]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Refactor queries for hardware and software single stepping support in GDBServer.
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #ifndef ELFMAG0
50 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
51 then ELFMAG0 will have been defined. If it didn't get included by
52 gdb_proc_service.h then including it will likely introduce a duplicate
53 definition of elf_fpregset_t. */
54 #include <elf.h>
55 #endif
56 #include "nat/linux-namespaces.h"
57
58 #ifndef SPUFS_MAGIC
59 #define SPUFS_MAGIC 0x23c9b64e
60 #endif
61
62 #ifdef HAVE_PERSONALITY
63 # include <sys/personality.h>
64 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
65 # define ADDR_NO_RANDOMIZE 0x0040000
66 # endif
67 #endif
68
69 #ifndef O_LARGEFILE
70 #define O_LARGEFILE 0
71 #endif
72
73 /* Some targets did not define these ptrace constants from the start,
74 so gdbserver defines them locally here. In the future, these may
75 be removed after they are added to asm/ptrace.h. */
76 #if !(defined(PT_TEXT_ADDR) \
77 || defined(PT_DATA_ADDR) \
78 || defined(PT_TEXT_END_ADDR))
79 #if defined(__mcoldfire__)
80 /* These are still undefined in 3.10 kernels. */
81 #define PT_TEXT_ADDR 49*4
82 #define PT_DATA_ADDR 50*4
83 #define PT_TEXT_END_ADDR 51*4
84 /* BFIN already defines these since at least 2.6.32 kernels. */
85 #elif defined(BFIN)
86 #define PT_TEXT_ADDR 220
87 #define PT_TEXT_END_ADDR 224
88 #define PT_DATA_ADDR 228
89 /* These are still undefined in 3.10 kernels. */
90 #elif defined(__TMS320C6X__)
91 #define PT_TEXT_ADDR (0x10000*4)
92 #define PT_DATA_ADDR (0x10004*4)
93 #define PT_TEXT_END_ADDR (0x10008*4)
94 #endif
95 #endif
96
97 #ifdef HAVE_LINUX_BTRACE
98 # include "nat/linux-btrace.h"
99 # include "btrace-common.h"
100 #endif
101
102 #ifndef HAVE_ELF32_AUXV_T
103 /* Copied from glibc's elf.h. */
104 typedef struct
105 {
106 uint32_t a_type; /* Entry type */
107 union
108 {
109 uint32_t a_val; /* Integer value */
110 /* We use to have pointer elements added here. We cannot do that,
111 though, since it does not work when using 32-bit definitions
112 on 64-bit platforms and vice versa. */
113 } a_un;
114 } Elf32_auxv_t;
115 #endif
116
117 #ifndef HAVE_ELF64_AUXV_T
118 /* Copied from glibc's elf.h. */
119 typedef struct
120 {
121 uint64_t a_type; /* Entry type */
122 union
123 {
124 uint64_t a_val; /* Integer value */
125 /* We use to have pointer elements added here. We cannot do that,
126 though, since it does not work when using 32-bit definitions
127 on 64-bit platforms and vice versa. */
128 } a_un;
129 } Elf64_auxv_t;
130 #endif
131
132 /* Does the current host support PTRACE_GETREGSET? */
133 int have_ptrace_getregset = -1;
134
135 /* LWP accessors. */
136
137 /* See nat/linux-nat.h. */
138
139 ptid_t
140 ptid_of_lwp (struct lwp_info *lwp)
141 {
142 return ptid_of (get_lwp_thread (lwp));
143 }
144
145 /* See nat/linux-nat.h. */
146
147 void
148 lwp_set_arch_private_info (struct lwp_info *lwp,
149 struct arch_lwp_info *info)
150 {
151 lwp->arch_private = info;
152 }
153
154 /* See nat/linux-nat.h. */
155
156 struct arch_lwp_info *
157 lwp_arch_private_info (struct lwp_info *lwp)
158 {
159 return lwp->arch_private;
160 }
161
162 /* See nat/linux-nat.h. */
163
164 int
165 lwp_is_stopped (struct lwp_info *lwp)
166 {
167 return lwp->stopped;
168 }
169
170 /* See nat/linux-nat.h. */
171
172 enum target_stop_reason
173 lwp_stop_reason (struct lwp_info *lwp)
174 {
175 return lwp->stop_reason;
176 }
177
178 /* A list of all unknown processes which receive stop signals. Some
179 other process will presumably claim each of these as forked
180 children momentarily. */
181
182 struct simple_pid_list
183 {
184 /* The process ID. */
185 int pid;
186
187 /* The status as reported by waitpid. */
188 int status;
189
190 /* Next in chain. */
191 struct simple_pid_list *next;
192 };
193 struct simple_pid_list *stopped_pids;
194
195 /* Trivial list manipulation functions to keep track of a list of new
196 stopped processes. */
197
198 static void
199 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
200 {
201 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
202
203 new_pid->pid = pid;
204 new_pid->status = status;
205 new_pid->next = *listp;
206 *listp = new_pid;
207 }
208
209 static int
210 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
211 {
212 struct simple_pid_list **p;
213
214 for (p = listp; *p != NULL; p = &(*p)->next)
215 if ((*p)->pid == pid)
216 {
217 struct simple_pid_list *next = (*p)->next;
218
219 *statusp = (*p)->status;
220 xfree (*p);
221 *p = next;
222 return 1;
223 }
224 return 0;
225 }
226
227 enum stopping_threads_kind
228 {
229 /* Not stopping threads presently. */
230 NOT_STOPPING_THREADS,
231
232 /* Stopping threads. */
233 STOPPING_THREADS,
234
235 /* Stopping and suspending threads. */
236 STOPPING_AND_SUSPENDING_THREADS
237 };
238
239 /* This is set while stop_all_lwps is in effect. */
240 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
241
242 /* FIXME make into a target method? */
243 int using_threads = 1;
244
245 /* True if we're presently stabilizing threads (moving them out of
246 jump pads). */
247 static int stabilizing_threads;
248
249 static void linux_resume_one_lwp (struct lwp_info *lwp,
250 int step, int signal, siginfo_t *info);
251 static void linux_resume (struct thread_resume *resume_info, size_t n);
252 static void stop_all_lwps (int suspend, struct lwp_info *except);
253 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
254 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
255 int *wstat, int options);
256 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
257 static struct lwp_info *add_lwp (ptid_t ptid);
258 static void linux_mourn (struct process_info *process);
259 static int linux_stopped_by_watchpoint (void);
260 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
261 static int lwp_is_marked_dead (struct lwp_info *lwp);
262 static void proceed_all_lwps (void);
263 static int finish_step_over (struct lwp_info *lwp);
264 static int kill_lwp (unsigned long lwpid, int signo);
265 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
266 static void complete_ongoing_step_over (void);
267
268 /* When the event-loop is doing a step-over, this points at the thread
269 being stepped. */
270 ptid_t step_over_bkpt;
271
272 /* True if the low target can hardware single-step. */
273
274 static int
275 can_hardware_single_step (void)
276 {
277 if (the_low_target.supports_hardware_single_step != NULL)
278 return the_low_target.supports_hardware_single_step ();
279 else
280 return 0;
281 }
282
283 /* True if the low target can software single-step. Such targets
284 implement the BREAKPOINT_REINSERT_ADDR callback. */
285
286 static int
287 can_software_single_step (void)
288 {
289 return (the_low_target.breakpoint_reinsert_addr != NULL);
290 }
291
292 /* True if the low target supports memory breakpoints. If so, we'll
293 have a GET_PC implementation. */
294
295 static int
296 supports_breakpoints (void)
297 {
298 return (the_low_target.get_pc != NULL);
299 }
300
301 /* Returns true if this target can support fast tracepoints. This
302 does not mean that the in-process agent has been loaded in the
303 inferior. */
304
305 static int
306 supports_fast_tracepoints (void)
307 {
308 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
309 }
310
311 /* True if LWP is stopped in its stepping range. */
312
313 static int
314 lwp_in_step_range (struct lwp_info *lwp)
315 {
316 CORE_ADDR pc = lwp->stop_pc;
317
318 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
319 }
320
321 struct pending_signals
322 {
323 int signal;
324 siginfo_t info;
325 struct pending_signals *prev;
326 };
327
328 /* The read/write ends of the pipe registered as waitable file in the
329 event loop. */
330 static int linux_event_pipe[2] = { -1, -1 };
331
332 /* True if we're currently in async mode. */
333 #define target_is_async_p() (linux_event_pipe[0] != -1)
334
335 static void send_sigstop (struct lwp_info *lwp);
336 static void wait_for_sigstop (void);
337
338 /* Return non-zero if HEADER is a 64-bit ELF file. */
339
340 static int
341 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
342 {
343 if (header->e_ident[EI_MAG0] == ELFMAG0
344 && header->e_ident[EI_MAG1] == ELFMAG1
345 && header->e_ident[EI_MAG2] == ELFMAG2
346 && header->e_ident[EI_MAG3] == ELFMAG3)
347 {
348 *machine = header->e_machine;
349 return header->e_ident[EI_CLASS] == ELFCLASS64;
350
351 }
352 *machine = EM_NONE;
353 return -1;
354 }
355
356 /* Return non-zero if FILE is a 64-bit ELF file,
357 zero if the file is not a 64-bit ELF file,
358 and -1 if the file is not accessible or doesn't exist. */
359
360 static int
361 elf_64_file_p (const char *file, unsigned int *machine)
362 {
363 Elf64_Ehdr header;
364 int fd;
365
366 fd = open (file, O_RDONLY);
367 if (fd < 0)
368 return -1;
369
370 if (read (fd, &header, sizeof (header)) != sizeof (header))
371 {
372 close (fd);
373 return 0;
374 }
375 close (fd);
376
377 return elf_64_header_p (&header, machine);
378 }
379
380 /* Accepts an integer PID; Returns true if the executable PID is
381 running is a 64-bit ELF file.. */
382
383 int
384 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
385 {
386 char file[PATH_MAX];
387
388 sprintf (file, "/proc/%d/exe", pid);
389 return elf_64_file_p (file, machine);
390 }
391
392 static void
393 delete_lwp (struct lwp_info *lwp)
394 {
395 struct thread_info *thr = get_lwp_thread (lwp);
396
397 if (debug_threads)
398 debug_printf ("deleting %ld\n", lwpid_of (thr));
399
400 remove_thread (thr);
401 free (lwp->arch_private);
402 free (lwp);
403 }
404
405 /* Add a process to the common process list, and set its private
406 data. */
407
408 static struct process_info *
409 linux_add_process (int pid, int attached)
410 {
411 struct process_info *proc;
412
413 proc = add_process (pid, attached);
414 proc->priv = XCNEW (struct process_info_private);
415
416 if (the_low_target.new_process != NULL)
417 proc->priv->arch_private = the_low_target.new_process ();
418
419 return proc;
420 }
421
422 static CORE_ADDR get_pc (struct lwp_info *lwp);
423
424 /* Implement the arch_setup target_ops method. */
425
426 static void
427 linux_arch_setup (void)
428 {
429 the_low_target.arch_setup ();
430 }
431
432 /* Call the target arch_setup function on THREAD. */
433
434 static void
435 linux_arch_setup_thread (struct thread_info *thread)
436 {
437 struct thread_info *saved_thread;
438
439 saved_thread = current_thread;
440 current_thread = thread;
441
442 linux_arch_setup ();
443
444 current_thread = saved_thread;
445 }
446
447 /* Handle a GNU/Linux extended wait response. If we see a clone,
448 fork, or vfork event, we need to add the new LWP to our list
449 (and return 0 so as not to report the trap to higher layers).
450 If we see an exec event, we will modify ORIG_EVENT_LWP to point
451 to a new LWP representing the new program. */
452
453 static int
454 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
455 {
456 struct lwp_info *event_lwp = *orig_event_lwp;
457 int event = linux_ptrace_get_extended_event (wstat);
458 struct thread_info *event_thr = get_lwp_thread (event_lwp);
459 struct lwp_info *new_lwp;
460
461 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
462
463 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
464 || (event == PTRACE_EVENT_CLONE))
465 {
466 ptid_t ptid;
467 unsigned long new_pid;
468 int ret, status;
469
470 /* Get the pid of the new lwp. */
471 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
472 &new_pid);
473
474 /* If we haven't already seen the new PID stop, wait for it now. */
475 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
476 {
477 /* The new child has a pending SIGSTOP. We can't affect it until it
478 hits the SIGSTOP, but we're already attached. */
479
480 ret = my_waitpid (new_pid, &status, __WALL);
481
482 if (ret == -1)
483 perror_with_name ("waiting for new child");
484 else if (ret != new_pid)
485 warning ("wait returned unexpected PID %d", ret);
486 else if (!WIFSTOPPED (status))
487 warning ("wait returned unexpected status 0x%x", status);
488 }
489
490 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
491 {
492 struct process_info *parent_proc;
493 struct process_info *child_proc;
494 struct lwp_info *child_lwp;
495 struct thread_info *child_thr;
496 struct target_desc *tdesc;
497
498 ptid = ptid_build (new_pid, new_pid, 0);
499
500 if (debug_threads)
501 {
502 debug_printf ("HEW: Got fork event from LWP %ld, "
503 "new child is %d\n",
504 ptid_get_lwp (ptid_of (event_thr)),
505 ptid_get_pid (ptid));
506 }
507
508 /* Add the new process to the tables and clone the breakpoint
509 lists of the parent. We need to do this even if the new process
510 will be detached, since we will need the process object and the
511 breakpoints to remove any breakpoints from memory when we
512 detach, and the client side will access registers. */
513 child_proc = linux_add_process (new_pid, 0);
514 gdb_assert (child_proc != NULL);
515 child_lwp = add_lwp (ptid);
516 gdb_assert (child_lwp != NULL);
517 child_lwp->stopped = 1;
518 child_lwp->must_set_ptrace_flags = 1;
519 child_lwp->status_pending_p = 0;
520 child_thr = get_lwp_thread (child_lwp);
521 child_thr->last_resume_kind = resume_stop;
522 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
523
524 /* If we're suspending all threads, leave this one suspended
525 too. */
526 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
527 {
528 if (debug_threads)
529 debug_printf ("HEW: leaving child suspended\n");
530 child_lwp->suspended = 1;
531 }
532
533 parent_proc = get_thread_process (event_thr);
534 child_proc->attached = parent_proc->attached;
535 clone_all_breakpoints (&child_proc->breakpoints,
536 &child_proc->raw_breakpoints,
537 parent_proc->breakpoints);
538
539 tdesc = XNEW (struct target_desc);
540 copy_target_description (tdesc, parent_proc->tdesc);
541 child_proc->tdesc = tdesc;
542
543 /* Clone arch-specific process data. */
544 if (the_low_target.new_fork != NULL)
545 the_low_target.new_fork (parent_proc, child_proc);
546
547 /* Save fork info in the parent thread. */
548 if (event == PTRACE_EVENT_FORK)
549 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
550 else if (event == PTRACE_EVENT_VFORK)
551 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
552
553 event_lwp->waitstatus.value.related_pid = ptid;
554
555 /* The status_pending field contains bits denoting the
556 extended event, so when the pending event is handled,
557 the handler will look at lwp->waitstatus. */
558 event_lwp->status_pending_p = 1;
559 event_lwp->status_pending = wstat;
560
561 /* Report the event. */
562 return 0;
563 }
564
565 if (debug_threads)
566 debug_printf ("HEW: Got clone event "
567 "from LWP %ld, new child is LWP %ld\n",
568 lwpid_of (event_thr), new_pid);
569
570 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
571 new_lwp = add_lwp (ptid);
572
573 /* Either we're going to immediately resume the new thread
574 or leave it stopped. linux_resume_one_lwp is a nop if it
575 thinks the thread is currently running, so set this first
576 before calling linux_resume_one_lwp. */
577 new_lwp->stopped = 1;
578
579 /* If we're suspending all threads, leave this one suspended
580 too. */
581 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
582 new_lwp->suspended = 1;
583
584 /* Normally we will get the pending SIGSTOP. But in some cases
585 we might get another signal delivered to the group first.
586 If we do get another signal, be sure not to lose it. */
587 if (WSTOPSIG (status) != SIGSTOP)
588 {
589 new_lwp->stop_expected = 1;
590 new_lwp->status_pending_p = 1;
591 new_lwp->status_pending = status;
592 }
593 else if (report_thread_events)
594 {
595 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
596 new_lwp->status_pending_p = 1;
597 new_lwp->status_pending = status;
598 }
599
600 /* Don't report the event. */
601 return 1;
602 }
603 else if (event == PTRACE_EVENT_VFORK_DONE)
604 {
605 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
606
607 /* Report the event. */
608 return 0;
609 }
610 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
611 {
612 struct process_info *proc;
613 ptid_t event_ptid;
614 pid_t event_pid;
615
616 if (debug_threads)
617 {
618 debug_printf ("HEW: Got exec event from LWP %ld\n",
619 lwpid_of (event_thr));
620 }
621
622 /* Get the event ptid. */
623 event_ptid = ptid_of (event_thr);
624 event_pid = ptid_get_pid (event_ptid);
625
626 /* Delete the execing process and all its threads. */
627 proc = get_thread_process (event_thr);
628 linux_mourn (proc);
629 current_thread = NULL;
630
631 /* Create a new process/lwp/thread. */
632 proc = linux_add_process (event_pid, 0);
633 event_lwp = add_lwp (event_ptid);
634 event_thr = get_lwp_thread (event_lwp);
635 gdb_assert (current_thread == event_thr);
636 linux_arch_setup_thread (event_thr);
637
638 /* Set the event status. */
639 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
640 event_lwp->waitstatus.value.execd_pathname
641 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
642
643 /* Mark the exec status as pending. */
644 event_lwp->stopped = 1;
645 event_lwp->status_pending_p = 1;
646 event_lwp->status_pending = wstat;
647 event_thr->last_resume_kind = resume_continue;
648 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
649
650 /* Report the event. */
651 *orig_event_lwp = event_lwp;
652 return 0;
653 }
654
655 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
656 }
657
658 /* Return the PC as read from the regcache of LWP, without any
659 adjustment. */
660
661 static CORE_ADDR
662 get_pc (struct lwp_info *lwp)
663 {
664 struct thread_info *saved_thread;
665 struct regcache *regcache;
666 CORE_ADDR pc;
667
668 if (the_low_target.get_pc == NULL)
669 return 0;
670
671 saved_thread = current_thread;
672 current_thread = get_lwp_thread (lwp);
673
674 regcache = get_thread_regcache (current_thread, 1);
675 pc = (*the_low_target.get_pc) (regcache);
676
677 if (debug_threads)
678 debug_printf ("pc is 0x%lx\n", (long) pc);
679
680 current_thread = saved_thread;
681 return pc;
682 }
683
684 /* This function should only be called if LWP got a SIGTRAP.
685 The SIGTRAP could mean several things.
686
687 On i386, where decr_pc_after_break is non-zero:
688
689 If we were single-stepping this process using PTRACE_SINGLESTEP, we
690 will get only the one SIGTRAP. The value of $eip will be the next
691 instruction. If the instruction we stepped over was a breakpoint,
692 we need to decrement the PC.
693
694 If we continue the process using PTRACE_CONT, we will get a
695 SIGTRAP when we hit a breakpoint. The value of $eip will be
696 the instruction after the breakpoint (i.e. needs to be
697 decremented). If we report the SIGTRAP to GDB, we must also
698 report the undecremented PC. If the breakpoint is removed, we
699 must resume at the decremented PC.
700
701 On a non-decr_pc_after_break machine with hardware or kernel
702 single-step:
703
704 If we either single-step a breakpoint instruction, or continue and
705 hit a breakpoint instruction, our PC will point at the breakpoint
706 instruction. */
707
708 static int
709 check_stopped_by_breakpoint (struct lwp_info *lwp)
710 {
711 CORE_ADDR pc;
712 CORE_ADDR sw_breakpoint_pc;
713 struct thread_info *saved_thread;
714 #if USE_SIGTRAP_SIGINFO
715 siginfo_t siginfo;
716 #endif
717
718 if (the_low_target.get_pc == NULL)
719 return 0;
720
721 pc = get_pc (lwp);
722 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
723
724 /* breakpoint_at reads from the current thread. */
725 saved_thread = current_thread;
726 current_thread = get_lwp_thread (lwp);
727
728 #if USE_SIGTRAP_SIGINFO
729 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
730 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
731 {
732 if (siginfo.si_signo == SIGTRAP)
733 {
734 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
735 {
736 if (debug_threads)
737 {
738 struct thread_info *thr = get_lwp_thread (lwp);
739
740 debug_printf ("CSBB: %s stopped by software breakpoint\n",
741 target_pid_to_str (ptid_of (thr)));
742 }
743
744 /* Back up the PC if necessary. */
745 if (pc != sw_breakpoint_pc)
746 {
747 struct regcache *regcache
748 = get_thread_regcache (current_thread, 1);
749 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
750 }
751
752 lwp->stop_pc = sw_breakpoint_pc;
753 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
754 current_thread = saved_thread;
755 return 1;
756 }
757 else if (siginfo.si_code == TRAP_HWBKPT)
758 {
759 if (debug_threads)
760 {
761 struct thread_info *thr = get_lwp_thread (lwp);
762
763 debug_printf ("CSBB: %s stopped by hardware "
764 "breakpoint/watchpoint\n",
765 target_pid_to_str (ptid_of (thr)));
766 }
767
768 lwp->stop_pc = pc;
769 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
770 current_thread = saved_thread;
771 return 1;
772 }
773 else if (siginfo.si_code == TRAP_TRACE)
774 {
775 if (debug_threads)
776 {
777 struct thread_info *thr = get_lwp_thread (lwp);
778
779 debug_printf ("CSBB: %s stopped by trace\n",
780 target_pid_to_str (ptid_of (thr)));
781 }
782
783 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
784 }
785 }
786 }
787 #else
788 /* We may have just stepped a breakpoint instruction. E.g., in
789 non-stop mode, GDB first tells the thread A to step a range, and
790 then the user inserts a breakpoint inside the range. In that
791 case we need to report the breakpoint PC. */
792 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
793 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
794 {
795 if (debug_threads)
796 {
797 struct thread_info *thr = get_lwp_thread (lwp);
798
799 debug_printf ("CSBB: %s stopped by software breakpoint\n",
800 target_pid_to_str (ptid_of (thr)));
801 }
802
803 /* Back up the PC if necessary. */
804 if (pc != sw_breakpoint_pc)
805 {
806 struct regcache *regcache
807 = get_thread_regcache (current_thread, 1);
808 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
809 }
810
811 lwp->stop_pc = sw_breakpoint_pc;
812 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
813 current_thread = saved_thread;
814 return 1;
815 }
816
817 if (hardware_breakpoint_inserted_here (pc))
818 {
819 if (debug_threads)
820 {
821 struct thread_info *thr = get_lwp_thread (lwp);
822
823 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
824 target_pid_to_str (ptid_of (thr)));
825 }
826
827 lwp->stop_pc = pc;
828 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
829 current_thread = saved_thread;
830 return 1;
831 }
832 #endif
833
834 current_thread = saved_thread;
835 return 0;
836 }
837
838 static struct lwp_info *
839 add_lwp (ptid_t ptid)
840 {
841 struct lwp_info *lwp;
842
843 lwp = XCNEW (struct lwp_info);
844
845 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
846
847 if (the_low_target.new_thread != NULL)
848 the_low_target.new_thread (lwp);
849
850 lwp->thread = add_thread (ptid, lwp);
851
852 return lwp;
853 }
854
855 /* Start an inferior process and returns its pid.
856 ALLARGS is a vector of program-name and args. */
857
858 static int
859 linux_create_inferior (char *program, char **allargs)
860 {
861 struct lwp_info *new_lwp;
862 int pid;
863 ptid_t ptid;
864 struct cleanup *restore_personality
865 = maybe_disable_address_space_randomization (disable_randomization);
866
867 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
868 pid = vfork ();
869 #else
870 pid = fork ();
871 #endif
872 if (pid < 0)
873 perror_with_name ("fork");
874
875 if (pid == 0)
876 {
877 close_most_fds ();
878 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
879
880 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
881 signal (__SIGRTMIN + 1, SIG_DFL);
882 #endif
883
884 setpgid (0, 0);
885
886 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
887 stdout to stderr so that inferior i/o doesn't corrupt the connection.
888 Also, redirect stdin to /dev/null. */
889 if (remote_connection_is_stdio ())
890 {
891 close (0);
892 open ("/dev/null", O_RDONLY);
893 dup2 (2, 1);
894 if (write (2, "stdin/stdout redirected\n",
895 sizeof ("stdin/stdout redirected\n") - 1) < 0)
896 {
897 /* Errors ignored. */;
898 }
899 }
900
901 execv (program, allargs);
902 if (errno == ENOENT)
903 execvp (program, allargs);
904
905 fprintf (stderr, "Cannot exec %s: %s.\n", program,
906 strerror (errno));
907 fflush (stderr);
908 _exit (0177);
909 }
910
911 do_cleanups (restore_personality);
912
913 linux_add_process (pid, 0);
914
915 ptid = ptid_build (pid, pid, 0);
916 new_lwp = add_lwp (ptid);
917 new_lwp->must_set_ptrace_flags = 1;
918
919 return pid;
920 }
921
922 /* Attach to an inferior process. Returns 0 on success, ERRNO on
923 error. */
924
925 int
926 linux_attach_lwp (ptid_t ptid)
927 {
928 struct lwp_info *new_lwp;
929 int lwpid = ptid_get_lwp (ptid);
930
931 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
932 != 0)
933 return errno;
934
935 new_lwp = add_lwp (ptid);
936
937 /* We need to wait for SIGSTOP before being able to make the next
938 ptrace call on this LWP. */
939 new_lwp->must_set_ptrace_flags = 1;
940
941 if (linux_proc_pid_is_stopped (lwpid))
942 {
943 if (debug_threads)
944 debug_printf ("Attached to a stopped process\n");
945
946 /* The process is definitely stopped. It is in a job control
947 stop, unless the kernel predates the TASK_STOPPED /
948 TASK_TRACED distinction, in which case it might be in a
949 ptrace stop. Make sure it is in a ptrace stop; from there we
950 can kill it, signal it, et cetera.
951
952 First make sure there is a pending SIGSTOP. Since we are
953 already attached, the process can not transition from stopped
954 to running without a PTRACE_CONT; so we know this signal will
955 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
956 probably already in the queue (unless this kernel is old
957 enough to use TASK_STOPPED for ptrace stops); but since
958 SIGSTOP is not an RT signal, it can only be queued once. */
959 kill_lwp (lwpid, SIGSTOP);
960
961 /* Finally, resume the stopped process. This will deliver the
962 SIGSTOP (or a higher priority signal, just like normal
963 PTRACE_ATTACH), which we'll catch later on. */
964 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
965 }
966
967 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
968 brings it to a halt.
969
970 There are several cases to consider here:
971
972 1) gdbserver has already attached to the process and is being notified
973 of a new thread that is being created.
974 In this case we should ignore that SIGSTOP and resume the
975 process. This is handled below by setting stop_expected = 1,
976 and the fact that add_thread sets last_resume_kind ==
977 resume_continue.
978
979 2) This is the first thread (the process thread), and we're attaching
980 to it via attach_inferior.
981 In this case we want the process thread to stop.
982 This is handled by having linux_attach set last_resume_kind ==
983 resume_stop after we return.
984
985 If the pid we are attaching to is also the tgid, we attach to and
986 stop all the existing threads. Otherwise, we attach to pid and
987 ignore any other threads in the same group as this pid.
988
989 3) GDB is connecting to gdbserver and is requesting an enumeration of all
990 existing threads.
991 In this case we want the thread to stop.
992 FIXME: This case is currently not properly handled.
993 We should wait for the SIGSTOP but don't. Things work apparently
994 because enough time passes between when we ptrace (ATTACH) and when
995 gdb makes the next ptrace call on the thread.
996
997 On the other hand, if we are currently trying to stop all threads, we
998 should treat the new thread as if we had sent it a SIGSTOP. This works
999 because we are guaranteed that the add_lwp call above added us to the
1000 end of the list, and so the new thread has not yet reached
1001 wait_for_sigstop (but will). */
1002 new_lwp->stop_expected = 1;
1003
1004 return 0;
1005 }
1006
1007 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1008 already attached. Returns true if a new LWP is found, false
1009 otherwise. */
1010
1011 static int
1012 attach_proc_task_lwp_callback (ptid_t ptid)
1013 {
1014 /* Is this a new thread? */
1015 if (find_thread_ptid (ptid) == NULL)
1016 {
1017 int lwpid = ptid_get_lwp (ptid);
1018 int err;
1019
1020 if (debug_threads)
1021 debug_printf ("Found new lwp %d\n", lwpid);
1022
1023 err = linux_attach_lwp (ptid);
1024
1025 /* Be quiet if we simply raced with the thread exiting. EPERM
1026 is returned if the thread's task still exists, and is marked
1027 as exited or zombie, as well as other conditions, so in that
1028 case, confirm the status in /proc/PID/status. */
1029 if (err == ESRCH
1030 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1031 {
1032 if (debug_threads)
1033 {
1034 debug_printf ("Cannot attach to lwp %d: "
1035 "thread is gone (%d: %s)\n",
1036 lwpid, err, strerror (err));
1037 }
1038 }
1039 else if (err != 0)
1040 {
1041 warning (_("Cannot attach to lwp %d: %s"),
1042 lwpid,
1043 linux_ptrace_attach_fail_reason_string (ptid, err));
1044 }
1045
1046 return 1;
1047 }
1048 return 0;
1049 }
1050
1051 static void async_file_mark (void);
1052
1053 /* Attach to PID. If PID is the tgid, attach to it and all
1054 of its threads. */
1055
1056 static int
1057 linux_attach (unsigned long pid)
1058 {
1059 struct process_info *proc;
1060 struct thread_info *initial_thread;
1061 ptid_t ptid = ptid_build (pid, pid, 0);
1062 int err;
1063
1064 /* Attach to PID. We will check for other threads
1065 soon. */
1066 err = linux_attach_lwp (ptid);
1067 if (err != 0)
1068 error ("Cannot attach to process %ld: %s",
1069 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1070
1071 proc = linux_add_process (pid, 1);
1072
1073 /* Don't ignore the initial SIGSTOP if we just attached to this
1074 process. It will be collected by wait shortly. */
1075 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1076 initial_thread->last_resume_kind = resume_stop;
1077
1078 /* We must attach to every LWP. If /proc is mounted, use that to
1079 find them now. On the one hand, the inferior may be using raw
1080 clone instead of using pthreads. On the other hand, even if it
1081 is using pthreads, GDB may not be connected yet (thread_db needs
1082 to do symbol lookups, through qSymbol). Also, thread_db walks
1083 structures in the inferior's address space to find the list of
1084 threads/LWPs, and those structures may well be corrupted. Note
1085 that once thread_db is loaded, we'll still use it to list threads
1086 and associate pthread info with each LWP. */
1087 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1088
1089 /* GDB will shortly read the xml target description for this
1090 process, to figure out the process' architecture. But the target
1091 description is only filled in when the first process/thread in
1092 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1093 that now, otherwise, if GDB is fast enough, it could read the
1094 target description _before_ that initial stop. */
1095 if (non_stop)
1096 {
1097 struct lwp_info *lwp;
1098 int wstat, lwpid;
1099 ptid_t pid_ptid = pid_to_ptid (pid);
1100
1101 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1102 &wstat, __WALL);
1103 gdb_assert (lwpid > 0);
1104
1105 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1106
1107 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1108 {
1109 lwp->status_pending_p = 1;
1110 lwp->status_pending = wstat;
1111 }
1112
1113 initial_thread->last_resume_kind = resume_continue;
1114
1115 async_file_mark ();
1116
1117 gdb_assert (proc->tdesc != NULL);
1118 }
1119
1120 return 0;
1121 }
1122
1123 struct counter
1124 {
1125 int pid;
1126 int count;
1127 };
1128
1129 static int
1130 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1131 {
1132 struct counter *counter = (struct counter *) args;
1133
1134 if (ptid_get_pid (entry->id) == counter->pid)
1135 {
1136 if (++counter->count > 1)
1137 return 1;
1138 }
1139
1140 return 0;
1141 }
1142
1143 static int
1144 last_thread_of_process_p (int pid)
1145 {
1146 struct counter counter = { pid , 0 };
1147
1148 return (find_inferior (&all_threads,
1149 second_thread_of_pid_p, &counter) == NULL);
1150 }
1151
1152 /* Kill LWP. */
1153
1154 static void
1155 linux_kill_one_lwp (struct lwp_info *lwp)
1156 {
1157 struct thread_info *thr = get_lwp_thread (lwp);
1158 int pid = lwpid_of (thr);
1159
1160 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1161 there is no signal context, and ptrace(PTRACE_KILL) (or
1162 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1163 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1164 alternative is to kill with SIGKILL. We only need one SIGKILL
1165 per process, not one for each thread. But since we still support
1166 linuxthreads, and we also support debugging programs using raw
1167 clone without CLONE_THREAD, we send one for each thread. For
1168 years, we used PTRACE_KILL only, so we're being a bit paranoid
1169 about some old kernels where PTRACE_KILL might work better
1170 (dubious if there are any such, but that's why it's paranoia), so
1171 we try SIGKILL first, PTRACE_KILL second, and so we're fine
1172 everywhere. */
1173
1174 errno = 0;
1175 kill_lwp (pid, SIGKILL);
1176 if (debug_threads)
1177 {
1178 int save_errno = errno;
1179
1180 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1181 target_pid_to_str (ptid_of (thr)),
1182 save_errno ? strerror (save_errno) : "OK");
1183 }
1184
1185 errno = 0;
1186 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1187 if (debug_threads)
1188 {
1189 int save_errno = errno;
1190
1191 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1192 target_pid_to_str (ptid_of (thr)),
1193 save_errno ? strerror (save_errno) : "OK");
1194 }
1195 }
1196
1197 /* Kill LWP and wait for it to die. */
1198
1199 static void
1200 kill_wait_lwp (struct lwp_info *lwp)
1201 {
1202 struct thread_info *thr = get_lwp_thread (lwp);
1203 int pid = ptid_get_pid (ptid_of (thr));
1204 int lwpid = ptid_get_lwp (ptid_of (thr));
1205 int wstat;
1206 int res;
1207
1208 if (debug_threads)
1209 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1210
1211 do
1212 {
1213 linux_kill_one_lwp (lwp);
1214
1215 /* Make sure it died. Notes:
1216
1217 - The loop is most likely unnecessary.
1218
1219 - We don't use linux_wait_for_event as that could delete lwps
1220 while we're iterating over them. We're not interested in
1221 any pending status at this point, only in making sure all
1222 wait status on the kernel side are collected until the
1223 process is reaped.
1224
1225 - We don't use __WALL here as the __WALL emulation relies on
1226 SIGCHLD, and killing a stopped process doesn't generate
1227 one, nor an exit status.
1228 */
1229 res = my_waitpid (lwpid, &wstat, 0);
1230 if (res == -1 && errno == ECHILD)
1231 res = my_waitpid (lwpid, &wstat, __WCLONE);
1232 } while (res > 0 && WIFSTOPPED (wstat));
1233
1234 /* Even if it was stopped, the child may have already disappeared.
1235 E.g., if it was killed by SIGKILL. */
1236 if (res < 0 && errno != ECHILD)
1237 perror_with_name ("kill_wait_lwp");
1238 }
1239
1240 /* Callback for `find_inferior'. Kills an lwp of a given process,
1241 except the leader. */
1242
1243 static int
1244 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1245 {
1246 struct thread_info *thread = (struct thread_info *) entry;
1247 struct lwp_info *lwp = get_thread_lwp (thread);
1248 int pid = * (int *) args;
1249
1250 if (ptid_get_pid (entry->id) != pid)
1251 return 0;
1252
1253 /* We avoid killing the first thread here, because of a Linux kernel (at
1254 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1255 the children get a chance to be reaped, it will remain a zombie
1256 forever. */
1257
1258 if (lwpid_of (thread) == pid)
1259 {
1260 if (debug_threads)
1261 debug_printf ("lkop: is last of process %s\n",
1262 target_pid_to_str (entry->id));
1263 return 0;
1264 }
1265
1266 kill_wait_lwp (lwp);
1267 return 0;
1268 }
1269
1270 static int
1271 linux_kill (int pid)
1272 {
1273 struct process_info *process;
1274 struct lwp_info *lwp;
1275
1276 process = find_process_pid (pid);
1277 if (process == NULL)
1278 return -1;
1279
1280 /* If we're killing a running inferior, make sure it is stopped
1281 first, as PTRACE_KILL will not work otherwise. */
1282 stop_all_lwps (0, NULL);
1283
1284 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1285
1286 /* See the comment in linux_kill_one_lwp. We did not kill the first
1287 thread in the list, so do so now. */
1288 lwp = find_lwp_pid (pid_to_ptid (pid));
1289
1290 if (lwp == NULL)
1291 {
1292 if (debug_threads)
1293 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1294 pid);
1295 }
1296 else
1297 kill_wait_lwp (lwp);
1298
1299 the_target->mourn (process);
1300
1301 /* Since we presently can only stop all lwps of all processes, we
1302 need to unstop lwps of other processes. */
1303 unstop_all_lwps (0, NULL);
1304 return 0;
1305 }
1306
1307 /* Get pending signal of THREAD, for detaching purposes. This is the
1308 signal the thread last stopped for, which we need to deliver to the
1309 thread when detaching, otherwise, it'd be suppressed/lost. */
1310
1311 static int
1312 get_detach_signal (struct thread_info *thread)
1313 {
1314 enum gdb_signal signo = GDB_SIGNAL_0;
1315 int status;
1316 struct lwp_info *lp = get_thread_lwp (thread);
1317
1318 if (lp->status_pending_p)
1319 status = lp->status_pending;
1320 else
1321 {
1322 /* If the thread had been suspended by gdbserver, and it stopped
1323 cleanly, then it'll have stopped with SIGSTOP. But we don't
1324 want to deliver that SIGSTOP. */
1325 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1326 || thread->last_status.value.sig == GDB_SIGNAL_0)
1327 return 0;
1328
1329 /* Otherwise, we may need to deliver the signal we
1330 intercepted. */
1331 status = lp->last_status;
1332 }
1333
1334 if (!WIFSTOPPED (status))
1335 {
1336 if (debug_threads)
1337 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1338 target_pid_to_str (ptid_of (thread)));
1339 return 0;
1340 }
1341
1342 /* Extended wait statuses aren't real SIGTRAPs. */
1343 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1344 {
1345 if (debug_threads)
1346 debug_printf ("GPS: lwp %s had stopped with extended "
1347 "status: no pending signal\n",
1348 target_pid_to_str (ptid_of (thread)));
1349 return 0;
1350 }
1351
1352 signo = gdb_signal_from_host (WSTOPSIG (status));
1353
1354 if (program_signals_p && !program_signals[signo])
1355 {
1356 if (debug_threads)
1357 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1358 target_pid_to_str (ptid_of (thread)),
1359 gdb_signal_to_string (signo));
1360 return 0;
1361 }
1362 else if (!program_signals_p
1363 /* If we have no way to know which signals GDB does not
1364 want to have passed to the program, assume
1365 SIGTRAP/SIGINT, which is GDB's default. */
1366 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1367 {
1368 if (debug_threads)
1369 debug_printf ("GPS: lwp %s had signal %s, "
1370 "but we don't know if we should pass it. "
1371 "Default to not.\n",
1372 target_pid_to_str (ptid_of (thread)),
1373 gdb_signal_to_string (signo));
1374 return 0;
1375 }
1376 else
1377 {
1378 if (debug_threads)
1379 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1380 target_pid_to_str (ptid_of (thread)),
1381 gdb_signal_to_string (signo));
1382
1383 return WSTOPSIG (status);
1384 }
1385 }
1386
1387 static int
1388 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1389 {
1390 struct thread_info *thread = (struct thread_info *) entry;
1391 struct lwp_info *lwp = get_thread_lwp (thread);
1392 int pid = * (int *) args;
1393 int sig;
1394
1395 if (ptid_get_pid (entry->id) != pid)
1396 return 0;
1397
1398 /* If there is a pending SIGSTOP, get rid of it. */
1399 if (lwp->stop_expected)
1400 {
1401 if (debug_threads)
1402 debug_printf ("Sending SIGCONT to %s\n",
1403 target_pid_to_str (ptid_of (thread)));
1404
1405 kill_lwp (lwpid_of (thread), SIGCONT);
1406 lwp->stop_expected = 0;
1407 }
1408
1409 /* Flush any pending changes to the process's registers. */
1410 regcache_invalidate_thread (thread);
1411
1412 /* Pass on any pending signal for this thread. */
1413 sig = get_detach_signal (thread);
1414
1415 /* Finally, let it resume. */
1416 if (the_low_target.prepare_to_resume != NULL)
1417 the_low_target.prepare_to_resume (lwp);
1418 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1419 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1420 error (_("Can't detach %s: %s"),
1421 target_pid_to_str (ptid_of (thread)),
1422 strerror (errno));
1423
1424 delete_lwp (lwp);
1425 return 0;
1426 }
1427
1428 static int
1429 linux_detach (int pid)
1430 {
1431 struct process_info *process;
1432
1433 process = find_process_pid (pid);
1434 if (process == NULL)
1435 return -1;
1436
1437 /* As there's a step over already in progress, let it finish first,
1438 otherwise nesting a stabilize_threads operation on top gets real
1439 messy. */
1440 complete_ongoing_step_over ();
1441
1442 /* Stop all threads before detaching. First, ptrace requires that
1443 the thread is stopped to sucessfully detach. Second, thread_db
1444 may need to uninstall thread event breakpoints from memory, which
1445 only works with a stopped process anyway. */
1446 stop_all_lwps (0, NULL);
1447
1448 #ifdef USE_THREAD_DB
1449 thread_db_detach (process);
1450 #endif
1451
1452 /* Stabilize threads (move out of jump pads). */
1453 stabilize_threads ();
1454
1455 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1456
1457 the_target->mourn (process);
1458
1459 /* Since we presently can only stop all lwps of all processes, we
1460 need to unstop lwps of other processes. */
1461 unstop_all_lwps (0, NULL);
1462 return 0;
1463 }
1464
1465 /* Remove all LWPs that belong to process PROC from the lwp list. */
1466
1467 static int
1468 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1469 {
1470 struct thread_info *thread = (struct thread_info *) entry;
1471 struct lwp_info *lwp = get_thread_lwp (thread);
1472 struct process_info *process = (struct process_info *) proc;
1473
1474 if (pid_of (thread) == pid_of (process))
1475 delete_lwp (lwp);
1476
1477 return 0;
1478 }
1479
1480 static void
1481 linux_mourn (struct process_info *process)
1482 {
1483 struct process_info_private *priv;
1484
1485 #ifdef USE_THREAD_DB
1486 thread_db_mourn (process);
1487 #endif
1488
1489 find_inferior (&all_threads, delete_lwp_callback, process);
1490
1491 /* Freeing all private data. */
1492 priv = process->priv;
1493 free (priv->arch_private);
1494 free (priv);
1495 process->priv = NULL;
1496
1497 remove_process (process);
1498 }
1499
1500 static void
1501 linux_join (int pid)
1502 {
1503 int status, ret;
1504
1505 do {
1506 ret = my_waitpid (pid, &status, 0);
1507 if (WIFEXITED (status) || WIFSIGNALED (status))
1508 break;
1509 } while (ret != -1 || errno != ECHILD);
1510 }
1511
1512 /* Return nonzero if the given thread is still alive. */
1513 static int
1514 linux_thread_alive (ptid_t ptid)
1515 {
1516 struct lwp_info *lwp = find_lwp_pid (ptid);
1517
1518 /* We assume we always know if a thread exits. If a whole process
1519 exited but we still haven't been able to report it to GDB, we'll
1520 hold on to the last lwp of the dead process. */
1521 if (lwp != NULL)
1522 return !lwp_is_marked_dead (lwp);
1523 else
1524 return 0;
1525 }
1526
1527 /* Return 1 if this lwp still has an interesting status pending. If
1528 not (e.g., it had stopped for a breakpoint that is gone), return
1529 false. */
1530
1531 static int
1532 thread_still_has_status_pending_p (struct thread_info *thread)
1533 {
1534 struct lwp_info *lp = get_thread_lwp (thread);
1535
1536 if (!lp->status_pending_p)
1537 return 0;
1538
1539 if (thread->last_resume_kind != resume_stop
1540 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1541 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1542 {
1543 struct thread_info *saved_thread;
1544 CORE_ADDR pc;
1545 int discard = 0;
1546
1547 gdb_assert (lp->last_status != 0);
1548
1549 pc = get_pc (lp);
1550
1551 saved_thread = current_thread;
1552 current_thread = thread;
1553
1554 if (pc != lp->stop_pc)
1555 {
1556 if (debug_threads)
1557 debug_printf ("PC of %ld changed\n",
1558 lwpid_of (thread));
1559 discard = 1;
1560 }
1561
1562 #if !USE_SIGTRAP_SIGINFO
1563 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1564 && !(*the_low_target.breakpoint_at) (pc))
1565 {
1566 if (debug_threads)
1567 debug_printf ("previous SW breakpoint of %ld gone\n",
1568 lwpid_of (thread));
1569 discard = 1;
1570 }
1571 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1572 && !hardware_breakpoint_inserted_here (pc))
1573 {
1574 if (debug_threads)
1575 debug_printf ("previous HW breakpoint of %ld gone\n",
1576 lwpid_of (thread));
1577 discard = 1;
1578 }
1579 #endif
1580
1581 current_thread = saved_thread;
1582
1583 if (discard)
1584 {
1585 if (debug_threads)
1586 debug_printf ("discarding pending breakpoint status\n");
1587 lp->status_pending_p = 0;
1588 return 0;
1589 }
1590 }
1591
1592 return 1;
1593 }
1594
1595 /* Returns true if LWP is resumed from the client's perspective. */
1596
1597 static int
1598 lwp_resumed (struct lwp_info *lwp)
1599 {
1600 struct thread_info *thread = get_lwp_thread (lwp);
1601
1602 if (thread->last_resume_kind != resume_stop)
1603 return 1;
1604
1605 /* Did gdb send us a `vCont;t', but we haven't reported the
1606 corresponding stop to gdb yet? If so, the thread is still
1607 resumed/running from gdb's perspective. */
1608 if (thread->last_resume_kind == resume_stop
1609 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1610 return 1;
1611
1612 return 0;
1613 }
1614
1615 /* Return 1 if this lwp has an interesting status pending. */
1616 static int
1617 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1618 {
1619 struct thread_info *thread = (struct thread_info *) entry;
1620 struct lwp_info *lp = get_thread_lwp (thread);
1621 ptid_t ptid = * (ptid_t *) arg;
1622
1623 /* Check if we're only interested in events from a specific process
1624 or a specific LWP. */
1625 if (!ptid_match (ptid_of (thread), ptid))
1626 return 0;
1627
1628 if (!lwp_resumed (lp))
1629 return 0;
1630
1631 if (lp->status_pending_p
1632 && !thread_still_has_status_pending_p (thread))
1633 {
1634 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1635 return 0;
1636 }
1637
1638 return lp->status_pending_p;
1639 }
1640
1641 static int
1642 same_lwp (struct inferior_list_entry *entry, void *data)
1643 {
1644 ptid_t ptid = *(ptid_t *) data;
1645 int lwp;
1646
1647 if (ptid_get_lwp (ptid) != 0)
1648 lwp = ptid_get_lwp (ptid);
1649 else
1650 lwp = ptid_get_pid (ptid);
1651
1652 if (ptid_get_lwp (entry->id) == lwp)
1653 return 1;
1654
1655 return 0;
1656 }
1657
1658 struct lwp_info *
1659 find_lwp_pid (ptid_t ptid)
1660 {
1661 struct inferior_list_entry *thread
1662 = find_inferior (&all_threads, same_lwp, &ptid);
1663
1664 if (thread == NULL)
1665 return NULL;
1666
1667 return get_thread_lwp ((struct thread_info *) thread);
1668 }
1669
1670 /* Return the number of known LWPs in the tgid given by PID. */
1671
1672 static int
1673 num_lwps (int pid)
1674 {
1675 struct inferior_list_entry *inf, *tmp;
1676 int count = 0;
1677
1678 ALL_INFERIORS (&all_threads, inf, tmp)
1679 {
1680 if (ptid_get_pid (inf->id) == pid)
1681 count++;
1682 }
1683
1684 return count;
1685 }
1686
1687 /* The arguments passed to iterate_over_lwps. */
1688
1689 struct iterate_over_lwps_args
1690 {
1691 /* The FILTER argument passed to iterate_over_lwps. */
1692 ptid_t filter;
1693
1694 /* The CALLBACK argument passed to iterate_over_lwps. */
1695 iterate_over_lwps_ftype *callback;
1696
1697 /* The DATA argument passed to iterate_over_lwps. */
1698 void *data;
1699 };
1700
1701 /* Callback for find_inferior used by iterate_over_lwps to filter
1702 calls to the callback supplied to that function. Returning a
1703 nonzero value causes find_inferiors to stop iterating and return
1704 the current inferior_list_entry. Returning zero indicates that
1705 find_inferiors should continue iterating. */
1706
1707 static int
1708 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1709 {
1710 struct iterate_over_lwps_args *args
1711 = (struct iterate_over_lwps_args *) args_p;
1712
1713 if (ptid_match (entry->id, args->filter))
1714 {
1715 struct thread_info *thr = (struct thread_info *) entry;
1716 struct lwp_info *lwp = get_thread_lwp (thr);
1717
1718 return (*args->callback) (lwp, args->data);
1719 }
1720
1721 return 0;
1722 }
1723
1724 /* See nat/linux-nat.h. */
1725
1726 struct lwp_info *
1727 iterate_over_lwps (ptid_t filter,
1728 iterate_over_lwps_ftype callback,
1729 void *data)
1730 {
1731 struct iterate_over_lwps_args args = {filter, callback, data};
1732 struct inferior_list_entry *entry;
1733
1734 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1735 if (entry == NULL)
1736 return NULL;
1737
1738 return get_thread_lwp ((struct thread_info *) entry);
1739 }
1740
1741 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1742 their exits until all other threads in the group have exited. */
1743
1744 static void
1745 check_zombie_leaders (void)
1746 {
1747 struct process_info *proc, *tmp;
1748
1749 ALL_PROCESSES (proc, tmp)
1750 {
1751 pid_t leader_pid = pid_of (proc);
1752 struct lwp_info *leader_lp;
1753
1754 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1755
1756 if (debug_threads)
1757 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1758 "num_lwps=%d, zombie=%d\n",
1759 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1760 linux_proc_pid_is_zombie (leader_pid));
1761
1762 if (leader_lp != NULL && !leader_lp->stopped
1763 /* Check if there are other threads in the group, as we may
1764 have raced with the inferior simply exiting. */
1765 && !last_thread_of_process_p (leader_pid)
1766 && linux_proc_pid_is_zombie (leader_pid))
1767 {
1768 /* A leader zombie can mean one of two things:
1769
1770 - It exited, and there's an exit status pending
1771 available, or only the leader exited (not the whole
1772 program). In the latter case, we can't waitpid the
1773 leader's exit status until all other threads are gone.
1774
1775 - There are 3 or more threads in the group, and a thread
1776 other than the leader exec'd. On an exec, the Linux
1777 kernel destroys all other threads (except the execing
1778 one) in the thread group, and resets the execing thread's
1779 tid to the tgid. No exit notification is sent for the
1780 execing thread -- from the ptracer's perspective, it
1781 appears as though the execing thread just vanishes.
1782 Until we reap all other threads except the leader and the
1783 execing thread, the leader will be zombie, and the
1784 execing thread will be in `D (disc sleep)'. As soon as
1785 all other threads are reaped, the execing thread changes
1786 it's tid to the tgid, and the previous (zombie) leader
1787 vanishes, giving place to the "new" leader. We could try
1788 distinguishing the exit and exec cases, by waiting once
1789 more, and seeing if something comes out, but it doesn't
1790 sound useful. The previous leader _does_ go away, and
1791 we'll re-add the new one once we see the exec event
1792 (which is just the same as what would happen if the
1793 previous leader did exit voluntarily before some other
1794 thread execs). */
1795
1796 if (debug_threads)
1797 fprintf (stderr,
1798 "CZL: Thread group leader %d zombie "
1799 "(it exited, or another thread execd).\n",
1800 leader_pid);
1801
1802 delete_lwp (leader_lp);
1803 }
1804 }
1805 }
1806
1807 /* Callback for `find_inferior'. Returns the first LWP that is not
1808 stopped. ARG is a PTID filter. */
1809
1810 static int
1811 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1812 {
1813 struct thread_info *thr = (struct thread_info *) entry;
1814 struct lwp_info *lwp;
1815 ptid_t filter = *(ptid_t *) arg;
1816
1817 if (!ptid_match (ptid_of (thr), filter))
1818 return 0;
1819
1820 lwp = get_thread_lwp (thr);
1821 if (!lwp->stopped)
1822 return 1;
1823
1824 return 0;
1825 }
1826
1827 /* Increment LWP's suspend count. */
1828
1829 static void
1830 lwp_suspended_inc (struct lwp_info *lwp)
1831 {
1832 lwp->suspended++;
1833
1834 if (debug_threads && lwp->suspended > 4)
1835 {
1836 struct thread_info *thread = get_lwp_thread (lwp);
1837
1838 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1839 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1840 }
1841 }
1842
1843 /* Decrement LWP's suspend count. */
1844
1845 static void
1846 lwp_suspended_decr (struct lwp_info *lwp)
1847 {
1848 lwp->suspended--;
1849
1850 if (lwp->suspended < 0)
1851 {
1852 struct thread_info *thread = get_lwp_thread (lwp);
1853
1854 internal_error (__FILE__, __LINE__,
1855 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1856 lwp->suspended);
1857 }
1858 }
1859
1860 /* This function should only be called if the LWP got a SIGTRAP.
1861
1862 Handle any tracepoint steps or hits. Return true if a tracepoint
1863 event was handled, 0 otherwise. */
1864
1865 static int
1866 handle_tracepoints (struct lwp_info *lwp)
1867 {
1868 struct thread_info *tinfo = get_lwp_thread (lwp);
1869 int tpoint_related_event = 0;
1870
1871 gdb_assert (lwp->suspended == 0);
1872
1873 /* If this tracepoint hit causes a tracing stop, we'll immediately
1874 uninsert tracepoints. To do this, we temporarily pause all
1875 threads, unpatch away, and then unpause threads. We need to make
1876 sure the unpausing doesn't resume LWP too. */
1877 lwp_suspended_inc (lwp);
1878
1879 /* And we need to be sure that any all-threads-stopping doesn't try
1880 to move threads out of the jump pads, as it could deadlock the
1881 inferior (LWP could be in the jump pad, maybe even holding the
1882 lock.) */
1883
1884 /* Do any necessary step collect actions. */
1885 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1886
1887 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1888
1889 /* See if we just hit a tracepoint and do its main collect
1890 actions. */
1891 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1892
1893 lwp_suspended_decr (lwp);
1894
1895 gdb_assert (lwp->suspended == 0);
1896 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1897
1898 if (tpoint_related_event)
1899 {
1900 if (debug_threads)
1901 debug_printf ("got a tracepoint event\n");
1902 return 1;
1903 }
1904
1905 return 0;
1906 }
1907
1908 /* Convenience wrapper. Returns true if LWP is presently collecting a
1909 fast tracepoint. */
1910
1911 static int
1912 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1913 struct fast_tpoint_collect_status *status)
1914 {
1915 CORE_ADDR thread_area;
1916 struct thread_info *thread = get_lwp_thread (lwp);
1917
1918 if (the_low_target.get_thread_area == NULL)
1919 return 0;
1920
1921 /* Get the thread area address. This is used to recognize which
1922 thread is which when tracing with the in-process agent library.
1923 We don't read anything from the address, and treat it as opaque;
1924 it's the address itself that we assume is unique per-thread. */
1925 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1926 return 0;
1927
1928 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1929 }
1930
1931 /* The reason we resume in the caller, is because we want to be able
1932 to pass lwp->status_pending as WSTAT, and we need to clear
1933 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1934 refuses to resume. */
1935
1936 static int
1937 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1938 {
1939 struct thread_info *saved_thread;
1940
1941 saved_thread = current_thread;
1942 current_thread = get_lwp_thread (lwp);
1943
1944 if ((wstat == NULL
1945 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1946 && supports_fast_tracepoints ()
1947 && agent_loaded_p ())
1948 {
1949 struct fast_tpoint_collect_status status;
1950 int r;
1951
1952 if (debug_threads)
1953 debug_printf ("Checking whether LWP %ld needs to move out of the "
1954 "jump pad.\n",
1955 lwpid_of (current_thread));
1956
1957 r = linux_fast_tracepoint_collecting (lwp, &status);
1958
1959 if (wstat == NULL
1960 || (WSTOPSIG (*wstat) != SIGILL
1961 && WSTOPSIG (*wstat) != SIGFPE
1962 && WSTOPSIG (*wstat) != SIGSEGV
1963 && WSTOPSIG (*wstat) != SIGBUS))
1964 {
1965 lwp->collecting_fast_tracepoint = r;
1966
1967 if (r != 0)
1968 {
1969 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1970 {
1971 /* Haven't executed the original instruction yet.
1972 Set breakpoint there, and wait till it's hit,
1973 then single-step until exiting the jump pad. */
1974 lwp->exit_jump_pad_bkpt
1975 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1976 }
1977
1978 if (debug_threads)
1979 debug_printf ("Checking whether LWP %ld needs to move out of "
1980 "the jump pad...it does\n",
1981 lwpid_of (current_thread));
1982 current_thread = saved_thread;
1983
1984 return 1;
1985 }
1986 }
1987 else
1988 {
1989 /* If we get a synchronous signal while collecting, *and*
1990 while executing the (relocated) original instruction,
1991 reset the PC to point at the tpoint address, before
1992 reporting to GDB. Otherwise, it's an IPA lib bug: just
1993 report the signal to GDB, and pray for the best. */
1994
1995 lwp->collecting_fast_tracepoint = 0;
1996
1997 if (r != 0
1998 && (status.adjusted_insn_addr <= lwp->stop_pc
1999 && lwp->stop_pc < status.adjusted_insn_addr_end))
2000 {
2001 siginfo_t info;
2002 struct regcache *regcache;
2003
2004 /* The si_addr on a few signals references the address
2005 of the faulting instruction. Adjust that as
2006 well. */
2007 if ((WSTOPSIG (*wstat) == SIGILL
2008 || WSTOPSIG (*wstat) == SIGFPE
2009 || WSTOPSIG (*wstat) == SIGBUS
2010 || WSTOPSIG (*wstat) == SIGSEGV)
2011 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2012 (PTRACE_TYPE_ARG3) 0, &info) == 0
2013 /* Final check just to make sure we don't clobber
2014 the siginfo of non-kernel-sent signals. */
2015 && (uintptr_t) info.si_addr == lwp->stop_pc)
2016 {
2017 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2018 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2019 (PTRACE_TYPE_ARG3) 0, &info);
2020 }
2021
2022 regcache = get_thread_regcache (current_thread, 1);
2023 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2024 lwp->stop_pc = status.tpoint_addr;
2025
2026 /* Cancel any fast tracepoint lock this thread was
2027 holding. */
2028 force_unlock_trace_buffer ();
2029 }
2030
2031 if (lwp->exit_jump_pad_bkpt != NULL)
2032 {
2033 if (debug_threads)
2034 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2035 "stopping all threads momentarily.\n");
2036
2037 stop_all_lwps (1, lwp);
2038
2039 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2040 lwp->exit_jump_pad_bkpt = NULL;
2041
2042 unstop_all_lwps (1, lwp);
2043
2044 gdb_assert (lwp->suspended >= 0);
2045 }
2046 }
2047 }
2048
2049 if (debug_threads)
2050 debug_printf ("Checking whether LWP %ld needs to move out of the "
2051 "jump pad...no\n",
2052 lwpid_of (current_thread));
2053
2054 current_thread = saved_thread;
2055 return 0;
2056 }
2057
2058 /* Enqueue one signal in the "signals to report later when out of the
2059 jump pad" list. */
2060
2061 static void
2062 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2063 {
2064 struct pending_signals *p_sig;
2065 struct thread_info *thread = get_lwp_thread (lwp);
2066
2067 if (debug_threads)
2068 debug_printf ("Deferring signal %d for LWP %ld.\n",
2069 WSTOPSIG (*wstat), lwpid_of (thread));
2070
2071 if (debug_threads)
2072 {
2073 struct pending_signals *sig;
2074
2075 for (sig = lwp->pending_signals_to_report;
2076 sig != NULL;
2077 sig = sig->prev)
2078 debug_printf (" Already queued %d\n",
2079 sig->signal);
2080
2081 debug_printf (" (no more currently queued signals)\n");
2082 }
2083
2084 /* Don't enqueue non-RT signals if they are already in the deferred
2085 queue. (SIGSTOP being the easiest signal to see ending up here
2086 twice) */
2087 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2088 {
2089 struct pending_signals *sig;
2090
2091 for (sig = lwp->pending_signals_to_report;
2092 sig != NULL;
2093 sig = sig->prev)
2094 {
2095 if (sig->signal == WSTOPSIG (*wstat))
2096 {
2097 if (debug_threads)
2098 debug_printf ("Not requeuing already queued non-RT signal %d"
2099 " for LWP %ld\n",
2100 sig->signal,
2101 lwpid_of (thread));
2102 return;
2103 }
2104 }
2105 }
2106
2107 p_sig = XCNEW (struct pending_signals);
2108 p_sig->prev = lwp->pending_signals_to_report;
2109 p_sig->signal = WSTOPSIG (*wstat);
2110
2111 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2112 &p_sig->info);
2113
2114 lwp->pending_signals_to_report = p_sig;
2115 }
2116
2117 /* Dequeue one signal from the "signals to report later when out of
2118 the jump pad" list. */
2119
2120 static int
2121 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2122 {
2123 struct thread_info *thread = get_lwp_thread (lwp);
2124
2125 if (lwp->pending_signals_to_report != NULL)
2126 {
2127 struct pending_signals **p_sig;
2128
2129 p_sig = &lwp->pending_signals_to_report;
2130 while ((*p_sig)->prev != NULL)
2131 p_sig = &(*p_sig)->prev;
2132
2133 *wstat = W_STOPCODE ((*p_sig)->signal);
2134 if ((*p_sig)->info.si_signo != 0)
2135 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2136 &(*p_sig)->info);
2137 free (*p_sig);
2138 *p_sig = NULL;
2139
2140 if (debug_threads)
2141 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2142 WSTOPSIG (*wstat), lwpid_of (thread));
2143
2144 if (debug_threads)
2145 {
2146 struct pending_signals *sig;
2147
2148 for (sig = lwp->pending_signals_to_report;
2149 sig != NULL;
2150 sig = sig->prev)
2151 debug_printf (" Still queued %d\n",
2152 sig->signal);
2153
2154 debug_printf (" (no more queued signals)\n");
2155 }
2156
2157 return 1;
2158 }
2159
2160 return 0;
2161 }
2162
2163 /* Fetch the possibly triggered data watchpoint info and store it in
2164 CHILD.
2165
2166 On some archs, like x86, that use debug registers to set
2167 watchpoints, it's possible that the way to know which watched
2168 address trapped, is to check the register that is used to select
2169 which address to watch. Problem is, between setting the watchpoint
2170 and reading back which data address trapped, the user may change
2171 the set of watchpoints, and, as a consequence, GDB changes the
2172 debug registers in the inferior. To avoid reading back a stale
2173 stopped-data-address when that happens, we cache in LP the fact
2174 that a watchpoint trapped, and the corresponding data address, as
2175 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2176 registers meanwhile, we have the cached data we can rely on. */
2177
2178 static int
2179 check_stopped_by_watchpoint (struct lwp_info *child)
2180 {
2181 if (the_low_target.stopped_by_watchpoint != NULL)
2182 {
2183 struct thread_info *saved_thread;
2184
2185 saved_thread = current_thread;
2186 current_thread = get_lwp_thread (child);
2187
2188 if (the_low_target.stopped_by_watchpoint ())
2189 {
2190 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2191
2192 if (the_low_target.stopped_data_address != NULL)
2193 child->stopped_data_address
2194 = the_low_target.stopped_data_address ();
2195 else
2196 child->stopped_data_address = 0;
2197 }
2198
2199 current_thread = saved_thread;
2200 }
2201
2202 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2203 }
2204
2205 /* Return the ptrace options that we want to try to enable. */
2206
2207 static int
2208 linux_low_ptrace_options (int attached)
2209 {
2210 int options = 0;
2211
2212 if (!attached)
2213 options |= PTRACE_O_EXITKILL;
2214
2215 if (report_fork_events)
2216 options |= PTRACE_O_TRACEFORK;
2217
2218 if (report_vfork_events)
2219 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2220
2221 if (report_exec_events)
2222 options |= PTRACE_O_TRACEEXEC;
2223
2224 return options;
2225 }
2226
2227 /* Do low-level handling of the event, and check if we should go on
2228 and pass it to caller code. Return the affected lwp if we are, or
2229 NULL otherwise. */
2230
2231 static struct lwp_info *
2232 linux_low_filter_event (int lwpid, int wstat)
2233 {
2234 struct lwp_info *child;
2235 struct thread_info *thread;
2236 int have_stop_pc = 0;
2237
2238 child = find_lwp_pid (pid_to_ptid (lwpid));
2239
2240 /* Check for stop events reported by a process we didn't already
2241 know about - anything not already in our LWP list.
2242
2243 If we're expecting to receive stopped processes after
2244 fork, vfork, and clone events, then we'll just add the
2245 new one to our list and go back to waiting for the event
2246 to be reported - the stopped process might be returned
2247 from waitpid before or after the event is.
2248
2249 But note the case of a non-leader thread exec'ing after the
2250 leader having exited, and gone from our lists (because
2251 check_zombie_leaders deleted it). The non-leader thread
2252 changes its tid to the tgid. */
2253
2254 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2255 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2256 {
2257 ptid_t child_ptid;
2258
2259 /* A multi-thread exec after we had seen the leader exiting. */
2260 if (debug_threads)
2261 {
2262 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2263 "after exec.\n", lwpid);
2264 }
2265
2266 child_ptid = ptid_build (lwpid, lwpid, 0);
2267 child = add_lwp (child_ptid);
2268 child->stopped = 1;
2269 current_thread = child->thread;
2270 }
2271
2272 /* If we didn't find a process, one of two things presumably happened:
2273 - A process we started and then detached from has exited. Ignore it.
2274 - A process we are controlling has forked and the new child's stop
2275 was reported to us by the kernel. Save its PID. */
2276 if (child == NULL && WIFSTOPPED (wstat))
2277 {
2278 add_to_pid_list (&stopped_pids, lwpid, wstat);
2279 return NULL;
2280 }
2281 else if (child == NULL)
2282 return NULL;
2283
2284 thread = get_lwp_thread (child);
2285
2286 child->stopped = 1;
2287
2288 child->last_status = wstat;
2289
2290 /* Check if the thread has exited. */
2291 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2292 {
2293 if (debug_threads)
2294 debug_printf ("LLFE: %d exited.\n", lwpid);
2295 /* If there is at least one more LWP, then the exit signal was
2296 not the end of the debugged application and should be
2297 ignored, unless GDB wants to hear about thread exits. */
2298 if (report_thread_events
2299 || last_thread_of_process_p (pid_of (thread)))
2300 {
2301 /* Since events are serialized to GDB core, and we can't
2302 report this one right now. Leave the status pending for
2303 the next time we're able to report it. */
2304 mark_lwp_dead (child, wstat);
2305 return child;
2306 }
2307 else
2308 {
2309 delete_lwp (child);
2310 return NULL;
2311 }
2312 }
2313
2314 gdb_assert (WIFSTOPPED (wstat));
2315
2316 if (WIFSTOPPED (wstat))
2317 {
2318 struct process_info *proc;
2319
2320 /* Architecture-specific setup after inferior is running. */
2321 proc = find_process_pid (pid_of (thread));
2322 if (proc->tdesc == NULL)
2323 {
2324 if (proc->attached)
2325 {
2326 /* This needs to happen after we have attached to the
2327 inferior and it is stopped for the first time, but
2328 before we access any inferior registers. */
2329 linux_arch_setup_thread (thread);
2330 }
2331 else
2332 {
2333 /* The process is started, but GDBserver will do
2334 architecture-specific setup after the program stops at
2335 the first instruction. */
2336 child->status_pending_p = 1;
2337 child->status_pending = wstat;
2338 return child;
2339 }
2340 }
2341 }
2342
2343 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2344 {
2345 struct process_info *proc = find_process_pid (pid_of (thread));
2346 int options = linux_low_ptrace_options (proc->attached);
2347
2348 linux_enable_event_reporting (lwpid, options);
2349 child->must_set_ptrace_flags = 0;
2350 }
2351
2352 /* Be careful to not overwrite stop_pc until
2353 check_stopped_by_breakpoint is called. */
2354 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2355 && linux_is_extended_waitstatus (wstat))
2356 {
2357 child->stop_pc = get_pc (child);
2358 if (handle_extended_wait (&child, wstat))
2359 {
2360 /* The event has been handled, so just return without
2361 reporting it. */
2362 return NULL;
2363 }
2364 }
2365
2366 /* Check first whether this was a SW/HW breakpoint before checking
2367 watchpoints, because at least s390 can't tell the data address of
2368 hardware watchpoint hits, and returns stopped-by-watchpoint as
2369 long as there's a watchpoint set. */
2370 if (WIFSTOPPED (wstat) && linux_wstatus_maybe_breakpoint (wstat))
2371 {
2372 if (check_stopped_by_breakpoint (child))
2373 have_stop_pc = 1;
2374 }
2375
2376 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2377 or hardware watchpoint. Check which is which if we got
2378 TARGET_STOPPED_BY_HW_BREAKPOINT. Likewise, we may have single
2379 stepped an instruction that triggered a watchpoint. In that
2380 case, on some architectures (such as x86), instead of
2381 TRAP_HWBKPT, si_code indicates TRAP_TRACE, and we need to check
2382 the debug registers separately. */
2383 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2384 && child->stop_reason != TARGET_STOPPED_BY_SW_BREAKPOINT)
2385 check_stopped_by_watchpoint (child);
2386
2387 if (!have_stop_pc)
2388 child->stop_pc = get_pc (child);
2389
2390 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2391 && child->stop_expected)
2392 {
2393 if (debug_threads)
2394 debug_printf ("Expected stop.\n");
2395 child->stop_expected = 0;
2396
2397 if (thread->last_resume_kind == resume_stop)
2398 {
2399 /* We want to report the stop to the core. Treat the
2400 SIGSTOP as a normal event. */
2401 if (debug_threads)
2402 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2403 target_pid_to_str (ptid_of (thread)));
2404 }
2405 else if (stopping_threads != NOT_STOPPING_THREADS)
2406 {
2407 /* Stopping threads. We don't want this SIGSTOP to end up
2408 pending. */
2409 if (debug_threads)
2410 debug_printf ("LLW: SIGSTOP caught for %s "
2411 "while stopping threads.\n",
2412 target_pid_to_str (ptid_of (thread)));
2413 return NULL;
2414 }
2415 else
2416 {
2417 /* This is a delayed SIGSTOP. Filter out the event. */
2418 if (debug_threads)
2419 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2420 child->stepping ? "step" : "continue",
2421 target_pid_to_str (ptid_of (thread)));
2422
2423 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2424 return NULL;
2425 }
2426 }
2427
2428 child->status_pending_p = 1;
2429 child->status_pending = wstat;
2430 return child;
2431 }
2432
2433 /* Resume LWPs that are currently stopped without any pending status
2434 to report, but are resumed from the core's perspective. */
2435
2436 static void
2437 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2438 {
2439 struct thread_info *thread = (struct thread_info *) entry;
2440 struct lwp_info *lp = get_thread_lwp (thread);
2441
2442 if (lp->stopped
2443 && !lp->suspended
2444 && !lp->status_pending_p
2445 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2446 {
2447 int step = thread->last_resume_kind == resume_step;
2448
2449 if (debug_threads)
2450 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2451 target_pid_to_str (ptid_of (thread)),
2452 paddress (lp->stop_pc),
2453 step);
2454
2455 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2456 }
2457 }
2458
2459 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2460 match FILTER_PTID (leaving others pending). The PTIDs can be:
2461 minus_one_ptid, to specify any child; a pid PTID, specifying all
2462 lwps of a thread group; or a PTID representing a single lwp. Store
2463 the stop status through the status pointer WSTAT. OPTIONS is
2464 passed to the waitpid call. Return 0 if no event was found and
2465 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2466 was found. Return the PID of the stopped child otherwise. */
2467
2468 static int
2469 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2470 int *wstatp, int options)
2471 {
2472 struct thread_info *event_thread;
2473 struct lwp_info *event_child, *requested_child;
2474 sigset_t block_mask, prev_mask;
2475
2476 retry:
2477 /* N.B. event_thread points to the thread_info struct that contains
2478 event_child. Keep them in sync. */
2479 event_thread = NULL;
2480 event_child = NULL;
2481 requested_child = NULL;
2482
2483 /* Check for a lwp with a pending status. */
2484
2485 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2486 {
2487 event_thread = (struct thread_info *)
2488 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2489 if (event_thread != NULL)
2490 event_child = get_thread_lwp (event_thread);
2491 if (debug_threads && event_thread)
2492 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2493 }
2494 else if (!ptid_equal (filter_ptid, null_ptid))
2495 {
2496 requested_child = find_lwp_pid (filter_ptid);
2497
2498 if (stopping_threads == NOT_STOPPING_THREADS
2499 && requested_child->status_pending_p
2500 && requested_child->collecting_fast_tracepoint)
2501 {
2502 enqueue_one_deferred_signal (requested_child,
2503 &requested_child->status_pending);
2504 requested_child->status_pending_p = 0;
2505 requested_child->status_pending = 0;
2506 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2507 }
2508
2509 if (requested_child->suspended
2510 && requested_child->status_pending_p)
2511 {
2512 internal_error (__FILE__, __LINE__,
2513 "requesting an event out of a"
2514 " suspended child?");
2515 }
2516
2517 if (requested_child->status_pending_p)
2518 {
2519 event_child = requested_child;
2520 event_thread = get_lwp_thread (event_child);
2521 }
2522 }
2523
2524 if (event_child != NULL)
2525 {
2526 if (debug_threads)
2527 debug_printf ("Got an event from pending child %ld (%04x)\n",
2528 lwpid_of (event_thread), event_child->status_pending);
2529 *wstatp = event_child->status_pending;
2530 event_child->status_pending_p = 0;
2531 event_child->status_pending = 0;
2532 current_thread = event_thread;
2533 return lwpid_of (event_thread);
2534 }
2535
2536 /* But if we don't find a pending event, we'll have to wait.
2537
2538 We only enter this loop if no process has a pending wait status.
2539 Thus any action taken in response to a wait status inside this
2540 loop is responding as soon as we detect the status, not after any
2541 pending events. */
2542
2543 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2544 all signals while here. */
2545 sigfillset (&block_mask);
2546 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2547
2548 /* Always pull all events out of the kernel. We'll randomly select
2549 an event LWP out of all that have events, to prevent
2550 starvation. */
2551 while (event_child == NULL)
2552 {
2553 pid_t ret = 0;
2554
2555 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2556 quirks:
2557
2558 - If the thread group leader exits while other threads in the
2559 thread group still exist, waitpid(TGID, ...) hangs. That
2560 waitpid won't return an exit status until the other threads
2561 in the group are reaped.
2562
2563 - When a non-leader thread execs, that thread just vanishes
2564 without reporting an exit (so we'd hang if we waited for it
2565 explicitly in that case). The exec event is reported to
2566 the TGID pid. */
2567 errno = 0;
2568 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2569
2570 if (debug_threads)
2571 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2572 ret, errno ? strerror (errno) : "ERRNO-OK");
2573
2574 if (ret > 0)
2575 {
2576 if (debug_threads)
2577 {
2578 debug_printf ("LLW: waitpid %ld received %s\n",
2579 (long) ret, status_to_str (*wstatp));
2580 }
2581
2582 /* Filter all events. IOW, leave all events pending. We'll
2583 randomly select an event LWP out of all that have events
2584 below. */
2585 linux_low_filter_event (ret, *wstatp);
2586 /* Retry until nothing comes out of waitpid. A single
2587 SIGCHLD can indicate more than one child stopped. */
2588 continue;
2589 }
2590
2591 /* Now that we've pulled all events out of the kernel, resume
2592 LWPs that don't have an interesting event to report. */
2593 if (stopping_threads == NOT_STOPPING_THREADS)
2594 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2595
2596 /* ... and find an LWP with a status to report to the core, if
2597 any. */
2598 event_thread = (struct thread_info *)
2599 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2600 if (event_thread != NULL)
2601 {
2602 event_child = get_thread_lwp (event_thread);
2603 *wstatp = event_child->status_pending;
2604 event_child->status_pending_p = 0;
2605 event_child->status_pending = 0;
2606 break;
2607 }
2608
2609 /* Check for zombie thread group leaders. Those can't be reaped
2610 until all other threads in the thread group are. */
2611 check_zombie_leaders ();
2612
2613 /* If there are no resumed children left in the set of LWPs we
2614 want to wait for, bail. We can't just block in
2615 waitpid/sigsuspend, because lwps might have been left stopped
2616 in trace-stop state, and we'd be stuck forever waiting for
2617 their status to change (which would only happen if we resumed
2618 them). Even if WNOHANG is set, this return code is preferred
2619 over 0 (below), as it is more detailed. */
2620 if ((find_inferior (&all_threads,
2621 not_stopped_callback,
2622 &wait_ptid) == NULL))
2623 {
2624 if (debug_threads)
2625 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2626 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2627 return -1;
2628 }
2629
2630 /* No interesting event to report to the caller. */
2631 if ((options & WNOHANG))
2632 {
2633 if (debug_threads)
2634 debug_printf ("WNOHANG set, no event found\n");
2635
2636 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2637 return 0;
2638 }
2639
2640 /* Block until we get an event reported with SIGCHLD. */
2641 if (debug_threads)
2642 debug_printf ("sigsuspend'ing\n");
2643
2644 sigsuspend (&prev_mask);
2645 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2646 goto retry;
2647 }
2648
2649 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2650
2651 current_thread = event_thread;
2652
2653 return lwpid_of (event_thread);
2654 }
2655
2656 /* Wait for an event from child(ren) PTID. PTIDs can be:
2657 minus_one_ptid, to specify any child; a pid PTID, specifying all
2658 lwps of a thread group; or a PTID representing a single lwp. Store
2659 the stop status through the status pointer WSTAT. OPTIONS is
2660 passed to the waitpid call. Return 0 if no event was found and
2661 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2662 was found. Return the PID of the stopped child otherwise. */
2663
2664 static int
2665 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2666 {
2667 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2668 }
2669
2670 /* Count the LWP's that have had events. */
2671
2672 static int
2673 count_events_callback (struct inferior_list_entry *entry, void *data)
2674 {
2675 struct thread_info *thread = (struct thread_info *) entry;
2676 struct lwp_info *lp = get_thread_lwp (thread);
2677 int *count = (int *) data;
2678
2679 gdb_assert (count != NULL);
2680
2681 /* Count only resumed LWPs that have an event pending. */
2682 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2683 && lp->status_pending_p)
2684 (*count)++;
2685
2686 return 0;
2687 }
2688
2689 /* Select the LWP (if any) that is currently being single-stepped. */
2690
2691 static int
2692 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2693 {
2694 struct thread_info *thread = (struct thread_info *) entry;
2695 struct lwp_info *lp = get_thread_lwp (thread);
2696
2697 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2698 && thread->last_resume_kind == resume_step
2699 && lp->status_pending_p)
2700 return 1;
2701 else
2702 return 0;
2703 }
2704
2705 /* Select the Nth LWP that has had an event. */
2706
2707 static int
2708 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2709 {
2710 struct thread_info *thread = (struct thread_info *) entry;
2711 struct lwp_info *lp = get_thread_lwp (thread);
2712 int *selector = (int *) data;
2713
2714 gdb_assert (selector != NULL);
2715
2716 /* Select only resumed LWPs that have an event pending. */
2717 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2718 && lp->status_pending_p)
2719 if ((*selector)-- == 0)
2720 return 1;
2721
2722 return 0;
2723 }
2724
2725 /* Select one LWP out of those that have events pending. */
2726
2727 static void
2728 select_event_lwp (struct lwp_info **orig_lp)
2729 {
2730 int num_events = 0;
2731 int random_selector;
2732 struct thread_info *event_thread = NULL;
2733
2734 /* In all-stop, give preference to the LWP that is being
2735 single-stepped. There will be at most one, and it's the LWP that
2736 the core is most interested in. If we didn't do this, then we'd
2737 have to handle pending step SIGTRAPs somehow in case the core
2738 later continues the previously-stepped thread, otherwise we'd
2739 report the pending SIGTRAP, and the core, not having stepped the
2740 thread, wouldn't understand what the trap was for, and therefore
2741 would report it to the user as a random signal. */
2742 if (!non_stop)
2743 {
2744 event_thread
2745 = (struct thread_info *) find_inferior (&all_threads,
2746 select_singlestep_lwp_callback,
2747 NULL);
2748 if (event_thread != NULL)
2749 {
2750 if (debug_threads)
2751 debug_printf ("SEL: Select single-step %s\n",
2752 target_pid_to_str (ptid_of (event_thread)));
2753 }
2754 }
2755 if (event_thread == NULL)
2756 {
2757 /* No single-stepping LWP. Select one at random, out of those
2758 which have had events. */
2759
2760 /* First see how many events we have. */
2761 find_inferior (&all_threads, count_events_callback, &num_events);
2762 gdb_assert (num_events > 0);
2763
2764 /* Now randomly pick a LWP out of those that have had
2765 events. */
2766 random_selector = (int)
2767 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2768
2769 if (debug_threads && num_events > 1)
2770 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2771 num_events, random_selector);
2772
2773 event_thread
2774 = (struct thread_info *) find_inferior (&all_threads,
2775 select_event_lwp_callback,
2776 &random_selector);
2777 }
2778
2779 if (event_thread != NULL)
2780 {
2781 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2782
2783 /* Switch the event LWP. */
2784 *orig_lp = event_lp;
2785 }
2786 }
2787
2788 /* Decrement the suspend count of an LWP. */
2789
2790 static int
2791 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2792 {
2793 struct thread_info *thread = (struct thread_info *) entry;
2794 struct lwp_info *lwp = get_thread_lwp (thread);
2795
2796 /* Ignore EXCEPT. */
2797 if (lwp == except)
2798 return 0;
2799
2800 lwp_suspended_decr (lwp);
2801 return 0;
2802 }
2803
2804 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2805 NULL. */
2806
2807 static void
2808 unsuspend_all_lwps (struct lwp_info *except)
2809 {
2810 find_inferior (&all_threads, unsuspend_one_lwp, except);
2811 }
2812
2813 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2814 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2815 void *data);
2816 static int lwp_running (struct inferior_list_entry *entry, void *data);
2817 static ptid_t linux_wait_1 (ptid_t ptid,
2818 struct target_waitstatus *ourstatus,
2819 int target_options);
2820
2821 /* Stabilize threads (move out of jump pads).
2822
2823 If a thread is midway collecting a fast tracepoint, we need to
2824 finish the collection and move it out of the jump pad before
2825 reporting the signal.
2826
2827 This avoids recursion while collecting (when a signal arrives
2828 midway, and the signal handler itself collects), which would trash
2829 the trace buffer. In case the user set a breakpoint in a signal
2830 handler, this avoids the backtrace showing the jump pad, etc..
2831 Most importantly, there are certain things we can't do safely if
2832 threads are stopped in a jump pad (or in its callee's). For
2833 example:
2834
2835 - starting a new trace run. A thread still collecting the
2836 previous run, could trash the trace buffer when resumed. The trace
2837 buffer control structures would have been reset but the thread had
2838 no way to tell. The thread could even midway memcpy'ing to the
2839 buffer, which would mean that when resumed, it would clobber the
2840 trace buffer that had been set for a new run.
2841
2842 - we can't rewrite/reuse the jump pads for new tracepoints
2843 safely. Say you do tstart while a thread is stopped midway while
2844 collecting. When the thread is later resumed, it finishes the
2845 collection, and returns to the jump pad, to execute the original
2846 instruction that was under the tracepoint jump at the time the
2847 older run had been started. If the jump pad had been rewritten
2848 since for something else in the new run, the thread would now
2849 execute the wrong / random instructions. */
2850
2851 static void
2852 linux_stabilize_threads (void)
2853 {
2854 struct thread_info *saved_thread;
2855 struct thread_info *thread_stuck;
2856
2857 thread_stuck
2858 = (struct thread_info *) find_inferior (&all_threads,
2859 stuck_in_jump_pad_callback,
2860 NULL);
2861 if (thread_stuck != NULL)
2862 {
2863 if (debug_threads)
2864 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2865 lwpid_of (thread_stuck));
2866 return;
2867 }
2868
2869 saved_thread = current_thread;
2870
2871 stabilizing_threads = 1;
2872
2873 /* Kick 'em all. */
2874 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2875
2876 /* Loop until all are stopped out of the jump pads. */
2877 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2878 {
2879 struct target_waitstatus ourstatus;
2880 struct lwp_info *lwp;
2881 int wstat;
2882
2883 /* Note that we go through the full wait even loop. While
2884 moving threads out of jump pad, we need to be able to step
2885 over internal breakpoints and such. */
2886 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2887
2888 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2889 {
2890 lwp = get_thread_lwp (current_thread);
2891
2892 /* Lock it. */
2893 lwp_suspended_inc (lwp);
2894
2895 if (ourstatus.value.sig != GDB_SIGNAL_0
2896 || current_thread->last_resume_kind == resume_stop)
2897 {
2898 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2899 enqueue_one_deferred_signal (lwp, &wstat);
2900 }
2901 }
2902 }
2903
2904 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2905
2906 stabilizing_threads = 0;
2907
2908 current_thread = saved_thread;
2909
2910 if (debug_threads)
2911 {
2912 thread_stuck
2913 = (struct thread_info *) find_inferior (&all_threads,
2914 stuck_in_jump_pad_callback,
2915 NULL);
2916 if (thread_stuck != NULL)
2917 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2918 lwpid_of (thread_stuck));
2919 }
2920 }
2921
2922 /* Convenience function that is called when the kernel reports an
2923 event that is not passed out to GDB. */
2924
2925 static ptid_t
2926 ignore_event (struct target_waitstatus *ourstatus)
2927 {
2928 /* If we got an event, there may still be others, as a single
2929 SIGCHLD can indicate more than one child stopped. This forces
2930 another target_wait call. */
2931 async_file_mark ();
2932
2933 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2934 return null_ptid;
2935 }
2936
2937 /* Convenience function that is called when the kernel reports an exit
2938 event. This decides whether to report the event to GDB as a
2939 process exit event, a thread exit event, or to suppress the
2940 event. */
2941
2942 static ptid_t
2943 filter_exit_event (struct lwp_info *event_child,
2944 struct target_waitstatus *ourstatus)
2945 {
2946 struct thread_info *thread = get_lwp_thread (event_child);
2947 ptid_t ptid = ptid_of (thread);
2948
2949 if (!last_thread_of_process_p (pid_of (thread)))
2950 {
2951 if (report_thread_events)
2952 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
2953 else
2954 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2955
2956 delete_lwp (event_child);
2957 }
2958 return ptid;
2959 }
2960
2961 /* Wait for process, returns status. */
2962
2963 static ptid_t
2964 linux_wait_1 (ptid_t ptid,
2965 struct target_waitstatus *ourstatus, int target_options)
2966 {
2967 int w;
2968 struct lwp_info *event_child;
2969 int options;
2970 int pid;
2971 int step_over_finished;
2972 int bp_explains_trap;
2973 int maybe_internal_trap;
2974 int report_to_gdb;
2975 int trace_event;
2976 int in_step_range;
2977 int any_resumed;
2978
2979 if (debug_threads)
2980 {
2981 debug_enter ();
2982 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
2983 }
2984
2985 /* Translate generic target options into linux options. */
2986 options = __WALL;
2987 if (target_options & TARGET_WNOHANG)
2988 options |= WNOHANG;
2989
2990 bp_explains_trap = 0;
2991 trace_event = 0;
2992 in_step_range = 0;
2993 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2994
2995 /* Find a resumed LWP, if any. */
2996 if (find_inferior (&all_threads,
2997 status_pending_p_callback,
2998 &minus_one_ptid) != NULL)
2999 any_resumed = 1;
3000 else if ((find_inferior (&all_threads,
3001 not_stopped_callback,
3002 &minus_one_ptid) != NULL))
3003 any_resumed = 1;
3004 else
3005 any_resumed = 0;
3006
3007 if (ptid_equal (step_over_bkpt, null_ptid))
3008 pid = linux_wait_for_event (ptid, &w, options);
3009 else
3010 {
3011 if (debug_threads)
3012 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3013 target_pid_to_str (step_over_bkpt));
3014 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3015 }
3016
3017 if (pid == 0 || (pid == -1 && !any_resumed))
3018 {
3019 gdb_assert (target_options & TARGET_WNOHANG);
3020
3021 if (debug_threads)
3022 {
3023 debug_printf ("linux_wait_1 ret = null_ptid, "
3024 "TARGET_WAITKIND_IGNORE\n");
3025 debug_exit ();
3026 }
3027
3028 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3029 return null_ptid;
3030 }
3031 else if (pid == -1)
3032 {
3033 if (debug_threads)
3034 {
3035 debug_printf ("linux_wait_1 ret = null_ptid, "
3036 "TARGET_WAITKIND_NO_RESUMED\n");
3037 debug_exit ();
3038 }
3039
3040 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3041 return null_ptid;
3042 }
3043
3044 event_child = get_thread_lwp (current_thread);
3045
3046 /* linux_wait_for_event only returns an exit status for the last
3047 child of a process. Report it. */
3048 if (WIFEXITED (w) || WIFSIGNALED (w))
3049 {
3050 if (WIFEXITED (w))
3051 {
3052 ourstatus->kind = TARGET_WAITKIND_EXITED;
3053 ourstatus->value.integer = WEXITSTATUS (w);
3054
3055 if (debug_threads)
3056 {
3057 debug_printf ("linux_wait_1 ret = %s, exited with "
3058 "retcode %d\n",
3059 target_pid_to_str (ptid_of (current_thread)),
3060 WEXITSTATUS (w));
3061 debug_exit ();
3062 }
3063 }
3064 else
3065 {
3066 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3067 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3068
3069 if (debug_threads)
3070 {
3071 debug_printf ("linux_wait_1 ret = %s, terminated with "
3072 "signal %d\n",
3073 target_pid_to_str (ptid_of (current_thread)),
3074 WTERMSIG (w));
3075 debug_exit ();
3076 }
3077 }
3078
3079 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3080 return filter_exit_event (event_child, ourstatus);
3081
3082 return ptid_of (current_thread);
3083 }
3084
3085 /* If step-over executes a breakpoint instruction, in the case of a
3086 hardware single step it means a gdb/gdbserver breakpoint had been
3087 planted on top of a permanent breakpoint, in the case of a software
3088 single step it may just mean that gdbserver hit the reinsert breakpoint.
3089 The PC has been adjusted by check_stopped_by_breakpoint to point at
3090 the breakpoint address.
3091 So in the case of the hardware single step advance the PC manually
3092 past the breakpoint and in the case of software single step advance only
3093 if it's not the reinsert_breakpoint we are hitting.
3094 This avoids that a program would keep trapping a permanent breakpoint
3095 forever. */
3096 if (!ptid_equal (step_over_bkpt, null_ptid)
3097 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3098 && (event_child->stepping
3099 || !reinsert_breakpoint_inserted_here (event_child->stop_pc)))
3100 {
3101 int increment_pc = 0;
3102 int breakpoint_kind = 0;
3103 CORE_ADDR stop_pc = event_child->stop_pc;
3104
3105 breakpoint_kind =
3106 the_target->breakpoint_kind_from_current_state (&stop_pc);
3107 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3108
3109 if (debug_threads)
3110 {
3111 debug_printf ("step-over for %s executed software breakpoint\n",
3112 target_pid_to_str (ptid_of (current_thread)));
3113 }
3114
3115 if (increment_pc != 0)
3116 {
3117 struct regcache *regcache
3118 = get_thread_regcache (current_thread, 1);
3119
3120 event_child->stop_pc += increment_pc;
3121 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3122
3123 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3124 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3125 }
3126 }
3127
3128 /* If this event was not handled before, and is not a SIGTRAP, we
3129 report it. SIGILL and SIGSEGV are also treated as traps in case
3130 a breakpoint is inserted at the current PC. If this target does
3131 not support internal breakpoints at all, we also report the
3132 SIGTRAP without further processing; it's of no concern to us. */
3133 maybe_internal_trap
3134 = (supports_breakpoints ()
3135 && (WSTOPSIG (w) == SIGTRAP
3136 || ((WSTOPSIG (w) == SIGILL
3137 || WSTOPSIG (w) == SIGSEGV)
3138 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3139
3140 if (maybe_internal_trap)
3141 {
3142 /* Handle anything that requires bookkeeping before deciding to
3143 report the event or continue waiting. */
3144
3145 /* First check if we can explain the SIGTRAP with an internal
3146 breakpoint, or if we should possibly report the event to GDB.
3147 Do this before anything that may remove or insert a
3148 breakpoint. */
3149 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3150
3151 /* We have a SIGTRAP, possibly a step-over dance has just
3152 finished. If so, tweak the state machine accordingly,
3153 reinsert breakpoints and delete any reinsert (software
3154 single-step) breakpoints. */
3155 step_over_finished = finish_step_over (event_child);
3156
3157 /* Now invoke the callbacks of any internal breakpoints there. */
3158 check_breakpoints (event_child->stop_pc);
3159
3160 /* Handle tracepoint data collecting. This may overflow the
3161 trace buffer, and cause a tracing stop, removing
3162 breakpoints. */
3163 trace_event = handle_tracepoints (event_child);
3164
3165 if (bp_explains_trap)
3166 {
3167 /* If we stepped or ran into an internal breakpoint, we've
3168 already handled it. So next time we resume (from this
3169 PC), we should step over it. */
3170 if (debug_threads)
3171 debug_printf ("Hit a gdbserver breakpoint.\n");
3172
3173 if (breakpoint_here (event_child->stop_pc))
3174 event_child->need_step_over = 1;
3175 }
3176 }
3177 else
3178 {
3179 /* We have some other signal, possibly a step-over dance was in
3180 progress, and it should be cancelled too. */
3181 step_over_finished = finish_step_over (event_child);
3182 }
3183
3184 /* We have all the data we need. Either report the event to GDB, or
3185 resume threads and keep waiting for more. */
3186
3187 /* If we're collecting a fast tracepoint, finish the collection and
3188 move out of the jump pad before delivering a signal. See
3189 linux_stabilize_threads. */
3190
3191 if (WIFSTOPPED (w)
3192 && WSTOPSIG (w) != SIGTRAP
3193 && supports_fast_tracepoints ()
3194 && agent_loaded_p ())
3195 {
3196 if (debug_threads)
3197 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3198 "to defer or adjust it.\n",
3199 WSTOPSIG (w), lwpid_of (current_thread));
3200
3201 /* Allow debugging the jump pad itself. */
3202 if (current_thread->last_resume_kind != resume_step
3203 && maybe_move_out_of_jump_pad (event_child, &w))
3204 {
3205 enqueue_one_deferred_signal (event_child, &w);
3206
3207 if (debug_threads)
3208 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3209 WSTOPSIG (w), lwpid_of (current_thread));
3210
3211 linux_resume_one_lwp (event_child, 0, 0, NULL);
3212
3213 return ignore_event (ourstatus);
3214 }
3215 }
3216
3217 if (event_child->collecting_fast_tracepoint)
3218 {
3219 if (debug_threads)
3220 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3221 "Check if we're already there.\n",
3222 lwpid_of (current_thread),
3223 event_child->collecting_fast_tracepoint);
3224
3225 trace_event = 1;
3226
3227 event_child->collecting_fast_tracepoint
3228 = linux_fast_tracepoint_collecting (event_child, NULL);
3229
3230 if (event_child->collecting_fast_tracepoint != 1)
3231 {
3232 /* No longer need this breakpoint. */
3233 if (event_child->exit_jump_pad_bkpt != NULL)
3234 {
3235 if (debug_threads)
3236 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3237 "stopping all threads momentarily.\n");
3238
3239 /* Other running threads could hit this breakpoint.
3240 We don't handle moribund locations like GDB does,
3241 instead we always pause all threads when removing
3242 breakpoints, so that any step-over or
3243 decr_pc_after_break adjustment is always taken
3244 care of while the breakpoint is still
3245 inserted. */
3246 stop_all_lwps (1, event_child);
3247
3248 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3249 event_child->exit_jump_pad_bkpt = NULL;
3250
3251 unstop_all_lwps (1, event_child);
3252
3253 gdb_assert (event_child->suspended >= 0);
3254 }
3255 }
3256
3257 if (event_child->collecting_fast_tracepoint == 0)
3258 {
3259 if (debug_threads)
3260 debug_printf ("fast tracepoint finished "
3261 "collecting successfully.\n");
3262
3263 /* We may have a deferred signal to report. */
3264 if (dequeue_one_deferred_signal (event_child, &w))
3265 {
3266 if (debug_threads)
3267 debug_printf ("dequeued one signal.\n");
3268 }
3269 else
3270 {
3271 if (debug_threads)
3272 debug_printf ("no deferred signals.\n");
3273
3274 if (stabilizing_threads)
3275 {
3276 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3277 ourstatus->value.sig = GDB_SIGNAL_0;
3278
3279 if (debug_threads)
3280 {
3281 debug_printf ("linux_wait_1 ret = %s, stopped "
3282 "while stabilizing threads\n",
3283 target_pid_to_str (ptid_of (current_thread)));
3284 debug_exit ();
3285 }
3286
3287 return ptid_of (current_thread);
3288 }
3289 }
3290 }
3291 }
3292
3293 /* Check whether GDB would be interested in this event. */
3294
3295 /* If GDB is not interested in this signal, don't stop other
3296 threads, and don't report it to GDB. Just resume the inferior
3297 right away. We do this for threading-related signals as well as
3298 any that GDB specifically requested we ignore. But never ignore
3299 SIGSTOP if we sent it ourselves, and do not ignore signals when
3300 stepping - they may require special handling to skip the signal
3301 handler. Also never ignore signals that could be caused by a
3302 breakpoint. */
3303 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
3304 thread library? */
3305 if (WIFSTOPPED (w)
3306 && current_thread->last_resume_kind != resume_step
3307 && (
3308 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3309 (current_process ()->priv->thread_db != NULL
3310 && (WSTOPSIG (w) == __SIGRTMIN
3311 || WSTOPSIG (w) == __SIGRTMIN + 1))
3312 ||
3313 #endif
3314 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3315 && !(WSTOPSIG (w) == SIGSTOP
3316 && current_thread->last_resume_kind == resume_stop)
3317 && !linux_wstatus_maybe_breakpoint (w))))
3318 {
3319 siginfo_t info, *info_p;
3320
3321 if (debug_threads)
3322 debug_printf ("Ignored signal %d for LWP %ld.\n",
3323 WSTOPSIG (w), lwpid_of (current_thread));
3324
3325 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3326 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3327 info_p = &info;
3328 else
3329 info_p = NULL;
3330
3331 if (step_over_finished)
3332 {
3333 /* We cancelled this thread's step-over above. We still
3334 need to unsuspend all other LWPs, and set them back
3335 running again while the signal handler runs. */
3336 unsuspend_all_lwps (event_child);
3337
3338 /* Enqueue the pending signal info so that proceed_all_lwps
3339 doesn't lose it. */
3340 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3341
3342 proceed_all_lwps ();
3343 }
3344 else
3345 {
3346 linux_resume_one_lwp (event_child, event_child->stepping,
3347 WSTOPSIG (w), info_p);
3348 }
3349 return ignore_event (ourstatus);
3350 }
3351
3352 /* Note that all addresses are always "out of the step range" when
3353 there's no range to begin with. */
3354 in_step_range = lwp_in_step_range (event_child);
3355
3356 /* If GDB wanted this thread to single step, and the thread is out
3357 of the step range, we always want to report the SIGTRAP, and let
3358 GDB handle it. Watchpoints should always be reported. So should
3359 signals we can't explain. A SIGTRAP we can't explain could be a
3360 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3361 do, we're be able to handle GDB breakpoints on top of internal
3362 breakpoints, by handling the internal breakpoint and still
3363 reporting the event to GDB. If we don't, we're out of luck, GDB
3364 won't see the breakpoint hit. If we see a single-step event but
3365 the thread should be continuing, don't pass the trap to gdb.
3366 That indicates that we had previously finished a single-step but
3367 left the single-step pending -- see
3368 complete_ongoing_step_over. */
3369 report_to_gdb = (!maybe_internal_trap
3370 || (current_thread->last_resume_kind == resume_step
3371 && !in_step_range)
3372 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3373 || (!in_step_range
3374 && !bp_explains_trap
3375 && !trace_event
3376 && !step_over_finished
3377 && !(current_thread->last_resume_kind == resume_continue
3378 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3379 || (gdb_breakpoint_here (event_child->stop_pc)
3380 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3381 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3382 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3383
3384 run_breakpoint_commands (event_child->stop_pc);
3385
3386 /* We found no reason GDB would want us to stop. We either hit one
3387 of our own breakpoints, or finished an internal step GDB
3388 shouldn't know about. */
3389 if (!report_to_gdb)
3390 {
3391 if (debug_threads)
3392 {
3393 if (bp_explains_trap)
3394 debug_printf ("Hit a gdbserver breakpoint.\n");
3395 if (step_over_finished)
3396 debug_printf ("Step-over finished.\n");
3397 if (trace_event)
3398 debug_printf ("Tracepoint event.\n");
3399 if (lwp_in_step_range (event_child))
3400 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3401 paddress (event_child->stop_pc),
3402 paddress (event_child->step_range_start),
3403 paddress (event_child->step_range_end));
3404 }
3405
3406 /* We're not reporting this breakpoint to GDB, so apply the
3407 decr_pc_after_break adjustment to the inferior's regcache
3408 ourselves. */
3409
3410 if (the_low_target.set_pc != NULL)
3411 {
3412 struct regcache *regcache
3413 = get_thread_regcache (current_thread, 1);
3414 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3415 }
3416
3417 /* We may have finished stepping over a breakpoint. If so,
3418 we've stopped and suspended all LWPs momentarily except the
3419 stepping one. This is where we resume them all again. We're
3420 going to keep waiting, so use proceed, which handles stepping
3421 over the next breakpoint. */
3422 if (debug_threads)
3423 debug_printf ("proceeding all threads.\n");
3424
3425 if (step_over_finished)
3426 unsuspend_all_lwps (event_child);
3427
3428 proceed_all_lwps ();
3429 return ignore_event (ourstatus);
3430 }
3431
3432 if (debug_threads)
3433 {
3434 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3435 {
3436 char *str;
3437
3438 str = target_waitstatus_to_string (&event_child->waitstatus);
3439 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3440 lwpid_of (get_lwp_thread (event_child)), str);
3441 xfree (str);
3442 }
3443 if (current_thread->last_resume_kind == resume_step)
3444 {
3445 if (event_child->step_range_start == event_child->step_range_end)
3446 debug_printf ("GDB wanted to single-step, reporting event.\n");
3447 else if (!lwp_in_step_range (event_child))
3448 debug_printf ("Out of step range, reporting event.\n");
3449 }
3450 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3451 debug_printf ("Stopped by watchpoint.\n");
3452 else if (gdb_breakpoint_here (event_child->stop_pc))
3453 debug_printf ("Stopped by GDB breakpoint.\n");
3454 if (debug_threads)
3455 debug_printf ("Hit a non-gdbserver trap event.\n");
3456 }
3457
3458 /* Alright, we're going to report a stop. */
3459
3460 if (!stabilizing_threads)
3461 {
3462 /* In all-stop, stop all threads. */
3463 if (!non_stop)
3464 stop_all_lwps (0, NULL);
3465
3466 /* If we're not waiting for a specific LWP, choose an event LWP
3467 from among those that have had events. Giving equal priority
3468 to all LWPs that have had events helps prevent
3469 starvation. */
3470 if (ptid_equal (ptid, minus_one_ptid))
3471 {
3472 event_child->status_pending_p = 1;
3473 event_child->status_pending = w;
3474
3475 select_event_lwp (&event_child);
3476
3477 /* current_thread and event_child must stay in sync. */
3478 current_thread = get_lwp_thread (event_child);
3479
3480 event_child->status_pending_p = 0;
3481 w = event_child->status_pending;
3482 }
3483
3484 if (step_over_finished)
3485 {
3486 if (!non_stop)
3487 {
3488 /* If we were doing a step-over, all other threads but
3489 the stepping one had been paused in start_step_over,
3490 with their suspend counts incremented. We don't want
3491 to do a full unstop/unpause, because we're in
3492 all-stop mode (so we want threads stopped), but we
3493 still need to unsuspend the other threads, to
3494 decrement their `suspended' count back. */
3495 unsuspend_all_lwps (event_child);
3496 }
3497 else
3498 {
3499 /* If we just finished a step-over, then all threads had
3500 been momentarily paused. In all-stop, that's fine,
3501 we want threads stopped by now anyway. In non-stop,
3502 we need to re-resume threads that GDB wanted to be
3503 running. */
3504 unstop_all_lwps (1, event_child);
3505 }
3506 }
3507
3508 /* Stabilize threads (move out of jump pads). */
3509 if (!non_stop)
3510 stabilize_threads ();
3511 }
3512 else
3513 {
3514 /* If we just finished a step-over, then all threads had been
3515 momentarily paused. In all-stop, that's fine, we want
3516 threads stopped by now anyway. In non-stop, we need to
3517 re-resume threads that GDB wanted to be running. */
3518 if (step_over_finished)
3519 unstop_all_lwps (1, event_child);
3520 }
3521
3522 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3523 {
3524 /* If the reported event is an exit, fork, vfork or exec, let
3525 GDB know. */
3526 *ourstatus = event_child->waitstatus;
3527 /* Clear the event lwp's waitstatus since we handled it already. */
3528 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3529 }
3530 else
3531 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3532
3533 /* Now that we've selected our final event LWP, un-adjust its PC if
3534 it was a software breakpoint, and the client doesn't know we can
3535 adjust the breakpoint ourselves. */
3536 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3537 && !swbreak_feature)
3538 {
3539 int decr_pc = the_low_target.decr_pc_after_break;
3540
3541 if (decr_pc != 0)
3542 {
3543 struct regcache *regcache
3544 = get_thread_regcache (current_thread, 1);
3545 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3546 }
3547 }
3548
3549 if (current_thread->last_resume_kind == resume_stop
3550 && WSTOPSIG (w) == SIGSTOP)
3551 {
3552 /* A thread that has been requested to stop by GDB with vCont;t,
3553 and it stopped cleanly, so report as SIG0. The use of
3554 SIGSTOP is an implementation detail. */
3555 ourstatus->value.sig = GDB_SIGNAL_0;
3556 }
3557 else if (current_thread->last_resume_kind == resume_stop
3558 && WSTOPSIG (w) != SIGSTOP)
3559 {
3560 /* A thread that has been requested to stop by GDB with vCont;t,
3561 but, it stopped for other reasons. */
3562 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3563 }
3564 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3565 {
3566 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3567 }
3568
3569 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3570
3571 if (debug_threads)
3572 {
3573 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3574 target_pid_to_str (ptid_of (current_thread)),
3575 ourstatus->kind, ourstatus->value.sig);
3576 debug_exit ();
3577 }
3578
3579 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3580 return filter_exit_event (event_child, ourstatus);
3581
3582 return ptid_of (current_thread);
3583 }
3584
3585 /* Get rid of any pending event in the pipe. */
3586 static void
3587 async_file_flush (void)
3588 {
3589 int ret;
3590 char buf;
3591
3592 do
3593 ret = read (linux_event_pipe[0], &buf, 1);
3594 while (ret >= 0 || (ret == -1 && errno == EINTR));
3595 }
3596
3597 /* Put something in the pipe, so the event loop wakes up. */
3598 static void
3599 async_file_mark (void)
3600 {
3601 int ret;
3602
3603 async_file_flush ();
3604
3605 do
3606 ret = write (linux_event_pipe[1], "+", 1);
3607 while (ret == 0 || (ret == -1 && errno == EINTR));
3608
3609 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3610 be awakened anyway. */
3611 }
3612
3613 static ptid_t
3614 linux_wait (ptid_t ptid,
3615 struct target_waitstatus *ourstatus, int target_options)
3616 {
3617 ptid_t event_ptid;
3618
3619 /* Flush the async file first. */
3620 if (target_is_async_p ())
3621 async_file_flush ();
3622
3623 do
3624 {
3625 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3626 }
3627 while ((target_options & TARGET_WNOHANG) == 0
3628 && ptid_equal (event_ptid, null_ptid)
3629 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3630
3631 /* If at least one stop was reported, there may be more. A single
3632 SIGCHLD can signal more than one child stop. */
3633 if (target_is_async_p ()
3634 && (target_options & TARGET_WNOHANG) != 0
3635 && !ptid_equal (event_ptid, null_ptid))
3636 async_file_mark ();
3637
3638 return event_ptid;
3639 }
3640
3641 /* Send a signal to an LWP. */
3642
3643 static int
3644 kill_lwp (unsigned long lwpid, int signo)
3645 {
3646 /* Use tkill, if possible, in case we are using nptl threads. If tkill
3647 fails, then we are not using nptl threads and we should be using kill. */
3648
3649 #ifdef __NR_tkill
3650 {
3651 static int tkill_failed;
3652
3653 if (!tkill_failed)
3654 {
3655 int ret;
3656
3657 errno = 0;
3658 ret = syscall (__NR_tkill, lwpid, signo);
3659 if (errno != ENOSYS)
3660 return ret;
3661 tkill_failed = 1;
3662 }
3663 }
3664 #endif
3665
3666 return kill (lwpid, signo);
3667 }
3668
3669 void
3670 linux_stop_lwp (struct lwp_info *lwp)
3671 {
3672 send_sigstop (lwp);
3673 }
3674
3675 static void
3676 send_sigstop (struct lwp_info *lwp)
3677 {
3678 int pid;
3679
3680 pid = lwpid_of (get_lwp_thread (lwp));
3681
3682 /* If we already have a pending stop signal for this process, don't
3683 send another. */
3684 if (lwp->stop_expected)
3685 {
3686 if (debug_threads)
3687 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3688
3689 return;
3690 }
3691
3692 if (debug_threads)
3693 debug_printf ("Sending sigstop to lwp %d\n", pid);
3694
3695 lwp->stop_expected = 1;
3696 kill_lwp (pid, SIGSTOP);
3697 }
3698
3699 static int
3700 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3701 {
3702 struct thread_info *thread = (struct thread_info *) entry;
3703 struct lwp_info *lwp = get_thread_lwp (thread);
3704
3705 /* Ignore EXCEPT. */
3706 if (lwp == except)
3707 return 0;
3708
3709 if (lwp->stopped)
3710 return 0;
3711
3712 send_sigstop (lwp);
3713 return 0;
3714 }
3715
3716 /* Increment the suspend count of an LWP, and stop it, if not stopped
3717 yet. */
3718 static int
3719 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3720 void *except)
3721 {
3722 struct thread_info *thread = (struct thread_info *) entry;
3723 struct lwp_info *lwp = get_thread_lwp (thread);
3724
3725 /* Ignore EXCEPT. */
3726 if (lwp == except)
3727 return 0;
3728
3729 lwp_suspended_inc (lwp);
3730
3731 return send_sigstop_callback (entry, except);
3732 }
3733
3734 static void
3735 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3736 {
3737 /* Store the exit status for later. */
3738 lwp->status_pending_p = 1;
3739 lwp->status_pending = wstat;
3740
3741 /* Store in waitstatus as well, as there's nothing else to process
3742 for this event. */
3743 if (WIFEXITED (wstat))
3744 {
3745 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3746 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3747 }
3748 else if (WIFSIGNALED (wstat))
3749 {
3750 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3751 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3752 }
3753
3754 /* Prevent trying to stop it. */
3755 lwp->stopped = 1;
3756
3757 /* No further stops are expected from a dead lwp. */
3758 lwp->stop_expected = 0;
3759 }
3760
3761 /* Return true if LWP has exited already, and has a pending exit event
3762 to report to GDB. */
3763
3764 static int
3765 lwp_is_marked_dead (struct lwp_info *lwp)
3766 {
3767 return (lwp->status_pending_p
3768 && (WIFEXITED (lwp->status_pending)
3769 || WIFSIGNALED (lwp->status_pending)));
3770 }
3771
3772 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3773
3774 static void
3775 wait_for_sigstop (void)
3776 {
3777 struct thread_info *saved_thread;
3778 ptid_t saved_tid;
3779 int wstat;
3780 int ret;
3781
3782 saved_thread = current_thread;
3783 if (saved_thread != NULL)
3784 saved_tid = saved_thread->entry.id;
3785 else
3786 saved_tid = null_ptid; /* avoid bogus unused warning */
3787
3788 if (debug_threads)
3789 debug_printf ("wait_for_sigstop: pulling events\n");
3790
3791 /* Passing NULL_PTID as filter indicates we want all events to be
3792 left pending. Eventually this returns when there are no
3793 unwaited-for children left. */
3794 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3795 &wstat, __WALL);
3796 gdb_assert (ret == -1);
3797
3798 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3799 current_thread = saved_thread;
3800 else
3801 {
3802 if (debug_threads)
3803 debug_printf ("Previously current thread died.\n");
3804
3805 /* We can't change the current inferior behind GDB's back,
3806 otherwise, a subsequent command may apply to the wrong
3807 process. */
3808 current_thread = NULL;
3809 }
3810 }
3811
3812 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3813 move it out, because we need to report the stop event to GDB. For
3814 example, if the user puts a breakpoint in the jump pad, it's
3815 because she wants to debug it. */
3816
3817 static int
3818 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3819 {
3820 struct thread_info *thread = (struct thread_info *) entry;
3821 struct lwp_info *lwp = get_thread_lwp (thread);
3822
3823 if (lwp->suspended != 0)
3824 {
3825 internal_error (__FILE__, __LINE__,
3826 "LWP %ld is suspended, suspended=%d\n",
3827 lwpid_of (thread), lwp->suspended);
3828 }
3829 gdb_assert (lwp->stopped);
3830
3831 /* Allow debugging the jump pad, gdb_collect, etc.. */
3832 return (supports_fast_tracepoints ()
3833 && agent_loaded_p ()
3834 && (gdb_breakpoint_here (lwp->stop_pc)
3835 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3836 || thread->last_resume_kind == resume_step)
3837 && linux_fast_tracepoint_collecting (lwp, NULL));
3838 }
3839
3840 static void
3841 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3842 {
3843 struct thread_info *thread = (struct thread_info *) entry;
3844 struct thread_info *saved_thread;
3845 struct lwp_info *lwp = get_thread_lwp (thread);
3846 int *wstat;
3847
3848 if (lwp->suspended != 0)
3849 {
3850 internal_error (__FILE__, __LINE__,
3851 "LWP %ld is suspended, suspended=%d\n",
3852 lwpid_of (thread), lwp->suspended);
3853 }
3854 gdb_assert (lwp->stopped);
3855
3856 /* For gdb_breakpoint_here. */
3857 saved_thread = current_thread;
3858 current_thread = thread;
3859
3860 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3861
3862 /* Allow debugging the jump pad, gdb_collect, etc. */
3863 if (!gdb_breakpoint_here (lwp->stop_pc)
3864 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3865 && thread->last_resume_kind != resume_step
3866 && maybe_move_out_of_jump_pad (lwp, wstat))
3867 {
3868 if (debug_threads)
3869 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3870 lwpid_of (thread));
3871
3872 if (wstat)
3873 {
3874 lwp->status_pending_p = 0;
3875 enqueue_one_deferred_signal (lwp, wstat);
3876
3877 if (debug_threads)
3878 debug_printf ("Signal %d for LWP %ld deferred "
3879 "(in jump pad)\n",
3880 WSTOPSIG (*wstat), lwpid_of (thread));
3881 }
3882
3883 linux_resume_one_lwp (lwp, 0, 0, NULL);
3884 }
3885 else
3886 lwp_suspended_inc (lwp);
3887
3888 current_thread = saved_thread;
3889 }
3890
3891 static int
3892 lwp_running (struct inferior_list_entry *entry, void *data)
3893 {
3894 struct thread_info *thread = (struct thread_info *) entry;
3895 struct lwp_info *lwp = get_thread_lwp (thread);
3896
3897 if (lwp_is_marked_dead (lwp))
3898 return 0;
3899 if (lwp->stopped)
3900 return 0;
3901 return 1;
3902 }
3903
3904 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3905 If SUSPEND, then also increase the suspend count of every LWP,
3906 except EXCEPT. */
3907
3908 static void
3909 stop_all_lwps (int suspend, struct lwp_info *except)
3910 {
3911 /* Should not be called recursively. */
3912 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3913
3914 if (debug_threads)
3915 {
3916 debug_enter ();
3917 debug_printf ("stop_all_lwps (%s, except=%s)\n",
3918 suspend ? "stop-and-suspend" : "stop",
3919 except != NULL
3920 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
3921 : "none");
3922 }
3923
3924 stopping_threads = (suspend
3925 ? STOPPING_AND_SUSPENDING_THREADS
3926 : STOPPING_THREADS);
3927
3928 if (suspend)
3929 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
3930 else
3931 find_inferior (&all_threads, send_sigstop_callback, except);
3932 wait_for_sigstop ();
3933 stopping_threads = NOT_STOPPING_THREADS;
3934
3935 if (debug_threads)
3936 {
3937 debug_printf ("stop_all_lwps done, setting stopping_threads "
3938 "back to !stopping\n");
3939 debug_exit ();
3940 }
3941 }
3942
3943 /* Enqueue one signal in the chain of signals which need to be
3944 delivered to this process on next resume. */
3945
3946 static void
3947 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
3948 {
3949 struct pending_signals *p_sig = XNEW (struct pending_signals);
3950
3951 p_sig->prev = lwp->pending_signals;
3952 p_sig->signal = signal;
3953 if (info == NULL)
3954 memset (&p_sig->info, 0, sizeof (siginfo_t));
3955 else
3956 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3957 lwp->pending_signals = p_sig;
3958 }
3959
3960 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
3961 SIGNAL is nonzero, give it that signal. */
3962
3963 static void
3964 linux_resume_one_lwp_throw (struct lwp_info *lwp,
3965 int step, int signal, siginfo_t *info)
3966 {
3967 struct thread_info *thread = get_lwp_thread (lwp);
3968 struct thread_info *saved_thread;
3969 int fast_tp_collecting;
3970 struct process_info *proc = get_thread_process (thread);
3971
3972 /* Note that target description may not be initialised
3973 (proc->tdesc == NULL) at this point because the program hasn't
3974 stopped at the first instruction yet. It means GDBserver skips
3975 the extra traps from the wrapper program (see option --wrapper).
3976 Code in this function that requires register access should be
3977 guarded by proc->tdesc == NULL or something else. */
3978
3979 if (lwp->stopped == 0)
3980 return;
3981
3982 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
3983
3984 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3985
3986 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3987
3988 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3989 user used the "jump" command, or "set $pc = foo"). */
3990 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
3991 {
3992 /* Collecting 'while-stepping' actions doesn't make sense
3993 anymore. */
3994 release_while_stepping_state_list (thread);
3995 }
3996
3997 /* If we have pending signals or status, and a new signal, enqueue the
3998 signal. Also enqueue the signal if we are waiting to reinsert a
3999 breakpoint; it will be picked up again below. */
4000 if (signal != 0
4001 && (lwp->status_pending_p
4002 || lwp->pending_signals != NULL
4003 || lwp->bp_reinsert != 0
4004 || fast_tp_collecting))
4005 {
4006 struct pending_signals *p_sig = XNEW (struct pending_signals);
4007
4008 p_sig->prev = lwp->pending_signals;
4009 p_sig->signal = signal;
4010 if (info == NULL)
4011 memset (&p_sig->info, 0, sizeof (siginfo_t));
4012 else
4013 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4014 lwp->pending_signals = p_sig;
4015 }
4016
4017 if (lwp->status_pending_p)
4018 {
4019 if (debug_threads)
4020 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
4021 " has pending status\n",
4022 lwpid_of (thread), step ? "step" : "continue", signal,
4023 lwp->stop_expected ? "expected" : "not expected");
4024 return;
4025 }
4026
4027 saved_thread = current_thread;
4028 current_thread = thread;
4029
4030 if (debug_threads)
4031 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4032 lwpid_of (thread), step ? "step" : "continue", signal,
4033 lwp->stop_expected ? "expected" : "not expected");
4034
4035 /* This bit needs some thinking about. If we get a signal that
4036 we must report while a single-step reinsert is still pending,
4037 we often end up resuming the thread. It might be better to
4038 (ew) allow a stack of pending events; then we could be sure that
4039 the reinsert happened right away and not lose any signals.
4040
4041 Making this stack would also shrink the window in which breakpoints are
4042 uninserted (see comment in linux_wait_for_lwp) but not enough for
4043 complete correctness, so it won't solve that problem. It may be
4044 worthwhile just to solve this one, however. */
4045 if (lwp->bp_reinsert != 0)
4046 {
4047 if (debug_threads)
4048 debug_printf (" pending reinsert at 0x%s\n",
4049 paddress (lwp->bp_reinsert));
4050
4051 if (can_hardware_single_step ())
4052 {
4053 if (fast_tp_collecting == 0)
4054 {
4055 if (step == 0)
4056 fprintf (stderr, "BAD - reinserting but not stepping.\n");
4057 if (lwp->suspended)
4058 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
4059 lwp->suspended);
4060 }
4061
4062 step = 1;
4063 }
4064
4065 /* Postpone any pending signal. It was enqueued above. */
4066 signal = 0;
4067 }
4068
4069 if (fast_tp_collecting == 1)
4070 {
4071 if (debug_threads)
4072 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4073 " (exit-jump-pad-bkpt)\n",
4074 lwpid_of (thread));
4075
4076 /* Postpone any pending signal. It was enqueued above. */
4077 signal = 0;
4078 }
4079 else if (fast_tp_collecting == 2)
4080 {
4081 if (debug_threads)
4082 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4083 " single-stepping\n",
4084 lwpid_of (thread));
4085
4086 if (can_hardware_single_step ())
4087 step = 1;
4088 else
4089 {
4090 internal_error (__FILE__, __LINE__,
4091 "moving out of jump pad single-stepping"
4092 " not implemented on this target");
4093 }
4094
4095 /* Postpone any pending signal. It was enqueued above. */
4096 signal = 0;
4097 }
4098
4099 /* If we have while-stepping actions in this thread set it stepping.
4100 If we have a signal to deliver, it may or may not be set to
4101 SIG_IGN, we don't know. Assume so, and allow collecting
4102 while-stepping into a signal handler. A possible smart thing to
4103 do would be to set an internal breakpoint at the signal return
4104 address, continue, and carry on catching this while-stepping
4105 action only when that breakpoint is hit. A future
4106 enhancement. */
4107 if (thread->while_stepping != NULL
4108 && can_hardware_single_step ())
4109 {
4110 if (debug_threads)
4111 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4112 lwpid_of (thread));
4113 step = 1;
4114 }
4115
4116 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4117 {
4118 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4119
4120 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4121
4122 if (debug_threads)
4123 {
4124 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4125 (long) lwp->stop_pc);
4126 }
4127 }
4128
4129 /* If we have pending signals, consume one unless we are trying to
4130 reinsert a breakpoint or we're trying to finish a fast tracepoint
4131 collect. */
4132 if (lwp->pending_signals != NULL
4133 && lwp->bp_reinsert == 0
4134 && fast_tp_collecting == 0)
4135 {
4136 struct pending_signals **p_sig;
4137
4138 p_sig = &lwp->pending_signals;
4139 while ((*p_sig)->prev != NULL)
4140 p_sig = &(*p_sig)->prev;
4141
4142 signal = (*p_sig)->signal;
4143 if ((*p_sig)->info.si_signo != 0)
4144 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4145 &(*p_sig)->info);
4146
4147 free (*p_sig);
4148 *p_sig = NULL;
4149 }
4150
4151 if (the_low_target.prepare_to_resume != NULL)
4152 the_low_target.prepare_to_resume (lwp);
4153
4154 regcache_invalidate_thread (thread);
4155 errno = 0;
4156 lwp->stepping = step;
4157 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (thread),
4158 (PTRACE_TYPE_ARG3) 0,
4159 /* Coerce to a uintptr_t first to avoid potential gcc warning
4160 of coercing an 8 byte integer to a 4 byte pointer. */
4161 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4162
4163 current_thread = saved_thread;
4164 if (errno)
4165 perror_with_name ("resuming thread");
4166
4167 /* Successfully resumed. Clear state that no longer makes sense,
4168 and mark the LWP as running. Must not do this before resuming
4169 otherwise if that fails other code will be confused. E.g., we'd
4170 later try to stop the LWP and hang forever waiting for a stop
4171 status. Note that we must not throw after this is cleared,
4172 otherwise handle_zombie_lwp_error would get confused. */
4173 lwp->stopped = 0;
4174 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4175 }
4176
4177 /* Called when we try to resume a stopped LWP and that errors out. If
4178 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4179 or about to become), discard the error, clear any pending status
4180 the LWP may have, and return true (we'll collect the exit status
4181 soon enough). Otherwise, return false. */
4182
4183 static int
4184 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4185 {
4186 struct thread_info *thread = get_lwp_thread (lp);
4187
4188 /* If we get an error after resuming the LWP successfully, we'd
4189 confuse !T state for the LWP being gone. */
4190 gdb_assert (lp->stopped);
4191
4192 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4193 because even if ptrace failed with ESRCH, the tracee may be "not
4194 yet fully dead", but already refusing ptrace requests. In that
4195 case the tracee has 'R (Running)' state for a little bit
4196 (observed in Linux 3.18). See also the note on ESRCH in the
4197 ptrace(2) man page. Instead, check whether the LWP has any state
4198 other than ptrace-stopped. */
4199
4200 /* Don't assume anything if /proc/PID/status can't be read. */
4201 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4202 {
4203 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4204 lp->status_pending_p = 0;
4205 return 1;
4206 }
4207 return 0;
4208 }
4209
4210 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4211 disappears while we try to resume it. */
4212
4213 static void
4214 linux_resume_one_lwp (struct lwp_info *lwp,
4215 int step, int signal, siginfo_t *info)
4216 {
4217 TRY
4218 {
4219 linux_resume_one_lwp_throw (lwp, step, signal, info);
4220 }
4221 CATCH (ex, RETURN_MASK_ERROR)
4222 {
4223 if (!check_ptrace_stopped_lwp_gone (lwp))
4224 throw_exception (ex);
4225 }
4226 END_CATCH
4227 }
4228
4229 struct thread_resume_array
4230 {
4231 struct thread_resume *resume;
4232 size_t n;
4233 };
4234
4235 /* This function is called once per thread via find_inferior.
4236 ARG is a pointer to a thread_resume_array struct.
4237 We look up the thread specified by ENTRY in ARG, and mark the thread
4238 with a pointer to the appropriate resume request.
4239
4240 This algorithm is O(threads * resume elements), but resume elements
4241 is small (and will remain small at least until GDB supports thread
4242 suspension). */
4243
4244 static int
4245 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4246 {
4247 struct thread_info *thread = (struct thread_info *) entry;
4248 struct lwp_info *lwp = get_thread_lwp (thread);
4249 int ndx;
4250 struct thread_resume_array *r;
4251
4252 r = (struct thread_resume_array *) arg;
4253
4254 for (ndx = 0; ndx < r->n; ndx++)
4255 {
4256 ptid_t ptid = r->resume[ndx].thread;
4257 if (ptid_equal (ptid, minus_one_ptid)
4258 || ptid_equal (ptid, entry->id)
4259 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4260 of PID'. */
4261 || (ptid_get_pid (ptid) == pid_of (thread)
4262 && (ptid_is_pid (ptid)
4263 || ptid_get_lwp (ptid) == -1)))
4264 {
4265 if (r->resume[ndx].kind == resume_stop
4266 && thread->last_resume_kind == resume_stop)
4267 {
4268 if (debug_threads)
4269 debug_printf ("already %s LWP %ld at GDB's request\n",
4270 (thread->last_status.kind
4271 == TARGET_WAITKIND_STOPPED)
4272 ? "stopped"
4273 : "stopping",
4274 lwpid_of (thread));
4275
4276 continue;
4277 }
4278
4279 lwp->resume = &r->resume[ndx];
4280 thread->last_resume_kind = lwp->resume->kind;
4281
4282 lwp->step_range_start = lwp->resume->step_range_start;
4283 lwp->step_range_end = lwp->resume->step_range_end;
4284
4285 /* If we had a deferred signal to report, dequeue one now.
4286 This can happen if LWP gets more than one signal while
4287 trying to get out of a jump pad. */
4288 if (lwp->stopped
4289 && !lwp->status_pending_p
4290 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4291 {
4292 lwp->status_pending_p = 1;
4293
4294 if (debug_threads)
4295 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4296 "leaving status pending.\n",
4297 WSTOPSIG (lwp->status_pending),
4298 lwpid_of (thread));
4299 }
4300
4301 return 0;
4302 }
4303 }
4304
4305 /* No resume action for this thread. */
4306 lwp->resume = NULL;
4307
4308 return 0;
4309 }
4310
4311 /* find_inferior callback for linux_resume.
4312 Set *FLAG_P if this lwp has an interesting status pending. */
4313
4314 static int
4315 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4316 {
4317 struct thread_info *thread = (struct thread_info *) entry;
4318 struct lwp_info *lwp = get_thread_lwp (thread);
4319
4320 /* LWPs which will not be resumed are not interesting, because
4321 we might not wait for them next time through linux_wait. */
4322 if (lwp->resume == NULL)
4323 return 0;
4324
4325 if (thread_still_has_status_pending_p (thread))
4326 * (int *) flag_p = 1;
4327
4328 return 0;
4329 }
4330
4331 /* Return 1 if this lwp that GDB wants running is stopped at an
4332 internal breakpoint that we need to step over. It assumes that any
4333 required STOP_PC adjustment has already been propagated to the
4334 inferior's regcache. */
4335
4336 static int
4337 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4338 {
4339 struct thread_info *thread = (struct thread_info *) entry;
4340 struct lwp_info *lwp = get_thread_lwp (thread);
4341 struct thread_info *saved_thread;
4342 CORE_ADDR pc;
4343 struct process_info *proc = get_thread_process (thread);
4344
4345 /* GDBserver is skipping the extra traps from the wrapper program,
4346 don't have to do step over. */
4347 if (proc->tdesc == NULL)
4348 return 0;
4349
4350 /* LWPs which will not be resumed are not interesting, because we
4351 might not wait for them next time through linux_wait. */
4352
4353 if (!lwp->stopped)
4354 {
4355 if (debug_threads)
4356 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4357 lwpid_of (thread));
4358 return 0;
4359 }
4360
4361 if (thread->last_resume_kind == resume_stop)
4362 {
4363 if (debug_threads)
4364 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4365 " stopped\n",
4366 lwpid_of (thread));
4367 return 0;
4368 }
4369
4370 gdb_assert (lwp->suspended >= 0);
4371
4372 if (lwp->suspended)
4373 {
4374 if (debug_threads)
4375 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4376 lwpid_of (thread));
4377 return 0;
4378 }
4379
4380 if (!lwp->need_step_over)
4381 {
4382 if (debug_threads)
4383 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
4384 }
4385
4386 if (lwp->status_pending_p)
4387 {
4388 if (debug_threads)
4389 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4390 " status.\n",
4391 lwpid_of (thread));
4392 return 0;
4393 }
4394
4395 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4396 or we have. */
4397 pc = get_pc (lwp);
4398
4399 /* If the PC has changed since we stopped, then don't do anything,
4400 and let the breakpoint/tracepoint be hit. This happens if, for
4401 instance, GDB handled the decr_pc_after_break subtraction itself,
4402 GDB is OOL stepping this thread, or the user has issued a "jump"
4403 command, or poked thread's registers herself. */
4404 if (pc != lwp->stop_pc)
4405 {
4406 if (debug_threads)
4407 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4408 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4409 lwpid_of (thread),
4410 paddress (lwp->stop_pc), paddress (pc));
4411
4412 lwp->need_step_over = 0;
4413 return 0;
4414 }
4415
4416 saved_thread = current_thread;
4417 current_thread = thread;
4418
4419 /* We can only step over breakpoints we know about. */
4420 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4421 {
4422 /* Don't step over a breakpoint that GDB expects to hit
4423 though. If the condition is being evaluated on the target's side
4424 and it evaluate to false, step over this breakpoint as well. */
4425 if (gdb_breakpoint_here (pc)
4426 && gdb_condition_true_at_breakpoint (pc)
4427 && gdb_no_commands_at_breakpoint (pc))
4428 {
4429 if (debug_threads)
4430 debug_printf ("Need step over [LWP %ld]? yes, but found"
4431 " GDB breakpoint at 0x%s; skipping step over\n",
4432 lwpid_of (thread), paddress (pc));
4433
4434 current_thread = saved_thread;
4435 return 0;
4436 }
4437 else
4438 {
4439 if (debug_threads)
4440 debug_printf ("Need step over [LWP %ld]? yes, "
4441 "found breakpoint at 0x%s\n",
4442 lwpid_of (thread), paddress (pc));
4443
4444 /* We've found an lwp that needs stepping over --- return 1 so
4445 that find_inferior stops looking. */
4446 current_thread = saved_thread;
4447
4448 /* If the step over is cancelled, this is set again. */
4449 lwp->need_step_over = 0;
4450 return 1;
4451 }
4452 }
4453
4454 current_thread = saved_thread;
4455
4456 if (debug_threads)
4457 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4458 " at 0x%s\n",
4459 lwpid_of (thread), paddress (pc));
4460
4461 return 0;
4462 }
4463
4464 /* Start a step-over operation on LWP. When LWP stopped at a
4465 breakpoint, to make progress, we need to remove the breakpoint out
4466 of the way. If we let other threads run while we do that, they may
4467 pass by the breakpoint location and miss hitting it. To avoid
4468 that, a step-over momentarily stops all threads while LWP is
4469 single-stepped while the breakpoint is temporarily uninserted from
4470 the inferior. When the single-step finishes, we reinsert the
4471 breakpoint, and let all threads that are supposed to be running,
4472 run again.
4473
4474 On targets that don't support hardware single-step, we don't
4475 currently support full software single-stepping. Instead, we only
4476 support stepping over the thread event breakpoint, by asking the
4477 low target where to place a reinsert breakpoint. Since this
4478 routine assumes the breakpoint being stepped over is a thread event
4479 breakpoint, it usually assumes the return address of the current
4480 function is a good enough place to set the reinsert breakpoint. */
4481
4482 static int
4483 start_step_over (struct lwp_info *lwp)
4484 {
4485 struct thread_info *thread = get_lwp_thread (lwp);
4486 struct thread_info *saved_thread;
4487 CORE_ADDR pc;
4488 int step;
4489
4490 if (debug_threads)
4491 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4492 lwpid_of (thread));
4493
4494 stop_all_lwps (1, lwp);
4495
4496 if (lwp->suspended != 0)
4497 {
4498 internal_error (__FILE__, __LINE__,
4499 "LWP %ld suspended=%d\n", lwpid_of (thread),
4500 lwp->suspended);
4501 }
4502
4503 if (debug_threads)
4504 debug_printf ("Done stopping all threads for step-over.\n");
4505
4506 /* Note, we should always reach here with an already adjusted PC,
4507 either by GDB (if we're resuming due to GDB's request), or by our
4508 caller, if we just finished handling an internal breakpoint GDB
4509 shouldn't care about. */
4510 pc = get_pc (lwp);
4511
4512 saved_thread = current_thread;
4513 current_thread = thread;
4514
4515 lwp->bp_reinsert = pc;
4516 uninsert_breakpoints_at (pc);
4517 uninsert_fast_tracepoint_jumps_at (pc);
4518
4519 if (can_hardware_single_step ())
4520 {
4521 step = 1;
4522 }
4523 else if (can_software_single_step ())
4524 {
4525 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
4526 set_reinsert_breakpoint (raddr);
4527 step = 0;
4528 }
4529 else
4530 {
4531 internal_error (__FILE__, __LINE__,
4532 "stepping is not implemented on this target");
4533 }
4534
4535 current_thread = saved_thread;
4536
4537 linux_resume_one_lwp (lwp, step, 0, NULL);
4538
4539 /* Require next event from this LWP. */
4540 step_over_bkpt = thread->entry.id;
4541 return 1;
4542 }
4543
4544 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4545 start_step_over, if still there, and delete any reinsert
4546 breakpoints we've set, on non hardware single-step targets. */
4547
4548 static int
4549 finish_step_over (struct lwp_info *lwp)
4550 {
4551 if (lwp->bp_reinsert != 0)
4552 {
4553 if (debug_threads)
4554 debug_printf ("Finished step over.\n");
4555
4556 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4557 may be no breakpoint to reinsert there by now. */
4558 reinsert_breakpoints_at (lwp->bp_reinsert);
4559 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4560
4561 lwp->bp_reinsert = 0;
4562
4563 /* Delete any software-single-step reinsert breakpoints. No
4564 longer needed. We don't have to worry about other threads
4565 hitting this trap, and later not being able to explain it,
4566 because we were stepping over a breakpoint, and we hold all
4567 threads but LWP stopped while doing that. */
4568 if (!can_hardware_single_step ())
4569 delete_reinsert_breakpoints ();
4570
4571 step_over_bkpt = null_ptid;
4572 return 1;
4573 }
4574 else
4575 return 0;
4576 }
4577
4578 /* If there's a step over in progress, wait until all threads stop
4579 (that is, until the stepping thread finishes its step), and
4580 unsuspend all lwps. The stepping thread ends with its status
4581 pending, which is processed later when we get back to processing
4582 events. */
4583
4584 static void
4585 complete_ongoing_step_over (void)
4586 {
4587 if (!ptid_equal (step_over_bkpt, null_ptid))
4588 {
4589 struct lwp_info *lwp;
4590 int wstat;
4591 int ret;
4592
4593 if (debug_threads)
4594 debug_printf ("detach: step over in progress, finish it first\n");
4595
4596 /* Passing NULL_PTID as filter indicates we want all events to
4597 be left pending. Eventually this returns when there are no
4598 unwaited-for children left. */
4599 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4600 &wstat, __WALL);
4601 gdb_assert (ret == -1);
4602
4603 lwp = find_lwp_pid (step_over_bkpt);
4604 if (lwp != NULL)
4605 finish_step_over (lwp);
4606 step_over_bkpt = null_ptid;
4607 unsuspend_all_lwps (lwp);
4608 }
4609 }
4610
4611 /* This function is called once per thread. We check the thread's resume
4612 request, which will tell us whether to resume, step, or leave the thread
4613 stopped; and what signal, if any, it should be sent.
4614
4615 For threads which we aren't explicitly told otherwise, we preserve
4616 the stepping flag; this is used for stepping over gdbserver-placed
4617 breakpoints.
4618
4619 If pending_flags was set in any thread, we queue any needed
4620 signals, since we won't actually resume. We already have a pending
4621 event to report, so we don't need to preserve any step requests;
4622 they should be re-issued if necessary. */
4623
4624 static int
4625 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
4626 {
4627 struct thread_info *thread = (struct thread_info *) entry;
4628 struct lwp_info *lwp = get_thread_lwp (thread);
4629 int step;
4630 int leave_all_stopped = * (int *) arg;
4631 int leave_pending;
4632
4633 if (lwp->resume == NULL)
4634 return 0;
4635
4636 if (lwp->resume->kind == resume_stop)
4637 {
4638 if (debug_threads)
4639 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4640
4641 if (!lwp->stopped)
4642 {
4643 if (debug_threads)
4644 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4645
4646 /* Stop the thread, and wait for the event asynchronously,
4647 through the event loop. */
4648 send_sigstop (lwp);
4649 }
4650 else
4651 {
4652 if (debug_threads)
4653 debug_printf ("already stopped LWP %ld\n",
4654 lwpid_of (thread));
4655
4656 /* The LWP may have been stopped in an internal event that
4657 was not meant to be notified back to GDB (e.g., gdbserver
4658 breakpoint), so we should be reporting a stop event in
4659 this case too. */
4660
4661 /* If the thread already has a pending SIGSTOP, this is a
4662 no-op. Otherwise, something later will presumably resume
4663 the thread and this will cause it to cancel any pending
4664 operation, due to last_resume_kind == resume_stop. If
4665 the thread already has a pending status to report, we
4666 will still report it the next time we wait - see
4667 status_pending_p_callback. */
4668
4669 /* If we already have a pending signal to report, then
4670 there's no need to queue a SIGSTOP, as this means we're
4671 midway through moving the LWP out of the jumppad, and we
4672 will report the pending signal as soon as that is
4673 finished. */
4674 if (lwp->pending_signals_to_report == NULL)
4675 send_sigstop (lwp);
4676 }
4677
4678 /* For stop requests, we're done. */
4679 lwp->resume = NULL;
4680 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4681 return 0;
4682 }
4683
4684 /* If this thread which is about to be resumed has a pending status,
4685 then don't resume it - we can just report the pending status.
4686 Likewise if it is suspended, because e.g., another thread is
4687 stepping past a breakpoint. Make sure to queue any signals that
4688 would otherwise be sent. In all-stop mode, we do this decision
4689 based on if *any* thread has a pending status. If there's a
4690 thread that needs the step-over-breakpoint dance, then don't
4691 resume any other thread but that particular one. */
4692 leave_pending = (lwp->suspended
4693 || lwp->status_pending_p
4694 || leave_all_stopped);
4695
4696 if (!leave_pending)
4697 {
4698 if (debug_threads)
4699 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4700
4701 step = (lwp->resume->kind == resume_step);
4702 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
4703 }
4704 else
4705 {
4706 if (debug_threads)
4707 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4708
4709 /* If we have a new signal, enqueue the signal. */
4710 if (lwp->resume->sig != 0)
4711 {
4712 struct pending_signals *p_sig = XCNEW (struct pending_signals);
4713
4714 p_sig->prev = lwp->pending_signals;
4715 p_sig->signal = lwp->resume->sig;
4716
4717 /* If this is the same signal we were previously stopped by,
4718 make sure to queue its siginfo. We can ignore the return
4719 value of ptrace; if it fails, we'll skip
4720 PTRACE_SETSIGINFO. */
4721 if (WIFSTOPPED (lwp->last_status)
4722 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
4723 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4724 &p_sig->info);
4725
4726 lwp->pending_signals = p_sig;
4727 }
4728 }
4729
4730 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4731 lwp->resume = NULL;
4732 return 0;
4733 }
4734
4735 static void
4736 linux_resume (struct thread_resume *resume_info, size_t n)
4737 {
4738 struct thread_resume_array array = { resume_info, n };
4739 struct thread_info *need_step_over = NULL;
4740 int any_pending;
4741 int leave_all_stopped;
4742
4743 if (debug_threads)
4744 {
4745 debug_enter ();
4746 debug_printf ("linux_resume:\n");
4747 }
4748
4749 find_inferior (&all_threads, linux_set_resume_request, &array);
4750
4751 /* If there is a thread which would otherwise be resumed, which has
4752 a pending status, then don't resume any threads - we can just
4753 report the pending status. Make sure to queue any signals that
4754 would otherwise be sent. In non-stop mode, we'll apply this
4755 logic to each thread individually. We consume all pending events
4756 before considering to start a step-over (in all-stop). */
4757 any_pending = 0;
4758 if (!non_stop)
4759 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4760
4761 /* If there is a thread which would otherwise be resumed, which is
4762 stopped at a breakpoint that needs stepping over, then don't
4763 resume any threads - have it step over the breakpoint with all
4764 other threads stopped, then resume all threads again. Make sure
4765 to queue any signals that would otherwise be delivered or
4766 queued. */
4767 if (!any_pending && supports_breakpoints ())
4768 need_step_over
4769 = (struct thread_info *) find_inferior (&all_threads,
4770 need_step_over_p, NULL);
4771
4772 leave_all_stopped = (need_step_over != NULL || any_pending);
4773
4774 if (debug_threads)
4775 {
4776 if (need_step_over != NULL)
4777 debug_printf ("Not resuming all, need step over\n");
4778 else if (any_pending)
4779 debug_printf ("Not resuming, all-stop and found "
4780 "an LWP with pending status\n");
4781 else
4782 debug_printf ("Resuming, no pending status or step over needed\n");
4783 }
4784
4785 /* Even if we're leaving threads stopped, queue all signals we'd
4786 otherwise deliver. */
4787 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4788
4789 if (need_step_over)
4790 start_step_over (get_thread_lwp (need_step_over));
4791
4792 if (debug_threads)
4793 {
4794 debug_printf ("linux_resume done\n");
4795 debug_exit ();
4796 }
4797
4798 /* We may have events that were pending that can/should be sent to
4799 the client now. Trigger a linux_wait call. */
4800 if (target_is_async_p ())
4801 async_file_mark ();
4802 }
4803
4804 /* This function is called once per thread. We check the thread's
4805 last resume request, which will tell us whether to resume, step, or
4806 leave the thread stopped. Any signal the client requested to be
4807 delivered has already been enqueued at this point.
4808
4809 If any thread that GDB wants running is stopped at an internal
4810 breakpoint that needs stepping over, we start a step-over operation
4811 on that particular thread, and leave all others stopped. */
4812
4813 static int
4814 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4815 {
4816 struct thread_info *thread = (struct thread_info *) entry;
4817 struct lwp_info *lwp = get_thread_lwp (thread);
4818 int step;
4819
4820 if (lwp == except)
4821 return 0;
4822
4823 if (debug_threads)
4824 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4825
4826 if (!lwp->stopped)
4827 {
4828 if (debug_threads)
4829 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4830 return 0;
4831 }
4832
4833 if (thread->last_resume_kind == resume_stop
4834 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4835 {
4836 if (debug_threads)
4837 debug_printf (" client wants LWP to remain %ld stopped\n",
4838 lwpid_of (thread));
4839 return 0;
4840 }
4841
4842 if (lwp->status_pending_p)
4843 {
4844 if (debug_threads)
4845 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4846 lwpid_of (thread));
4847 return 0;
4848 }
4849
4850 gdb_assert (lwp->suspended >= 0);
4851
4852 if (lwp->suspended)
4853 {
4854 if (debug_threads)
4855 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4856 return 0;
4857 }
4858
4859 if (thread->last_resume_kind == resume_stop
4860 && lwp->pending_signals_to_report == NULL
4861 && lwp->collecting_fast_tracepoint == 0)
4862 {
4863 /* We haven't reported this LWP as stopped yet (otherwise, the
4864 last_status.kind check above would catch it, and we wouldn't
4865 reach here. This LWP may have been momentarily paused by a
4866 stop_all_lwps call while handling for example, another LWP's
4867 step-over. In that case, the pending expected SIGSTOP signal
4868 that was queued at vCont;t handling time will have already
4869 been consumed by wait_for_sigstop, and so we need to requeue
4870 another one here. Note that if the LWP already has a SIGSTOP
4871 pending, this is a no-op. */
4872
4873 if (debug_threads)
4874 debug_printf ("Client wants LWP %ld to stop. "
4875 "Making sure it has a SIGSTOP pending\n",
4876 lwpid_of (thread));
4877
4878 send_sigstop (lwp);
4879 }
4880
4881 if (thread->last_resume_kind == resume_step)
4882 {
4883 if (debug_threads)
4884 debug_printf (" stepping LWP %ld, client wants it stepping\n",
4885 lwpid_of (thread));
4886 step = 1;
4887 }
4888 else if (lwp->bp_reinsert != 0)
4889 {
4890 if (debug_threads)
4891 debug_printf (" stepping LWP %ld, reinsert set\n",
4892 lwpid_of (thread));
4893 step = 1;
4894 }
4895 else
4896 step = 0;
4897
4898 linux_resume_one_lwp (lwp, step, 0, NULL);
4899 return 0;
4900 }
4901
4902 static int
4903 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4904 {
4905 struct thread_info *thread = (struct thread_info *) entry;
4906 struct lwp_info *lwp = get_thread_lwp (thread);
4907
4908 if (lwp == except)
4909 return 0;
4910
4911 lwp_suspended_decr (lwp);
4912
4913 return proceed_one_lwp (entry, except);
4914 }
4915
4916 /* When we finish a step-over, set threads running again. If there's
4917 another thread that may need a step-over, now's the time to start
4918 it. Eventually, we'll move all threads past their breakpoints. */
4919
4920 static void
4921 proceed_all_lwps (void)
4922 {
4923 struct thread_info *need_step_over;
4924
4925 /* If there is a thread which would otherwise be resumed, which is
4926 stopped at a breakpoint that needs stepping over, then don't
4927 resume any threads - have it step over the breakpoint with all
4928 other threads stopped, then resume all threads again. */
4929
4930 if (supports_breakpoints ())
4931 {
4932 need_step_over
4933 = (struct thread_info *) find_inferior (&all_threads,
4934 need_step_over_p, NULL);
4935
4936 if (need_step_over != NULL)
4937 {
4938 if (debug_threads)
4939 debug_printf ("proceed_all_lwps: found "
4940 "thread %ld needing a step-over\n",
4941 lwpid_of (need_step_over));
4942
4943 start_step_over (get_thread_lwp (need_step_over));
4944 return;
4945 }
4946 }
4947
4948 if (debug_threads)
4949 debug_printf ("Proceeding, no step-over needed\n");
4950
4951 find_inferior (&all_threads, proceed_one_lwp, NULL);
4952 }
4953
4954 /* Stopped LWPs that the client wanted to be running, that don't have
4955 pending statuses, are set to run again, except for EXCEPT, if not
4956 NULL. This undoes a stop_all_lwps call. */
4957
4958 static void
4959 unstop_all_lwps (int unsuspend, struct lwp_info *except)
4960 {
4961 if (debug_threads)
4962 {
4963 debug_enter ();
4964 if (except)
4965 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
4966 lwpid_of (get_lwp_thread (except)));
4967 else
4968 debug_printf ("unstopping all lwps\n");
4969 }
4970
4971 if (unsuspend)
4972 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
4973 else
4974 find_inferior (&all_threads, proceed_one_lwp, except);
4975
4976 if (debug_threads)
4977 {
4978 debug_printf ("unstop_all_lwps done\n");
4979 debug_exit ();
4980 }
4981 }
4982
4983
4984 #ifdef HAVE_LINUX_REGSETS
4985
4986 #define use_linux_regsets 1
4987
4988 /* Returns true if REGSET has been disabled. */
4989
4990 static int
4991 regset_disabled (struct regsets_info *info, struct regset_info *regset)
4992 {
4993 return (info->disabled_regsets != NULL
4994 && info->disabled_regsets[regset - info->regsets]);
4995 }
4996
4997 /* Disable REGSET. */
4998
4999 static void
5000 disable_regset (struct regsets_info *info, struct regset_info *regset)
5001 {
5002 int dr_offset;
5003
5004 dr_offset = regset - info->regsets;
5005 if (info->disabled_regsets == NULL)
5006 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5007 info->disabled_regsets[dr_offset] = 1;
5008 }
5009
5010 static int
5011 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5012 struct regcache *regcache)
5013 {
5014 struct regset_info *regset;
5015 int saw_general_regs = 0;
5016 int pid;
5017 struct iovec iov;
5018
5019 pid = lwpid_of (current_thread);
5020 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5021 {
5022 void *buf, *data;
5023 int nt_type, res;
5024
5025 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5026 continue;
5027
5028 buf = xmalloc (regset->size);
5029
5030 nt_type = regset->nt_type;
5031 if (nt_type)
5032 {
5033 iov.iov_base = buf;
5034 iov.iov_len = regset->size;
5035 data = (void *) &iov;
5036 }
5037 else
5038 data = buf;
5039
5040 #ifndef __sparc__
5041 res = ptrace (regset->get_request, pid,
5042 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5043 #else
5044 res = ptrace (regset->get_request, pid, data, nt_type);
5045 #endif
5046 if (res < 0)
5047 {
5048 if (errno == EIO)
5049 {
5050 /* If we get EIO on a regset, do not try it again for
5051 this process mode. */
5052 disable_regset (regsets_info, regset);
5053 }
5054 else if (errno == ENODATA)
5055 {
5056 /* ENODATA may be returned if the regset is currently
5057 not "active". This can happen in normal operation,
5058 so suppress the warning in this case. */
5059 }
5060 else
5061 {
5062 char s[256];
5063 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5064 pid);
5065 perror (s);
5066 }
5067 }
5068 else
5069 {
5070 if (regset->type == GENERAL_REGS)
5071 saw_general_regs = 1;
5072 regset->store_function (regcache, buf);
5073 }
5074 free (buf);
5075 }
5076 if (saw_general_regs)
5077 return 0;
5078 else
5079 return 1;
5080 }
5081
5082 static int
5083 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5084 struct regcache *regcache)
5085 {
5086 struct regset_info *regset;
5087 int saw_general_regs = 0;
5088 int pid;
5089 struct iovec iov;
5090
5091 pid = lwpid_of (current_thread);
5092 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5093 {
5094 void *buf, *data;
5095 int nt_type, res;
5096
5097 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5098 || regset->fill_function == NULL)
5099 continue;
5100
5101 buf = xmalloc (regset->size);
5102
5103 /* First fill the buffer with the current register set contents,
5104 in case there are any items in the kernel's regset that are
5105 not in gdbserver's regcache. */
5106
5107 nt_type = regset->nt_type;
5108 if (nt_type)
5109 {
5110 iov.iov_base = buf;
5111 iov.iov_len = regset->size;
5112 data = (void *) &iov;
5113 }
5114 else
5115 data = buf;
5116
5117 #ifndef __sparc__
5118 res = ptrace (regset->get_request, pid,
5119 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5120 #else
5121 res = ptrace (regset->get_request, pid, data, nt_type);
5122 #endif
5123
5124 if (res == 0)
5125 {
5126 /* Then overlay our cached registers on that. */
5127 regset->fill_function (regcache, buf);
5128
5129 /* Only now do we write the register set. */
5130 #ifndef __sparc__
5131 res = ptrace (regset->set_request, pid,
5132 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5133 #else
5134 res = ptrace (regset->set_request, pid, data, nt_type);
5135 #endif
5136 }
5137
5138 if (res < 0)
5139 {
5140 if (errno == EIO)
5141 {
5142 /* If we get EIO on a regset, do not try it again for
5143 this process mode. */
5144 disable_regset (regsets_info, regset);
5145 }
5146 else if (errno == ESRCH)
5147 {
5148 /* At this point, ESRCH should mean the process is
5149 already gone, in which case we simply ignore attempts
5150 to change its registers. See also the related
5151 comment in linux_resume_one_lwp. */
5152 free (buf);
5153 return 0;
5154 }
5155 else
5156 {
5157 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5158 }
5159 }
5160 else if (regset->type == GENERAL_REGS)
5161 saw_general_regs = 1;
5162 free (buf);
5163 }
5164 if (saw_general_regs)
5165 return 0;
5166 else
5167 return 1;
5168 }
5169
5170 #else /* !HAVE_LINUX_REGSETS */
5171
5172 #define use_linux_regsets 0
5173 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5174 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5175
5176 #endif
5177
5178 /* Return 1 if register REGNO is supported by one of the regset ptrace
5179 calls or 0 if it has to be transferred individually. */
5180
5181 static int
5182 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5183 {
5184 unsigned char mask = 1 << (regno % 8);
5185 size_t index = regno / 8;
5186
5187 return (use_linux_regsets
5188 && (regs_info->regset_bitmap == NULL
5189 || (regs_info->regset_bitmap[index] & mask) != 0));
5190 }
5191
5192 #ifdef HAVE_LINUX_USRREGS
5193
5194 int
5195 register_addr (const struct usrregs_info *usrregs, int regnum)
5196 {
5197 int addr;
5198
5199 if (regnum < 0 || regnum >= usrregs->num_regs)
5200 error ("Invalid register number %d.", regnum);
5201
5202 addr = usrregs->regmap[regnum];
5203
5204 return addr;
5205 }
5206
5207 /* Fetch one register. */
5208 static void
5209 fetch_register (const struct usrregs_info *usrregs,
5210 struct regcache *regcache, int regno)
5211 {
5212 CORE_ADDR regaddr;
5213 int i, size;
5214 char *buf;
5215 int pid;
5216
5217 if (regno >= usrregs->num_regs)
5218 return;
5219 if ((*the_low_target.cannot_fetch_register) (regno))
5220 return;
5221
5222 regaddr = register_addr (usrregs, regno);
5223 if (regaddr == -1)
5224 return;
5225
5226 size = ((register_size (regcache->tdesc, regno)
5227 + sizeof (PTRACE_XFER_TYPE) - 1)
5228 & -sizeof (PTRACE_XFER_TYPE));
5229 buf = (char *) alloca (size);
5230
5231 pid = lwpid_of (current_thread);
5232 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5233 {
5234 errno = 0;
5235 *(PTRACE_XFER_TYPE *) (buf + i) =
5236 ptrace (PTRACE_PEEKUSER, pid,
5237 /* Coerce to a uintptr_t first to avoid potential gcc warning
5238 of coercing an 8 byte integer to a 4 byte pointer. */
5239 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5240 regaddr += sizeof (PTRACE_XFER_TYPE);
5241 if (errno != 0)
5242 error ("reading register %d: %s", regno, strerror (errno));
5243 }
5244
5245 if (the_low_target.supply_ptrace_register)
5246 the_low_target.supply_ptrace_register (regcache, regno, buf);
5247 else
5248 supply_register (regcache, regno, buf);
5249 }
5250
5251 /* Store one register. */
5252 static void
5253 store_register (const struct usrregs_info *usrregs,
5254 struct regcache *regcache, int regno)
5255 {
5256 CORE_ADDR regaddr;
5257 int i, size;
5258 char *buf;
5259 int pid;
5260
5261 if (regno >= usrregs->num_regs)
5262 return;
5263 if ((*the_low_target.cannot_store_register) (regno))
5264 return;
5265
5266 regaddr = register_addr (usrregs, regno);
5267 if (regaddr == -1)
5268 return;
5269
5270 size = ((register_size (regcache->tdesc, regno)
5271 + sizeof (PTRACE_XFER_TYPE) - 1)
5272 & -sizeof (PTRACE_XFER_TYPE));
5273 buf = (char *) alloca (size);
5274 memset (buf, 0, size);
5275
5276 if (the_low_target.collect_ptrace_register)
5277 the_low_target.collect_ptrace_register (regcache, regno, buf);
5278 else
5279 collect_register (regcache, regno, buf);
5280
5281 pid = lwpid_of (current_thread);
5282 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5283 {
5284 errno = 0;
5285 ptrace (PTRACE_POKEUSER, pid,
5286 /* Coerce to a uintptr_t first to avoid potential gcc warning
5287 about coercing an 8 byte integer to a 4 byte pointer. */
5288 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5289 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5290 if (errno != 0)
5291 {
5292 /* At this point, ESRCH should mean the process is
5293 already gone, in which case we simply ignore attempts
5294 to change its registers. See also the related
5295 comment in linux_resume_one_lwp. */
5296 if (errno == ESRCH)
5297 return;
5298
5299 if ((*the_low_target.cannot_store_register) (regno) == 0)
5300 error ("writing register %d: %s", regno, strerror (errno));
5301 }
5302 regaddr += sizeof (PTRACE_XFER_TYPE);
5303 }
5304 }
5305
5306 /* Fetch all registers, or just one, from the child process.
5307 If REGNO is -1, do this for all registers, skipping any that are
5308 assumed to have been retrieved by regsets_fetch_inferior_registers,
5309 unless ALL is non-zero.
5310 Otherwise, REGNO specifies which register (so we can save time). */
5311 static void
5312 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5313 struct regcache *regcache, int regno, int all)
5314 {
5315 struct usrregs_info *usr = regs_info->usrregs;
5316
5317 if (regno == -1)
5318 {
5319 for (regno = 0; regno < usr->num_regs; regno++)
5320 if (all || !linux_register_in_regsets (regs_info, regno))
5321 fetch_register (usr, regcache, regno);
5322 }
5323 else
5324 fetch_register (usr, regcache, regno);
5325 }
5326
5327 /* Store our register values back into the inferior.
5328 If REGNO is -1, do this for all registers, skipping any that are
5329 assumed to have been saved by regsets_store_inferior_registers,
5330 unless ALL is non-zero.
5331 Otherwise, REGNO specifies which register (so we can save time). */
5332 static void
5333 usr_store_inferior_registers (const struct regs_info *regs_info,
5334 struct regcache *regcache, int regno, int all)
5335 {
5336 struct usrregs_info *usr = regs_info->usrregs;
5337
5338 if (regno == -1)
5339 {
5340 for (regno = 0; regno < usr->num_regs; regno++)
5341 if (all || !linux_register_in_regsets (regs_info, regno))
5342 store_register (usr, regcache, regno);
5343 }
5344 else
5345 store_register (usr, regcache, regno);
5346 }
5347
5348 #else /* !HAVE_LINUX_USRREGS */
5349
5350 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5351 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5352
5353 #endif
5354
5355
5356 void
5357 linux_fetch_registers (struct regcache *regcache, int regno)
5358 {
5359 int use_regsets;
5360 int all = 0;
5361 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5362
5363 if (regno == -1)
5364 {
5365 if (the_low_target.fetch_register != NULL
5366 && regs_info->usrregs != NULL)
5367 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5368 (*the_low_target.fetch_register) (regcache, regno);
5369
5370 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5371 if (regs_info->usrregs != NULL)
5372 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5373 }
5374 else
5375 {
5376 if (the_low_target.fetch_register != NULL
5377 && (*the_low_target.fetch_register) (regcache, regno))
5378 return;
5379
5380 use_regsets = linux_register_in_regsets (regs_info, regno);
5381 if (use_regsets)
5382 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5383 regcache);
5384 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5385 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5386 }
5387 }
5388
5389 void
5390 linux_store_registers (struct regcache *regcache, int regno)
5391 {
5392 int use_regsets;
5393 int all = 0;
5394 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5395
5396 if (regno == -1)
5397 {
5398 all = regsets_store_inferior_registers (regs_info->regsets_info,
5399 regcache);
5400 if (regs_info->usrregs != NULL)
5401 usr_store_inferior_registers (regs_info, regcache, regno, all);
5402 }
5403 else
5404 {
5405 use_regsets = linux_register_in_regsets (regs_info, regno);
5406 if (use_regsets)
5407 all = regsets_store_inferior_registers (regs_info->regsets_info,
5408 regcache);
5409 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5410 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5411 }
5412 }
5413
5414
5415 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5416 to debugger memory starting at MYADDR. */
5417
5418 static int
5419 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5420 {
5421 int pid = lwpid_of (current_thread);
5422 register PTRACE_XFER_TYPE *buffer;
5423 register CORE_ADDR addr;
5424 register int count;
5425 char filename[64];
5426 register int i;
5427 int ret;
5428 int fd;
5429
5430 /* Try using /proc. Don't bother for one word. */
5431 if (len >= 3 * sizeof (long))
5432 {
5433 int bytes;
5434
5435 /* We could keep this file open and cache it - possibly one per
5436 thread. That requires some juggling, but is even faster. */
5437 sprintf (filename, "/proc/%d/mem", pid);
5438 fd = open (filename, O_RDONLY | O_LARGEFILE);
5439 if (fd == -1)
5440 goto no_proc;
5441
5442 /* If pread64 is available, use it. It's faster if the kernel
5443 supports it (only one syscall), and it's 64-bit safe even on
5444 32-bit platforms (for instance, SPARC debugging a SPARC64
5445 application). */
5446 #ifdef HAVE_PREAD64
5447 bytes = pread64 (fd, myaddr, len, memaddr);
5448 #else
5449 bytes = -1;
5450 if (lseek (fd, memaddr, SEEK_SET) != -1)
5451 bytes = read (fd, myaddr, len);
5452 #endif
5453
5454 close (fd);
5455 if (bytes == len)
5456 return 0;
5457
5458 /* Some data was read, we'll try to get the rest with ptrace. */
5459 if (bytes > 0)
5460 {
5461 memaddr += bytes;
5462 myaddr += bytes;
5463 len -= bytes;
5464 }
5465 }
5466
5467 no_proc:
5468 /* Round starting address down to longword boundary. */
5469 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5470 /* Round ending address up; get number of longwords that makes. */
5471 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5472 / sizeof (PTRACE_XFER_TYPE));
5473 /* Allocate buffer of that many longwords. */
5474 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5475
5476 /* Read all the longwords */
5477 errno = 0;
5478 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5479 {
5480 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5481 about coercing an 8 byte integer to a 4 byte pointer. */
5482 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5483 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5484 (PTRACE_TYPE_ARG4) 0);
5485 if (errno)
5486 break;
5487 }
5488 ret = errno;
5489
5490 /* Copy appropriate bytes out of the buffer. */
5491 if (i > 0)
5492 {
5493 i *= sizeof (PTRACE_XFER_TYPE);
5494 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5495 memcpy (myaddr,
5496 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5497 i < len ? i : len);
5498 }
5499
5500 return ret;
5501 }
5502
5503 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5504 memory at MEMADDR. On failure (cannot write to the inferior)
5505 returns the value of errno. Always succeeds if LEN is zero. */
5506
5507 static int
5508 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5509 {
5510 register int i;
5511 /* Round starting address down to longword boundary. */
5512 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5513 /* Round ending address up; get number of longwords that makes. */
5514 register int count
5515 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5516 / sizeof (PTRACE_XFER_TYPE);
5517
5518 /* Allocate buffer of that many longwords. */
5519 register PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5520
5521 int pid = lwpid_of (current_thread);
5522
5523 if (len == 0)
5524 {
5525 /* Zero length write always succeeds. */
5526 return 0;
5527 }
5528
5529 if (debug_threads)
5530 {
5531 /* Dump up to four bytes. */
5532 char str[4 * 2 + 1];
5533 char *p = str;
5534 int dump = len < 4 ? len : 4;
5535
5536 for (i = 0; i < dump; i++)
5537 {
5538 sprintf (p, "%02x", myaddr[i]);
5539 p += 2;
5540 }
5541 *p = '\0';
5542
5543 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5544 str, (long) memaddr, pid);
5545 }
5546
5547 /* Fill start and end extra bytes of buffer with existing memory data. */
5548
5549 errno = 0;
5550 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5551 about coercing an 8 byte integer to a 4 byte pointer. */
5552 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5553 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5554 (PTRACE_TYPE_ARG4) 0);
5555 if (errno)
5556 return errno;
5557
5558 if (count > 1)
5559 {
5560 errno = 0;
5561 buffer[count - 1]
5562 = ptrace (PTRACE_PEEKTEXT, pid,
5563 /* Coerce to a uintptr_t first to avoid potential gcc warning
5564 about coercing an 8 byte integer to a 4 byte pointer. */
5565 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5566 * sizeof (PTRACE_XFER_TYPE)),
5567 (PTRACE_TYPE_ARG4) 0);
5568 if (errno)
5569 return errno;
5570 }
5571
5572 /* Copy data to be written over corresponding part of buffer. */
5573
5574 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5575 myaddr, len);
5576
5577 /* Write the entire buffer. */
5578
5579 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5580 {
5581 errno = 0;
5582 ptrace (PTRACE_POKETEXT, pid,
5583 /* Coerce to a uintptr_t first to avoid potential gcc warning
5584 about coercing an 8 byte integer to a 4 byte pointer. */
5585 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5586 (PTRACE_TYPE_ARG4) buffer[i]);
5587 if (errno)
5588 return errno;
5589 }
5590
5591 return 0;
5592 }
5593
5594 static void
5595 linux_look_up_symbols (void)
5596 {
5597 #ifdef USE_THREAD_DB
5598 struct process_info *proc = current_process ();
5599
5600 if (proc->priv->thread_db != NULL)
5601 return;
5602
5603 /* If the kernel supports tracing clones, then we don't need to
5604 use the magic thread event breakpoint to learn about
5605 threads. */
5606 thread_db_init (!linux_supports_traceclone ());
5607 #endif
5608 }
5609
5610 static void
5611 linux_request_interrupt (void)
5612 {
5613 extern unsigned long signal_pid;
5614
5615 /* Send a SIGINT to the process group. This acts just like the user
5616 typed a ^C on the controlling terminal. */
5617 kill (-signal_pid, SIGINT);
5618 }
5619
5620 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5621 to debugger memory starting at MYADDR. */
5622
5623 static int
5624 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5625 {
5626 char filename[PATH_MAX];
5627 int fd, n;
5628 int pid = lwpid_of (current_thread);
5629
5630 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5631
5632 fd = open (filename, O_RDONLY);
5633 if (fd < 0)
5634 return -1;
5635
5636 if (offset != (CORE_ADDR) 0
5637 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5638 n = -1;
5639 else
5640 n = read (fd, myaddr, len);
5641
5642 close (fd);
5643
5644 return n;
5645 }
5646
5647 /* These breakpoint and watchpoint related wrapper functions simply
5648 pass on the function call if the target has registered a
5649 corresponding function. */
5650
5651 static int
5652 linux_supports_z_point_type (char z_type)
5653 {
5654 return (the_low_target.supports_z_point_type != NULL
5655 && the_low_target.supports_z_point_type (z_type));
5656 }
5657
5658 static int
5659 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5660 int size, struct raw_breakpoint *bp)
5661 {
5662 if (type == raw_bkpt_type_sw)
5663 return insert_memory_breakpoint (bp);
5664 else if (the_low_target.insert_point != NULL)
5665 return the_low_target.insert_point (type, addr, size, bp);
5666 else
5667 /* Unsupported (see target.h). */
5668 return 1;
5669 }
5670
5671 static int
5672 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5673 int size, struct raw_breakpoint *bp)
5674 {
5675 if (type == raw_bkpt_type_sw)
5676 return remove_memory_breakpoint (bp);
5677 else if (the_low_target.remove_point != NULL)
5678 return the_low_target.remove_point (type, addr, size, bp);
5679 else
5680 /* Unsupported (see target.h). */
5681 return 1;
5682 }
5683
5684 /* Implement the to_stopped_by_sw_breakpoint target_ops
5685 method. */
5686
5687 static int
5688 linux_stopped_by_sw_breakpoint (void)
5689 {
5690 struct lwp_info *lwp = get_thread_lwp (current_thread);
5691
5692 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5693 }
5694
5695 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5696 method. */
5697
5698 static int
5699 linux_supports_stopped_by_sw_breakpoint (void)
5700 {
5701 return USE_SIGTRAP_SIGINFO;
5702 }
5703
5704 /* Implement the to_stopped_by_hw_breakpoint target_ops
5705 method. */
5706
5707 static int
5708 linux_stopped_by_hw_breakpoint (void)
5709 {
5710 struct lwp_info *lwp = get_thread_lwp (current_thread);
5711
5712 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5713 }
5714
5715 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
5716 method. */
5717
5718 static int
5719 linux_supports_stopped_by_hw_breakpoint (void)
5720 {
5721 return USE_SIGTRAP_SIGINFO;
5722 }
5723
5724 /* Implement the supports_hardware_single_step target_ops method. */
5725
5726 static int
5727 linux_supports_hardware_single_step (void)
5728 {
5729 return can_hardware_single_step ();
5730 }
5731
5732 static int
5733 linux_supports_software_single_step (void)
5734 {
5735 return can_software_single_step ();
5736 }
5737
5738 static int
5739 linux_stopped_by_watchpoint (void)
5740 {
5741 struct lwp_info *lwp = get_thread_lwp (current_thread);
5742
5743 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5744 }
5745
5746 static CORE_ADDR
5747 linux_stopped_data_address (void)
5748 {
5749 struct lwp_info *lwp = get_thread_lwp (current_thread);
5750
5751 return lwp->stopped_data_address;
5752 }
5753
5754 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5755 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5756 && defined(PT_TEXT_END_ADDR)
5757
5758 /* This is only used for targets that define PT_TEXT_ADDR,
5759 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5760 the target has different ways of acquiring this information, like
5761 loadmaps. */
5762
5763 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5764 to tell gdb about. */
5765
5766 static int
5767 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5768 {
5769 unsigned long text, text_end, data;
5770 int pid = lwpid_of (current_thread);
5771
5772 errno = 0;
5773
5774 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5775 (PTRACE_TYPE_ARG4) 0);
5776 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5777 (PTRACE_TYPE_ARG4) 0);
5778 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5779 (PTRACE_TYPE_ARG4) 0);
5780
5781 if (errno == 0)
5782 {
5783 /* Both text and data offsets produced at compile-time (and so
5784 used by gdb) are relative to the beginning of the program,
5785 with the data segment immediately following the text segment.
5786 However, the actual runtime layout in memory may put the data
5787 somewhere else, so when we send gdb a data base-address, we
5788 use the real data base address and subtract the compile-time
5789 data base-address from it (which is just the length of the
5790 text segment). BSS immediately follows data in both
5791 cases. */
5792 *text_p = text;
5793 *data_p = data - (text_end - text);
5794
5795 return 1;
5796 }
5797 return 0;
5798 }
5799 #endif
5800
5801 static int
5802 linux_qxfer_osdata (const char *annex,
5803 unsigned char *readbuf, unsigned const char *writebuf,
5804 CORE_ADDR offset, int len)
5805 {
5806 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5807 }
5808
5809 /* Convert a native/host siginfo object, into/from the siginfo in the
5810 layout of the inferiors' architecture. */
5811
5812 static void
5813 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
5814 {
5815 int done = 0;
5816
5817 if (the_low_target.siginfo_fixup != NULL)
5818 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5819
5820 /* If there was no callback, or the callback didn't do anything,
5821 then just do a straight memcpy. */
5822 if (!done)
5823 {
5824 if (direction == 1)
5825 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5826 else
5827 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5828 }
5829 }
5830
5831 static int
5832 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5833 unsigned const char *writebuf, CORE_ADDR offset, int len)
5834 {
5835 int pid;
5836 siginfo_t siginfo;
5837 char inf_siginfo[sizeof (siginfo_t)];
5838
5839 if (current_thread == NULL)
5840 return -1;
5841
5842 pid = lwpid_of (current_thread);
5843
5844 if (debug_threads)
5845 debug_printf ("%s siginfo for lwp %d.\n",
5846 readbuf != NULL ? "Reading" : "Writing",
5847 pid);
5848
5849 if (offset >= sizeof (siginfo))
5850 return -1;
5851
5852 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5853 return -1;
5854
5855 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5856 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5857 inferior with a 64-bit GDBSERVER should look the same as debugging it
5858 with a 32-bit GDBSERVER, we need to convert it. */
5859 siginfo_fixup (&siginfo, inf_siginfo, 0);
5860
5861 if (offset + len > sizeof (siginfo))
5862 len = sizeof (siginfo) - offset;
5863
5864 if (readbuf != NULL)
5865 memcpy (readbuf, inf_siginfo + offset, len);
5866 else
5867 {
5868 memcpy (inf_siginfo + offset, writebuf, len);
5869
5870 /* Convert back to ptrace layout before flushing it out. */
5871 siginfo_fixup (&siginfo, inf_siginfo, 1);
5872
5873 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5874 return -1;
5875 }
5876
5877 return len;
5878 }
5879
5880 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5881 so we notice when children change state; as the handler for the
5882 sigsuspend in my_waitpid. */
5883
5884 static void
5885 sigchld_handler (int signo)
5886 {
5887 int old_errno = errno;
5888
5889 if (debug_threads)
5890 {
5891 do
5892 {
5893 /* fprintf is not async-signal-safe, so call write
5894 directly. */
5895 if (write (2, "sigchld_handler\n",
5896 sizeof ("sigchld_handler\n") - 1) < 0)
5897 break; /* just ignore */
5898 } while (0);
5899 }
5900
5901 if (target_is_async_p ())
5902 async_file_mark (); /* trigger a linux_wait */
5903
5904 errno = old_errno;
5905 }
5906
5907 static int
5908 linux_supports_non_stop (void)
5909 {
5910 return 1;
5911 }
5912
5913 static int
5914 linux_async (int enable)
5915 {
5916 int previous = target_is_async_p ();
5917
5918 if (debug_threads)
5919 debug_printf ("linux_async (%d), previous=%d\n",
5920 enable, previous);
5921
5922 if (previous != enable)
5923 {
5924 sigset_t mask;
5925 sigemptyset (&mask);
5926 sigaddset (&mask, SIGCHLD);
5927
5928 sigprocmask (SIG_BLOCK, &mask, NULL);
5929
5930 if (enable)
5931 {
5932 if (pipe (linux_event_pipe) == -1)
5933 {
5934 linux_event_pipe[0] = -1;
5935 linux_event_pipe[1] = -1;
5936 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5937
5938 warning ("creating event pipe failed.");
5939 return previous;
5940 }
5941
5942 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
5943 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
5944
5945 /* Register the event loop handler. */
5946 add_file_handler (linux_event_pipe[0],
5947 handle_target_event, NULL);
5948
5949 /* Always trigger a linux_wait. */
5950 async_file_mark ();
5951 }
5952 else
5953 {
5954 delete_file_handler (linux_event_pipe[0]);
5955
5956 close (linux_event_pipe[0]);
5957 close (linux_event_pipe[1]);
5958 linux_event_pipe[0] = -1;
5959 linux_event_pipe[1] = -1;
5960 }
5961
5962 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5963 }
5964
5965 return previous;
5966 }
5967
5968 static int
5969 linux_start_non_stop (int nonstop)
5970 {
5971 /* Register or unregister from event-loop accordingly. */
5972 linux_async (nonstop);
5973
5974 if (target_is_async_p () != (nonstop != 0))
5975 return -1;
5976
5977 return 0;
5978 }
5979
5980 static int
5981 linux_supports_multi_process (void)
5982 {
5983 return 1;
5984 }
5985
5986 /* Check if fork events are supported. */
5987
5988 static int
5989 linux_supports_fork_events (void)
5990 {
5991 return linux_supports_tracefork ();
5992 }
5993
5994 /* Check if vfork events are supported. */
5995
5996 static int
5997 linux_supports_vfork_events (void)
5998 {
5999 return linux_supports_tracefork ();
6000 }
6001
6002 /* Check if exec events are supported. */
6003
6004 static int
6005 linux_supports_exec_events (void)
6006 {
6007 return linux_supports_traceexec ();
6008 }
6009
6010 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
6011 options for the specified lwp. */
6012
6013 static int
6014 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
6015 void *args)
6016 {
6017 struct thread_info *thread = (struct thread_info *) entry;
6018 struct lwp_info *lwp = get_thread_lwp (thread);
6019
6020 if (!lwp->stopped)
6021 {
6022 /* Stop the lwp so we can modify its ptrace options. */
6023 lwp->must_set_ptrace_flags = 1;
6024 linux_stop_lwp (lwp);
6025 }
6026 else
6027 {
6028 /* Already stopped; go ahead and set the ptrace options. */
6029 struct process_info *proc = find_process_pid (pid_of (thread));
6030 int options = linux_low_ptrace_options (proc->attached);
6031
6032 linux_enable_event_reporting (lwpid_of (thread), options);
6033 lwp->must_set_ptrace_flags = 0;
6034 }
6035
6036 return 0;
6037 }
6038
6039 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6040 ptrace flags for all inferiors. This is in case the new GDB connection
6041 doesn't support the same set of events that the previous one did. */
6042
6043 static void
6044 linux_handle_new_gdb_connection (void)
6045 {
6046 pid_t pid;
6047
6048 /* Request that all the lwps reset their ptrace options. */
6049 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6050 }
6051
6052 static int
6053 linux_supports_disable_randomization (void)
6054 {
6055 #ifdef HAVE_PERSONALITY
6056 return 1;
6057 #else
6058 return 0;
6059 #endif
6060 }
6061
6062 static int
6063 linux_supports_agent (void)
6064 {
6065 return 1;
6066 }
6067
6068 static int
6069 linux_supports_range_stepping (void)
6070 {
6071 if (*the_low_target.supports_range_stepping == NULL)
6072 return 0;
6073
6074 return (*the_low_target.supports_range_stepping) ();
6075 }
6076
6077 /* Enumerate spufs IDs for process PID. */
6078 static int
6079 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6080 {
6081 int pos = 0;
6082 int written = 0;
6083 char path[128];
6084 DIR *dir;
6085 struct dirent *entry;
6086
6087 sprintf (path, "/proc/%ld/fd", pid);
6088 dir = opendir (path);
6089 if (!dir)
6090 return -1;
6091
6092 rewinddir (dir);
6093 while ((entry = readdir (dir)) != NULL)
6094 {
6095 struct stat st;
6096 struct statfs stfs;
6097 int fd;
6098
6099 fd = atoi (entry->d_name);
6100 if (!fd)
6101 continue;
6102
6103 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6104 if (stat (path, &st) != 0)
6105 continue;
6106 if (!S_ISDIR (st.st_mode))
6107 continue;
6108
6109 if (statfs (path, &stfs) != 0)
6110 continue;
6111 if (stfs.f_type != SPUFS_MAGIC)
6112 continue;
6113
6114 if (pos >= offset && pos + 4 <= offset + len)
6115 {
6116 *(unsigned int *)(buf + pos - offset) = fd;
6117 written += 4;
6118 }
6119 pos += 4;
6120 }
6121
6122 closedir (dir);
6123 return written;
6124 }
6125
6126 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6127 object type, using the /proc file system. */
6128 static int
6129 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6130 unsigned const char *writebuf,
6131 CORE_ADDR offset, int len)
6132 {
6133 long pid = lwpid_of (current_thread);
6134 char buf[128];
6135 int fd = 0;
6136 int ret = 0;
6137
6138 if (!writebuf && !readbuf)
6139 return -1;
6140
6141 if (!*annex)
6142 {
6143 if (!readbuf)
6144 return -1;
6145 else
6146 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6147 }
6148
6149 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6150 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6151 if (fd <= 0)
6152 return -1;
6153
6154 if (offset != 0
6155 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6156 {
6157 close (fd);
6158 return 0;
6159 }
6160
6161 if (writebuf)
6162 ret = write (fd, writebuf, (size_t) len);
6163 else
6164 ret = read (fd, readbuf, (size_t) len);
6165
6166 close (fd);
6167 return ret;
6168 }
6169
6170 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6171 struct target_loadseg
6172 {
6173 /* Core address to which the segment is mapped. */
6174 Elf32_Addr addr;
6175 /* VMA recorded in the program header. */
6176 Elf32_Addr p_vaddr;
6177 /* Size of this segment in memory. */
6178 Elf32_Word p_memsz;
6179 };
6180
6181 # if defined PT_GETDSBT
6182 struct target_loadmap
6183 {
6184 /* Protocol version number, must be zero. */
6185 Elf32_Word version;
6186 /* Pointer to the DSBT table, its size, and the DSBT index. */
6187 unsigned *dsbt_table;
6188 unsigned dsbt_size, dsbt_index;
6189 /* Number of segments in this map. */
6190 Elf32_Word nsegs;
6191 /* The actual memory map. */
6192 struct target_loadseg segs[/*nsegs*/];
6193 };
6194 # define LINUX_LOADMAP PT_GETDSBT
6195 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6196 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6197 # else
6198 struct target_loadmap
6199 {
6200 /* Protocol version number, must be zero. */
6201 Elf32_Half version;
6202 /* Number of segments in this map. */
6203 Elf32_Half nsegs;
6204 /* The actual memory map. */
6205 struct target_loadseg segs[/*nsegs*/];
6206 };
6207 # define LINUX_LOADMAP PTRACE_GETFDPIC
6208 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6209 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6210 # endif
6211
6212 static int
6213 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6214 unsigned char *myaddr, unsigned int len)
6215 {
6216 int pid = lwpid_of (current_thread);
6217 int addr = -1;
6218 struct target_loadmap *data = NULL;
6219 unsigned int actual_length, copy_length;
6220
6221 if (strcmp (annex, "exec") == 0)
6222 addr = (int) LINUX_LOADMAP_EXEC;
6223 else if (strcmp (annex, "interp") == 0)
6224 addr = (int) LINUX_LOADMAP_INTERP;
6225 else
6226 return -1;
6227
6228 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6229 return -1;
6230
6231 if (data == NULL)
6232 return -1;
6233
6234 actual_length = sizeof (struct target_loadmap)
6235 + sizeof (struct target_loadseg) * data->nsegs;
6236
6237 if (offset < 0 || offset > actual_length)
6238 return -1;
6239
6240 copy_length = actual_length - offset < len ? actual_length - offset : len;
6241 memcpy (myaddr, (char *) data + offset, copy_length);
6242 return copy_length;
6243 }
6244 #else
6245 # define linux_read_loadmap NULL
6246 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6247
6248 static void
6249 linux_process_qsupported (char **features, int count)
6250 {
6251 if (the_low_target.process_qsupported != NULL)
6252 the_low_target.process_qsupported (features, count);
6253 }
6254
6255 static int
6256 linux_supports_tracepoints (void)
6257 {
6258 if (*the_low_target.supports_tracepoints == NULL)
6259 return 0;
6260
6261 return (*the_low_target.supports_tracepoints) ();
6262 }
6263
6264 static CORE_ADDR
6265 linux_read_pc (struct regcache *regcache)
6266 {
6267 if (the_low_target.get_pc == NULL)
6268 return 0;
6269
6270 return (*the_low_target.get_pc) (regcache);
6271 }
6272
6273 static void
6274 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6275 {
6276 gdb_assert (the_low_target.set_pc != NULL);
6277
6278 (*the_low_target.set_pc) (regcache, pc);
6279 }
6280
6281 static int
6282 linux_thread_stopped (struct thread_info *thread)
6283 {
6284 return get_thread_lwp (thread)->stopped;
6285 }
6286
6287 /* This exposes stop-all-threads functionality to other modules. */
6288
6289 static void
6290 linux_pause_all (int freeze)
6291 {
6292 stop_all_lwps (freeze, NULL);
6293 }
6294
6295 /* This exposes unstop-all-threads functionality to other gdbserver
6296 modules. */
6297
6298 static void
6299 linux_unpause_all (int unfreeze)
6300 {
6301 unstop_all_lwps (unfreeze, NULL);
6302 }
6303
6304 static int
6305 linux_prepare_to_access_memory (void)
6306 {
6307 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6308 running LWP. */
6309 if (non_stop)
6310 linux_pause_all (1);
6311 return 0;
6312 }
6313
6314 static void
6315 linux_done_accessing_memory (void)
6316 {
6317 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6318 running LWP. */
6319 if (non_stop)
6320 linux_unpause_all (1);
6321 }
6322
6323 static int
6324 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6325 CORE_ADDR collector,
6326 CORE_ADDR lockaddr,
6327 ULONGEST orig_size,
6328 CORE_ADDR *jump_entry,
6329 CORE_ADDR *trampoline,
6330 ULONGEST *trampoline_size,
6331 unsigned char *jjump_pad_insn,
6332 ULONGEST *jjump_pad_insn_size,
6333 CORE_ADDR *adjusted_insn_addr,
6334 CORE_ADDR *adjusted_insn_addr_end,
6335 char *err)
6336 {
6337 return (*the_low_target.install_fast_tracepoint_jump_pad)
6338 (tpoint, tpaddr, collector, lockaddr, orig_size,
6339 jump_entry, trampoline, trampoline_size,
6340 jjump_pad_insn, jjump_pad_insn_size,
6341 adjusted_insn_addr, adjusted_insn_addr_end,
6342 err);
6343 }
6344
6345 static struct emit_ops *
6346 linux_emit_ops (void)
6347 {
6348 if (the_low_target.emit_ops != NULL)
6349 return (*the_low_target.emit_ops) ();
6350 else
6351 return NULL;
6352 }
6353
6354 static int
6355 linux_get_min_fast_tracepoint_insn_len (void)
6356 {
6357 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6358 }
6359
6360 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6361
6362 static int
6363 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6364 CORE_ADDR *phdr_memaddr, int *num_phdr)
6365 {
6366 char filename[PATH_MAX];
6367 int fd;
6368 const int auxv_size = is_elf64
6369 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6370 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6371
6372 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6373
6374 fd = open (filename, O_RDONLY);
6375 if (fd < 0)
6376 return 1;
6377
6378 *phdr_memaddr = 0;
6379 *num_phdr = 0;
6380 while (read (fd, buf, auxv_size) == auxv_size
6381 && (*phdr_memaddr == 0 || *num_phdr == 0))
6382 {
6383 if (is_elf64)
6384 {
6385 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6386
6387 switch (aux->a_type)
6388 {
6389 case AT_PHDR:
6390 *phdr_memaddr = aux->a_un.a_val;
6391 break;
6392 case AT_PHNUM:
6393 *num_phdr = aux->a_un.a_val;
6394 break;
6395 }
6396 }
6397 else
6398 {
6399 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6400
6401 switch (aux->a_type)
6402 {
6403 case AT_PHDR:
6404 *phdr_memaddr = aux->a_un.a_val;
6405 break;
6406 case AT_PHNUM:
6407 *num_phdr = aux->a_un.a_val;
6408 break;
6409 }
6410 }
6411 }
6412
6413 close (fd);
6414
6415 if (*phdr_memaddr == 0 || *num_phdr == 0)
6416 {
6417 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6418 "phdr_memaddr = %ld, phdr_num = %d",
6419 (long) *phdr_memaddr, *num_phdr);
6420 return 2;
6421 }
6422
6423 return 0;
6424 }
6425
6426 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6427
6428 static CORE_ADDR
6429 get_dynamic (const int pid, const int is_elf64)
6430 {
6431 CORE_ADDR phdr_memaddr, relocation;
6432 int num_phdr, i;
6433 unsigned char *phdr_buf;
6434 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6435
6436 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6437 return 0;
6438
6439 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6440 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6441
6442 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6443 return 0;
6444
6445 /* Compute relocation: it is expected to be 0 for "regular" executables,
6446 non-zero for PIE ones. */
6447 relocation = -1;
6448 for (i = 0; relocation == -1 && i < num_phdr; i++)
6449 if (is_elf64)
6450 {
6451 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6452
6453 if (p->p_type == PT_PHDR)
6454 relocation = phdr_memaddr - p->p_vaddr;
6455 }
6456 else
6457 {
6458 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6459
6460 if (p->p_type == PT_PHDR)
6461 relocation = phdr_memaddr - p->p_vaddr;
6462 }
6463
6464 if (relocation == -1)
6465 {
6466 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6467 any real world executables, including PIE executables, have always
6468 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6469 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6470 or present DT_DEBUG anyway (fpc binaries are statically linked).
6471
6472 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6473
6474 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6475
6476 return 0;
6477 }
6478
6479 for (i = 0; i < num_phdr; i++)
6480 {
6481 if (is_elf64)
6482 {
6483 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6484
6485 if (p->p_type == PT_DYNAMIC)
6486 return p->p_vaddr + relocation;
6487 }
6488 else
6489 {
6490 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6491
6492 if (p->p_type == PT_DYNAMIC)
6493 return p->p_vaddr + relocation;
6494 }
6495 }
6496
6497 return 0;
6498 }
6499
6500 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6501 can be 0 if the inferior does not yet have the library list initialized.
6502 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6503 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6504
6505 static CORE_ADDR
6506 get_r_debug (const int pid, const int is_elf64)
6507 {
6508 CORE_ADDR dynamic_memaddr;
6509 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6510 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6511 CORE_ADDR map = -1;
6512
6513 dynamic_memaddr = get_dynamic (pid, is_elf64);
6514 if (dynamic_memaddr == 0)
6515 return map;
6516
6517 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6518 {
6519 if (is_elf64)
6520 {
6521 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6522 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6523 union
6524 {
6525 Elf64_Xword map;
6526 unsigned char buf[sizeof (Elf64_Xword)];
6527 }
6528 rld_map;
6529 #endif
6530 #ifdef DT_MIPS_RLD_MAP
6531 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6532 {
6533 if (linux_read_memory (dyn->d_un.d_val,
6534 rld_map.buf, sizeof (rld_map.buf)) == 0)
6535 return rld_map.map;
6536 else
6537 break;
6538 }
6539 #endif /* DT_MIPS_RLD_MAP */
6540 #ifdef DT_MIPS_RLD_MAP_REL
6541 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6542 {
6543 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6544 rld_map.buf, sizeof (rld_map.buf)) == 0)
6545 return rld_map.map;
6546 else
6547 break;
6548 }
6549 #endif /* DT_MIPS_RLD_MAP_REL */
6550
6551 if (dyn->d_tag == DT_DEBUG && map == -1)
6552 map = dyn->d_un.d_val;
6553
6554 if (dyn->d_tag == DT_NULL)
6555 break;
6556 }
6557 else
6558 {
6559 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6560 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6561 union
6562 {
6563 Elf32_Word map;
6564 unsigned char buf[sizeof (Elf32_Word)];
6565 }
6566 rld_map;
6567 #endif
6568 #ifdef DT_MIPS_RLD_MAP
6569 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6570 {
6571 if (linux_read_memory (dyn->d_un.d_val,
6572 rld_map.buf, sizeof (rld_map.buf)) == 0)
6573 return rld_map.map;
6574 else
6575 break;
6576 }
6577 #endif /* DT_MIPS_RLD_MAP */
6578 #ifdef DT_MIPS_RLD_MAP_REL
6579 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6580 {
6581 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6582 rld_map.buf, sizeof (rld_map.buf)) == 0)
6583 return rld_map.map;
6584 else
6585 break;
6586 }
6587 #endif /* DT_MIPS_RLD_MAP_REL */
6588
6589 if (dyn->d_tag == DT_DEBUG && map == -1)
6590 map = dyn->d_un.d_val;
6591
6592 if (dyn->d_tag == DT_NULL)
6593 break;
6594 }
6595
6596 dynamic_memaddr += dyn_size;
6597 }
6598
6599 return map;
6600 }
6601
6602 /* Read one pointer from MEMADDR in the inferior. */
6603
6604 static int
6605 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6606 {
6607 int ret;
6608
6609 /* Go through a union so this works on either big or little endian
6610 hosts, when the inferior's pointer size is smaller than the size
6611 of CORE_ADDR. It is assumed the inferior's endianness is the
6612 same of the superior's. */
6613 union
6614 {
6615 CORE_ADDR core_addr;
6616 unsigned int ui;
6617 unsigned char uc;
6618 } addr;
6619
6620 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6621 if (ret == 0)
6622 {
6623 if (ptr_size == sizeof (CORE_ADDR))
6624 *ptr = addr.core_addr;
6625 else if (ptr_size == sizeof (unsigned int))
6626 *ptr = addr.ui;
6627 else
6628 gdb_assert_not_reached ("unhandled pointer size");
6629 }
6630 return ret;
6631 }
6632
6633 struct link_map_offsets
6634 {
6635 /* Offset and size of r_debug.r_version. */
6636 int r_version_offset;
6637
6638 /* Offset and size of r_debug.r_map. */
6639 int r_map_offset;
6640
6641 /* Offset to l_addr field in struct link_map. */
6642 int l_addr_offset;
6643
6644 /* Offset to l_name field in struct link_map. */
6645 int l_name_offset;
6646
6647 /* Offset to l_ld field in struct link_map. */
6648 int l_ld_offset;
6649
6650 /* Offset to l_next field in struct link_map. */
6651 int l_next_offset;
6652
6653 /* Offset to l_prev field in struct link_map. */
6654 int l_prev_offset;
6655 };
6656
6657 /* Construct qXfer:libraries-svr4:read reply. */
6658
6659 static int
6660 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6661 unsigned const char *writebuf,
6662 CORE_ADDR offset, int len)
6663 {
6664 char *document;
6665 unsigned document_len;
6666 struct process_info_private *const priv = current_process ()->priv;
6667 char filename[PATH_MAX];
6668 int pid, is_elf64;
6669
6670 static const struct link_map_offsets lmo_32bit_offsets =
6671 {
6672 0, /* r_version offset. */
6673 4, /* r_debug.r_map offset. */
6674 0, /* l_addr offset in link_map. */
6675 4, /* l_name offset in link_map. */
6676 8, /* l_ld offset in link_map. */
6677 12, /* l_next offset in link_map. */
6678 16 /* l_prev offset in link_map. */
6679 };
6680
6681 static const struct link_map_offsets lmo_64bit_offsets =
6682 {
6683 0, /* r_version offset. */
6684 8, /* r_debug.r_map offset. */
6685 0, /* l_addr offset in link_map. */
6686 8, /* l_name offset in link_map. */
6687 16, /* l_ld offset in link_map. */
6688 24, /* l_next offset in link_map. */
6689 32 /* l_prev offset in link_map. */
6690 };
6691 const struct link_map_offsets *lmo;
6692 unsigned int machine;
6693 int ptr_size;
6694 CORE_ADDR lm_addr = 0, lm_prev = 0;
6695 int allocated = 1024;
6696 char *p;
6697 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6698 int header_done = 0;
6699
6700 if (writebuf != NULL)
6701 return -2;
6702 if (readbuf == NULL)
6703 return -1;
6704
6705 pid = lwpid_of (current_thread);
6706 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6707 is_elf64 = elf_64_file_p (filename, &machine);
6708 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6709 ptr_size = is_elf64 ? 8 : 4;
6710
6711 while (annex[0] != '\0')
6712 {
6713 const char *sep;
6714 CORE_ADDR *addrp;
6715 int len;
6716
6717 sep = strchr (annex, '=');
6718 if (sep == NULL)
6719 break;
6720
6721 len = sep - annex;
6722 if (len == 5 && startswith (annex, "start"))
6723 addrp = &lm_addr;
6724 else if (len == 4 && startswith (annex, "prev"))
6725 addrp = &lm_prev;
6726 else
6727 {
6728 annex = strchr (sep, ';');
6729 if (annex == NULL)
6730 break;
6731 annex++;
6732 continue;
6733 }
6734
6735 annex = decode_address_to_semicolon (addrp, sep + 1);
6736 }
6737
6738 if (lm_addr == 0)
6739 {
6740 int r_version = 0;
6741
6742 if (priv->r_debug == 0)
6743 priv->r_debug = get_r_debug (pid, is_elf64);
6744
6745 /* We failed to find DT_DEBUG. Such situation will not change
6746 for this inferior - do not retry it. Report it to GDB as
6747 E01, see for the reasons at the GDB solib-svr4.c side. */
6748 if (priv->r_debug == (CORE_ADDR) -1)
6749 return -1;
6750
6751 if (priv->r_debug != 0)
6752 {
6753 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6754 (unsigned char *) &r_version,
6755 sizeof (r_version)) != 0
6756 || r_version != 1)
6757 {
6758 warning ("unexpected r_debug version %d", r_version);
6759 }
6760 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6761 &lm_addr, ptr_size) != 0)
6762 {
6763 warning ("unable to read r_map from 0x%lx",
6764 (long) priv->r_debug + lmo->r_map_offset);
6765 }
6766 }
6767 }
6768
6769 document = (char *) xmalloc (allocated);
6770 strcpy (document, "<library-list-svr4 version=\"1.0\"");
6771 p = document + strlen (document);
6772
6773 while (lm_addr
6774 && read_one_ptr (lm_addr + lmo->l_name_offset,
6775 &l_name, ptr_size) == 0
6776 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6777 &l_addr, ptr_size) == 0
6778 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6779 &l_ld, ptr_size) == 0
6780 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6781 &l_prev, ptr_size) == 0
6782 && read_one_ptr (lm_addr + lmo->l_next_offset,
6783 &l_next, ptr_size) == 0)
6784 {
6785 unsigned char libname[PATH_MAX];
6786
6787 if (lm_prev != l_prev)
6788 {
6789 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6790 (long) lm_prev, (long) l_prev);
6791 break;
6792 }
6793
6794 /* Ignore the first entry even if it has valid name as the first entry
6795 corresponds to the main executable. The first entry should not be
6796 skipped if the dynamic loader was loaded late by a static executable
6797 (see solib-svr4.c parameter ignore_first). But in such case the main
6798 executable does not have PT_DYNAMIC present and this function already
6799 exited above due to failed get_r_debug. */
6800 if (lm_prev == 0)
6801 {
6802 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6803 p = p + strlen (p);
6804 }
6805 else
6806 {
6807 /* Not checking for error because reading may stop before
6808 we've got PATH_MAX worth of characters. */
6809 libname[0] = '\0';
6810 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6811 libname[sizeof (libname) - 1] = '\0';
6812 if (libname[0] != '\0')
6813 {
6814 /* 6x the size for xml_escape_text below. */
6815 size_t len = 6 * strlen ((char *) libname);
6816 char *name;
6817
6818 if (!header_done)
6819 {
6820 /* Terminate `<library-list-svr4'. */
6821 *p++ = '>';
6822 header_done = 1;
6823 }
6824
6825 while (allocated < p - document + len + 200)
6826 {
6827 /* Expand to guarantee sufficient storage. */
6828 uintptr_t document_len = p - document;
6829
6830 document = (char *) xrealloc (document, 2 * allocated);
6831 allocated *= 2;
6832 p = document + document_len;
6833 }
6834
6835 name = xml_escape_text ((char *) libname);
6836 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
6837 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6838 name, (unsigned long) lm_addr,
6839 (unsigned long) l_addr, (unsigned long) l_ld);
6840 free (name);
6841 }
6842 }
6843
6844 lm_prev = lm_addr;
6845 lm_addr = l_next;
6846 }
6847
6848 if (!header_done)
6849 {
6850 /* Empty list; terminate `<library-list-svr4'. */
6851 strcpy (p, "/>");
6852 }
6853 else
6854 strcpy (p, "</library-list-svr4>");
6855
6856 document_len = strlen (document);
6857 if (offset < document_len)
6858 document_len -= offset;
6859 else
6860 document_len = 0;
6861 if (len > document_len)
6862 len = document_len;
6863
6864 memcpy (readbuf, document + offset, len);
6865 xfree (document);
6866
6867 return len;
6868 }
6869
6870 #ifdef HAVE_LINUX_BTRACE
6871
6872 /* See to_disable_btrace target method. */
6873
6874 static int
6875 linux_low_disable_btrace (struct btrace_target_info *tinfo)
6876 {
6877 enum btrace_error err;
6878
6879 err = linux_disable_btrace (tinfo);
6880 return (err == BTRACE_ERR_NONE ? 0 : -1);
6881 }
6882
6883 /* Encode an Intel(R) Processor Trace configuration. */
6884
6885 static void
6886 linux_low_encode_pt_config (struct buffer *buffer,
6887 const struct btrace_data_pt_config *config)
6888 {
6889 buffer_grow_str (buffer, "<pt-config>\n");
6890
6891 switch (config->cpu.vendor)
6892 {
6893 case CV_INTEL:
6894 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
6895 "model=\"%u\" stepping=\"%u\"/>\n",
6896 config->cpu.family, config->cpu.model,
6897 config->cpu.stepping);
6898 break;
6899
6900 default:
6901 break;
6902 }
6903
6904 buffer_grow_str (buffer, "</pt-config>\n");
6905 }
6906
6907 /* Encode a raw buffer. */
6908
6909 static void
6910 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
6911 unsigned int size)
6912 {
6913 if (size == 0)
6914 return;
6915
6916 /* We use hex encoding - see common/rsp-low.h. */
6917 buffer_grow_str (buffer, "<raw>\n");
6918
6919 while (size-- > 0)
6920 {
6921 char elem[2];
6922
6923 elem[0] = tohex ((*data >> 4) & 0xf);
6924 elem[1] = tohex (*data++ & 0xf);
6925
6926 buffer_grow (buffer, elem, 2);
6927 }
6928
6929 buffer_grow_str (buffer, "</raw>\n");
6930 }
6931
6932 /* See to_read_btrace target method. */
6933
6934 static int
6935 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
6936 enum btrace_read_type type)
6937 {
6938 struct btrace_data btrace;
6939 struct btrace_block *block;
6940 enum btrace_error err;
6941 int i;
6942
6943 btrace_data_init (&btrace);
6944
6945 err = linux_read_btrace (&btrace, tinfo, type);
6946 if (err != BTRACE_ERR_NONE)
6947 {
6948 if (err == BTRACE_ERR_OVERFLOW)
6949 buffer_grow_str0 (buffer, "E.Overflow.");
6950 else
6951 buffer_grow_str0 (buffer, "E.Generic Error.");
6952
6953 goto err;
6954 }
6955
6956 switch (btrace.format)
6957 {
6958 case BTRACE_FORMAT_NONE:
6959 buffer_grow_str0 (buffer, "E.No Trace.");
6960 goto err;
6961
6962 case BTRACE_FORMAT_BTS:
6963 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6964 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6965
6966 for (i = 0;
6967 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
6968 i++)
6969 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
6970 paddress (block->begin), paddress (block->end));
6971
6972 buffer_grow_str0 (buffer, "</btrace>\n");
6973 break;
6974
6975 case BTRACE_FORMAT_PT:
6976 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6977 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6978 buffer_grow_str (buffer, "<pt>\n");
6979
6980 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
6981
6982 linux_low_encode_raw (buffer, btrace.variant.pt.data,
6983 btrace.variant.pt.size);
6984
6985 buffer_grow_str (buffer, "</pt>\n");
6986 buffer_grow_str0 (buffer, "</btrace>\n");
6987 break;
6988
6989 default:
6990 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
6991 goto err;
6992 }
6993
6994 btrace_data_fini (&btrace);
6995 return 0;
6996
6997 err:
6998 btrace_data_fini (&btrace);
6999 return -1;
7000 }
7001
7002 /* See to_btrace_conf target method. */
7003
7004 static int
7005 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7006 struct buffer *buffer)
7007 {
7008 const struct btrace_config *conf;
7009
7010 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7011 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7012
7013 conf = linux_btrace_conf (tinfo);
7014 if (conf != NULL)
7015 {
7016 switch (conf->format)
7017 {
7018 case BTRACE_FORMAT_NONE:
7019 break;
7020
7021 case BTRACE_FORMAT_BTS:
7022 buffer_xml_printf (buffer, "<bts");
7023 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7024 buffer_xml_printf (buffer, " />\n");
7025 break;
7026
7027 case BTRACE_FORMAT_PT:
7028 buffer_xml_printf (buffer, "<pt");
7029 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7030 buffer_xml_printf (buffer, "/>\n");
7031 break;
7032 }
7033 }
7034
7035 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7036 return 0;
7037 }
7038 #endif /* HAVE_LINUX_BTRACE */
7039
7040 /* See nat/linux-nat.h. */
7041
7042 ptid_t
7043 current_lwp_ptid (void)
7044 {
7045 return ptid_of (current_thread);
7046 }
7047
7048 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7049
7050 static int
7051 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7052 {
7053 if (the_low_target.breakpoint_kind_from_pc != NULL)
7054 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7055 else
7056 return default_breakpoint_kind_from_pc (pcptr);
7057 }
7058
7059 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7060
7061 static const gdb_byte *
7062 linux_sw_breakpoint_from_kind (int kind, int *size)
7063 {
7064 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7065
7066 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7067 }
7068
7069 /* Implementation of the target_ops method
7070 "breakpoint_kind_from_current_state". */
7071
7072 static int
7073 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7074 {
7075 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7076 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7077 else
7078 return linux_breakpoint_kind_from_pc (pcptr);
7079 }
7080
7081 static struct target_ops linux_target_ops = {
7082 linux_create_inferior,
7083 linux_arch_setup,
7084 linux_attach,
7085 linux_kill,
7086 linux_detach,
7087 linux_mourn,
7088 linux_join,
7089 linux_thread_alive,
7090 linux_resume,
7091 linux_wait,
7092 linux_fetch_registers,
7093 linux_store_registers,
7094 linux_prepare_to_access_memory,
7095 linux_done_accessing_memory,
7096 linux_read_memory,
7097 linux_write_memory,
7098 linux_look_up_symbols,
7099 linux_request_interrupt,
7100 linux_read_auxv,
7101 linux_supports_z_point_type,
7102 linux_insert_point,
7103 linux_remove_point,
7104 linux_stopped_by_sw_breakpoint,
7105 linux_supports_stopped_by_sw_breakpoint,
7106 linux_stopped_by_hw_breakpoint,
7107 linux_supports_stopped_by_hw_breakpoint,
7108 linux_supports_hardware_single_step,
7109 linux_stopped_by_watchpoint,
7110 linux_stopped_data_address,
7111 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7112 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7113 && defined(PT_TEXT_END_ADDR)
7114 linux_read_offsets,
7115 #else
7116 NULL,
7117 #endif
7118 #ifdef USE_THREAD_DB
7119 thread_db_get_tls_address,
7120 #else
7121 NULL,
7122 #endif
7123 linux_qxfer_spu,
7124 hostio_last_error_from_errno,
7125 linux_qxfer_osdata,
7126 linux_xfer_siginfo,
7127 linux_supports_non_stop,
7128 linux_async,
7129 linux_start_non_stop,
7130 linux_supports_multi_process,
7131 linux_supports_fork_events,
7132 linux_supports_vfork_events,
7133 linux_supports_exec_events,
7134 linux_handle_new_gdb_connection,
7135 #ifdef USE_THREAD_DB
7136 thread_db_handle_monitor_command,
7137 #else
7138 NULL,
7139 #endif
7140 linux_common_core_of_thread,
7141 linux_read_loadmap,
7142 linux_process_qsupported,
7143 linux_supports_tracepoints,
7144 linux_read_pc,
7145 linux_write_pc,
7146 linux_thread_stopped,
7147 NULL,
7148 linux_pause_all,
7149 linux_unpause_all,
7150 linux_stabilize_threads,
7151 linux_install_fast_tracepoint_jump_pad,
7152 linux_emit_ops,
7153 linux_supports_disable_randomization,
7154 linux_get_min_fast_tracepoint_insn_len,
7155 linux_qxfer_libraries_svr4,
7156 linux_supports_agent,
7157 #ifdef HAVE_LINUX_BTRACE
7158 linux_supports_btrace,
7159 linux_enable_btrace,
7160 linux_low_disable_btrace,
7161 linux_low_read_btrace,
7162 linux_low_btrace_conf,
7163 #else
7164 NULL,
7165 NULL,
7166 NULL,
7167 NULL,
7168 NULL,
7169 #endif
7170 linux_supports_range_stepping,
7171 linux_proc_pid_to_exec_file,
7172 linux_mntns_open_cloexec,
7173 linux_mntns_unlink,
7174 linux_mntns_readlink,
7175 linux_breakpoint_kind_from_pc,
7176 linux_sw_breakpoint_from_kind,
7177 linux_proc_tid_get_name,
7178 linux_breakpoint_kind_from_current_state,
7179 linux_supports_software_single_step
7180 };
7181
7182 static void
7183 linux_init_signals ()
7184 {
7185 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
7186 to find what the cancel signal actually is. */
7187 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
7188 signal (__SIGRTMIN+1, SIG_IGN);
7189 #endif
7190 }
7191
7192 #ifdef HAVE_LINUX_REGSETS
7193 void
7194 initialize_regsets_info (struct regsets_info *info)
7195 {
7196 for (info->num_regsets = 0;
7197 info->regsets[info->num_regsets].size >= 0;
7198 info->num_regsets++)
7199 ;
7200 }
7201 #endif
7202
7203 void
7204 initialize_low (void)
7205 {
7206 struct sigaction sigchld_action;
7207
7208 memset (&sigchld_action, 0, sizeof (sigchld_action));
7209 set_target_ops (&linux_target_ops);
7210
7211 linux_init_signals ();
7212 linux_ptrace_init_warnings ();
7213
7214 sigchld_action.sa_handler = sigchld_handler;
7215 sigemptyset (&sigchld_action.sa_mask);
7216 sigchld_action.sa_flags = SA_RESTART;
7217 sigaction (SIGCHLD, &sigchld_action, NULL);
7218
7219 initialize_low_arch ();
7220
7221 linux_check_ptrace_features ();
7222 }