is_elf64)
6996 {
6997 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6998 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6999 union
7000 {
7001 Elf64_Xword map;
7002 unsigned char buf[sizeof (Elf64_Xword)];
7003 }
7004 rld_map;
7005 #endif
7006 #ifdef DT_MIPS_RLD_MAP
7007 if (dyn->d_tag == DT_MIPS_RLD_MAP)
7008 {
7009 if (linux_read_memory (dyn->d_un.d_val,
7010 rld_map.buf, sizeof (rld_map.buf)) == 0)
7011 return rld_map.map;
7012 else
7013 break;
7014 }
7015 #endif /* DT_MIPS_RLD_MAP */
7016 #ifdef DT_MIPS_RLD_MAP_REL
7017 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
7018 {
7019 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
7020 rld_map.buf, sizeof (rld_map.buf)) == 0)
7021 return rld_map.map;
7022 else
7023 break;
7024 }
7025 #endif /* DT_MIPS_RLD_MAP_REL */
7026
7027 if (dyn->d_tag == DT_DEBUG && map == -1)
7028 map = dyn->d_un.d_val;
7029
7030 if (dyn->d_tag == DT_NULL)
7031 break;
7032 }
7033 else
7034 {
7035 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
7036 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
7037 union
7038 {
7039 Elf32_Word map;
7040 unsigned char buf[sizeof (Elf32_Word)];
7041 }
7042 rld_map;
7043 #endif
7044 #ifdef DT_MIPS_RLD_MAP
7045 if (dyn->d_tag == DT_MIPS_RLD_MAP)
7046 {
7047 if (linux_read_memory (dyn->d_un.d_val,
7048 rld_map.buf, sizeof (rld_map.buf)) == 0)
7049 return rld_map.map;
7050 else
7051 break;
7052 }
7053 #endif /* DT_MIPS_RLD_MAP */
7054 #ifdef DT_MIPS_RLD_MAP_REL
7055 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
7056 {
7057 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
7058 rld_map.buf, sizeof (rld_map.buf)) == 0)
7059 return rld_map.map;
7060 else
7061 break;
7062 }
7063 #endif /* DT_MIPS_RLD_MAP_REL */
7064
7065 if (dyn->d_tag == DT_DEBUG && map == -1)
7066 map = dyn->d_un.d_val;
7067
7068 if (dyn->d_tag == DT_NULL)
7069 break;
7070 }
7071
7072 dynamic_memaddr += dyn_size;
7073 }
7074
7075 return map;
7076 }
7077
7078 /* Read one pointer from MEMADDR in the inferior. */
7079
7080 static int
7081 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
7082 {
7083 int ret;
7084
7085 /* Go through a union so this works on either big or little endian
7086 hosts, when the inferior's pointer size is smaller than the size
7087 of CORE_ADDR. It is assumed the inferior's endianness is the
7088 same of the superior's. */
7089 union
7090 {
7091 CORE_ADDR core_addr;
7092 unsigned int ui;
7093 unsigned char uc;
7094 } addr;
7095
7096 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
7097 if (ret == 0)
7098 {
7099 if (ptr_size == sizeof (CORE_ADDR))
7100 *ptr = addr.core_addr;
7101 else if (ptr_size == sizeof (unsigned int))
7102 *ptr = addr.ui;
7103 else
7104 gdb_assert_not_reached ("unhandled pointer size");
7105 }
7106 return ret;
7107 }
7108
7109 struct link_map_offsets
7110 {
7111 /* Offset and size of r_debug.r_version. */
7112 int r_version_offset;
7113
7114 /* Offset and size of r_debug.r_map. */
7115 int r_map_offset;
7116
7117 /* Offset to l_addr field in struct link_map. */
7118 int l_addr_offset;
7119
7120 /* Offset to l_name field in struct link_map. */
7121 int l_name_offset;
7122
7123 /* Offset to l_ld field in struct link_map. */
7124 int l_ld_offset;
7125
7126 /* Offset to l_next field in struct link_map. */
7127 int l_next_offset;
7128
7129 /* Offset to l_prev field in struct link_map. */
7130 int l_prev_offset;
7131 };
7132
7133 /* Construct qXfer:libraries-svr4:read reply. */
7134
7135 static int
7136 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
7137 unsigned const char *writebuf,
7138 CORE_ADDR offset, int len)
7139 {
7140 char *document;
7141 unsigned document_len;
7142 struct process_info_private *const priv = current_process ()->priv;
7143 char filename[PATH_MAX];
7144 int pid, is_elf64;
7145
7146 static const struct link_map_offsets lmo_32bit_offsets =
7147 {
7148 0, /* r_version offset. */
7149 4, /* r_debug.r_map offset. */
7150 0, /* l_addr offset in link_map. */
7151 4, /* l_name offset in link_map. */
7152 8, /* l_ld offset in link_map. */
7153 12, /* l_next offset in link_map. */
7154 16 /* l_prev offset in link_map. */
7155 };
7156
7157 static const struct link_map_offsets lmo_64bit_offsets =
7158 {
7159 0, /* r_version offset. */
7160 8, /* r_debug.r_map offset. */
7161 0, /* l_addr offset in link_map. */
7162 8, /* l_name offset in link_map. */
7163 16, /* l_ld offset in link_map. */
7164 24, /* l_next offset in link_map. */
7165 32 /* l_prev offset in link_map. */
7166 };
7167 const struct link_map_offsets *lmo;
7168 unsigned int machine;
7169 int ptr_size;
7170 CORE_ADDR lm_addr = 0, lm_prev = 0;
7171 int allocated = 1024;
7172 char *p;
7173 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7174 int header_done = 0;
7175
7176 if (writebuf != NULL)
7177 return -2;
7178 if (readbuf == NULL)
7179 return -1;
7180
7181 pid = lwpid_of (current_thread);
7182 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7183 is_elf64 = elf_64_file_p (filename, &machine);
7184 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7185 ptr_size = is_elf64 ? 8 : 4;
7186
7187 while (annex[0] != '\0')
7188 {
7189 const char *sep;
7190 CORE_ADDR *addrp;
7191 int len;
7192
7193 sep = strchr (annex, '=');
7194 if (sep == NULL)
7195 break;
7196
7197 len = sep - annex;
7198 if (len == 5 && startswith (annex, "start"))
7199 addrp = &lm_addr;
7200 else if (len == 4 && startswith (annex, "prev"))
7201 addrp = &lm_prev;
7202 else
7203 {
7204 annex = strchr (sep, ';');
7205 if (annex == NULL)
7206 break;
7207 annex++;
7208 continue;
7209 }
7210
7211 annex = decode_address_to_semicolon (addrp, sep + 1);
7212 }
7213
7214 if (lm_addr == 0)
7215 {
7216 int r_version = 0;
7217
7218 if (priv->r_debug == 0)
7219 priv->r_debug = get_r_debug (pid, is_elf64);
7220
7221 /* We failed to find DT_DEBUG. Such situation will not change
7222 for this inferior - do not retry it. Report it to GDB as
7223 E01, see for the reasons at the GDB solib-svr4.c side. */
7224 if (priv->r_debug == (CORE_ADDR) -1)
7225 return -1;
7226
7227 if (priv->r_debug != 0)
7228 {
7229 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7230 (unsigned char *) &r_version,
7231 sizeof (r_version)) != 0
7232 || r_version != 1)
7233 {
7234 warning ("unexpected r_debug version %d", r_version);
7235 }
7236 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7237 &lm_addr, ptr_size) != 0)
7238 {
7239 warning ("unable to read r_map from 0x%lx",
7240 (long) priv->r_debug + lmo->r_map_offset);
7241 }
7242 }
7243 }
7244
7245 document = (char *) xmalloc (allocated);
7246 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7247 p = document + strlen (document);
7248
7249 while (lm_addr
7250 && read_one_ptr (lm_addr + lmo->l_name_offset,
7251 &l_name, ptr_size) == 0
7252 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7253 &l_addr, ptr_size) == 0
7254 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7255 &l_ld, ptr_size) == 0
7256 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7257 &l_prev, ptr_size) == 0
7258 && read_one_ptr (lm_addr + lmo->l_next_offset,
7259 &l_next, ptr_size) == 0)
7260 {
7261 unsigned char libname[PATH_MAX];
7262
7263 if (lm_prev != l_prev)
7264 {
7265 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7266 (long) lm_prev, (long) l_prev);
7267 break;
7268 }
7269
7270 /* Ignore the first entry even if it has valid name as the first entry
7271 corresponds to the main executable. The first entry should not be
7272 skipped if the dynamic loader was loaded late by a static executable
7273 (see solib-svr4.c parameter ignore_first). But in such case the main
7274 executable does not have PT_DYNAMIC present and this function already
7275 exited above due to failed get_r_debug. */
7276 if (lm_prev == 0)
7277 {
7278 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7279 p = p + strlen (p);
7280 }
7281 else
7282 {
7283 /* Not checking for error because reading may stop before
7284 we've got PATH_MAX worth of characters. */
7285 libname[0] = '\0';
7286 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7287 libname[sizeof (libname) - 1] = '\0';
7288 if (libname[0] != '\0')
7289 {
7290 /* 6x the size for xml_escape_text below. */
7291 size_t len = 6 * strlen ((char *) libname);
7292 char *name;
7293
7294 if (!header_done)
7295 {
7296 /* Terminate `<library-list-svr4'. */
7297 *p++ = '>';
7298 header_done = 1;
7299 }
7300
7301 while (allocated < p - document + len + 200)
7302 {
7303 /* Expand to guarantee sufficient storage. */
7304 uintptr_t document_len = p - document;
7305
7306 document = (char *) xrealloc (document, 2 * allocated);
7307 allocated *= 2;
7308 p = document + document_len;
7309 }
7310
7311 name = xml_escape_text ((char *) libname);
7312 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7313 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7314 name, (unsigned long) lm_addr,
7315 (unsigned long) l_addr, (unsigned long) l_ld);
7316 free (name);
7317 }
7318 }
7319
7320 lm_prev = lm_addr;
7321 lm_addr = l_next;
7322 }
7323
7324 if (!header_done)
7325 {
7326 /* Empty list; terminate `<library-list-svr4'. */
7327 strcpy (p, "/>");
7328 }
7329 else
7330 strcpy (p, "</library-list-svr4>");
7331
7332 document_len = strlen (document);
7333 if (offset < document_len)
7334 document_len -= offset;
7335 else
7336 document_len = 0;
7337 if (len > document_len)
7338 len = document_len;
7339
7340 memcpy (readbuf, document + offset, len);
7341 xfree (document);
7342
7343 return len;
7344 }
7345
7346 #ifdef HAVE_LINUX_BTRACE
7347
7348 /* See to_disable_btrace target method. */
7349
7350 static int
7351 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7352 {
7353 enum btrace_error err;
7354
7355 err = linux_disable_btrace (tinfo);
7356 return (err == BTRACE_ERR_NONE ? 0 : -1);
7357 }
7358
7359 /* Encode an Intel Processor Trace configuration. */
7360
7361 static void
7362 linux_low_encode_pt_config (struct buffer *buffer,
7363 const struct btrace_data_pt_config *config)
7364 {
7365 buffer_grow_str (buffer, "<pt-config>\n");
7366
7367 switch (config->cpu.vendor)
7368 {
7369 case CV_INTEL:
7370 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7371 "model=\"%u\" stepping=\"%u\"/>\n",
7372 config->cpu.family, config->cpu.model,
7373 config->cpu.stepping);
7374 break;
7375
7376 default:
7377 break;
7378 }
7379
7380 buffer_grow_str (buffer, "</pt-config>\n");
7381 }
7382
7383 /* Encode a raw buffer. */
7384
7385 static void
7386 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7387 unsigned int size)
7388 {
7389 if (size == 0)
7390 return;
7391
7392 /* We use hex encoding - see common/rsp-low.h. */
7393 buffer_grow_str (buffer, "<raw>\n");
7394
7395 while (size-- > 0)
7396 {
7397 char elem[2];
7398
7399 elem[0] = tohex ((*data >> 4) & 0xf);
7400 elem[1] = tohex (*data++ & 0xf);
7401
7402 buffer_grow (buffer, elem, 2);
7403 }
7404
7405 buffer_grow_str (buffer, "</raw>\n");
7406 }
7407
7408 /* See to_read_btrace target method. */
7409
7410 static int
7411 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7412 enum btrace_read_type type)
7413 {
7414 struct btrace_data btrace;
7415 struct btrace_block *block;
7416 enum btrace_error err;
7417 int i;
7418
7419 btrace_data_init (&btrace);
7420
7421 err = linux_read_btrace (&btrace, tinfo, type);
7422 if (err != BTRACE_ERR_NONE)
7423 {
7424 if (err == BTRACE_ERR_OVERFLOW)
7425 buffer_grow_str0 (buffer, "E.Overflow.");
7426 else
7427 buffer_grow_str0 (buffer, "E.Generic Error.");
7428
7429 goto err;
7430 }
7431
7432 switch (btrace.format)
7433 {
7434 case BTRACE_FORMAT_NONE:
7435 buffer_grow_str0 (buffer, "E.No Trace.");
7436 goto err;
7437
7438 case BTRACE_FORMAT_BTS:
7439 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7440 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7441
7442 for (i = 0;
7443 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7444 i++)
7445 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7446 paddress (block->begin), paddress (block->end));
7447
7448 buffer_grow_str0 (buffer, "</btrace>\n");
7449 break;
7450
7451 case BTRACE_FORMAT_PT:
7452 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7453 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7454 buffer_grow_str (buffer, "<pt>\n");
7455
7456 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7457
7458 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7459 btrace.variant.pt.size);
7460
7461 buffer_grow_str (buffer, "</pt>\n");
7462 buffer_grow_str0 (buffer, "</btrace>\n");
7463 break;
7464
7465 default:
7466 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7467 goto err;
7468 }
7469
7470 btrace_data_fini (&btrace);
7471 return 0;
7472
7473 err:
7474 btrace_data_fini (&btrace);
7475 return -1;
7476 }
7477
7478 /* See to_btrace_conf target method. */
7479
7480 static int
7481 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7482 struct buffer *buffer)
7483 {
7484 const struct btrace_config *conf;
7485
7486 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7487 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7488
7489 conf = linux_btrace_conf (tinfo);
7490 if (conf != NULL)
7491 {
7492 switch (conf->format)
7493 {
7494 case BTRACE_FORMAT_NONE:
7495 break;
7496
7497 case BTRACE_FORMAT_BTS:
7498 buffer_xml_printf (buffer, "<bts");
7499 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7500 buffer_xml_printf (buffer, " />\n");
7501 break;
7502
7503 case BTRACE_FORMAT_PT:
7504 buffer_xml_printf (buffer, "<pt");
7505 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7506 buffer_xml_printf (buffer, "/>\n");
7507 break;
7508 }
7509 }
7510
7511 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7512 return 0;
7513 }
7514 #endif /* HAVE_LINUX_BTRACE */
7515
7516 /* See nat/linux-nat.h. */
7517
7518 ptid_t
7519 current_lwp_ptid (void)
7520 {
7521 return ptid_of (current_thread);
7522 }
7523
7524 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7525
7526 static int
7527 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7528 {
7529 if (the_low_target.breakpoint_kind_from_pc != NULL)
7530 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7531 else
7532 return default_breakpoint_kind_from_pc (pcptr);
7533 }
7534
7535 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7536
7537 static const gdb_byte *
7538 linux_sw_breakpoint_from_kind (int kind, int *size)
7539 {
7540 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7541
7542 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7543 }
7544
7545 /* Implementation of the target_ops method
7546 "breakpoint_kind_from_current_state". */
7547
7548 static int
7549 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7550 {
7551 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7552 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7553 else
7554 return linux_breakpoint_kind_from_pc (pcptr);
7555 }
7556
7557 /* Default implementation of linux_target_ops method "set_pc" for
7558 32-bit pc register which is literally named "pc". */
7559
7560 void
7561 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7562 {
7563 uint32_t newpc = pc;
7564
7565 supply_register_by_name (regcache, "pc", &newpc);
7566 }
7567
7568 /* Default implementation of linux_target_ops method "get_pc" for
7569 32-bit pc register which is literally named "pc". */
7570
7571 CORE_ADDR
7572 linux_get_pc_32bit (struct regcache *regcache)
7573 {
7574 uint32_t pc;
7575
7576 collect_register_by_name (regcache, "pc", &pc);
7577 if (debug_threads)
7578 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7579 return pc;
7580 }
7581
7582 /* Default implementation of linux_target_ops method "set_pc" for
7583 64-bit pc register which is literally named "pc". */
7584
7585 void
7586 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7587 {
7588 uint64_t newpc = pc;
7589
7590 supply_register_by_name (regcache, "pc", &newpc);
7591 }
7592
7593 /* Default implementation of linux_target_ops method "get_pc" for
7594 64-bit pc register which is literally named "pc". */
7595
7596 CORE_ADDR
7597 linux_get_pc_64bit (struct regcache *regcache)
7598 {
7599 uint64_t pc;
7600
7601 collect_register_by_name (regcache, "pc", &pc);
7602 if (debug_threads)
7603 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7604 return pc;
7605 }
7606
7607
7608 static struct target_ops linux_target_ops = {
7609 linux_create_inferior,
7610 linux_post_create_inferior,
7611 linux_attach,
7612 linux_kill,
7613 linux_detach,
7614 linux_mourn,
7615 linux_join,
7616 linux_thread_alive,
7617 linux_resume,
7618 linux_wait,
7619 linux_fetch_registers,
7620 linux_store_registers,
7621 linux_prepare_to_access_memory,
7622 linux_done_accessing_memory,
7623 linux_read_memory,
7624 linux_write_memory,
7625 linux_look_up_symbols,
7626 linux_request_interrupt,
7627 linux_read_auxv,
7628 linux_supports_z_point_type,
7629 linux_insert_point,
7630 linux_remove_point,
7631 linux_stopped_by_sw_breakpoint,
7632 linux_supports_stopped_by_sw_breakpoint,
7633 linux_stopped_by_hw_breakpoint,
7634 linux_supports_stopped_by_hw_breakpoint,
7635 linux_supports_hardware_single_step,
7636 linux_stopped_by_watchpoint,
7637 linux_stopped_data_address,
7638 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7639 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7640 && defined(PT_TEXT_END_ADDR)
7641 linux_read_offsets,
7642 #else
7643 NULL,
7644 #endif
7645 #ifdef USE_THREAD_DB
7646 thread_db_get_tls_address,
7647 #else
7648 NULL,
7649 #endif
7650 linux_qxfer_spu,
7651 hostio_last_error_from_errno,
7652 linux_qxfer_osdata,
7653 linux_xfer_siginfo,
7654 linux_supports_non_stop,
7655 linux_async,
7656 linux_start_non_stop,
7657 linux_supports_multi_process,
7658 linux_supports_fork_events,
7659 linux_supports_vfork_events,
7660 linux_supports_exec_events,
7661 linux_handle_new_gdb_connection,
7662 #ifdef USE_THREAD_DB
7663 thread_db_handle_monitor_command,
7664 #else
7665 NULL,
7666 #endif
7667 linux_common_core_of_thread,
7668 linux_read_loadmap,
7669 linux_process_qsupported,
7670 linux_supports_tracepoints,
7671 linux_read_pc,
7672 linux_write_pc,
7673 linux_thread_stopped,
7674 NULL,
7675 linux_pause_all,
7676 linux_unpause_all,
7677 linux_stabilize_threads,
7678 linux_install_fast_tracepoint_jump_pad,
7679 linux_emit_ops,
7680 linux_supports_disable_randomization,
7681 linux_get_min_fast_tracepoint_insn_len,
7682 linux_qxfer_libraries_svr4,
7683 linux_supports_agent,
7684 #ifdef HAVE_LINUX_BTRACE
7685 linux_supports_btrace,
7686 linux_enable_btrace,
7687 linux_low_disable_btrace,
7688 linux_low_read_btrace,
7689 linux_low_btrace_conf,
7690 #else
7691 NULL,
7692 NULL,
7693 NULL,
7694 NULL,
7695 NULL,
7696 #endif
7697 linux_supports_range_stepping,
7698 linux_proc_pid_to_exec_file,
7699 linux_mntns_open_cloexec,
7700 linux_mntns_unlink,
7701 linux_mntns_readlink,
7702 linux_breakpoint_kind_from_pc,
7703 linux_sw_breakpoint_from_kind,
7704 linux_proc_tid_get_name,
7705 linux_breakpoint_kind_from_current_state,
7706 linux_supports_software_single_step,
7707 linux_supports_catch_syscall,
7708 linux_get_ipa_tdesc_idx,
7709 };
7710
7711 #ifdef HAVE_LINUX_REGSETS
7712 void
7713 initialize_regsets_info (struct regsets_info *info)
7714 {
7715 for (info->num_regsets = 0;
7716 info->regsets[info->num_regsets].size >= 0;
7717 info->num_regsets++)
7718 ;
7719 }
7720 #endif
7721
7722 void
7723 initialize_low (void)
7724 {
7725 struct sigaction sigchld_action;
7726
7727 memset (&sigchld_action, 0, sizeof (sigchld_action));
7728 set_target_ops (&linux_target_ops);
7729
7730 linux_ptrace_init_warnings ();
7731
7732 sigchld_action.sa_handler = sigchld_handler;
7733 sigemptyset (&sigchld_action.sa_mask);
7734 sigchld_action.sa_flags = SA_RESTART;
7735 sigaction (SIGCHLD, &sigchld_action, NULL);
7736
7737 initialize_low_arch ();
7738
7739 linux_check_ptrace_features ();
7740 }