]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Get pending events in random
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #ifndef ELFMAG0
51 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
52 then ELFMAG0 will have been defined. If it didn't get included by
53 gdb_proc_service.h then including it will likely introduce a duplicate
54 definition of elf_fpregset_t. */
55 #include <elf.h>
56 #endif
57 #include "nat/linux-namespaces.h"
58
59 #ifndef SPUFS_MAGIC
60 #define SPUFS_MAGIC 0x23c9b64e
61 #endif
62
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
67 # endif
68 #endif
69
70 #ifndef O_LARGEFILE
71 #define O_LARGEFILE 0
72 #endif
73
74 /* Some targets did not define these ptrace constants from the start,
75 so gdbserver defines them locally here. In the future, these may
76 be removed after they are added to asm/ptrace.h. */
77 #if !(defined(PT_TEXT_ADDR) \
78 || defined(PT_DATA_ADDR) \
79 || defined(PT_TEXT_END_ADDR))
80 #if defined(__mcoldfire__)
81 /* These are still undefined in 3.10 kernels. */
82 #define PT_TEXT_ADDR 49*4
83 #define PT_DATA_ADDR 50*4
84 #define PT_TEXT_END_ADDR 51*4
85 /* BFIN already defines these since at least 2.6.32 kernels. */
86 #elif defined(BFIN)
87 #define PT_TEXT_ADDR 220
88 #define PT_TEXT_END_ADDR 224
89 #define PT_DATA_ADDR 228
90 /* These are still undefined in 3.10 kernels. */
91 #elif defined(__TMS320C6X__)
92 #define PT_TEXT_ADDR (0x10000*4)
93 #define PT_DATA_ADDR (0x10004*4)
94 #define PT_TEXT_END_ADDR (0x10008*4)
95 #endif
96 #endif
97
98 #ifdef HAVE_LINUX_BTRACE
99 # include "nat/linux-btrace.h"
100 # include "btrace-common.h"
101 #endif
102
103 #ifndef HAVE_ELF32_AUXV_T
104 /* Copied from glibc's elf.h. */
105 typedef struct
106 {
107 uint32_t a_type; /* Entry type */
108 union
109 {
110 uint32_t a_val; /* Integer value */
111 /* We use to have pointer elements added here. We cannot do that,
112 though, since it does not work when using 32-bit definitions
113 on 64-bit platforms and vice versa. */
114 } a_un;
115 } Elf32_auxv_t;
116 #endif
117
118 #ifndef HAVE_ELF64_AUXV_T
119 /* Copied from glibc's elf.h. */
120 typedef struct
121 {
122 uint64_t a_type; /* Entry type */
123 union
124 {
125 uint64_t a_val; /* Integer value */
126 /* We use to have pointer elements added here. We cannot do that,
127 though, since it does not work when using 32-bit definitions
128 on 64-bit platforms and vice versa. */
129 } a_un;
130 } Elf64_auxv_t;
131 #endif
132
133 /* Does the current host support PTRACE_GETREGSET? */
134 int have_ptrace_getregset = -1;
135
136 /* LWP accessors. */
137
138 /* See nat/linux-nat.h. */
139
140 ptid_t
141 ptid_of_lwp (struct lwp_info *lwp)
142 {
143 return ptid_of (get_lwp_thread (lwp));
144 }
145
146 /* See nat/linux-nat.h. */
147
148 void
149 lwp_set_arch_private_info (struct lwp_info *lwp,
150 struct arch_lwp_info *info)
151 {
152 lwp->arch_private = info;
153 }
154
155 /* See nat/linux-nat.h. */
156
157 struct arch_lwp_info *
158 lwp_arch_private_info (struct lwp_info *lwp)
159 {
160 return lwp->arch_private;
161 }
162
163 /* See nat/linux-nat.h. */
164
165 int
166 lwp_is_stopped (struct lwp_info *lwp)
167 {
168 return lwp->stopped;
169 }
170
171 /* See nat/linux-nat.h. */
172
173 enum target_stop_reason
174 lwp_stop_reason (struct lwp_info *lwp)
175 {
176 return lwp->stop_reason;
177 }
178
179 /* See nat/linux-nat.h. */
180
181 int
182 lwp_is_stepping (struct lwp_info *lwp)
183 {
184 return lwp->stepping;
185 }
186
187 /* A list of all unknown processes which receive stop signals. Some
188 other process will presumably claim each of these as forked
189 children momentarily. */
190
191 struct simple_pid_list
192 {
193 /* The process ID. */
194 int pid;
195
196 /* The status as reported by waitpid. */
197 int status;
198
199 /* Next in chain. */
200 struct simple_pid_list *next;
201 };
202 struct simple_pid_list *stopped_pids;
203
204 /* Trivial list manipulation functions to keep track of a list of new
205 stopped processes. */
206
207 static void
208 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
209 {
210 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
211
212 new_pid->pid = pid;
213 new_pid->status = status;
214 new_pid->next = *listp;
215 *listp = new_pid;
216 }
217
218 static int
219 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
220 {
221 struct simple_pid_list **p;
222
223 for (p = listp; *p != NULL; p = &(*p)->next)
224 if ((*p)->pid == pid)
225 {
226 struct simple_pid_list *next = (*p)->next;
227
228 *statusp = (*p)->status;
229 xfree (*p);
230 *p = next;
231 return 1;
232 }
233 return 0;
234 }
235
236 enum stopping_threads_kind
237 {
238 /* Not stopping threads presently. */
239 NOT_STOPPING_THREADS,
240
241 /* Stopping threads. */
242 STOPPING_THREADS,
243
244 /* Stopping and suspending threads. */
245 STOPPING_AND_SUSPENDING_THREADS
246 };
247
248 /* This is set while stop_all_lwps is in effect. */
249 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
250
251 /* FIXME make into a target method? */
252 int using_threads = 1;
253
254 /* True if we're presently stabilizing threads (moving them out of
255 jump pads). */
256 static int stabilizing_threads;
257
258 static void linux_resume_one_lwp (struct lwp_info *lwp,
259 int step, int signal, siginfo_t *info);
260 static void linux_resume (struct thread_resume *resume_info, size_t n);
261 static void stop_all_lwps (int suspend, struct lwp_info *except);
262 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
263 static void unsuspend_all_lwps (struct lwp_info *except);
264 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
265 int *wstat, int options);
266 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
267 static struct lwp_info *add_lwp (ptid_t ptid);
268 static void linux_mourn (struct process_info *process);
269 static int linux_stopped_by_watchpoint (void);
270 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
271 static int lwp_is_marked_dead (struct lwp_info *lwp);
272 static void proceed_all_lwps (void);
273 static int finish_step_over (struct lwp_info *lwp);
274 static int kill_lwp (unsigned long lwpid, int signo);
275 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
276 static void complete_ongoing_step_over (void);
277 static int linux_low_ptrace_options (int attached);
278 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
279 static int proceed_one_lwp (struct inferior_list_entry *entry, void *except);
280
281 /* When the event-loop is doing a step-over, this points at the thread
282 being stepped. */
283 ptid_t step_over_bkpt;
284
285 /* True if the low target can hardware single-step. */
286
287 static int
288 can_hardware_single_step (void)
289 {
290 if (the_low_target.supports_hardware_single_step != NULL)
291 return the_low_target.supports_hardware_single_step ();
292 else
293 return 0;
294 }
295
296 /* True if the low target can software single-step. Such targets
297 implement the GET_NEXT_PCS callback. */
298
299 static int
300 can_software_single_step (void)
301 {
302 return (the_low_target.get_next_pcs != NULL);
303 }
304
305 /* True if the low target supports memory breakpoints. If so, we'll
306 have a GET_PC implementation. */
307
308 static int
309 supports_breakpoints (void)
310 {
311 return (the_low_target.get_pc != NULL);
312 }
313
314 /* Returns true if this target can support fast tracepoints. This
315 does not mean that the in-process agent has been loaded in the
316 inferior. */
317
318 static int
319 supports_fast_tracepoints (void)
320 {
321 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
322 }
323
324 /* True if LWP is stopped in its stepping range. */
325
326 static int
327 lwp_in_step_range (struct lwp_info *lwp)
328 {
329 CORE_ADDR pc = lwp->stop_pc;
330
331 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
332 }
333
334 struct pending_signals
335 {
336 int signal;
337 siginfo_t info;
338 struct pending_signals *prev;
339 };
340
341 /* The read/write ends of the pipe registered as waitable file in the
342 event loop. */
343 static int linux_event_pipe[2] = { -1, -1 };
344
345 /* True if we're currently in async mode. */
346 #define target_is_async_p() (linux_event_pipe[0] != -1)
347
348 static void send_sigstop (struct lwp_info *lwp);
349 static void wait_for_sigstop (void);
350
351 /* Return non-zero if HEADER is a 64-bit ELF file. */
352
353 static int
354 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
355 {
356 if (header->e_ident[EI_MAG0] == ELFMAG0
357 && header->e_ident[EI_MAG1] == ELFMAG1
358 && header->e_ident[EI_MAG2] == ELFMAG2
359 && header->e_ident[EI_MAG3] == ELFMAG3)
360 {
361 *machine = header->e_machine;
362 return header->e_ident[EI_CLASS] == ELFCLASS64;
363
364 }
365 *machine = EM_NONE;
366 return -1;
367 }
368
369 /* Return non-zero if FILE is a 64-bit ELF file,
370 zero if the file is not a 64-bit ELF file,
371 and -1 if the file is not accessible or doesn't exist. */
372
373 static int
374 elf_64_file_p (const char *file, unsigned int *machine)
375 {
376 Elf64_Ehdr header;
377 int fd;
378
379 fd = open (file, O_RDONLY);
380 if (fd < 0)
381 return -1;
382
383 if (read (fd, &header, sizeof (header)) != sizeof (header))
384 {
385 close (fd);
386 return 0;
387 }
388 close (fd);
389
390 return elf_64_header_p (&header, machine);
391 }
392
393 /* Accepts an integer PID; Returns true if the executable PID is
394 running is a 64-bit ELF file.. */
395
396 int
397 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
398 {
399 char file[PATH_MAX];
400
401 sprintf (file, "/proc/%d/exe", pid);
402 return elf_64_file_p (file, machine);
403 }
404
405 static void
406 delete_lwp (struct lwp_info *lwp)
407 {
408 struct thread_info *thr = get_lwp_thread (lwp);
409
410 if (debug_threads)
411 debug_printf ("deleting %ld\n", lwpid_of (thr));
412
413 remove_thread (thr);
414 free (lwp->arch_private);
415 free (lwp);
416 }
417
418 /* Add a process to the common process list, and set its private
419 data. */
420
421 static struct process_info *
422 linux_add_process (int pid, int attached)
423 {
424 struct process_info *proc;
425
426 proc = add_process (pid, attached);
427 proc->priv = XCNEW (struct process_info_private);
428
429 if (the_low_target.new_process != NULL)
430 proc->priv->arch_private = the_low_target.new_process ();
431
432 return proc;
433 }
434
435 static CORE_ADDR get_pc (struct lwp_info *lwp);
436
437 /* Call the target arch_setup function on the current thread. */
438
439 static void
440 linux_arch_setup (void)
441 {
442 the_low_target.arch_setup ();
443 }
444
445 /* Call the target arch_setup function on THREAD. */
446
447 static void
448 linux_arch_setup_thread (struct thread_info *thread)
449 {
450 struct thread_info *saved_thread;
451
452 saved_thread = current_thread;
453 current_thread = thread;
454
455 linux_arch_setup ();
456
457 current_thread = saved_thread;
458 }
459
460 /* Handle a GNU/Linux extended wait response. If we see a clone,
461 fork, or vfork event, we need to add the new LWP to our list
462 (and return 0 so as not to report the trap to higher layers).
463 If we see an exec event, we will modify ORIG_EVENT_LWP to point
464 to a new LWP representing the new program. */
465
466 static int
467 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
468 {
469 struct lwp_info *event_lwp = *orig_event_lwp;
470 int event = linux_ptrace_get_extended_event (wstat);
471 struct thread_info *event_thr = get_lwp_thread (event_lwp);
472 struct lwp_info *new_lwp;
473
474 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
475
476 /* All extended events we currently use are mid-syscall. Only
477 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
478 you have to be using PTRACE_SEIZE to get that. */
479 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
480
481 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
482 || (event == PTRACE_EVENT_CLONE))
483 {
484 ptid_t ptid;
485 unsigned long new_pid;
486 int ret, status;
487
488 /* Get the pid of the new lwp. */
489 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
490 &new_pid);
491
492 /* If we haven't already seen the new PID stop, wait for it now. */
493 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
494 {
495 /* The new child has a pending SIGSTOP. We can't affect it until it
496 hits the SIGSTOP, but we're already attached. */
497
498 ret = my_waitpid (new_pid, &status, __WALL);
499
500 if (ret == -1)
501 perror_with_name ("waiting for new child");
502 else if (ret != new_pid)
503 warning ("wait returned unexpected PID %d", ret);
504 else if (!WIFSTOPPED (status))
505 warning ("wait returned unexpected status 0x%x", status);
506 }
507
508 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
509 {
510 struct process_info *parent_proc;
511 struct process_info *child_proc;
512 struct lwp_info *child_lwp;
513 struct thread_info *child_thr;
514 struct target_desc *tdesc;
515
516 ptid = ptid_build (new_pid, new_pid, 0);
517
518 if (debug_threads)
519 {
520 debug_printf ("HEW: Got fork event from LWP %ld, "
521 "new child is %d\n",
522 ptid_get_lwp (ptid_of (event_thr)),
523 ptid_get_pid (ptid));
524 }
525
526 /* Add the new process to the tables and clone the breakpoint
527 lists of the parent. We need to do this even if the new process
528 will be detached, since we will need the process object and the
529 breakpoints to remove any breakpoints from memory when we
530 detach, and the client side will access registers. */
531 child_proc = linux_add_process (new_pid, 0);
532 gdb_assert (child_proc != NULL);
533 child_lwp = add_lwp (ptid);
534 gdb_assert (child_lwp != NULL);
535 child_lwp->stopped = 1;
536 child_lwp->must_set_ptrace_flags = 1;
537 child_lwp->status_pending_p = 0;
538 child_thr = get_lwp_thread (child_lwp);
539 child_thr->last_resume_kind = resume_stop;
540 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
541
542 /* If we're suspending all threads, leave this one suspended
543 too. If the fork/clone parent is stepping over a breakpoint,
544 all other threads have been suspended already. Leave the
545 child suspended too. */
546 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
547 || event_lwp->bp_reinsert != 0)
548 {
549 if (debug_threads)
550 debug_printf ("HEW: leaving child suspended\n");
551 child_lwp->suspended = 1;
552 }
553
554 parent_proc = get_thread_process (event_thr);
555 child_proc->attached = parent_proc->attached;
556
557 if (event_lwp->bp_reinsert != 0
558 && can_software_single_step ()
559 && event == PTRACE_EVENT_VFORK)
560 {
561 /* If we leave single-step breakpoints there, child will
562 hit it, so uninsert single-step breakpoints from parent
563 (and child). Once vfork child is done, reinsert
564 them back to parent. */
565 uninsert_single_step_breakpoints (event_thr);
566 }
567
568 clone_all_breakpoints (child_thr, event_thr);
569
570 tdesc = XNEW (struct target_desc);
571 copy_target_description (tdesc, parent_proc->tdesc);
572 child_proc->tdesc = tdesc;
573
574 /* Clone arch-specific process data. */
575 if (the_low_target.new_fork != NULL)
576 the_low_target.new_fork (parent_proc, child_proc);
577
578 /* Save fork info in the parent thread. */
579 if (event == PTRACE_EVENT_FORK)
580 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
581 else if (event == PTRACE_EVENT_VFORK)
582 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
583
584 event_lwp->waitstatus.value.related_pid = ptid;
585
586 /* The status_pending field contains bits denoting the
587 extended event, so when the pending event is handled,
588 the handler will look at lwp->waitstatus. */
589 event_lwp->status_pending_p = 1;
590 event_lwp->status_pending = wstat;
591
592 /* Link the threads until the parent event is passed on to
593 higher layers. */
594 event_lwp->fork_relative = child_lwp;
595 child_lwp->fork_relative = event_lwp;
596
597 /* If the parent thread is doing step-over with single-step
598 breakpoints, the list of single-step breakpoints are cloned
599 from the parent's. Remove them from the child process.
600 In case of vfork, we'll reinsert them back once vforked
601 child is done. */
602 if (event_lwp->bp_reinsert != 0
603 && can_software_single_step ())
604 {
605 /* The child process is forked and stopped, so it is safe
606 to access its memory without stopping all other threads
607 from other processes. */
608 delete_single_step_breakpoints (child_thr);
609
610 gdb_assert (has_single_step_breakpoints (event_thr));
611 gdb_assert (!has_single_step_breakpoints (child_thr));
612 }
613
614 /* Report the event. */
615 return 0;
616 }
617
618 if (debug_threads)
619 debug_printf ("HEW: Got clone event "
620 "from LWP %ld, new child is LWP %ld\n",
621 lwpid_of (event_thr), new_pid);
622
623 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
624 new_lwp = add_lwp (ptid);
625
626 /* Either we're going to immediately resume the new thread
627 or leave it stopped. linux_resume_one_lwp is a nop if it
628 thinks the thread is currently running, so set this first
629 before calling linux_resume_one_lwp. */
630 new_lwp->stopped = 1;
631
632 /* If we're suspending all threads, leave this one suspended
633 too. If the fork/clone parent is stepping over a breakpoint,
634 all other threads have been suspended already. Leave the
635 child suspended too. */
636 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
637 || event_lwp->bp_reinsert != 0)
638 new_lwp->suspended = 1;
639
640 /* Normally we will get the pending SIGSTOP. But in some cases
641 we might get another signal delivered to the group first.
642 If we do get another signal, be sure not to lose it. */
643 if (WSTOPSIG (status) != SIGSTOP)
644 {
645 new_lwp->stop_expected = 1;
646 new_lwp->status_pending_p = 1;
647 new_lwp->status_pending = status;
648 }
649 else if (report_thread_events)
650 {
651 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
652 new_lwp->status_pending_p = 1;
653 new_lwp->status_pending = status;
654 }
655
656 /* Don't report the event. */
657 return 1;
658 }
659 else if (event == PTRACE_EVENT_VFORK_DONE)
660 {
661 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
662
663 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
664 {
665 reinsert_single_step_breakpoints (event_thr);
666
667 gdb_assert (has_single_step_breakpoints (event_thr));
668 }
669
670 /* Report the event. */
671 return 0;
672 }
673 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
674 {
675 struct process_info *proc;
676 VEC (int) *syscalls_to_catch;
677 ptid_t event_ptid;
678 pid_t event_pid;
679
680 if (debug_threads)
681 {
682 debug_printf ("HEW: Got exec event from LWP %ld\n",
683 lwpid_of (event_thr));
684 }
685
686 /* Get the event ptid. */
687 event_ptid = ptid_of (event_thr);
688 event_pid = ptid_get_pid (event_ptid);
689
690 /* Save the syscall list from the execing process. */
691 proc = get_thread_process (event_thr);
692 syscalls_to_catch = proc->syscalls_to_catch;
693 proc->syscalls_to_catch = NULL;
694
695 /* Delete the execing process and all its threads. */
696 linux_mourn (proc);
697 current_thread = NULL;
698
699 /* Create a new process/lwp/thread. */
700 proc = linux_add_process (event_pid, 0);
701 event_lwp = add_lwp (event_ptid);
702 event_thr = get_lwp_thread (event_lwp);
703 gdb_assert (current_thread == event_thr);
704 linux_arch_setup_thread (event_thr);
705
706 /* Set the event status. */
707 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
708 event_lwp->waitstatus.value.execd_pathname
709 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
710
711 /* Mark the exec status as pending. */
712 event_lwp->stopped = 1;
713 event_lwp->status_pending_p = 1;
714 event_lwp->status_pending = wstat;
715 event_thr->last_resume_kind = resume_continue;
716 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
717
718 /* Update syscall state in the new lwp, effectively mid-syscall too. */
719 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
720
721 /* Restore the list to catch. Don't rely on the client, which is free
722 to avoid sending a new list when the architecture doesn't change.
723 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
724 proc->syscalls_to_catch = syscalls_to_catch;
725
726 /* Report the event. */
727 *orig_event_lwp = event_lwp;
728 return 0;
729 }
730
731 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
732 }
733
734 /* Return the PC as read from the regcache of LWP, without any
735 adjustment. */
736
737 static CORE_ADDR
738 get_pc (struct lwp_info *lwp)
739 {
740 struct thread_info *saved_thread;
741 struct regcache *regcache;
742 CORE_ADDR pc;
743
744 if (the_low_target.get_pc == NULL)
745 return 0;
746
747 saved_thread = current_thread;
748 current_thread = get_lwp_thread (lwp);
749
750 regcache = get_thread_regcache (current_thread, 1);
751 pc = (*the_low_target.get_pc) (regcache);
752
753 if (debug_threads)
754 debug_printf ("pc is 0x%lx\n", (long) pc);
755
756 current_thread = saved_thread;
757 return pc;
758 }
759
760 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
761 Fill *SYSNO with the syscall nr trapped. */
762
763 static void
764 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
765 {
766 struct thread_info *saved_thread;
767 struct regcache *regcache;
768
769 if (the_low_target.get_syscall_trapinfo == NULL)
770 {
771 /* If we cannot get the syscall trapinfo, report an unknown
772 system call number. */
773 *sysno = UNKNOWN_SYSCALL;
774 return;
775 }
776
777 saved_thread = current_thread;
778 current_thread = get_lwp_thread (lwp);
779
780 regcache = get_thread_regcache (current_thread, 1);
781 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
782
783 if (debug_threads)
784 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
785
786 current_thread = saved_thread;
787 }
788
789 static int check_stopped_by_watchpoint (struct lwp_info *child);
790
791 /* Called when the LWP stopped for a signal/trap. If it stopped for a
792 trap check what caused it (breakpoint, watchpoint, trace, etc.),
793 and save the result in the LWP's stop_reason field. If it stopped
794 for a breakpoint, decrement the PC if necessary on the lwp's
795 architecture. Returns true if we now have the LWP's stop PC. */
796
797 static int
798 save_stop_reason (struct lwp_info *lwp)
799 {
800 CORE_ADDR pc;
801 CORE_ADDR sw_breakpoint_pc;
802 struct thread_info *saved_thread;
803 #if USE_SIGTRAP_SIGINFO
804 siginfo_t siginfo;
805 #endif
806
807 if (the_low_target.get_pc == NULL)
808 return 0;
809
810 pc = get_pc (lwp);
811 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
812
813 /* breakpoint_at reads from the current thread. */
814 saved_thread = current_thread;
815 current_thread = get_lwp_thread (lwp);
816
817 #if USE_SIGTRAP_SIGINFO
818 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
819 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
820 {
821 if (siginfo.si_signo == SIGTRAP)
822 {
823 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
824 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
825 {
826 /* The si_code is ambiguous on this arch -- check debug
827 registers. */
828 if (!check_stopped_by_watchpoint (lwp))
829 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
830 }
831 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
832 {
833 /* If we determine the LWP stopped for a SW breakpoint,
834 trust it. Particularly don't check watchpoint
835 registers, because at least on s390, we'd find
836 stopped-by-watchpoint as long as there's a watchpoint
837 set. */
838 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
839 }
840 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
841 {
842 /* This can indicate either a hardware breakpoint or
843 hardware watchpoint. Check debug registers. */
844 if (!check_stopped_by_watchpoint (lwp))
845 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
846 }
847 else if (siginfo.si_code == TRAP_TRACE)
848 {
849 /* We may have single stepped an instruction that
850 triggered a watchpoint. In that case, on some
851 architectures (such as x86), instead of TRAP_HWBKPT,
852 si_code indicates TRAP_TRACE, and we need to check
853 the debug registers separately. */
854 if (!check_stopped_by_watchpoint (lwp))
855 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
856 }
857 }
858 }
859 #else
860 /* We may have just stepped a breakpoint instruction. E.g., in
861 non-stop mode, GDB first tells the thread A to step a range, and
862 then the user inserts a breakpoint inside the range. In that
863 case we need to report the breakpoint PC. */
864 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
865 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
866 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
867
868 if (hardware_breakpoint_inserted_here (pc))
869 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
870
871 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
872 check_stopped_by_watchpoint (lwp);
873 #endif
874
875 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
876 {
877 if (debug_threads)
878 {
879 struct thread_info *thr = get_lwp_thread (lwp);
880
881 debug_printf ("CSBB: %s stopped by software breakpoint\n",
882 target_pid_to_str (ptid_of (thr)));
883 }
884
885 /* Back up the PC if necessary. */
886 if (pc != sw_breakpoint_pc)
887 {
888 struct regcache *regcache
889 = get_thread_regcache (current_thread, 1);
890 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
891 }
892
893 /* Update this so we record the correct stop PC below. */
894 pc = sw_breakpoint_pc;
895 }
896 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
897 {
898 if (debug_threads)
899 {
900 struct thread_info *thr = get_lwp_thread (lwp);
901
902 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
903 target_pid_to_str (ptid_of (thr)));
904 }
905 }
906 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
907 {
908 if (debug_threads)
909 {
910 struct thread_info *thr = get_lwp_thread (lwp);
911
912 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
913 target_pid_to_str (ptid_of (thr)));
914 }
915 }
916 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
917 {
918 if (debug_threads)
919 {
920 struct thread_info *thr = get_lwp_thread (lwp);
921
922 debug_printf ("CSBB: %s stopped by trace\n",
923 target_pid_to_str (ptid_of (thr)));
924 }
925 }
926
927 lwp->stop_pc = pc;
928 current_thread = saved_thread;
929 return 1;
930 }
931
932 static struct lwp_info *
933 add_lwp (ptid_t ptid)
934 {
935 struct lwp_info *lwp;
936
937 lwp = XCNEW (struct lwp_info);
938
939 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
940
941 if (the_low_target.new_thread != NULL)
942 the_low_target.new_thread (lwp);
943
944 lwp->thread = add_thread (ptid, lwp);
945
946 return lwp;
947 }
948
949 /* Start an inferior process and returns its pid.
950 ALLARGS is a vector of program-name and args. */
951
952 static int
953 linux_create_inferior (char *program, char **allargs)
954 {
955 struct lwp_info *new_lwp;
956 int pid;
957 ptid_t ptid;
958 struct cleanup *restore_personality
959 = maybe_disable_address_space_randomization (disable_randomization);
960
961 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
962 pid = vfork ();
963 #else
964 pid = fork ();
965 #endif
966 if (pid < 0)
967 perror_with_name ("fork");
968
969 if (pid == 0)
970 {
971 close_most_fds ();
972 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
973
974 setpgid (0, 0);
975
976 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
977 stdout to stderr so that inferior i/o doesn't corrupt the connection.
978 Also, redirect stdin to /dev/null. */
979 if (remote_connection_is_stdio ())
980 {
981 close (0);
982 open ("/dev/null", O_RDONLY);
983 dup2 (2, 1);
984 if (write (2, "stdin/stdout redirected\n",
985 sizeof ("stdin/stdout redirected\n") - 1) < 0)
986 {
987 /* Errors ignored. */;
988 }
989 }
990
991 restore_original_signals_state ();
992
993 execv (program, allargs);
994 if (errno == ENOENT)
995 execvp (program, allargs);
996
997 fprintf (stderr, "Cannot exec %s: %s.\n", program,
998 strerror (errno));
999 fflush (stderr);
1000 _exit (0177);
1001 }
1002
1003 do_cleanups (restore_personality);
1004
1005 linux_add_process (pid, 0);
1006
1007 ptid = ptid_build (pid, pid, 0);
1008 new_lwp = add_lwp (ptid);
1009 new_lwp->must_set_ptrace_flags = 1;
1010
1011 return pid;
1012 }
1013
1014 /* Implement the post_create_inferior target_ops method. */
1015
1016 static void
1017 linux_post_create_inferior (void)
1018 {
1019 struct lwp_info *lwp = get_thread_lwp (current_thread);
1020
1021 linux_arch_setup ();
1022
1023 if (lwp->must_set_ptrace_flags)
1024 {
1025 struct process_info *proc = current_process ();
1026 int options = linux_low_ptrace_options (proc->attached);
1027
1028 linux_enable_event_reporting (lwpid_of (current_thread), options);
1029 lwp->must_set_ptrace_flags = 0;
1030 }
1031 }
1032
1033 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1034 error. */
1035
1036 int
1037 linux_attach_lwp (ptid_t ptid)
1038 {
1039 struct lwp_info *new_lwp;
1040 int lwpid = ptid_get_lwp (ptid);
1041
1042 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1043 != 0)
1044 return errno;
1045
1046 new_lwp = add_lwp (ptid);
1047
1048 /* We need to wait for SIGSTOP before being able to make the next
1049 ptrace call on this LWP. */
1050 new_lwp->must_set_ptrace_flags = 1;
1051
1052 if (linux_proc_pid_is_stopped (lwpid))
1053 {
1054 if (debug_threads)
1055 debug_printf ("Attached to a stopped process\n");
1056
1057 /* The process is definitely stopped. It is in a job control
1058 stop, unless the kernel predates the TASK_STOPPED /
1059 TASK_TRACED distinction, in which case it might be in a
1060 ptrace stop. Make sure it is in a ptrace stop; from there we
1061 can kill it, signal it, et cetera.
1062
1063 First make sure there is a pending SIGSTOP. Since we are
1064 already attached, the process can not transition from stopped
1065 to running without a PTRACE_CONT; so we know this signal will
1066 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1067 probably already in the queue (unless this kernel is old
1068 enough to use TASK_STOPPED for ptrace stops); but since
1069 SIGSTOP is not an RT signal, it can only be queued once. */
1070 kill_lwp (lwpid, SIGSTOP);
1071
1072 /* Finally, resume the stopped process. This will deliver the
1073 SIGSTOP (or a higher priority signal, just like normal
1074 PTRACE_ATTACH), which we'll catch later on. */
1075 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1076 }
1077
1078 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1079 brings it to a halt.
1080
1081 There are several cases to consider here:
1082
1083 1) gdbserver has already attached to the process and is being notified
1084 of a new thread that is being created.
1085 In this case we should ignore that SIGSTOP and resume the
1086 process. This is handled below by setting stop_expected = 1,
1087 and the fact that add_thread sets last_resume_kind ==
1088 resume_continue.
1089
1090 2) This is the first thread (the process thread), and we're attaching
1091 to it via attach_inferior.
1092 In this case we want the process thread to stop.
1093 This is handled by having linux_attach set last_resume_kind ==
1094 resume_stop after we return.
1095
1096 If the pid we are attaching to is also the tgid, we attach to and
1097 stop all the existing threads. Otherwise, we attach to pid and
1098 ignore any other threads in the same group as this pid.
1099
1100 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1101 existing threads.
1102 In this case we want the thread to stop.
1103 FIXME: This case is currently not properly handled.
1104 We should wait for the SIGSTOP but don't. Things work apparently
1105 because enough time passes between when we ptrace (ATTACH) and when
1106 gdb makes the next ptrace call on the thread.
1107
1108 On the other hand, if we are currently trying to stop all threads, we
1109 should treat the new thread as if we had sent it a SIGSTOP. This works
1110 because we are guaranteed that the add_lwp call above added us to the
1111 end of the list, and so the new thread has not yet reached
1112 wait_for_sigstop (but will). */
1113 new_lwp->stop_expected = 1;
1114
1115 return 0;
1116 }
1117
1118 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1119 already attached. Returns true if a new LWP is found, false
1120 otherwise. */
1121
1122 static int
1123 attach_proc_task_lwp_callback (ptid_t ptid)
1124 {
1125 /* Is this a new thread? */
1126 if (find_thread_ptid (ptid) == NULL)
1127 {
1128 int lwpid = ptid_get_lwp (ptid);
1129 int err;
1130
1131 if (debug_threads)
1132 debug_printf ("Found new lwp %d\n", lwpid);
1133
1134 err = linux_attach_lwp (ptid);
1135
1136 /* Be quiet if we simply raced with the thread exiting. EPERM
1137 is returned if the thread's task still exists, and is marked
1138 as exited or zombie, as well as other conditions, so in that
1139 case, confirm the status in /proc/PID/status. */
1140 if (err == ESRCH
1141 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1142 {
1143 if (debug_threads)
1144 {
1145 debug_printf ("Cannot attach to lwp %d: "
1146 "thread is gone (%d: %s)\n",
1147 lwpid, err, strerror (err));
1148 }
1149 }
1150 else if (err != 0)
1151 {
1152 warning (_("Cannot attach to lwp %d: %s"),
1153 lwpid,
1154 linux_ptrace_attach_fail_reason_string (ptid, err));
1155 }
1156
1157 return 1;
1158 }
1159 return 0;
1160 }
1161
1162 static void async_file_mark (void);
1163
1164 /* Attach to PID. If PID is the tgid, attach to it and all
1165 of its threads. */
1166
1167 static int
1168 linux_attach (unsigned long pid)
1169 {
1170 struct process_info *proc;
1171 struct thread_info *initial_thread;
1172 ptid_t ptid = ptid_build (pid, pid, 0);
1173 int err;
1174
1175 /* Attach to PID. We will check for other threads
1176 soon. */
1177 err = linux_attach_lwp (ptid);
1178 if (err != 0)
1179 error ("Cannot attach to process %ld: %s",
1180 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1181
1182 proc = linux_add_process (pid, 1);
1183
1184 /* Don't ignore the initial SIGSTOP if we just attached to this
1185 process. It will be collected by wait shortly. */
1186 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1187 initial_thread->last_resume_kind = resume_stop;
1188
1189 /* We must attach to every LWP. If /proc is mounted, use that to
1190 find them now. On the one hand, the inferior may be using raw
1191 clone instead of using pthreads. On the other hand, even if it
1192 is using pthreads, GDB may not be connected yet (thread_db needs
1193 to do symbol lookups, through qSymbol). Also, thread_db walks
1194 structures in the inferior's address space to find the list of
1195 threads/LWPs, and those structures may well be corrupted. Note
1196 that once thread_db is loaded, we'll still use it to list threads
1197 and associate pthread info with each LWP. */
1198 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1199
1200 /* GDB will shortly read the xml target description for this
1201 process, to figure out the process' architecture. But the target
1202 description is only filled in when the first process/thread in
1203 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1204 that now, otherwise, if GDB is fast enough, it could read the
1205 target description _before_ that initial stop. */
1206 if (non_stop)
1207 {
1208 struct lwp_info *lwp;
1209 int wstat, lwpid;
1210 ptid_t pid_ptid = pid_to_ptid (pid);
1211
1212 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1213 &wstat, __WALL);
1214 gdb_assert (lwpid > 0);
1215
1216 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1217
1218 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1219 {
1220 lwp->status_pending_p = 1;
1221 lwp->status_pending = wstat;
1222 }
1223
1224 initial_thread->last_resume_kind = resume_continue;
1225
1226 async_file_mark ();
1227
1228 gdb_assert (proc->tdesc != NULL);
1229 }
1230
1231 return 0;
1232 }
1233
1234 struct counter
1235 {
1236 int pid;
1237 int count;
1238 };
1239
1240 static int
1241 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1242 {
1243 struct counter *counter = (struct counter *) args;
1244
1245 if (ptid_get_pid (entry->id) == counter->pid)
1246 {
1247 if (++counter->count > 1)
1248 return 1;
1249 }
1250
1251 return 0;
1252 }
1253
1254 static int
1255 last_thread_of_process_p (int pid)
1256 {
1257 struct counter counter = { pid , 0 };
1258
1259 return (find_inferior (&all_threads,
1260 second_thread_of_pid_p, &counter) == NULL);
1261 }
1262
1263 /* Kill LWP. */
1264
1265 static void
1266 linux_kill_one_lwp (struct lwp_info *lwp)
1267 {
1268 struct thread_info *thr = get_lwp_thread (lwp);
1269 int pid = lwpid_of (thr);
1270
1271 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1272 there is no signal context, and ptrace(PTRACE_KILL) (or
1273 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1274 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1275 alternative is to kill with SIGKILL. We only need one SIGKILL
1276 per process, not one for each thread. But since we still support
1277 support debugging programs using raw clone without CLONE_THREAD,
1278 we send one for each thread. For years, we used PTRACE_KILL
1279 only, so we're being a bit paranoid about some old kernels where
1280 PTRACE_KILL might work better (dubious if there are any such, but
1281 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1282 second, and so we're fine everywhere. */
1283
1284 errno = 0;
1285 kill_lwp (pid, SIGKILL);
1286 if (debug_threads)
1287 {
1288 int save_errno = errno;
1289
1290 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1291 target_pid_to_str (ptid_of (thr)),
1292 save_errno ? strerror (save_errno) : "OK");
1293 }
1294
1295 errno = 0;
1296 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1297 if (debug_threads)
1298 {
1299 int save_errno = errno;
1300
1301 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1302 target_pid_to_str (ptid_of (thr)),
1303 save_errno ? strerror (save_errno) : "OK");
1304 }
1305 }
1306
1307 /* Kill LWP and wait for it to die. */
1308
1309 static void
1310 kill_wait_lwp (struct lwp_info *lwp)
1311 {
1312 struct thread_info *thr = get_lwp_thread (lwp);
1313 int pid = ptid_get_pid (ptid_of (thr));
1314 int lwpid = ptid_get_lwp (ptid_of (thr));
1315 int wstat;
1316 int res;
1317
1318 if (debug_threads)
1319 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1320
1321 do
1322 {
1323 linux_kill_one_lwp (lwp);
1324
1325 /* Make sure it died. Notes:
1326
1327 - The loop is most likely unnecessary.
1328
1329 - We don't use linux_wait_for_event as that could delete lwps
1330 while we're iterating over them. We're not interested in
1331 any pending status at this point, only in making sure all
1332 wait status on the kernel side are collected until the
1333 process is reaped.
1334
1335 - We don't use __WALL here as the __WALL emulation relies on
1336 SIGCHLD, and killing a stopped process doesn't generate
1337 one, nor an exit status.
1338 */
1339 res = my_waitpid (lwpid, &wstat, 0);
1340 if (res == -1 && errno == ECHILD)
1341 res = my_waitpid (lwpid, &wstat, __WCLONE);
1342 } while (res > 0 && WIFSTOPPED (wstat));
1343
1344 /* Even if it was stopped, the child may have already disappeared.
1345 E.g., if it was killed by SIGKILL. */
1346 if (res < 0 && errno != ECHILD)
1347 perror_with_name ("kill_wait_lwp");
1348 }
1349
1350 /* Callback for `find_inferior'. Kills an lwp of a given process,
1351 except the leader. */
1352
1353 static int
1354 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1355 {
1356 struct thread_info *thread = (struct thread_info *) entry;
1357 struct lwp_info *lwp = get_thread_lwp (thread);
1358 int pid = * (int *) args;
1359
1360 if (ptid_get_pid (entry->id) != pid)
1361 return 0;
1362
1363 /* We avoid killing the first thread here, because of a Linux kernel (at
1364 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1365 the children get a chance to be reaped, it will remain a zombie
1366 forever. */
1367
1368 if (lwpid_of (thread) == pid)
1369 {
1370 if (debug_threads)
1371 debug_printf ("lkop: is last of process %s\n",
1372 target_pid_to_str (entry->id));
1373 return 0;
1374 }
1375
1376 kill_wait_lwp (lwp);
1377 return 0;
1378 }
1379
1380 static int
1381 linux_kill (int pid)
1382 {
1383 struct process_info *process;
1384 struct lwp_info *lwp;
1385
1386 process = find_process_pid (pid);
1387 if (process == NULL)
1388 return -1;
1389
1390 /* If we're killing a running inferior, make sure it is stopped
1391 first, as PTRACE_KILL will not work otherwise. */
1392 stop_all_lwps (0, NULL);
1393
1394 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1395
1396 /* See the comment in linux_kill_one_lwp. We did not kill the first
1397 thread in the list, so do so now. */
1398 lwp = find_lwp_pid (pid_to_ptid (pid));
1399
1400 if (lwp == NULL)
1401 {
1402 if (debug_threads)
1403 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1404 pid);
1405 }
1406 else
1407 kill_wait_lwp (lwp);
1408
1409 the_target->mourn (process);
1410
1411 /* Since we presently can only stop all lwps of all processes, we
1412 need to unstop lwps of other processes. */
1413 unstop_all_lwps (0, NULL);
1414 return 0;
1415 }
1416
1417 /* Get pending signal of THREAD, for detaching purposes. This is the
1418 signal the thread last stopped for, which we need to deliver to the
1419 thread when detaching, otherwise, it'd be suppressed/lost. */
1420
1421 static int
1422 get_detach_signal (struct thread_info *thread)
1423 {
1424 enum gdb_signal signo = GDB_SIGNAL_0;
1425 int status;
1426 struct lwp_info *lp = get_thread_lwp (thread);
1427
1428 if (lp->status_pending_p)
1429 status = lp->status_pending;
1430 else
1431 {
1432 /* If the thread had been suspended by gdbserver, and it stopped
1433 cleanly, then it'll have stopped with SIGSTOP. But we don't
1434 want to deliver that SIGSTOP. */
1435 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1436 || thread->last_status.value.sig == GDB_SIGNAL_0)
1437 return 0;
1438
1439 /* Otherwise, we may need to deliver the signal we
1440 intercepted. */
1441 status = lp->last_status;
1442 }
1443
1444 if (!WIFSTOPPED (status))
1445 {
1446 if (debug_threads)
1447 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1448 target_pid_to_str (ptid_of (thread)));
1449 return 0;
1450 }
1451
1452 /* Extended wait statuses aren't real SIGTRAPs. */
1453 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1454 {
1455 if (debug_threads)
1456 debug_printf ("GPS: lwp %s had stopped with extended "
1457 "status: no pending signal\n",
1458 target_pid_to_str (ptid_of (thread)));
1459 return 0;
1460 }
1461
1462 signo = gdb_signal_from_host (WSTOPSIG (status));
1463
1464 if (program_signals_p && !program_signals[signo])
1465 {
1466 if (debug_threads)
1467 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1468 target_pid_to_str (ptid_of (thread)),
1469 gdb_signal_to_string (signo));
1470 return 0;
1471 }
1472 else if (!program_signals_p
1473 /* If we have no way to know which signals GDB does not
1474 want to have passed to the program, assume
1475 SIGTRAP/SIGINT, which is GDB's default. */
1476 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1477 {
1478 if (debug_threads)
1479 debug_printf ("GPS: lwp %s had signal %s, "
1480 "but we don't know if we should pass it. "
1481 "Default to not.\n",
1482 target_pid_to_str (ptid_of (thread)),
1483 gdb_signal_to_string (signo));
1484 return 0;
1485 }
1486 else
1487 {
1488 if (debug_threads)
1489 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1490 target_pid_to_str (ptid_of (thread)),
1491 gdb_signal_to_string (signo));
1492
1493 return WSTOPSIG (status);
1494 }
1495 }
1496
1497 /* Detach from LWP. */
1498
1499 static void
1500 linux_detach_one_lwp (struct lwp_info *lwp)
1501 {
1502 struct thread_info *thread = get_lwp_thread (lwp);
1503 int sig;
1504 int lwpid;
1505
1506 /* If there is a pending SIGSTOP, get rid of it. */
1507 if (lwp->stop_expected)
1508 {
1509 if (debug_threads)
1510 debug_printf ("Sending SIGCONT to %s\n",
1511 target_pid_to_str (ptid_of (thread)));
1512
1513 kill_lwp (lwpid_of (thread), SIGCONT);
1514 lwp->stop_expected = 0;
1515 }
1516
1517 /* Pass on any pending signal for this thread. */
1518 sig = get_detach_signal (thread);
1519
1520 /* Preparing to resume may try to write registers, and fail if the
1521 lwp is zombie. If that happens, ignore the error. We'll handle
1522 it below, when detach fails with ESRCH. */
1523 TRY
1524 {
1525 /* Flush any pending changes to the process's registers. */
1526 regcache_invalidate_thread (thread);
1527
1528 /* Finally, let it resume. */
1529 if (the_low_target.prepare_to_resume != NULL)
1530 the_low_target.prepare_to_resume (lwp);
1531 }
1532 CATCH (ex, RETURN_MASK_ERROR)
1533 {
1534 if (!check_ptrace_stopped_lwp_gone (lwp))
1535 throw_exception (ex);
1536 }
1537 END_CATCH
1538
1539 lwpid = lwpid_of (thread);
1540 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1541 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1542 {
1543 int save_errno = errno;
1544
1545 /* We know the thread exists, so ESRCH must mean the lwp is
1546 zombie. This can happen if one of the already-detached
1547 threads exits the whole thread group. In that case we're
1548 still attached, and must reap the lwp. */
1549 if (save_errno == ESRCH)
1550 {
1551 int ret, status;
1552
1553 ret = my_waitpid (lwpid, &status, __WALL);
1554 if (ret == -1)
1555 {
1556 warning (_("Couldn't reap LWP %d while detaching: %s"),
1557 lwpid, strerror (errno));
1558 }
1559 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1560 {
1561 warning (_("Reaping LWP %d while detaching "
1562 "returned unexpected status 0x%x"),
1563 lwpid, status);
1564 }
1565 }
1566 else
1567 {
1568 error (_("Can't detach %s: %s"),
1569 target_pid_to_str (ptid_of (thread)),
1570 strerror (save_errno));
1571 }
1572 }
1573 else if (debug_threads)
1574 {
1575 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1576 target_pid_to_str (ptid_of (thread)),
1577 strsignal (sig));
1578 }
1579
1580 delete_lwp (lwp);
1581 }
1582
1583 /* Callback for find_inferior. Detaches from non-leader threads of a
1584 given process. */
1585
1586 static int
1587 linux_detach_lwp_callback (struct inferior_list_entry *entry, void *args)
1588 {
1589 struct thread_info *thread = (struct thread_info *) entry;
1590 struct lwp_info *lwp = get_thread_lwp (thread);
1591 int pid = *(int *) args;
1592 int lwpid = lwpid_of (thread);
1593
1594 /* Skip other processes. */
1595 if (ptid_get_pid (entry->id) != pid)
1596 return 0;
1597
1598 /* We don't actually detach from the thread group leader just yet.
1599 If the thread group exits, we must reap the zombie clone lwps
1600 before we're able to reap the leader. */
1601 if (ptid_get_pid (entry->id) == lwpid)
1602 return 0;
1603
1604 linux_detach_one_lwp (lwp);
1605 return 0;
1606 }
1607
1608 static int
1609 linux_detach (int pid)
1610 {
1611 struct process_info *process;
1612 struct lwp_info *main_lwp;
1613
1614 process = find_process_pid (pid);
1615 if (process == NULL)
1616 return -1;
1617
1618 /* As there's a step over already in progress, let it finish first,
1619 otherwise nesting a stabilize_threads operation on top gets real
1620 messy. */
1621 complete_ongoing_step_over ();
1622
1623 /* Stop all threads before detaching. First, ptrace requires that
1624 the thread is stopped to sucessfully detach. Second, thread_db
1625 may need to uninstall thread event breakpoints from memory, which
1626 only works with a stopped process anyway. */
1627 stop_all_lwps (0, NULL);
1628
1629 #ifdef USE_THREAD_DB
1630 thread_db_detach (process);
1631 #endif
1632
1633 /* Stabilize threads (move out of jump pads). */
1634 stabilize_threads ();
1635
1636 /* Detach from the clone lwps first. If the thread group exits just
1637 while we're detaching, we must reap the clone lwps before we're
1638 able to reap the leader. */
1639 find_inferior (&all_threads, linux_detach_lwp_callback, &pid);
1640
1641 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1642 linux_detach_one_lwp (main_lwp);
1643
1644 the_target->mourn (process);
1645
1646 /* Since we presently can only stop all lwps of all processes, we
1647 need to unstop lwps of other processes. */
1648 unstop_all_lwps (0, NULL);
1649 return 0;
1650 }
1651
1652 /* Remove all LWPs that belong to process PROC from the lwp list. */
1653
1654 static int
1655 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1656 {
1657 struct thread_info *thread = (struct thread_info *) entry;
1658 struct lwp_info *lwp = get_thread_lwp (thread);
1659 struct process_info *process = (struct process_info *) proc;
1660
1661 if (pid_of (thread) == pid_of (process))
1662 delete_lwp (lwp);
1663
1664 return 0;
1665 }
1666
1667 static void
1668 linux_mourn (struct process_info *process)
1669 {
1670 struct process_info_private *priv;
1671
1672 #ifdef USE_THREAD_DB
1673 thread_db_mourn (process);
1674 #endif
1675
1676 find_inferior (&all_threads, delete_lwp_callback, process);
1677
1678 /* Freeing all private data. */
1679 priv = process->priv;
1680 free (priv->arch_private);
1681 free (priv);
1682 process->priv = NULL;
1683
1684 remove_process (process);
1685 }
1686
1687 static void
1688 linux_join (int pid)
1689 {
1690 int status, ret;
1691
1692 do {
1693 ret = my_waitpid (pid, &status, 0);
1694 if (WIFEXITED (status) || WIFSIGNALED (status))
1695 break;
1696 } while (ret != -1 || errno != ECHILD);
1697 }
1698
1699 /* Return nonzero if the given thread is still alive. */
1700 static int
1701 linux_thread_alive (ptid_t ptid)
1702 {
1703 struct lwp_info *lwp = find_lwp_pid (ptid);
1704
1705 /* We assume we always know if a thread exits. If a whole process
1706 exited but we still haven't been able to report it to GDB, we'll
1707 hold on to the last lwp of the dead process. */
1708 if (lwp != NULL)
1709 return !lwp_is_marked_dead (lwp);
1710 else
1711 return 0;
1712 }
1713
1714 /* Return 1 if this lwp still has an interesting status pending. If
1715 not (e.g., it had stopped for a breakpoint that is gone), return
1716 false. */
1717
1718 static int
1719 thread_still_has_status_pending_p (struct thread_info *thread)
1720 {
1721 struct lwp_info *lp = get_thread_lwp (thread);
1722
1723 if (!lp->status_pending_p)
1724 return 0;
1725
1726 if (thread->last_resume_kind != resume_stop
1727 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1728 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1729 {
1730 struct thread_info *saved_thread;
1731 CORE_ADDR pc;
1732 int discard = 0;
1733
1734 gdb_assert (lp->last_status != 0);
1735
1736 pc = get_pc (lp);
1737
1738 saved_thread = current_thread;
1739 current_thread = thread;
1740
1741 if (pc != lp->stop_pc)
1742 {
1743 if (debug_threads)
1744 debug_printf ("PC of %ld changed\n",
1745 lwpid_of (thread));
1746 discard = 1;
1747 }
1748
1749 #if !USE_SIGTRAP_SIGINFO
1750 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1751 && !(*the_low_target.breakpoint_at) (pc))
1752 {
1753 if (debug_threads)
1754 debug_printf ("previous SW breakpoint of %ld gone\n",
1755 lwpid_of (thread));
1756 discard = 1;
1757 }
1758 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1759 && !hardware_breakpoint_inserted_here (pc))
1760 {
1761 if (debug_threads)
1762 debug_printf ("previous HW breakpoint of %ld gone\n",
1763 lwpid_of (thread));
1764 discard = 1;
1765 }
1766 #endif
1767
1768 current_thread = saved_thread;
1769
1770 if (discard)
1771 {
1772 if (debug_threads)
1773 debug_printf ("discarding pending breakpoint status\n");
1774 lp->status_pending_p = 0;
1775 return 0;
1776 }
1777 }
1778
1779 return 1;
1780 }
1781
1782 /* Returns true if LWP is resumed from the client's perspective. */
1783
1784 static int
1785 lwp_resumed (struct lwp_info *lwp)
1786 {
1787 struct thread_info *thread = get_lwp_thread (lwp);
1788
1789 if (thread->last_resume_kind != resume_stop)
1790 return 1;
1791
1792 /* Did gdb send us a `vCont;t', but we haven't reported the
1793 corresponding stop to gdb yet? If so, the thread is still
1794 resumed/running from gdb's perspective. */
1795 if (thread->last_resume_kind == resume_stop
1796 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1797 return 1;
1798
1799 return 0;
1800 }
1801
1802 /* Return 1 if this lwp has an interesting status pending. */
1803 static int
1804 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1805 {
1806 struct thread_info *thread = (struct thread_info *) entry;
1807 struct lwp_info *lp = get_thread_lwp (thread);
1808 ptid_t ptid = * (ptid_t *) arg;
1809
1810 /* Check if we're only interested in events from a specific process
1811 or a specific LWP. */
1812 if (!ptid_match (ptid_of (thread), ptid))
1813 return 0;
1814
1815 if (!lwp_resumed (lp))
1816 return 0;
1817
1818 if (lp->status_pending_p
1819 && !thread_still_has_status_pending_p (thread))
1820 {
1821 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1822 return 0;
1823 }
1824
1825 return lp->status_pending_p;
1826 }
1827
1828 static int
1829 same_lwp (struct inferior_list_entry *entry, void *data)
1830 {
1831 ptid_t ptid = *(ptid_t *) data;
1832 int lwp;
1833
1834 if (ptid_get_lwp (ptid) != 0)
1835 lwp = ptid_get_lwp (ptid);
1836 else
1837 lwp = ptid_get_pid (ptid);
1838
1839 if (ptid_get_lwp (entry->id) == lwp)
1840 return 1;
1841
1842 return 0;
1843 }
1844
1845 struct lwp_info *
1846 find_lwp_pid (ptid_t ptid)
1847 {
1848 struct inferior_list_entry *thread
1849 = find_inferior (&all_threads, same_lwp, &ptid);
1850
1851 if (thread == NULL)
1852 return NULL;
1853
1854 return get_thread_lwp ((struct thread_info *) thread);
1855 }
1856
1857 /* Return the number of known LWPs in the tgid given by PID. */
1858
1859 static int
1860 num_lwps (int pid)
1861 {
1862 struct inferior_list_entry *inf, *tmp;
1863 int count = 0;
1864
1865 ALL_INFERIORS (&all_threads, inf, tmp)
1866 {
1867 if (ptid_get_pid (inf->id) == pid)
1868 count++;
1869 }
1870
1871 return count;
1872 }
1873
1874 /* The arguments passed to iterate_over_lwps. */
1875
1876 struct iterate_over_lwps_args
1877 {
1878 /* The FILTER argument passed to iterate_over_lwps. */
1879 ptid_t filter;
1880
1881 /* The CALLBACK argument passed to iterate_over_lwps. */
1882 iterate_over_lwps_ftype *callback;
1883
1884 /* The DATA argument passed to iterate_over_lwps. */
1885 void *data;
1886 };
1887
1888 /* Callback for find_inferior used by iterate_over_lwps to filter
1889 calls to the callback supplied to that function. Returning a
1890 nonzero value causes find_inferiors to stop iterating and return
1891 the current inferior_list_entry. Returning zero indicates that
1892 find_inferiors should continue iterating. */
1893
1894 static int
1895 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1896 {
1897 struct iterate_over_lwps_args *args
1898 = (struct iterate_over_lwps_args *) args_p;
1899
1900 if (ptid_match (entry->id, args->filter))
1901 {
1902 struct thread_info *thr = (struct thread_info *) entry;
1903 struct lwp_info *lwp = get_thread_lwp (thr);
1904
1905 return (*args->callback) (lwp, args->data);
1906 }
1907
1908 return 0;
1909 }
1910
1911 /* See nat/linux-nat.h. */
1912
1913 struct lwp_info *
1914 iterate_over_lwps (ptid_t filter,
1915 iterate_over_lwps_ftype callback,
1916 void *data)
1917 {
1918 struct iterate_over_lwps_args args = {filter, callback, data};
1919 struct inferior_list_entry *entry;
1920
1921 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1922 if (entry == NULL)
1923 return NULL;
1924
1925 return get_thread_lwp ((struct thread_info *) entry);
1926 }
1927
1928 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1929 their exits until all other threads in the group have exited. */
1930
1931 static void
1932 check_zombie_leaders (void)
1933 {
1934 struct process_info *proc, *tmp;
1935
1936 ALL_PROCESSES (proc, tmp)
1937 {
1938 pid_t leader_pid = pid_of (proc);
1939 struct lwp_info *leader_lp;
1940
1941 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1942
1943 if (debug_threads)
1944 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1945 "num_lwps=%d, zombie=%d\n",
1946 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1947 linux_proc_pid_is_zombie (leader_pid));
1948
1949 if (leader_lp != NULL && !leader_lp->stopped
1950 /* Check if there are other threads in the group, as we may
1951 have raced with the inferior simply exiting. */
1952 && !last_thread_of_process_p (leader_pid)
1953 && linux_proc_pid_is_zombie (leader_pid))
1954 {
1955 /* A leader zombie can mean one of two things:
1956
1957 - It exited, and there's an exit status pending
1958 available, or only the leader exited (not the whole
1959 program). In the latter case, we can't waitpid the
1960 leader's exit status until all other threads are gone.
1961
1962 - There are 3 or more threads in the group, and a thread
1963 other than the leader exec'd. On an exec, the Linux
1964 kernel destroys all other threads (except the execing
1965 one) in the thread group, and resets the execing thread's
1966 tid to the tgid. No exit notification is sent for the
1967 execing thread -- from the ptracer's perspective, it
1968 appears as though the execing thread just vanishes.
1969 Until we reap all other threads except the leader and the
1970 execing thread, the leader will be zombie, and the
1971 execing thread will be in `D (disc sleep)'. As soon as
1972 all other threads are reaped, the execing thread changes
1973 it's tid to the tgid, and the previous (zombie) leader
1974 vanishes, giving place to the "new" leader. We could try
1975 distinguishing the exit and exec cases, by waiting once
1976 more, and seeing if something comes out, but it doesn't
1977 sound useful. The previous leader _does_ go away, and
1978 we'll re-add the new one once we see the exec event
1979 (which is just the same as what would happen if the
1980 previous leader did exit voluntarily before some other
1981 thread execs). */
1982
1983 if (debug_threads)
1984 fprintf (stderr,
1985 "CZL: Thread group leader %d zombie "
1986 "(it exited, or another thread execd).\n",
1987 leader_pid);
1988
1989 delete_lwp (leader_lp);
1990 }
1991 }
1992 }
1993
1994 /* Callback for `find_inferior'. Returns the first LWP that is not
1995 stopped. ARG is a PTID filter. */
1996
1997 static int
1998 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1999 {
2000 struct thread_info *thr = (struct thread_info *) entry;
2001 struct lwp_info *lwp;
2002 ptid_t filter = *(ptid_t *) arg;
2003
2004 if (!ptid_match (ptid_of (thr), filter))
2005 return 0;
2006
2007 lwp = get_thread_lwp (thr);
2008 if (!lwp->stopped)
2009 return 1;
2010
2011 return 0;
2012 }
2013
2014 /* Increment LWP's suspend count. */
2015
2016 static void
2017 lwp_suspended_inc (struct lwp_info *lwp)
2018 {
2019 lwp->suspended++;
2020
2021 if (debug_threads && lwp->suspended > 4)
2022 {
2023 struct thread_info *thread = get_lwp_thread (lwp);
2024
2025 debug_printf ("LWP %ld has a suspiciously high suspend count,"
2026 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
2027 }
2028 }
2029
2030 /* Decrement LWP's suspend count. */
2031
2032 static void
2033 lwp_suspended_decr (struct lwp_info *lwp)
2034 {
2035 lwp->suspended--;
2036
2037 if (lwp->suspended < 0)
2038 {
2039 struct thread_info *thread = get_lwp_thread (lwp);
2040
2041 internal_error (__FILE__, __LINE__,
2042 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
2043 lwp->suspended);
2044 }
2045 }
2046
2047 /* This function should only be called if the LWP got a SIGTRAP.
2048
2049 Handle any tracepoint steps or hits. Return true if a tracepoint
2050 event was handled, 0 otherwise. */
2051
2052 static int
2053 handle_tracepoints (struct lwp_info *lwp)
2054 {
2055 struct thread_info *tinfo = get_lwp_thread (lwp);
2056 int tpoint_related_event = 0;
2057
2058 gdb_assert (lwp->suspended == 0);
2059
2060 /* If this tracepoint hit causes a tracing stop, we'll immediately
2061 uninsert tracepoints. To do this, we temporarily pause all
2062 threads, unpatch away, and then unpause threads. We need to make
2063 sure the unpausing doesn't resume LWP too. */
2064 lwp_suspended_inc (lwp);
2065
2066 /* And we need to be sure that any all-threads-stopping doesn't try
2067 to move threads out of the jump pads, as it could deadlock the
2068 inferior (LWP could be in the jump pad, maybe even holding the
2069 lock.) */
2070
2071 /* Do any necessary step collect actions. */
2072 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2073
2074 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2075
2076 /* See if we just hit a tracepoint and do its main collect
2077 actions. */
2078 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2079
2080 lwp_suspended_decr (lwp);
2081
2082 gdb_assert (lwp->suspended == 0);
2083 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
2084
2085 if (tpoint_related_event)
2086 {
2087 if (debug_threads)
2088 debug_printf ("got a tracepoint event\n");
2089 return 1;
2090 }
2091
2092 return 0;
2093 }
2094
2095 /* Convenience wrapper. Returns true if LWP is presently collecting a
2096 fast tracepoint. */
2097
2098 static int
2099 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2100 struct fast_tpoint_collect_status *status)
2101 {
2102 CORE_ADDR thread_area;
2103 struct thread_info *thread = get_lwp_thread (lwp);
2104
2105 if (the_low_target.get_thread_area == NULL)
2106 return 0;
2107
2108 /* Get the thread area address. This is used to recognize which
2109 thread is which when tracing with the in-process agent library.
2110 We don't read anything from the address, and treat it as opaque;
2111 it's the address itself that we assume is unique per-thread. */
2112 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2113 return 0;
2114
2115 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2116 }
2117
2118 /* The reason we resume in the caller, is because we want to be able
2119 to pass lwp->status_pending as WSTAT, and we need to clear
2120 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2121 refuses to resume. */
2122
2123 static int
2124 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2125 {
2126 struct thread_info *saved_thread;
2127
2128 saved_thread = current_thread;
2129 current_thread = get_lwp_thread (lwp);
2130
2131 if ((wstat == NULL
2132 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2133 && supports_fast_tracepoints ()
2134 && agent_loaded_p ())
2135 {
2136 struct fast_tpoint_collect_status status;
2137 int r;
2138
2139 if (debug_threads)
2140 debug_printf ("Checking whether LWP %ld needs to move out of the "
2141 "jump pad.\n",
2142 lwpid_of (current_thread));
2143
2144 r = linux_fast_tracepoint_collecting (lwp, &status);
2145
2146 if (wstat == NULL
2147 || (WSTOPSIG (*wstat) != SIGILL
2148 && WSTOPSIG (*wstat) != SIGFPE
2149 && WSTOPSIG (*wstat) != SIGSEGV
2150 && WSTOPSIG (*wstat) != SIGBUS))
2151 {
2152 lwp->collecting_fast_tracepoint = r;
2153
2154 if (r != 0)
2155 {
2156 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
2157 {
2158 /* Haven't executed the original instruction yet.
2159 Set breakpoint there, and wait till it's hit,
2160 then single-step until exiting the jump pad. */
2161 lwp->exit_jump_pad_bkpt
2162 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2163 }
2164
2165 if (debug_threads)
2166 debug_printf ("Checking whether LWP %ld needs to move out of "
2167 "the jump pad...it does\n",
2168 lwpid_of (current_thread));
2169 current_thread = saved_thread;
2170
2171 return 1;
2172 }
2173 }
2174 else
2175 {
2176 /* If we get a synchronous signal while collecting, *and*
2177 while executing the (relocated) original instruction,
2178 reset the PC to point at the tpoint address, before
2179 reporting to GDB. Otherwise, it's an IPA lib bug: just
2180 report the signal to GDB, and pray for the best. */
2181
2182 lwp->collecting_fast_tracepoint = 0;
2183
2184 if (r != 0
2185 && (status.adjusted_insn_addr <= lwp->stop_pc
2186 && lwp->stop_pc < status.adjusted_insn_addr_end))
2187 {
2188 siginfo_t info;
2189 struct regcache *regcache;
2190
2191 /* The si_addr on a few signals references the address
2192 of the faulting instruction. Adjust that as
2193 well. */
2194 if ((WSTOPSIG (*wstat) == SIGILL
2195 || WSTOPSIG (*wstat) == SIGFPE
2196 || WSTOPSIG (*wstat) == SIGBUS
2197 || WSTOPSIG (*wstat) == SIGSEGV)
2198 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2199 (PTRACE_TYPE_ARG3) 0, &info) == 0
2200 /* Final check just to make sure we don't clobber
2201 the siginfo of non-kernel-sent signals. */
2202 && (uintptr_t) info.si_addr == lwp->stop_pc)
2203 {
2204 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2205 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2206 (PTRACE_TYPE_ARG3) 0, &info);
2207 }
2208
2209 regcache = get_thread_regcache (current_thread, 1);
2210 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2211 lwp->stop_pc = status.tpoint_addr;
2212
2213 /* Cancel any fast tracepoint lock this thread was
2214 holding. */
2215 force_unlock_trace_buffer ();
2216 }
2217
2218 if (lwp->exit_jump_pad_bkpt != NULL)
2219 {
2220 if (debug_threads)
2221 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2222 "stopping all threads momentarily.\n");
2223
2224 stop_all_lwps (1, lwp);
2225
2226 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2227 lwp->exit_jump_pad_bkpt = NULL;
2228
2229 unstop_all_lwps (1, lwp);
2230
2231 gdb_assert (lwp->suspended >= 0);
2232 }
2233 }
2234 }
2235
2236 if (debug_threads)
2237 debug_printf ("Checking whether LWP %ld needs to move out of the "
2238 "jump pad...no\n",
2239 lwpid_of (current_thread));
2240
2241 current_thread = saved_thread;
2242 return 0;
2243 }
2244
2245 /* Enqueue one signal in the "signals to report later when out of the
2246 jump pad" list. */
2247
2248 static void
2249 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2250 {
2251 struct pending_signals *p_sig;
2252 struct thread_info *thread = get_lwp_thread (lwp);
2253
2254 if (debug_threads)
2255 debug_printf ("Deferring signal %d for LWP %ld.\n",
2256 WSTOPSIG (*wstat), lwpid_of (thread));
2257
2258 if (debug_threads)
2259 {
2260 struct pending_signals *sig;
2261
2262 for (sig = lwp->pending_signals_to_report;
2263 sig != NULL;
2264 sig = sig->prev)
2265 debug_printf (" Already queued %d\n",
2266 sig->signal);
2267
2268 debug_printf (" (no more currently queued signals)\n");
2269 }
2270
2271 /* Don't enqueue non-RT signals if they are already in the deferred
2272 queue. (SIGSTOP being the easiest signal to see ending up here
2273 twice) */
2274 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2275 {
2276 struct pending_signals *sig;
2277
2278 for (sig = lwp->pending_signals_to_report;
2279 sig != NULL;
2280 sig = sig->prev)
2281 {
2282 if (sig->signal == WSTOPSIG (*wstat))
2283 {
2284 if (debug_threads)
2285 debug_printf ("Not requeuing already queued non-RT signal %d"
2286 " for LWP %ld\n",
2287 sig->signal,
2288 lwpid_of (thread));
2289 return;
2290 }
2291 }
2292 }
2293
2294 p_sig = XCNEW (struct pending_signals);
2295 p_sig->prev = lwp->pending_signals_to_report;
2296 p_sig->signal = WSTOPSIG (*wstat);
2297
2298 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2299 &p_sig->info);
2300
2301 lwp->pending_signals_to_report = p_sig;
2302 }
2303
2304 /* Dequeue one signal from the "signals to report later when out of
2305 the jump pad" list. */
2306
2307 static int
2308 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2309 {
2310 struct thread_info *thread = get_lwp_thread (lwp);
2311
2312 if (lwp->pending_signals_to_report != NULL)
2313 {
2314 struct pending_signals **p_sig;
2315
2316 p_sig = &lwp->pending_signals_to_report;
2317 while ((*p_sig)->prev != NULL)
2318 p_sig = &(*p_sig)->prev;
2319
2320 *wstat = W_STOPCODE ((*p_sig)->signal);
2321 if ((*p_sig)->info.si_signo != 0)
2322 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2323 &(*p_sig)->info);
2324 free (*p_sig);
2325 *p_sig = NULL;
2326
2327 if (debug_threads)
2328 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2329 WSTOPSIG (*wstat), lwpid_of (thread));
2330
2331 if (debug_threads)
2332 {
2333 struct pending_signals *sig;
2334
2335 for (sig = lwp->pending_signals_to_report;
2336 sig != NULL;
2337 sig = sig->prev)
2338 debug_printf (" Still queued %d\n",
2339 sig->signal);
2340
2341 debug_printf (" (no more queued signals)\n");
2342 }
2343
2344 return 1;
2345 }
2346
2347 return 0;
2348 }
2349
2350 /* Fetch the possibly triggered data watchpoint info and store it in
2351 CHILD.
2352
2353 On some archs, like x86, that use debug registers to set
2354 watchpoints, it's possible that the way to know which watched
2355 address trapped, is to check the register that is used to select
2356 which address to watch. Problem is, between setting the watchpoint
2357 and reading back which data address trapped, the user may change
2358 the set of watchpoints, and, as a consequence, GDB changes the
2359 debug registers in the inferior. To avoid reading back a stale
2360 stopped-data-address when that happens, we cache in LP the fact
2361 that a watchpoint trapped, and the corresponding data address, as
2362 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2363 registers meanwhile, we have the cached data we can rely on. */
2364
2365 static int
2366 check_stopped_by_watchpoint (struct lwp_info *child)
2367 {
2368 if (the_low_target.stopped_by_watchpoint != NULL)
2369 {
2370 struct thread_info *saved_thread;
2371
2372 saved_thread = current_thread;
2373 current_thread = get_lwp_thread (child);
2374
2375 if (the_low_target.stopped_by_watchpoint ())
2376 {
2377 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2378
2379 if (the_low_target.stopped_data_address != NULL)
2380 child->stopped_data_address
2381 = the_low_target.stopped_data_address ();
2382 else
2383 child->stopped_data_address = 0;
2384 }
2385
2386 current_thread = saved_thread;
2387 }
2388
2389 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2390 }
2391
2392 /* Return the ptrace options that we want to try to enable. */
2393
2394 static int
2395 linux_low_ptrace_options (int attached)
2396 {
2397 int options = 0;
2398
2399 if (!attached)
2400 options |= PTRACE_O_EXITKILL;
2401
2402 if (report_fork_events)
2403 options |= PTRACE_O_TRACEFORK;
2404
2405 if (report_vfork_events)
2406 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2407
2408 if (report_exec_events)
2409 options |= PTRACE_O_TRACEEXEC;
2410
2411 options |= PTRACE_O_TRACESYSGOOD;
2412
2413 return options;
2414 }
2415
2416 /* Do low-level handling of the event, and check if we should go on
2417 and pass it to caller code. Return the affected lwp if we are, or
2418 NULL otherwise. */
2419
2420 static struct lwp_info *
2421 linux_low_filter_event (int lwpid, int wstat)
2422 {
2423 struct lwp_info *child;
2424 struct thread_info *thread;
2425 int have_stop_pc = 0;
2426
2427 child = find_lwp_pid (pid_to_ptid (lwpid));
2428
2429 /* Check for stop events reported by a process we didn't already
2430 know about - anything not already in our LWP list.
2431
2432 If we're expecting to receive stopped processes after
2433 fork, vfork, and clone events, then we'll just add the
2434 new one to our list and go back to waiting for the event
2435 to be reported - the stopped process might be returned
2436 from waitpid before or after the event is.
2437
2438 But note the case of a non-leader thread exec'ing after the
2439 leader having exited, and gone from our lists (because
2440 check_zombie_leaders deleted it). The non-leader thread
2441 changes its tid to the tgid. */
2442
2443 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2444 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2445 {
2446 ptid_t child_ptid;
2447
2448 /* A multi-thread exec after we had seen the leader exiting. */
2449 if (debug_threads)
2450 {
2451 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2452 "after exec.\n", lwpid);
2453 }
2454
2455 child_ptid = ptid_build (lwpid, lwpid, 0);
2456 child = add_lwp (child_ptid);
2457 child->stopped = 1;
2458 current_thread = child->thread;
2459 }
2460
2461 /* If we didn't find a process, one of two things presumably happened:
2462 - A process we started and then detached from has exited. Ignore it.
2463 - A process we are controlling has forked and the new child's stop
2464 was reported to us by the kernel. Save its PID. */
2465 if (child == NULL && WIFSTOPPED (wstat))
2466 {
2467 add_to_pid_list (&stopped_pids, lwpid, wstat);
2468 return NULL;
2469 }
2470 else if (child == NULL)
2471 return NULL;
2472
2473 thread = get_lwp_thread (child);
2474
2475 child->stopped = 1;
2476
2477 child->last_status = wstat;
2478
2479 /* Check if the thread has exited. */
2480 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2481 {
2482 if (debug_threads)
2483 debug_printf ("LLFE: %d exited.\n", lwpid);
2484
2485 if (finish_step_over (child))
2486 {
2487 /* Unsuspend all other LWPs, and set them back running again. */
2488 unsuspend_all_lwps (child);
2489 }
2490
2491 /* If there is at least one more LWP, then the exit signal was
2492 not the end of the debugged application and should be
2493 ignored, unless GDB wants to hear about thread exits. */
2494 if (report_thread_events
2495 || last_thread_of_process_p (pid_of (thread)))
2496 {
2497 /* Since events are serialized to GDB core, and we can't
2498 report this one right now. Leave the status pending for
2499 the next time we're able to report it. */
2500 mark_lwp_dead (child, wstat);
2501 return child;
2502 }
2503 else
2504 {
2505 delete_lwp (child);
2506 return NULL;
2507 }
2508 }
2509
2510 gdb_assert (WIFSTOPPED (wstat));
2511
2512 if (WIFSTOPPED (wstat))
2513 {
2514 struct process_info *proc;
2515
2516 /* Architecture-specific setup after inferior is running. */
2517 proc = find_process_pid (pid_of (thread));
2518 if (proc->tdesc == NULL)
2519 {
2520 if (proc->attached)
2521 {
2522 /* This needs to happen after we have attached to the
2523 inferior and it is stopped for the first time, but
2524 before we access any inferior registers. */
2525 linux_arch_setup_thread (thread);
2526 }
2527 else
2528 {
2529 /* The process is started, but GDBserver will do
2530 architecture-specific setup after the program stops at
2531 the first instruction. */
2532 child->status_pending_p = 1;
2533 child->status_pending = wstat;
2534 return child;
2535 }
2536 }
2537 }
2538
2539 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2540 {
2541 struct process_info *proc = find_process_pid (pid_of (thread));
2542 int options = linux_low_ptrace_options (proc->attached);
2543
2544 linux_enable_event_reporting (lwpid, options);
2545 child->must_set_ptrace_flags = 0;
2546 }
2547
2548 /* Always update syscall_state, even if it will be filtered later. */
2549 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2550 {
2551 child->syscall_state
2552 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2553 ? TARGET_WAITKIND_SYSCALL_RETURN
2554 : TARGET_WAITKIND_SYSCALL_ENTRY);
2555 }
2556 else
2557 {
2558 /* Almost all other ptrace-stops are known to be outside of system
2559 calls, with further exceptions in handle_extended_wait. */
2560 child->syscall_state = TARGET_WAITKIND_IGNORE;
2561 }
2562
2563 /* Be careful to not overwrite stop_pc until save_stop_reason is
2564 called. */
2565 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2566 && linux_is_extended_waitstatus (wstat))
2567 {
2568 child->stop_pc = get_pc (child);
2569 if (handle_extended_wait (&child, wstat))
2570 {
2571 /* The event has been handled, so just return without
2572 reporting it. */
2573 return NULL;
2574 }
2575 }
2576
2577 if (linux_wstatus_maybe_breakpoint (wstat))
2578 {
2579 if (save_stop_reason (child))
2580 have_stop_pc = 1;
2581 }
2582
2583 if (!have_stop_pc)
2584 child->stop_pc = get_pc (child);
2585
2586 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2587 && child->stop_expected)
2588 {
2589 if (debug_threads)
2590 debug_printf ("Expected stop.\n");
2591 child->stop_expected = 0;
2592
2593 if (thread->last_resume_kind == resume_stop)
2594 {
2595 /* We want to report the stop to the core. Treat the
2596 SIGSTOP as a normal event. */
2597 if (debug_threads)
2598 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2599 target_pid_to_str (ptid_of (thread)));
2600 }
2601 else if (stopping_threads != NOT_STOPPING_THREADS)
2602 {
2603 /* Stopping threads. We don't want this SIGSTOP to end up
2604 pending. */
2605 if (debug_threads)
2606 debug_printf ("LLW: SIGSTOP caught for %s "
2607 "while stopping threads.\n",
2608 target_pid_to_str (ptid_of (thread)));
2609 return NULL;
2610 }
2611 else
2612 {
2613 /* This is a delayed SIGSTOP. Filter out the event. */
2614 if (debug_threads)
2615 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2616 child->stepping ? "step" : "continue",
2617 target_pid_to_str (ptid_of (thread)));
2618
2619 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2620 return NULL;
2621 }
2622 }
2623
2624 child->status_pending_p = 1;
2625 child->status_pending = wstat;
2626 return child;
2627 }
2628
2629 /* Return true if THREAD is doing hardware single step. */
2630
2631 static int
2632 maybe_hw_step (struct thread_info *thread)
2633 {
2634 if (can_hardware_single_step ())
2635 return 1;
2636 else
2637 {
2638 /* GDBserver must insert single-step breakpoint for software
2639 single step. */
2640 gdb_assert (has_single_step_breakpoints (thread));
2641 return 0;
2642 }
2643 }
2644
2645 /* Resume LWPs that are currently stopped without any pending status
2646 to report, but are resumed from the core's perspective. */
2647
2648 static void
2649 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2650 {
2651 struct thread_info *thread = (struct thread_info *) entry;
2652 struct lwp_info *lp = get_thread_lwp (thread);
2653
2654 if (lp->stopped
2655 && !lp->suspended
2656 && !lp->status_pending_p
2657 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2658 {
2659 int step = 0;
2660
2661 if (thread->last_resume_kind == resume_step)
2662 step = maybe_hw_step (thread);
2663
2664 if (debug_threads)
2665 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2666 target_pid_to_str (ptid_of (thread)),
2667 paddress (lp->stop_pc),
2668 step);
2669
2670 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2671 }
2672 }
2673
2674 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2675 match FILTER_PTID (leaving others pending). The PTIDs can be:
2676 minus_one_ptid, to specify any child; a pid PTID, specifying all
2677 lwps of a thread group; or a PTID representing a single lwp. Store
2678 the stop status through the status pointer WSTAT. OPTIONS is
2679 passed to the waitpid call. Return 0 if no event was found and
2680 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2681 was found. Return the PID of the stopped child otherwise. */
2682
2683 static int
2684 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2685 int *wstatp, int options)
2686 {
2687 struct thread_info *event_thread;
2688 struct lwp_info *event_child, *requested_child;
2689 sigset_t block_mask, prev_mask;
2690
2691 retry:
2692 /* N.B. event_thread points to the thread_info struct that contains
2693 event_child. Keep them in sync. */
2694 event_thread = NULL;
2695 event_child = NULL;
2696 requested_child = NULL;
2697
2698 /* Check for a lwp with a pending status. */
2699
2700 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2701 {
2702 event_thread = (struct thread_info *)
2703 find_inferior_in_random (&all_threads, status_pending_p_callback,
2704 &filter_ptid);
2705 if (event_thread != NULL)
2706 event_child = get_thread_lwp (event_thread);
2707 if (debug_threads && event_thread)
2708 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2709 }
2710 else if (!ptid_equal (filter_ptid, null_ptid))
2711 {
2712 requested_child = find_lwp_pid (filter_ptid);
2713
2714 if (stopping_threads == NOT_STOPPING_THREADS
2715 && requested_child->status_pending_p
2716 && requested_child->collecting_fast_tracepoint)
2717 {
2718 enqueue_one_deferred_signal (requested_child,
2719 &requested_child->status_pending);
2720 requested_child->status_pending_p = 0;
2721 requested_child->status_pending = 0;
2722 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2723 }
2724
2725 if (requested_child->suspended
2726 && requested_child->status_pending_p)
2727 {
2728 internal_error (__FILE__, __LINE__,
2729 "requesting an event out of a"
2730 " suspended child?");
2731 }
2732
2733 if (requested_child->status_pending_p)
2734 {
2735 event_child = requested_child;
2736 event_thread = get_lwp_thread (event_child);
2737 }
2738 }
2739
2740 if (event_child != NULL)
2741 {
2742 if (debug_threads)
2743 debug_printf ("Got an event from pending child %ld (%04x)\n",
2744 lwpid_of (event_thread), event_child->status_pending);
2745 *wstatp = event_child->status_pending;
2746 event_child->status_pending_p = 0;
2747 event_child->status_pending = 0;
2748 current_thread = event_thread;
2749 return lwpid_of (event_thread);
2750 }
2751
2752 /* But if we don't find a pending event, we'll have to wait.
2753
2754 We only enter this loop if no process has a pending wait status.
2755 Thus any action taken in response to a wait status inside this
2756 loop is responding as soon as we detect the status, not after any
2757 pending events. */
2758
2759 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2760 all signals while here. */
2761 sigfillset (&block_mask);
2762 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2763
2764 /* Always pull all events out of the kernel. We'll randomly select
2765 an event LWP out of all that have events, to prevent
2766 starvation. */
2767 while (event_child == NULL)
2768 {
2769 pid_t ret = 0;
2770
2771 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2772 quirks:
2773
2774 - If the thread group leader exits while other threads in the
2775 thread group still exist, waitpid(TGID, ...) hangs. That
2776 waitpid won't return an exit status until the other threads
2777 in the group are reaped.
2778
2779 - When a non-leader thread execs, that thread just vanishes
2780 without reporting an exit (so we'd hang if we waited for it
2781 explicitly in that case). The exec event is reported to
2782 the TGID pid. */
2783 errno = 0;
2784 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2785
2786 if (debug_threads)
2787 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2788 ret, errno ? strerror (errno) : "ERRNO-OK");
2789
2790 if (ret > 0)
2791 {
2792 if (debug_threads)
2793 {
2794 debug_printf ("LLW: waitpid %ld received %s\n",
2795 (long) ret, status_to_str (*wstatp));
2796 }
2797
2798 /* Filter all events. IOW, leave all events pending. We'll
2799 randomly select an event LWP out of all that have events
2800 below. */
2801 linux_low_filter_event (ret, *wstatp);
2802 /* Retry until nothing comes out of waitpid. A single
2803 SIGCHLD can indicate more than one child stopped. */
2804 continue;
2805 }
2806
2807 /* Now that we've pulled all events out of the kernel, resume
2808 LWPs that don't have an interesting event to report. */
2809 if (stopping_threads == NOT_STOPPING_THREADS)
2810 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2811
2812 /* ... and find an LWP with a status to report to the core, if
2813 any. */
2814 event_thread = (struct thread_info *)
2815 find_inferior_in_random (&all_threads, status_pending_p_callback,
2816 &filter_ptid);
2817 if (event_thread != NULL)
2818 {
2819 event_child = get_thread_lwp (event_thread);
2820 *wstatp = event_child->status_pending;
2821 event_child->status_pending_p = 0;
2822 event_child->status_pending = 0;
2823 break;
2824 }
2825
2826 /* Check for zombie thread group leaders. Those can't be reaped
2827 until all other threads in the thread group are. */
2828 check_zombie_leaders ();
2829
2830 /* If there are no resumed children left in the set of LWPs we
2831 want to wait for, bail. We can't just block in
2832 waitpid/sigsuspend, because lwps might have been left stopped
2833 in trace-stop state, and we'd be stuck forever waiting for
2834 their status to change (which would only happen if we resumed
2835 them). Even if WNOHANG is set, this return code is preferred
2836 over 0 (below), as it is more detailed. */
2837 if ((find_inferior (&all_threads,
2838 not_stopped_callback,
2839 &wait_ptid) == NULL))
2840 {
2841 if (debug_threads)
2842 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2843 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2844 return -1;
2845 }
2846
2847 /* No interesting event to report to the caller. */
2848 if ((options & WNOHANG))
2849 {
2850 if (debug_threads)
2851 debug_printf ("WNOHANG set, no event found\n");
2852
2853 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2854 return 0;
2855 }
2856
2857 /* Block until we get an event reported with SIGCHLD. */
2858 if (debug_threads)
2859 debug_printf ("sigsuspend'ing\n");
2860
2861 sigsuspend (&prev_mask);
2862 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2863 goto retry;
2864 }
2865
2866 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2867
2868 current_thread = event_thread;
2869
2870 return lwpid_of (event_thread);
2871 }
2872
2873 /* Wait for an event from child(ren) PTID. PTIDs can be:
2874 minus_one_ptid, to specify any child; a pid PTID, specifying all
2875 lwps of a thread group; or a PTID representing a single lwp. Store
2876 the stop status through the status pointer WSTAT. OPTIONS is
2877 passed to the waitpid call. Return 0 if no event was found and
2878 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2879 was found. Return the PID of the stopped child otherwise. */
2880
2881 static int
2882 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2883 {
2884 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2885 }
2886
2887 /* Count the LWP's that have had events. */
2888
2889 static int
2890 count_events_callback (struct inferior_list_entry *entry, void *data)
2891 {
2892 struct thread_info *thread = (struct thread_info *) entry;
2893 struct lwp_info *lp = get_thread_lwp (thread);
2894 int *count = (int *) data;
2895
2896 gdb_assert (count != NULL);
2897
2898 /* Count only resumed LWPs that have an event pending. */
2899 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2900 && lp->status_pending_p)
2901 (*count)++;
2902
2903 return 0;
2904 }
2905
2906 /* Select the LWP (if any) that is currently being single-stepped. */
2907
2908 static int
2909 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2910 {
2911 struct thread_info *thread = (struct thread_info *) entry;
2912 struct lwp_info *lp = get_thread_lwp (thread);
2913
2914 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2915 && thread->last_resume_kind == resume_step
2916 && lp->status_pending_p)
2917 return 1;
2918 else
2919 return 0;
2920 }
2921
2922 /* Select the Nth LWP that has had an event. */
2923
2924 static int
2925 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2926 {
2927 struct thread_info *thread = (struct thread_info *) entry;
2928 struct lwp_info *lp = get_thread_lwp (thread);
2929 int *selector = (int *) data;
2930
2931 gdb_assert (selector != NULL);
2932
2933 /* Select only resumed LWPs that have an event pending. */
2934 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2935 && lp->status_pending_p)
2936 if ((*selector)-- == 0)
2937 return 1;
2938
2939 return 0;
2940 }
2941
2942 /* Select one LWP out of those that have events pending. */
2943
2944 static void
2945 select_event_lwp (struct lwp_info **orig_lp)
2946 {
2947 int num_events = 0;
2948 int random_selector;
2949 struct thread_info *event_thread = NULL;
2950
2951 /* In all-stop, give preference to the LWP that is being
2952 single-stepped. There will be at most one, and it's the LWP that
2953 the core is most interested in. If we didn't do this, then we'd
2954 have to handle pending step SIGTRAPs somehow in case the core
2955 later continues the previously-stepped thread, otherwise we'd
2956 report the pending SIGTRAP, and the core, not having stepped the
2957 thread, wouldn't understand what the trap was for, and therefore
2958 would report it to the user as a random signal. */
2959 if (!non_stop)
2960 {
2961 event_thread
2962 = (struct thread_info *) find_inferior (&all_threads,
2963 select_singlestep_lwp_callback,
2964 NULL);
2965 if (event_thread != NULL)
2966 {
2967 if (debug_threads)
2968 debug_printf ("SEL: Select single-step %s\n",
2969 target_pid_to_str (ptid_of (event_thread)));
2970 }
2971 }
2972 if (event_thread == NULL)
2973 {
2974 /* No single-stepping LWP. Select one at random, out of those
2975 which have had events. */
2976
2977 /* First see how many events we have. */
2978 find_inferior (&all_threads, count_events_callback, &num_events);
2979 gdb_assert (num_events > 0);
2980
2981 /* Now randomly pick a LWP out of those that have had
2982 events. */
2983 random_selector = (int)
2984 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2985
2986 if (debug_threads && num_events > 1)
2987 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2988 num_events, random_selector);
2989
2990 event_thread
2991 = (struct thread_info *) find_inferior (&all_threads,
2992 select_event_lwp_callback,
2993 &random_selector);
2994 }
2995
2996 if (event_thread != NULL)
2997 {
2998 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2999
3000 /* Switch the event LWP. */
3001 *orig_lp = event_lp;
3002 }
3003 }
3004
3005 /* Decrement the suspend count of an LWP. */
3006
3007 static int
3008 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
3009 {
3010 struct thread_info *thread = (struct thread_info *) entry;
3011 struct lwp_info *lwp = get_thread_lwp (thread);
3012
3013 /* Ignore EXCEPT. */
3014 if (lwp == except)
3015 return 0;
3016
3017 lwp_suspended_decr (lwp);
3018 return 0;
3019 }
3020
3021 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
3022 NULL. */
3023
3024 static void
3025 unsuspend_all_lwps (struct lwp_info *except)
3026 {
3027 find_inferior (&all_threads, unsuspend_one_lwp, except);
3028 }
3029
3030 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
3031 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
3032 void *data);
3033 static int lwp_running (struct inferior_list_entry *entry, void *data);
3034 static ptid_t linux_wait_1 (ptid_t ptid,
3035 struct target_waitstatus *ourstatus,
3036 int target_options);
3037
3038 /* Stabilize threads (move out of jump pads).
3039
3040 If a thread is midway collecting a fast tracepoint, we need to
3041 finish the collection and move it out of the jump pad before
3042 reporting the signal.
3043
3044 This avoids recursion while collecting (when a signal arrives
3045 midway, and the signal handler itself collects), which would trash
3046 the trace buffer. In case the user set a breakpoint in a signal
3047 handler, this avoids the backtrace showing the jump pad, etc..
3048 Most importantly, there are certain things we can't do safely if
3049 threads are stopped in a jump pad (or in its callee's). For
3050 example:
3051
3052 - starting a new trace run. A thread still collecting the
3053 previous run, could trash the trace buffer when resumed. The trace
3054 buffer control structures would have been reset but the thread had
3055 no way to tell. The thread could even midway memcpy'ing to the
3056 buffer, which would mean that when resumed, it would clobber the
3057 trace buffer that had been set for a new run.
3058
3059 - we can't rewrite/reuse the jump pads for new tracepoints
3060 safely. Say you do tstart while a thread is stopped midway while
3061 collecting. When the thread is later resumed, it finishes the
3062 collection, and returns to the jump pad, to execute the original
3063 instruction that was under the tracepoint jump at the time the
3064 older run had been started. If the jump pad had been rewritten
3065 since for something else in the new run, the thread would now
3066 execute the wrong / random instructions. */
3067
3068 static void
3069 linux_stabilize_threads (void)
3070 {
3071 struct thread_info *saved_thread;
3072 struct thread_info *thread_stuck;
3073
3074 thread_stuck
3075 = (struct thread_info *) find_inferior (&all_threads,
3076 stuck_in_jump_pad_callback,
3077 NULL);
3078 if (thread_stuck != NULL)
3079 {
3080 if (debug_threads)
3081 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
3082 lwpid_of (thread_stuck));
3083 return;
3084 }
3085
3086 saved_thread = current_thread;
3087
3088 stabilizing_threads = 1;
3089
3090 /* Kick 'em all. */
3091 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
3092
3093 /* Loop until all are stopped out of the jump pads. */
3094 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
3095 {
3096 struct target_waitstatus ourstatus;
3097 struct lwp_info *lwp;
3098 int wstat;
3099
3100 /* Note that we go through the full wait even loop. While
3101 moving threads out of jump pad, we need to be able to step
3102 over internal breakpoints and such. */
3103 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
3104
3105 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
3106 {
3107 lwp = get_thread_lwp (current_thread);
3108
3109 /* Lock it. */
3110 lwp_suspended_inc (lwp);
3111
3112 if (ourstatus.value.sig != GDB_SIGNAL_0
3113 || current_thread->last_resume_kind == resume_stop)
3114 {
3115 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3116 enqueue_one_deferred_signal (lwp, &wstat);
3117 }
3118 }
3119 }
3120
3121 unsuspend_all_lwps (NULL);
3122
3123 stabilizing_threads = 0;
3124
3125 current_thread = saved_thread;
3126
3127 if (debug_threads)
3128 {
3129 thread_stuck
3130 = (struct thread_info *) find_inferior (&all_threads,
3131 stuck_in_jump_pad_callback,
3132 NULL);
3133 if (thread_stuck != NULL)
3134 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3135 lwpid_of (thread_stuck));
3136 }
3137 }
3138
3139 /* Convenience function that is called when the kernel reports an
3140 event that is not passed out to GDB. */
3141
3142 static ptid_t
3143 ignore_event (struct target_waitstatus *ourstatus)
3144 {
3145 /* If we got an event, there may still be others, as a single
3146 SIGCHLD can indicate more than one child stopped. This forces
3147 another target_wait call. */
3148 async_file_mark ();
3149
3150 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3151 return null_ptid;
3152 }
3153
3154 /* Convenience function that is called when the kernel reports an exit
3155 event. This decides whether to report the event to GDB as a
3156 process exit event, a thread exit event, or to suppress the
3157 event. */
3158
3159 static ptid_t
3160 filter_exit_event (struct lwp_info *event_child,
3161 struct target_waitstatus *ourstatus)
3162 {
3163 struct thread_info *thread = get_lwp_thread (event_child);
3164 ptid_t ptid = ptid_of (thread);
3165
3166 if (!last_thread_of_process_p (pid_of (thread)))
3167 {
3168 if (report_thread_events)
3169 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3170 else
3171 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3172
3173 delete_lwp (event_child);
3174 }
3175 return ptid;
3176 }
3177
3178 /* Returns 1 if GDB is interested in any event_child syscalls. */
3179
3180 static int
3181 gdb_catching_syscalls_p (struct lwp_info *event_child)
3182 {
3183 struct thread_info *thread = get_lwp_thread (event_child);
3184 struct process_info *proc = get_thread_process (thread);
3185
3186 return !VEC_empty (int, proc->syscalls_to_catch);
3187 }
3188
3189 /* Returns 1 if GDB is interested in the event_child syscall.
3190 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3191
3192 static int
3193 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3194 {
3195 int i, iter;
3196 int sysno;
3197 struct thread_info *thread = get_lwp_thread (event_child);
3198 struct process_info *proc = get_thread_process (thread);
3199
3200 if (VEC_empty (int, proc->syscalls_to_catch))
3201 return 0;
3202
3203 if (VEC_index (int, proc->syscalls_to_catch, 0) == ANY_SYSCALL)
3204 return 1;
3205
3206 get_syscall_trapinfo (event_child, &sysno);
3207 for (i = 0;
3208 VEC_iterate (int, proc->syscalls_to_catch, i, iter);
3209 i++)
3210 if (iter == sysno)
3211 return 1;
3212
3213 return 0;
3214 }
3215
3216 /* Wait for process, returns status. */
3217
3218 static ptid_t
3219 linux_wait_1 (ptid_t ptid,
3220 struct target_waitstatus *ourstatus, int target_options)
3221 {
3222 int w;
3223 struct lwp_info *event_child;
3224 int options;
3225 int pid;
3226 int step_over_finished;
3227 int bp_explains_trap;
3228 int maybe_internal_trap;
3229 int report_to_gdb;
3230 int trace_event;
3231 int in_step_range;
3232 int any_resumed;
3233
3234 if (debug_threads)
3235 {
3236 debug_enter ();
3237 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3238 }
3239
3240 /* Translate generic target options into linux options. */
3241 options = __WALL;
3242 if (target_options & TARGET_WNOHANG)
3243 options |= WNOHANG;
3244
3245 bp_explains_trap = 0;
3246 trace_event = 0;
3247 in_step_range = 0;
3248 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3249
3250 /* Find a resumed LWP, if any. */
3251 if (find_inferior (&all_threads,
3252 status_pending_p_callback,
3253 &minus_one_ptid) != NULL)
3254 any_resumed = 1;
3255 else if ((find_inferior (&all_threads,
3256 not_stopped_callback,
3257 &minus_one_ptid) != NULL))
3258 any_resumed = 1;
3259 else
3260 any_resumed = 0;
3261
3262 if (ptid_equal (step_over_bkpt, null_ptid))
3263 pid = linux_wait_for_event (ptid, &w, options);
3264 else
3265 {
3266 if (debug_threads)
3267 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3268 target_pid_to_str (step_over_bkpt));
3269 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3270 }
3271
3272 if (pid == 0 || (pid == -1 && !any_resumed))
3273 {
3274 gdb_assert (target_options & TARGET_WNOHANG);
3275
3276 if (debug_threads)
3277 {
3278 debug_printf ("linux_wait_1 ret = null_ptid, "
3279 "TARGET_WAITKIND_IGNORE\n");
3280 debug_exit ();
3281 }
3282
3283 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3284 return null_ptid;
3285 }
3286 else if (pid == -1)
3287 {
3288 if (debug_threads)
3289 {
3290 debug_printf ("linux_wait_1 ret = null_ptid, "
3291 "TARGET_WAITKIND_NO_RESUMED\n");
3292 debug_exit ();
3293 }
3294
3295 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3296 return null_ptid;
3297 }
3298
3299 event_child = get_thread_lwp (current_thread);
3300
3301 /* linux_wait_for_event only returns an exit status for the last
3302 child of a process. Report it. */
3303 if (WIFEXITED (w) || WIFSIGNALED (w))
3304 {
3305 if (WIFEXITED (w))
3306 {
3307 ourstatus->kind = TARGET_WAITKIND_EXITED;
3308 ourstatus->value.integer = WEXITSTATUS (w);
3309
3310 if (debug_threads)
3311 {
3312 debug_printf ("linux_wait_1 ret = %s, exited with "
3313 "retcode %d\n",
3314 target_pid_to_str (ptid_of (current_thread)),
3315 WEXITSTATUS (w));
3316 debug_exit ();
3317 }
3318 }
3319 else
3320 {
3321 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3322 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3323
3324 if (debug_threads)
3325 {
3326 debug_printf ("linux_wait_1 ret = %s, terminated with "
3327 "signal %d\n",
3328 target_pid_to_str (ptid_of (current_thread)),
3329 WTERMSIG (w));
3330 debug_exit ();
3331 }
3332 }
3333
3334 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3335 return filter_exit_event (event_child, ourstatus);
3336
3337 return ptid_of (current_thread);
3338 }
3339
3340 /* If step-over executes a breakpoint instruction, in the case of a
3341 hardware single step it means a gdb/gdbserver breakpoint had been
3342 planted on top of a permanent breakpoint, in the case of a software
3343 single step it may just mean that gdbserver hit the reinsert breakpoint.
3344 The PC has been adjusted by save_stop_reason to point at
3345 the breakpoint address.
3346 So in the case of the hardware single step advance the PC manually
3347 past the breakpoint and in the case of software single step advance only
3348 if it's not the single_step_breakpoint we are hitting.
3349 This avoids that a program would keep trapping a permanent breakpoint
3350 forever. */
3351 if (!ptid_equal (step_over_bkpt, null_ptid)
3352 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3353 && (event_child->stepping
3354 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3355 {
3356 int increment_pc = 0;
3357 int breakpoint_kind = 0;
3358 CORE_ADDR stop_pc = event_child->stop_pc;
3359
3360 breakpoint_kind =
3361 the_target->breakpoint_kind_from_current_state (&stop_pc);
3362 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3363
3364 if (debug_threads)
3365 {
3366 debug_printf ("step-over for %s executed software breakpoint\n",
3367 target_pid_to_str (ptid_of (current_thread)));
3368 }
3369
3370 if (increment_pc != 0)
3371 {
3372 struct regcache *regcache
3373 = get_thread_regcache (current_thread, 1);
3374
3375 event_child->stop_pc += increment_pc;
3376 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3377
3378 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3379 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3380 }
3381 }
3382
3383 /* If this event was not handled before, and is not a SIGTRAP, we
3384 report it. SIGILL and SIGSEGV are also treated as traps in case
3385 a breakpoint is inserted at the current PC. If this target does
3386 not support internal breakpoints at all, we also report the
3387 SIGTRAP without further processing; it's of no concern to us. */
3388 maybe_internal_trap
3389 = (supports_breakpoints ()
3390 && (WSTOPSIG (w) == SIGTRAP
3391 || ((WSTOPSIG (w) == SIGILL
3392 || WSTOPSIG (w) == SIGSEGV)
3393 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3394
3395 if (maybe_internal_trap)
3396 {
3397 /* Handle anything that requires bookkeeping before deciding to
3398 report the event or continue waiting. */
3399
3400 /* First check if we can explain the SIGTRAP with an internal
3401 breakpoint, or if we should possibly report the event to GDB.
3402 Do this before anything that may remove or insert a
3403 breakpoint. */
3404 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3405
3406 /* We have a SIGTRAP, possibly a step-over dance has just
3407 finished. If so, tweak the state machine accordingly,
3408 reinsert breakpoints and delete any single-step
3409 breakpoints. */
3410 step_over_finished = finish_step_over (event_child);
3411
3412 /* Now invoke the callbacks of any internal breakpoints there. */
3413 check_breakpoints (event_child->stop_pc);
3414
3415 /* Handle tracepoint data collecting. This may overflow the
3416 trace buffer, and cause a tracing stop, removing
3417 breakpoints. */
3418 trace_event = handle_tracepoints (event_child);
3419
3420 if (bp_explains_trap)
3421 {
3422 if (debug_threads)
3423 debug_printf ("Hit a gdbserver breakpoint.\n");
3424 }
3425 }
3426 else
3427 {
3428 /* We have some other signal, possibly a step-over dance was in
3429 progress, and it should be cancelled too. */
3430 step_over_finished = finish_step_over (event_child);
3431 }
3432
3433 /* We have all the data we need. Either report the event to GDB, or
3434 resume threads and keep waiting for more. */
3435
3436 /* If we're collecting a fast tracepoint, finish the collection and
3437 move out of the jump pad before delivering a signal. See
3438 linux_stabilize_threads. */
3439
3440 if (WIFSTOPPED (w)
3441 && WSTOPSIG (w) != SIGTRAP
3442 && supports_fast_tracepoints ()
3443 && agent_loaded_p ())
3444 {
3445 if (debug_threads)
3446 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3447 "to defer or adjust it.\n",
3448 WSTOPSIG (w), lwpid_of (current_thread));
3449
3450 /* Allow debugging the jump pad itself. */
3451 if (current_thread->last_resume_kind != resume_step
3452 && maybe_move_out_of_jump_pad (event_child, &w))
3453 {
3454 enqueue_one_deferred_signal (event_child, &w);
3455
3456 if (debug_threads)
3457 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3458 WSTOPSIG (w), lwpid_of (current_thread));
3459
3460 linux_resume_one_lwp (event_child, 0, 0, NULL);
3461
3462 if (debug_threads)
3463 debug_exit ();
3464 return ignore_event (ourstatus);
3465 }
3466 }
3467
3468 if (event_child->collecting_fast_tracepoint)
3469 {
3470 if (debug_threads)
3471 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3472 "Check if we're already there.\n",
3473 lwpid_of (current_thread),
3474 event_child->collecting_fast_tracepoint);
3475
3476 trace_event = 1;
3477
3478 event_child->collecting_fast_tracepoint
3479 = linux_fast_tracepoint_collecting (event_child, NULL);
3480
3481 if (event_child->collecting_fast_tracepoint != 1)
3482 {
3483 /* No longer need this breakpoint. */
3484 if (event_child->exit_jump_pad_bkpt != NULL)
3485 {
3486 if (debug_threads)
3487 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3488 "stopping all threads momentarily.\n");
3489
3490 /* Other running threads could hit this breakpoint.
3491 We don't handle moribund locations like GDB does,
3492 instead we always pause all threads when removing
3493 breakpoints, so that any step-over or
3494 decr_pc_after_break adjustment is always taken
3495 care of while the breakpoint is still
3496 inserted. */
3497 stop_all_lwps (1, event_child);
3498
3499 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3500 event_child->exit_jump_pad_bkpt = NULL;
3501
3502 unstop_all_lwps (1, event_child);
3503
3504 gdb_assert (event_child->suspended >= 0);
3505 }
3506 }
3507
3508 if (event_child->collecting_fast_tracepoint == 0)
3509 {
3510 if (debug_threads)
3511 debug_printf ("fast tracepoint finished "
3512 "collecting successfully.\n");
3513
3514 /* We may have a deferred signal to report. */
3515 if (dequeue_one_deferred_signal (event_child, &w))
3516 {
3517 if (debug_threads)
3518 debug_printf ("dequeued one signal.\n");
3519 }
3520 else
3521 {
3522 if (debug_threads)
3523 debug_printf ("no deferred signals.\n");
3524
3525 if (stabilizing_threads)
3526 {
3527 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3528 ourstatus->value.sig = GDB_SIGNAL_0;
3529
3530 if (debug_threads)
3531 {
3532 debug_printf ("linux_wait_1 ret = %s, stopped "
3533 "while stabilizing threads\n",
3534 target_pid_to_str (ptid_of (current_thread)));
3535 debug_exit ();
3536 }
3537
3538 return ptid_of (current_thread);
3539 }
3540 }
3541 }
3542 }
3543
3544 /* Check whether GDB would be interested in this event. */
3545
3546 /* Check if GDB is interested in this syscall. */
3547 if (WIFSTOPPED (w)
3548 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3549 && !gdb_catch_this_syscall_p (event_child))
3550 {
3551 if (debug_threads)
3552 {
3553 debug_printf ("Ignored syscall for LWP %ld.\n",
3554 lwpid_of (current_thread));
3555 }
3556
3557 linux_resume_one_lwp (event_child, event_child->stepping,
3558 0, NULL);
3559
3560 if (debug_threads)
3561 debug_exit ();
3562 return ignore_event (ourstatus);
3563 }
3564
3565 /* If GDB is not interested in this signal, don't stop other
3566 threads, and don't report it to GDB. Just resume the inferior
3567 right away. We do this for threading-related signals as well as
3568 any that GDB specifically requested we ignore. But never ignore
3569 SIGSTOP if we sent it ourselves, and do not ignore signals when
3570 stepping - they may require special handling to skip the signal
3571 handler. Also never ignore signals that could be caused by a
3572 breakpoint. */
3573 if (WIFSTOPPED (w)
3574 && current_thread->last_resume_kind != resume_step
3575 && (
3576 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3577 (current_process ()->priv->thread_db != NULL
3578 && (WSTOPSIG (w) == __SIGRTMIN
3579 || WSTOPSIG (w) == __SIGRTMIN + 1))
3580 ||
3581 #endif
3582 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3583 && !(WSTOPSIG (w) == SIGSTOP
3584 && current_thread->last_resume_kind == resume_stop)
3585 && !linux_wstatus_maybe_breakpoint (w))))
3586 {
3587 siginfo_t info, *info_p;
3588
3589 if (debug_threads)
3590 debug_printf ("Ignored signal %d for LWP %ld.\n",
3591 WSTOPSIG (w), lwpid_of (current_thread));
3592
3593 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3594 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3595 info_p = &info;
3596 else
3597 info_p = NULL;
3598
3599 if (step_over_finished)
3600 {
3601 /* We cancelled this thread's step-over above. We still
3602 need to unsuspend all other LWPs, and set them back
3603 running again while the signal handler runs. */
3604 unsuspend_all_lwps (event_child);
3605
3606 /* Enqueue the pending signal info so that proceed_all_lwps
3607 doesn't lose it. */
3608 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3609
3610 proceed_all_lwps ();
3611 }
3612 else
3613 {
3614 linux_resume_one_lwp (event_child, event_child->stepping,
3615 WSTOPSIG (w), info_p);
3616 }
3617
3618 if (debug_threads)
3619 debug_exit ();
3620
3621 return ignore_event (ourstatus);
3622 }
3623
3624 /* Note that all addresses are always "out of the step range" when
3625 there's no range to begin with. */
3626 in_step_range = lwp_in_step_range (event_child);
3627
3628 /* If GDB wanted this thread to single step, and the thread is out
3629 of the step range, we always want to report the SIGTRAP, and let
3630 GDB handle it. Watchpoints should always be reported. So should
3631 signals we can't explain. A SIGTRAP we can't explain could be a
3632 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3633 do, we're be able to handle GDB breakpoints on top of internal
3634 breakpoints, by handling the internal breakpoint and still
3635 reporting the event to GDB. If we don't, we're out of luck, GDB
3636 won't see the breakpoint hit. If we see a single-step event but
3637 the thread should be continuing, don't pass the trap to gdb.
3638 That indicates that we had previously finished a single-step but
3639 left the single-step pending -- see
3640 complete_ongoing_step_over. */
3641 report_to_gdb = (!maybe_internal_trap
3642 || (current_thread->last_resume_kind == resume_step
3643 && !in_step_range)
3644 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3645 || (!in_step_range
3646 && !bp_explains_trap
3647 && !trace_event
3648 && !step_over_finished
3649 && !(current_thread->last_resume_kind == resume_continue
3650 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3651 || (gdb_breakpoint_here (event_child->stop_pc)
3652 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3653 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3654 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3655
3656 run_breakpoint_commands (event_child->stop_pc);
3657
3658 /* We found no reason GDB would want us to stop. We either hit one
3659 of our own breakpoints, or finished an internal step GDB
3660 shouldn't know about. */
3661 if (!report_to_gdb)
3662 {
3663 if (debug_threads)
3664 {
3665 if (bp_explains_trap)
3666 debug_printf ("Hit a gdbserver breakpoint.\n");
3667 if (step_over_finished)
3668 debug_printf ("Step-over finished.\n");
3669 if (trace_event)
3670 debug_printf ("Tracepoint event.\n");
3671 if (lwp_in_step_range (event_child))
3672 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3673 paddress (event_child->stop_pc),
3674 paddress (event_child->step_range_start),
3675 paddress (event_child->step_range_end));
3676 }
3677
3678 /* We're not reporting this breakpoint to GDB, so apply the
3679 decr_pc_after_break adjustment to the inferior's regcache
3680 ourselves. */
3681
3682 if (the_low_target.set_pc != NULL)
3683 {
3684 struct regcache *regcache
3685 = get_thread_regcache (current_thread, 1);
3686 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3687 }
3688
3689 if (step_over_finished)
3690 {
3691 /* If we have finished stepping over a breakpoint, we've
3692 stopped and suspended all LWPs momentarily except the
3693 stepping one. This is where we resume them all again.
3694 We're going to keep waiting, so use proceed, which
3695 handles stepping over the next breakpoint. */
3696 unsuspend_all_lwps (event_child);
3697 }
3698 else
3699 {
3700 /* Remove the single-step breakpoints if any. Note that
3701 there isn't single-step breakpoint if we finished stepping
3702 over. */
3703 if (can_software_single_step ()
3704 && has_single_step_breakpoints (current_thread))
3705 {
3706 stop_all_lwps (0, event_child);
3707 delete_single_step_breakpoints (current_thread);
3708 unstop_all_lwps (0, event_child);
3709 }
3710 }
3711
3712 if (debug_threads)
3713 debug_printf ("proceeding all threads.\n");
3714 proceed_all_lwps ();
3715
3716 if (debug_threads)
3717 debug_exit ();
3718
3719 return ignore_event (ourstatus);
3720 }
3721
3722 if (debug_threads)
3723 {
3724 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3725 {
3726 char *str;
3727
3728 str = target_waitstatus_to_string (&event_child->waitstatus);
3729 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3730 lwpid_of (get_lwp_thread (event_child)), str);
3731 xfree (str);
3732 }
3733 if (current_thread->last_resume_kind == resume_step)
3734 {
3735 if (event_child->step_range_start == event_child->step_range_end)
3736 debug_printf ("GDB wanted to single-step, reporting event.\n");
3737 else if (!lwp_in_step_range (event_child))
3738 debug_printf ("Out of step range, reporting event.\n");
3739 }
3740 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3741 debug_printf ("Stopped by watchpoint.\n");
3742 else if (gdb_breakpoint_here (event_child->stop_pc))
3743 debug_printf ("Stopped by GDB breakpoint.\n");
3744 if (debug_threads)
3745 debug_printf ("Hit a non-gdbserver trap event.\n");
3746 }
3747
3748 /* Alright, we're going to report a stop. */
3749
3750 /* Remove single-step breakpoints. */
3751 if (can_software_single_step ())
3752 {
3753 /* Remove single-step breakpoints or not. It it is true, stop all
3754 lwps, so that other threads won't hit the breakpoint in the
3755 staled memory. */
3756 int remove_single_step_breakpoints_p = 0;
3757
3758 if (non_stop)
3759 {
3760 remove_single_step_breakpoints_p
3761 = has_single_step_breakpoints (current_thread);
3762 }
3763 else
3764 {
3765 /* In all-stop, a stop reply cancels all previous resume
3766 requests. Delete all single-step breakpoints. */
3767 struct inferior_list_entry *inf, *tmp;
3768
3769 ALL_INFERIORS (&all_threads, inf, tmp)
3770 {
3771 struct thread_info *thread = (struct thread_info *) inf;
3772
3773 if (has_single_step_breakpoints (thread))
3774 {
3775 remove_single_step_breakpoints_p = 1;
3776 break;
3777 }
3778 }
3779 }
3780
3781 if (remove_single_step_breakpoints_p)
3782 {
3783 /* If we remove single-step breakpoints from memory, stop all lwps,
3784 so that other threads won't hit the breakpoint in the staled
3785 memory. */
3786 stop_all_lwps (0, event_child);
3787
3788 if (non_stop)
3789 {
3790 gdb_assert (has_single_step_breakpoints (current_thread));
3791 delete_single_step_breakpoints (current_thread);
3792 }
3793 else
3794 {
3795 struct inferior_list_entry *inf, *tmp;
3796
3797 ALL_INFERIORS (&all_threads, inf, tmp)
3798 {
3799 struct thread_info *thread = (struct thread_info *) inf;
3800
3801 if (has_single_step_breakpoints (thread))
3802 delete_single_step_breakpoints (thread);
3803 }
3804 }
3805
3806 unstop_all_lwps (0, event_child);
3807 }
3808 }
3809
3810 if (!stabilizing_threads)
3811 {
3812 /* In all-stop, stop all threads. */
3813 if (!non_stop)
3814 stop_all_lwps (0, NULL);
3815
3816 if (step_over_finished)
3817 {
3818 if (!non_stop)
3819 {
3820 /* If we were doing a step-over, all other threads but
3821 the stepping one had been paused in start_step_over,
3822 with their suspend counts incremented. We don't want
3823 to do a full unstop/unpause, because we're in
3824 all-stop mode (so we want threads stopped), but we
3825 still need to unsuspend the other threads, to
3826 decrement their `suspended' count back. */
3827 unsuspend_all_lwps (event_child);
3828 }
3829 else
3830 {
3831 /* If we just finished a step-over, then all threads had
3832 been momentarily paused. In all-stop, that's fine,
3833 we want threads stopped by now anyway. In non-stop,
3834 we need to re-resume threads that GDB wanted to be
3835 running. */
3836 unstop_all_lwps (1, event_child);
3837 }
3838 }
3839
3840 /* If we're not waiting for a specific LWP, choose an event LWP
3841 from among those that have had events. Giving equal priority
3842 to all LWPs that have had events helps prevent
3843 starvation. */
3844 if (ptid_equal (ptid, minus_one_ptid))
3845 {
3846 event_child->status_pending_p = 1;
3847 event_child->status_pending = w;
3848
3849 select_event_lwp (&event_child);
3850
3851 /* current_thread and event_child must stay in sync. */
3852 current_thread = get_lwp_thread (event_child);
3853
3854 event_child->status_pending_p = 0;
3855 w = event_child->status_pending;
3856 }
3857
3858
3859 /* Stabilize threads (move out of jump pads). */
3860 if (!non_stop)
3861 stabilize_threads ();
3862 }
3863 else
3864 {
3865 /* If we just finished a step-over, then all threads had been
3866 momentarily paused. In all-stop, that's fine, we want
3867 threads stopped by now anyway. In non-stop, we need to
3868 re-resume threads that GDB wanted to be running. */
3869 if (step_over_finished)
3870 unstop_all_lwps (1, event_child);
3871 }
3872
3873 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3874 {
3875 /* If the reported event is an exit, fork, vfork or exec, let
3876 GDB know. */
3877
3878 /* Break the unreported fork relationship chain. */
3879 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3880 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3881 {
3882 event_child->fork_relative->fork_relative = NULL;
3883 event_child->fork_relative = NULL;
3884 }
3885
3886 *ourstatus = event_child->waitstatus;
3887 /* Clear the event lwp's waitstatus since we handled it already. */
3888 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3889 }
3890 else
3891 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3892
3893 /* Now that we've selected our final event LWP, un-adjust its PC if
3894 it was a software breakpoint, and the client doesn't know we can
3895 adjust the breakpoint ourselves. */
3896 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3897 && !swbreak_feature)
3898 {
3899 int decr_pc = the_low_target.decr_pc_after_break;
3900
3901 if (decr_pc != 0)
3902 {
3903 struct regcache *regcache
3904 = get_thread_regcache (current_thread, 1);
3905 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3906 }
3907 }
3908
3909 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3910 {
3911 get_syscall_trapinfo (event_child,
3912 &ourstatus->value.syscall_number);
3913 ourstatus->kind = event_child->syscall_state;
3914 }
3915 else if (current_thread->last_resume_kind == resume_stop
3916 && WSTOPSIG (w) == SIGSTOP)
3917 {
3918 /* A thread that has been requested to stop by GDB with vCont;t,
3919 and it stopped cleanly, so report as SIG0. The use of
3920 SIGSTOP is an implementation detail. */
3921 ourstatus->value.sig = GDB_SIGNAL_0;
3922 }
3923 else if (current_thread->last_resume_kind == resume_stop
3924 && WSTOPSIG (w) != SIGSTOP)
3925 {
3926 /* A thread that has been requested to stop by GDB with vCont;t,
3927 but, it stopped for other reasons. */
3928 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3929 }
3930 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3931 {
3932 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3933 }
3934
3935 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3936
3937 if (debug_threads)
3938 {
3939 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3940 target_pid_to_str (ptid_of (current_thread)),
3941 ourstatus->kind, ourstatus->value.sig);
3942 debug_exit ();
3943 }
3944
3945 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3946 return filter_exit_event (event_child, ourstatus);
3947
3948 return ptid_of (current_thread);
3949 }
3950
3951 /* Get rid of any pending event in the pipe. */
3952 static void
3953 async_file_flush (void)
3954 {
3955 int ret;
3956 char buf;
3957
3958 do
3959 ret = read (linux_event_pipe[0], &buf, 1);
3960 while (ret >= 0 || (ret == -1 && errno == EINTR));
3961 }
3962
3963 /* Put something in the pipe, so the event loop wakes up. */
3964 static void
3965 async_file_mark (void)
3966 {
3967 int ret;
3968
3969 async_file_flush ();
3970
3971 do
3972 ret = write (linux_event_pipe[1], "+", 1);
3973 while (ret == 0 || (ret == -1 && errno == EINTR));
3974
3975 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3976 be awakened anyway. */
3977 }
3978
3979 static ptid_t
3980 linux_wait (ptid_t ptid,
3981 struct target_waitstatus *ourstatus, int target_options)
3982 {
3983 ptid_t event_ptid;
3984
3985 /* Flush the async file first. */
3986 if (target_is_async_p ())
3987 async_file_flush ();
3988
3989 do
3990 {
3991 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3992 }
3993 while ((target_options & TARGET_WNOHANG) == 0
3994 && ptid_equal (event_ptid, null_ptid)
3995 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3996
3997 /* If at least one stop was reported, there may be more. A single
3998 SIGCHLD can signal more than one child stop. */
3999 if (target_is_async_p ()
4000 && (target_options & TARGET_WNOHANG) != 0
4001 && !ptid_equal (event_ptid, null_ptid))
4002 async_file_mark ();
4003
4004 return event_ptid;
4005 }
4006
4007 /* Send a signal to an LWP. */
4008
4009 static int
4010 kill_lwp (unsigned long lwpid, int signo)
4011 {
4012 int ret;
4013
4014 errno = 0;
4015 ret = syscall (__NR_tkill, lwpid, signo);
4016 if (errno == ENOSYS)
4017 {
4018 /* If tkill fails, then we are not using nptl threads, a
4019 configuration we no longer support. */
4020 perror_with_name (("tkill"));
4021 }
4022 return ret;
4023 }
4024
4025 void
4026 linux_stop_lwp (struct lwp_info *lwp)
4027 {
4028 send_sigstop (lwp);
4029 }
4030
4031 static void
4032 send_sigstop (struct lwp_info *lwp)
4033 {
4034 int pid;
4035
4036 pid = lwpid_of (get_lwp_thread (lwp));
4037
4038 /* If we already have a pending stop signal for this process, don't
4039 send another. */
4040 if (lwp->stop_expected)
4041 {
4042 if (debug_threads)
4043 debug_printf ("Have pending sigstop for lwp %d\n", pid);
4044
4045 return;
4046 }
4047
4048 if (debug_threads)
4049 debug_printf ("Sending sigstop to lwp %d\n", pid);
4050
4051 lwp->stop_expected = 1;
4052 kill_lwp (pid, SIGSTOP);
4053 }
4054
4055 static int
4056 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
4057 {
4058 struct thread_info *thread = (struct thread_info *) entry;
4059 struct lwp_info *lwp = get_thread_lwp (thread);
4060
4061 /* Ignore EXCEPT. */
4062 if (lwp == except)
4063 return 0;
4064
4065 if (lwp->stopped)
4066 return 0;
4067
4068 send_sigstop (lwp);
4069 return 0;
4070 }
4071
4072 /* Increment the suspend count of an LWP, and stop it, if not stopped
4073 yet. */
4074 static int
4075 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
4076 void *except)
4077 {
4078 struct thread_info *thread = (struct thread_info *) entry;
4079 struct lwp_info *lwp = get_thread_lwp (thread);
4080
4081 /* Ignore EXCEPT. */
4082 if (lwp == except)
4083 return 0;
4084
4085 lwp_suspended_inc (lwp);
4086
4087 return send_sigstop_callback (entry, except);
4088 }
4089
4090 static void
4091 mark_lwp_dead (struct lwp_info *lwp, int wstat)
4092 {
4093 /* Store the exit status for later. */
4094 lwp->status_pending_p = 1;
4095 lwp->status_pending = wstat;
4096
4097 /* Store in waitstatus as well, as there's nothing else to process
4098 for this event. */
4099 if (WIFEXITED (wstat))
4100 {
4101 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
4102 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
4103 }
4104 else if (WIFSIGNALED (wstat))
4105 {
4106 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
4107 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
4108 }
4109
4110 /* Prevent trying to stop it. */
4111 lwp->stopped = 1;
4112
4113 /* No further stops are expected from a dead lwp. */
4114 lwp->stop_expected = 0;
4115 }
4116
4117 /* Return true if LWP has exited already, and has a pending exit event
4118 to report to GDB. */
4119
4120 static int
4121 lwp_is_marked_dead (struct lwp_info *lwp)
4122 {
4123 return (lwp->status_pending_p
4124 && (WIFEXITED (lwp->status_pending)
4125 || WIFSIGNALED (lwp->status_pending)));
4126 }
4127
4128 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4129
4130 static void
4131 wait_for_sigstop (void)
4132 {
4133 struct thread_info *saved_thread;
4134 ptid_t saved_tid;
4135 int wstat;
4136 int ret;
4137
4138 saved_thread = current_thread;
4139 if (saved_thread != NULL)
4140 saved_tid = saved_thread->entry.id;
4141 else
4142 saved_tid = null_ptid; /* avoid bogus unused warning */
4143
4144 if (debug_threads)
4145 debug_printf ("wait_for_sigstop: pulling events\n");
4146
4147 /* Passing NULL_PTID as filter indicates we want all events to be
4148 left pending. Eventually this returns when there are no
4149 unwaited-for children left. */
4150 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4151 &wstat, __WALL);
4152 gdb_assert (ret == -1);
4153
4154 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4155 current_thread = saved_thread;
4156 else
4157 {
4158 if (debug_threads)
4159 debug_printf ("Previously current thread died.\n");
4160
4161 /* We can't change the current inferior behind GDB's back,
4162 otherwise, a subsequent command may apply to the wrong
4163 process. */
4164 current_thread = NULL;
4165 }
4166 }
4167
4168 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
4169 move it out, because we need to report the stop event to GDB. For
4170 example, if the user puts a breakpoint in the jump pad, it's
4171 because she wants to debug it. */
4172
4173 static int
4174 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
4175 {
4176 struct thread_info *thread = (struct thread_info *) entry;
4177 struct lwp_info *lwp = get_thread_lwp (thread);
4178
4179 if (lwp->suspended != 0)
4180 {
4181 internal_error (__FILE__, __LINE__,
4182 "LWP %ld is suspended, suspended=%d\n",
4183 lwpid_of (thread), lwp->suspended);
4184 }
4185 gdb_assert (lwp->stopped);
4186
4187 /* Allow debugging the jump pad, gdb_collect, etc.. */
4188 return (supports_fast_tracepoints ()
4189 && agent_loaded_p ()
4190 && (gdb_breakpoint_here (lwp->stop_pc)
4191 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4192 || thread->last_resume_kind == resume_step)
4193 && linux_fast_tracepoint_collecting (lwp, NULL));
4194 }
4195
4196 static void
4197 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
4198 {
4199 struct thread_info *thread = (struct thread_info *) entry;
4200 struct thread_info *saved_thread;
4201 struct lwp_info *lwp = get_thread_lwp (thread);
4202 int *wstat;
4203
4204 if (lwp->suspended != 0)
4205 {
4206 internal_error (__FILE__, __LINE__,
4207 "LWP %ld is suspended, suspended=%d\n",
4208 lwpid_of (thread), lwp->suspended);
4209 }
4210 gdb_assert (lwp->stopped);
4211
4212 /* For gdb_breakpoint_here. */
4213 saved_thread = current_thread;
4214 current_thread = thread;
4215
4216 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4217
4218 /* Allow debugging the jump pad, gdb_collect, etc. */
4219 if (!gdb_breakpoint_here (lwp->stop_pc)
4220 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4221 && thread->last_resume_kind != resume_step
4222 && maybe_move_out_of_jump_pad (lwp, wstat))
4223 {
4224 if (debug_threads)
4225 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4226 lwpid_of (thread));
4227
4228 if (wstat)
4229 {
4230 lwp->status_pending_p = 0;
4231 enqueue_one_deferred_signal (lwp, wstat);
4232
4233 if (debug_threads)
4234 debug_printf ("Signal %d for LWP %ld deferred "
4235 "(in jump pad)\n",
4236 WSTOPSIG (*wstat), lwpid_of (thread));
4237 }
4238
4239 linux_resume_one_lwp (lwp, 0, 0, NULL);
4240 }
4241 else
4242 lwp_suspended_inc (lwp);
4243
4244 current_thread = saved_thread;
4245 }
4246
4247 static int
4248 lwp_running (struct inferior_list_entry *entry, void *data)
4249 {
4250 struct thread_info *thread = (struct thread_info *) entry;
4251 struct lwp_info *lwp = get_thread_lwp (thread);
4252
4253 if (lwp_is_marked_dead (lwp))
4254 return 0;
4255 if (lwp->stopped)
4256 return 0;
4257 return 1;
4258 }
4259
4260 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4261 If SUSPEND, then also increase the suspend count of every LWP,
4262 except EXCEPT. */
4263
4264 static void
4265 stop_all_lwps (int suspend, struct lwp_info *except)
4266 {
4267 /* Should not be called recursively. */
4268 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4269
4270 if (debug_threads)
4271 {
4272 debug_enter ();
4273 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4274 suspend ? "stop-and-suspend" : "stop",
4275 except != NULL
4276 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4277 : "none");
4278 }
4279
4280 stopping_threads = (suspend
4281 ? STOPPING_AND_SUSPENDING_THREADS
4282 : STOPPING_THREADS);
4283
4284 if (suspend)
4285 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4286 else
4287 find_inferior (&all_threads, send_sigstop_callback, except);
4288 wait_for_sigstop ();
4289 stopping_threads = NOT_STOPPING_THREADS;
4290
4291 if (debug_threads)
4292 {
4293 debug_printf ("stop_all_lwps done, setting stopping_threads "
4294 "back to !stopping\n");
4295 debug_exit ();
4296 }
4297 }
4298
4299 /* Enqueue one signal in the chain of signals which need to be
4300 delivered to this process on next resume. */
4301
4302 static void
4303 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4304 {
4305 struct pending_signals *p_sig = XNEW (struct pending_signals);
4306
4307 p_sig->prev = lwp->pending_signals;
4308 p_sig->signal = signal;
4309 if (info == NULL)
4310 memset (&p_sig->info, 0, sizeof (siginfo_t));
4311 else
4312 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4313 lwp->pending_signals = p_sig;
4314 }
4315
4316 /* Install breakpoints for software single stepping. */
4317
4318 static void
4319 install_software_single_step_breakpoints (struct lwp_info *lwp)
4320 {
4321 int i;
4322 CORE_ADDR pc;
4323 struct thread_info *thread = get_lwp_thread (lwp);
4324 struct regcache *regcache = get_thread_regcache (thread, 1);
4325 VEC (CORE_ADDR) *next_pcs = NULL;
4326 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4327
4328 make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
4329
4330 current_thread = thread;
4331 next_pcs = (*the_low_target.get_next_pcs) (regcache);
4332
4333 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); ++i)
4334 set_single_step_breakpoint (pc, current_ptid);
4335
4336 do_cleanups (old_chain);
4337 }
4338
4339 /* Single step via hardware or software single step.
4340 Return 1 if hardware single stepping, 0 if software single stepping
4341 or can't single step. */
4342
4343 static int
4344 single_step (struct lwp_info* lwp)
4345 {
4346 int step = 0;
4347
4348 if (can_hardware_single_step ())
4349 {
4350 step = 1;
4351 }
4352 else if (can_software_single_step ())
4353 {
4354 install_software_single_step_breakpoints (lwp);
4355 step = 0;
4356 }
4357 else
4358 {
4359 if (debug_threads)
4360 debug_printf ("stepping is not implemented on this target");
4361 }
4362
4363 return step;
4364 }
4365
4366 /* The signal can be delivered to the inferior if we are not trying to
4367 finish a fast tracepoint collect. Since signal can be delivered in
4368 the step-over, the program may go to signal handler and trap again
4369 after return from the signal handler. We can live with the spurious
4370 double traps. */
4371
4372 static int
4373 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4374 {
4375 return !lwp->collecting_fast_tracepoint;
4376 }
4377
4378 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4379 SIGNAL is nonzero, give it that signal. */
4380
4381 static void
4382 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4383 int step, int signal, siginfo_t *info)
4384 {
4385 struct thread_info *thread = get_lwp_thread (lwp);
4386 struct thread_info *saved_thread;
4387 int fast_tp_collecting;
4388 int ptrace_request;
4389 struct process_info *proc = get_thread_process (thread);
4390
4391 /* Note that target description may not be initialised
4392 (proc->tdesc == NULL) at this point because the program hasn't
4393 stopped at the first instruction yet. It means GDBserver skips
4394 the extra traps from the wrapper program (see option --wrapper).
4395 Code in this function that requires register access should be
4396 guarded by proc->tdesc == NULL or something else. */
4397
4398 if (lwp->stopped == 0)
4399 return;
4400
4401 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4402
4403 fast_tp_collecting = lwp->collecting_fast_tracepoint;
4404
4405 gdb_assert (!stabilizing_threads || fast_tp_collecting);
4406
4407 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4408 user used the "jump" command, or "set $pc = foo"). */
4409 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4410 {
4411 /* Collecting 'while-stepping' actions doesn't make sense
4412 anymore. */
4413 release_while_stepping_state_list (thread);
4414 }
4415
4416 /* If we have pending signals or status, and a new signal, enqueue the
4417 signal. Also enqueue the signal if it can't be delivered to the
4418 inferior right now. */
4419 if (signal != 0
4420 && (lwp->status_pending_p
4421 || lwp->pending_signals != NULL
4422 || !lwp_signal_can_be_delivered (lwp)))
4423 {
4424 enqueue_pending_signal (lwp, signal, info);
4425
4426 /* Postpone any pending signal. It was enqueued above. */
4427 signal = 0;
4428 }
4429
4430 if (lwp->status_pending_p)
4431 {
4432 if (debug_threads)
4433 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4434 " has pending status\n",
4435 lwpid_of (thread), step ? "step" : "continue",
4436 lwp->stop_expected ? "expected" : "not expected");
4437 return;
4438 }
4439
4440 saved_thread = current_thread;
4441 current_thread = thread;
4442
4443 /* This bit needs some thinking about. If we get a signal that
4444 we must report while a single-step reinsert is still pending,
4445 we often end up resuming the thread. It might be better to
4446 (ew) allow a stack of pending events; then we could be sure that
4447 the reinsert happened right away and not lose any signals.
4448
4449 Making this stack would also shrink the window in which breakpoints are
4450 uninserted (see comment in linux_wait_for_lwp) but not enough for
4451 complete correctness, so it won't solve that problem. It may be
4452 worthwhile just to solve this one, however. */
4453 if (lwp->bp_reinsert != 0)
4454 {
4455 if (debug_threads)
4456 debug_printf (" pending reinsert at 0x%s\n",
4457 paddress (lwp->bp_reinsert));
4458
4459 if (can_hardware_single_step ())
4460 {
4461 if (fast_tp_collecting == 0)
4462 {
4463 if (step == 0)
4464 fprintf (stderr, "BAD - reinserting but not stepping.\n");
4465 if (lwp->suspended)
4466 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
4467 lwp->suspended);
4468 }
4469 }
4470
4471 step = maybe_hw_step (thread);
4472 }
4473
4474 if (fast_tp_collecting == 1)
4475 {
4476 if (debug_threads)
4477 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4478 " (exit-jump-pad-bkpt)\n",
4479 lwpid_of (thread));
4480 }
4481 else if (fast_tp_collecting == 2)
4482 {
4483 if (debug_threads)
4484 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4485 " single-stepping\n",
4486 lwpid_of (thread));
4487
4488 if (can_hardware_single_step ())
4489 step = 1;
4490 else
4491 {
4492 internal_error (__FILE__, __LINE__,
4493 "moving out of jump pad single-stepping"
4494 " not implemented on this target");
4495 }
4496 }
4497
4498 /* If we have while-stepping actions in this thread set it stepping.
4499 If we have a signal to deliver, it may or may not be set to
4500 SIG_IGN, we don't know. Assume so, and allow collecting
4501 while-stepping into a signal handler. A possible smart thing to
4502 do would be to set an internal breakpoint at the signal return
4503 address, continue, and carry on catching this while-stepping
4504 action only when that breakpoint is hit. A future
4505 enhancement. */
4506 if (thread->while_stepping != NULL)
4507 {
4508 if (debug_threads)
4509 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4510 lwpid_of (thread));
4511
4512 step = single_step (lwp);
4513 }
4514
4515 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4516 {
4517 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4518
4519 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4520
4521 if (debug_threads)
4522 {
4523 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4524 (long) lwp->stop_pc);
4525 }
4526 }
4527
4528 /* If we have pending signals, consume one if it can be delivered to
4529 the inferior. */
4530 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4531 {
4532 struct pending_signals **p_sig;
4533
4534 p_sig = &lwp->pending_signals;
4535 while ((*p_sig)->prev != NULL)
4536 p_sig = &(*p_sig)->prev;
4537
4538 signal = (*p_sig)->signal;
4539 if ((*p_sig)->info.si_signo != 0)
4540 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4541 &(*p_sig)->info);
4542
4543 free (*p_sig);
4544 *p_sig = NULL;
4545 }
4546
4547 if (debug_threads)
4548 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4549 lwpid_of (thread), step ? "step" : "continue", signal,
4550 lwp->stop_expected ? "expected" : "not expected");
4551
4552 if (the_low_target.prepare_to_resume != NULL)
4553 the_low_target.prepare_to_resume (lwp);
4554
4555 regcache_invalidate_thread (thread);
4556 errno = 0;
4557 lwp->stepping = step;
4558 if (step)
4559 ptrace_request = PTRACE_SINGLESTEP;
4560 else if (gdb_catching_syscalls_p (lwp))
4561 ptrace_request = PTRACE_SYSCALL;
4562 else
4563 ptrace_request = PTRACE_CONT;
4564 ptrace (ptrace_request,
4565 lwpid_of (thread),
4566 (PTRACE_TYPE_ARG3) 0,
4567 /* Coerce to a uintptr_t first to avoid potential gcc warning
4568 of coercing an 8 byte integer to a 4 byte pointer. */
4569 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4570
4571 current_thread = saved_thread;
4572 if (errno)
4573 perror_with_name ("resuming thread");
4574
4575 /* Successfully resumed. Clear state that no longer makes sense,
4576 and mark the LWP as running. Must not do this before resuming
4577 otherwise if that fails other code will be confused. E.g., we'd
4578 later try to stop the LWP and hang forever waiting for a stop
4579 status. Note that we must not throw after this is cleared,
4580 otherwise handle_zombie_lwp_error would get confused. */
4581 lwp->stopped = 0;
4582 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4583 }
4584
4585 /* Called when we try to resume a stopped LWP and that errors out. If
4586 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4587 or about to become), discard the error, clear any pending status
4588 the LWP may have, and return true (we'll collect the exit status
4589 soon enough). Otherwise, return false. */
4590
4591 static int
4592 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4593 {
4594 struct thread_info *thread = get_lwp_thread (lp);
4595
4596 /* If we get an error after resuming the LWP successfully, we'd
4597 confuse !T state for the LWP being gone. */
4598 gdb_assert (lp->stopped);
4599
4600 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4601 because even if ptrace failed with ESRCH, the tracee may be "not
4602 yet fully dead", but already refusing ptrace requests. In that
4603 case the tracee has 'R (Running)' state for a little bit
4604 (observed in Linux 3.18). See also the note on ESRCH in the
4605 ptrace(2) man page. Instead, check whether the LWP has any state
4606 other than ptrace-stopped. */
4607
4608 /* Don't assume anything if /proc/PID/status can't be read. */
4609 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4610 {
4611 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4612 lp->status_pending_p = 0;
4613 return 1;
4614 }
4615 return 0;
4616 }
4617
4618 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4619 disappears while we try to resume it. */
4620
4621 static void
4622 linux_resume_one_lwp (struct lwp_info *lwp,
4623 int step, int signal, siginfo_t *info)
4624 {
4625 TRY
4626 {
4627 linux_resume_one_lwp_throw (lwp, step, signal, info);
4628 }
4629 CATCH (ex, RETURN_MASK_ERROR)
4630 {
4631 if (!check_ptrace_stopped_lwp_gone (lwp))
4632 throw_exception (ex);
4633 }
4634 END_CATCH
4635 }
4636
4637 struct thread_resume_array
4638 {
4639 struct thread_resume *resume;
4640 size_t n;
4641 };
4642
4643 /* This function is called once per thread via find_inferior.
4644 ARG is a pointer to a thread_resume_array struct.
4645 We look up the thread specified by ENTRY in ARG, and mark the thread
4646 with a pointer to the appropriate resume request.
4647
4648 This algorithm is O(threads * resume elements), but resume elements
4649 is small (and will remain small at least until GDB supports thread
4650 suspension). */
4651
4652 static int
4653 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4654 {
4655 struct thread_info *thread = (struct thread_info *) entry;
4656 struct lwp_info *lwp = get_thread_lwp (thread);
4657 int ndx;
4658 struct thread_resume_array *r;
4659
4660 r = (struct thread_resume_array *) arg;
4661
4662 for (ndx = 0; ndx < r->n; ndx++)
4663 {
4664 ptid_t ptid = r->resume[ndx].thread;
4665 if (ptid_equal (ptid, minus_one_ptid)
4666 || ptid_equal (ptid, entry->id)
4667 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4668 of PID'. */
4669 || (ptid_get_pid (ptid) == pid_of (thread)
4670 && (ptid_is_pid (ptid)
4671 || ptid_get_lwp (ptid) == -1)))
4672 {
4673 if (r->resume[ndx].kind == resume_stop
4674 && thread->last_resume_kind == resume_stop)
4675 {
4676 if (debug_threads)
4677 debug_printf ("already %s LWP %ld at GDB's request\n",
4678 (thread->last_status.kind
4679 == TARGET_WAITKIND_STOPPED)
4680 ? "stopped"
4681 : "stopping",
4682 lwpid_of (thread));
4683
4684 continue;
4685 }
4686
4687 /* Ignore (wildcard) resume requests for already-resumed
4688 threads. */
4689 if (r->resume[ndx].kind != resume_stop
4690 && thread->last_resume_kind != resume_stop)
4691 {
4692 if (debug_threads)
4693 debug_printf ("already %s LWP %ld at GDB's request\n",
4694 (thread->last_resume_kind
4695 == resume_step)
4696 ? "stepping"
4697 : "continuing",
4698 lwpid_of (thread));
4699 continue;
4700 }
4701
4702 /* Don't let wildcard resumes resume fork children that GDB
4703 does not yet know are new fork children. */
4704 if (lwp->fork_relative != NULL)
4705 {
4706 struct inferior_list_entry *inf, *tmp;
4707 struct lwp_info *rel = lwp->fork_relative;
4708
4709 if (rel->status_pending_p
4710 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4711 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4712 {
4713 if (debug_threads)
4714 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4715 lwpid_of (thread));
4716 continue;
4717 }
4718 }
4719
4720 /* If the thread has a pending event that has already been
4721 reported to GDBserver core, but GDB has not pulled the
4722 event out of the vStopped queue yet, likewise, ignore the
4723 (wildcard) resume request. */
4724 if (in_queued_stop_replies (entry->id))
4725 {
4726 if (debug_threads)
4727 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4728 lwpid_of (thread));
4729 continue;
4730 }
4731
4732 lwp->resume = &r->resume[ndx];
4733 thread->last_resume_kind = lwp->resume->kind;
4734
4735 lwp->step_range_start = lwp->resume->step_range_start;
4736 lwp->step_range_end = lwp->resume->step_range_end;
4737
4738 /* If we had a deferred signal to report, dequeue one now.
4739 This can happen if LWP gets more than one signal while
4740 trying to get out of a jump pad. */
4741 if (lwp->stopped
4742 && !lwp->status_pending_p
4743 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4744 {
4745 lwp->status_pending_p = 1;
4746
4747 if (debug_threads)
4748 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4749 "leaving status pending.\n",
4750 WSTOPSIG (lwp->status_pending),
4751 lwpid_of (thread));
4752 }
4753
4754 return 0;
4755 }
4756 }
4757
4758 /* No resume action for this thread. */
4759 lwp->resume = NULL;
4760
4761 return 0;
4762 }
4763
4764 /* find_inferior callback for linux_resume.
4765 Set *FLAG_P if this lwp has an interesting status pending. */
4766
4767 static int
4768 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4769 {
4770 struct thread_info *thread = (struct thread_info *) entry;
4771 struct lwp_info *lwp = get_thread_lwp (thread);
4772
4773 /* LWPs which will not be resumed are not interesting, because
4774 we might not wait for them next time through linux_wait. */
4775 if (lwp->resume == NULL)
4776 return 0;
4777
4778 if (thread_still_has_status_pending_p (thread))
4779 * (int *) flag_p = 1;
4780
4781 return 0;
4782 }
4783
4784 /* Return 1 if this lwp that GDB wants running is stopped at an
4785 internal breakpoint that we need to step over. It assumes that any
4786 required STOP_PC adjustment has already been propagated to the
4787 inferior's regcache. */
4788
4789 static int
4790 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4791 {
4792 struct thread_info *thread = (struct thread_info *) entry;
4793 struct lwp_info *lwp = get_thread_lwp (thread);
4794 struct thread_info *saved_thread;
4795 CORE_ADDR pc;
4796 struct process_info *proc = get_thread_process (thread);
4797
4798 /* GDBserver is skipping the extra traps from the wrapper program,
4799 don't have to do step over. */
4800 if (proc->tdesc == NULL)
4801 return 0;
4802
4803 /* LWPs which will not be resumed are not interesting, because we
4804 might not wait for them next time through linux_wait. */
4805
4806 if (!lwp->stopped)
4807 {
4808 if (debug_threads)
4809 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4810 lwpid_of (thread));
4811 return 0;
4812 }
4813
4814 if (thread->last_resume_kind == resume_stop)
4815 {
4816 if (debug_threads)
4817 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4818 " stopped\n",
4819 lwpid_of (thread));
4820 return 0;
4821 }
4822
4823 gdb_assert (lwp->suspended >= 0);
4824
4825 if (lwp->suspended)
4826 {
4827 if (debug_threads)
4828 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4829 lwpid_of (thread));
4830 return 0;
4831 }
4832
4833 if (lwp->status_pending_p)
4834 {
4835 if (debug_threads)
4836 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4837 " status.\n",
4838 lwpid_of (thread));
4839 return 0;
4840 }
4841
4842 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4843 or we have. */
4844 pc = get_pc (lwp);
4845
4846 /* If the PC has changed since we stopped, then don't do anything,
4847 and let the breakpoint/tracepoint be hit. This happens if, for
4848 instance, GDB handled the decr_pc_after_break subtraction itself,
4849 GDB is OOL stepping this thread, or the user has issued a "jump"
4850 command, or poked thread's registers herself. */
4851 if (pc != lwp->stop_pc)
4852 {
4853 if (debug_threads)
4854 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4855 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4856 lwpid_of (thread),
4857 paddress (lwp->stop_pc), paddress (pc));
4858 return 0;
4859 }
4860
4861 /* On software single step target, resume the inferior with signal
4862 rather than stepping over. */
4863 if (can_software_single_step ()
4864 && lwp->pending_signals != NULL
4865 && lwp_signal_can_be_delivered (lwp))
4866 {
4867 if (debug_threads)
4868 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4869 " signals.\n",
4870 lwpid_of (thread));
4871
4872 return 0;
4873 }
4874
4875 saved_thread = current_thread;
4876 current_thread = thread;
4877
4878 /* We can only step over breakpoints we know about. */
4879 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4880 {
4881 /* Don't step over a breakpoint that GDB expects to hit
4882 though. If the condition is being evaluated on the target's side
4883 and it evaluate to false, step over this breakpoint as well. */
4884 if (gdb_breakpoint_here (pc)
4885 && gdb_condition_true_at_breakpoint (pc)
4886 && gdb_no_commands_at_breakpoint (pc))
4887 {
4888 if (debug_threads)
4889 debug_printf ("Need step over [LWP %ld]? yes, but found"
4890 " GDB breakpoint at 0x%s; skipping step over\n",
4891 lwpid_of (thread), paddress (pc));
4892
4893 current_thread = saved_thread;
4894 return 0;
4895 }
4896 else
4897 {
4898 if (debug_threads)
4899 debug_printf ("Need step over [LWP %ld]? yes, "
4900 "found breakpoint at 0x%s\n",
4901 lwpid_of (thread), paddress (pc));
4902
4903 /* We've found an lwp that needs stepping over --- return 1 so
4904 that find_inferior stops looking. */
4905 current_thread = saved_thread;
4906
4907 return 1;
4908 }
4909 }
4910
4911 current_thread = saved_thread;
4912
4913 if (debug_threads)
4914 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4915 " at 0x%s\n",
4916 lwpid_of (thread), paddress (pc));
4917
4918 return 0;
4919 }
4920
4921 /* Start a step-over operation on LWP. When LWP stopped at a
4922 breakpoint, to make progress, we need to remove the breakpoint out
4923 of the way. If we let other threads run while we do that, they may
4924 pass by the breakpoint location and miss hitting it. To avoid
4925 that, a step-over momentarily stops all threads while LWP is
4926 single-stepped by either hardware or software while the breakpoint
4927 is temporarily uninserted from the inferior. When the single-step
4928 finishes, we reinsert the breakpoint, and let all threads that are
4929 supposed to be running, run again. */
4930
4931 static int
4932 start_step_over (struct lwp_info *lwp)
4933 {
4934 struct thread_info *thread = get_lwp_thread (lwp);
4935 struct thread_info *saved_thread;
4936 CORE_ADDR pc;
4937 int step;
4938
4939 if (debug_threads)
4940 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4941 lwpid_of (thread));
4942
4943 stop_all_lwps (1, lwp);
4944
4945 if (lwp->suspended != 0)
4946 {
4947 internal_error (__FILE__, __LINE__,
4948 "LWP %ld suspended=%d\n", lwpid_of (thread),
4949 lwp->suspended);
4950 }
4951
4952 if (debug_threads)
4953 debug_printf ("Done stopping all threads for step-over.\n");
4954
4955 /* Note, we should always reach here with an already adjusted PC,
4956 either by GDB (if we're resuming due to GDB's request), or by our
4957 caller, if we just finished handling an internal breakpoint GDB
4958 shouldn't care about. */
4959 pc = get_pc (lwp);
4960
4961 saved_thread = current_thread;
4962 current_thread = thread;
4963
4964 lwp->bp_reinsert = pc;
4965 uninsert_breakpoints_at (pc);
4966 uninsert_fast_tracepoint_jumps_at (pc);
4967
4968 step = single_step (lwp);
4969
4970 current_thread = saved_thread;
4971
4972 linux_resume_one_lwp (lwp, step, 0, NULL);
4973
4974 /* Require next event from this LWP. */
4975 step_over_bkpt = thread->entry.id;
4976 return 1;
4977 }
4978
4979 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4980 start_step_over, if still there, and delete any single-step
4981 breakpoints we've set, on non hardware single-step targets. */
4982
4983 static int
4984 finish_step_over (struct lwp_info *lwp)
4985 {
4986 if (lwp->bp_reinsert != 0)
4987 {
4988 struct thread_info *saved_thread = current_thread;
4989
4990 if (debug_threads)
4991 debug_printf ("Finished step over.\n");
4992
4993 current_thread = get_lwp_thread (lwp);
4994
4995 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4996 may be no breakpoint to reinsert there by now. */
4997 reinsert_breakpoints_at (lwp->bp_reinsert);
4998 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4999
5000 lwp->bp_reinsert = 0;
5001
5002 /* Delete any single-step breakpoints. No longer needed. We
5003 don't have to worry about other threads hitting this trap,
5004 and later not being able to explain it, because we were
5005 stepping over a breakpoint, and we hold all threads but
5006 LWP stopped while doing that. */
5007 if (!can_hardware_single_step ())
5008 {
5009 gdb_assert (has_single_step_breakpoints (current_thread));
5010 delete_single_step_breakpoints (current_thread);
5011 }
5012
5013 step_over_bkpt = null_ptid;
5014 current_thread = saved_thread;
5015 return 1;
5016 }
5017 else
5018 return 0;
5019 }
5020
5021 /* If there's a step over in progress, wait until all threads stop
5022 (that is, until the stepping thread finishes its step), and
5023 unsuspend all lwps. The stepping thread ends with its status
5024 pending, which is processed later when we get back to processing
5025 events. */
5026
5027 static void
5028 complete_ongoing_step_over (void)
5029 {
5030 if (!ptid_equal (step_over_bkpt, null_ptid))
5031 {
5032 struct lwp_info *lwp;
5033 int wstat;
5034 int ret;
5035
5036 if (debug_threads)
5037 debug_printf ("detach: step over in progress, finish it first\n");
5038
5039 /* Passing NULL_PTID as filter indicates we want all events to
5040 be left pending. Eventually this returns when there are no
5041 unwaited-for children left. */
5042 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
5043 &wstat, __WALL);
5044 gdb_assert (ret == -1);
5045
5046 lwp = find_lwp_pid (step_over_bkpt);
5047 if (lwp != NULL)
5048 finish_step_over (lwp);
5049 step_over_bkpt = null_ptid;
5050 unsuspend_all_lwps (lwp);
5051 }
5052 }
5053
5054 /* This function is called once per thread. We check the thread's resume
5055 request, which will tell us whether to resume, step, or leave the thread
5056 stopped; and what signal, if any, it should be sent.
5057
5058 For threads which we aren't explicitly told otherwise, we preserve
5059 the stepping flag; this is used for stepping over gdbserver-placed
5060 breakpoints.
5061
5062 If pending_flags was set in any thread, we queue any needed
5063 signals, since we won't actually resume. We already have a pending
5064 event to report, so we don't need to preserve any step requests;
5065 they should be re-issued if necessary. */
5066
5067 static int
5068 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
5069 {
5070 struct thread_info *thread = (struct thread_info *) entry;
5071 struct lwp_info *lwp = get_thread_lwp (thread);
5072 int leave_all_stopped = * (int *) arg;
5073 int leave_pending;
5074
5075 if (lwp->resume == NULL)
5076 return 0;
5077
5078 if (lwp->resume->kind == resume_stop)
5079 {
5080 if (debug_threads)
5081 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
5082
5083 if (!lwp->stopped)
5084 {
5085 if (debug_threads)
5086 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
5087
5088 /* Stop the thread, and wait for the event asynchronously,
5089 through the event loop. */
5090 send_sigstop (lwp);
5091 }
5092 else
5093 {
5094 if (debug_threads)
5095 debug_printf ("already stopped LWP %ld\n",
5096 lwpid_of (thread));
5097
5098 /* The LWP may have been stopped in an internal event that
5099 was not meant to be notified back to GDB (e.g., gdbserver
5100 breakpoint), so we should be reporting a stop event in
5101 this case too. */
5102
5103 /* If the thread already has a pending SIGSTOP, this is a
5104 no-op. Otherwise, something later will presumably resume
5105 the thread and this will cause it to cancel any pending
5106 operation, due to last_resume_kind == resume_stop. If
5107 the thread already has a pending status to report, we
5108 will still report it the next time we wait - see
5109 status_pending_p_callback. */
5110
5111 /* If we already have a pending signal to report, then
5112 there's no need to queue a SIGSTOP, as this means we're
5113 midway through moving the LWP out of the jumppad, and we
5114 will report the pending signal as soon as that is
5115 finished. */
5116 if (lwp->pending_signals_to_report == NULL)
5117 send_sigstop (lwp);
5118 }
5119
5120 /* For stop requests, we're done. */
5121 lwp->resume = NULL;
5122 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5123 return 0;
5124 }
5125
5126 /* If this thread which is about to be resumed has a pending status,
5127 then don't resume it - we can just report the pending status.
5128 Likewise if it is suspended, because e.g., another thread is
5129 stepping past a breakpoint. Make sure to queue any signals that
5130 would otherwise be sent. In all-stop mode, we do this decision
5131 based on if *any* thread has a pending status. If there's a
5132 thread that needs the step-over-breakpoint dance, then don't
5133 resume any other thread but that particular one. */
5134 leave_pending = (lwp->suspended
5135 || lwp->status_pending_p
5136 || leave_all_stopped);
5137
5138 /* If we have a new signal, enqueue the signal. */
5139 if (lwp->resume->sig != 0)
5140 {
5141 siginfo_t info, *info_p;
5142
5143 /* If this is the same signal we were previously stopped by,
5144 make sure to queue its siginfo. */
5145 if (WIFSTOPPED (lwp->last_status)
5146 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5147 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5148 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5149 info_p = &info;
5150 else
5151 info_p = NULL;
5152
5153 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5154 }
5155
5156 if (!leave_pending)
5157 {
5158 if (debug_threads)
5159 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5160
5161 proceed_one_lwp (entry, NULL);
5162 }
5163 else
5164 {
5165 if (debug_threads)
5166 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5167 }
5168
5169 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5170 lwp->resume = NULL;
5171 return 0;
5172 }
5173
5174 static void
5175 linux_resume (struct thread_resume *resume_info, size_t n)
5176 {
5177 struct thread_resume_array array = { resume_info, n };
5178 struct thread_info *need_step_over = NULL;
5179 int any_pending;
5180 int leave_all_stopped;
5181
5182 if (debug_threads)
5183 {
5184 debug_enter ();
5185 debug_printf ("linux_resume:\n");
5186 }
5187
5188 find_inferior (&all_threads, linux_set_resume_request, &array);
5189
5190 /* If there is a thread which would otherwise be resumed, which has
5191 a pending status, then don't resume any threads - we can just
5192 report the pending status. Make sure to queue any signals that
5193 would otherwise be sent. In non-stop mode, we'll apply this
5194 logic to each thread individually. We consume all pending events
5195 before considering to start a step-over (in all-stop). */
5196 any_pending = 0;
5197 if (!non_stop)
5198 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
5199
5200 /* If there is a thread which would otherwise be resumed, which is
5201 stopped at a breakpoint that needs stepping over, then don't
5202 resume any threads - have it step over the breakpoint with all
5203 other threads stopped, then resume all threads again. Make sure
5204 to queue any signals that would otherwise be delivered or
5205 queued. */
5206 if (!any_pending && supports_breakpoints ())
5207 need_step_over
5208 = (struct thread_info *) find_inferior (&all_threads,
5209 need_step_over_p, NULL);
5210
5211 leave_all_stopped = (need_step_over != NULL || any_pending);
5212
5213 if (debug_threads)
5214 {
5215 if (need_step_over != NULL)
5216 debug_printf ("Not resuming all, need step over\n");
5217 else if (any_pending)
5218 debug_printf ("Not resuming, all-stop and found "
5219 "an LWP with pending status\n");
5220 else
5221 debug_printf ("Resuming, no pending status or step over needed\n");
5222 }
5223
5224 /* Even if we're leaving threads stopped, queue all signals we'd
5225 otherwise deliver. */
5226 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5227
5228 if (need_step_over)
5229 start_step_over (get_thread_lwp (need_step_over));
5230
5231 if (debug_threads)
5232 {
5233 debug_printf ("linux_resume done\n");
5234 debug_exit ();
5235 }
5236
5237 /* We may have events that were pending that can/should be sent to
5238 the client now. Trigger a linux_wait call. */
5239 if (target_is_async_p ())
5240 async_file_mark ();
5241 }
5242
5243 /* This function is called once per thread. We check the thread's
5244 last resume request, which will tell us whether to resume, step, or
5245 leave the thread stopped. Any signal the client requested to be
5246 delivered has already been enqueued at this point.
5247
5248 If any thread that GDB wants running is stopped at an internal
5249 breakpoint that needs stepping over, we start a step-over operation
5250 on that particular thread, and leave all others stopped. */
5251
5252 static int
5253 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5254 {
5255 struct thread_info *thread = (struct thread_info *) entry;
5256 struct lwp_info *lwp = get_thread_lwp (thread);
5257 int step;
5258
5259 if (lwp == except)
5260 return 0;
5261
5262 if (debug_threads)
5263 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5264
5265 if (!lwp->stopped)
5266 {
5267 if (debug_threads)
5268 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5269 return 0;
5270 }
5271
5272 if (thread->last_resume_kind == resume_stop
5273 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5274 {
5275 if (debug_threads)
5276 debug_printf (" client wants LWP to remain %ld stopped\n",
5277 lwpid_of (thread));
5278 return 0;
5279 }
5280
5281 if (lwp->status_pending_p)
5282 {
5283 if (debug_threads)
5284 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5285 lwpid_of (thread));
5286 return 0;
5287 }
5288
5289 gdb_assert (lwp->suspended >= 0);
5290
5291 if (lwp->suspended)
5292 {
5293 if (debug_threads)
5294 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5295 return 0;
5296 }
5297
5298 if (thread->last_resume_kind == resume_stop
5299 && lwp->pending_signals_to_report == NULL
5300 && lwp->collecting_fast_tracepoint == 0)
5301 {
5302 /* We haven't reported this LWP as stopped yet (otherwise, the
5303 last_status.kind check above would catch it, and we wouldn't
5304 reach here. This LWP may have been momentarily paused by a
5305 stop_all_lwps call while handling for example, another LWP's
5306 step-over. In that case, the pending expected SIGSTOP signal
5307 that was queued at vCont;t handling time will have already
5308 been consumed by wait_for_sigstop, and so we need to requeue
5309 another one here. Note that if the LWP already has a SIGSTOP
5310 pending, this is a no-op. */
5311
5312 if (debug_threads)
5313 debug_printf ("Client wants LWP %ld to stop. "
5314 "Making sure it has a SIGSTOP pending\n",
5315 lwpid_of (thread));
5316
5317 send_sigstop (lwp);
5318 }
5319
5320 if (thread->last_resume_kind == resume_step)
5321 {
5322 if (debug_threads)
5323 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5324 lwpid_of (thread));
5325
5326 /* If resume_step is requested by GDB, install single-step
5327 breakpoints when the thread is about to be actually resumed if
5328 the single-step breakpoints weren't removed. */
5329 if (can_software_single_step ()
5330 && !has_single_step_breakpoints (thread))
5331 install_software_single_step_breakpoints (lwp);
5332
5333 step = maybe_hw_step (thread);
5334 }
5335 else if (lwp->bp_reinsert != 0)
5336 {
5337 if (debug_threads)
5338 debug_printf (" stepping LWP %ld, reinsert set\n",
5339 lwpid_of (thread));
5340
5341 step = maybe_hw_step (thread);
5342 }
5343 else
5344 step = 0;
5345
5346 linux_resume_one_lwp (lwp, step, 0, NULL);
5347 return 0;
5348 }
5349
5350 static int
5351 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5352 {
5353 struct thread_info *thread = (struct thread_info *) entry;
5354 struct lwp_info *lwp = get_thread_lwp (thread);
5355
5356 if (lwp == except)
5357 return 0;
5358
5359 lwp_suspended_decr (lwp);
5360
5361 return proceed_one_lwp (entry, except);
5362 }
5363
5364 /* When we finish a step-over, set threads running again. If there's
5365 another thread that may need a step-over, now's the time to start
5366 it. Eventually, we'll move all threads past their breakpoints. */
5367
5368 static void
5369 proceed_all_lwps (void)
5370 {
5371 struct thread_info *need_step_over;
5372
5373 /* If there is a thread which would otherwise be resumed, which is
5374 stopped at a breakpoint that needs stepping over, then don't
5375 resume any threads - have it step over the breakpoint with all
5376 other threads stopped, then resume all threads again. */
5377
5378 if (supports_breakpoints ())
5379 {
5380 need_step_over
5381 = (struct thread_info *) find_inferior (&all_threads,
5382 need_step_over_p, NULL);
5383
5384 if (need_step_over != NULL)
5385 {
5386 if (debug_threads)
5387 debug_printf ("proceed_all_lwps: found "
5388 "thread %ld needing a step-over\n",
5389 lwpid_of (need_step_over));
5390
5391 start_step_over (get_thread_lwp (need_step_over));
5392 return;
5393 }
5394 }
5395
5396 if (debug_threads)
5397 debug_printf ("Proceeding, no step-over needed\n");
5398
5399 find_inferior (&all_threads, proceed_one_lwp, NULL);
5400 }
5401
5402 /* Stopped LWPs that the client wanted to be running, that don't have
5403 pending statuses, are set to run again, except for EXCEPT, if not
5404 NULL. This undoes a stop_all_lwps call. */
5405
5406 static void
5407 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5408 {
5409 if (debug_threads)
5410 {
5411 debug_enter ();
5412 if (except)
5413 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5414 lwpid_of (get_lwp_thread (except)));
5415 else
5416 debug_printf ("unstopping all lwps\n");
5417 }
5418
5419 if (unsuspend)
5420 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5421 else
5422 find_inferior (&all_threads, proceed_one_lwp, except);
5423
5424 if (debug_threads)
5425 {
5426 debug_printf ("unstop_all_lwps done\n");
5427 debug_exit ();
5428 }
5429 }
5430
5431
5432 #ifdef HAVE_LINUX_REGSETS
5433
5434 #define use_linux_regsets 1
5435
5436 /* Returns true if REGSET has been disabled. */
5437
5438 static int
5439 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5440 {
5441 return (info->disabled_regsets != NULL
5442 && info->disabled_regsets[regset - info->regsets]);
5443 }
5444
5445 /* Disable REGSET. */
5446
5447 static void
5448 disable_regset (struct regsets_info *info, struct regset_info *regset)
5449 {
5450 int dr_offset;
5451
5452 dr_offset = regset - info->regsets;
5453 if (info->disabled_regsets == NULL)
5454 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5455 info->disabled_regsets[dr_offset] = 1;
5456 }
5457
5458 static int
5459 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5460 struct regcache *regcache)
5461 {
5462 struct regset_info *regset;
5463 int saw_general_regs = 0;
5464 int pid;
5465 struct iovec iov;
5466
5467 pid = lwpid_of (current_thread);
5468 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5469 {
5470 void *buf, *data;
5471 int nt_type, res;
5472
5473 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5474 continue;
5475
5476 buf = xmalloc (regset->size);
5477
5478 nt_type = regset->nt_type;
5479 if (nt_type)
5480 {
5481 iov.iov_base = buf;
5482 iov.iov_len = regset->size;
5483 data = (void *) &iov;
5484 }
5485 else
5486 data = buf;
5487
5488 #ifndef __sparc__
5489 res = ptrace (regset->get_request, pid,
5490 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5491 #else
5492 res = ptrace (regset->get_request, pid, data, nt_type);
5493 #endif
5494 if (res < 0)
5495 {
5496 if (errno == EIO)
5497 {
5498 /* If we get EIO on a regset, do not try it again for
5499 this process mode. */
5500 disable_regset (regsets_info, regset);
5501 }
5502 else if (errno == ENODATA)
5503 {
5504 /* ENODATA may be returned if the regset is currently
5505 not "active". This can happen in normal operation,
5506 so suppress the warning in this case. */
5507 }
5508 else if (errno == ESRCH)
5509 {
5510 /* At this point, ESRCH should mean the process is
5511 already gone, in which case we simply ignore attempts
5512 to read its registers. */
5513 }
5514 else
5515 {
5516 char s[256];
5517 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5518 pid);
5519 perror (s);
5520 }
5521 }
5522 else
5523 {
5524 if (regset->type == GENERAL_REGS)
5525 saw_general_regs = 1;
5526 regset->store_function (regcache, buf);
5527 }
5528 free (buf);
5529 }
5530 if (saw_general_regs)
5531 return 0;
5532 else
5533 return 1;
5534 }
5535
5536 static int
5537 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5538 struct regcache *regcache)
5539 {
5540 struct regset_info *regset;
5541 int saw_general_regs = 0;
5542 int pid;
5543 struct iovec iov;
5544
5545 pid = lwpid_of (current_thread);
5546 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5547 {
5548 void *buf, *data;
5549 int nt_type, res;
5550
5551 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5552 || regset->fill_function == NULL)
5553 continue;
5554
5555 buf = xmalloc (regset->size);
5556
5557 /* First fill the buffer with the current register set contents,
5558 in case there are any items in the kernel's regset that are
5559 not in gdbserver's regcache. */
5560
5561 nt_type = regset->nt_type;
5562 if (nt_type)
5563 {
5564 iov.iov_base = buf;
5565 iov.iov_len = regset->size;
5566 data = (void *) &iov;
5567 }
5568 else
5569 data = buf;
5570
5571 #ifndef __sparc__
5572 res = ptrace (regset->get_request, pid,
5573 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5574 #else
5575 res = ptrace (regset->get_request, pid, data, nt_type);
5576 #endif
5577
5578 if (res == 0)
5579 {
5580 /* Then overlay our cached registers on that. */
5581 regset->fill_function (regcache, buf);
5582
5583 /* Only now do we write the register set. */
5584 #ifndef __sparc__
5585 res = ptrace (regset->set_request, pid,
5586 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5587 #else
5588 res = ptrace (regset->set_request, pid, data, nt_type);
5589 #endif
5590 }
5591
5592 if (res < 0)
5593 {
5594 if (errno == EIO)
5595 {
5596 /* If we get EIO on a regset, do not try it again for
5597 this process mode. */
5598 disable_regset (regsets_info, regset);
5599 }
5600 else if (errno == ESRCH)
5601 {
5602 /* At this point, ESRCH should mean the process is
5603 already gone, in which case we simply ignore attempts
5604 to change its registers. See also the related
5605 comment in linux_resume_one_lwp. */
5606 free (buf);
5607 return 0;
5608 }
5609 else
5610 {
5611 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5612 }
5613 }
5614 else if (regset->type == GENERAL_REGS)
5615 saw_general_regs = 1;
5616 free (buf);
5617 }
5618 if (saw_general_regs)
5619 return 0;
5620 else
5621 return 1;
5622 }
5623
5624 #else /* !HAVE_LINUX_REGSETS */
5625
5626 #define use_linux_regsets 0
5627 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5628 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5629
5630 #endif
5631
5632 /* Return 1 if register REGNO is supported by one of the regset ptrace
5633 calls or 0 if it has to be transferred individually. */
5634
5635 static int
5636 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5637 {
5638 unsigned char mask = 1 << (regno % 8);
5639 size_t index = regno / 8;
5640
5641 return (use_linux_regsets
5642 && (regs_info->regset_bitmap == NULL
5643 || (regs_info->regset_bitmap[index] & mask) != 0));
5644 }
5645
5646 #ifdef HAVE_LINUX_USRREGS
5647
5648 static int
5649 register_addr (const struct usrregs_info *usrregs, int regnum)
5650 {
5651 int addr;
5652
5653 if (regnum < 0 || regnum >= usrregs->num_regs)
5654 error ("Invalid register number %d.", regnum);
5655
5656 addr = usrregs->regmap[regnum];
5657
5658 return addr;
5659 }
5660
5661 /* Fetch one register. */
5662 static void
5663 fetch_register (const struct usrregs_info *usrregs,
5664 struct regcache *regcache, int regno)
5665 {
5666 CORE_ADDR regaddr;
5667 int i, size;
5668 char *buf;
5669 int pid;
5670
5671 if (regno >= usrregs->num_regs)
5672 return;
5673 if ((*the_low_target.cannot_fetch_register) (regno))
5674 return;
5675
5676 regaddr = register_addr (usrregs, regno);
5677 if (regaddr == -1)
5678 return;
5679
5680 size = ((register_size (regcache->tdesc, regno)
5681 + sizeof (PTRACE_XFER_TYPE) - 1)
5682 & -sizeof (PTRACE_XFER_TYPE));
5683 buf = (char *) alloca (size);
5684
5685 pid = lwpid_of (current_thread);
5686 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5687 {
5688 errno = 0;
5689 *(PTRACE_XFER_TYPE *) (buf + i) =
5690 ptrace (PTRACE_PEEKUSER, pid,
5691 /* Coerce to a uintptr_t first to avoid potential gcc warning
5692 of coercing an 8 byte integer to a 4 byte pointer. */
5693 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5694 regaddr += sizeof (PTRACE_XFER_TYPE);
5695 if (errno != 0)
5696 error ("reading register %d: %s", regno, strerror (errno));
5697 }
5698
5699 if (the_low_target.supply_ptrace_register)
5700 the_low_target.supply_ptrace_register (regcache, regno, buf);
5701 else
5702 supply_register (regcache, regno, buf);
5703 }
5704
5705 /* Store one register. */
5706 static void
5707 store_register (const struct usrregs_info *usrregs,
5708 struct regcache *regcache, int regno)
5709 {
5710 CORE_ADDR regaddr;
5711 int i, size;
5712 char *buf;
5713 int pid;
5714
5715 if (regno >= usrregs->num_regs)
5716 return;
5717 if ((*the_low_target.cannot_store_register) (regno))
5718 return;
5719
5720 regaddr = register_addr (usrregs, regno);
5721 if (regaddr == -1)
5722 return;
5723
5724 size = ((register_size (regcache->tdesc, regno)
5725 + sizeof (PTRACE_XFER_TYPE) - 1)
5726 & -sizeof (PTRACE_XFER_TYPE));
5727 buf = (char *) alloca (size);
5728 memset (buf, 0, size);
5729
5730 if (the_low_target.collect_ptrace_register)
5731 the_low_target.collect_ptrace_register (regcache, regno, buf);
5732 else
5733 collect_register (regcache, regno, buf);
5734
5735 pid = lwpid_of (current_thread);
5736 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5737 {
5738 errno = 0;
5739 ptrace (PTRACE_POKEUSER, pid,
5740 /* Coerce to a uintptr_t first to avoid potential gcc warning
5741 about coercing an 8 byte integer to a 4 byte pointer. */
5742 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5743 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5744 if (errno != 0)
5745 {
5746 /* At this point, ESRCH should mean the process is
5747 already gone, in which case we simply ignore attempts
5748 to change its registers. See also the related
5749 comment in linux_resume_one_lwp. */
5750 if (errno == ESRCH)
5751 return;
5752
5753 if ((*the_low_target.cannot_store_register) (regno) == 0)
5754 error ("writing register %d: %s", regno, strerror (errno));
5755 }
5756 regaddr += sizeof (PTRACE_XFER_TYPE);
5757 }
5758 }
5759
5760 /* Fetch all registers, or just one, from the child process.
5761 If REGNO is -1, do this for all registers, skipping any that are
5762 assumed to have been retrieved by regsets_fetch_inferior_registers,
5763 unless ALL is non-zero.
5764 Otherwise, REGNO specifies which register (so we can save time). */
5765 static void
5766 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5767 struct regcache *regcache, int regno, int all)
5768 {
5769 struct usrregs_info *usr = regs_info->usrregs;
5770
5771 if (regno == -1)
5772 {
5773 for (regno = 0; regno < usr->num_regs; regno++)
5774 if (all || !linux_register_in_regsets (regs_info, regno))
5775 fetch_register (usr, regcache, regno);
5776 }
5777 else
5778 fetch_register (usr, regcache, regno);
5779 }
5780
5781 /* Store our register values back into the inferior.
5782 If REGNO is -1, do this for all registers, skipping any that are
5783 assumed to have been saved by regsets_store_inferior_registers,
5784 unless ALL is non-zero.
5785 Otherwise, REGNO specifies which register (so we can save time). */
5786 static void
5787 usr_store_inferior_registers (const struct regs_info *regs_info,
5788 struct regcache *regcache, int regno, int all)
5789 {
5790 struct usrregs_info *usr = regs_info->usrregs;
5791
5792 if (regno == -1)
5793 {
5794 for (regno = 0; regno < usr->num_regs; regno++)
5795 if (all || !linux_register_in_regsets (regs_info, regno))
5796 store_register (usr, regcache, regno);
5797 }
5798 else
5799 store_register (usr, regcache, regno);
5800 }
5801
5802 #else /* !HAVE_LINUX_USRREGS */
5803
5804 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5805 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5806
5807 #endif
5808
5809
5810 static void
5811 linux_fetch_registers (struct regcache *regcache, int regno)
5812 {
5813 int use_regsets;
5814 int all = 0;
5815 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5816
5817 if (regno == -1)
5818 {
5819 if (the_low_target.fetch_register != NULL
5820 && regs_info->usrregs != NULL)
5821 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5822 (*the_low_target.fetch_register) (regcache, regno);
5823
5824 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5825 if (regs_info->usrregs != NULL)
5826 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5827 }
5828 else
5829 {
5830 if (the_low_target.fetch_register != NULL
5831 && (*the_low_target.fetch_register) (regcache, regno))
5832 return;
5833
5834 use_regsets = linux_register_in_regsets (regs_info, regno);
5835 if (use_regsets)
5836 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5837 regcache);
5838 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5839 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5840 }
5841 }
5842
5843 static void
5844 linux_store_registers (struct regcache *regcache, int regno)
5845 {
5846 int use_regsets;
5847 int all = 0;
5848 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5849
5850 if (regno == -1)
5851 {
5852 all = regsets_store_inferior_registers (regs_info->regsets_info,
5853 regcache);
5854 if (regs_info->usrregs != NULL)
5855 usr_store_inferior_registers (regs_info, regcache, regno, all);
5856 }
5857 else
5858 {
5859 use_regsets = linux_register_in_regsets (regs_info, regno);
5860 if (use_regsets)
5861 all = regsets_store_inferior_registers (regs_info->regsets_info,
5862 regcache);
5863 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5864 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5865 }
5866 }
5867
5868
5869 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5870 to debugger memory starting at MYADDR. */
5871
5872 static int
5873 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5874 {
5875 int pid = lwpid_of (current_thread);
5876 register PTRACE_XFER_TYPE *buffer;
5877 register CORE_ADDR addr;
5878 register int count;
5879 char filename[64];
5880 register int i;
5881 int ret;
5882 int fd;
5883
5884 /* Try using /proc. Don't bother for one word. */
5885 if (len >= 3 * sizeof (long))
5886 {
5887 int bytes;
5888
5889 /* We could keep this file open and cache it - possibly one per
5890 thread. That requires some juggling, but is even faster. */
5891 sprintf (filename, "/proc/%d/mem", pid);
5892 fd = open (filename, O_RDONLY | O_LARGEFILE);
5893 if (fd == -1)
5894 goto no_proc;
5895
5896 /* If pread64 is available, use it. It's faster if the kernel
5897 supports it (only one syscall), and it's 64-bit safe even on
5898 32-bit platforms (for instance, SPARC debugging a SPARC64
5899 application). */
5900 #ifdef HAVE_PREAD64
5901 bytes = pread64 (fd, myaddr, len, memaddr);
5902 #else
5903 bytes = -1;
5904 if (lseek (fd, memaddr, SEEK_SET) != -1)
5905 bytes = read (fd, myaddr, len);
5906 #endif
5907
5908 close (fd);
5909 if (bytes == len)
5910 return 0;
5911
5912 /* Some data was read, we'll try to get the rest with ptrace. */
5913 if (bytes > 0)
5914 {
5915 memaddr += bytes;
5916 myaddr += bytes;
5917 len -= bytes;
5918 }
5919 }
5920
5921 no_proc:
5922 /* Round starting address down to longword boundary. */
5923 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5924 /* Round ending address up; get number of longwords that makes. */
5925 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5926 / sizeof (PTRACE_XFER_TYPE));
5927 /* Allocate buffer of that many longwords. */
5928 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5929
5930 /* Read all the longwords */
5931 errno = 0;
5932 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5933 {
5934 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5935 about coercing an 8 byte integer to a 4 byte pointer. */
5936 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5937 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5938 (PTRACE_TYPE_ARG4) 0);
5939 if (errno)
5940 break;
5941 }
5942 ret = errno;
5943
5944 /* Copy appropriate bytes out of the buffer. */
5945 if (i > 0)
5946 {
5947 i *= sizeof (PTRACE_XFER_TYPE);
5948 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5949 memcpy (myaddr,
5950 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5951 i < len ? i : len);
5952 }
5953
5954 return ret;
5955 }
5956
5957 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5958 memory at MEMADDR. On failure (cannot write to the inferior)
5959 returns the value of errno. Always succeeds if LEN is zero. */
5960
5961 static int
5962 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5963 {
5964 register int i;
5965 /* Round starting address down to longword boundary. */
5966 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5967 /* Round ending address up; get number of longwords that makes. */
5968 register int count
5969 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5970 / sizeof (PTRACE_XFER_TYPE);
5971
5972 /* Allocate buffer of that many longwords. */
5973 register PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5974
5975 int pid = lwpid_of (current_thread);
5976
5977 if (len == 0)
5978 {
5979 /* Zero length write always succeeds. */
5980 return 0;
5981 }
5982
5983 if (debug_threads)
5984 {
5985 /* Dump up to four bytes. */
5986 char str[4 * 2 + 1];
5987 char *p = str;
5988 int dump = len < 4 ? len : 4;
5989
5990 for (i = 0; i < dump; i++)
5991 {
5992 sprintf (p, "%02x", myaddr[i]);
5993 p += 2;
5994 }
5995 *p = '\0';
5996
5997 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5998 str, (long) memaddr, pid);
5999 }
6000
6001 /* Fill start and end extra bytes of buffer with existing memory data. */
6002
6003 errno = 0;
6004 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
6005 about coercing an 8 byte integer to a 4 byte pointer. */
6006 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
6007 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
6008 (PTRACE_TYPE_ARG4) 0);
6009 if (errno)
6010 return errno;
6011
6012 if (count > 1)
6013 {
6014 errno = 0;
6015 buffer[count - 1]
6016 = ptrace (PTRACE_PEEKTEXT, pid,
6017 /* Coerce to a uintptr_t first to avoid potential gcc warning
6018 about coercing an 8 byte integer to a 4 byte pointer. */
6019 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
6020 * sizeof (PTRACE_XFER_TYPE)),
6021 (PTRACE_TYPE_ARG4) 0);
6022 if (errno)
6023 return errno;
6024 }
6025
6026 /* Copy data to be written over corresponding part of buffer. */
6027
6028 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
6029 myaddr, len);
6030
6031 /* Write the entire buffer. */
6032
6033 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
6034 {
6035 errno = 0;
6036 ptrace (PTRACE_POKETEXT, pid,
6037 /* Coerce to a uintptr_t first to avoid potential gcc warning
6038 about coercing an 8 byte integer to a 4 byte pointer. */
6039 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
6040 (PTRACE_TYPE_ARG4) buffer[i]);
6041 if (errno)
6042 return errno;
6043 }
6044
6045 return 0;
6046 }
6047
6048 static void
6049 linux_look_up_symbols (void)
6050 {
6051 #ifdef USE_THREAD_DB
6052 struct process_info *proc = current_process ();
6053
6054 if (proc->priv->thread_db != NULL)
6055 return;
6056
6057 thread_db_init ();
6058 #endif
6059 }
6060
6061 static void
6062 linux_request_interrupt (void)
6063 {
6064 extern unsigned long signal_pid;
6065
6066 /* Send a SIGINT to the process group. This acts just like the user
6067 typed a ^C on the controlling terminal. */
6068 kill (-signal_pid, SIGINT);
6069 }
6070
6071 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
6072 to debugger memory starting at MYADDR. */
6073
6074 static int
6075 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
6076 {
6077 char filename[PATH_MAX];
6078 int fd, n;
6079 int pid = lwpid_of (current_thread);
6080
6081 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6082
6083 fd = open (filename, O_RDONLY);
6084 if (fd < 0)
6085 return -1;
6086
6087 if (offset != (CORE_ADDR) 0
6088 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6089 n = -1;
6090 else
6091 n = read (fd, myaddr, len);
6092
6093 close (fd);
6094
6095 return n;
6096 }
6097
6098 /* These breakpoint and watchpoint related wrapper functions simply
6099 pass on the function call if the target has registered a
6100 corresponding function. */
6101
6102 static int
6103 linux_supports_z_point_type (char z_type)
6104 {
6105 return (the_low_target.supports_z_point_type != NULL
6106 && the_low_target.supports_z_point_type (z_type));
6107 }
6108
6109 static int
6110 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
6111 int size, struct raw_breakpoint *bp)
6112 {
6113 if (type == raw_bkpt_type_sw)
6114 return insert_memory_breakpoint (bp);
6115 else if (the_low_target.insert_point != NULL)
6116 return the_low_target.insert_point (type, addr, size, bp);
6117 else
6118 /* Unsupported (see target.h). */
6119 return 1;
6120 }
6121
6122 static int
6123 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
6124 int size, struct raw_breakpoint *bp)
6125 {
6126 if (type == raw_bkpt_type_sw)
6127 return remove_memory_breakpoint (bp);
6128 else if (the_low_target.remove_point != NULL)
6129 return the_low_target.remove_point (type, addr, size, bp);
6130 else
6131 /* Unsupported (see target.h). */
6132 return 1;
6133 }
6134
6135 /* Implement the to_stopped_by_sw_breakpoint target_ops
6136 method. */
6137
6138 static int
6139 linux_stopped_by_sw_breakpoint (void)
6140 {
6141 struct lwp_info *lwp = get_thread_lwp (current_thread);
6142
6143 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6144 }
6145
6146 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6147 method. */
6148
6149 static int
6150 linux_supports_stopped_by_sw_breakpoint (void)
6151 {
6152 return USE_SIGTRAP_SIGINFO;
6153 }
6154
6155 /* Implement the to_stopped_by_hw_breakpoint target_ops
6156 method. */
6157
6158 static int
6159 linux_stopped_by_hw_breakpoint (void)
6160 {
6161 struct lwp_info *lwp = get_thread_lwp (current_thread);
6162
6163 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6164 }
6165
6166 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6167 method. */
6168
6169 static int
6170 linux_supports_stopped_by_hw_breakpoint (void)
6171 {
6172 return USE_SIGTRAP_SIGINFO;
6173 }
6174
6175 /* Implement the supports_hardware_single_step target_ops method. */
6176
6177 static int
6178 linux_supports_hardware_single_step (void)
6179 {
6180 return can_hardware_single_step ();
6181 }
6182
6183 static int
6184 linux_supports_software_single_step (void)
6185 {
6186 return can_software_single_step ();
6187 }
6188
6189 static int
6190 linux_stopped_by_watchpoint (void)
6191 {
6192 struct lwp_info *lwp = get_thread_lwp (current_thread);
6193
6194 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6195 }
6196
6197 static CORE_ADDR
6198 linux_stopped_data_address (void)
6199 {
6200 struct lwp_info *lwp = get_thread_lwp (current_thread);
6201
6202 return lwp->stopped_data_address;
6203 }
6204
6205 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6206 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6207 && defined(PT_TEXT_END_ADDR)
6208
6209 /* This is only used for targets that define PT_TEXT_ADDR,
6210 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6211 the target has different ways of acquiring this information, like
6212 loadmaps. */
6213
6214 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6215 to tell gdb about. */
6216
6217 static int
6218 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6219 {
6220 unsigned long text, text_end, data;
6221 int pid = lwpid_of (current_thread);
6222
6223 errno = 0;
6224
6225 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6226 (PTRACE_TYPE_ARG4) 0);
6227 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6228 (PTRACE_TYPE_ARG4) 0);
6229 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6230 (PTRACE_TYPE_ARG4) 0);
6231
6232 if (errno == 0)
6233 {
6234 /* Both text and data offsets produced at compile-time (and so
6235 used by gdb) are relative to the beginning of the program,
6236 with the data segment immediately following the text segment.
6237 However, the actual runtime layout in memory may put the data
6238 somewhere else, so when we send gdb a data base-address, we
6239 use the real data base address and subtract the compile-time
6240 data base-address from it (which is just the length of the
6241 text segment). BSS immediately follows data in both
6242 cases. */
6243 *text_p = text;
6244 *data_p = data - (text_end - text);
6245
6246 return 1;
6247 }
6248 return 0;
6249 }
6250 #endif
6251
6252 static int
6253 linux_qxfer_osdata (const char *annex,
6254 unsigned char *readbuf, unsigned const char *writebuf,
6255 CORE_ADDR offset, int len)
6256 {
6257 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6258 }
6259
6260 /* Convert a native/host siginfo object, into/from the siginfo in the
6261 layout of the inferiors' architecture. */
6262
6263 static void
6264 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6265 {
6266 int done = 0;
6267
6268 if (the_low_target.siginfo_fixup != NULL)
6269 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6270
6271 /* If there was no callback, or the callback didn't do anything,
6272 then just do a straight memcpy. */
6273 if (!done)
6274 {
6275 if (direction == 1)
6276 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6277 else
6278 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6279 }
6280 }
6281
6282 static int
6283 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6284 unsigned const char *writebuf, CORE_ADDR offset, int len)
6285 {
6286 int pid;
6287 siginfo_t siginfo;
6288 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6289
6290 if (current_thread == NULL)
6291 return -1;
6292
6293 pid = lwpid_of (current_thread);
6294
6295 if (debug_threads)
6296 debug_printf ("%s siginfo for lwp %d.\n",
6297 readbuf != NULL ? "Reading" : "Writing",
6298 pid);
6299
6300 if (offset >= sizeof (siginfo))
6301 return -1;
6302
6303 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6304 return -1;
6305
6306 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6307 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6308 inferior with a 64-bit GDBSERVER should look the same as debugging it
6309 with a 32-bit GDBSERVER, we need to convert it. */
6310 siginfo_fixup (&siginfo, inf_siginfo, 0);
6311
6312 if (offset + len > sizeof (siginfo))
6313 len = sizeof (siginfo) - offset;
6314
6315 if (readbuf != NULL)
6316 memcpy (readbuf, inf_siginfo + offset, len);
6317 else
6318 {
6319 memcpy (inf_siginfo + offset, writebuf, len);
6320
6321 /* Convert back to ptrace layout before flushing it out. */
6322 siginfo_fixup (&siginfo, inf_siginfo, 1);
6323
6324 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6325 return -1;
6326 }
6327
6328 return len;
6329 }
6330
6331 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6332 so we notice when children change state; as the handler for the
6333 sigsuspend in my_waitpid. */
6334
6335 static void
6336 sigchld_handler (int signo)
6337 {
6338 int old_errno = errno;
6339
6340 if (debug_threads)
6341 {
6342 do
6343 {
6344 /* fprintf is not async-signal-safe, so call write
6345 directly. */
6346 if (write (2, "sigchld_handler\n",
6347 sizeof ("sigchld_handler\n") - 1) < 0)
6348 break; /* just ignore */
6349 } while (0);
6350 }
6351
6352 if (target_is_async_p ())
6353 async_file_mark (); /* trigger a linux_wait */
6354
6355 errno = old_errno;
6356 }
6357
6358 static int
6359 linux_supports_non_stop (void)
6360 {
6361 return 1;
6362 }
6363
6364 static int
6365 linux_async (int enable)
6366 {
6367 int previous = target_is_async_p ();
6368
6369 if (debug_threads)
6370 debug_printf ("linux_async (%d), previous=%d\n",
6371 enable, previous);
6372
6373 if (previous != enable)
6374 {
6375 sigset_t mask;
6376 sigemptyset (&mask);
6377 sigaddset (&mask, SIGCHLD);
6378
6379 sigprocmask (SIG_BLOCK, &mask, NULL);
6380
6381 if (enable)
6382 {
6383 if (pipe (linux_event_pipe) == -1)
6384 {
6385 linux_event_pipe[0] = -1;
6386 linux_event_pipe[1] = -1;
6387 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6388
6389 warning ("creating event pipe failed.");
6390 return previous;
6391 }
6392
6393 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6394 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6395
6396 /* Register the event loop handler. */
6397 add_file_handler (linux_event_pipe[0],
6398 handle_target_event, NULL);
6399
6400 /* Always trigger a linux_wait. */
6401 async_file_mark ();
6402 }
6403 else
6404 {
6405 delete_file_handler (linux_event_pipe[0]);
6406
6407 close (linux_event_pipe[0]);
6408 close (linux_event_pipe[1]);
6409 linux_event_pipe[0] = -1;
6410 linux_event_pipe[1] = -1;
6411 }
6412
6413 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6414 }
6415
6416 return previous;
6417 }
6418
6419 static int
6420 linux_start_non_stop (int nonstop)
6421 {
6422 /* Register or unregister from event-loop accordingly. */
6423 linux_async (nonstop);
6424
6425 if (target_is_async_p () != (nonstop != 0))
6426 return -1;
6427
6428 return 0;
6429 }
6430
6431 static int
6432 linux_supports_multi_process (void)
6433 {
6434 return 1;
6435 }
6436
6437 /* Check if fork events are supported. */
6438
6439 static int
6440 linux_supports_fork_events (void)
6441 {
6442 return linux_supports_tracefork ();
6443 }
6444
6445 /* Check if vfork events are supported. */
6446
6447 static int
6448 linux_supports_vfork_events (void)
6449 {
6450 return linux_supports_tracefork ();
6451 }
6452
6453 /* Check if exec events are supported. */
6454
6455 static int
6456 linux_supports_exec_events (void)
6457 {
6458 return linux_supports_traceexec ();
6459 }
6460
6461 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
6462 options for the specified lwp. */
6463
6464 static int
6465 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
6466 void *args)
6467 {
6468 struct thread_info *thread = (struct thread_info *) entry;
6469 struct lwp_info *lwp = get_thread_lwp (thread);
6470
6471 if (!lwp->stopped)
6472 {
6473 /* Stop the lwp so we can modify its ptrace options. */
6474 lwp->must_set_ptrace_flags = 1;
6475 linux_stop_lwp (lwp);
6476 }
6477 else
6478 {
6479 /* Already stopped; go ahead and set the ptrace options. */
6480 struct process_info *proc = find_process_pid (pid_of (thread));
6481 int options = linux_low_ptrace_options (proc->attached);
6482
6483 linux_enable_event_reporting (lwpid_of (thread), options);
6484 lwp->must_set_ptrace_flags = 0;
6485 }
6486
6487 return 0;
6488 }
6489
6490 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6491 ptrace flags for all inferiors. This is in case the new GDB connection
6492 doesn't support the same set of events that the previous one did. */
6493
6494 static void
6495 linux_handle_new_gdb_connection (void)
6496 {
6497 pid_t pid;
6498
6499 /* Request that all the lwps reset their ptrace options. */
6500 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6501 }
6502
6503 static int
6504 linux_supports_disable_randomization (void)
6505 {
6506 #ifdef HAVE_PERSONALITY
6507 return 1;
6508 #else
6509 return 0;
6510 #endif
6511 }
6512
6513 static int
6514 linux_supports_agent (void)
6515 {
6516 return 1;
6517 }
6518
6519 static int
6520 linux_supports_range_stepping (void)
6521 {
6522 if (*the_low_target.supports_range_stepping == NULL)
6523 return 0;
6524
6525 return (*the_low_target.supports_range_stepping) ();
6526 }
6527
6528 /* Enumerate spufs IDs for process PID. */
6529 static int
6530 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6531 {
6532 int pos = 0;
6533 int written = 0;
6534 char path[128];
6535 DIR *dir;
6536 struct dirent *entry;
6537
6538 sprintf (path, "/proc/%ld/fd", pid);
6539 dir = opendir (path);
6540 if (!dir)
6541 return -1;
6542
6543 rewinddir (dir);
6544 while ((entry = readdir (dir)) != NULL)
6545 {
6546 struct stat st;
6547 struct statfs stfs;
6548 int fd;
6549
6550 fd = atoi (entry->d_name);
6551 if (!fd)
6552 continue;
6553
6554 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6555 if (stat (path, &st) != 0)
6556 continue;
6557 if (!S_ISDIR (st.st_mode))
6558 continue;
6559
6560 if (statfs (path, &stfs) != 0)
6561 continue;
6562 if (stfs.f_type != SPUFS_MAGIC)
6563 continue;
6564
6565 if (pos >= offset && pos + 4 <= offset + len)
6566 {
6567 *(unsigned int *)(buf + pos - offset) = fd;
6568 written += 4;
6569 }
6570 pos += 4;
6571 }
6572
6573 closedir (dir);
6574 return written;
6575 }
6576
6577 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6578 object type, using the /proc file system. */
6579 static int
6580 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6581 unsigned const char *writebuf,
6582 CORE_ADDR offset, int len)
6583 {
6584 long pid = lwpid_of (current_thread);
6585 char buf[128];
6586 int fd = 0;
6587 int ret = 0;
6588
6589 if (!writebuf && !readbuf)
6590 return -1;
6591
6592 if (!*annex)
6593 {
6594 if (!readbuf)
6595 return -1;
6596 else
6597 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6598 }
6599
6600 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6601 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6602 if (fd <= 0)
6603 return -1;
6604
6605 if (offset != 0
6606 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6607 {
6608 close (fd);
6609 return 0;
6610 }
6611
6612 if (writebuf)
6613 ret = write (fd, writebuf, (size_t) len);
6614 else
6615 ret = read (fd, readbuf, (size_t) len);
6616
6617 close (fd);
6618 return ret;
6619 }
6620
6621 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6622 struct target_loadseg
6623 {
6624 /* Core address to which the segment is mapped. */
6625 Elf32_Addr addr;
6626 /* VMA recorded in the program header. */
6627 Elf32_Addr p_vaddr;
6628 /* Size of this segment in memory. */
6629 Elf32_Word p_memsz;
6630 };
6631
6632 # if defined PT_GETDSBT
6633 struct target_loadmap
6634 {
6635 /* Protocol version number, must be zero. */
6636 Elf32_Word version;
6637 /* Pointer to the DSBT table, its size, and the DSBT index. */
6638 unsigned *dsbt_table;
6639 unsigned dsbt_size, dsbt_index;
6640 /* Number of segments in this map. */
6641 Elf32_Word nsegs;
6642 /* The actual memory map. */
6643 struct target_loadseg segs[/*nsegs*/];
6644 };
6645 # define LINUX_LOADMAP PT_GETDSBT
6646 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6647 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6648 # else
6649 struct target_loadmap
6650 {
6651 /* Protocol version number, must be zero. */
6652 Elf32_Half version;
6653 /* Number of segments in this map. */
6654 Elf32_Half nsegs;
6655 /* The actual memory map. */
6656 struct target_loadseg segs[/*nsegs*/];
6657 };
6658 # define LINUX_LOADMAP PTRACE_GETFDPIC
6659 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6660 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6661 # endif
6662
6663 static int
6664 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6665 unsigned char *myaddr, unsigned int len)
6666 {
6667 int pid = lwpid_of (current_thread);
6668 int addr = -1;
6669 struct target_loadmap *data = NULL;
6670 unsigned int actual_length, copy_length;
6671
6672 if (strcmp (annex, "exec") == 0)
6673 addr = (int) LINUX_LOADMAP_EXEC;
6674 else if (strcmp (annex, "interp") == 0)
6675 addr = (int) LINUX_LOADMAP_INTERP;
6676 else
6677 return -1;
6678
6679 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6680 return -1;
6681
6682 if (data == NULL)
6683 return -1;
6684
6685 actual_length = sizeof (struct target_loadmap)
6686 + sizeof (struct target_loadseg) * data->nsegs;
6687
6688 if (offset < 0 || offset > actual_length)
6689 return -1;
6690
6691 copy_length = actual_length - offset < len ? actual_length - offset : len;
6692 memcpy (myaddr, (char *) data + offset, copy_length);
6693 return copy_length;
6694 }
6695 #else
6696 # define linux_read_loadmap NULL
6697 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6698
6699 static void
6700 linux_process_qsupported (char **features, int count)
6701 {
6702 if (the_low_target.process_qsupported != NULL)
6703 the_low_target.process_qsupported (features, count);
6704 }
6705
6706 static int
6707 linux_supports_catch_syscall (void)
6708 {
6709 return (the_low_target.get_syscall_trapinfo != NULL
6710 && linux_supports_tracesysgood ());
6711 }
6712
6713 static int
6714 linux_get_ipa_tdesc_idx (void)
6715 {
6716 if (the_low_target.get_ipa_tdesc_idx == NULL)
6717 return 0;
6718
6719 return (*the_low_target.get_ipa_tdesc_idx) ();
6720 }
6721
6722 static int
6723 linux_supports_tracepoints (void)
6724 {
6725 if (*the_low_target.supports_tracepoints == NULL)
6726 return 0;
6727
6728 return (*the_low_target.supports_tracepoints) ();
6729 }
6730
6731 static CORE_ADDR
6732 linux_read_pc (struct regcache *regcache)
6733 {
6734 if (the_low_target.get_pc == NULL)
6735 return 0;
6736
6737 return (*the_low_target.get_pc) (regcache);
6738 }
6739
6740 static void
6741 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6742 {
6743 gdb_assert (the_low_target.set_pc != NULL);
6744
6745 (*the_low_target.set_pc) (regcache, pc);
6746 }
6747
6748 static int
6749 linux_thread_stopped (struct thread_info *thread)
6750 {
6751 return get_thread_lwp (thread)->stopped;
6752 }
6753
6754 /* This exposes stop-all-threads functionality to other modules. */
6755
6756 static void
6757 linux_pause_all (int freeze)
6758 {
6759 stop_all_lwps (freeze, NULL);
6760 }
6761
6762 /* This exposes unstop-all-threads functionality to other gdbserver
6763 modules. */
6764
6765 static void
6766 linux_unpause_all (int unfreeze)
6767 {
6768 unstop_all_lwps (unfreeze, NULL);
6769 }
6770
6771 static int
6772 linux_prepare_to_access_memory (void)
6773 {
6774 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6775 running LWP. */
6776 if (non_stop)
6777 linux_pause_all (1);
6778 return 0;
6779 }
6780
6781 static void
6782 linux_done_accessing_memory (void)
6783 {
6784 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6785 running LWP. */
6786 if (non_stop)
6787 linux_unpause_all (1);
6788 }
6789
6790 static int
6791 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6792 CORE_ADDR collector,
6793 CORE_ADDR lockaddr,
6794 ULONGEST orig_size,
6795 CORE_ADDR *jump_entry,
6796 CORE_ADDR *trampoline,
6797 ULONGEST *trampoline_size,
6798 unsigned char *jjump_pad_insn,
6799 ULONGEST *jjump_pad_insn_size,
6800 CORE_ADDR *adjusted_insn_addr,
6801 CORE_ADDR *adjusted_insn_addr_end,
6802 char *err)
6803 {
6804 return (*the_low_target.install_fast_tracepoint_jump_pad)
6805 (tpoint, tpaddr, collector, lockaddr, orig_size,
6806 jump_entry, trampoline, trampoline_size,
6807 jjump_pad_insn, jjump_pad_insn_size,
6808 adjusted_insn_addr, adjusted_insn_addr_end,
6809 err);
6810 }
6811
6812 static struct emit_ops *
6813 linux_emit_ops (void)
6814 {
6815 if (the_low_target.emit_ops != NULL)
6816 return (*the_low_target.emit_ops) ();
6817 else
6818 return NULL;
6819 }
6820
6821 static int
6822 linux_get_min_fast_tracepoint_insn_len (void)
6823 {
6824 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6825 }
6826
6827 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6828
6829 static int
6830 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6831 CORE_ADDR *phdr_memaddr, int *num_phdr)
6832 {
6833 char filename[PATH_MAX];
6834 int fd;
6835 const int auxv_size = is_elf64
6836 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6837 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6838
6839 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6840
6841 fd = open (filename, O_RDONLY);
6842 if (fd < 0)
6843 return 1;
6844
6845 *phdr_memaddr = 0;
6846 *num_phdr = 0;
6847 while (read (fd, buf, auxv_size) == auxv_size
6848 && (*phdr_memaddr == 0 || *num_phdr == 0))
6849 {
6850 if (is_elf64)
6851 {
6852 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6853
6854 switch (aux->a_type)
6855 {
6856 case AT_PHDR:
6857 *phdr_memaddr = aux->a_un.a_val;
6858 break;
6859 case AT_PHNUM:
6860 *num_phdr = aux->a_un.a_val;
6861 break;
6862 }
6863 }
6864 else
6865 {
6866 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6867
6868 switch (aux->a_type)
6869 {
6870 case AT_PHDR:
6871 *phdr_memaddr = aux->a_un.a_val;
6872 break;
6873 case AT_PHNUM:
6874 *num_phdr = aux->a_un.a_val;
6875 break;
6876 }
6877 }
6878 }
6879
6880 close (fd);
6881
6882 if (*phdr_memaddr == 0 || *num_phdr == 0)
6883 {
6884 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6885 "phdr_memaddr = %ld, phdr_num = %d",
6886 (long) *phdr_memaddr, *num_phdr);
6887 return 2;
6888 }
6889
6890 return 0;
6891 }
6892
6893 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6894
6895 static CORE_ADDR
6896 get_dynamic (const int pid, const int is_elf64)
6897 {
6898 CORE_ADDR phdr_memaddr, relocation;
6899 int num_phdr, i;
6900 unsigned char *phdr_buf;
6901 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6902
6903 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6904 return 0;
6905
6906 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6907 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6908
6909 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6910 return 0;
6911
6912 /* Compute relocation: it is expected to be 0 for "regular" executables,
6913 non-zero for PIE ones. */
6914 relocation = -1;
6915 for (i = 0; relocation == -1 && i < num_phdr; i++)
6916 if (is_elf64)
6917 {
6918 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6919
6920 if (p->p_type == PT_PHDR)
6921 relocation = phdr_memaddr - p->p_vaddr;
6922 }
6923 else
6924 {
6925 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6926
6927 if (p->p_type == PT_PHDR)
6928 relocation = phdr_memaddr - p->p_vaddr;
6929 }
6930
6931 if (relocation == -1)
6932 {
6933 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6934 any real world executables, including PIE executables, have always
6935 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6936 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6937 or present DT_DEBUG anyway (fpc binaries are statically linked).
6938
6939 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6940
6941 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6942
6943 return 0;
6944 }
6945
6946 for (i = 0; i < num_phdr; i++)
6947 {
6948 if (is_elf64)
6949 {
6950 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6951
6952 if (p->p_type == PT_DYNAMIC)
6953 return p->p_vaddr + relocation;
6954 }
6955 else
6956 {
6957 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6958
6959 if (p->p_type == PT_DYNAMIC)
6960 return p->p_vaddr + relocation;
6961 }
6962 }
6963
6964 return 0;
6965 }
6966
6967 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6968 can be 0 if the inferior does not yet have the library list initialized.
6969 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6970 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6971
6972 static CORE_ADDR
6973 get_r_debug (const int pid, const int is_elf64)
6974 {
6975 CORE_ADDR dynamic_memaddr;
6976 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6977 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6978 CORE_ADDR map = -1;
6979
6980 dynamic_memaddr = get_dynamic (pid, is_elf64);
6981 if (dynamic_memaddr == 0)
6982 return map;
6983
6984 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6985 {
6986 if (is_elf64)
6987 {
6988 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6989 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6990 union
6991 {
6992 Elf64_Xword map;
6993 unsigned char buf[sizeof (Elf64_Xword)];
6994 }
6995 rld_map;
6996 #endif
6997 #ifdef DT_MIPS_RLD_MAP
6998 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6999 {
7000 if (linux_read_memory (dyn->d_un.d_val,
7001 rld_map.buf, sizeof (rld_map.buf)) == 0)
7002 return rld_map.map;
7003 else
7004 break;
7005 }
7006 #endif /* DT_MIPS_RLD_MAP */
7007 #ifdef DT_MIPS_RLD_MAP_REL
7008 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
7009 {
7010 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
7011 rld_map.buf, sizeof (rld_map.buf)) == 0)
7012 return rld_map.map;
7013 else
7014 break;
7015 }
7016 #endif /* DT_MIPS_RLD_MAP_REL */
7017
7018 if (dyn->d_tag == DT_DEBUG && map == -1)
7019 map = dyn->d_un.d_val;
7020
7021 if (dyn->d_tag == DT_NULL)
7022 break;
7023 }
7024 else
7025 {
7026 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
7027 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
7028 union
7029 {
7030 Elf32_Word map;
7031 unsigned char buf[sizeof (Elf32_Word)];
7032 }
7033 rld_map;
7034 #endif
7035 #ifdef DT_MIPS_RLD_MAP
7036 if (dyn->d_tag == DT_MIPS_RLD_MAP)
7037 {
7038 if (linux_read_memory (dyn->d_un.d_val,
7039 rld_map.buf, sizeof (rld_map.buf)) == 0)
7040 return rld_map.map;
7041 else
7042 break;
7043 }
7044 #endif /* DT_MIPS_RLD_MAP */
7045 #ifdef DT_MIPS_RLD_MAP_REL
7046 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
7047 {
7048 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
7049 rld_map.buf, sizeof (rld_map.buf)) == 0)
7050 return rld_map.map;
7051 else
7052 break;
7053 }
7054 #endif /* DT_MIPS_RLD_MAP_REL */
7055
7056 if (dyn->d_tag == DT_DEBUG && map == -1)
7057 map = dyn->d_un.d_val;
7058
7059 if (dyn->d_tag == DT_NULL)
7060 break;
7061 }
7062
7063 dynamic_memaddr += dyn_size;
7064 }
7065
7066 return map;
7067 }
7068
7069 /* Read one pointer from MEMADDR in the inferior. */
7070
7071 static int
7072 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
7073 {
7074 int ret;
7075
7076 /* Go through a union so this works on either big or little endian
7077 hosts, when the inferior's pointer size is smaller than the size
7078 of CORE_ADDR. It is assumed the inferior's endianness is the
7079 same of the superior's. */
7080 union
7081 {
7082 CORE_ADDR core_addr;
7083 unsigned int ui;
7084 unsigned char uc;
7085 } addr;
7086
7087 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
7088 if (ret == 0)
7089 {
7090 if (ptr_size == sizeof (CORE_ADDR))
7091 *ptr = addr.core_addr;
7092 else if (ptr_size == sizeof (unsigned int))
7093 *ptr = addr.ui;
7094 else
7095 gdb_assert_not_reached ("unhandled pointer size");
7096 }
7097 return ret;
7098 }
7099
7100 struct link_map_offsets
7101 {
7102 /* Offset and size of r_debug.r_version. */
7103 int r_version_offset;
7104
7105 /* Offset and size of r_debug.r_map. */
7106 int r_map_offset;
7107
7108 /* Offset to l_addr field in struct link_map. */
7109 int l_addr_offset;
7110
7111 /* Offset to l_name field in struct link_map. */
7112 int l_name_offset;
7113
7114 /* Offset to l_ld field in struct link_map. */
7115 int l_ld_offset;
7116
7117 /* Offset to l_next field in struct link_map. */
7118 int l_next_offset;
7119
7120 /* Offset to l_prev field in struct link_map. */
7121 int l_prev_offset;
7122 };
7123
7124 /* Construct qXfer:libraries-svr4:read reply. */
7125
7126 static int
7127 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
7128 unsigned const char *writebuf,
7129 CORE_ADDR offset, int len)
7130 {
7131 char *document;
7132 unsigned document_len;
7133 struct process_info_private *const priv = current_process ()->priv;
7134 char filename[PATH_MAX];
7135 int pid, is_elf64;
7136
7137 static const struct link_map_offsets lmo_32bit_offsets =
7138 {
7139 0, /* r_version offset. */
7140 4, /* r_debug.r_map offset. */
7141 0, /* l_addr offset in link_map. */
7142 4, /* l_name offset in link_map. */
7143 8, /* l_ld offset in link_map. */
7144 12, /* l_next offset in link_map. */
7145 16 /* l_prev offset in link_map. */
7146 };
7147
7148 static const struct link_map_offsets lmo_64bit_offsets =
7149 {
7150 0, /* r_version offset. */
7151 8, /* r_debug.r_map offset. */
7152 0, /* l_addr offset in link_map. */
7153 8, /* l_name offset in link_map. */
7154 16, /* l_ld offset in link_map. */
7155 24, /* l_next offset in link_map. */
7156 32 /* l_prev offset in link_map. */
7157 };
7158 const struct link_map_offsets *lmo;
7159 unsigned int machine;
7160 int ptr_size;
7161 CORE_ADDR lm_addr = 0, lm_prev = 0;
7162 int allocated = 1024;
7163 char *p;
7164 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7165 int header_done = 0;
7166
7167 if (writebuf != NULL)
7168 return -2;
7169 if (readbuf == NULL)
7170 return -1;
7171
7172 pid = lwpid_of (current_thread);
7173 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7174 is_elf64 = elf_64_file_p (filename, &machine);
7175 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7176 ptr_size = is_elf64 ? 8 : 4;
7177
7178 while (annex[0] != '\0')
7179 {
7180 const char *sep;
7181 CORE_ADDR *addrp;
7182 int len;
7183
7184 sep = strchr (annex, '=');
7185 if (sep == NULL)
7186 break;
7187
7188 len = sep - annex;
7189 if (len == 5 && startswith (annex, "start"))
7190 addrp = &lm_addr;
7191 else if (len == 4 && startswith (annex, "prev"))
7192 addrp = &lm_prev;
7193 else
7194 {
7195 annex = strchr (sep, ';');
7196 if (annex == NULL)
7197 break;
7198 annex++;
7199 continue;
7200 }
7201
7202 annex = decode_address_to_semicolon (addrp, sep + 1);
7203 }
7204
7205 if (lm_addr == 0)
7206 {
7207 int r_version = 0;
7208
7209 if (priv->r_debug == 0)
7210 priv->r_debug = get_r_debug (pid, is_elf64);
7211
7212 /* We failed to find DT_DEBUG. Such situation will not change
7213 for this inferior - do not retry it. Report it to GDB as
7214 E01, see for the reasons at the GDB solib-svr4.c side. */
7215 if (priv->r_debug == (CORE_ADDR) -1)
7216 return -1;
7217
7218 if (priv->r_debug != 0)
7219 {
7220 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7221 (unsigned char *) &r_version,
7222 sizeof (r_version)) != 0
7223 || r_version != 1)
7224 {
7225 warning ("unexpected r_debug version %d", r_version);
7226 }
7227 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7228 &lm_addr, ptr_size) != 0)
7229 {
7230 warning ("unable to read r_map from 0x%lx",
7231 (long) priv->r_debug + lmo->r_map_offset);
7232 }
7233 }
7234 }
7235
7236 document = (char *) xmalloc (allocated);
7237 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7238 p = document + strlen (document);
7239
7240 while (lm_addr
7241 && read_one_ptr (lm_addr + lmo->l_name_offset,
7242 &l_name, ptr_size) == 0
7243 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7244 &l_addr, ptr_size) == 0
7245 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7246 &l_ld, ptr_size) == 0
7247 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7248 &l_prev, ptr_size) == 0
7249 && read_one_ptr (lm_addr + lmo->l_next_offset,
7250 &l_next, ptr_size) == 0)
7251 {
7252 unsigned char libname[PATH_MAX];
7253
7254 if (lm_prev != l_prev)
7255 {
7256 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7257 (long) lm_prev, (long) l_prev);
7258 break;
7259 }
7260
7261 /* Ignore the first entry even if it has valid name as the first entry
7262 corresponds to the main executable. The first entry should not be
7263 skipped if the dynamic loader was loaded late by a static executable
7264 (see solib-svr4.c parameter ignore_first). But in such case the main
7265 executable does not have PT_DYNAMIC present and this function already
7266 exited above due to failed get_r_debug. */
7267 if (lm_prev == 0)
7268 {
7269 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7270 p = p + strlen (p);
7271 }
7272 else
7273 {
7274 /* Not checking for error because reading may stop before
7275 we've got PATH_MAX worth of characters. */
7276 libname[0] = '\0';
7277 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7278 libname[sizeof (libname) - 1] = '\0';
7279 if (libname[0] != '\0')
7280 {
7281 /* 6x the size for xml_escape_text below. */
7282 size_t len = 6 * strlen ((char *) libname);
7283 char *name;
7284
7285 if (!header_done)
7286 {
7287 /* Terminate `<library-list-svr4'. */
7288 *p++ = '>';
7289 header_done = 1;
7290 }
7291
7292 while (allocated < p - document + len + 200)
7293 {
7294 /* Expand to guarantee sufficient storage. */
7295 uintptr_t document_len = p - document;
7296
7297 document = (char *) xrealloc (document, 2 * allocated);
7298 allocated *= 2;
7299 p = document + document_len;
7300 }
7301
7302 name = xml_escape_text ((char *) libname);
7303 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7304 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7305 name, (unsigned long) lm_addr,
7306 (unsigned long) l_addr, (unsigned long) l_ld);
7307 free (name);
7308 }
7309 }
7310
7311 lm_prev = lm_addr;
7312 lm_addr = l_next;
7313 }
7314
7315 if (!header_done)
7316 {
7317 /* Empty list; terminate `<library-list-svr4'. */
7318 strcpy (p, "/>");
7319 }
7320 else
7321 strcpy (p, "</library-list-svr4>");
7322
7323 document_len = strlen (document);
7324 if (offset < document_len)
7325 document_len -= offset;
7326 else
7327 document_len = 0;
7328 if (len > document_len)
7329 len = document_len;
7330
7331 memcpy (readbuf, document + offset, len);
7332 xfree (document);
7333
7334 return len;
7335 }
7336
7337 #ifdef HAVE_LINUX_BTRACE
7338
7339 /* See to_disable_btrace target method. */
7340
7341 static int
7342 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7343 {
7344 enum btrace_error err;
7345
7346 err = linux_disable_btrace (tinfo);
7347 return (err == BTRACE_ERR_NONE ? 0 : -1);
7348 }
7349
7350 /* Encode an Intel Processor Trace configuration. */
7351
7352 static void
7353 linux_low_encode_pt_config (struct buffer *buffer,
7354 const struct btrace_data_pt_config *config)
7355 {
7356 buffer_grow_str (buffer, "<pt-config>\n");
7357
7358 switch (config->cpu.vendor)
7359 {
7360 case CV_INTEL:
7361 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7362 "model=\"%u\" stepping=\"%u\"/>\n",
7363 config->cpu.family, config->cpu.model,
7364 config->cpu.stepping);
7365 break;
7366
7367 default:
7368 break;
7369 }
7370
7371 buffer_grow_str (buffer, "</pt-config>\n");
7372 }
7373
7374 /* Encode a raw buffer. */
7375
7376 static void
7377 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7378 unsigned int size)
7379 {
7380 if (size == 0)
7381 return;
7382
7383 /* We use hex encoding - see common/rsp-low.h. */
7384 buffer_grow_str (buffer, "<raw>\n");
7385
7386 while (size-- > 0)
7387 {
7388 char elem[2];
7389
7390 elem[0] = tohex ((*data >> 4) & 0xf);
7391 elem[1] = tohex (*data++ & 0xf);
7392
7393 buffer_grow (buffer, elem, 2);
7394 }
7395
7396 buffer_grow_str (buffer, "</raw>\n");
7397 }
7398
7399 /* See to_read_btrace target method. */
7400
7401 static int
7402 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7403 enum btrace_read_type type)
7404 {
7405 struct btrace_data btrace;
7406 struct btrace_block *block;
7407 enum btrace_error err;
7408 int i;
7409
7410 btrace_data_init (&btrace);
7411
7412 err = linux_read_btrace (&btrace, tinfo, type);
7413 if (err != BTRACE_ERR_NONE)
7414 {
7415 if (err == BTRACE_ERR_OVERFLOW)
7416 buffer_grow_str0 (buffer, "E.Overflow.");
7417 else
7418 buffer_grow_str0 (buffer, "E.Generic Error.");
7419
7420 goto err;
7421 }
7422
7423 switch (btrace.format)
7424 {
7425 case BTRACE_FORMAT_NONE:
7426 buffer_grow_str0 (buffer, "E.No Trace.");
7427 goto err;
7428
7429 case BTRACE_FORMAT_BTS:
7430 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7431 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7432
7433 for (i = 0;
7434 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7435 i++)
7436 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7437 paddress (block->begin), paddress (block->end));
7438
7439 buffer_grow_str0 (buffer, "</btrace>\n");
7440 break;
7441
7442 case BTRACE_FORMAT_PT:
7443 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7444 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7445 buffer_grow_str (buffer, "<pt>\n");
7446
7447 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7448
7449 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7450 btrace.variant.pt.size);
7451
7452 buffer_grow_str (buffer, "</pt>\n");
7453 buffer_grow_str0 (buffer, "</btrace>\n");
7454 break;
7455
7456 default:
7457 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7458 goto err;
7459 }
7460
7461 btrace_data_fini (&btrace);
7462 return 0;
7463
7464 err:
7465 btrace_data_fini (&btrace);
7466 return -1;
7467 }
7468
7469 /* See to_btrace_conf target method. */
7470
7471 static int
7472 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7473 struct buffer *buffer)
7474 {
7475 const struct btrace_config *conf;
7476
7477 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7478 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7479
7480 conf = linux_btrace_conf (tinfo);
7481 if (conf != NULL)
7482 {
7483 switch (conf->format)
7484 {
7485 case BTRACE_FORMAT_NONE:
7486 break;
7487
7488 case BTRACE_FORMAT_BTS:
7489 buffer_xml_printf (buffer, "<bts");
7490 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7491 buffer_xml_printf (buffer, " />\n");
7492 break;
7493
7494 case BTRACE_FORMAT_PT:
7495 buffer_xml_printf (buffer, "<pt");
7496 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7497 buffer_xml_printf (buffer, "/>\n");
7498 break;
7499 }
7500 }
7501
7502 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7503 return 0;
7504 }
7505 #endif /* HAVE_LINUX_BTRACE */
7506
7507 /* See nat/linux-nat.h. */
7508
7509 ptid_t
7510 current_lwp_ptid (void)
7511 {
7512 return ptid_of (current_thread);
7513 }
7514
7515 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7516
7517 static int
7518 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7519 {
7520 if (the_low_target.breakpoint_kind_from_pc != NULL)
7521 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7522 else
7523 return default_breakpoint_kind_from_pc (pcptr);
7524 }
7525
7526 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7527
7528 static const gdb_byte *
7529 linux_sw_breakpoint_from_kind (int kind, int *size)
7530 {
7531 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7532
7533 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7534 }
7535
7536 /* Implementation of the target_ops method
7537 "breakpoint_kind_from_current_state". */
7538
7539 static int
7540 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7541 {
7542 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7543 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7544 else
7545 return linux_breakpoint_kind_from_pc (pcptr);
7546 }
7547
7548 /* Default implementation of linux_target_ops method "set_pc" for
7549 32-bit pc register which is literally named "pc". */
7550
7551 void
7552 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7553 {
7554 uint32_t newpc = pc;
7555
7556 supply_register_by_name (regcache, "pc", &newpc);
7557 }
7558
7559 /* Default implementation of linux_target_ops method "get_pc" for
7560 32-bit pc register which is literally named "pc". */
7561
7562 CORE_ADDR
7563 linux_get_pc_32bit (struct regcache *regcache)
7564 {
7565 uint32_t pc;
7566
7567 collect_register_by_name (regcache, "pc", &pc);
7568 if (debug_threads)
7569 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7570 return pc;
7571 }
7572
7573 /* Default implementation of linux_target_ops method "set_pc" for
7574 64-bit pc register which is literally named "pc". */
7575
7576 void
7577 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7578 {
7579 uint64_t newpc = pc;
7580
7581 supply_register_by_name (regcache, "pc", &newpc);
7582 }
7583
7584 /* Default implementation of linux_target_ops method "get_pc" for
7585 64-bit pc register which is literally named "pc". */
7586
7587 CORE_ADDR
7588 linux_get_pc_64bit (struct regcache *regcache)
7589 {
7590 uint64_t pc;
7591
7592 collect_register_by_name (regcache, "pc", &pc);
7593 if (debug_threads)
7594 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7595 return pc;
7596 }
7597
7598
7599 static struct target_ops linux_target_ops = {
7600 linux_create_inferior,
7601 linux_post_create_inferior,
7602 linux_attach,
7603 linux_kill,
7604 linux_detach,
7605 linux_mourn,
7606 linux_join,
7607 linux_thread_alive,
7608 linux_resume,
7609 linux_wait,
7610 linux_fetch_registers,
7611 linux_store_registers,
7612 linux_prepare_to_access_memory,
7613 linux_done_accessing_memory,
7614 linux_read_memory,
7615 linux_write_memory,
7616 linux_look_up_symbols,
7617 linux_request_interrupt,
7618 linux_read_auxv,
7619 linux_supports_z_point_type,
7620 linux_insert_point,
7621 linux_remove_point,
7622 linux_stopped_by_sw_breakpoint,
7623 linux_supports_stopped_by_sw_breakpoint,
7624 linux_stopped_by_hw_breakpoint,
7625 linux_supports_stopped_by_hw_breakpoint,
7626 linux_supports_hardware_single_step,
7627 linux_stopped_by_watchpoint,
7628 linux_stopped_data_address,
7629 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7630 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7631 && defined(PT_TEXT_END_ADDR)
7632 linux_read_offsets,
7633 #else
7634 NULL,
7635 #endif
7636 #ifdef USE_THREAD_DB
7637 thread_db_get_tls_address,
7638 #else
7639 NULL,
7640 #endif
7641 linux_qxfer_spu,
7642 hostio_last_error_from_errno,
7643 linux_qxfer_osdata,
7644 linux_xfer_siginfo,
7645 linux_supports_non_stop,
7646 linux_async,
7647 linux_start_non_stop,
7648 linux_supports_multi_process,
7649 linux_supports_fork_events,
7650 linux_supports_vfork_events,
7651 linux_supports_exec_events,
7652 linux_handle_new_gdb_connection,
7653 #ifdef USE_THREAD_DB
7654 thread_db_handle_monitor_command,
7655 #else
7656 NULL,
7657 #endif
7658 linux_common_core_of_thread,
7659 linux_read_loadmap,
7660 linux_process_qsupported,
7661 linux_supports_tracepoints,
7662 linux_read_pc,
7663 linux_write_pc,
7664 linux_thread_stopped,
7665 NULL,
7666 linux_pause_all,
7667 linux_unpause_all,
7668 linux_stabilize_threads,
7669 linux_install_fast_tracepoint_jump_pad,
7670 linux_emit_ops,
7671 linux_supports_disable_randomization,
7672 linux_get_min_fast_tracepoint_insn_len,
7673 linux_qxfer_libraries_svr4,
7674 linux_supports_agent,
7675 #ifdef HAVE_LINUX_BTRACE
7676 linux_supports_btrace,
7677 linux_enable_btrace,
7678 linux_low_disable_btrace,
7679 linux_low_read_btrace,
7680 linux_low_btrace_conf,
7681 #else
7682 NULL,
7683 NULL,
7684 NULL,
7685 NULL,
7686 NULL,
7687 #endif
7688 linux_supports_range_stepping,
7689 linux_proc_pid_to_exec_file,
7690 linux_mntns_open_cloexec,
7691 linux_mntns_unlink,
7692 linux_mntns_readlink,
7693 linux_breakpoint_kind_from_pc,
7694 linux_sw_breakpoint_from_kind,
7695 linux_proc_tid_get_name,
7696 linux_breakpoint_kind_from_current_state,
7697 linux_supports_software_single_step,
7698 linux_supports_catch_syscall,
7699 linux_get_ipa_tdesc_idx,
7700 };
7701
7702 #ifdef HAVE_LINUX_REGSETS
7703 void
7704 initialize_regsets_info (struct regsets_info *info)
7705 {
7706 for (info->num_regsets = 0;
7707 info->regsets[info->num_regsets].size >= 0;
7708 info->num_regsets++)
7709 ;
7710 }
7711 #endif
7712
7713 void
7714 initialize_low (void)
7715 {
7716 struct sigaction sigchld_action;
7717
7718 memset (&sigchld_action, 0, sizeof (sigchld_action));
7719 set_target_ops (&linux_target_ops);
7720
7721 linux_ptrace_init_warnings ();
7722
7723 sigchld_action.sa_handler = sigchld_handler;
7724 sigemptyset (&sigchld_action.sa_mask);
7725 sigchld_action.sa_flags = SA_RESTART;
7726 sigaction (SIGCHLD, &sigchld_action, NULL);
7727
7728 initialize_low_arch ();
7729
7730 linux_check_ptrace_features ();
7731 }