]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
[gdbserver] Rename supports_conditional_breakpoints to supports_hardware_single_step
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #ifndef ELFMAG0
50 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
51 then ELFMAG0 will have been defined. If it didn't get included by
52 gdb_proc_service.h then including it will likely introduce a duplicate
53 definition of elf_fpregset_t. */
54 #include <elf.h>
55 #endif
56 #include "nat/linux-namespaces.h"
57
58 #ifndef SPUFS_MAGIC
59 #define SPUFS_MAGIC 0x23c9b64e
60 #endif
61
62 #ifdef HAVE_PERSONALITY
63 # include <sys/personality.h>
64 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
65 # define ADDR_NO_RANDOMIZE 0x0040000
66 # endif
67 #endif
68
69 #ifndef O_LARGEFILE
70 #define O_LARGEFILE 0
71 #endif
72
73 #ifndef W_STOPCODE
74 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
75 #endif
76
77 /* This is the kernel's hard limit. Not to be confused with
78 SIGRTMIN. */
79 #ifndef __SIGRTMIN
80 #define __SIGRTMIN 32
81 #endif
82
83 /* Some targets did not define these ptrace constants from the start,
84 so gdbserver defines them locally here. In the future, these may
85 be removed after they are added to asm/ptrace.h. */
86 #if !(defined(PT_TEXT_ADDR) \
87 || defined(PT_DATA_ADDR) \
88 || defined(PT_TEXT_END_ADDR))
89 #if defined(__mcoldfire__)
90 /* These are still undefined in 3.10 kernels. */
91 #define PT_TEXT_ADDR 49*4
92 #define PT_DATA_ADDR 50*4
93 #define PT_TEXT_END_ADDR 51*4
94 /* BFIN already defines these since at least 2.6.32 kernels. */
95 #elif defined(BFIN)
96 #define PT_TEXT_ADDR 220
97 #define PT_TEXT_END_ADDR 224
98 #define PT_DATA_ADDR 228
99 /* These are still undefined in 3.10 kernels. */
100 #elif defined(__TMS320C6X__)
101 #define PT_TEXT_ADDR (0x10000*4)
102 #define PT_DATA_ADDR (0x10004*4)
103 #define PT_TEXT_END_ADDR (0x10008*4)
104 #endif
105 #endif
106
107 #ifdef HAVE_LINUX_BTRACE
108 # include "nat/linux-btrace.h"
109 # include "btrace-common.h"
110 #endif
111
112 #ifndef HAVE_ELF32_AUXV_T
113 /* Copied from glibc's elf.h. */
114 typedef struct
115 {
116 uint32_t a_type; /* Entry type */
117 union
118 {
119 uint32_t a_val; /* Integer value */
120 /* We use to have pointer elements added here. We cannot do that,
121 though, since it does not work when using 32-bit definitions
122 on 64-bit platforms and vice versa. */
123 } a_un;
124 } Elf32_auxv_t;
125 #endif
126
127 #ifndef HAVE_ELF64_AUXV_T
128 /* Copied from glibc's elf.h. */
129 typedef struct
130 {
131 uint64_t a_type; /* Entry type */
132 union
133 {
134 uint64_t a_val; /* Integer value */
135 /* We use to have pointer elements added here. We cannot do that,
136 though, since it does not work when using 32-bit definitions
137 on 64-bit platforms and vice versa. */
138 } a_un;
139 } Elf64_auxv_t;
140 #endif
141
142 /* Does the current host support PTRACE_GETREGSET? */
143 int have_ptrace_getregset = -1;
144
145 /* LWP accessors. */
146
147 /* See nat/linux-nat.h. */
148
149 ptid_t
150 ptid_of_lwp (struct lwp_info *lwp)
151 {
152 return ptid_of (get_lwp_thread (lwp));
153 }
154
155 /* See nat/linux-nat.h. */
156
157 void
158 lwp_set_arch_private_info (struct lwp_info *lwp,
159 struct arch_lwp_info *info)
160 {
161 lwp->arch_private = info;
162 }
163
164 /* See nat/linux-nat.h. */
165
166 struct arch_lwp_info *
167 lwp_arch_private_info (struct lwp_info *lwp)
168 {
169 return lwp->arch_private;
170 }
171
172 /* See nat/linux-nat.h. */
173
174 int
175 lwp_is_stopped (struct lwp_info *lwp)
176 {
177 return lwp->stopped;
178 }
179
180 /* See nat/linux-nat.h. */
181
182 enum target_stop_reason
183 lwp_stop_reason (struct lwp_info *lwp)
184 {
185 return lwp->stop_reason;
186 }
187
188 /* A list of all unknown processes which receive stop signals. Some
189 other process will presumably claim each of these as forked
190 children momentarily. */
191
192 struct simple_pid_list
193 {
194 /* The process ID. */
195 int pid;
196
197 /* The status as reported by waitpid. */
198 int status;
199
200 /* Next in chain. */
201 struct simple_pid_list *next;
202 };
203 struct simple_pid_list *stopped_pids;
204
205 /* Trivial list manipulation functions to keep track of a list of new
206 stopped processes. */
207
208 static void
209 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
210 {
211 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
212
213 new_pid->pid = pid;
214 new_pid->status = status;
215 new_pid->next = *listp;
216 *listp = new_pid;
217 }
218
219 static int
220 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
221 {
222 struct simple_pid_list **p;
223
224 for (p = listp; *p != NULL; p = &(*p)->next)
225 if ((*p)->pid == pid)
226 {
227 struct simple_pid_list *next = (*p)->next;
228
229 *statusp = (*p)->status;
230 xfree (*p);
231 *p = next;
232 return 1;
233 }
234 return 0;
235 }
236
237 enum stopping_threads_kind
238 {
239 /* Not stopping threads presently. */
240 NOT_STOPPING_THREADS,
241
242 /* Stopping threads. */
243 STOPPING_THREADS,
244
245 /* Stopping and suspending threads. */
246 STOPPING_AND_SUSPENDING_THREADS
247 };
248
249 /* This is set while stop_all_lwps is in effect. */
250 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
251
252 /* FIXME make into a target method? */
253 int using_threads = 1;
254
255 /* True if we're presently stabilizing threads (moving them out of
256 jump pads). */
257 static int stabilizing_threads;
258
259 static void linux_resume_one_lwp (struct lwp_info *lwp,
260 int step, int signal, siginfo_t *info);
261 static void linux_resume (struct thread_resume *resume_info, size_t n);
262 static void stop_all_lwps (int suspend, struct lwp_info *except);
263 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
264 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
265 int *wstat, int options);
266 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
267 static struct lwp_info *add_lwp (ptid_t ptid);
268 static void linux_mourn (struct process_info *process);
269 static int linux_stopped_by_watchpoint (void);
270 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
271 static int lwp_is_marked_dead (struct lwp_info *lwp);
272 static void proceed_all_lwps (void);
273 static int finish_step_over (struct lwp_info *lwp);
274 static int kill_lwp (unsigned long lwpid, int signo);
275 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
276 static void complete_ongoing_step_over (void);
277
278 /* When the event-loop is doing a step-over, this points at the thread
279 being stepped. */
280 ptid_t step_over_bkpt;
281
282 /* True if the low target can hardware single-step. Such targets
283 don't need a BREAKPOINT_REINSERT_ADDR callback. */
284
285 static int
286 can_hardware_single_step (void)
287 {
288 return (the_low_target.breakpoint_reinsert_addr == NULL);
289 }
290
291 /* True if the low target supports memory breakpoints. If so, we'll
292 have a GET_PC implementation. */
293
294 static int
295 supports_breakpoints (void)
296 {
297 return (the_low_target.get_pc != NULL);
298 }
299
300 /* Returns true if this target can support fast tracepoints. This
301 does not mean that the in-process agent has been loaded in the
302 inferior. */
303
304 static int
305 supports_fast_tracepoints (void)
306 {
307 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
308 }
309
310 /* True if LWP is stopped in its stepping range. */
311
312 static int
313 lwp_in_step_range (struct lwp_info *lwp)
314 {
315 CORE_ADDR pc = lwp->stop_pc;
316
317 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
318 }
319
320 struct pending_signals
321 {
322 int signal;
323 siginfo_t info;
324 struct pending_signals *prev;
325 };
326
327 /* The read/write ends of the pipe registered as waitable file in the
328 event loop. */
329 static int linux_event_pipe[2] = { -1, -1 };
330
331 /* True if we're currently in async mode. */
332 #define target_is_async_p() (linux_event_pipe[0] != -1)
333
334 static void send_sigstop (struct lwp_info *lwp);
335 static void wait_for_sigstop (void);
336
337 /* Return non-zero if HEADER is a 64-bit ELF file. */
338
339 static int
340 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
341 {
342 if (header->e_ident[EI_MAG0] == ELFMAG0
343 && header->e_ident[EI_MAG1] == ELFMAG1
344 && header->e_ident[EI_MAG2] == ELFMAG2
345 && header->e_ident[EI_MAG3] == ELFMAG3)
346 {
347 *machine = header->e_machine;
348 return header->e_ident[EI_CLASS] == ELFCLASS64;
349
350 }
351 *machine = EM_NONE;
352 return -1;
353 }
354
355 /* Return non-zero if FILE is a 64-bit ELF file,
356 zero if the file is not a 64-bit ELF file,
357 and -1 if the file is not accessible or doesn't exist. */
358
359 static int
360 elf_64_file_p (const char *file, unsigned int *machine)
361 {
362 Elf64_Ehdr header;
363 int fd;
364
365 fd = open (file, O_RDONLY);
366 if (fd < 0)
367 return -1;
368
369 if (read (fd, &header, sizeof (header)) != sizeof (header))
370 {
371 close (fd);
372 return 0;
373 }
374 close (fd);
375
376 return elf_64_header_p (&header, machine);
377 }
378
379 /* Accepts an integer PID; Returns true if the executable PID is
380 running is a 64-bit ELF file.. */
381
382 int
383 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
384 {
385 char file[PATH_MAX];
386
387 sprintf (file, "/proc/%d/exe", pid);
388 return elf_64_file_p (file, machine);
389 }
390
391 static void
392 delete_lwp (struct lwp_info *lwp)
393 {
394 struct thread_info *thr = get_lwp_thread (lwp);
395
396 if (debug_threads)
397 debug_printf ("deleting %ld\n", lwpid_of (thr));
398
399 remove_thread (thr);
400 free (lwp->arch_private);
401 free (lwp);
402 }
403
404 /* Add a process to the common process list, and set its private
405 data. */
406
407 static struct process_info *
408 linux_add_process (int pid, int attached)
409 {
410 struct process_info *proc;
411
412 proc = add_process (pid, attached);
413 proc->priv = XCNEW (struct process_info_private);
414
415 if (the_low_target.new_process != NULL)
416 proc->priv->arch_private = the_low_target.new_process ();
417
418 return proc;
419 }
420
421 static CORE_ADDR get_pc (struct lwp_info *lwp);
422
423 /* Implement the arch_setup target_ops method. */
424
425 static void
426 linux_arch_setup (void)
427 {
428 the_low_target.arch_setup ();
429 }
430
431 /* Call the target arch_setup function on THREAD. */
432
433 static void
434 linux_arch_setup_thread (struct thread_info *thread)
435 {
436 struct thread_info *saved_thread;
437
438 saved_thread = current_thread;
439 current_thread = thread;
440
441 linux_arch_setup ();
442
443 current_thread = saved_thread;
444 }
445
446 /* Handle a GNU/Linux extended wait response. If we see a clone,
447 fork, or vfork event, we need to add the new LWP to our list
448 (and return 0 so as not to report the trap to higher layers).
449 If we see an exec event, we will modify ORIG_EVENT_LWP to point
450 to a new LWP representing the new program. */
451
452 static int
453 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
454 {
455 struct lwp_info *event_lwp = *orig_event_lwp;
456 int event = linux_ptrace_get_extended_event (wstat);
457 struct thread_info *event_thr = get_lwp_thread (event_lwp);
458 struct lwp_info *new_lwp;
459
460 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
461 || (event == PTRACE_EVENT_CLONE))
462 {
463 ptid_t ptid;
464 unsigned long new_pid;
465 int ret, status;
466
467 /* Get the pid of the new lwp. */
468 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
469 &new_pid);
470
471 /* If we haven't already seen the new PID stop, wait for it now. */
472 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
473 {
474 /* The new child has a pending SIGSTOP. We can't affect it until it
475 hits the SIGSTOP, but we're already attached. */
476
477 ret = my_waitpid (new_pid, &status, __WALL);
478
479 if (ret == -1)
480 perror_with_name ("waiting for new child");
481 else if (ret != new_pid)
482 warning ("wait returned unexpected PID %d", ret);
483 else if (!WIFSTOPPED (status))
484 warning ("wait returned unexpected status 0x%x", status);
485 }
486
487 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
488 {
489 struct process_info *parent_proc;
490 struct process_info *child_proc;
491 struct lwp_info *child_lwp;
492 struct thread_info *child_thr;
493 struct target_desc *tdesc;
494
495 ptid = ptid_build (new_pid, new_pid, 0);
496
497 if (debug_threads)
498 {
499 debug_printf ("HEW: Got fork event from LWP %ld, "
500 "new child is %d\n",
501 ptid_get_lwp (ptid_of (event_thr)),
502 ptid_get_pid (ptid));
503 }
504
505 /* Add the new process to the tables and clone the breakpoint
506 lists of the parent. We need to do this even if the new process
507 will be detached, since we will need the process object and the
508 breakpoints to remove any breakpoints from memory when we
509 detach, and the client side will access registers. */
510 child_proc = linux_add_process (new_pid, 0);
511 gdb_assert (child_proc != NULL);
512 child_lwp = add_lwp (ptid);
513 gdb_assert (child_lwp != NULL);
514 child_lwp->stopped = 1;
515 child_lwp->must_set_ptrace_flags = 1;
516 child_lwp->status_pending_p = 0;
517 child_thr = get_lwp_thread (child_lwp);
518 child_thr->last_resume_kind = resume_stop;
519 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
520
521 /* If we're suspending all threads, leave this one suspended
522 too. */
523 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
524 {
525 if (debug_threads)
526 debug_printf ("HEW: leaving child suspended\n");
527 child_lwp->suspended = 1;
528 }
529
530 parent_proc = get_thread_process (event_thr);
531 child_proc->attached = parent_proc->attached;
532 clone_all_breakpoints (&child_proc->breakpoints,
533 &child_proc->raw_breakpoints,
534 parent_proc->breakpoints);
535
536 tdesc = XNEW (struct target_desc);
537 copy_target_description (tdesc, parent_proc->tdesc);
538 child_proc->tdesc = tdesc;
539
540 /* Clone arch-specific process data. */
541 if (the_low_target.new_fork != NULL)
542 the_low_target.new_fork (parent_proc, child_proc);
543
544 /* Save fork info in the parent thread. */
545 if (event == PTRACE_EVENT_FORK)
546 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
547 else if (event == PTRACE_EVENT_VFORK)
548 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
549
550 event_lwp->waitstatus.value.related_pid = ptid;
551
552 /* The status_pending field contains bits denoting the
553 extended event, so when the pending event is handled,
554 the handler will look at lwp->waitstatus. */
555 event_lwp->status_pending_p = 1;
556 event_lwp->status_pending = wstat;
557
558 /* Report the event. */
559 return 0;
560 }
561
562 if (debug_threads)
563 debug_printf ("HEW: Got clone event "
564 "from LWP %ld, new child is LWP %ld\n",
565 lwpid_of (event_thr), new_pid);
566
567 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
568 new_lwp = add_lwp (ptid);
569
570 /* Either we're going to immediately resume the new thread
571 or leave it stopped. linux_resume_one_lwp is a nop if it
572 thinks the thread is currently running, so set this first
573 before calling linux_resume_one_lwp. */
574 new_lwp->stopped = 1;
575
576 /* If we're suspending all threads, leave this one suspended
577 too. */
578 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
579 new_lwp->suspended = 1;
580
581 /* Normally we will get the pending SIGSTOP. But in some cases
582 we might get another signal delivered to the group first.
583 If we do get another signal, be sure not to lose it. */
584 if (WSTOPSIG (status) != SIGSTOP)
585 {
586 new_lwp->stop_expected = 1;
587 new_lwp->status_pending_p = 1;
588 new_lwp->status_pending = status;
589 }
590
591 /* Don't report the event. */
592 return 1;
593 }
594 else if (event == PTRACE_EVENT_VFORK_DONE)
595 {
596 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
597
598 /* Report the event. */
599 return 0;
600 }
601 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
602 {
603 struct process_info *proc;
604 ptid_t event_ptid;
605 pid_t event_pid;
606
607 if (debug_threads)
608 {
609 debug_printf ("HEW: Got exec event from LWP %ld\n",
610 lwpid_of (event_thr));
611 }
612
613 /* Get the event ptid. */
614 event_ptid = ptid_of (event_thr);
615 event_pid = ptid_get_pid (event_ptid);
616
617 /* Delete the execing process and all its threads. */
618 proc = get_thread_process (event_thr);
619 linux_mourn (proc);
620 current_thread = NULL;
621
622 /* Create a new process/lwp/thread. */
623 proc = linux_add_process (event_pid, 0);
624 event_lwp = add_lwp (event_ptid);
625 event_thr = get_lwp_thread (event_lwp);
626 gdb_assert (current_thread == event_thr);
627 linux_arch_setup_thread (event_thr);
628
629 /* Set the event status. */
630 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
631 event_lwp->waitstatus.value.execd_pathname
632 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
633
634 /* Mark the exec status as pending. */
635 event_lwp->stopped = 1;
636 event_lwp->status_pending_p = 1;
637 event_lwp->status_pending = wstat;
638 event_thr->last_resume_kind = resume_continue;
639 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
640
641 /* Report the event. */
642 *orig_event_lwp = event_lwp;
643 return 0;
644 }
645
646 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
647 }
648
649 /* Return the PC as read from the regcache of LWP, without any
650 adjustment. */
651
652 static CORE_ADDR
653 get_pc (struct lwp_info *lwp)
654 {
655 struct thread_info *saved_thread;
656 struct regcache *regcache;
657 CORE_ADDR pc;
658
659 if (the_low_target.get_pc == NULL)
660 return 0;
661
662 saved_thread = current_thread;
663 current_thread = get_lwp_thread (lwp);
664
665 regcache = get_thread_regcache (current_thread, 1);
666 pc = (*the_low_target.get_pc) (regcache);
667
668 if (debug_threads)
669 debug_printf ("pc is 0x%lx\n", (long) pc);
670
671 current_thread = saved_thread;
672 return pc;
673 }
674
675 /* This function should only be called if LWP got a SIGTRAP.
676 The SIGTRAP could mean several things.
677
678 On i386, where decr_pc_after_break is non-zero:
679
680 If we were single-stepping this process using PTRACE_SINGLESTEP, we
681 will get only the one SIGTRAP. The value of $eip will be the next
682 instruction. If the instruction we stepped over was a breakpoint,
683 we need to decrement the PC.
684
685 If we continue the process using PTRACE_CONT, we will get a
686 SIGTRAP when we hit a breakpoint. The value of $eip will be
687 the instruction after the breakpoint (i.e. needs to be
688 decremented). If we report the SIGTRAP to GDB, we must also
689 report the undecremented PC. If the breakpoint is removed, we
690 must resume at the decremented PC.
691
692 On a non-decr_pc_after_break machine with hardware or kernel
693 single-step:
694
695 If we either single-step a breakpoint instruction, or continue and
696 hit a breakpoint instruction, our PC will point at the breakpoint
697 instruction. */
698
699 static int
700 check_stopped_by_breakpoint (struct lwp_info *lwp)
701 {
702 CORE_ADDR pc;
703 CORE_ADDR sw_breakpoint_pc;
704 struct thread_info *saved_thread;
705 #if USE_SIGTRAP_SIGINFO
706 siginfo_t siginfo;
707 #endif
708
709 if (the_low_target.get_pc == NULL)
710 return 0;
711
712 pc = get_pc (lwp);
713 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
714
715 /* breakpoint_at reads from the current thread. */
716 saved_thread = current_thread;
717 current_thread = get_lwp_thread (lwp);
718
719 #if USE_SIGTRAP_SIGINFO
720 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
721 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
722 {
723 if (siginfo.si_signo == SIGTRAP)
724 {
725 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
726 {
727 if (debug_threads)
728 {
729 struct thread_info *thr = get_lwp_thread (lwp);
730
731 debug_printf ("CSBB: %s stopped by software breakpoint\n",
732 target_pid_to_str (ptid_of (thr)));
733 }
734
735 /* Back up the PC if necessary. */
736 if (pc != sw_breakpoint_pc)
737 {
738 struct regcache *regcache
739 = get_thread_regcache (current_thread, 1);
740 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
741 }
742
743 lwp->stop_pc = sw_breakpoint_pc;
744 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
745 current_thread = saved_thread;
746 return 1;
747 }
748 else if (siginfo.si_code == TRAP_HWBKPT)
749 {
750 if (debug_threads)
751 {
752 struct thread_info *thr = get_lwp_thread (lwp);
753
754 debug_printf ("CSBB: %s stopped by hardware "
755 "breakpoint/watchpoint\n",
756 target_pid_to_str (ptid_of (thr)));
757 }
758
759 lwp->stop_pc = pc;
760 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
761 current_thread = saved_thread;
762 return 1;
763 }
764 else if (siginfo.si_code == TRAP_TRACE)
765 {
766 if (debug_threads)
767 {
768 struct thread_info *thr = get_lwp_thread (lwp);
769
770 debug_printf ("CSBB: %s stopped by trace\n",
771 target_pid_to_str (ptid_of (thr)));
772 }
773
774 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
775 }
776 }
777 }
778 #else
779 /* We may have just stepped a breakpoint instruction. E.g., in
780 non-stop mode, GDB first tells the thread A to step a range, and
781 then the user inserts a breakpoint inside the range. In that
782 case we need to report the breakpoint PC. */
783 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
784 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
785 {
786 if (debug_threads)
787 {
788 struct thread_info *thr = get_lwp_thread (lwp);
789
790 debug_printf ("CSBB: %s stopped by software breakpoint\n",
791 target_pid_to_str (ptid_of (thr)));
792 }
793
794 /* Back up the PC if necessary. */
795 if (pc != sw_breakpoint_pc)
796 {
797 struct regcache *regcache
798 = get_thread_regcache (current_thread, 1);
799 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
800 }
801
802 lwp->stop_pc = sw_breakpoint_pc;
803 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
804 current_thread = saved_thread;
805 return 1;
806 }
807
808 if (hardware_breakpoint_inserted_here (pc))
809 {
810 if (debug_threads)
811 {
812 struct thread_info *thr = get_lwp_thread (lwp);
813
814 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
815 target_pid_to_str (ptid_of (thr)));
816 }
817
818 lwp->stop_pc = pc;
819 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
820 current_thread = saved_thread;
821 return 1;
822 }
823 #endif
824
825 current_thread = saved_thread;
826 return 0;
827 }
828
829 static struct lwp_info *
830 add_lwp (ptid_t ptid)
831 {
832 struct lwp_info *lwp;
833
834 lwp = XCNEW (struct lwp_info);
835
836 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
837
838 if (the_low_target.new_thread != NULL)
839 the_low_target.new_thread (lwp);
840
841 lwp->thread = add_thread (ptid, lwp);
842
843 return lwp;
844 }
845
846 /* Start an inferior process and returns its pid.
847 ALLARGS is a vector of program-name and args. */
848
849 static int
850 linux_create_inferior (char *program, char **allargs)
851 {
852 struct lwp_info *new_lwp;
853 int pid;
854 ptid_t ptid;
855 struct cleanup *restore_personality
856 = maybe_disable_address_space_randomization (disable_randomization);
857
858 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
859 pid = vfork ();
860 #else
861 pid = fork ();
862 #endif
863 if (pid < 0)
864 perror_with_name ("fork");
865
866 if (pid == 0)
867 {
868 close_most_fds ();
869 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
870
871 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
872 signal (__SIGRTMIN + 1, SIG_DFL);
873 #endif
874
875 setpgid (0, 0);
876
877 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
878 stdout to stderr so that inferior i/o doesn't corrupt the connection.
879 Also, redirect stdin to /dev/null. */
880 if (remote_connection_is_stdio ())
881 {
882 close (0);
883 open ("/dev/null", O_RDONLY);
884 dup2 (2, 1);
885 if (write (2, "stdin/stdout redirected\n",
886 sizeof ("stdin/stdout redirected\n") - 1) < 0)
887 {
888 /* Errors ignored. */;
889 }
890 }
891
892 execv (program, allargs);
893 if (errno == ENOENT)
894 execvp (program, allargs);
895
896 fprintf (stderr, "Cannot exec %s: %s.\n", program,
897 strerror (errno));
898 fflush (stderr);
899 _exit (0177);
900 }
901
902 do_cleanups (restore_personality);
903
904 linux_add_process (pid, 0);
905
906 ptid = ptid_build (pid, pid, 0);
907 new_lwp = add_lwp (ptid);
908 new_lwp->must_set_ptrace_flags = 1;
909
910 return pid;
911 }
912
913 /* Attach to an inferior process. Returns 0 on success, ERRNO on
914 error. */
915
916 int
917 linux_attach_lwp (ptid_t ptid)
918 {
919 struct lwp_info *new_lwp;
920 int lwpid = ptid_get_lwp (ptid);
921
922 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
923 != 0)
924 return errno;
925
926 new_lwp = add_lwp (ptid);
927
928 /* We need to wait for SIGSTOP before being able to make the next
929 ptrace call on this LWP. */
930 new_lwp->must_set_ptrace_flags = 1;
931
932 if (linux_proc_pid_is_stopped (lwpid))
933 {
934 if (debug_threads)
935 debug_printf ("Attached to a stopped process\n");
936
937 /* The process is definitely stopped. It is in a job control
938 stop, unless the kernel predates the TASK_STOPPED /
939 TASK_TRACED distinction, in which case it might be in a
940 ptrace stop. Make sure it is in a ptrace stop; from there we
941 can kill it, signal it, et cetera.
942
943 First make sure there is a pending SIGSTOP. Since we are
944 already attached, the process can not transition from stopped
945 to running without a PTRACE_CONT; so we know this signal will
946 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
947 probably already in the queue (unless this kernel is old
948 enough to use TASK_STOPPED for ptrace stops); but since
949 SIGSTOP is not an RT signal, it can only be queued once. */
950 kill_lwp (lwpid, SIGSTOP);
951
952 /* Finally, resume the stopped process. This will deliver the
953 SIGSTOP (or a higher priority signal, just like normal
954 PTRACE_ATTACH), which we'll catch later on. */
955 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
956 }
957
958 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
959 brings it to a halt.
960
961 There are several cases to consider here:
962
963 1) gdbserver has already attached to the process and is being notified
964 of a new thread that is being created.
965 In this case we should ignore that SIGSTOP and resume the
966 process. This is handled below by setting stop_expected = 1,
967 and the fact that add_thread sets last_resume_kind ==
968 resume_continue.
969
970 2) This is the first thread (the process thread), and we're attaching
971 to it via attach_inferior.
972 In this case we want the process thread to stop.
973 This is handled by having linux_attach set last_resume_kind ==
974 resume_stop after we return.
975
976 If the pid we are attaching to is also the tgid, we attach to and
977 stop all the existing threads. Otherwise, we attach to pid and
978 ignore any other threads in the same group as this pid.
979
980 3) GDB is connecting to gdbserver and is requesting an enumeration of all
981 existing threads.
982 In this case we want the thread to stop.
983 FIXME: This case is currently not properly handled.
984 We should wait for the SIGSTOP but don't. Things work apparently
985 because enough time passes between when we ptrace (ATTACH) and when
986 gdb makes the next ptrace call on the thread.
987
988 On the other hand, if we are currently trying to stop all threads, we
989 should treat the new thread as if we had sent it a SIGSTOP. This works
990 because we are guaranteed that the add_lwp call above added us to the
991 end of the list, and so the new thread has not yet reached
992 wait_for_sigstop (but will). */
993 new_lwp->stop_expected = 1;
994
995 return 0;
996 }
997
998 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
999 already attached. Returns true if a new LWP is found, false
1000 otherwise. */
1001
1002 static int
1003 attach_proc_task_lwp_callback (ptid_t ptid)
1004 {
1005 /* Is this a new thread? */
1006 if (find_thread_ptid (ptid) == NULL)
1007 {
1008 int lwpid = ptid_get_lwp (ptid);
1009 int err;
1010
1011 if (debug_threads)
1012 debug_printf ("Found new lwp %d\n", lwpid);
1013
1014 err = linux_attach_lwp (ptid);
1015
1016 /* Be quiet if we simply raced with the thread exiting. EPERM
1017 is returned if the thread's task still exists, and is marked
1018 as exited or zombie, as well as other conditions, so in that
1019 case, confirm the status in /proc/PID/status. */
1020 if (err == ESRCH
1021 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1022 {
1023 if (debug_threads)
1024 {
1025 debug_printf ("Cannot attach to lwp %d: "
1026 "thread is gone (%d: %s)\n",
1027 lwpid, err, strerror (err));
1028 }
1029 }
1030 else if (err != 0)
1031 {
1032 warning (_("Cannot attach to lwp %d: %s"),
1033 lwpid,
1034 linux_ptrace_attach_fail_reason_string (ptid, err));
1035 }
1036
1037 return 1;
1038 }
1039 return 0;
1040 }
1041
1042 /* Attach to PID. If PID is the tgid, attach to it and all
1043 of its threads. */
1044
1045 static int
1046 linux_attach (unsigned long pid)
1047 {
1048 ptid_t ptid = ptid_build (pid, pid, 0);
1049 int err;
1050
1051 /* Attach to PID. We will check for other threads
1052 soon. */
1053 err = linux_attach_lwp (ptid);
1054 if (err != 0)
1055 error ("Cannot attach to process %ld: %s",
1056 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1057
1058 linux_add_process (pid, 1);
1059
1060 if (!non_stop)
1061 {
1062 struct thread_info *thread;
1063
1064 /* Don't ignore the initial SIGSTOP if we just attached to this
1065 process. It will be collected by wait shortly. */
1066 thread = find_thread_ptid (ptid_build (pid, pid, 0));
1067 thread->last_resume_kind = resume_stop;
1068 }
1069
1070 /* We must attach to every LWP. If /proc is mounted, use that to
1071 find them now. On the one hand, the inferior may be using raw
1072 clone instead of using pthreads. On the other hand, even if it
1073 is using pthreads, GDB may not be connected yet (thread_db needs
1074 to do symbol lookups, through qSymbol). Also, thread_db walks
1075 structures in the inferior's address space to find the list of
1076 threads/LWPs, and those structures may well be corrupted. Note
1077 that once thread_db is loaded, we'll still use it to list threads
1078 and associate pthread info with each LWP. */
1079 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1080 return 0;
1081 }
1082
1083 struct counter
1084 {
1085 int pid;
1086 int count;
1087 };
1088
1089 static int
1090 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1091 {
1092 struct counter *counter = args;
1093
1094 if (ptid_get_pid (entry->id) == counter->pid)
1095 {
1096 if (++counter->count > 1)
1097 return 1;
1098 }
1099
1100 return 0;
1101 }
1102
1103 static int
1104 last_thread_of_process_p (int pid)
1105 {
1106 struct counter counter = { pid , 0 };
1107
1108 return (find_inferior (&all_threads,
1109 second_thread_of_pid_p, &counter) == NULL);
1110 }
1111
1112 /* Kill LWP. */
1113
1114 static void
1115 linux_kill_one_lwp (struct lwp_info *lwp)
1116 {
1117 struct thread_info *thr = get_lwp_thread (lwp);
1118 int pid = lwpid_of (thr);
1119
1120 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1121 there is no signal context, and ptrace(PTRACE_KILL) (or
1122 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1123 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1124 alternative is to kill with SIGKILL. We only need one SIGKILL
1125 per process, not one for each thread. But since we still support
1126 linuxthreads, and we also support debugging programs using raw
1127 clone without CLONE_THREAD, we send one for each thread. For
1128 years, we used PTRACE_KILL only, so we're being a bit paranoid
1129 about some old kernels where PTRACE_KILL might work better
1130 (dubious if there are any such, but that's why it's paranoia), so
1131 we try SIGKILL first, PTRACE_KILL second, and so we're fine
1132 everywhere. */
1133
1134 errno = 0;
1135 kill_lwp (pid, SIGKILL);
1136 if (debug_threads)
1137 {
1138 int save_errno = errno;
1139
1140 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1141 target_pid_to_str (ptid_of (thr)),
1142 save_errno ? strerror (save_errno) : "OK");
1143 }
1144
1145 errno = 0;
1146 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1147 if (debug_threads)
1148 {
1149 int save_errno = errno;
1150
1151 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1152 target_pid_to_str (ptid_of (thr)),
1153 save_errno ? strerror (save_errno) : "OK");
1154 }
1155 }
1156
1157 /* Kill LWP and wait for it to die. */
1158
1159 static void
1160 kill_wait_lwp (struct lwp_info *lwp)
1161 {
1162 struct thread_info *thr = get_lwp_thread (lwp);
1163 int pid = ptid_get_pid (ptid_of (thr));
1164 int lwpid = ptid_get_lwp (ptid_of (thr));
1165 int wstat;
1166 int res;
1167
1168 if (debug_threads)
1169 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1170
1171 do
1172 {
1173 linux_kill_one_lwp (lwp);
1174
1175 /* Make sure it died. Notes:
1176
1177 - The loop is most likely unnecessary.
1178
1179 - We don't use linux_wait_for_event as that could delete lwps
1180 while we're iterating over them. We're not interested in
1181 any pending status at this point, only in making sure all
1182 wait status on the kernel side are collected until the
1183 process is reaped.
1184
1185 - We don't use __WALL here as the __WALL emulation relies on
1186 SIGCHLD, and killing a stopped process doesn't generate
1187 one, nor an exit status.
1188 */
1189 res = my_waitpid (lwpid, &wstat, 0);
1190 if (res == -1 && errno == ECHILD)
1191 res = my_waitpid (lwpid, &wstat, __WCLONE);
1192 } while (res > 0 && WIFSTOPPED (wstat));
1193
1194 /* Even if it was stopped, the child may have already disappeared.
1195 E.g., if it was killed by SIGKILL. */
1196 if (res < 0 && errno != ECHILD)
1197 perror_with_name ("kill_wait_lwp");
1198 }
1199
1200 /* Callback for `find_inferior'. Kills an lwp of a given process,
1201 except the leader. */
1202
1203 static int
1204 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1205 {
1206 struct thread_info *thread = (struct thread_info *) entry;
1207 struct lwp_info *lwp = get_thread_lwp (thread);
1208 int pid = * (int *) args;
1209
1210 if (ptid_get_pid (entry->id) != pid)
1211 return 0;
1212
1213 /* We avoid killing the first thread here, because of a Linux kernel (at
1214 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1215 the children get a chance to be reaped, it will remain a zombie
1216 forever. */
1217
1218 if (lwpid_of (thread) == pid)
1219 {
1220 if (debug_threads)
1221 debug_printf ("lkop: is last of process %s\n",
1222 target_pid_to_str (entry->id));
1223 return 0;
1224 }
1225
1226 kill_wait_lwp (lwp);
1227 return 0;
1228 }
1229
1230 static int
1231 linux_kill (int pid)
1232 {
1233 struct process_info *process;
1234 struct lwp_info *lwp;
1235
1236 process = find_process_pid (pid);
1237 if (process == NULL)
1238 return -1;
1239
1240 /* If we're killing a running inferior, make sure it is stopped
1241 first, as PTRACE_KILL will not work otherwise. */
1242 stop_all_lwps (0, NULL);
1243
1244 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1245
1246 /* See the comment in linux_kill_one_lwp. We did not kill the first
1247 thread in the list, so do so now. */
1248 lwp = find_lwp_pid (pid_to_ptid (pid));
1249
1250 if (lwp == NULL)
1251 {
1252 if (debug_threads)
1253 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1254 pid);
1255 }
1256 else
1257 kill_wait_lwp (lwp);
1258
1259 the_target->mourn (process);
1260
1261 /* Since we presently can only stop all lwps of all processes, we
1262 need to unstop lwps of other processes. */
1263 unstop_all_lwps (0, NULL);
1264 return 0;
1265 }
1266
1267 /* Get pending signal of THREAD, for detaching purposes. This is the
1268 signal the thread last stopped for, which we need to deliver to the
1269 thread when detaching, otherwise, it'd be suppressed/lost. */
1270
1271 static int
1272 get_detach_signal (struct thread_info *thread)
1273 {
1274 enum gdb_signal signo = GDB_SIGNAL_0;
1275 int status;
1276 struct lwp_info *lp = get_thread_lwp (thread);
1277
1278 if (lp->status_pending_p)
1279 status = lp->status_pending;
1280 else
1281 {
1282 /* If the thread had been suspended by gdbserver, and it stopped
1283 cleanly, then it'll have stopped with SIGSTOP. But we don't
1284 want to deliver that SIGSTOP. */
1285 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1286 || thread->last_status.value.sig == GDB_SIGNAL_0)
1287 return 0;
1288
1289 /* Otherwise, we may need to deliver the signal we
1290 intercepted. */
1291 status = lp->last_status;
1292 }
1293
1294 if (!WIFSTOPPED (status))
1295 {
1296 if (debug_threads)
1297 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1298 target_pid_to_str (ptid_of (thread)));
1299 return 0;
1300 }
1301
1302 /* Extended wait statuses aren't real SIGTRAPs. */
1303 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1304 {
1305 if (debug_threads)
1306 debug_printf ("GPS: lwp %s had stopped with extended "
1307 "status: no pending signal\n",
1308 target_pid_to_str (ptid_of (thread)));
1309 return 0;
1310 }
1311
1312 signo = gdb_signal_from_host (WSTOPSIG (status));
1313
1314 if (program_signals_p && !program_signals[signo])
1315 {
1316 if (debug_threads)
1317 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1318 target_pid_to_str (ptid_of (thread)),
1319 gdb_signal_to_string (signo));
1320 return 0;
1321 }
1322 else if (!program_signals_p
1323 /* If we have no way to know which signals GDB does not
1324 want to have passed to the program, assume
1325 SIGTRAP/SIGINT, which is GDB's default. */
1326 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1327 {
1328 if (debug_threads)
1329 debug_printf ("GPS: lwp %s had signal %s, "
1330 "but we don't know if we should pass it. "
1331 "Default to not.\n",
1332 target_pid_to_str (ptid_of (thread)),
1333 gdb_signal_to_string (signo));
1334 return 0;
1335 }
1336 else
1337 {
1338 if (debug_threads)
1339 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1340 target_pid_to_str (ptid_of (thread)),
1341 gdb_signal_to_string (signo));
1342
1343 return WSTOPSIG (status);
1344 }
1345 }
1346
1347 static int
1348 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1349 {
1350 struct thread_info *thread = (struct thread_info *) entry;
1351 struct lwp_info *lwp = get_thread_lwp (thread);
1352 int pid = * (int *) args;
1353 int sig;
1354
1355 if (ptid_get_pid (entry->id) != pid)
1356 return 0;
1357
1358 /* If there is a pending SIGSTOP, get rid of it. */
1359 if (lwp->stop_expected)
1360 {
1361 if (debug_threads)
1362 debug_printf ("Sending SIGCONT to %s\n",
1363 target_pid_to_str (ptid_of (thread)));
1364
1365 kill_lwp (lwpid_of (thread), SIGCONT);
1366 lwp->stop_expected = 0;
1367 }
1368
1369 /* Flush any pending changes to the process's registers. */
1370 regcache_invalidate_thread (thread);
1371
1372 /* Pass on any pending signal for this thread. */
1373 sig = get_detach_signal (thread);
1374
1375 /* Finally, let it resume. */
1376 if (the_low_target.prepare_to_resume != NULL)
1377 the_low_target.prepare_to_resume (lwp);
1378 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1379 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1380 error (_("Can't detach %s: %s"),
1381 target_pid_to_str (ptid_of (thread)),
1382 strerror (errno));
1383
1384 delete_lwp (lwp);
1385 return 0;
1386 }
1387
1388 static int
1389 linux_detach (int pid)
1390 {
1391 struct process_info *process;
1392
1393 process = find_process_pid (pid);
1394 if (process == NULL)
1395 return -1;
1396
1397 /* As there's a step over already in progress, let it finish first,
1398 otherwise nesting a stabilize_threads operation on top gets real
1399 messy. */
1400 complete_ongoing_step_over ();
1401
1402 /* Stop all threads before detaching. First, ptrace requires that
1403 the thread is stopped to sucessfully detach. Second, thread_db
1404 may need to uninstall thread event breakpoints from memory, which
1405 only works with a stopped process anyway. */
1406 stop_all_lwps (0, NULL);
1407
1408 #ifdef USE_THREAD_DB
1409 thread_db_detach (process);
1410 #endif
1411
1412 /* Stabilize threads (move out of jump pads). */
1413 stabilize_threads ();
1414
1415 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1416
1417 the_target->mourn (process);
1418
1419 /* Since we presently can only stop all lwps of all processes, we
1420 need to unstop lwps of other processes. */
1421 unstop_all_lwps (0, NULL);
1422 return 0;
1423 }
1424
1425 /* Remove all LWPs that belong to process PROC from the lwp list. */
1426
1427 static int
1428 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1429 {
1430 struct thread_info *thread = (struct thread_info *) entry;
1431 struct lwp_info *lwp = get_thread_lwp (thread);
1432 struct process_info *process = proc;
1433
1434 if (pid_of (thread) == pid_of (process))
1435 delete_lwp (lwp);
1436
1437 return 0;
1438 }
1439
1440 static void
1441 linux_mourn (struct process_info *process)
1442 {
1443 struct process_info_private *priv;
1444
1445 #ifdef USE_THREAD_DB
1446 thread_db_mourn (process);
1447 #endif
1448
1449 find_inferior (&all_threads, delete_lwp_callback, process);
1450
1451 /* Freeing all private data. */
1452 priv = process->priv;
1453 free (priv->arch_private);
1454 free (priv);
1455 process->priv = NULL;
1456
1457 remove_process (process);
1458 }
1459
1460 static void
1461 linux_join (int pid)
1462 {
1463 int status, ret;
1464
1465 do {
1466 ret = my_waitpid (pid, &status, 0);
1467 if (WIFEXITED (status) || WIFSIGNALED (status))
1468 break;
1469 } while (ret != -1 || errno != ECHILD);
1470 }
1471
1472 /* Return nonzero if the given thread is still alive. */
1473 static int
1474 linux_thread_alive (ptid_t ptid)
1475 {
1476 struct lwp_info *lwp = find_lwp_pid (ptid);
1477
1478 /* We assume we always know if a thread exits. If a whole process
1479 exited but we still haven't been able to report it to GDB, we'll
1480 hold on to the last lwp of the dead process. */
1481 if (lwp != NULL)
1482 return !lwp_is_marked_dead (lwp);
1483 else
1484 return 0;
1485 }
1486
1487 /* Return 1 if this lwp still has an interesting status pending. If
1488 not (e.g., it had stopped for a breakpoint that is gone), return
1489 false. */
1490
1491 static int
1492 thread_still_has_status_pending_p (struct thread_info *thread)
1493 {
1494 struct lwp_info *lp = get_thread_lwp (thread);
1495
1496 if (!lp->status_pending_p)
1497 return 0;
1498
1499 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1500 report any status pending the LWP may have. */
1501 if (thread->last_resume_kind == resume_stop
1502 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1503 return 0;
1504
1505 if (thread->last_resume_kind != resume_stop
1506 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1507 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1508 {
1509 struct thread_info *saved_thread;
1510 CORE_ADDR pc;
1511 int discard = 0;
1512
1513 gdb_assert (lp->last_status != 0);
1514
1515 pc = get_pc (lp);
1516
1517 saved_thread = current_thread;
1518 current_thread = thread;
1519
1520 if (pc != lp->stop_pc)
1521 {
1522 if (debug_threads)
1523 debug_printf ("PC of %ld changed\n",
1524 lwpid_of (thread));
1525 discard = 1;
1526 }
1527
1528 #if !USE_SIGTRAP_SIGINFO
1529 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1530 && !(*the_low_target.breakpoint_at) (pc))
1531 {
1532 if (debug_threads)
1533 debug_printf ("previous SW breakpoint of %ld gone\n",
1534 lwpid_of (thread));
1535 discard = 1;
1536 }
1537 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1538 && !hardware_breakpoint_inserted_here (pc))
1539 {
1540 if (debug_threads)
1541 debug_printf ("previous HW breakpoint of %ld gone\n",
1542 lwpid_of (thread));
1543 discard = 1;
1544 }
1545 #endif
1546
1547 current_thread = saved_thread;
1548
1549 if (discard)
1550 {
1551 if (debug_threads)
1552 debug_printf ("discarding pending breakpoint status\n");
1553 lp->status_pending_p = 0;
1554 return 0;
1555 }
1556 }
1557
1558 return 1;
1559 }
1560
1561 /* Return 1 if this lwp has an interesting status pending. */
1562 static int
1563 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1564 {
1565 struct thread_info *thread = (struct thread_info *) entry;
1566 struct lwp_info *lp = get_thread_lwp (thread);
1567 ptid_t ptid = * (ptid_t *) arg;
1568
1569 /* Check if we're only interested in events from a specific process
1570 or a specific LWP. */
1571 if (!ptid_match (ptid_of (thread), ptid))
1572 return 0;
1573
1574 if (lp->status_pending_p
1575 && !thread_still_has_status_pending_p (thread))
1576 {
1577 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1578 return 0;
1579 }
1580
1581 return lp->status_pending_p;
1582 }
1583
1584 static int
1585 same_lwp (struct inferior_list_entry *entry, void *data)
1586 {
1587 ptid_t ptid = *(ptid_t *) data;
1588 int lwp;
1589
1590 if (ptid_get_lwp (ptid) != 0)
1591 lwp = ptid_get_lwp (ptid);
1592 else
1593 lwp = ptid_get_pid (ptid);
1594
1595 if (ptid_get_lwp (entry->id) == lwp)
1596 return 1;
1597
1598 return 0;
1599 }
1600
1601 struct lwp_info *
1602 find_lwp_pid (ptid_t ptid)
1603 {
1604 struct inferior_list_entry *thread
1605 = find_inferior (&all_threads, same_lwp, &ptid);
1606
1607 if (thread == NULL)
1608 return NULL;
1609
1610 return get_thread_lwp ((struct thread_info *) thread);
1611 }
1612
1613 /* Return the number of known LWPs in the tgid given by PID. */
1614
1615 static int
1616 num_lwps (int pid)
1617 {
1618 struct inferior_list_entry *inf, *tmp;
1619 int count = 0;
1620
1621 ALL_INFERIORS (&all_threads, inf, tmp)
1622 {
1623 if (ptid_get_pid (inf->id) == pid)
1624 count++;
1625 }
1626
1627 return count;
1628 }
1629
1630 /* The arguments passed to iterate_over_lwps. */
1631
1632 struct iterate_over_lwps_args
1633 {
1634 /* The FILTER argument passed to iterate_over_lwps. */
1635 ptid_t filter;
1636
1637 /* The CALLBACK argument passed to iterate_over_lwps. */
1638 iterate_over_lwps_ftype *callback;
1639
1640 /* The DATA argument passed to iterate_over_lwps. */
1641 void *data;
1642 };
1643
1644 /* Callback for find_inferior used by iterate_over_lwps to filter
1645 calls to the callback supplied to that function. Returning a
1646 nonzero value causes find_inferiors to stop iterating and return
1647 the current inferior_list_entry. Returning zero indicates that
1648 find_inferiors should continue iterating. */
1649
1650 static int
1651 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1652 {
1653 struct iterate_over_lwps_args *args
1654 = (struct iterate_over_lwps_args *) args_p;
1655
1656 if (ptid_match (entry->id, args->filter))
1657 {
1658 struct thread_info *thr = (struct thread_info *) entry;
1659 struct lwp_info *lwp = get_thread_lwp (thr);
1660
1661 return (*args->callback) (lwp, args->data);
1662 }
1663
1664 return 0;
1665 }
1666
1667 /* See nat/linux-nat.h. */
1668
1669 struct lwp_info *
1670 iterate_over_lwps (ptid_t filter,
1671 iterate_over_lwps_ftype callback,
1672 void *data)
1673 {
1674 struct iterate_over_lwps_args args = {filter, callback, data};
1675 struct inferior_list_entry *entry;
1676
1677 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1678 if (entry == NULL)
1679 return NULL;
1680
1681 return get_thread_lwp ((struct thread_info *) entry);
1682 }
1683
1684 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1685 their exits until all other threads in the group have exited. */
1686
1687 static void
1688 check_zombie_leaders (void)
1689 {
1690 struct process_info *proc, *tmp;
1691
1692 ALL_PROCESSES (proc, tmp)
1693 {
1694 pid_t leader_pid = pid_of (proc);
1695 struct lwp_info *leader_lp;
1696
1697 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1698
1699 if (debug_threads)
1700 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1701 "num_lwps=%d, zombie=%d\n",
1702 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1703 linux_proc_pid_is_zombie (leader_pid));
1704
1705 if (leader_lp != NULL && !leader_lp->stopped
1706 /* Check if there are other threads in the group, as we may
1707 have raced with the inferior simply exiting. */
1708 && !last_thread_of_process_p (leader_pid)
1709 && linux_proc_pid_is_zombie (leader_pid))
1710 {
1711 /* A leader zombie can mean one of two things:
1712
1713 - It exited, and there's an exit status pending
1714 available, or only the leader exited (not the whole
1715 program). In the latter case, we can't waitpid the
1716 leader's exit status until all other threads are gone.
1717
1718 - There are 3 or more threads in the group, and a thread
1719 other than the leader exec'd. On an exec, the Linux
1720 kernel destroys all other threads (except the execing
1721 one) in the thread group, and resets the execing thread's
1722 tid to the tgid. No exit notification is sent for the
1723 execing thread -- from the ptracer's perspective, it
1724 appears as though the execing thread just vanishes.
1725 Until we reap all other threads except the leader and the
1726 execing thread, the leader will be zombie, and the
1727 execing thread will be in `D (disc sleep)'. As soon as
1728 all other threads are reaped, the execing thread changes
1729 it's tid to the tgid, and the previous (zombie) leader
1730 vanishes, giving place to the "new" leader. We could try
1731 distinguishing the exit and exec cases, by waiting once
1732 more, and seeing if something comes out, but it doesn't
1733 sound useful. The previous leader _does_ go away, and
1734 we'll re-add the new one once we see the exec event
1735 (which is just the same as what would happen if the
1736 previous leader did exit voluntarily before some other
1737 thread execs). */
1738
1739 if (debug_threads)
1740 fprintf (stderr,
1741 "CZL: Thread group leader %d zombie "
1742 "(it exited, or another thread execd).\n",
1743 leader_pid);
1744
1745 delete_lwp (leader_lp);
1746 }
1747 }
1748 }
1749
1750 /* Callback for `find_inferior'. Returns the first LWP that is not
1751 stopped. ARG is a PTID filter. */
1752
1753 static int
1754 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1755 {
1756 struct thread_info *thr = (struct thread_info *) entry;
1757 struct lwp_info *lwp;
1758 ptid_t filter = *(ptid_t *) arg;
1759
1760 if (!ptid_match (ptid_of (thr), filter))
1761 return 0;
1762
1763 lwp = get_thread_lwp (thr);
1764 if (!lwp->stopped)
1765 return 1;
1766
1767 return 0;
1768 }
1769
1770 /* Increment LWP's suspend count. */
1771
1772 static void
1773 lwp_suspended_inc (struct lwp_info *lwp)
1774 {
1775 lwp->suspended++;
1776
1777 if (debug_threads && lwp->suspended > 4)
1778 {
1779 struct thread_info *thread = get_lwp_thread (lwp);
1780
1781 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1782 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1783 }
1784 }
1785
1786 /* Decrement LWP's suspend count. */
1787
1788 static void
1789 lwp_suspended_decr (struct lwp_info *lwp)
1790 {
1791 lwp->suspended--;
1792
1793 if (lwp->suspended < 0)
1794 {
1795 struct thread_info *thread = get_lwp_thread (lwp);
1796
1797 internal_error (__FILE__, __LINE__,
1798 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1799 lwp->suspended);
1800 }
1801 }
1802
1803 /* This function should only be called if the LWP got a SIGTRAP.
1804
1805 Handle any tracepoint steps or hits. Return true if a tracepoint
1806 event was handled, 0 otherwise. */
1807
1808 static int
1809 handle_tracepoints (struct lwp_info *lwp)
1810 {
1811 struct thread_info *tinfo = get_lwp_thread (lwp);
1812 int tpoint_related_event = 0;
1813
1814 gdb_assert (lwp->suspended == 0);
1815
1816 /* If this tracepoint hit causes a tracing stop, we'll immediately
1817 uninsert tracepoints. To do this, we temporarily pause all
1818 threads, unpatch away, and then unpause threads. We need to make
1819 sure the unpausing doesn't resume LWP too. */
1820 lwp_suspended_inc (lwp);
1821
1822 /* And we need to be sure that any all-threads-stopping doesn't try
1823 to move threads out of the jump pads, as it could deadlock the
1824 inferior (LWP could be in the jump pad, maybe even holding the
1825 lock.) */
1826
1827 /* Do any necessary step collect actions. */
1828 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1829
1830 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1831
1832 /* See if we just hit a tracepoint and do its main collect
1833 actions. */
1834 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1835
1836 lwp_suspended_decr (lwp);
1837
1838 gdb_assert (lwp->suspended == 0);
1839 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1840
1841 if (tpoint_related_event)
1842 {
1843 if (debug_threads)
1844 debug_printf ("got a tracepoint event\n");
1845 return 1;
1846 }
1847
1848 return 0;
1849 }
1850
1851 /* Convenience wrapper. Returns true if LWP is presently collecting a
1852 fast tracepoint. */
1853
1854 static int
1855 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1856 struct fast_tpoint_collect_status *status)
1857 {
1858 CORE_ADDR thread_area;
1859 struct thread_info *thread = get_lwp_thread (lwp);
1860
1861 if (the_low_target.get_thread_area == NULL)
1862 return 0;
1863
1864 /* Get the thread area address. This is used to recognize which
1865 thread is which when tracing with the in-process agent library.
1866 We don't read anything from the address, and treat it as opaque;
1867 it's the address itself that we assume is unique per-thread. */
1868 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1869 return 0;
1870
1871 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1872 }
1873
1874 /* The reason we resume in the caller, is because we want to be able
1875 to pass lwp->status_pending as WSTAT, and we need to clear
1876 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1877 refuses to resume. */
1878
1879 static int
1880 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1881 {
1882 struct thread_info *saved_thread;
1883
1884 saved_thread = current_thread;
1885 current_thread = get_lwp_thread (lwp);
1886
1887 if ((wstat == NULL
1888 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1889 && supports_fast_tracepoints ()
1890 && agent_loaded_p ())
1891 {
1892 struct fast_tpoint_collect_status status;
1893 int r;
1894
1895 if (debug_threads)
1896 debug_printf ("Checking whether LWP %ld needs to move out of the "
1897 "jump pad.\n",
1898 lwpid_of (current_thread));
1899
1900 r = linux_fast_tracepoint_collecting (lwp, &status);
1901
1902 if (wstat == NULL
1903 || (WSTOPSIG (*wstat) != SIGILL
1904 && WSTOPSIG (*wstat) != SIGFPE
1905 && WSTOPSIG (*wstat) != SIGSEGV
1906 && WSTOPSIG (*wstat) != SIGBUS))
1907 {
1908 lwp->collecting_fast_tracepoint = r;
1909
1910 if (r != 0)
1911 {
1912 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1913 {
1914 /* Haven't executed the original instruction yet.
1915 Set breakpoint there, and wait till it's hit,
1916 then single-step until exiting the jump pad. */
1917 lwp->exit_jump_pad_bkpt
1918 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1919 }
1920
1921 if (debug_threads)
1922 debug_printf ("Checking whether LWP %ld needs to move out of "
1923 "the jump pad...it does\n",
1924 lwpid_of (current_thread));
1925 current_thread = saved_thread;
1926
1927 return 1;
1928 }
1929 }
1930 else
1931 {
1932 /* If we get a synchronous signal while collecting, *and*
1933 while executing the (relocated) original instruction,
1934 reset the PC to point at the tpoint address, before
1935 reporting to GDB. Otherwise, it's an IPA lib bug: just
1936 report the signal to GDB, and pray for the best. */
1937
1938 lwp->collecting_fast_tracepoint = 0;
1939
1940 if (r != 0
1941 && (status.adjusted_insn_addr <= lwp->stop_pc
1942 && lwp->stop_pc < status.adjusted_insn_addr_end))
1943 {
1944 siginfo_t info;
1945 struct regcache *regcache;
1946
1947 /* The si_addr on a few signals references the address
1948 of the faulting instruction. Adjust that as
1949 well. */
1950 if ((WSTOPSIG (*wstat) == SIGILL
1951 || WSTOPSIG (*wstat) == SIGFPE
1952 || WSTOPSIG (*wstat) == SIGBUS
1953 || WSTOPSIG (*wstat) == SIGSEGV)
1954 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
1955 (PTRACE_TYPE_ARG3) 0, &info) == 0
1956 /* Final check just to make sure we don't clobber
1957 the siginfo of non-kernel-sent signals. */
1958 && (uintptr_t) info.si_addr == lwp->stop_pc)
1959 {
1960 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1961 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
1962 (PTRACE_TYPE_ARG3) 0, &info);
1963 }
1964
1965 regcache = get_thread_regcache (current_thread, 1);
1966 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1967 lwp->stop_pc = status.tpoint_addr;
1968
1969 /* Cancel any fast tracepoint lock this thread was
1970 holding. */
1971 force_unlock_trace_buffer ();
1972 }
1973
1974 if (lwp->exit_jump_pad_bkpt != NULL)
1975 {
1976 if (debug_threads)
1977 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
1978 "stopping all threads momentarily.\n");
1979
1980 stop_all_lwps (1, lwp);
1981
1982 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1983 lwp->exit_jump_pad_bkpt = NULL;
1984
1985 unstop_all_lwps (1, lwp);
1986
1987 gdb_assert (lwp->suspended >= 0);
1988 }
1989 }
1990 }
1991
1992 if (debug_threads)
1993 debug_printf ("Checking whether LWP %ld needs to move out of the "
1994 "jump pad...no\n",
1995 lwpid_of (current_thread));
1996
1997 current_thread = saved_thread;
1998 return 0;
1999 }
2000
2001 /* Enqueue one signal in the "signals to report later when out of the
2002 jump pad" list. */
2003
2004 static void
2005 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2006 {
2007 struct pending_signals *p_sig;
2008 struct thread_info *thread = get_lwp_thread (lwp);
2009
2010 if (debug_threads)
2011 debug_printf ("Deferring signal %d for LWP %ld.\n",
2012 WSTOPSIG (*wstat), lwpid_of (thread));
2013
2014 if (debug_threads)
2015 {
2016 struct pending_signals *sig;
2017
2018 for (sig = lwp->pending_signals_to_report;
2019 sig != NULL;
2020 sig = sig->prev)
2021 debug_printf (" Already queued %d\n",
2022 sig->signal);
2023
2024 debug_printf (" (no more currently queued signals)\n");
2025 }
2026
2027 /* Don't enqueue non-RT signals if they are already in the deferred
2028 queue. (SIGSTOP being the easiest signal to see ending up here
2029 twice) */
2030 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2031 {
2032 struct pending_signals *sig;
2033
2034 for (sig = lwp->pending_signals_to_report;
2035 sig != NULL;
2036 sig = sig->prev)
2037 {
2038 if (sig->signal == WSTOPSIG (*wstat))
2039 {
2040 if (debug_threads)
2041 debug_printf ("Not requeuing already queued non-RT signal %d"
2042 " for LWP %ld\n",
2043 sig->signal,
2044 lwpid_of (thread));
2045 return;
2046 }
2047 }
2048 }
2049
2050 p_sig = XCNEW (struct pending_signals);
2051 p_sig->prev = lwp->pending_signals_to_report;
2052 p_sig->signal = WSTOPSIG (*wstat);
2053
2054 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2055 &p_sig->info);
2056
2057 lwp->pending_signals_to_report = p_sig;
2058 }
2059
2060 /* Dequeue one signal from the "signals to report later when out of
2061 the jump pad" list. */
2062
2063 static int
2064 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2065 {
2066 struct thread_info *thread = get_lwp_thread (lwp);
2067
2068 if (lwp->pending_signals_to_report != NULL)
2069 {
2070 struct pending_signals **p_sig;
2071
2072 p_sig = &lwp->pending_signals_to_report;
2073 while ((*p_sig)->prev != NULL)
2074 p_sig = &(*p_sig)->prev;
2075
2076 *wstat = W_STOPCODE ((*p_sig)->signal);
2077 if ((*p_sig)->info.si_signo != 0)
2078 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2079 &(*p_sig)->info);
2080 free (*p_sig);
2081 *p_sig = NULL;
2082
2083 if (debug_threads)
2084 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2085 WSTOPSIG (*wstat), lwpid_of (thread));
2086
2087 if (debug_threads)
2088 {
2089 struct pending_signals *sig;
2090
2091 for (sig = lwp->pending_signals_to_report;
2092 sig != NULL;
2093 sig = sig->prev)
2094 debug_printf (" Still queued %d\n",
2095 sig->signal);
2096
2097 debug_printf (" (no more queued signals)\n");
2098 }
2099
2100 return 1;
2101 }
2102
2103 return 0;
2104 }
2105
2106 /* Fetch the possibly triggered data watchpoint info and store it in
2107 CHILD.
2108
2109 On some archs, like x86, that use debug registers to set
2110 watchpoints, it's possible that the way to know which watched
2111 address trapped, is to check the register that is used to select
2112 which address to watch. Problem is, between setting the watchpoint
2113 and reading back which data address trapped, the user may change
2114 the set of watchpoints, and, as a consequence, GDB changes the
2115 debug registers in the inferior. To avoid reading back a stale
2116 stopped-data-address when that happens, we cache in LP the fact
2117 that a watchpoint trapped, and the corresponding data address, as
2118 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2119 registers meanwhile, we have the cached data we can rely on. */
2120
2121 static int
2122 check_stopped_by_watchpoint (struct lwp_info *child)
2123 {
2124 if (the_low_target.stopped_by_watchpoint != NULL)
2125 {
2126 struct thread_info *saved_thread;
2127
2128 saved_thread = current_thread;
2129 current_thread = get_lwp_thread (child);
2130
2131 if (the_low_target.stopped_by_watchpoint ())
2132 {
2133 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2134
2135 if (the_low_target.stopped_data_address != NULL)
2136 child->stopped_data_address
2137 = the_low_target.stopped_data_address ();
2138 else
2139 child->stopped_data_address = 0;
2140 }
2141
2142 current_thread = saved_thread;
2143 }
2144
2145 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2146 }
2147
2148 /* Return the ptrace options that we want to try to enable. */
2149
2150 static int
2151 linux_low_ptrace_options (int attached)
2152 {
2153 int options = 0;
2154
2155 if (!attached)
2156 options |= PTRACE_O_EXITKILL;
2157
2158 if (report_fork_events)
2159 options |= PTRACE_O_TRACEFORK;
2160
2161 if (report_vfork_events)
2162 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2163
2164 if (report_exec_events)
2165 options |= PTRACE_O_TRACEEXEC;
2166
2167 return options;
2168 }
2169
2170 /* Do low-level handling of the event, and check if we should go on
2171 and pass it to caller code. Return the affected lwp if we are, or
2172 NULL otherwise. */
2173
2174 static struct lwp_info *
2175 linux_low_filter_event (int lwpid, int wstat)
2176 {
2177 struct lwp_info *child;
2178 struct thread_info *thread;
2179 int have_stop_pc = 0;
2180
2181 child = find_lwp_pid (pid_to_ptid (lwpid));
2182
2183 /* Check for stop events reported by a process we didn't already
2184 know about - anything not already in our LWP list.
2185
2186 If we're expecting to receive stopped processes after
2187 fork, vfork, and clone events, then we'll just add the
2188 new one to our list and go back to waiting for the event
2189 to be reported - the stopped process might be returned
2190 from waitpid before or after the event is.
2191
2192 But note the case of a non-leader thread exec'ing after the
2193 leader having exited, and gone from our lists (because
2194 check_zombie_leaders deleted it). The non-leader thread
2195 changes its tid to the tgid. */
2196
2197 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2198 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2199 {
2200 ptid_t child_ptid;
2201
2202 /* A multi-thread exec after we had seen the leader exiting. */
2203 if (debug_threads)
2204 {
2205 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2206 "after exec.\n", lwpid);
2207 }
2208
2209 child_ptid = ptid_build (lwpid, lwpid, 0);
2210 child = add_lwp (child_ptid);
2211 child->stopped = 1;
2212 current_thread = child->thread;
2213 }
2214
2215 /* If we didn't find a process, one of two things presumably happened:
2216 - A process we started and then detached from has exited. Ignore it.
2217 - A process we are controlling has forked and the new child's stop
2218 was reported to us by the kernel. Save its PID. */
2219 if (child == NULL && WIFSTOPPED (wstat))
2220 {
2221 add_to_pid_list (&stopped_pids, lwpid, wstat);
2222 return NULL;
2223 }
2224 else if (child == NULL)
2225 return NULL;
2226
2227 thread = get_lwp_thread (child);
2228
2229 child->stopped = 1;
2230
2231 child->last_status = wstat;
2232
2233 /* Check if the thread has exited. */
2234 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2235 {
2236 if (debug_threads)
2237 debug_printf ("LLFE: %d exited.\n", lwpid);
2238 if (num_lwps (pid_of (thread)) > 1)
2239 {
2240
2241 /* If there is at least one more LWP, then the exit signal was
2242 not the end of the debugged application and should be
2243 ignored. */
2244 delete_lwp (child);
2245 return NULL;
2246 }
2247 else
2248 {
2249 /* This was the last lwp in the process. Since events are
2250 serialized to GDB core, and we can't report this one
2251 right now, but GDB core and the other target layers will
2252 want to be notified about the exit code/signal, leave the
2253 status pending for the next time we're able to report
2254 it. */
2255 mark_lwp_dead (child, wstat);
2256 return child;
2257 }
2258 }
2259
2260 gdb_assert (WIFSTOPPED (wstat));
2261
2262 if (WIFSTOPPED (wstat))
2263 {
2264 struct process_info *proc;
2265
2266 /* Architecture-specific setup after inferior is running. */
2267 proc = find_process_pid (pid_of (thread));
2268 if (proc->tdesc == NULL)
2269 {
2270 if (proc->attached)
2271 {
2272 /* This needs to happen after we have attached to the
2273 inferior and it is stopped for the first time, but
2274 before we access any inferior registers. */
2275 linux_arch_setup_thread (thread);
2276 }
2277 else
2278 {
2279 /* The process is started, but GDBserver will do
2280 architecture-specific setup after the program stops at
2281 the first instruction. */
2282 child->status_pending_p = 1;
2283 child->status_pending = wstat;
2284 return child;
2285 }
2286 }
2287 }
2288
2289 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2290 {
2291 struct process_info *proc = find_process_pid (pid_of (thread));
2292 int options = linux_low_ptrace_options (proc->attached);
2293
2294 linux_enable_event_reporting (lwpid, options);
2295 child->must_set_ptrace_flags = 0;
2296 }
2297
2298 /* Be careful to not overwrite stop_pc until
2299 check_stopped_by_breakpoint is called. */
2300 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2301 && linux_is_extended_waitstatus (wstat))
2302 {
2303 child->stop_pc = get_pc (child);
2304 if (handle_extended_wait (&child, wstat))
2305 {
2306 /* The event has been handled, so just return without
2307 reporting it. */
2308 return NULL;
2309 }
2310 }
2311
2312 /* Check first whether this was a SW/HW breakpoint before checking
2313 watchpoints, because at least s390 can't tell the data address of
2314 hardware watchpoint hits, and returns stopped-by-watchpoint as
2315 long as there's a watchpoint set. */
2316 if (WIFSTOPPED (wstat) && linux_wstatus_maybe_breakpoint (wstat))
2317 {
2318 if (check_stopped_by_breakpoint (child))
2319 have_stop_pc = 1;
2320 }
2321
2322 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2323 or hardware watchpoint. Check which is which if we got
2324 TARGET_STOPPED_BY_HW_BREAKPOINT. Likewise, we may have single
2325 stepped an instruction that triggered a watchpoint. In that
2326 case, on some architectures (such as x86), instead of
2327 TRAP_HWBKPT, si_code indicates TRAP_TRACE, and we need to check
2328 the debug registers separately. */
2329 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2330 && child->stop_reason != TARGET_STOPPED_BY_SW_BREAKPOINT)
2331 check_stopped_by_watchpoint (child);
2332
2333 if (!have_stop_pc)
2334 child->stop_pc = get_pc (child);
2335
2336 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2337 && child->stop_expected)
2338 {
2339 if (debug_threads)
2340 debug_printf ("Expected stop.\n");
2341 child->stop_expected = 0;
2342
2343 if (thread->last_resume_kind == resume_stop)
2344 {
2345 /* We want to report the stop to the core. Treat the
2346 SIGSTOP as a normal event. */
2347 if (debug_threads)
2348 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2349 target_pid_to_str (ptid_of (thread)));
2350 }
2351 else if (stopping_threads != NOT_STOPPING_THREADS)
2352 {
2353 /* Stopping threads. We don't want this SIGSTOP to end up
2354 pending. */
2355 if (debug_threads)
2356 debug_printf ("LLW: SIGSTOP caught for %s "
2357 "while stopping threads.\n",
2358 target_pid_to_str (ptid_of (thread)));
2359 return NULL;
2360 }
2361 else
2362 {
2363 /* This is a delayed SIGSTOP. Filter out the event. */
2364 if (debug_threads)
2365 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2366 child->stepping ? "step" : "continue",
2367 target_pid_to_str (ptid_of (thread)));
2368
2369 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2370 return NULL;
2371 }
2372 }
2373
2374 child->status_pending_p = 1;
2375 child->status_pending = wstat;
2376 return child;
2377 }
2378
2379 /* Resume LWPs that are currently stopped without any pending status
2380 to report, but are resumed from the core's perspective. */
2381
2382 static void
2383 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2384 {
2385 struct thread_info *thread = (struct thread_info *) entry;
2386 struct lwp_info *lp = get_thread_lwp (thread);
2387
2388 if (lp->stopped
2389 && !lp->suspended
2390 && !lp->status_pending_p
2391 && thread->last_resume_kind != resume_stop
2392 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2393 {
2394 int step = thread->last_resume_kind == resume_step;
2395
2396 if (debug_threads)
2397 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2398 target_pid_to_str (ptid_of (thread)),
2399 paddress (lp->stop_pc),
2400 step);
2401
2402 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2403 }
2404 }
2405
2406 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2407 match FILTER_PTID (leaving others pending). The PTIDs can be:
2408 minus_one_ptid, to specify any child; a pid PTID, specifying all
2409 lwps of a thread group; or a PTID representing a single lwp. Store
2410 the stop status through the status pointer WSTAT. OPTIONS is
2411 passed to the waitpid call. Return 0 if no event was found and
2412 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2413 was found. Return the PID of the stopped child otherwise. */
2414
2415 static int
2416 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2417 int *wstatp, int options)
2418 {
2419 struct thread_info *event_thread;
2420 struct lwp_info *event_child, *requested_child;
2421 sigset_t block_mask, prev_mask;
2422
2423 retry:
2424 /* N.B. event_thread points to the thread_info struct that contains
2425 event_child. Keep them in sync. */
2426 event_thread = NULL;
2427 event_child = NULL;
2428 requested_child = NULL;
2429
2430 /* Check for a lwp with a pending status. */
2431
2432 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2433 {
2434 event_thread = (struct thread_info *)
2435 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2436 if (event_thread != NULL)
2437 event_child = get_thread_lwp (event_thread);
2438 if (debug_threads && event_thread)
2439 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2440 }
2441 else if (!ptid_equal (filter_ptid, null_ptid))
2442 {
2443 requested_child = find_lwp_pid (filter_ptid);
2444
2445 if (stopping_threads == NOT_STOPPING_THREADS
2446 && requested_child->status_pending_p
2447 && requested_child->collecting_fast_tracepoint)
2448 {
2449 enqueue_one_deferred_signal (requested_child,
2450 &requested_child->status_pending);
2451 requested_child->status_pending_p = 0;
2452 requested_child->status_pending = 0;
2453 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2454 }
2455
2456 if (requested_child->suspended
2457 && requested_child->status_pending_p)
2458 {
2459 internal_error (__FILE__, __LINE__,
2460 "requesting an event out of a"
2461 " suspended child?");
2462 }
2463
2464 if (requested_child->status_pending_p)
2465 {
2466 event_child = requested_child;
2467 event_thread = get_lwp_thread (event_child);
2468 }
2469 }
2470
2471 if (event_child != NULL)
2472 {
2473 if (debug_threads)
2474 debug_printf ("Got an event from pending child %ld (%04x)\n",
2475 lwpid_of (event_thread), event_child->status_pending);
2476 *wstatp = event_child->status_pending;
2477 event_child->status_pending_p = 0;
2478 event_child->status_pending = 0;
2479 current_thread = event_thread;
2480 return lwpid_of (event_thread);
2481 }
2482
2483 /* But if we don't find a pending event, we'll have to wait.
2484
2485 We only enter this loop if no process has a pending wait status.
2486 Thus any action taken in response to a wait status inside this
2487 loop is responding as soon as we detect the status, not after any
2488 pending events. */
2489
2490 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2491 all signals while here. */
2492 sigfillset (&block_mask);
2493 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2494
2495 /* Always pull all events out of the kernel. We'll randomly select
2496 an event LWP out of all that have events, to prevent
2497 starvation. */
2498 while (event_child == NULL)
2499 {
2500 pid_t ret = 0;
2501
2502 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2503 quirks:
2504
2505 - If the thread group leader exits while other threads in the
2506 thread group still exist, waitpid(TGID, ...) hangs. That
2507 waitpid won't return an exit status until the other threads
2508 in the group are reaped.
2509
2510 - When a non-leader thread execs, that thread just vanishes
2511 without reporting an exit (so we'd hang if we waited for it
2512 explicitly in that case). The exec event is reported to
2513 the TGID pid. */
2514 errno = 0;
2515 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2516
2517 if (debug_threads)
2518 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2519 ret, errno ? strerror (errno) : "ERRNO-OK");
2520
2521 if (ret > 0)
2522 {
2523 if (debug_threads)
2524 {
2525 debug_printf ("LLW: waitpid %ld received %s\n",
2526 (long) ret, status_to_str (*wstatp));
2527 }
2528
2529 /* Filter all events. IOW, leave all events pending. We'll
2530 randomly select an event LWP out of all that have events
2531 below. */
2532 linux_low_filter_event (ret, *wstatp);
2533 /* Retry until nothing comes out of waitpid. A single
2534 SIGCHLD can indicate more than one child stopped. */
2535 continue;
2536 }
2537
2538 /* Now that we've pulled all events out of the kernel, resume
2539 LWPs that don't have an interesting event to report. */
2540 if (stopping_threads == NOT_STOPPING_THREADS)
2541 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2542
2543 /* ... and find an LWP with a status to report to the core, if
2544 any. */
2545 event_thread = (struct thread_info *)
2546 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2547 if (event_thread != NULL)
2548 {
2549 event_child = get_thread_lwp (event_thread);
2550 *wstatp = event_child->status_pending;
2551 event_child->status_pending_p = 0;
2552 event_child->status_pending = 0;
2553 break;
2554 }
2555
2556 /* Check for zombie thread group leaders. Those can't be reaped
2557 until all other threads in the thread group are. */
2558 check_zombie_leaders ();
2559
2560 /* If there are no resumed children left in the set of LWPs we
2561 want to wait for, bail. We can't just block in
2562 waitpid/sigsuspend, because lwps might have been left stopped
2563 in trace-stop state, and we'd be stuck forever waiting for
2564 their status to change (which would only happen if we resumed
2565 them). Even if WNOHANG is set, this return code is preferred
2566 over 0 (below), as it is more detailed. */
2567 if ((find_inferior (&all_threads,
2568 not_stopped_callback,
2569 &wait_ptid) == NULL))
2570 {
2571 if (debug_threads)
2572 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2573 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2574 return -1;
2575 }
2576
2577 /* No interesting event to report to the caller. */
2578 if ((options & WNOHANG))
2579 {
2580 if (debug_threads)
2581 debug_printf ("WNOHANG set, no event found\n");
2582
2583 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2584 return 0;
2585 }
2586
2587 /* Block until we get an event reported with SIGCHLD. */
2588 if (debug_threads)
2589 debug_printf ("sigsuspend'ing\n");
2590
2591 sigsuspend (&prev_mask);
2592 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2593 goto retry;
2594 }
2595
2596 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2597
2598 current_thread = event_thread;
2599
2600 /* Check for thread exit. */
2601 if (! WIFSTOPPED (*wstatp))
2602 {
2603 gdb_assert (last_thread_of_process_p (pid_of (event_thread)));
2604
2605 if (debug_threads)
2606 debug_printf ("LWP %d is the last lwp of process. "
2607 "Process %ld exiting.\n",
2608 pid_of (event_thread), lwpid_of (event_thread));
2609 return lwpid_of (event_thread);
2610 }
2611
2612 return lwpid_of (event_thread);
2613 }
2614
2615 /* Wait for an event from child(ren) PTID. PTIDs can be:
2616 minus_one_ptid, to specify any child; a pid PTID, specifying all
2617 lwps of a thread group; or a PTID representing a single lwp. Store
2618 the stop status through the status pointer WSTAT. OPTIONS is
2619 passed to the waitpid call. Return 0 if no event was found and
2620 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2621 was found. Return the PID of the stopped child otherwise. */
2622
2623 static int
2624 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2625 {
2626 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2627 }
2628
2629 /* Count the LWP's that have had events. */
2630
2631 static int
2632 count_events_callback (struct inferior_list_entry *entry, void *data)
2633 {
2634 struct thread_info *thread = (struct thread_info *) entry;
2635 struct lwp_info *lp = get_thread_lwp (thread);
2636 int *count = data;
2637
2638 gdb_assert (count != NULL);
2639
2640 /* Count only resumed LWPs that have an event pending. */
2641 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2642 && lp->status_pending_p)
2643 (*count)++;
2644
2645 return 0;
2646 }
2647
2648 /* Select the LWP (if any) that is currently being single-stepped. */
2649
2650 static int
2651 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2652 {
2653 struct thread_info *thread = (struct thread_info *) entry;
2654 struct lwp_info *lp = get_thread_lwp (thread);
2655
2656 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2657 && thread->last_resume_kind == resume_step
2658 && lp->status_pending_p)
2659 return 1;
2660 else
2661 return 0;
2662 }
2663
2664 /* Select the Nth LWP that has had an event. */
2665
2666 static int
2667 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2668 {
2669 struct thread_info *thread = (struct thread_info *) entry;
2670 struct lwp_info *lp = get_thread_lwp (thread);
2671 int *selector = data;
2672
2673 gdb_assert (selector != NULL);
2674
2675 /* Select only resumed LWPs that have an event pending. */
2676 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2677 && lp->status_pending_p)
2678 if ((*selector)-- == 0)
2679 return 1;
2680
2681 return 0;
2682 }
2683
2684 /* Select one LWP out of those that have events pending. */
2685
2686 static void
2687 select_event_lwp (struct lwp_info **orig_lp)
2688 {
2689 int num_events = 0;
2690 int random_selector;
2691 struct thread_info *event_thread = NULL;
2692
2693 /* In all-stop, give preference to the LWP that is being
2694 single-stepped. There will be at most one, and it's the LWP that
2695 the core is most interested in. If we didn't do this, then we'd
2696 have to handle pending step SIGTRAPs somehow in case the core
2697 later continues the previously-stepped thread, otherwise we'd
2698 report the pending SIGTRAP, and the core, not having stepped the
2699 thread, wouldn't understand what the trap was for, and therefore
2700 would report it to the user as a random signal. */
2701 if (!non_stop)
2702 {
2703 event_thread
2704 = (struct thread_info *) find_inferior (&all_threads,
2705 select_singlestep_lwp_callback,
2706 NULL);
2707 if (event_thread != NULL)
2708 {
2709 if (debug_threads)
2710 debug_printf ("SEL: Select single-step %s\n",
2711 target_pid_to_str (ptid_of (event_thread)));
2712 }
2713 }
2714 if (event_thread == NULL)
2715 {
2716 /* No single-stepping LWP. Select one at random, out of those
2717 which have had events. */
2718
2719 /* First see how many events we have. */
2720 find_inferior (&all_threads, count_events_callback, &num_events);
2721 gdb_assert (num_events > 0);
2722
2723 /* Now randomly pick a LWP out of those that have had
2724 events. */
2725 random_selector = (int)
2726 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2727
2728 if (debug_threads && num_events > 1)
2729 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2730 num_events, random_selector);
2731
2732 event_thread
2733 = (struct thread_info *) find_inferior (&all_threads,
2734 select_event_lwp_callback,
2735 &random_selector);
2736 }
2737
2738 if (event_thread != NULL)
2739 {
2740 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2741
2742 /* Switch the event LWP. */
2743 *orig_lp = event_lp;
2744 }
2745 }
2746
2747 /* Decrement the suspend count of an LWP. */
2748
2749 static int
2750 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2751 {
2752 struct thread_info *thread = (struct thread_info *) entry;
2753 struct lwp_info *lwp = get_thread_lwp (thread);
2754
2755 /* Ignore EXCEPT. */
2756 if (lwp == except)
2757 return 0;
2758
2759 lwp_suspended_decr (lwp);
2760 return 0;
2761 }
2762
2763 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2764 NULL. */
2765
2766 static void
2767 unsuspend_all_lwps (struct lwp_info *except)
2768 {
2769 find_inferior (&all_threads, unsuspend_one_lwp, except);
2770 }
2771
2772 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2773 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2774 void *data);
2775 static int lwp_running (struct inferior_list_entry *entry, void *data);
2776 static ptid_t linux_wait_1 (ptid_t ptid,
2777 struct target_waitstatus *ourstatus,
2778 int target_options);
2779
2780 /* Stabilize threads (move out of jump pads).
2781
2782 If a thread is midway collecting a fast tracepoint, we need to
2783 finish the collection and move it out of the jump pad before
2784 reporting the signal.
2785
2786 This avoids recursion while collecting (when a signal arrives
2787 midway, and the signal handler itself collects), which would trash
2788 the trace buffer. In case the user set a breakpoint in a signal
2789 handler, this avoids the backtrace showing the jump pad, etc..
2790 Most importantly, there are certain things we can't do safely if
2791 threads are stopped in a jump pad (or in its callee's). For
2792 example:
2793
2794 - starting a new trace run. A thread still collecting the
2795 previous run, could trash the trace buffer when resumed. The trace
2796 buffer control structures would have been reset but the thread had
2797 no way to tell. The thread could even midway memcpy'ing to the
2798 buffer, which would mean that when resumed, it would clobber the
2799 trace buffer that had been set for a new run.
2800
2801 - we can't rewrite/reuse the jump pads for new tracepoints
2802 safely. Say you do tstart while a thread is stopped midway while
2803 collecting. When the thread is later resumed, it finishes the
2804 collection, and returns to the jump pad, to execute the original
2805 instruction that was under the tracepoint jump at the time the
2806 older run had been started. If the jump pad had been rewritten
2807 since for something else in the new run, the thread would now
2808 execute the wrong / random instructions. */
2809
2810 static void
2811 linux_stabilize_threads (void)
2812 {
2813 struct thread_info *saved_thread;
2814 struct thread_info *thread_stuck;
2815
2816 thread_stuck
2817 = (struct thread_info *) find_inferior (&all_threads,
2818 stuck_in_jump_pad_callback,
2819 NULL);
2820 if (thread_stuck != NULL)
2821 {
2822 if (debug_threads)
2823 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2824 lwpid_of (thread_stuck));
2825 return;
2826 }
2827
2828 saved_thread = current_thread;
2829
2830 stabilizing_threads = 1;
2831
2832 /* Kick 'em all. */
2833 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2834
2835 /* Loop until all are stopped out of the jump pads. */
2836 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2837 {
2838 struct target_waitstatus ourstatus;
2839 struct lwp_info *lwp;
2840 int wstat;
2841
2842 /* Note that we go through the full wait even loop. While
2843 moving threads out of jump pad, we need to be able to step
2844 over internal breakpoints and such. */
2845 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2846
2847 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2848 {
2849 lwp = get_thread_lwp (current_thread);
2850
2851 /* Lock it. */
2852 lwp_suspended_inc (lwp);
2853
2854 if (ourstatus.value.sig != GDB_SIGNAL_0
2855 || current_thread->last_resume_kind == resume_stop)
2856 {
2857 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2858 enqueue_one_deferred_signal (lwp, &wstat);
2859 }
2860 }
2861 }
2862
2863 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2864
2865 stabilizing_threads = 0;
2866
2867 current_thread = saved_thread;
2868
2869 if (debug_threads)
2870 {
2871 thread_stuck
2872 = (struct thread_info *) find_inferior (&all_threads,
2873 stuck_in_jump_pad_callback,
2874 NULL);
2875 if (thread_stuck != NULL)
2876 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2877 lwpid_of (thread_stuck));
2878 }
2879 }
2880
2881 static void async_file_mark (void);
2882
2883 /* Convenience function that is called when the kernel reports an
2884 event that is not passed out to GDB. */
2885
2886 static ptid_t
2887 ignore_event (struct target_waitstatus *ourstatus)
2888 {
2889 /* If we got an event, there may still be others, as a single
2890 SIGCHLD can indicate more than one child stopped. This forces
2891 another target_wait call. */
2892 async_file_mark ();
2893
2894 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2895 return null_ptid;
2896 }
2897
2898 /* Wait for process, returns status. */
2899
2900 static ptid_t
2901 linux_wait_1 (ptid_t ptid,
2902 struct target_waitstatus *ourstatus, int target_options)
2903 {
2904 int w;
2905 struct lwp_info *event_child;
2906 int options;
2907 int pid;
2908 int step_over_finished;
2909 int bp_explains_trap;
2910 int maybe_internal_trap;
2911 int report_to_gdb;
2912 int trace_event;
2913 int in_step_range;
2914
2915 if (debug_threads)
2916 {
2917 debug_enter ();
2918 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
2919 }
2920
2921 /* Translate generic target options into linux options. */
2922 options = __WALL;
2923 if (target_options & TARGET_WNOHANG)
2924 options |= WNOHANG;
2925
2926 bp_explains_trap = 0;
2927 trace_event = 0;
2928 in_step_range = 0;
2929 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2930
2931 if (ptid_equal (step_over_bkpt, null_ptid))
2932 pid = linux_wait_for_event (ptid, &w, options);
2933 else
2934 {
2935 if (debug_threads)
2936 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
2937 target_pid_to_str (step_over_bkpt));
2938 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2939 }
2940
2941 if (pid == 0)
2942 {
2943 gdb_assert (target_options & TARGET_WNOHANG);
2944
2945 if (debug_threads)
2946 {
2947 debug_printf ("linux_wait_1 ret = null_ptid, "
2948 "TARGET_WAITKIND_IGNORE\n");
2949 debug_exit ();
2950 }
2951
2952 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2953 return null_ptid;
2954 }
2955 else if (pid == -1)
2956 {
2957 if (debug_threads)
2958 {
2959 debug_printf ("linux_wait_1 ret = null_ptid, "
2960 "TARGET_WAITKIND_NO_RESUMED\n");
2961 debug_exit ();
2962 }
2963
2964 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
2965 return null_ptid;
2966 }
2967
2968 event_child = get_thread_lwp (current_thread);
2969
2970 /* linux_wait_for_event only returns an exit status for the last
2971 child of a process. Report it. */
2972 if (WIFEXITED (w) || WIFSIGNALED (w))
2973 {
2974 if (WIFEXITED (w))
2975 {
2976 ourstatus->kind = TARGET_WAITKIND_EXITED;
2977 ourstatus->value.integer = WEXITSTATUS (w);
2978
2979 if (debug_threads)
2980 {
2981 debug_printf ("linux_wait_1 ret = %s, exited with "
2982 "retcode %d\n",
2983 target_pid_to_str (ptid_of (current_thread)),
2984 WEXITSTATUS (w));
2985 debug_exit ();
2986 }
2987 }
2988 else
2989 {
2990 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2991 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
2992
2993 if (debug_threads)
2994 {
2995 debug_printf ("linux_wait_1 ret = %s, terminated with "
2996 "signal %d\n",
2997 target_pid_to_str (ptid_of (current_thread)),
2998 WTERMSIG (w));
2999 debug_exit ();
3000 }
3001 }
3002
3003 return ptid_of (current_thread);
3004 }
3005
3006 /* If step-over executes a breakpoint instruction, it means a
3007 gdb/gdbserver breakpoint had been planted on top of a permanent
3008 breakpoint. The PC has been adjusted by
3009 check_stopped_by_breakpoint to point at the breakpoint address.
3010 Advance the PC manually past the breakpoint, otherwise the
3011 program would keep trapping the permanent breakpoint forever. */
3012 if (!ptid_equal (step_over_bkpt, null_ptid)
3013 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
3014 {
3015 unsigned int increment_pc = the_low_target.breakpoint_len;
3016
3017 if (debug_threads)
3018 {
3019 debug_printf ("step-over for %s executed software breakpoint\n",
3020 target_pid_to_str (ptid_of (current_thread)));
3021 }
3022
3023 if (increment_pc != 0)
3024 {
3025 struct regcache *regcache
3026 = get_thread_regcache (current_thread, 1);
3027
3028 event_child->stop_pc += increment_pc;
3029 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3030
3031 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3032 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3033 }
3034 }
3035
3036 /* If this event was not handled before, and is not a SIGTRAP, we
3037 report it. SIGILL and SIGSEGV are also treated as traps in case
3038 a breakpoint is inserted at the current PC. If this target does
3039 not support internal breakpoints at all, we also report the
3040 SIGTRAP without further processing; it's of no concern to us. */
3041 maybe_internal_trap
3042 = (supports_breakpoints ()
3043 && (WSTOPSIG (w) == SIGTRAP
3044 || ((WSTOPSIG (w) == SIGILL
3045 || WSTOPSIG (w) == SIGSEGV)
3046 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3047
3048 if (maybe_internal_trap)
3049 {
3050 /* Handle anything that requires bookkeeping before deciding to
3051 report the event or continue waiting. */
3052
3053 /* First check if we can explain the SIGTRAP with an internal
3054 breakpoint, or if we should possibly report the event to GDB.
3055 Do this before anything that may remove or insert a
3056 breakpoint. */
3057 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3058
3059 /* We have a SIGTRAP, possibly a step-over dance has just
3060 finished. If so, tweak the state machine accordingly,
3061 reinsert breakpoints and delete any reinsert (software
3062 single-step) breakpoints. */
3063 step_over_finished = finish_step_over (event_child);
3064
3065 /* Now invoke the callbacks of any internal breakpoints there. */
3066 check_breakpoints (event_child->stop_pc);
3067
3068 /* Handle tracepoint data collecting. This may overflow the
3069 trace buffer, and cause a tracing stop, removing
3070 breakpoints. */
3071 trace_event = handle_tracepoints (event_child);
3072
3073 if (bp_explains_trap)
3074 {
3075 /* If we stepped or ran into an internal breakpoint, we've
3076 already handled it. So next time we resume (from this
3077 PC), we should step over it. */
3078 if (debug_threads)
3079 debug_printf ("Hit a gdbserver breakpoint.\n");
3080
3081 if (breakpoint_here (event_child->stop_pc))
3082 event_child->need_step_over = 1;
3083 }
3084 }
3085 else
3086 {
3087 /* We have some other signal, possibly a step-over dance was in
3088 progress, and it should be cancelled too. */
3089 step_over_finished = finish_step_over (event_child);
3090 }
3091
3092 /* We have all the data we need. Either report the event to GDB, or
3093 resume threads and keep waiting for more. */
3094
3095 /* If we're collecting a fast tracepoint, finish the collection and
3096 move out of the jump pad before delivering a signal. See
3097 linux_stabilize_threads. */
3098
3099 if (WIFSTOPPED (w)
3100 && WSTOPSIG (w) != SIGTRAP
3101 && supports_fast_tracepoints ()
3102 && agent_loaded_p ())
3103 {
3104 if (debug_threads)
3105 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3106 "to defer or adjust it.\n",
3107 WSTOPSIG (w), lwpid_of (current_thread));
3108
3109 /* Allow debugging the jump pad itself. */
3110 if (current_thread->last_resume_kind != resume_step
3111 && maybe_move_out_of_jump_pad (event_child, &w))
3112 {
3113 enqueue_one_deferred_signal (event_child, &w);
3114
3115 if (debug_threads)
3116 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3117 WSTOPSIG (w), lwpid_of (current_thread));
3118
3119 linux_resume_one_lwp (event_child, 0, 0, NULL);
3120
3121 return ignore_event (ourstatus);
3122 }
3123 }
3124
3125 if (event_child->collecting_fast_tracepoint)
3126 {
3127 if (debug_threads)
3128 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3129 "Check if we're already there.\n",
3130 lwpid_of (current_thread),
3131 event_child->collecting_fast_tracepoint);
3132
3133 trace_event = 1;
3134
3135 event_child->collecting_fast_tracepoint
3136 = linux_fast_tracepoint_collecting (event_child, NULL);
3137
3138 if (event_child->collecting_fast_tracepoint != 1)
3139 {
3140 /* No longer need this breakpoint. */
3141 if (event_child->exit_jump_pad_bkpt != NULL)
3142 {
3143 if (debug_threads)
3144 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3145 "stopping all threads momentarily.\n");
3146
3147 /* Other running threads could hit this breakpoint.
3148 We don't handle moribund locations like GDB does,
3149 instead we always pause all threads when removing
3150 breakpoints, so that any step-over or
3151 decr_pc_after_break adjustment is always taken
3152 care of while the breakpoint is still
3153 inserted. */
3154 stop_all_lwps (1, event_child);
3155
3156 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3157 event_child->exit_jump_pad_bkpt = NULL;
3158
3159 unstop_all_lwps (1, event_child);
3160
3161 gdb_assert (event_child->suspended >= 0);
3162 }
3163 }
3164
3165 if (event_child->collecting_fast_tracepoint == 0)
3166 {
3167 if (debug_threads)
3168 debug_printf ("fast tracepoint finished "
3169 "collecting successfully.\n");
3170
3171 /* We may have a deferred signal to report. */
3172 if (dequeue_one_deferred_signal (event_child, &w))
3173 {
3174 if (debug_threads)
3175 debug_printf ("dequeued one signal.\n");
3176 }
3177 else
3178 {
3179 if (debug_threads)
3180 debug_printf ("no deferred signals.\n");
3181
3182 if (stabilizing_threads)
3183 {
3184 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3185 ourstatus->value.sig = GDB_SIGNAL_0;
3186
3187 if (debug_threads)
3188 {
3189 debug_printf ("linux_wait_1 ret = %s, stopped "
3190 "while stabilizing threads\n",
3191 target_pid_to_str (ptid_of (current_thread)));
3192 debug_exit ();
3193 }
3194
3195 return ptid_of (current_thread);
3196 }
3197 }
3198 }
3199 }
3200
3201 /* Check whether GDB would be interested in this event. */
3202
3203 /* If GDB is not interested in this signal, don't stop other
3204 threads, and don't report it to GDB. Just resume the inferior
3205 right away. We do this for threading-related signals as well as
3206 any that GDB specifically requested we ignore. But never ignore
3207 SIGSTOP if we sent it ourselves, and do not ignore signals when
3208 stepping - they may require special handling to skip the signal
3209 handler. Also never ignore signals that could be caused by a
3210 breakpoint. */
3211 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
3212 thread library? */
3213 if (WIFSTOPPED (w)
3214 && current_thread->last_resume_kind != resume_step
3215 && (
3216 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3217 (current_process ()->priv->thread_db != NULL
3218 && (WSTOPSIG (w) == __SIGRTMIN
3219 || WSTOPSIG (w) == __SIGRTMIN + 1))
3220 ||
3221 #endif
3222 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3223 && !(WSTOPSIG (w) == SIGSTOP
3224 && current_thread->last_resume_kind == resume_stop)
3225 && !linux_wstatus_maybe_breakpoint (w))))
3226 {
3227 siginfo_t info, *info_p;
3228
3229 if (debug_threads)
3230 debug_printf ("Ignored signal %d for LWP %ld.\n",
3231 WSTOPSIG (w), lwpid_of (current_thread));
3232
3233 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3234 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3235 info_p = &info;
3236 else
3237 info_p = NULL;
3238
3239 if (step_over_finished)
3240 {
3241 /* We cancelled this thread's step-over above. We still
3242 need to unsuspend all other LWPs, and set them back
3243 running again while the signal handler runs. */
3244 unsuspend_all_lwps (event_child);
3245
3246 /* Enqueue the pending signal info so that proceed_all_lwps
3247 doesn't lose it. */
3248 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3249
3250 proceed_all_lwps ();
3251 }
3252 else
3253 {
3254 linux_resume_one_lwp (event_child, event_child->stepping,
3255 WSTOPSIG (w), info_p);
3256 }
3257 return ignore_event (ourstatus);
3258 }
3259
3260 /* Note that all addresses are always "out of the step range" when
3261 there's no range to begin with. */
3262 in_step_range = lwp_in_step_range (event_child);
3263
3264 /* If GDB wanted this thread to single step, and the thread is out
3265 of the step range, we always want to report the SIGTRAP, and let
3266 GDB handle it. Watchpoints should always be reported. So should
3267 signals we can't explain. A SIGTRAP we can't explain could be a
3268 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3269 do, we're be able to handle GDB breakpoints on top of internal
3270 breakpoints, by handling the internal breakpoint and still
3271 reporting the event to GDB. If we don't, we're out of luck, GDB
3272 won't see the breakpoint hit. If we see a single-step event but
3273 the thread should be continuing, don't pass the trap to gdb.
3274 That indicates that we had previously finished a single-step but
3275 left the single-step pending -- see
3276 complete_ongoing_step_over. */
3277 report_to_gdb = (!maybe_internal_trap
3278 || (current_thread->last_resume_kind == resume_step
3279 && !in_step_range)
3280 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3281 || (!in_step_range
3282 && !bp_explains_trap
3283 && !trace_event
3284 && !step_over_finished
3285 && !(current_thread->last_resume_kind == resume_continue
3286 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3287 || (gdb_breakpoint_here (event_child->stop_pc)
3288 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3289 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3290 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3291
3292 run_breakpoint_commands (event_child->stop_pc);
3293
3294 /* We found no reason GDB would want us to stop. We either hit one
3295 of our own breakpoints, or finished an internal step GDB
3296 shouldn't know about. */
3297 if (!report_to_gdb)
3298 {
3299 if (debug_threads)
3300 {
3301 if (bp_explains_trap)
3302 debug_printf ("Hit a gdbserver breakpoint.\n");
3303 if (step_over_finished)
3304 debug_printf ("Step-over finished.\n");
3305 if (trace_event)
3306 debug_printf ("Tracepoint event.\n");
3307 if (lwp_in_step_range (event_child))
3308 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3309 paddress (event_child->stop_pc),
3310 paddress (event_child->step_range_start),
3311 paddress (event_child->step_range_end));
3312 }
3313
3314 /* We're not reporting this breakpoint to GDB, so apply the
3315 decr_pc_after_break adjustment to the inferior's regcache
3316 ourselves. */
3317
3318 if (the_low_target.set_pc != NULL)
3319 {
3320 struct regcache *regcache
3321 = get_thread_regcache (current_thread, 1);
3322 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3323 }
3324
3325 /* We may have finished stepping over a breakpoint. If so,
3326 we've stopped and suspended all LWPs momentarily except the
3327 stepping one. This is where we resume them all again. We're
3328 going to keep waiting, so use proceed, which handles stepping
3329 over the next breakpoint. */
3330 if (debug_threads)
3331 debug_printf ("proceeding all threads.\n");
3332
3333 if (step_over_finished)
3334 unsuspend_all_lwps (event_child);
3335
3336 proceed_all_lwps ();
3337 return ignore_event (ourstatus);
3338 }
3339
3340 if (debug_threads)
3341 {
3342 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3343 {
3344 char *str;
3345
3346 str = target_waitstatus_to_string (&event_child->waitstatus);
3347 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3348 lwpid_of (get_lwp_thread (event_child)), str);
3349 xfree (str);
3350 }
3351 if (current_thread->last_resume_kind == resume_step)
3352 {
3353 if (event_child->step_range_start == event_child->step_range_end)
3354 debug_printf ("GDB wanted to single-step, reporting event.\n");
3355 else if (!lwp_in_step_range (event_child))
3356 debug_printf ("Out of step range, reporting event.\n");
3357 }
3358 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3359 debug_printf ("Stopped by watchpoint.\n");
3360 else if (gdb_breakpoint_here (event_child->stop_pc))
3361 debug_printf ("Stopped by GDB breakpoint.\n");
3362 if (debug_threads)
3363 debug_printf ("Hit a non-gdbserver trap event.\n");
3364 }
3365
3366 /* Alright, we're going to report a stop. */
3367
3368 if (!stabilizing_threads)
3369 {
3370 /* In all-stop, stop all threads. */
3371 if (!non_stop)
3372 stop_all_lwps (0, NULL);
3373
3374 /* If we're not waiting for a specific LWP, choose an event LWP
3375 from among those that have had events. Giving equal priority
3376 to all LWPs that have had events helps prevent
3377 starvation. */
3378 if (ptid_equal (ptid, minus_one_ptid))
3379 {
3380 event_child->status_pending_p = 1;
3381 event_child->status_pending = w;
3382
3383 select_event_lwp (&event_child);
3384
3385 /* current_thread and event_child must stay in sync. */
3386 current_thread = get_lwp_thread (event_child);
3387
3388 event_child->status_pending_p = 0;
3389 w = event_child->status_pending;
3390 }
3391
3392 if (step_over_finished)
3393 {
3394 if (!non_stop)
3395 {
3396 /* If we were doing a step-over, all other threads but
3397 the stepping one had been paused in start_step_over,
3398 with their suspend counts incremented. We don't want
3399 to do a full unstop/unpause, because we're in
3400 all-stop mode (so we want threads stopped), but we
3401 still need to unsuspend the other threads, to
3402 decrement their `suspended' count back. */
3403 unsuspend_all_lwps (event_child);
3404 }
3405 else
3406 {
3407 /* If we just finished a step-over, then all threads had
3408 been momentarily paused. In all-stop, that's fine,
3409 we want threads stopped by now anyway. In non-stop,
3410 we need to re-resume threads that GDB wanted to be
3411 running. */
3412 unstop_all_lwps (1, event_child);
3413 }
3414 }
3415
3416 /* Stabilize threads (move out of jump pads). */
3417 if (!non_stop)
3418 stabilize_threads ();
3419 }
3420 else
3421 {
3422 /* If we just finished a step-over, then all threads had been
3423 momentarily paused. In all-stop, that's fine, we want
3424 threads stopped by now anyway. In non-stop, we need to
3425 re-resume threads that GDB wanted to be running. */
3426 if (step_over_finished)
3427 unstop_all_lwps (1, event_child);
3428 }
3429
3430 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3431 {
3432 /* If the reported event is an exit, fork, vfork or exec, let
3433 GDB know. */
3434 *ourstatus = event_child->waitstatus;
3435 /* Clear the event lwp's waitstatus since we handled it already. */
3436 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3437 }
3438 else
3439 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3440
3441 /* Now that we've selected our final event LWP, un-adjust its PC if
3442 it was a software breakpoint, and the client doesn't know we can
3443 adjust the breakpoint ourselves. */
3444 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3445 && !swbreak_feature)
3446 {
3447 int decr_pc = the_low_target.decr_pc_after_break;
3448
3449 if (decr_pc != 0)
3450 {
3451 struct regcache *regcache
3452 = get_thread_regcache (current_thread, 1);
3453 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3454 }
3455 }
3456
3457 if (current_thread->last_resume_kind == resume_stop
3458 && WSTOPSIG (w) == SIGSTOP)
3459 {
3460 /* A thread that has been requested to stop by GDB with vCont;t,
3461 and it stopped cleanly, so report as SIG0. The use of
3462 SIGSTOP is an implementation detail. */
3463 ourstatus->value.sig = GDB_SIGNAL_0;
3464 }
3465 else if (current_thread->last_resume_kind == resume_stop
3466 && WSTOPSIG (w) != SIGSTOP)
3467 {
3468 /* A thread that has been requested to stop by GDB with vCont;t,
3469 but, it stopped for other reasons. */
3470 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3471 }
3472 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3473 {
3474 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3475 }
3476
3477 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3478
3479 if (debug_threads)
3480 {
3481 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3482 target_pid_to_str (ptid_of (current_thread)),
3483 ourstatus->kind, ourstatus->value.sig);
3484 debug_exit ();
3485 }
3486
3487 return ptid_of (current_thread);
3488 }
3489
3490 /* Get rid of any pending event in the pipe. */
3491 static void
3492 async_file_flush (void)
3493 {
3494 int ret;
3495 char buf;
3496
3497 do
3498 ret = read (linux_event_pipe[0], &buf, 1);
3499 while (ret >= 0 || (ret == -1 && errno == EINTR));
3500 }
3501
3502 /* Put something in the pipe, so the event loop wakes up. */
3503 static void
3504 async_file_mark (void)
3505 {
3506 int ret;
3507
3508 async_file_flush ();
3509
3510 do
3511 ret = write (linux_event_pipe[1], "+", 1);
3512 while (ret == 0 || (ret == -1 && errno == EINTR));
3513
3514 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3515 be awakened anyway. */
3516 }
3517
3518 static ptid_t
3519 linux_wait (ptid_t ptid,
3520 struct target_waitstatus *ourstatus, int target_options)
3521 {
3522 ptid_t event_ptid;
3523
3524 /* Flush the async file first. */
3525 if (target_is_async_p ())
3526 async_file_flush ();
3527
3528 do
3529 {
3530 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3531 }
3532 while ((target_options & TARGET_WNOHANG) == 0
3533 && ptid_equal (event_ptid, null_ptid)
3534 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3535
3536 /* If at least one stop was reported, there may be more. A single
3537 SIGCHLD can signal more than one child stop. */
3538 if (target_is_async_p ()
3539 && (target_options & TARGET_WNOHANG) != 0
3540 && !ptid_equal (event_ptid, null_ptid))
3541 async_file_mark ();
3542
3543 return event_ptid;
3544 }
3545
3546 /* Send a signal to an LWP. */
3547
3548 static int
3549 kill_lwp (unsigned long lwpid, int signo)
3550 {
3551 /* Use tkill, if possible, in case we are using nptl threads. If tkill
3552 fails, then we are not using nptl threads and we should be using kill. */
3553
3554 #ifdef __NR_tkill
3555 {
3556 static int tkill_failed;
3557
3558 if (!tkill_failed)
3559 {
3560 int ret;
3561
3562 errno = 0;
3563 ret = syscall (__NR_tkill, lwpid, signo);
3564 if (errno != ENOSYS)
3565 return ret;
3566 tkill_failed = 1;
3567 }
3568 }
3569 #endif
3570
3571 return kill (lwpid, signo);
3572 }
3573
3574 void
3575 linux_stop_lwp (struct lwp_info *lwp)
3576 {
3577 send_sigstop (lwp);
3578 }
3579
3580 static void
3581 send_sigstop (struct lwp_info *lwp)
3582 {
3583 int pid;
3584
3585 pid = lwpid_of (get_lwp_thread (lwp));
3586
3587 /* If we already have a pending stop signal for this process, don't
3588 send another. */
3589 if (lwp->stop_expected)
3590 {
3591 if (debug_threads)
3592 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3593
3594 return;
3595 }
3596
3597 if (debug_threads)
3598 debug_printf ("Sending sigstop to lwp %d\n", pid);
3599
3600 lwp->stop_expected = 1;
3601 kill_lwp (pid, SIGSTOP);
3602 }
3603
3604 static int
3605 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3606 {
3607 struct thread_info *thread = (struct thread_info *) entry;
3608 struct lwp_info *lwp = get_thread_lwp (thread);
3609
3610 /* Ignore EXCEPT. */
3611 if (lwp == except)
3612 return 0;
3613
3614 if (lwp->stopped)
3615 return 0;
3616
3617 send_sigstop (lwp);
3618 return 0;
3619 }
3620
3621 /* Increment the suspend count of an LWP, and stop it, if not stopped
3622 yet. */
3623 static int
3624 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3625 void *except)
3626 {
3627 struct thread_info *thread = (struct thread_info *) entry;
3628 struct lwp_info *lwp = get_thread_lwp (thread);
3629
3630 /* Ignore EXCEPT. */
3631 if (lwp == except)
3632 return 0;
3633
3634 lwp_suspended_inc (lwp);
3635
3636 return send_sigstop_callback (entry, except);
3637 }
3638
3639 static void
3640 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3641 {
3642 /* Store the exit status for later. */
3643 lwp->status_pending_p = 1;
3644 lwp->status_pending = wstat;
3645
3646 /* Store in waitstatus as well, as there's nothing else to process
3647 for this event. */
3648 if (WIFEXITED (wstat))
3649 {
3650 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3651 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3652 }
3653 else if (WIFSIGNALED (wstat))
3654 {
3655 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3656 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3657 }
3658
3659 /* Prevent trying to stop it. */
3660 lwp->stopped = 1;
3661
3662 /* No further stops are expected from a dead lwp. */
3663 lwp->stop_expected = 0;
3664 }
3665
3666 /* Return true if LWP has exited already, and has a pending exit event
3667 to report to GDB. */
3668
3669 static int
3670 lwp_is_marked_dead (struct lwp_info *lwp)
3671 {
3672 return (lwp->status_pending_p
3673 && (WIFEXITED (lwp->status_pending)
3674 || WIFSIGNALED (lwp->status_pending)));
3675 }
3676
3677 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3678
3679 static void
3680 wait_for_sigstop (void)
3681 {
3682 struct thread_info *saved_thread;
3683 ptid_t saved_tid;
3684 int wstat;
3685 int ret;
3686
3687 saved_thread = current_thread;
3688 if (saved_thread != NULL)
3689 saved_tid = saved_thread->entry.id;
3690 else
3691 saved_tid = null_ptid; /* avoid bogus unused warning */
3692
3693 if (debug_threads)
3694 debug_printf ("wait_for_sigstop: pulling events\n");
3695
3696 /* Passing NULL_PTID as filter indicates we want all events to be
3697 left pending. Eventually this returns when there are no
3698 unwaited-for children left. */
3699 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3700 &wstat, __WALL);
3701 gdb_assert (ret == -1);
3702
3703 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3704 current_thread = saved_thread;
3705 else
3706 {
3707 if (debug_threads)
3708 debug_printf ("Previously current thread died.\n");
3709
3710 /* We can't change the current inferior behind GDB's back,
3711 otherwise, a subsequent command may apply to the wrong
3712 process. */
3713 current_thread = NULL;
3714 }
3715 }
3716
3717 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3718 move it out, because we need to report the stop event to GDB. For
3719 example, if the user puts a breakpoint in the jump pad, it's
3720 because she wants to debug it. */
3721
3722 static int
3723 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3724 {
3725 struct thread_info *thread = (struct thread_info *) entry;
3726 struct lwp_info *lwp = get_thread_lwp (thread);
3727
3728 if (lwp->suspended != 0)
3729 {
3730 internal_error (__FILE__, __LINE__,
3731 "LWP %ld is suspended, suspended=%d\n",
3732 lwpid_of (thread), lwp->suspended);
3733 }
3734 gdb_assert (lwp->stopped);
3735
3736 /* Allow debugging the jump pad, gdb_collect, etc.. */
3737 return (supports_fast_tracepoints ()
3738 && agent_loaded_p ()
3739 && (gdb_breakpoint_here (lwp->stop_pc)
3740 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3741 || thread->last_resume_kind == resume_step)
3742 && linux_fast_tracepoint_collecting (lwp, NULL));
3743 }
3744
3745 static void
3746 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3747 {
3748 struct thread_info *thread = (struct thread_info *) entry;
3749 struct thread_info *saved_thread;
3750 struct lwp_info *lwp = get_thread_lwp (thread);
3751 int *wstat;
3752
3753 if (lwp->suspended != 0)
3754 {
3755 internal_error (__FILE__, __LINE__,
3756 "LWP %ld is suspended, suspended=%d\n",
3757 lwpid_of (thread), lwp->suspended);
3758 }
3759 gdb_assert (lwp->stopped);
3760
3761 /* For gdb_breakpoint_here. */
3762 saved_thread = current_thread;
3763 current_thread = thread;
3764
3765 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3766
3767 /* Allow debugging the jump pad, gdb_collect, etc. */
3768 if (!gdb_breakpoint_here (lwp->stop_pc)
3769 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3770 && thread->last_resume_kind != resume_step
3771 && maybe_move_out_of_jump_pad (lwp, wstat))
3772 {
3773 if (debug_threads)
3774 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3775 lwpid_of (thread));
3776
3777 if (wstat)
3778 {
3779 lwp->status_pending_p = 0;
3780 enqueue_one_deferred_signal (lwp, wstat);
3781
3782 if (debug_threads)
3783 debug_printf ("Signal %d for LWP %ld deferred "
3784 "(in jump pad)\n",
3785 WSTOPSIG (*wstat), lwpid_of (thread));
3786 }
3787
3788 linux_resume_one_lwp (lwp, 0, 0, NULL);
3789 }
3790 else
3791 lwp_suspended_inc (lwp);
3792
3793 current_thread = saved_thread;
3794 }
3795
3796 static int
3797 lwp_running (struct inferior_list_entry *entry, void *data)
3798 {
3799 struct thread_info *thread = (struct thread_info *) entry;
3800 struct lwp_info *lwp = get_thread_lwp (thread);
3801
3802 if (lwp_is_marked_dead (lwp))
3803 return 0;
3804 if (lwp->stopped)
3805 return 0;
3806 return 1;
3807 }
3808
3809 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3810 If SUSPEND, then also increase the suspend count of every LWP,
3811 except EXCEPT. */
3812
3813 static void
3814 stop_all_lwps (int suspend, struct lwp_info *except)
3815 {
3816 /* Should not be called recursively. */
3817 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3818
3819 if (debug_threads)
3820 {
3821 debug_enter ();
3822 debug_printf ("stop_all_lwps (%s, except=%s)\n",
3823 suspend ? "stop-and-suspend" : "stop",
3824 except != NULL
3825 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
3826 : "none");
3827 }
3828
3829 stopping_threads = (suspend
3830 ? STOPPING_AND_SUSPENDING_THREADS
3831 : STOPPING_THREADS);
3832
3833 if (suspend)
3834 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
3835 else
3836 find_inferior (&all_threads, send_sigstop_callback, except);
3837 wait_for_sigstop ();
3838 stopping_threads = NOT_STOPPING_THREADS;
3839
3840 if (debug_threads)
3841 {
3842 debug_printf ("stop_all_lwps done, setting stopping_threads "
3843 "back to !stopping\n");
3844 debug_exit ();
3845 }
3846 }
3847
3848 /* Enqueue one signal in the chain of signals which need to be
3849 delivered to this process on next resume. */
3850
3851 static void
3852 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
3853 {
3854 struct pending_signals *p_sig = XNEW (struct pending_signals);
3855
3856 p_sig->prev = lwp->pending_signals;
3857 p_sig->signal = signal;
3858 if (info == NULL)
3859 memset (&p_sig->info, 0, sizeof (siginfo_t));
3860 else
3861 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3862 lwp->pending_signals = p_sig;
3863 }
3864
3865 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
3866 SIGNAL is nonzero, give it that signal. */
3867
3868 static void
3869 linux_resume_one_lwp_throw (struct lwp_info *lwp,
3870 int step, int signal, siginfo_t *info)
3871 {
3872 struct thread_info *thread = get_lwp_thread (lwp);
3873 struct thread_info *saved_thread;
3874 int fast_tp_collecting;
3875 struct process_info *proc = get_thread_process (thread);
3876
3877 /* Note that target description may not be initialised
3878 (proc->tdesc == NULL) at this point because the program hasn't
3879 stopped at the first instruction yet. It means GDBserver skips
3880 the extra traps from the wrapper program (see option --wrapper).
3881 Code in this function that requires register access should be
3882 guarded by proc->tdesc == NULL or something else. */
3883
3884 if (lwp->stopped == 0)
3885 return;
3886
3887 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3888
3889 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3890
3891 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3892 user used the "jump" command, or "set $pc = foo"). */
3893 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
3894 {
3895 /* Collecting 'while-stepping' actions doesn't make sense
3896 anymore. */
3897 release_while_stepping_state_list (thread);
3898 }
3899
3900 /* If we have pending signals or status, and a new signal, enqueue the
3901 signal. Also enqueue the signal if we are waiting to reinsert a
3902 breakpoint; it will be picked up again below. */
3903 if (signal != 0
3904 && (lwp->status_pending_p
3905 || lwp->pending_signals != NULL
3906 || lwp->bp_reinsert != 0
3907 || fast_tp_collecting))
3908 {
3909 struct pending_signals *p_sig = XNEW (struct pending_signals);
3910
3911 p_sig->prev = lwp->pending_signals;
3912 p_sig->signal = signal;
3913 if (info == NULL)
3914 memset (&p_sig->info, 0, sizeof (siginfo_t));
3915 else
3916 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3917 lwp->pending_signals = p_sig;
3918 }
3919
3920 if (lwp->status_pending_p)
3921 {
3922 if (debug_threads)
3923 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
3924 " has pending status\n",
3925 lwpid_of (thread), step ? "step" : "continue", signal,
3926 lwp->stop_expected ? "expected" : "not expected");
3927 return;
3928 }
3929
3930 saved_thread = current_thread;
3931 current_thread = thread;
3932
3933 if (debug_threads)
3934 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
3935 lwpid_of (thread), step ? "step" : "continue", signal,
3936 lwp->stop_expected ? "expected" : "not expected");
3937
3938 /* This bit needs some thinking about. If we get a signal that
3939 we must report while a single-step reinsert is still pending,
3940 we often end up resuming the thread. It might be better to
3941 (ew) allow a stack of pending events; then we could be sure that
3942 the reinsert happened right away and not lose any signals.
3943
3944 Making this stack would also shrink the window in which breakpoints are
3945 uninserted (see comment in linux_wait_for_lwp) but not enough for
3946 complete correctness, so it won't solve that problem. It may be
3947 worthwhile just to solve this one, however. */
3948 if (lwp->bp_reinsert != 0)
3949 {
3950 if (debug_threads)
3951 debug_printf (" pending reinsert at 0x%s\n",
3952 paddress (lwp->bp_reinsert));
3953
3954 if (can_hardware_single_step ())
3955 {
3956 if (fast_tp_collecting == 0)
3957 {
3958 if (step == 0)
3959 fprintf (stderr, "BAD - reinserting but not stepping.\n");
3960 if (lwp->suspended)
3961 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
3962 lwp->suspended);
3963 }
3964
3965 step = 1;
3966 }
3967
3968 /* Postpone any pending signal. It was enqueued above. */
3969 signal = 0;
3970 }
3971
3972 if (fast_tp_collecting == 1)
3973 {
3974 if (debug_threads)
3975 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3976 " (exit-jump-pad-bkpt)\n",
3977 lwpid_of (thread));
3978
3979 /* Postpone any pending signal. It was enqueued above. */
3980 signal = 0;
3981 }
3982 else if (fast_tp_collecting == 2)
3983 {
3984 if (debug_threads)
3985 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3986 " single-stepping\n",
3987 lwpid_of (thread));
3988
3989 if (can_hardware_single_step ())
3990 step = 1;
3991 else
3992 {
3993 internal_error (__FILE__, __LINE__,
3994 "moving out of jump pad single-stepping"
3995 " not implemented on this target");
3996 }
3997
3998 /* Postpone any pending signal. It was enqueued above. */
3999 signal = 0;
4000 }
4001
4002 /* If we have while-stepping actions in this thread set it stepping.
4003 If we have a signal to deliver, it may or may not be set to
4004 SIG_IGN, we don't know. Assume so, and allow collecting
4005 while-stepping into a signal handler. A possible smart thing to
4006 do would be to set an internal breakpoint at the signal return
4007 address, continue, and carry on catching this while-stepping
4008 action only when that breakpoint is hit. A future
4009 enhancement. */
4010 if (thread->while_stepping != NULL
4011 && can_hardware_single_step ())
4012 {
4013 if (debug_threads)
4014 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4015 lwpid_of (thread));
4016 step = 1;
4017 }
4018
4019 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4020 {
4021 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4022
4023 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4024
4025 if (debug_threads)
4026 {
4027 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4028 (long) lwp->stop_pc);
4029 }
4030 }
4031
4032 /* If we have pending signals, consume one unless we are trying to
4033 reinsert a breakpoint or we're trying to finish a fast tracepoint
4034 collect. */
4035 if (lwp->pending_signals != NULL
4036 && lwp->bp_reinsert == 0
4037 && fast_tp_collecting == 0)
4038 {
4039 struct pending_signals **p_sig;
4040
4041 p_sig = &lwp->pending_signals;
4042 while ((*p_sig)->prev != NULL)
4043 p_sig = &(*p_sig)->prev;
4044
4045 signal = (*p_sig)->signal;
4046 if ((*p_sig)->info.si_signo != 0)
4047 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4048 &(*p_sig)->info);
4049
4050 free (*p_sig);
4051 *p_sig = NULL;
4052 }
4053
4054 if (the_low_target.prepare_to_resume != NULL)
4055 the_low_target.prepare_to_resume (lwp);
4056
4057 regcache_invalidate_thread (thread);
4058 errno = 0;
4059 lwp->stepping = step;
4060 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (thread),
4061 (PTRACE_TYPE_ARG3) 0,
4062 /* Coerce to a uintptr_t first to avoid potential gcc warning
4063 of coercing an 8 byte integer to a 4 byte pointer. */
4064 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4065
4066 current_thread = saved_thread;
4067 if (errno)
4068 perror_with_name ("resuming thread");
4069
4070 /* Successfully resumed. Clear state that no longer makes sense,
4071 and mark the LWP as running. Must not do this before resuming
4072 otherwise if that fails other code will be confused. E.g., we'd
4073 later try to stop the LWP and hang forever waiting for a stop
4074 status. Note that we must not throw after this is cleared,
4075 otherwise handle_zombie_lwp_error would get confused. */
4076 lwp->stopped = 0;
4077 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4078 }
4079
4080 /* Called when we try to resume a stopped LWP and that errors out. If
4081 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4082 or about to become), discard the error, clear any pending status
4083 the LWP may have, and return true (we'll collect the exit status
4084 soon enough). Otherwise, return false. */
4085
4086 static int
4087 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4088 {
4089 struct thread_info *thread = get_lwp_thread (lp);
4090
4091 /* If we get an error after resuming the LWP successfully, we'd
4092 confuse !T state for the LWP being gone. */
4093 gdb_assert (lp->stopped);
4094
4095 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4096 because even if ptrace failed with ESRCH, the tracee may be "not
4097 yet fully dead", but already refusing ptrace requests. In that
4098 case the tracee has 'R (Running)' state for a little bit
4099 (observed in Linux 3.18). See also the note on ESRCH in the
4100 ptrace(2) man page. Instead, check whether the LWP has any state
4101 other than ptrace-stopped. */
4102
4103 /* Don't assume anything if /proc/PID/status can't be read. */
4104 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4105 {
4106 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4107 lp->status_pending_p = 0;
4108 return 1;
4109 }
4110 return 0;
4111 }
4112
4113 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4114 disappears while we try to resume it. */
4115
4116 static void
4117 linux_resume_one_lwp (struct lwp_info *lwp,
4118 int step, int signal, siginfo_t *info)
4119 {
4120 TRY
4121 {
4122 linux_resume_one_lwp_throw (lwp, step, signal, info);
4123 }
4124 CATCH (ex, RETURN_MASK_ERROR)
4125 {
4126 if (!check_ptrace_stopped_lwp_gone (lwp))
4127 throw_exception (ex);
4128 }
4129 END_CATCH
4130 }
4131
4132 struct thread_resume_array
4133 {
4134 struct thread_resume *resume;
4135 size_t n;
4136 };
4137
4138 /* This function is called once per thread via find_inferior.
4139 ARG is a pointer to a thread_resume_array struct.
4140 We look up the thread specified by ENTRY in ARG, and mark the thread
4141 with a pointer to the appropriate resume request.
4142
4143 This algorithm is O(threads * resume elements), but resume elements
4144 is small (and will remain small at least until GDB supports thread
4145 suspension). */
4146
4147 static int
4148 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4149 {
4150 struct thread_info *thread = (struct thread_info *) entry;
4151 struct lwp_info *lwp = get_thread_lwp (thread);
4152 int ndx;
4153 struct thread_resume_array *r;
4154
4155 r = arg;
4156
4157 for (ndx = 0; ndx < r->n; ndx++)
4158 {
4159 ptid_t ptid = r->resume[ndx].thread;
4160 if (ptid_equal (ptid, minus_one_ptid)
4161 || ptid_equal (ptid, entry->id)
4162 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4163 of PID'. */
4164 || (ptid_get_pid (ptid) == pid_of (thread)
4165 && (ptid_is_pid (ptid)
4166 || ptid_get_lwp (ptid) == -1)))
4167 {
4168 if (r->resume[ndx].kind == resume_stop
4169 && thread->last_resume_kind == resume_stop)
4170 {
4171 if (debug_threads)
4172 debug_printf ("already %s LWP %ld at GDB's request\n",
4173 (thread->last_status.kind
4174 == TARGET_WAITKIND_STOPPED)
4175 ? "stopped"
4176 : "stopping",
4177 lwpid_of (thread));
4178
4179 continue;
4180 }
4181
4182 lwp->resume = &r->resume[ndx];
4183 thread->last_resume_kind = lwp->resume->kind;
4184
4185 lwp->step_range_start = lwp->resume->step_range_start;
4186 lwp->step_range_end = lwp->resume->step_range_end;
4187
4188 /* If we had a deferred signal to report, dequeue one now.
4189 This can happen if LWP gets more than one signal while
4190 trying to get out of a jump pad. */
4191 if (lwp->stopped
4192 && !lwp->status_pending_p
4193 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4194 {
4195 lwp->status_pending_p = 1;
4196
4197 if (debug_threads)
4198 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4199 "leaving status pending.\n",
4200 WSTOPSIG (lwp->status_pending),
4201 lwpid_of (thread));
4202 }
4203
4204 return 0;
4205 }
4206 }
4207
4208 /* No resume action for this thread. */
4209 lwp->resume = NULL;
4210
4211 return 0;
4212 }
4213
4214 /* find_inferior callback for linux_resume.
4215 Set *FLAG_P if this lwp has an interesting status pending. */
4216
4217 static int
4218 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4219 {
4220 struct thread_info *thread = (struct thread_info *) entry;
4221 struct lwp_info *lwp = get_thread_lwp (thread);
4222
4223 /* LWPs which will not be resumed are not interesting, because
4224 we might not wait for them next time through linux_wait. */
4225 if (lwp->resume == NULL)
4226 return 0;
4227
4228 if (thread_still_has_status_pending_p (thread))
4229 * (int *) flag_p = 1;
4230
4231 return 0;
4232 }
4233
4234 /* Return 1 if this lwp that GDB wants running is stopped at an
4235 internal breakpoint that we need to step over. It assumes that any
4236 required STOP_PC adjustment has already been propagated to the
4237 inferior's regcache. */
4238
4239 static int
4240 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4241 {
4242 struct thread_info *thread = (struct thread_info *) entry;
4243 struct lwp_info *lwp = get_thread_lwp (thread);
4244 struct thread_info *saved_thread;
4245 CORE_ADDR pc;
4246 struct process_info *proc = get_thread_process (thread);
4247
4248 /* GDBserver is skipping the extra traps from the wrapper program,
4249 don't have to do step over. */
4250 if (proc->tdesc == NULL)
4251 return 0;
4252
4253 /* LWPs which will not be resumed are not interesting, because we
4254 might not wait for them next time through linux_wait. */
4255
4256 if (!lwp->stopped)
4257 {
4258 if (debug_threads)
4259 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4260 lwpid_of (thread));
4261 return 0;
4262 }
4263
4264 if (thread->last_resume_kind == resume_stop)
4265 {
4266 if (debug_threads)
4267 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4268 " stopped\n",
4269 lwpid_of (thread));
4270 return 0;
4271 }
4272
4273 gdb_assert (lwp->suspended >= 0);
4274
4275 if (lwp->suspended)
4276 {
4277 if (debug_threads)
4278 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4279 lwpid_of (thread));
4280 return 0;
4281 }
4282
4283 if (!lwp->need_step_over)
4284 {
4285 if (debug_threads)
4286 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
4287 }
4288
4289 if (lwp->status_pending_p)
4290 {
4291 if (debug_threads)
4292 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4293 " status.\n",
4294 lwpid_of (thread));
4295 return 0;
4296 }
4297
4298 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4299 or we have. */
4300 pc = get_pc (lwp);
4301
4302 /* If the PC has changed since we stopped, then don't do anything,
4303 and let the breakpoint/tracepoint be hit. This happens if, for
4304 instance, GDB handled the decr_pc_after_break subtraction itself,
4305 GDB is OOL stepping this thread, or the user has issued a "jump"
4306 command, or poked thread's registers herself. */
4307 if (pc != lwp->stop_pc)
4308 {
4309 if (debug_threads)
4310 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4311 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4312 lwpid_of (thread),
4313 paddress (lwp->stop_pc), paddress (pc));
4314
4315 lwp->need_step_over = 0;
4316 return 0;
4317 }
4318
4319 saved_thread = current_thread;
4320 current_thread = thread;
4321
4322 /* We can only step over breakpoints we know about. */
4323 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4324 {
4325 /* Don't step over a breakpoint that GDB expects to hit
4326 though. If the condition is being evaluated on the target's side
4327 and it evaluate to false, step over this breakpoint as well. */
4328 if (gdb_breakpoint_here (pc)
4329 && gdb_condition_true_at_breakpoint (pc)
4330 && gdb_no_commands_at_breakpoint (pc))
4331 {
4332 if (debug_threads)
4333 debug_printf ("Need step over [LWP %ld]? yes, but found"
4334 " GDB breakpoint at 0x%s; skipping step over\n",
4335 lwpid_of (thread), paddress (pc));
4336
4337 current_thread = saved_thread;
4338 return 0;
4339 }
4340 else
4341 {
4342 if (debug_threads)
4343 debug_printf ("Need step over [LWP %ld]? yes, "
4344 "found breakpoint at 0x%s\n",
4345 lwpid_of (thread), paddress (pc));
4346
4347 /* We've found an lwp that needs stepping over --- return 1 so
4348 that find_inferior stops looking. */
4349 current_thread = saved_thread;
4350
4351 /* If the step over is cancelled, this is set again. */
4352 lwp->need_step_over = 0;
4353 return 1;
4354 }
4355 }
4356
4357 current_thread = saved_thread;
4358
4359 if (debug_threads)
4360 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4361 " at 0x%s\n",
4362 lwpid_of (thread), paddress (pc));
4363
4364 return 0;
4365 }
4366
4367 /* Start a step-over operation on LWP. When LWP stopped at a
4368 breakpoint, to make progress, we need to remove the breakpoint out
4369 of the way. If we let other threads run while we do that, they may
4370 pass by the breakpoint location and miss hitting it. To avoid
4371 that, a step-over momentarily stops all threads while LWP is
4372 single-stepped while the breakpoint is temporarily uninserted from
4373 the inferior. When the single-step finishes, we reinsert the
4374 breakpoint, and let all threads that are supposed to be running,
4375 run again.
4376
4377 On targets that don't support hardware single-step, we don't
4378 currently support full software single-stepping. Instead, we only
4379 support stepping over the thread event breakpoint, by asking the
4380 low target where to place a reinsert breakpoint. Since this
4381 routine assumes the breakpoint being stepped over is a thread event
4382 breakpoint, it usually assumes the return address of the current
4383 function is a good enough place to set the reinsert breakpoint. */
4384
4385 static int
4386 start_step_over (struct lwp_info *lwp)
4387 {
4388 struct thread_info *thread = get_lwp_thread (lwp);
4389 struct thread_info *saved_thread;
4390 CORE_ADDR pc;
4391 int step;
4392
4393 if (debug_threads)
4394 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4395 lwpid_of (thread));
4396
4397 stop_all_lwps (1, lwp);
4398
4399 if (lwp->suspended != 0)
4400 {
4401 internal_error (__FILE__, __LINE__,
4402 "LWP %ld suspended=%d\n", lwpid_of (thread),
4403 lwp->suspended);
4404 }
4405
4406 if (debug_threads)
4407 debug_printf ("Done stopping all threads for step-over.\n");
4408
4409 /* Note, we should always reach here with an already adjusted PC,
4410 either by GDB (if we're resuming due to GDB's request), or by our
4411 caller, if we just finished handling an internal breakpoint GDB
4412 shouldn't care about. */
4413 pc = get_pc (lwp);
4414
4415 saved_thread = current_thread;
4416 current_thread = thread;
4417
4418 lwp->bp_reinsert = pc;
4419 uninsert_breakpoints_at (pc);
4420 uninsert_fast_tracepoint_jumps_at (pc);
4421
4422 if (can_hardware_single_step ())
4423 {
4424 step = 1;
4425 }
4426 else
4427 {
4428 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
4429 set_reinsert_breakpoint (raddr);
4430 step = 0;
4431 }
4432
4433 current_thread = saved_thread;
4434
4435 linux_resume_one_lwp (lwp, step, 0, NULL);
4436
4437 /* Require next event from this LWP. */
4438 step_over_bkpt = thread->entry.id;
4439 return 1;
4440 }
4441
4442 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4443 start_step_over, if still there, and delete any reinsert
4444 breakpoints we've set, on non hardware single-step targets. */
4445
4446 static int
4447 finish_step_over (struct lwp_info *lwp)
4448 {
4449 if (lwp->bp_reinsert != 0)
4450 {
4451 if (debug_threads)
4452 debug_printf ("Finished step over.\n");
4453
4454 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4455 may be no breakpoint to reinsert there by now. */
4456 reinsert_breakpoints_at (lwp->bp_reinsert);
4457 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4458
4459 lwp->bp_reinsert = 0;
4460
4461 /* Delete any software-single-step reinsert breakpoints. No
4462 longer needed. We don't have to worry about other threads
4463 hitting this trap, and later not being able to explain it,
4464 because we were stepping over a breakpoint, and we hold all
4465 threads but LWP stopped while doing that. */
4466 if (!can_hardware_single_step ())
4467 delete_reinsert_breakpoints ();
4468
4469 step_over_bkpt = null_ptid;
4470 return 1;
4471 }
4472 else
4473 return 0;
4474 }
4475
4476 /* If there's a step over in progress, wait until all threads stop
4477 (that is, until the stepping thread finishes its step), and
4478 unsuspend all lwps. The stepping thread ends with its status
4479 pending, which is processed later when we get back to processing
4480 events. */
4481
4482 static void
4483 complete_ongoing_step_over (void)
4484 {
4485 if (!ptid_equal (step_over_bkpt, null_ptid))
4486 {
4487 struct lwp_info *lwp;
4488 int wstat;
4489 int ret;
4490
4491 if (debug_threads)
4492 debug_printf ("detach: step over in progress, finish it first\n");
4493
4494 /* Passing NULL_PTID as filter indicates we want all events to
4495 be left pending. Eventually this returns when there are no
4496 unwaited-for children left. */
4497 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4498 &wstat, __WALL);
4499 gdb_assert (ret == -1);
4500
4501 lwp = find_lwp_pid (step_over_bkpt);
4502 if (lwp != NULL)
4503 finish_step_over (lwp);
4504 step_over_bkpt = null_ptid;
4505 unsuspend_all_lwps (lwp);
4506 }
4507 }
4508
4509 /* This function is called once per thread. We check the thread's resume
4510 request, which will tell us whether to resume, step, or leave the thread
4511 stopped; and what signal, if any, it should be sent.
4512
4513 For threads which we aren't explicitly told otherwise, we preserve
4514 the stepping flag; this is used for stepping over gdbserver-placed
4515 breakpoints.
4516
4517 If pending_flags was set in any thread, we queue any needed
4518 signals, since we won't actually resume. We already have a pending
4519 event to report, so we don't need to preserve any step requests;
4520 they should be re-issued if necessary. */
4521
4522 static int
4523 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
4524 {
4525 struct thread_info *thread = (struct thread_info *) entry;
4526 struct lwp_info *lwp = get_thread_lwp (thread);
4527 int step;
4528 int leave_all_stopped = * (int *) arg;
4529 int leave_pending;
4530
4531 if (lwp->resume == NULL)
4532 return 0;
4533
4534 if (lwp->resume->kind == resume_stop)
4535 {
4536 if (debug_threads)
4537 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4538
4539 if (!lwp->stopped)
4540 {
4541 if (debug_threads)
4542 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4543
4544 /* Stop the thread, and wait for the event asynchronously,
4545 through the event loop. */
4546 send_sigstop (lwp);
4547 }
4548 else
4549 {
4550 if (debug_threads)
4551 debug_printf ("already stopped LWP %ld\n",
4552 lwpid_of (thread));
4553
4554 /* The LWP may have been stopped in an internal event that
4555 was not meant to be notified back to GDB (e.g., gdbserver
4556 breakpoint), so we should be reporting a stop event in
4557 this case too. */
4558
4559 /* If the thread already has a pending SIGSTOP, this is a
4560 no-op. Otherwise, something later will presumably resume
4561 the thread and this will cause it to cancel any pending
4562 operation, due to last_resume_kind == resume_stop. If
4563 the thread already has a pending status to report, we
4564 will still report it the next time we wait - see
4565 status_pending_p_callback. */
4566
4567 /* If we already have a pending signal to report, then
4568 there's no need to queue a SIGSTOP, as this means we're
4569 midway through moving the LWP out of the jumppad, and we
4570 will report the pending signal as soon as that is
4571 finished. */
4572 if (lwp->pending_signals_to_report == NULL)
4573 send_sigstop (lwp);
4574 }
4575
4576 /* For stop requests, we're done. */
4577 lwp->resume = NULL;
4578 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4579 return 0;
4580 }
4581
4582 /* If this thread which is about to be resumed has a pending status,
4583 then don't resume it - we can just report the pending status.
4584 Likewise if it is suspended, because e.g., another thread is
4585 stepping past a breakpoint. Make sure to queue any signals that
4586 would otherwise be sent. In all-stop mode, we do this decision
4587 based on if *any* thread has a pending status. If there's a
4588 thread that needs the step-over-breakpoint dance, then don't
4589 resume any other thread but that particular one. */
4590 leave_pending = (lwp->suspended
4591 || lwp->status_pending_p
4592 || leave_all_stopped);
4593
4594 if (!leave_pending)
4595 {
4596 if (debug_threads)
4597 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4598
4599 step = (lwp->resume->kind == resume_step);
4600 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
4601 }
4602 else
4603 {
4604 if (debug_threads)
4605 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4606
4607 /* If we have a new signal, enqueue the signal. */
4608 if (lwp->resume->sig != 0)
4609 {
4610 struct pending_signals *p_sig = XCNEW (struct pending_signals);
4611
4612 p_sig->prev = lwp->pending_signals;
4613 p_sig->signal = lwp->resume->sig;
4614
4615 /* If this is the same signal we were previously stopped by,
4616 make sure to queue its siginfo. We can ignore the return
4617 value of ptrace; if it fails, we'll skip
4618 PTRACE_SETSIGINFO. */
4619 if (WIFSTOPPED (lwp->last_status)
4620 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
4621 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4622 &p_sig->info);
4623
4624 lwp->pending_signals = p_sig;
4625 }
4626 }
4627
4628 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4629 lwp->resume = NULL;
4630 return 0;
4631 }
4632
4633 static void
4634 linux_resume (struct thread_resume *resume_info, size_t n)
4635 {
4636 struct thread_resume_array array = { resume_info, n };
4637 struct thread_info *need_step_over = NULL;
4638 int any_pending;
4639 int leave_all_stopped;
4640
4641 if (debug_threads)
4642 {
4643 debug_enter ();
4644 debug_printf ("linux_resume:\n");
4645 }
4646
4647 find_inferior (&all_threads, linux_set_resume_request, &array);
4648
4649 /* If there is a thread which would otherwise be resumed, which has
4650 a pending status, then don't resume any threads - we can just
4651 report the pending status. Make sure to queue any signals that
4652 would otherwise be sent. In non-stop mode, we'll apply this
4653 logic to each thread individually. We consume all pending events
4654 before considering to start a step-over (in all-stop). */
4655 any_pending = 0;
4656 if (!non_stop)
4657 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4658
4659 /* If there is a thread which would otherwise be resumed, which is
4660 stopped at a breakpoint that needs stepping over, then don't
4661 resume any threads - have it step over the breakpoint with all
4662 other threads stopped, then resume all threads again. Make sure
4663 to queue any signals that would otherwise be delivered or
4664 queued. */
4665 if (!any_pending && supports_breakpoints ())
4666 need_step_over
4667 = (struct thread_info *) find_inferior (&all_threads,
4668 need_step_over_p, NULL);
4669
4670 leave_all_stopped = (need_step_over != NULL || any_pending);
4671
4672 if (debug_threads)
4673 {
4674 if (need_step_over != NULL)
4675 debug_printf ("Not resuming all, need step over\n");
4676 else if (any_pending)
4677 debug_printf ("Not resuming, all-stop and found "
4678 "an LWP with pending status\n");
4679 else
4680 debug_printf ("Resuming, no pending status or step over needed\n");
4681 }
4682
4683 /* Even if we're leaving threads stopped, queue all signals we'd
4684 otherwise deliver. */
4685 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4686
4687 if (need_step_over)
4688 start_step_over (get_thread_lwp (need_step_over));
4689
4690 if (debug_threads)
4691 {
4692 debug_printf ("linux_resume done\n");
4693 debug_exit ();
4694 }
4695 }
4696
4697 /* This function is called once per thread. We check the thread's
4698 last resume request, which will tell us whether to resume, step, or
4699 leave the thread stopped. Any signal the client requested to be
4700 delivered has already been enqueued at this point.
4701
4702 If any thread that GDB wants running is stopped at an internal
4703 breakpoint that needs stepping over, we start a step-over operation
4704 on that particular thread, and leave all others stopped. */
4705
4706 static int
4707 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4708 {
4709 struct thread_info *thread = (struct thread_info *) entry;
4710 struct lwp_info *lwp = get_thread_lwp (thread);
4711 int step;
4712
4713 if (lwp == except)
4714 return 0;
4715
4716 if (debug_threads)
4717 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4718
4719 if (!lwp->stopped)
4720 {
4721 if (debug_threads)
4722 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4723 return 0;
4724 }
4725
4726 if (thread->last_resume_kind == resume_stop
4727 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4728 {
4729 if (debug_threads)
4730 debug_printf (" client wants LWP to remain %ld stopped\n",
4731 lwpid_of (thread));
4732 return 0;
4733 }
4734
4735 if (lwp->status_pending_p)
4736 {
4737 if (debug_threads)
4738 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4739 lwpid_of (thread));
4740 return 0;
4741 }
4742
4743 gdb_assert (lwp->suspended >= 0);
4744
4745 if (lwp->suspended)
4746 {
4747 if (debug_threads)
4748 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4749 return 0;
4750 }
4751
4752 if (thread->last_resume_kind == resume_stop
4753 && lwp->pending_signals_to_report == NULL
4754 && lwp->collecting_fast_tracepoint == 0)
4755 {
4756 /* We haven't reported this LWP as stopped yet (otherwise, the
4757 last_status.kind check above would catch it, and we wouldn't
4758 reach here. This LWP may have been momentarily paused by a
4759 stop_all_lwps call while handling for example, another LWP's
4760 step-over. In that case, the pending expected SIGSTOP signal
4761 that was queued at vCont;t handling time will have already
4762 been consumed by wait_for_sigstop, and so we need to requeue
4763 another one here. Note that if the LWP already has a SIGSTOP
4764 pending, this is a no-op. */
4765
4766 if (debug_threads)
4767 debug_printf ("Client wants LWP %ld to stop. "
4768 "Making sure it has a SIGSTOP pending\n",
4769 lwpid_of (thread));
4770
4771 send_sigstop (lwp);
4772 }
4773
4774 if (thread->last_resume_kind == resume_step)
4775 {
4776 if (debug_threads)
4777 debug_printf (" stepping LWP %ld, client wants it stepping\n",
4778 lwpid_of (thread));
4779 step = 1;
4780 }
4781 else if (lwp->bp_reinsert != 0)
4782 {
4783 if (debug_threads)
4784 debug_printf (" stepping LWP %ld, reinsert set\n",
4785 lwpid_of (thread));
4786 step = 1;
4787 }
4788 else
4789 step = 0;
4790
4791 linux_resume_one_lwp (lwp, step, 0, NULL);
4792 return 0;
4793 }
4794
4795 static int
4796 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4797 {
4798 struct thread_info *thread = (struct thread_info *) entry;
4799 struct lwp_info *lwp = get_thread_lwp (thread);
4800
4801 if (lwp == except)
4802 return 0;
4803
4804 lwp_suspended_decr (lwp);
4805
4806 return proceed_one_lwp (entry, except);
4807 }
4808
4809 /* When we finish a step-over, set threads running again. If there's
4810 another thread that may need a step-over, now's the time to start
4811 it. Eventually, we'll move all threads past their breakpoints. */
4812
4813 static void
4814 proceed_all_lwps (void)
4815 {
4816 struct thread_info *need_step_over;
4817
4818 /* If there is a thread which would otherwise be resumed, which is
4819 stopped at a breakpoint that needs stepping over, then don't
4820 resume any threads - have it step over the breakpoint with all
4821 other threads stopped, then resume all threads again. */
4822
4823 if (supports_breakpoints ())
4824 {
4825 need_step_over
4826 = (struct thread_info *) find_inferior (&all_threads,
4827 need_step_over_p, NULL);
4828
4829 if (need_step_over != NULL)
4830 {
4831 if (debug_threads)
4832 debug_printf ("proceed_all_lwps: found "
4833 "thread %ld needing a step-over\n",
4834 lwpid_of (need_step_over));
4835
4836 start_step_over (get_thread_lwp (need_step_over));
4837 return;
4838 }
4839 }
4840
4841 if (debug_threads)
4842 debug_printf ("Proceeding, no step-over needed\n");
4843
4844 find_inferior (&all_threads, proceed_one_lwp, NULL);
4845 }
4846
4847 /* Stopped LWPs that the client wanted to be running, that don't have
4848 pending statuses, are set to run again, except for EXCEPT, if not
4849 NULL. This undoes a stop_all_lwps call. */
4850
4851 static void
4852 unstop_all_lwps (int unsuspend, struct lwp_info *except)
4853 {
4854 if (debug_threads)
4855 {
4856 debug_enter ();
4857 if (except)
4858 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
4859 lwpid_of (get_lwp_thread (except)));
4860 else
4861 debug_printf ("unstopping all lwps\n");
4862 }
4863
4864 if (unsuspend)
4865 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
4866 else
4867 find_inferior (&all_threads, proceed_one_lwp, except);
4868
4869 if (debug_threads)
4870 {
4871 debug_printf ("unstop_all_lwps done\n");
4872 debug_exit ();
4873 }
4874 }
4875
4876
4877 #ifdef HAVE_LINUX_REGSETS
4878
4879 #define use_linux_regsets 1
4880
4881 /* Returns true if REGSET has been disabled. */
4882
4883 static int
4884 regset_disabled (struct regsets_info *info, struct regset_info *regset)
4885 {
4886 return (info->disabled_regsets != NULL
4887 && info->disabled_regsets[regset - info->regsets]);
4888 }
4889
4890 /* Disable REGSET. */
4891
4892 static void
4893 disable_regset (struct regsets_info *info, struct regset_info *regset)
4894 {
4895 int dr_offset;
4896
4897 dr_offset = regset - info->regsets;
4898 if (info->disabled_regsets == NULL)
4899 info->disabled_regsets = xcalloc (1, info->num_regsets);
4900 info->disabled_regsets[dr_offset] = 1;
4901 }
4902
4903 static int
4904 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
4905 struct regcache *regcache)
4906 {
4907 struct regset_info *regset;
4908 int saw_general_regs = 0;
4909 int pid;
4910 struct iovec iov;
4911
4912 pid = lwpid_of (current_thread);
4913 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4914 {
4915 void *buf, *data;
4916 int nt_type, res;
4917
4918 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4919 continue;
4920
4921 buf = xmalloc (regset->size);
4922
4923 nt_type = regset->nt_type;
4924 if (nt_type)
4925 {
4926 iov.iov_base = buf;
4927 iov.iov_len = regset->size;
4928 data = (void *) &iov;
4929 }
4930 else
4931 data = buf;
4932
4933 #ifndef __sparc__
4934 res = ptrace (regset->get_request, pid,
4935 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4936 #else
4937 res = ptrace (regset->get_request, pid, data, nt_type);
4938 #endif
4939 if (res < 0)
4940 {
4941 if (errno == EIO)
4942 {
4943 /* If we get EIO on a regset, do not try it again for
4944 this process mode. */
4945 disable_regset (regsets_info, regset);
4946 }
4947 else if (errno == ENODATA)
4948 {
4949 /* ENODATA may be returned if the regset is currently
4950 not "active". This can happen in normal operation,
4951 so suppress the warning in this case. */
4952 }
4953 else
4954 {
4955 char s[256];
4956 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
4957 pid);
4958 perror (s);
4959 }
4960 }
4961 else
4962 {
4963 if (regset->type == GENERAL_REGS)
4964 saw_general_regs = 1;
4965 regset->store_function (regcache, buf);
4966 }
4967 free (buf);
4968 }
4969 if (saw_general_regs)
4970 return 0;
4971 else
4972 return 1;
4973 }
4974
4975 static int
4976 regsets_store_inferior_registers (struct regsets_info *regsets_info,
4977 struct regcache *regcache)
4978 {
4979 struct regset_info *regset;
4980 int saw_general_regs = 0;
4981 int pid;
4982 struct iovec iov;
4983
4984 pid = lwpid_of (current_thread);
4985 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4986 {
4987 void *buf, *data;
4988 int nt_type, res;
4989
4990 if (regset->size == 0 || regset_disabled (regsets_info, regset)
4991 || regset->fill_function == NULL)
4992 continue;
4993
4994 buf = xmalloc (regset->size);
4995
4996 /* First fill the buffer with the current register set contents,
4997 in case there are any items in the kernel's regset that are
4998 not in gdbserver's regcache. */
4999
5000 nt_type = regset->nt_type;
5001 if (nt_type)
5002 {
5003 iov.iov_base = buf;
5004 iov.iov_len = regset->size;
5005 data = (void *) &iov;
5006 }
5007 else
5008 data = buf;
5009
5010 #ifndef __sparc__
5011 res = ptrace (regset->get_request, pid,
5012 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5013 #else
5014 res = ptrace (regset->get_request, pid, data, nt_type);
5015 #endif
5016
5017 if (res == 0)
5018 {
5019 /* Then overlay our cached registers on that. */
5020 regset->fill_function (regcache, buf);
5021
5022 /* Only now do we write the register set. */
5023 #ifndef __sparc__
5024 res = ptrace (regset->set_request, pid,
5025 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5026 #else
5027 res = ptrace (regset->set_request, pid, data, nt_type);
5028 #endif
5029 }
5030
5031 if (res < 0)
5032 {
5033 if (errno == EIO)
5034 {
5035 /* If we get EIO on a regset, do not try it again for
5036 this process mode. */
5037 disable_regset (regsets_info, regset);
5038 }
5039 else if (errno == ESRCH)
5040 {
5041 /* At this point, ESRCH should mean the process is
5042 already gone, in which case we simply ignore attempts
5043 to change its registers. See also the related
5044 comment in linux_resume_one_lwp. */
5045 free (buf);
5046 return 0;
5047 }
5048 else
5049 {
5050 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5051 }
5052 }
5053 else if (regset->type == GENERAL_REGS)
5054 saw_general_regs = 1;
5055 free (buf);
5056 }
5057 if (saw_general_regs)
5058 return 0;
5059 else
5060 return 1;
5061 }
5062
5063 #else /* !HAVE_LINUX_REGSETS */
5064
5065 #define use_linux_regsets 0
5066 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5067 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5068
5069 #endif
5070
5071 /* Return 1 if register REGNO is supported by one of the regset ptrace
5072 calls or 0 if it has to be transferred individually. */
5073
5074 static int
5075 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5076 {
5077 unsigned char mask = 1 << (regno % 8);
5078 size_t index = regno / 8;
5079
5080 return (use_linux_regsets
5081 && (regs_info->regset_bitmap == NULL
5082 || (regs_info->regset_bitmap[index] & mask) != 0));
5083 }
5084
5085 #ifdef HAVE_LINUX_USRREGS
5086
5087 int
5088 register_addr (const struct usrregs_info *usrregs, int regnum)
5089 {
5090 int addr;
5091
5092 if (regnum < 0 || regnum >= usrregs->num_regs)
5093 error ("Invalid register number %d.", regnum);
5094
5095 addr = usrregs->regmap[regnum];
5096
5097 return addr;
5098 }
5099
5100 /* Fetch one register. */
5101 static void
5102 fetch_register (const struct usrregs_info *usrregs,
5103 struct regcache *regcache, int regno)
5104 {
5105 CORE_ADDR regaddr;
5106 int i, size;
5107 char *buf;
5108 int pid;
5109
5110 if (regno >= usrregs->num_regs)
5111 return;
5112 if ((*the_low_target.cannot_fetch_register) (regno))
5113 return;
5114
5115 regaddr = register_addr (usrregs, regno);
5116 if (regaddr == -1)
5117 return;
5118
5119 size = ((register_size (regcache->tdesc, regno)
5120 + sizeof (PTRACE_XFER_TYPE) - 1)
5121 & -sizeof (PTRACE_XFER_TYPE));
5122 buf = alloca (size);
5123
5124 pid = lwpid_of (current_thread);
5125 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5126 {
5127 errno = 0;
5128 *(PTRACE_XFER_TYPE *) (buf + i) =
5129 ptrace (PTRACE_PEEKUSER, pid,
5130 /* Coerce to a uintptr_t first to avoid potential gcc warning
5131 of coercing an 8 byte integer to a 4 byte pointer. */
5132 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5133 regaddr += sizeof (PTRACE_XFER_TYPE);
5134 if (errno != 0)
5135 error ("reading register %d: %s", regno, strerror (errno));
5136 }
5137
5138 if (the_low_target.supply_ptrace_register)
5139 the_low_target.supply_ptrace_register (regcache, regno, buf);
5140 else
5141 supply_register (regcache, regno, buf);
5142 }
5143
5144 /* Store one register. */
5145 static void
5146 store_register (const struct usrregs_info *usrregs,
5147 struct regcache *regcache, int regno)
5148 {
5149 CORE_ADDR regaddr;
5150 int i, size;
5151 char *buf;
5152 int pid;
5153
5154 if (regno >= usrregs->num_regs)
5155 return;
5156 if ((*the_low_target.cannot_store_register) (regno))
5157 return;
5158
5159 regaddr = register_addr (usrregs, regno);
5160 if (regaddr == -1)
5161 return;
5162
5163 size = ((register_size (regcache->tdesc, regno)
5164 + sizeof (PTRACE_XFER_TYPE) - 1)
5165 & -sizeof (PTRACE_XFER_TYPE));
5166 buf = alloca (size);
5167 memset (buf, 0, size);
5168
5169 if (the_low_target.collect_ptrace_register)
5170 the_low_target.collect_ptrace_register (regcache, regno, buf);
5171 else
5172 collect_register (regcache, regno, buf);
5173
5174 pid = lwpid_of (current_thread);
5175 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5176 {
5177 errno = 0;
5178 ptrace (PTRACE_POKEUSER, pid,
5179 /* Coerce to a uintptr_t first to avoid potential gcc warning
5180 about coercing an 8 byte integer to a 4 byte pointer. */
5181 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5182 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5183 if (errno != 0)
5184 {
5185 /* At this point, ESRCH should mean the process is
5186 already gone, in which case we simply ignore attempts
5187 to change its registers. See also the related
5188 comment in linux_resume_one_lwp. */
5189 if (errno == ESRCH)
5190 return;
5191
5192 if ((*the_low_target.cannot_store_register) (regno) == 0)
5193 error ("writing register %d: %s", regno, strerror (errno));
5194 }
5195 regaddr += sizeof (PTRACE_XFER_TYPE);
5196 }
5197 }
5198
5199 /* Fetch all registers, or just one, from the child process.
5200 If REGNO is -1, do this for all registers, skipping any that are
5201 assumed to have been retrieved by regsets_fetch_inferior_registers,
5202 unless ALL is non-zero.
5203 Otherwise, REGNO specifies which register (so we can save time). */
5204 static void
5205 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5206 struct regcache *regcache, int regno, int all)
5207 {
5208 struct usrregs_info *usr = regs_info->usrregs;
5209
5210 if (regno == -1)
5211 {
5212 for (regno = 0; regno < usr->num_regs; regno++)
5213 if (all || !linux_register_in_regsets (regs_info, regno))
5214 fetch_register (usr, regcache, regno);
5215 }
5216 else
5217 fetch_register (usr, regcache, regno);
5218 }
5219
5220 /* Store our register values back into the inferior.
5221 If REGNO is -1, do this for all registers, skipping any that are
5222 assumed to have been saved by regsets_store_inferior_registers,
5223 unless ALL is non-zero.
5224 Otherwise, REGNO specifies which register (so we can save time). */
5225 static void
5226 usr_store_inferior_registers (const struct regs_info *regs_info,
5227 struct regcache *regcache, int regno, int all)
5228 {
5229 struct usrregs_info *usr = regs_info->usrregs;
5230
5231 if (regno == -1)
5232 {
5233 for (regno = 0; regno < usr->num_regs; regno++)
5234 if (all || !linux_register_in_regsets (regs_info, regno))
5235 store_register (usr, regcache, regno);
5236 }
5237 else
5238 store_register (usr, regcache, regno);
5239 }
5240
5241 #else /* !HAVE_LINUX_USRREGS */
5242
5243 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5244 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5245
5246 #endif
5247
5248
5249 void
5250 linux_fetch_registers (struct regcache *regcache, int regno)
5251 {
5252 int use_regsets;
5253 int all = 0;
5254 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5255
5256 if (regno == -1)
5257 {
5258 if (the_low_target.fetch_register != NULL
5259 && regs_info->usrregs != NULL)
5260 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5261 (*the_low_target.fetch_register) (regcache, regno);
5262
5263 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5264 if (regs_info->usrregs != NULL)
5265 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5266 }
5267 else
5268 {
5269 if (the_low_target.fetch_register != NULL
5270 && (*the_low_target.fetch_register) (regcache, regno))
5271 return;
5272
5273 use_regsets = linux_register_in_regsets (regs_info, regno);
5274 if (use_regsets)
5275 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5276 regcache);
5277 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5278 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5279 }
5280 }
5281
5282 void
5283 linux_store_registers (struct regcache *regcache, int regno)
5284 {
5285 int use_regsets;
5286 int all = 0;
5287 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5288
5289 if (regno == -1)
5290 {
5291 all = regsets_store_inferior_registers (regs_info->regsets_info,
5292 regcache);
5293 if (regs_info->usrregs != NULL)
5294 usr_store_inferior_registers (regs_info, regcache, regno, all);
5295 }
5296 else
5297 {
5298 use_regsets = linux_register_in_regsets (regs_info, regno);
5299 if (use_regsets)
5300 all = regsets_store_inferior_registers (regs_info->regsets_info,
5301 regcache);
5302 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5303 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5304 }
5305 }
5306
5307
5308 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5309 to debugger memory starting at MYADDR. */
5310
5311 static int
5312 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5313 {
5314 int pid = lwpid_of (current_thread);
5315 register PTRACE_XFER_TYPE *buffer;
5316 register CORE_ADDR addr;
5317 register int count;
5318 char filename[64];
5319 register int i;
5320 int ret;
5321 int fd;
5322
5323 /* Try using /proc. Don't bother for one word. */
5324 if (len >= 3 * sizeof (long))
5325 {
5326 int bytes;
5327
5328 /* We could keep this file open and cache it - possibly one per
5329 thread. That requires some juggling, but is even faster. */
5330 sprintf (filename, "/proc/%d/mem", pid);
5331 fd = open (filename, O_RDONLY | O_LARGEFILE);
5332 if (fd == -1)
5333 goto no_proc;
5334
5335 /* If pread64 is available, use it. It's faster if the kernel
5336 supports it (only one syscall), and it's 64-bit safe even on
5337 32-bit platforms (for instance, SPARC debugging a SPARC64
5338 application). */
5339 #ifdef HAVE_PREAD64
5340 bytes = pread64 (fd, myaddr, len, memaddr);
5341 #else
5342 bytes = -1;
5343 if (lseek (fd, memaddr, SEEK_SET) != -1)
5344 bytes = read (fd, myaddr, len);
5345 #endif
5346
5347 close (fd);
5348 if (bytes == len)
5349 return 0;
5350
5351 /* Some data was read, we'll try to get the rest with ptrace. */
5352 if (bytes > 0)
5353 {
5354 memaddr += bytes;
5355 myaddr += bytes;
5356 len -= bytes;
5357 }
5358 }
5359
5360 no_proc:
5361 /* Round starting address down to longword boundary. */
5362 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5363 /* Round ending address up; get number of longwords that makes. */
5364 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5365 / sizeof (PTRACE_XFER_TYPE));
5366 /* Allocate buffer of that many longwords. */
5367 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5368
5369 /* Read all the longwords */
5370 errno = 0;
5371 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5372 {
5373 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5374 about coercing an 8 byte integer to a 4 byte pointer. */
5375 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5376 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5377 (PTRACE_TYPE_ARG4) 0);
5378 if (errno)
5379 break;
5380 }
5381 ret = errno;
5382
5383 /* Copy appropriate bytes out of the buffer. */
5384 if (i > 0)
5385 {
5386 i *= sizeof (PTRACE_XFER_TYPE);
5387 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5388 memcpy (myaddr,
5389 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5390 i < len ? i : len);
5391 }
5392
5393 return ret;
5394 }
5395
5396 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5397 memory at MEMADDR. On failure (cannot write to the inferior)
5398 returns the value of errno. Always succeeds if LEN is zero. */
5399
5400 static int
5401 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5402 {
5403 register int i;
5404 /* Round starting address down to longword boundary. */
5405 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5406 /* Round ending address up; get number of longwords that makes. */
5407 register int count
5408 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5409 / sizeof (PTRACE_XFER_TYPE);
5410
5411 /* Allocate buffer of that many longwords. */
5412 register PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5413
5414 int pid = lwpid_of (current_thread);
5415
5416 if (len == 0)
5417 {
5418 /* Zero length write always succeeds. */
5419 return 0;
5420 }
5421
5422 if (debug_threads)
5423 {
5424 /* Dump up to four bytes. */
5425 char str[4 * 2 + 1];
5426 char *p = str;
5427 int dump = len < 4 ? len : 4;
5428
5429 for (i = 0; i < dump; i++)
5430 {
5431 sprintf (p, "%02x", myaddr[i]);
5432 p += 2;
5433 }
5434 *p = '\0';
5435
5436 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5437 str, (long) memaddr, pid);
5438 }
5439
5440 /* Fill start and end extra bytes of buffer with existing memory data. */
5441
5442 errno = 0;
5443 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5444 about coercing an 8 byte integer to a 4 byte pointer. */
5445 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5446 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5447 (PTRACE_TYPE_ARG4) 0);
5448 if (errno)
5449 return errno;
5450
5451 if (count > 1)
5452 {
5453 errno = 0;
5454 buffer[count - 1]
5455 = ptrace (PTRACE_PEEKTEXT, pid,
5456 /* Coerce to a uintptr_t first to avoid potential gcc warning
5457 about coercing an 8 byte integer to a 4 byte pointer. */
5458 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5459 * sizeof (PTRACE_XFER_TYPE)),
5460 (PTRACE_TYPE_ARG4) 0);
5461 if (errno)
5462 return errno;
5463 }
5464
5465 /* Copy data to be written over corresponding part of buffer. */
5466
5467 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5468 myaddr, len);
5469
5470 /* Write the entire buffer. */
5471
5472 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5473 {
5474 errno = 0;
5475 ptrace (PTRACE_POKETEXT, pid,
5476 /* Coerce to a uintptr_t first to avoid potential gcc warning
5477 about coercing an 8 byte integer to a 4 byte pointer. */
5478 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5479 (PTRACE_TYPE_ARG4) buffer[i]);
5480 if (errno)
5481 return errno;
5482 }
5483
5484 return 0;
5485 }
5486
5487 static void
5488 linux_look_up_symbols (void)
5489 {
5490 #ifdef USE_THREAD_DB
5491 struct process_info *proc = current_process ();
5492
5493 if (proc->priv->thread_db != NULL)
5494 return;
5495
5496 /* If the kernel supports tracing clones, then we don't need to
5497 use the magic thread event breakpoint to learn about
5498 threads. */
5499 thread_db_init (!linux_supports_traceclone ());
5500 #endif
5501 }
5502
5503 static void
5504 linux_request_interrupt (void)
5505 {
5506 extern unsigned long signal_pid;
5507
5508 /* Send a SIGINT to the process group. This acts just like the user
5509 typed a ^C on the controlling terminal. */
5510 kill (-signal_pid, SIGINT);
5511 }
5512
5513 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5514 to debugger memory starting at MYADDR. */
5515
5516 static int
5517 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5518 {
5519 char filename[PATH_MAX];
5520 int fd, n;
5521 int pid = lwpid_of (current_thread);
5522
5523 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5524
5525 fd = open (filename, O_RDONLY);
5526 if (fd < 0)
5527 return -1;
5528
5529 if (offset != (CORE_ADDR) 0
5530 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5531 n = -1;
5532 else
5533 n = read (fd, myaddr, len);
5534
5535 close (fd);
5536
5537 return n;
5538 }
5539
5540 /* These breakpoint and watchpoint related wrapper functions simply
5541 pass on the function call if the target has registered a
5542 corresponding function. */
5543
5544 static int
5545 linux_supports_z_point_type (char z_type)
5546 {
5547 return (the_low_target.supports_z_point_type != NULL
5548 && the_low_target.supports_z_point_type (z_type));
5549 }
5550
5551 static int
5552 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5553 int size, struct raw_breakpoint *bp)
5554 {
5555 if (type == raw_bkpt_type_sw)
5556 return insert_memory_breakpoint (bp);
5557 else if (the_low_target.insert_point != NULL)
5558 return the_low_target.insert_point (type, addr, size, bp);
5559 else
5560 /* Unsupported (see target.h). */
5561 return 1;
5562 }
5563
5564 static int
5565 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5566 int size, struct raw_breakpoint *bp)
5567 {
5568 if (type == raw_bkpt_type_sw)
5569 return remove_memory_breakpoint (bp);
5570 else if (the_low_target.remove_point != NULL)
5571 return the_low_target.remove_point (type, addr, size, bp);
5572 else
5573 /* Unsupported (see target.h). */
5574 return 1;
5575 }
5576
5577 /* Implement the to_stopped_by_sw_breakpoint target_ops
5578 method. */
5579
5580 static int
5581 linux_stopped_by_sw_breakpoint (void)
5582 {
5583 struct lwp_info *lwp = get_thread_lwp (current_thread);
5584
5585 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5586 }
5587
5588 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5589 method. */
5590
5591 static int
5592 linux_supports_stopped_by_sw_breakpoint (void)
5593 {
5594 return USE_SIGTRAP_SIGINFO;
5595 }
5596
5597 /* Implement the to_stopped_by_hw_breakpoint target_ops
5598 method. */
5599
5600 static int
5601 linux_stopped_by_hw_breakpoint (void)
5602 {
5603 struct lwp_info *lwp = get_thread_lwp (current_thread);
5604
5605 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5606 }
5607
5608 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
5609 method. */
5610
5611 static int
5612 linux_supports_stopped_by_hw_breakpoint (void)
5613 {
5614 return USE_SIGTRAP_SIGINFO;
5615 }
5616
5617 /* Implement the supports_hardware_single_step target_ops method. */
5618
5619 static int
5620 linux_supports_hardware_single_step (void)
5621 {
5622 return can_hardware_single_step ();
5623 }
5624
5625 static int
5626 linux_stopped_by_watchpoint (void)
5627 {
5628 struct lwp_info *lwp = get_thread_lwp (current_thread);
5629
5630 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5631 }
5632
5633 static CORE_ADDR
5634 linux_stopped_data_address (void)
5635 {
5636 struct lwp_info *lwp = get_thread_lwp (current_thread);
5637
5638 return lwp->stopped_data_address;
5639 }
5640
5641 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5642 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5643 && defined(PT_TEXT_END_ADDR)
5644
5645 /* This is only used for targets that define PT_TEXT_ADDR,
5646 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5647 the target has different ways of acquiring this information, like
5648 loadmaps. */
5649
5650 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5651 to tell gdb about. */
5652
5653 static int
5654 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5655 {
5656 unsigned long text, text_end, data;
5657 int pid = lwpid_of (current_thread);
5658
5659 errno = 0;
5660
5661 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5662 (PTRACE_TYPE_ARG4) 0);
5663 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5664 (PTRACE_TYPE_ARG4) 0);
5665 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5666 (PTRACE_TYPE_ARG4) 0);
5667
5668 if (errno == 0)
5669 {
5670 /* Both text and data offsets produced at compile-time (and so
5671 used by gdb) are relative to the beginning of the program,
5672 with the data segment immediately following the text segment.
5673 However, the actual runtime layout in memory may put the data
5674 somewhere else, so when we send gdb a data base-address, we
5675 use the real data base address and subtract the compile-time
5676 data base-address from it (which is just the length of the
5677 text segment). BSS immediately follows data in both
5678 cases. */
5679 *text_p = text;
5680 *data_p = data - (text_end - text);
5681
5682 return 1;
5683 }
5684 return 0;
5685 }
5686 #endif
5687
5688 static int
5689 linux_qxfer_osdata (const char *annex,
5690 unsigned char *readbuf, unsigned const char *writebuf,
5691 CORE_ADDR offset, int len)
5692 {
5693 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5694 }
5695
5696 /* Convert a native/host siginfo object, into/from the siginfo in the
5697 layout of the inferiors' architecture. */
5698
5699 static void
5700 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
5701 {
5702 int done = 0;
5703
5704 if (the_low_target.siginfo_fixup != NULL)
5705 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5706
5707 /* If there was no callback, or the callback didn't do anything,
5708 then just do a straight memcpy. */
5709 if (!done)
5710 {
5711 if (direction == 1)
5712 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5713 else
5714 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5715 }
5716 }
5717
5718 static int
5719 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5720 unsigned const char *writebuf, CORE_ADDR offset, int len)
5721 {
5722 int pid;
5723 siginfo_t siginfo;
5724 char inf_siginfo[sizeof (siginfo_t)];
5725
5726 if (current_thread == NULL)
5727 return -1;
5728
5729 pid = lwpid_of (current_thread);
5730
5731 if (debug_threads)
5732 debug_printf ("%s siginfo for lwp %d.\n",
5733 readbuf != NULL ? "Reading" : "Writing",
5734 pid);
5735
5736 if (offset >= sizeof (siginfo))
5737 return -1;
5738
5739 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5740 return -1;
5741
5742 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5743 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5744 inferior with a 64-bit GDBSERVER should look the same as debugging it
5745 with a 32-bit GDBSERVER, we need to convert it. */
5746 siginfo_fixup (&siginfo, inf_siginfo, 0);
5747
5748 if (offset + len > sizeof (siginfo))
5749 len = sizeof (siginfo) - offset;
5750
5751 if (readbuf != NULL)
5752 memcpy (readbuf, inf_siginfo + offset, len);
5753 else
5754 {
5755 memcpy (inf_siginfo + offset, writebuf, len);
5756
5757 /* Convert back to ptrace layout before flushing it out. */
5758 siginfo_fixup (&siginfo, inf_siginfo, 1);
5759
5760 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5761 return -1;
5762 }
5763
5764 return len;
5765 }
5766
5767 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5768 so we notice when children change state; as the handler for the
5769 sigsuspend in my_waitpid. */
5770
5771 static void
5772 sigchld_handler (int signo)
5773 {
5774 int old_errno = errno;
5775
5776 if (debug_threads)
5777 {
5778 do
5779 {
5780 /* fprintf is not async-signal-safe, so call write
5781 directly. */
5782 if (write (2, "sigchld_handler\n",
5783 sizeof ("sigchld_handler\n") - 1) < 0)
5784 break; /* just ignore */
5785 } while (0);
5786 }
5787
5788 if (target_is_async_p ())
5789 async_file_mark (); /* trigger a linux_wait */
5790
5791 errno = old_errno;
5792 }
5793
5794 static int
5795 linux_supports_non_stop (void)
5796 {
5797 return 1;
5798 }
5799
5800 static int
5801 linux_async (int enable)
5802 {
5803 int previous = target_is_async_p ();
5804
5805 if (debug_threads)
5806 debug_printf ("linux_async (%d), previous=%d\n",
5807 enable, previous);
5808
5809 if (previous != enable)
5810 {
5811 sigset_t mask;
5812 sigemptyset (&mask);
5813 sigaddset (&mask, SIGCHLD);
5814
5815 sigprocmask (SIG_BLOCK, &mask, NULL);
5816
5817 if (enable)
5818 {
5819 if (pipe (linux_event_pipe) == -1)
5820 {
5821 linux_event_pipe[0] = -1;
5822 linux_event_pipe[1] = -1;
5823 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5824
5825 warning ("creating event pipe failed.");
5826 return previous;
5827 }
5828
5829 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
5830 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
5831
5832 /* Register the event loop handler. */
5833 add_file_handler (linux_event_pipe[0],
5834 handle_target_event, NULL);
5835
5836 /* Always trigger a linux_wait. */
5837 async_file_mark ();
5838 }
5839 else
5840 {
5841 delete_file_handler (linux_event_pipe[0]);
5842
5843 close (linux_event_pipe[0]);
5844 close (linux_event_pipe[1]);
5845 linux_event_pipe[0] = -1;
5846 linux_event_pipe[1] = -1;
5847 }
5848
5849 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5850 }
5851
5852 return previous;
5853 }
5854
5855 static int
5856 linux_start_non_stop (int nonstop)
5857 {
5858 /* Register or unregister from event-loop accordingly. */
5859 linux_async (nonstop);
5860
5861 if (target_is_async_p () != (nonstop != 0))
5862 return -1;
5863
5864 return 0;
5865 }
5866
5867 static int
5868 linux_supports_multi_process (void)
5869 {
5870 return 1;
5871 }
5872
5873 /* Check if fork events are supported. */
5874
5875 static int
5876 linux_supports_fork_events (void)
5877 {
5878 return linux_supports_tracefork ();
5879 }
5880
5881 /* Check if vfork events are supported. */
5882
5883 static int
5884 linux_supports_vfork_events (void)
5885 {
5886 return linux_supports_tracefork ();
5887 }
5888
5889 /* Check if exec events are supported. */
5890
5891 static int
5892 linux_supports_exec_events (void)
5893 {
5894 return linux_supports_traceexec ();
5895 }
5896
5897 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
5898 options for the specified lwp. */
5899
5900 static int
5901 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
5902 void *args)
5903 {
5904 struct thread_info *thread = (struct thread_info *) entry;
5905 struct lwp_info *lwp = get_thread_lwp (thread);
5906
5907 if (!lwp->stopped)
5908 {
5909 /* Stop the lwp so we can modify its ptrace options. */
5910 lwp->must_set_ptrace_flags = 1;
5911 linux_stop_lwp (lwp);
5912 }
5913 else
5914 {
5915 /* Already stopped; go ahead and set the ptrace options. */
5916 struct process_info *proc = find_process_pid (pid_of (thread));
5917 int options = linux_low_ptrace_options (proc->attached);
5918
5919 linux_enable_event_reporting (lwpid_of (thread), options);
5920 lwp->must_set_ptrace_flags = 0;
5921 }
5922
5923 return 0;
5924 }
5925
5926 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
5927 ptrace flags for all inferiors. This is in case the new GDB connection
5928 doesn't support the same set of events that the previous one did. */
5929
5930 static void
5931 linux_handle_new_gdb_connection (void)
5932 {
5933 pid_t pid;
5934
5935 /* Request that all the lwps reset their ptrace options. */
5936 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
5937 }
5938
5939 static int
5940 linux_supports_disable_randomization (void)
5941 {
5942 #ifdef HAVE_PERSONALITY
5943 return 1;
5944 #else
5945 return 0;
5946 #endif
5947 }
5948
5949 static int
5950 linux_supports_agent (void)
5951 {
5952 return 1;
5953 }
5954
5955 static int
5956 linux_supports_range_stepping (void)
5957 {
5958 if (*the_low_target.supports_range_stepping == NULL)
5959 return 0;
5960
5961 return (*the_low_target.supports_range_stepping) ();
5962 }
5963
5964 /* Enumerate spufs IDs for process PID. */
5965 static int
5966 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
5967 {
5968 int pos = 0;
5969 int written = 0;
5970 char path[128];
5971 DIR *dir;
5972 struct dirent *entry;
5973
5974 sprintf (path, "/proc/%ld/fd", pid);
5975 dir = opendir (path);
5976 if (!dir)
5977 return -1;
5978
5979 rewinddir (dir);
5980 while ((entry = readdir (dir)) != NULL)
5981 {
5982 struct stat st;
5983 struct statfs stfs;
5984 int fd;
5985
5986 fd = atoi (entry->d_name);
5987 if (!fd)
5988 continue;
5989
5990 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
5991 if (stat (path, &st) != 0)
5992 continue;
5993 if (!S_ISDIR (st.st_mode))
5994 continue;
5995
5996 if (statfs (path, &stfs) != 0)
5997 continue;
5998 if (stfs.f_type != SPUFS_MAGIC)
5999 continue;
6000
6001 if (pos >= offset && pos + 4 <= offset + len)
6002 {
6003 *(unsigned int *)(buf + pos - offset) = fd;
6004 written += 4;
6005 }
6006 pos += 4;
6007 }
6008
6009 closedir (dir);
6010 return written;
6011 }
6012
6013 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6014 object type, using the /proc file system. */
6015 static int
6016 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6017 unsigned const char *writebuf,
6018 CORE_ADDR offset, int len)
6019 {
6020 long pid = lwpid_of (current_thread);
6021 char buf[128];
6022 int fd = 0;
6023 int ret = 0;
6024
6025 if (!writebuf && !readbuf)
6026 return -1;
6027
6028 if (!*annex)
6029 {
6030 if (!readbuf)
6031 return -1;
6032 else
6033 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6034 }
6035
6036 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6037 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6038 if (fd <= 0)
6039 return -1;
6040
6041 if (offset != 0
6042 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6043 {
6044 close (fd);
6045 return 0;
6046 }
6047
6048 if (writebuf)
6049 ret = write (fd, writebuf, (size_t) len);
6050 else
6051 ret = read (fd, readbuf, (size_t) len);
6052
6053 close (fd);
6054 return ret;
6055 }
6056
6057 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6058 struct target_loadseg
6059 {
6060 /* Core address to which the segment is mapped. */
6061 Elf32_Addr addr;
6062 /* VMA recorded in the program header. */
6063 Elf32_Addr p_vaddr;
6064 /* Size of this segment in memory. */
6065 Elf32_Word p_memsz;
6066 };
6067
6068 # if defined PT_GETDSBT
6069 struct target_loadmap
6070 {
6071 /* Protocol version number, must be zero. */
6072 Elf32_Word version;
6073 /* Pointer to the DSBT table, its size, and the DSBT index. */
6074 unsigned *dsbt_table;
6075 unsigned dsbt_size, dsbt_index;
6076 /* Number of segments in this map. */
6077 Elf32_Word nsegs;
6078 /* The actual memory map. */
6079 struct target_loadseg segs[/*nsegs*/];
6080 };
6081 # define LINUX_LOADMAP PT_GETDSBT
6082 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6083 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6084 # else
6085 struct target_loadmap
6086 {
6087 /* Protocol version number, must be zero. */
6088 Elf32_Half version;
6089 /* Number of segments in this map. */
6090 Elf32_Half nsegs;
6091 /* The actual memory map. */
6092 struct target_loadseg segs[/*nsegs*/];
6093 };
6094 # define LINUX_LOADMAP PTRACE_GETFDPIC
6095 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6096 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6097 # endif
6098
6099 static int
6100 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6101 unsigned char *myaddr, unsigned int len)
6102 {
6103 int pid = lwpid_of (current_thread);
6104 int addr = -1;
6105 struct target_loadmap *data = NULL;
6106 unsigned int actual_length, copy_length;
6107
6108 if (strcmp (annex, "exec") == 0)
6109 addr = (int) LINUX_LOADMAP_EXEC;
6110 else if (strcmp (annex, "interp") == 0)
6111 addr = (int) LINUX_LOADMAP_INTERP;
6112 else
6113 return -1;
6114
6115 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6116 return -1;
6117
6118 if (data == NULL)
6119 return -1;
6120
6121 actual_length = sizeof (struct target_loadmap)
6122 + sizeof (struct target_loadseg) * data->nsegs;
6123
6124 if (offset < 0 || offset > actual_length)
6125 return -1;
6126
6127 copy_length = actual_length - offset < len ? actual_length - offset : len;
6128 memcpy (myaddr, (char *) data + offset, copy_length);
6129 return copy_length;
6130 }
6131 #else
6132 # define linux_read_loadmap NULL
6133 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6134
6135 static void
6136 linux_process_qsupported (const char *query)
6137 {
6138 if (the_low_target.process_qsupported != NULL)
6139 the_low_target.process_qsupported (query);
6140 }
6141
6142 static int
6143 linux_supports_tracepoints (void)
6144 {
6145 if (*the_low_target.supports_tracepoints == NULL)
6146 return 0;
6147
6148 return (*the_low_target.supports_tracepoints) ();
6149 }
6150
6151 static CORE_ADDR
6152 linux_read_pc (struct regcache *regcache)
6153 {
6154 if (the_low_target.get_pc == NULL)
6155 return 0;
6156
6157 return (*the_low_target.get_pc) (regcache);
6158 }
6159
6160 static void
6161 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6162 {
6163 gdb_assert (the_low_target.set_pc != NULL);
6164
6165 (*the_low_target.set_pc) (regcache, pc);
6166 }
6167
6168 static int
6169 linux_thread_stopped (struct thread_info *thread)
6170 {
6171 return get_thread_lwp (thread)->stopped;
6172 }
6173
6174 /* This exposes stop-all-threads functionality to other modules. */
6175
6176 static void
6177 linux_pause_all (int freeze)
6178 {
6179 stop_all_lwps (freeze, NULL);
6180 }
6181
6182 /* This exposes unstop-all-threads functionality to other gdbserver
6183 modules. */
6184
6185 static void
6186 linux_unpause_all (int unfreeze)
6187 {
6188 unstop_all_lwps (unfreeze, NULL);
6189 }
6190
6191 static int
6192 linux_prepare_to_access_memory (void)
6193 {
6194 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6195 running LWP. */
6196 if (non_stop)
6197 linux_pause_all (1);
6198 return 0;
6199 }
6200
6201 static void
6202 linux_done_accessing_memory (void)
6203 {
6204 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6205 running LWP. */
6206 if (non_stop)
6207 linux_unpause_all (1);
6208 }
6209
6210 static int
6211 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6212 CORE_ADDR collector,
6213 CORE_ADDR lockaddr,
6214 ULONGEST orig_size,
6215 CORE_ADDR *jump_entry,
6216 CORE_ADDR *trampoline,
6217 ULONGEST *trampoline_size,
6218 unsigned char *jjump_pad_insn,
6219 ULONGEST *jjump_pad_insn_size,
6220 CORE_ADDR *adjusted_insn_addr,
6221 CORE_ADDR *adjusted_insn_addr_end,
6222 char *err)
6223 {
6224 return (*the_low_target.install_fast_tracepoint_jump_pad)
6225 (tpoint, tpaddr, collector, lockaddr, orig_size,
6226 jump_entry, trampoline, trampoline_size,
6227 jjump_pad_insn, jjump_pad_insn_size,
6228 adjusted_insn_addr, adjusted_insn_addr_end,
6229 err);
6230 }
6231
6232 static struct emit_ops *
6233 linux_emit_ops (void)
6234 {
6235 if (the_low_target.emit_ops != NULL)
6236 return (*the_low_target.emit_ops) ();
6237 else
6238 return NULL;
6239 }
6240
6241 static int
6242 linux_get_min_fast_tracepoint_insn_len (void)
6243 {
6244 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6245 }
6246
6247 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6248
6249 static int
6250 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6251 CORE_ADDR *phdr_memaddr, int *num_phdr)
6252 {
6253 char filename[PATH_MAX];
6254 int fd;
6255 const int auxv_size = is_elf64
6256 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6257 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6258
6259 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6260
6261 fd = open (filename, O_RDONLY);
6262 if (fd < 0)
6263 return 1;
6264
6265 *phdr_memaddr = 0;
6266 *num_phdr = 0;
6267 while (read (fd, buf, auxv_size) == auxv_size
6268 && (*phdr_memaddr == 0 || *num_phdr == 0))
6269 {
6270 if (is_elf64)
6271 {
6272 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6273
6274 switch (aux->a_type)
6275 {
6276 case AT_PHDR:
6277 *phdr_memaddr = aux->a_un.a_val;
6278 break;
6279 case AT_PHNUM:
6280 *num_phdr = aux->a_un.a_val;
6281 break;
6282 }
6283 }
6284 else
6285 {
6286 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6287
6288 switch (aux->a_type)
6289 {
6290 case AT_PHDR:
6291 *phdr_memaddr = aux->a_un.a_val;
6292 break;
6293 case AT_PHNUM:
6294 *num_phdr = aux->a_un.a_val;
6295 break;
6296 }
6297 }
6298 }
6299
6300 close (fd);
6301
6302 if (*phdr_memaddr == 0 || *num_phdr == 0)
6303 {
6304 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6305 "phdr_memaddr = %ld, phdr_num = %d",
6306 (long) *phdr_memaddr, *num_phdr);
6307 return 2;
6308 }
6309
6310 return 0;
6311 }
6312
6313 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6314
6315 static CORE_ADDR
6316 get_dynamic (const int pid, const int is_elf64)
6317 {
6318 CORE_ADDR phdr_memaddr, relocation;
6319 int num_phdr, i;
6320 unsigned char *phdr_buf;
6321 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6322
6323 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6324 return 0;
6325
6326 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6327 phdr_buf = alloca (num_phdr * phdr_size);
6328
6329 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6330 return 0;
6331
6332 /* Compute relocation: it is expected to be 0 for "regular" executables,
6333 non-zero for PIE ones. */
6334 relocation = -1;
6335 for (i = 0; relocation == -1 && i < num_phdr; i++)
6336 if (is_elf64)
6337 {
6338 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6339
6340 if (p->p_type == PT_PHDR)
6341 relocation = phdr_memaddr - p->p_vaddr;
6342 }
6343 else
6344 {
6345 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6346
6347 if (p->p_type == PT_PHDR)
6348 relocation = phdr_memaddr - p->p_vaddr;
6349 }
6350
6351 if (relocation == -1)
6352 {
6353 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6354 any real world executables, including PIE executables, have always
6355 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6356 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6357 or present DT_DEBUG anyway (fpc binaries are statically linked).
6358
6359 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6360
6361 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6362
6363 return 0;
6364 }
6365
6366 for (i = 0; i < num_phdr; i++)
6367 {
6368 if (is_elf64)
6369 {
6370 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6371
6372 if (p->p_type == PT_DYNAMIC)
6373 return p->p_vaddr + relocation;
6374 }
6375 else
6376 {
6377 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6378
6379 if (p->p_type == PT_DYNAMIC)
6380 return p->p_vaddr + relocation;
6381 }
6382 }
6383
6384 return 0;
6385 }
6386
6387 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6388 can be 0 if the inferior does not yet have the library list initialized.
6389 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6390 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6391
6392 static CORE_ADDR
6393 get_r_debug (const int pid, const int is_elf64)
6394 {
6395 CORE_ADDR dynamic_memaddr;
6396 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6397 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6398 CORE_ADDR map = -1;
6399
6400 dynamic_memaddr = get_dynamic (pid, is_elf64);
6401 if (dynamic_memaddr == 0)
6402 return map;
6403
6404 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6405 {
6406 if (is_elf64)
6407 {
6408 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6409 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6410 union
6411 {
6412 Elf64_Xword map;
6413 unsigned char buf[sizeof (Elf64_Xword)];
6414 }
6415 rld_map;
6416 #endif
6417 #ifdef DT_MIPS_RLD_MAP
6418 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6419 {
6420 if (linux_read_memory (dyn->d_un.d_val,
6421 rld_map.buf, sizeof (rld_map.buf)) == 0)
6422 return rld_map.map;
6423 else
6424 break;
6425 }
6426 #endif /* DT_MIPS_RLD_MAP */
6427 #ifdef DT_MIPS_RLD_MAP_REL
6428 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6429 {
6430 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6431 rld_map.buf, sizeof (rld_map.buf)) == 0)
6432 return rld_map.map;
6433 else
6434 break;
6435 }
6436 #endif /* DT_MIPS_RLD_MAP_REL */
6437
6438 if (dyn->d_tag == DT_DEBUG && map == -1)
6439 map = dyn->d_un.d_val;
6440
6441 if (dyn->d_tag == DT_NULL)
6442 break;
6443 }
6444 else
6445 {
6446 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6447 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6448 union
6449 {
6450 Elf32_Word map;
6451 unsigned char buf[sizeof (Elf32_Word)];
6452 }
6453 rld_map;
6454 #endif
6455 #ifdef DT_MIPS_RLD_MAP
6456 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6457 {
6458 if (linux_read_memory (dyn->d_un.d_val,
6459 rld_map.buf, sizeof (rld_map.buf)) == 0)
6460 return rld_map.map;
6461 else
6462 break;
6463 }
6464 #endif /* DT_MIPS_RLD_MAP */
6465 #ifdef DT_MIPS_RLD_MAP_REL
6466 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6467 {
6468 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6469 rld_map.buf, sizeof (rld_map.buf)) == 0)
6470 return rld_map.map;
6471 else
6472 break;
6473 }
6474 #endif /* DT_MIPS_RLD_MAP_REL */
6475
6476 if (dyn->d_tag == DT_DEBUG && map == -1)
6477 map = dyn->d_un.d_val;
6478
6479 if (dyn->d_tag == DT_NULL)
6480 break;
6481 }
6482
6483 dynamic_memaddr += dyn_size;
6484 }
6485
6486 return map;
6487 }
6488
6489 /* Read one pointer from MEMADDR in the inferior. */
6490
6491 static int
6492 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6493 {
6494 int ret;
6495
6496 /* Go through a union so this works on either big or little endian
6497 hosts, when the inferior's pointer size is smaller than the size
6498 of CORE_ADDR. It is assumed the inferior's endianness is the
6499 same of the superior's. */
6500 union
6501 {
6502 CORE_ADDR core_addr;
6503 unsigned int ui;
6504 unsigned char uc;
6505 } addr;
6506
6507 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6508 if (ret == 0)
6509 {
6510 if (ptr_size == sizeof (CORE_ADDR))
6511 *ptr = addr.core_addr;
6512 else if (ptr_size == sizeof (unsigned int))
6513 *ptr = addr.ui;
6514 else
6515 gdb_assert_not_reached ("unhandled pointer size");
6516 }
6517 return ret;
6518 }
6519
6520 struct link_map_offsets
6521 {
6522 /* Offset and size of r_debug.r_version. */
6523 int r_version_offset;
6524
6525 /* Offset and size of r_debug.r_map. */
6526 int r_map_offset;
6527
6528 /* Offset to l_addr field in struct link_map. */
6529 int l_addr_offset;
6530
6531 /* Offset to l_name field in struct link_map. */
6532 int l_name_offset;
6533
6534 /* Offset to l_ld field in struct link_map. */
6535 int l_ld_offset;
6536
6537 /* Offset to l_next field in struct link_map. */
6538 int l_next_offset;
6539
6540 /* Offset to l_prev field in struct link_map. */
6541 int l_prev_offset;
6542 };
6543
6544 /* Construct qXfer:libraries-svr4:read reply. */
6545
6546 static int
6547 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6548 unsigned const char *writebuf,
6549 CORE_ADDR offset, int len)
6550 {
6551 char *document;
6552 unsigned document_len;
6553 struct process_info_private *const priv = current_process ()->priv;
6554 char filename[PATH_MAX];
6555 int pid, is_elf64;
6556
6557 static const struct link_map_offsets lmo_32bit_offsets =
6558 {
6559 0, /* r_version offset. */
6560 4, /* r_debug.r_map offset. */
6561 0, /* l_addr offset in link_map. */
6562 4, /* l_name offset in link_map. */
6563 8, /* l_ld offset in link_map. */
6564 12, /* l_next offset in link_map. */
6565 16 /* l_prev offset in link_map. */
6566 };
6567
6568 static const struct link_map_offsets lmo_64bit_offsets =
6569 {
6570 0, /* r_version offset. */
6571 8, /* r_debug.r_map offset. */
6572 0, /* l_addr offset in link_map. */
6573 8, /* l_name offset in link_map. */
6574 16, /* l_ld offset in link_map. */
6575 24, /* l_next offset in link_map. */
6576 32 /* l_prev offset in link_map. */
6577 };
6578 const struct link_map_offsets *lmo;
6579 unsigned int machine;
6580 int ptr_size;
6581 CORE_ADDR lm_addr = 0, lm_prev = 0;
6582 int allocated = 1024;
6583 char *p;
6584 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6585 int header_done = 0;
6586
6587 if (writebuf != NULL)
6588 return -2;
6589 if (readbuf == NULL)
6590 return -1;
6591
6592 pid = lwpid_of (current_thread);
6593 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6594 is_elf64 = elf_64_file_p (filename, &machine);
6595 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6596 ptr_size = is_elf64 ? 8 : 4;
6597
6598 while (annex[0] != '\0')
6599 {
6600 const char *sep;
6601 CORE_ADDR *addrp;
6602 int len;
6603
6604 sep = strchr (annex, '=');
6605 if (sep == NULL)
6606 break;
6607
6608 len = sep - annex;
6609 if (len == 5 && startswith (annex, "start"))
6610 addrp = &lm_addr;
6611 else if (len == 4 && startswith (annex, "prev"))
6612 addrp = &lm_prev;
6613 else
6614 {
6615 annex = strchr (sep, ';');
6616 if (annex == NULL)
6617 break;
6618 annex++;
6619 continue;
6620 }
6621
6622 annex = decode_address_to_semicolon (addrp, sep + 1);
6623 }
6624
6625 if (lm_addr == 0)
6626 {
6627 int r_version = 0;
6628
6629 if (priv->r_debug == 0)
6630 priv->r_debug = get_r_debug (pid, is_elf64);
6631
6632 /* We failed to find DT_DEBUG. Such situation will not change
6633 for this inferior - do not retry it. Report it to GDB as
6634 E01, see for the reasons at the GDB solib-svr4.c side. */
6635 if (priv->r_debug == (CORE_ADDR) -1)
6636 return -1;
6637
6638 if (priv->r_debug != 0)
6639 {
6640 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6641 (unsigned char *) &r_version,
6642 sizeof (r_version)) != 0
6643 || r_version != 1)
6644 {
6645 warning ("unexpected r_debug version %d", r_version);
6646 }
6647 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6648 &lm_addr, ptr_size) != 0)
6649 {
6650 warning ("unable to read r_map from 0x%lx",
6651 (long) priv->r_debug + lmo->r_map_offset);
6652 }
6653 }
6654 }
6655
6656 document = xmalloc (allocated);
6657 strcpy (document, "<library-list-svr4 version=\"1.0\"");
6658 p = document + strlen (document);
6659
6660 while (lm_addr
6661 && read_one_ptr (lm_addr + lmo->l_name_offset,
6662 &l_name, ptr_size) == 0
6663 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6664 &l_addr, ptr_size) == 0
6665 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6666 &l_ld, ptr_size) == 0
6667 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6668 &l_prev, ptr_size) == 0
6669 && read_one_ptr (lm_addr + lmo->l_next_offset,
6670 &l_next, ptr_size) == 0)
6671 {
6672 unsigned char libname[PATH_MAX];
6673
6674 if (lm_prev != l_prev)
6675 {
6676 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6677 (long) lm_prev, (long) l_prev);
6678 break;
6679 }
6680
6681 /* Ignore the first entry even if it has valid name as the first entry
6682 corresponds to the main executable. The first entry should not be
6683 skipped if the dynamic loader was loaded late by a static executable
6684 (see solib-svr4.c parameter ignore_first). But in such case the main
6685 executable does not have PT_DYNAMIC present and this function already
6686 exited above due to failed get_r_debug. */
6687 if (lm_prev == 0)
6688 {
6689 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6690 p = p + strlen (p);
6691 }
6692 else
6693 {
6694 /* Not checking for error because reading may stop before
6695 we've got PATH_MAX worth of characters. */
6696 libname[0] = '\0';
6697 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6698 libname[sizeof (libname) - 1] = '\0';
6699 if (libname[0] != '\0')
6700 {
6701 /* 6x the size for xml_escape_text below. */
6702 size_t len = 6 * strlen ((char *) libname);
6703 char *name;
6704
6705 if (!header_done)
6706 {
6707 /* Terminate `<library-list-svr4'. */
6708 *p++ = '>';
6709 header_done = 1;
6710 }
6711
6712 while (allocated < p - document + len + 200)
6713 {
6714 /* Expand to guarantee sufficient storage. */
6715 uintptr_t document_len = p - document;
6716
6717 document = xrealloc (document, 2 * allocated);
6718 allocated *= 2;
6719 p = document + document_len;
6720 }
6721
6722 name = xml_escape_text ((char *) libname);
6723 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
6724 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6725 name, (unsigned long) lm_addr,
6726 (unsigned long) l_addr, (unsigned long) l_ld);
6727 free (name);
6728 }
6729 }
6730
6731 lm_prev = lm_addr;
6732 lm_addr = l_next;
6733 }
6734
6735 if (!header_done)
6736 {
6737 /* Empty list; terminate `<library-list-svr4'. */
6738 strcpy (p, "/>");
6739 }
6740 else
6741 strcpy (p, "</library-list-svr4>");
6742
6743 document_len = strlen (document);
6744 if (offset < document_len)
6745 document_len -= offset;
6746 else
6747 document_len = 0;
6748 if (len > document_len)
6749 len = document_len;
6750
6751 memcpy (readbuf, document + offset, len);
6752 xfree (document);
6753
6754 return len;
6755 }
6756
6757 #ifdef HAVE_LINUX_BTRACE
6758
6759 /* See to_disable_btrace target method. */
6760
6761 static int
6762 linux_low_disable_btrace (struct btrace_target_info *tinfo)
6763 {
6764 enum btrace_error err;
6765
6766 err = linux_disable_btrace (tinfo);
6767 return (err == BTRACE_ERR_NONE ? 0 : -1);
6768 }
6769
6770 /* Encode an Intel(R) Processor Trace configuration. */
6771
6772 static void
6773 linux_low_encode_pt_config (struct buffer *buffer,
6774 const struct btrace_data_pt_config *config)
6775 {
6776 buffer_grow_str (buffer, "<pt-config>\n");
6777
6778 switch (config->cpu.vendor)
6779 {
6780 case CV_INTEL:
6781 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
6782 "model=\"%u\" stepping=\"%u\"/>\n",
6783 config->cpu.family, config->cpu.model,
6784 config->cpu.stepping);
6785 break;
6786
6787 default:
6788 break;
6789 }
6790
6791 buffer_grow_str (buffer, "</pt-config>\n");
6792 }
6793
6794 /* Encode a raw buffer. */
6795
6796 static void
6797 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
6798 unsigned int size)
6799 {
6800 if (size == 0)
6801 return;
6802
6803 /* We use hex encoding - see common/rsp-low.h. */
6804 buffer_grow_str (buffer, "<raw>\n");
6805
6806 while (size-- > 0)
6807 {
6808 char elem[2];
6809
6810 elem[0] = tohex ((*data >> 4) & 0xf);
6811 elem[1] = tohex (*data++ & 0xf);
6812
6813 buffer_grow (buffer, elem, 2);
6814 }
6815
6816 buffer_grow_str (buffer, "</raw>\n");
6817 }
6818
6819 /* See to_read_btrace target method. */
6820
6821 static int
6822 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
6823 int type)
6824 {
6825 struct btrace_data btrace;
6826 struct btrace_block *block;
6827 enum btrace_error err;
6828 int i;
6829
6830 btrace_data_init (&btrace);
6831
6832 err = linux_read_btrace (&btrace, tinfo, type);
6833 if (err != BTRACE_ERR_NONE)
6834 {
6835 if (err == BTRACE_ERR_OVERFLOW)
6836 buffer_grow_str0 (buffer, "E.Overflow.");
6837 else
6838 buffer_grow_str0 (buffer, "E.Generic Error.");
6839
6840 goto err;
6841 }
6842
6843 switch (btrace.format)
6844 {
6845 case BTRACE_FORMAT_NONE:
6846 buffer_grow_str0 (buffer, "E.No Trace.");
6847 goto err;
6848
6849 case BTRACE_FORMAT_BTS:
6850 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6851 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6852
6853 for (i = 0;
6854 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
6855 i++)
6856 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
6857 paddress (block->begin), paddress (block->end));
6858
6859 buffer_grow_str0 (buffer, "</btrace>\n");
6860 break;
6861
6862 case BTRACE_FORMAT_PT:
6863 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6864 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6865 buffer_grow_str (buffer, "<pt>\n");
6866
6867 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
6868
6869 linux_low_encode_raw (buffer, btrace.variant.pt.data,
6870 btrace.variant.pt.size);
6871
6872 buffer_grow_str (buffer, "</pt>\n");
6873 buffer_grow_str0 (buffer, "</btrace>\n");
6874 break;
6875
6876 default:
6877 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
6878 goto err;
6879 }
6880
6881 btrace_data_fini (&btrace);
6882 return 0;
6883
6884 err:
6885 btrace_data_fini (&btrace);
6886 return -1;
6887 }
6888
6889 /* See to_btrace_conf target method. */
6890
6891 static int
6892 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
6893 struct buffer *buffer)
6894 {
6895 const struct btrace_config *conf;
6896
6897 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
6898 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
6899
6900 conf = linux_btrace_conf (tinfo);
6901 if (conf != NULL)
6902 {
6903 switch (conf->format)
6904 {
6905 case BTRACE_FORMAT_NONE:
6906 break;
6907
6908 case BTRACE_FORMAT_BTS:
6909 buffer_xml_printf (buffer, "<bts");
6910 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
6911 buffer_xml_printf (buffer, " />\n");
6912 break;
6913
6914 case BTRACE_FORMAT_PT:
6915 buffer_xml_printf (buffer, "<pt");
6916 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
6917 buffer_xml_printf (buffer, "/>\n");
6918 break;
6919 }
6920 }
6921
6922 buffer_grow_str0 (buffer, "</btrace-conf>\n");
6923 return 0;
6924 }
6925 #endif /* HAVE_LINUX_BTRACE */
6926
6927 /* See nat/linux-nat.h. */
6928
6929 ptid_t
6930 current_lwp_ptid (void)
6931 {
6932 return ptid_of (current_thread);
6933 }
6934
6935 static struct target_ops linux_target_ops = {
6936 linux_create_inferior,
6937 linux_arch_setup,
6938 linux_attach,
6939 linux_kill,
6940 linux_detach,
6941 linux_mourn,
6942 linux_join,
6943 linux_thread_alive,
6944 linux_resume,
6945 linux_wait,
6946 linux_fetch_registers,
6947 linux_store_registers,
6948 linux_prepare_to_access_memory,
6949 linux_done_accessing_memory,
6950 linux_read_memory,
6951 linux_write_memory,
6952 linux_look_up_symbols,
6953 linux_request_interrupt,
6954 linux_read_auxv,
6955 linux_supports_z_point_type,
6956 linux_insert_point,
6957 linux_remove_point,
6958 linux_stopped_by_sw_breakpoint,
6959 linux_supports_stopped_by_sw_breakpoint,
6960 linux_stopped_by_hw_breakpoint,
6961 linux_supports_stopped_by_hw_breakpoint,
6962 linux_supports_hardware_single_step,
6963 linux_stopped_by_watchpoint,
6964 linux_stopped_data_address,
6965 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6966 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6967 && defined(PT_TEXT_END_ADDR)
6968 linux_read_offsets,
6969 #else
6970 NULL,
6971 #endif
6972 #ifdef USE_THREAD_DB
6973 thread_db_get_tls_address,
6974 #else
6975 NULL,
6976 #endif
6977 linux_qxfer_spu,
6978 hostio_last_error_from_errno,
6979 linux_qxfer_osdata,
6980 linux_xfer_siginfo,
6981 linux_supports_non_stop,
6982 linux_async,
6983 linux_start_non_stop,
6984 linux_supports_multi_process,
6985 linux_supports_fork_events,
6986 linux_supports_vfork_events,
6987 linux_supports_exec_events,
6988 linux_handle_new_gdb_connection,
6989 #ifdef USE_THREAD_DB
6990 thread_db_handle_monitor_command,
6991 #else
6992 NULL,
6993 #endif
6994 linux_common_core_of_thread,
6995 linux_read_loadmap,
6996 linux_process_qsupported,
6997 linux_supports_tracepoints,
6998 linux_read_pc,
6999 linux_write_pc,
7000 linux_thread_stopped,
7001 NULL,
7002 linux_pause_all,
7003 linux_unpause_all,
7004 linux_stabilize_threads,
7005 linux_install_fast_tracepoint_jump_pad,
7006 linux_emit_ops,
7007 linux_supports_disable_randomization,
7008 linux_get_min_fast_tracepoint_insn_len,
7009 linux_qxfer_libraries_svr4,
7010 linux_supports_agent,
7011 #ifdef HAVE_LINUX_BTRACE
7012 linux_supports_btrace,
7013 linux_enable_btrace,
7014 linux_low_disable_btrace,
7015 linux_low_read_btrace,
7016 linux_low_btrace_conf,
7017 #else
7018 NULL,
7019 NULL,
7020 NULL,
7021 NULL,
7022 NULL,
7023 #endif
7024 linux_supports_range_stepping,
7025 linux_proc_pid_to_exec_file,
7026 linux_mntns_open_cloexec,
7027 linux_mntns_unlink,
7028 linux_mntns_readlink,
7029 };
7030
7031 static void
7032 linux_init_signals ()
7033 {
7034 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
7035 to find what the cancel signal actually is. */
7036 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
7037 signal (__SIGRTMIN+1, SIG_IGN);
7038 #endif
7039 }
7040
7041 #ifdef HAVE_LINUX_REGSETS
7042 void
7043 initialize_regsets_info (struct regsets_info *info)
7044 {
7045 for (info->num_regsets = 0;
7046 info->regsets[info->num_regsets].size >= 0;
7047 info->num_regsets++)
7048 ;
7049 }
7050 #endif
7051
7052 void
7053 initialize_low (void)
7054 {
7055 struct sigaction sigchld_action;
7056 memset (&sigchld_action, 0, sizeof (sigchld_action));
7057 set_target_ops (&linux_target_ops);
7058 set_breakpoint_data (the_low_target.breakpoint,
7059 the_low_target.breakpoint_len);
7060 linux_init_signals ();
7061 linux_ptrace_init_warnings ();
7062
7063 sigchld_action.sa_handler = sigchld_handler;
7064 sigemptyset (&sigchld_action.sa_mask);
7065 sigchld_action.sa_flags = SA_RESTART;
7066 sigaction (SIGCHLD, &sigchld_action, NULL);
7067
7068 initialize_low_arch ();
7069
7070 linux_check_ptrace_features ();
7071 }