]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
gdbserver: Use std::list for all_processes
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (struct inferior_list_entry *entry, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417
418 if (the_low_target.delete_thread != NULL)
419 the_low_target.delete_thread (lwp->arch_private);
420 else
421 gdb_assert (lwp->arch_private == NULL);
422
423 free (lwp);
424 }
425
426 /* Add a process to the common process list, and set its private
427 data. */
428
429 static struct process_info *
430 linux_add_process (int pid, int attached)
431 {
432 struct process_info *proc;
433
434 proc = add_process (pid, attached);
435 proc->priv = XCNEW (struct process_info_private);
436
437 if (the_low_target.new_process != NULL)
438 proc->priv->arch_private = the_low_target.new_process ();
439
440 return proc;
441 }
442
443 static CORE_ADDR get_pc (struct lwp_info *lwp);
444
445 /* Call the target arch_setup function on the current thread. */
446
447 static void
448 linux_arch_setup (void)
449 {
450 the_low_target.arch_setup ();
451 }
452
453 /* Call the target arch_setup function on THREAD. */
454
455 static void
456 linux_arch_setup_thread (struct thread_info *thread)
457 {
458 struct thread_info *saved_thread;
459
460 saved_thread = current_thread;
461 current_thread = thread;
462
463 linux_arch_setup ();
464
465 current_thread = saved_thread;
466 }
467
468 /* Handle a GNU/Linux extended wait response. If we see a clone,
469 fork, or vfork event, we need to add the new LWP to our list
470 (and return 0 so as not to report the trap to higher layers).
471 If we see an exec event, we will modify ORIG_EVENT_LWP to point
472 to a new LWP representing the new program. */
473
474 static int
475 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
476 {
477 struct lwp_info *event_lwp = *orig_event_lwp;
478 int event = linux_ptrace_get_extended_event (wstat);
479 struct thread_info *event_thr = get_lwp_thread (event_lwp);
480 struct lwp_info *new_lwp;
481
482 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
483
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
488
489 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
490 || (event == PTRACE_EVENT_CLONE))
491 {
492 ptid_t ptid;
493 unsigned long new_pid;
494 int ret, status;
495
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
498 &new_pid);
499
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
502 {
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
505
506 ret = my_waitpid (new_pid, &status, __WALL);
507
508 if (ret == -1)
509 perror_with_name ("waiting for new child");
510 else if (ret != new_pid)
511 warning ("wait returned unexpected PID %d", ret);
512 else if (!WIFSTOPPED (status))
513 warning ("wait returned unexpected status 0x%x", status);
514 }
515
516 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
517 {
518 struct process_info *parent_proc;
519 struct process_info *child_proc;
520 struct lwp_info *child_lwp;
521 struct thread_info *child_thr;
522 struct target_desc *tdesc;
523
524 ptid = ptid_build (new_pid, new_pid, 0);
525
526 if (debug_threads)
527 {
528 debug_printf ("HEW: Got fork event from LWP %ld, "
529 "new child is %d\n",
530 ptid_get_lwp (ptid_of (event_thr)),
531 ptid_get_pid (ptid));
532 }
533
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc = linux_add_process (new_pid, 0);
540 gdb_assert (child_proc != NULL);
541 child_lwp = add_lwp (ptid);
542 gdb_assert (child_lwp != NULL);
543 child_lwp->stopped = 1;
544 child_lwp->must_set_ptrace_flags = 1;
545 child_lwp->status_pending_p = 0;
546 child_thr = get_lwp_thread (child_lwp);
547 child_thr->last_resume_kind = resume_stop;
548 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
549
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp->bp_reinsert != 0)
556 {
557 if (debug_threads)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp->suspended = 1;
560 }
561
562 parent_proc = get_thread_process (event_thr);
563 child_proc->attached = parent_proc->attached;
564
565 if (event_lwp->bp_reinsert != 0
566 && can_software_single_step ()
567 && event == PTRACE_EVENT_VFORK)
568 {
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr);
574 }
575
576 clone_all_breakpoints (child_thr, event_thr);
577
578 tdesc = allocate_target_description ();
579 copy_target_description (tdesc, parent_proc->tdesc);
580 child_proc->tdesc = tdesc;
581
582 /* Clone arch-specific process data. */
583 if (the_low_target.new_fork != NULL)
584 the_low_target.new_fork (parent_proc, child_proc);
585
586 /* Save fork info in the parent thread. */
587 if (event == PTRACE_EVENT_FORK)
588 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
589 else if (event == PTRACE_EVENT_VFORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
591
592 event_lwp->waitstatus.value.related_pid = ptid;
593
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp->status_pending_p = 1;
598 event_lwp->status_pending = wstat;
599
600 /* Link the threads until the parent event is passed on to
601 higher layers. */
602 event_lwp->fork_relative = child_lwp;
603 child_lwp->fork_relative = event_lwp;
604
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
609 child is done. */
610 if (event_lwp->bp_reinsert != 0
611 && can_software_single_step ())
612 {
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr);
617
618 gdb_assert (has_single_step_breakpoints (event_thr));
619 gdb_assert (!has_single_step_breakpoints (child_thr));
620 }
621
622 /* Report the event. */
623 return 0;
624 }
625
626 if (debug_threads)
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr), new_pid);
630
631 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
632 new_lwp = add_lwp (ptid);
633
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp->stopped = 1;
639
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp->bp_reinsert != 0)
646 new_lwp->suspended = 1;
647
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status) != SIGSTOP)
652 {
653 new_lwp->stop_expected = 1;
654 new_lwp->status_pending_p = 1;
655 new_lwp->status_pending = status;
656 }
657 else if (report_thread_events)
658 {
659 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663
664 thread_db_notice_clone (event_thr, ptid);
665
666 /* Don't report the event. */
667 return 1;
668 }
669 else if (event == PTRACE_EVENT_VFORK_DONE)
670 {
671 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
672
673 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
674 {
675 reinsert_single_step_breakpoints (event_thr);
676
677 gdb_assert (has_single_step_breakpoints (event_thr));
678 }
679
680 /* Report the event. */
681 return 0;
682 }
683 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
684 {
685 struct process_info *proc;
686 VEC (int) *syscalls_to_catch;
687 ptid_t event_ptid;
688 pid_t event_pid;
689
690 if (debug_threads)
691 {
692 debug_printf ("HEW: Got exec event from LWP %ld\n",
693 lwpid_of (event_thr));
694 }
695
696 /* Get the event ptid. */
697 event_ptid = ptid_of (event_thr);
698 event_pid = ptid_get_pid (event_ptid);
699
700 /* Save the syscall list from the execing process. */
701 proc = get_thread_process (event_thr);
702 syscalls_to_catch = proc->syscalls_to_catch;
703 proc->syscalls_to_catch = NULL;
704
705 /* Delete the execing process and all its threads. */
706 linux_mourn (proc);
707 current_thread = NULL;
708
709 /* Create a new process/lwp/thread. */
710 proc = linux_add_process (event_pid, 0);
711 event_lwp = add_lwp (event_ptid);
712 event_thr = get_lwp_thread (event_lwp);
713 gdb_assert (current_thread == event_thr);
714 linux_arch_setup_thread (event_thr);
715
716 /* Set the event status. */
717 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
718 event_lwp->waitstatus.value.execd_pathname
719 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
720
721 /* Mark the exec status as pending. */
722 event_lwp->stopped = 1;
723 event_lwp->status_pending_p = 1;
724 event_lwp->status_pending = wstat;
725 event_thr->last_resume_kind = resume_continue;
726 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
727
728 /* Update syscall state in the new lwp, effectively mid-syscall too. */
729 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
730
731 /* Restore the list to catch. Don't rely on the client, which is free
732 to avoid sending a new list when the architecture doesn't change.
733 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
734 proc->syscalls_to_catch = syscalls_to_catch;
735
736 /* Report the event. */
737 *orig_event_lwp = event_lwp;
738 return 0;
739 }
740
741 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
742 }
743
744 /* Return the PC as read from the regcache of LWP, without any
745 adjustment. */
746
747 static CORE_ADDR
748 get_pc (struct lwp_info *lwp)
749 {
750 struct thread_info *saved_thread;
751 struct regcache *regcache;
752 CORE_ADDR pc;
753
754 if (the_low_target.get_pc == NULL)
755 return 0;
756
757 saved_thread = current_thread;
758 current_thread = get_lwp_thread (lwp);
759
760 regcache = get_thread_regcache (current_thread, 1);
761 pc = (*the_low_target.get_pc) (regcache);
762
763 if (debug_threads)
764 debug_printf ("pc is 0x%lx\n", (long) pc);
765
766 current_thread = saved_thread;
767 return pc;
768 }
769
770 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
771 Fill *SYSNO with the syscall nr trapped. */
772
773 static void
774 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
775 {
776 struct thread_info *saved_thread;
777 struct regcache *regcache;
778
779 if (the_low_target.get_syscall_trapinfo == NULL)
780 {
781 /* If we cannot get the syscall trapinfo, report an unknown
782 system call number. */
783 *sysno = UNKNOWN_SYSCALL;
784 return;
785 }
786
787 saved_thread = current_thread;
788 current_thread = get_lwp_thread (lwp);
789
790 regcache = get_thread_regcache (current_thread, 1);
791 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
792
793 if (debug_threads)
794 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
795
796 current_thread = saved_thread;
797 }
798
799 static int check_stopped_by_watchpoint (struct lwp_info *child);
800
801 /* Called when the LWP stopped for a signal/trap. If it stopped for a
802 trap check what caused it (breakpoint, watchpoint, trace, etc.),
803 and save the result in the LWP's stop_reason field. If it stopped
804 for a breakpoint, decrement the PC if necessary on the lwp's
805 architecture. Returns true if we now have the LWP's stop PC. */
806
807 static int
808 save_stop_reason (struct lwp_info *lwp)
809 {
810 CORE_ADDR pc;
811 CORE_ADDR sw_breakpoint_pc;
812 struct thread_info *saved_thread;
813 #if USE_SIGTRAP_SIGINFO
814 siginfo_t siginfo;
815 #endif
816
817 if (the_low_target.get_pc == NULL)
818 return 0;
819
820 pc = get_pc (lwp);
821 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
822
823 /* breakpoint_at reads from the current thread. */
824 saved_thread = current_thread;
825 current_thread = get_lwp_thread (lwp);
826
827 #if USE_SIGTRAP_SIGINFO
828 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
829 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
830 {
831 if (siginfo.si_signo == SIGTRAP)
832 {
833 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
834 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
835 {
836 /* The si_code is ambiguous on this arch -- check debug
837 registers. */
838 if (!check_stopped_by_watchpoint (lwp))
839 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
840 }
841 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
842 {
843 /* If we determine the LWP stopped for a SW breakpoint,
844 trust it. Particularly don't check watchpoint
845 registers, because at least on s390, we'd find
846 stopped-by-watchpoint as long as there's a watchpoint
847 set. */
848 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
849 }
850 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
851 {
852 /* This can indicate either a hardware breakpoint or
853 hardware watchpoint. Check debug registers. */
854 if (!check_stopped_by_watchpoint (lwp))
855 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
856 }
857 else if (siginfo.si_code == TRAP_TRACE)
858 {
859 /* We may have single stepped an instruction that
860 triggered a watchpoint. In that case, on some
861 architectures (such as x86), instead of TRAP_HWBKPT,
862 si_code indicates TRAP_TRACE, and we need to check
863 the debug registers separately. */
864 if (!check_stopped_by_watchpoint (lwp))
865 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
866 }
867 }
868 }
869 #else
870 /* We may have just stepped a breakpoint instruction. E.g., in
871 non-stop mode, GDB first tells the thread A to step a range, and
872 then the user inserts a breakpoint inside the range. In that
873 case we need to report the breakpoint PC. */
874 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
875 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
876 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
877
878 if (hardware_breakpoint_inserted_here (pc))
879 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
880
881 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
882 check_stopped_by_watchpoint (lwp);
883 #endif
884
885 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
886 {
887 if (debug_threads)
888 {
889 struct thread_info *thr = get_lwp_thread (lwp);
890
891 debug_printf ("CSBB: %s stopped by software breakpoint\n",
892 target_pid_to_str (ptid_of (thr)));
893 }
894
895 /* Back up the PC if necessary. */
896 if (pc != sw_breakpoint_pc)
897 {
898 struct regcache *regcache
899 = get_thread_regcache (current_thread, 1);
900 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
901 }
902
903 /* Update this so we record the correct stop PC below. */
904 pc = sw_breakpoint_pc;
905 }
906 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
907 {
908 if (debug_threads)
909 {
910 struct thread_info *thr = get_lwp_thread (lwp);
911
912 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
913 target_pid_to_str (ptid_of (thr)));
914 }
915 }
916 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
917 {
918 if (debug_threads)
919 {
920 struct thread_info *thr = get_lwp_thread (lwp);
921
922 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
923 target_pid_to_str (ptid_of (thr)));
924 }
925 }
926 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
927 {
928 if (debug_threads)
929 {
930 struct thread_info *thr = get_lwp_thread (lwp);
931
932 debug_printf ("CSBB: %s stopped by trace\n",
933 target_pid_to_str (ptid_of (thr)));
934 }
935 }
936
937 lwp->stop_pc = pc;
938 current_thread = saved_thread;
939 return 1;
940 }
941
942 static struct lwp_info *
943 add_lwp (ptid_t ptid)
944 {
945 struct lwp_info *lwp;
946
947 lwp = XCNEW (struct lwp_info);
948
949 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
950
951 if (the_low_target.new_thread != NULL)
952 the_low_target.new_thread (lwp);
953
954 lwp->thread = add_thread (ptid, lwp);
955
956 return lwp;
957 }
958
959 /* Callback to be used when calling fork_inferior, responsible for
960 actually initiating the tracing of the inferior. */
961
962 static void
963 linux_ptrace_fun ()
964 {
965 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
966 (PTRACE_TYPE_ARG4) 0) < 0)
967 trace_start_error_with_name ("ptrace");
968
969 if (setpgid (0, 0) < 0)
970 trace_start_error_with_name ("setpgid");
971
972 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
973 stdout to stderr so that inferior i/o doesn't corrupt the connection.
974 Also, redirect stdin to /dev/null. */
975 if (remote_connection_is_stdio ())
976 {
977 if (close (0) < 0)
978 trace_start_error_with_name ("close");
979 if (open ("/dev/null", O_RDONLY) < 0)
980 trace_start_error_with_name ("open");
981 if (dup2 (2, 1) < 0)
982 trace_start_error_with_name ("dup2");
983 if (write (2, "stdin/stdout redirected\n",
984 sizeof ("stdin/stdout redirected\n") - 1) < 0)
985 {
986 /* Errors ignored. */;
987 }
988 }
989 }
990
991 /* Start an inferior process and returns its pid.
992 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
993 are its arguments. */
994
995 static int
996 linux_create_inferior (const char *program,
997 const std::vector<char *> &program_args)
998 {
999 struct lwp_info *new_lwp;
1000 int pid;
1001 ptid_t ptid;
1002 struct cleanup *restore_personality
1003 = maybe_disable_address_space_randomization (disable_randomization);
1004 std::string str_program_args = stringify_argv (program_args);
1005
1006 pid = fork_inferior (program,
1007 str_program_args.c_str (),
1008 get_environ ()->envp (), linux_ptrace_fun,
1009 NULL, NULL, NULL, NULL);
1010
1011 do_cleanups (restore_personality);
1012
1013 linux_add_process (pid, 0);
1014
1015 ptid = ptid_build (pid, pid, 0);
1016 new_lwp = add_lwp (ptid);
1017 new_lwp->must_set_ptrace_flags = 1;
1018
1019 post_fork_inferior (pid, program);
1020
1021 return pid;
1022 }
1023
1024 /* Implement the post_create_inferior target_ops method. */
1025
1026 static void
1027 linux_post_create_inferior (void)
1028 {
1029 struct lwp_info *lwp = get_thread_lwp (current_thread);
1030
1031 linux_arch_setup ();
1032
1033 if (lwp->must_set_ptrace_flags)
1034 {
1035 struct process_info *proc = current_process ();
1036 int options = linux_low_ptrace_options (proc->attached);
1037
1038 linux_enable_event_reporting (lwpid_of (current_thread), options);
1039 lwp->must_set_ptrace_flags = 0;
1040 }
1041 }
1042
1043 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1044 error. */
1045
1046 int
1047 linux_attach_lwp (ptid_t ptid)
1048 {
1049 struct lwp_info *new_lwp;
1050 int lwpid = ptid_get_lwp (ptid);
1051
1052 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1053 != 0)
1054 return errno;
1055
1056 new_lwp = add_lwp (ptid);
1057
1058 /* We need to wait for SIGSTOP before being able to make the next
1059 ptrace call on this LWP. */
1060 new_lwp->must_set_ptrace_flags = 1;
1061
1062 if (linux_proc_pid_is_stopped (lwpid))
1063 {
1064 if (debug_threads)
1065 debug_printf ("Attached to a stopped process\n");
1066
1067 /* The process is definitely stopped. It is in a job control
1068 stop, unless the kernel predates the TASK_STOPPED /
1069 TASK_TRACED distinction, in which case it might be in a
1070 ptrace stop. Make sure it is in a ptrace stop; from there we
1071 can kill it, signal it, et cetera.
1072
1073 First make sure there is a pending SIGSTOP. Since we are
1074 already attached, the process can not transition from stopped
1075 to running without a PTRACE_CONT; so we know this signal will
1076 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1077 probably already in the queue (unless this kernel is old
1078 enough to use TASK_STOPPED for ptrace stops); but since
1079 SIGSTOP is not an RT signal, it can only be queued once. */
1080 kill_lwp (lwpid, SIGSTOP);
1081
1082 /* Finally, resume the stopped process. This will deliver the
1083 SIGSTOP (or a higher priority signal, just like normal
1084 PTRACE_ATTACH), which we'll catch later on. */
1085 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1086 }
1087
1088 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1089 brings it to a halt.
1090
1091 There are several cases to consider here:
1092
1093 1) gdbserver has already attached to the process and is being notified
1094 of a new thread that is being created.
1095 In this case we should ignore that SIGSTOP and resume the
1096 process. This is handled below by setting stop_expected = 1,
1097 and the fact that add_thread sets last_resume_kind ==
1098 resume_continue.
1099
1100 2) This is the first thread (the process thread), and we're attaching
1101 to it via attach_inferior.
1102 In this case we want the process thread to stop.
1103 This is handled by having linux_attach set last_resume_kind ==
1104 resume_stop after we return.
1105
1106 If the pid we are attaching to is also the tgid, we attach to and
1107 stop all the existing threads. Otherwise, we attach to pid and
1108 ignore any other threads in the same group as this pid.
1109
1110 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1111 existing threads.
1112 In this case we want the thread to stop.
1113 FIXME: This case is currently not properly handled.
1114 We should wait for the SIGSTOP but don't. Things work apparently
1115 because enough time passes between when we ptrace (ATTACH) and when
1116 gdb makes the next ptrace call on the thread.
1117
1118 On the other hand, if we are currently trying to stop all threads, we
1119 should treat the new thread as if we had sent it a SIGSTOP. This works
1120 because we are guaranteed that the add_lwp call above added us to the
1121 end of the list, and so the new thread has not yet reached
1122 wait_for_sigstop (but will). */
1123 new_lwp->stop_expected = 1;
1124
1125 return 0;
1126 }
1127
1128 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1129 already attached. Returns true if a new LWP is found, false
1130 otherwise. */
1131
1132 static int
1133 attach_proc_task_lwp_callback (ptid_t ptid)
1134 {
1135 /* Is this a new thread? */
1136 if (find_thread_ptid (ptid) == NULL)
1137 {
1138 int lwpid = ptid_get_lwp (ptid);
1139 int err;
1140
1141 if (debug_threads)
1142 debug_printf ("Found new lwp %d\n", lwpid);
1143
1144 err = linux_attach_lwp (ptid);
1145
1146 /* Be quiet if we simply raced with the thread exiting. EPERM
1147 is returned if the thread's task still exists, and is marked
1148 as exited or zombie, as well as other conditions, so in that
1149 case, confirm the status in /proc/PID/status. */
1150 if (err == ESRCH
1151 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1152 {
1153 if (debug_threads)
1154 {
1155 debug_printf ("Cannot attach to lwp %d: "
1156 "thread is gone (%d: %s)\n",
1157 lwpid, err, strerror (err));
1158 }
1159 }
1160 else if (err != 0)
1161 {
1162 warning (_("Cannot attach to lwp %d: %s"),
1163 lwpid,
1164 linux_ptrace_attach_fail_reason_string (ptid, err));
1165 }
1166
1167 return 1;
1168 }
1169 return 0;
1170 }
1171
1172 static void async_file_mark (void);
1173
1174 /* Attach to PID. If PID is the tgid, attach to it and all
1175 of its threads. */
1176
1177 static int
1178 linux_attach (unsigned long pid)
1179 {
1180 struct process_info *proc;
1181 struct thread_info *initial_thread;
1182 ptid_t ptid = ptid_build (pid, pid, 0);
1183 int err;
1184
1185 /* Attach to PID. We will check for other threads
1186 soon. */
1187 err = linux_attach_lwp (ptid);
1188 if (err != 0)
1189 error ("Cannot attach to process %ld: %s",
1190 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1191
1192 proc = linux_add_process (pid, 1);
1193
1194 /* Don't ignore the initial SIGSTOP if we just attached to this
1195 process. It will be collected by wait shortly. */
1196 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1197 initial_thread->last_resume_kind = resume_stop;
1198
1199 /* We must attach to every LWP. If /proc is mounted, use that to
1200 find them now. On the one hand, the inferior may be using raw
1201 clone instead of using pthreads. On the other hand, even if it
1202 is using pthreads, GDB may not be connected yet (thread_db needs
1203 to do symbol lookups, through qSymbol). Also, thread_db walks
1204 structures in the inferior's address space to find the list of
1205 threads/LWPs, and those structures may well be corrupted. Note
1206 that once thread_db is loaded, we'll still use it to list threads
1207 and associate pthread info with each LWP. */
1208 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1209
1210 /* GDB will shortly read the xml target description for this
1211 process, to figure out the process' architecture. But the target
1212 description is only filled in when the first process/thread in
1213 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1214 that now, otherwise, if GDB is fast enough, it could read the
1215 target description _before_ that initial stop. */
1216 if (non_stop)
1217 {
1218 struct lwp_info *lwp;
1219 int wstat, lwpid;
1220 ptid_t pid_ptid = pid_to_ptid (pid);
1221
1222 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1223 &wstat, __WALL);
1224 gdb_assert (lwpid > 0);
1225
1226 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1227
1228 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1229 {
1230 lwp->status_pending_p = 1;
1231 lwp->status_pending = wstat;
1232 }
1233
1234 initial_thread->last_resume_kind = resume_continue;
1235
1236 async_file_mark ();
1237
1238 gdb_assert (proc->tdesc != NULL);
1239 }
1240
1241 return 0;
1242 }
1243
1244 struct counter
1245 {
1246 int pid;
1247 int count;
1248 };
1249
1250 static int
1251 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1252 {
1253 struct counter *counter = (struct counter *) args;
1254
1255 if (ptid_get_pid (entry->id) == counter->pid)
1256 {
1257 if (++counter->count > 1)
1258 return 1;
1259 }
1260
1261 return 0;
1262 }
1263
1264 static int
1265 last_thread_of_process_p (int pid)
1266 {
1267 struct counter counter = { pid , 0 };
1268
1269 return (find_inferior (&all_threads,
1270 second_thread_of_pid_p, &counter) == NULL);
1271 }
1272
1273 /* Kill LWP. */
1274
1275 static void
1276 linux_kill_one_lwp (struct lwp_info *lwp)
1277 {
1278 struct thread_info *thr = get_lwp_thread (lwp);
1279 int pid = lwpid_of (thr);
1280
1281 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1282 there is no signal context, and ptrace(PTRACE_KILL) (or
1283 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1284 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1285 alternative is to kill with SIGKILL. We only need one SIGKILL
1286 per process, not one for each thread. But since we still support
1287 support debugging programs using raw clone without CLONE_THREAD,
1288 we send one for each thread. For years, we used PTRACE_KILL
1289 only, so we're being a bit paranoid about some old kernels where
1290 PTRACE_KILL might work better (dubious if there are any such, but
1291 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1292 second, and so we're fine everywhere. */
1293
1294 errno = 0;
1295 kill_lwp (pid, SIGKILL);
1296 if (debug_threads)
1297 {
1298 int save_errno = errno;
1299
1300 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1301 target_pid_to_str (ptid_of (thr)),
1302 save_errno ? strerror (save_errno) : "OK");
1303 }
1304
1305 errno = 0;
1306 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1307 if (debug_threads)
1308 {
1309 int save_errno = errno;
1310
1311 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1312 target_pid_to_str (ptid_of (thr)),
1313 save_errno ? strerror (save_errno) : "OK");
1314 }
1315 }
1316
1317 /* Kill LWP and wait for it to die. */
1318
1319 static void
1320 kill_wait_lwp (struct lwp_info *lwp)
1321 {
1322 struct thread_info *thr = get_lwp_thread (lwp);
1323 int pid = ptid_get_pid (ptid_of (thr));
1324 int lwpid = ptid_get_lwp (ptid_of (thr));
1325 int wstat;
1326 int res;
1327
1328 if (debug_threads)
1329 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1330
1331 do
1332 {
1333 linux_kill_one_lwp (lwp);
1334
1335 /* Make sure it died. Notes:
1336
1337 - The loop is most likely unnecessary.
1338
1339 - We don't use linux_wait_for_event as that could delete lwps
1340 while we're iterating over them. We're not interested in
1341 any pending status at this point, only in making sure all
1342 wait status on the kernel side are collected until the
1343 process is reaped.
1344
1345 - We don't use __WALL here as the __WALL emulation relies on
1346 SIGCHLD, and killing a stopped process doesn't generate
1347 one, nor an exit status.
1348 */
1349 res = my_waitpid (lwpid, &wstat, 0);
1350 if (res == -1 && errno == ECHILD)
1351 res = my_waitpid (lwpid, &wstat, __WCLONE);
1352 } while (res > 0 && WIFSTOPPED (wstat));
1353
1354 /* Even if it was stopped, the child may have already disappeared.
1355 E.g., if it was killed by SIGKILL. */
1356 if (res < 0 && errno != ECHILD)
1357 perror_with_name ("kill_wait_lwp");
1358 }
1359
1360 /* Callback for `find_inferior'. Kills an lwp of a given process,
1361 except the leader. */
1362
1363 static int
1364 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1365 {
1366 struct thread_info *thread = (struct thread_info *) entry;
1367 struct lwp_info *lwp = get_thread_lwp (thread);
1368 int pid = * (int *) args;
1369
1370 if (ptid_get_pid (entry->id) != pid)
1371 return 0;
1372
1373 /* We avoid killing the first thread here, because of a Linux kernel (at
1374 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1375 the children get a chance to be reaped, it will remain a zombie
1376 forever. */
1377
1378 if (lwpid_of (thread) == pid)
1379 {
1380 if (debug_threads)
1381 debug_printf ("lkop: is last of process %s\n",
1382 target_pid_to_str (entry->id));
1383 return 0;
1384 }
1385
1386 kill_wait_lwp (lwp);
1387 return 0;
1388 }
1389
1390 static int
1391 linux_kill (int pid)
1392 {
1393 struct process_info *process;
1394 struct lwp_info *lwp;
1395
1396 process = find_process_pid (pid);
1397 if (process == NULL)
1398 return -1;
1399
1400 /* If we're killing a running inferior, make sure it is stopped
1401 first, as PTRACE_KILL will not work otherwise. */
1402 stop_all_lwps (0, NULL);
1403
1404 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1405
1406 /* See the comment in linux_kill_one_lwp. We did not kill the first
1407 thread in the list, so do so now. */
1408 lwp = find_lwp_pid (pid_to_ptid (pid));
1409
1410 if (lwp == NULL)
1411 {
1412 if (debug_threads)
1413 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1414 pid);
1415 }
1416 else
1417 kill_wait_lwp (lwp);
1418
1419 the_target->mourn (process);
1420
1421 /* Since we presently can only stop all lwps of all processes, we
1422 need to unstop lwps of other processes. */
1423 unstop_all_lwps (0, NULL);
1424 return 0;
1425 }
1426
1427 /* Get pending signal of THREAD, for detaching purposes. This is the
1428 signal the thread last stopped for, which we need to deliver to the
1429 thread when detaching, otherwise, it'd be suppressed/lost. */
1430
1431 static int
1432 get_detach_signal (struct thread_info *thread)
1433 {
1434 enum gdb_signal signo = GDB_SIGNAL_0;
1435 int status;
1436 struct lwp_info *lp = get_thread_lwp (thread);
1437
1438 if (lp->status_pending_p)
1439 status = lp->status_pending;
1440 else
1441 {
1442 /* If the thread had been suspended by gdbserver, and it stopped
1443 cleanly, then it'll have stopped with SIGSTOP. But we don't
1444 want to deliver that SIGSTOP. */
1445 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1446 || thread->last_status.value.sig == GDB_SIGNAL_0)
1447 return 0;
1448
1449 /* Otherwise, we may need to deliver the signal we
1450 intercepted. */
1451 status = lp->last_status;
1452 }
1453
1454 if (!WIFSTOPPED (status))
1455 {
1456 if (debug_threads)
1457 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1458 target_pid_to_str (ptid_of (thread)));
1459 return 0;
1460 }
1461
1462 /* Extended wait statuses aren't real SIGTRAPs. */
1463 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1464 {
1465 if (debug_threads)
1466 debug_printf ("GPS: lwp %s had stopped with extended "
1467 "status: no pending signal\n",
1468 target_pid_to_str (ptid_of (thread)));
1469 return 0;
1470 }
1471
1472 signo = gdb_signal_from_host (WSTOPSIG (status));
1473
1474 if (program_signals_p && !program_signals[signo])
1475 {
1476 if (debug_threads)
1477 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1478 target_pid_to_str (ptid_of (thread)),
1479 gdb_signal_to_string (signo));
1480 return 0;
1481 }
1482 else if (!program_signals_p
1483 /* If we have no way to know which signals GDB does not
1484 want to have passed to the program, assume
1485 SIGTRAP/SIGINT, which is GDB's default. */
1486 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1487 {
1488 if (debug_threads)
1489 debug_printf ("GPS: lwp %s had signal %s, "
1490 "but we don't know if we should pass it. "
1491 "Default to not.\n",
1492 target_pid_to_str (ptid_of (thread)),
1493 gdb_signal_to_string (signo));
1494 return 0;
1495 }
1496 else
1497 {
1498 if (debug_threads)
1499 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1500 target_pid_to_str (ptid_of (thread)),
1501 gdb_signal_to_string (signo));
1502
1503 return WSTOPSIG (status);
1504 }
1505 }
1506
1507 /* Detach from LWP. */
1508
1509 static void
1510 linux_detach_one_lwp (struct lwp_info *lwp)
1511 {
1512 struct thread_info *thread = get_lwp_thread (lwp);
1513 int sig;
1514 int lwpid;
1515
1516 /* If there is a pending SIGSTOP, get rid of it. */
1517 if (lwp->stop_expected)
1518 {
1519 if (debug_threads)
1520 debug_printf ("Sending SIGCONT to %s\n",
1521 target_pid_to_str (ptid_of (thread)));
1522
1523 kill_lwp (lwpid_of (thread), SIGCONT);
1524 lwp->stop_expected = 0;
1525 }
1526
1527 /* Pass on any pending signal for this thread. */
1528 sig = get_detach_signal (thread);
1529
1530 /* Preparing to resume may try to write registers, and fail if the
1531 lwp is zombie. If that happens, ignore the error. We'll handle
1532 it below, when detach fails with ESRCH. */
1533 TRY
1534 {
1535 /* Flush any pending changes to the process's registers. */
1536 regcache_invalidate_thread (thread);
1537
1538 /* Finally, let it resume. */
1539 if (the_low_target.prepare_to_resume != NULL)
1540 the_low_target.prepare_to_resume (lwp);
1541 }
1542 CATCH (ex, RETURN_MASK_ERROR)
1543 {
1544 if (!check_ptrace_stopped_lwp_gone (lwp))
1545 throw_exception (ex);
1546 }
1547 END_CATCH
1548
1549 lwpid = lwpid_of (thread);
1550 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1551 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1552 {
1553 int save_errno = errno;
1554
1555 /* We know the thread exists, so ESRCH must mean the lwp is
1556 zombie. This can happen if one of the already-detached
1557 threads exits the whole thread group. In that case we're
1558 still attached, and must reap the lwp. */
1559 if (save_errno == ESRCH)
1560 {
1561 int ret, status;
1562
1563 ret = my_waitpid (lwpid, &status, __WALL);
1564 if (ret == -1)
1565 {
1566 warning (_("Couldn't reap LWP %d while detaching: %s"),
1567 lwpid, strerror (errno));
1568 }
1569 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1570 {
1571 warning (_("Reaping LWP %d while detaching "
1572 "returned unexpected status 0x%x"),
1573 lwpid, status);
1574 }
1575 }
1576 else
1577 {
1578 error (_("Can't detach %s: %s"),
1579 target_pid_to_str (ptid_of (thread)),
1580 strerror (save_errno));
1581 }
1582 }
1583 else if (debug_threads)
1584 {
1585 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1586 target_pid_to_str (ptid_of (thread)),
1587 strsignal (sig));
1588 }
1589
1590 delete_lwp (lwp);
1591 }
1592
1593 /* Callback for find_inferior. Detaches from non-leader threads of a
1594 given process. */
1595
1596 static int
1597 linux_detach_lwp_callback (struct inferior_list_entry *entry, void *args)
1598 {
1599 struct thread_info *thread = (struct thread_info *) entry;
1600 struct lwp_info *lwp = get_thread_lwp (thread);
1601 int pid = *(int *) args;
1602 int lwpid = lwpid_of (thread);
1603
1604 /* Skip other processes. */
1605 if (ptid_get_pid (entry->id) != pid)
1606 return 0;
1607
1608 /* We don't actually detach from the thread group leader just yet.
1609 If the thread group exits, we must reap the zombie clone lwps
1610 before we're able to reap the leader. */
1611 if (ptid_get_pid (entry->id) == lwpid)
1612 return 0;
1613
1614 linux_detach_one_lwp (lwp);
1615 return 0;
1616 }
1617
1618 static int
1619 linux_detach (int pid)
1620 {
1621 struct process_info *process;
1622 struct lwp_info *main_lwp;
1623
1624 process = find_process_pid (pid);
1625 if (process == NULL)
1626 return -1;
1627
1628 /* As there's a step over already in progress, let it finish first,
1629 otherwise nesting a stabilize_threads operation on top gets real
1630 messy. */
1631 complete_ongoing_step_over ();
1632
1633 /* Stop all threads before detaching. First, ptrace requires that
1634 the thread is stopped to sucessfully detach. Second, thread_db
1635 may need to uninstall thread event breakpoints from memory, which
1636 only works with a stopped process anyway. */
1637 stop_all_lwps (0, NULL);
1638
1639 #ifdef USE_THREAD_DB
1640 thread_db_detach (process);
1641 #endif
1642
1643 /* Stabilize threads (move out of jump pads). */
1644 stabilize_threads ();
1645
1646 /* Detach from the clone lwps first. If the thread group exits just
1647 while we're detaching, we must reap the clone lwps before we're
1648 able to reap the leader. */
1649 find_inferior (&all_threads, linux_detach_lwp_callback, &pid);
1650
1651 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1652 linux_detach_one_lwp (main_lwp);
1653
1654 the_target->mourn (process);
1655
1656 /* Since we presently can only stop all lwps of all processes, we
1657 need to unstop lwps of other processes. */
1658 unstop_all_lwps (0, NULL);
1659 return 0;
1660 }
1661
1662 /* Remove all LWPs that belong to process PROC from the lwp list. */
1663
1664 static int
1665 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1666 {
1667 struct thread_info *thread = (struct thread_info *) entry;
1668 struct lwp_info *lwp = get_thread_lwp (thread);
1669 struct process_info *process = (struct process_info *) proc;
1670
1671 if (pid_of (thread) == pid_of (process))
1672 delete_lwp (lwp);
1673
1674 return 0;
1675 }
1676
1677 static void
1678 linux_mourn (struct process_info *process)
1679 {
1680 struct process_info_private *priv;
1681
1682 #ifdef USE_THREAD_DB
1683 thread_db_mourn (process);
1684 #endif
1685
1686 find_inferior (&all_threads, delete_lwp_callback, process);
1687
1688 /* Freeing all private data. */
1689 priv = process->priv;
1690 if (the_low_target.delete_process != NULL)
1691 the_low_target.delete_process (priv->arch_private);
1692 else
1693 gdb_assert (priv->arch_private == NULL);
1694 free (priv);
1695 process->priv = NULL;
1696
1697 remove_process (process);
1698 }
1699
1700 static void
1701 linux_join (int pid)
1702 {
1703 int status, ret;
1704
1705 do {
1706 ret = my_waitpid (pid, &status, 0);
1707 if (WIFEXITED (status) || WIFSIGNALED (status))
1708 break;
1709 } while (ret != -1 || errno != ECHILD);
1710 }
1711
1712 /* Return nonzero if the given thread is still alive. */
1713 static int
1714 linux_thread_alive (ptid_t ptid)
1715 {
1716 struct lwp_info *lwp = find_lwp_pid (ptid);
1717
1718 /* We assume we always know if a thread exits. If a whole process
1719 exited but we still haven't been able to report it to GDB, we'll
1720 hold on to the last lwp of the dead process. */
1721 if (lwp != NULL)
1722 return !lwp_is_marked_dead (lwp);
1723 else
1724 return 0;
1725 }
1726
1727 /* Return 1 if this lwp still has an interesting status pending. If
1728 not (e.g., it had stopped for a breakpoint that is gone), return
1729 false. */
1730
1731 static int
1732 thread_still_has_status_pending_p (struct thread_info *thread)
1733 {
1734 struct lwp_info *lp = get_thread_lwp (thread);
1735
1736 if (!lp->status_pending_p)
1737 return 0;
1738
1739 if (thread->last_resume_kind != resume_stop
1740 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1741 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1742 {
1743 struct thread_info *saved_thread;
1744 CORE_ADDR pc;
1745 int discard = 0;
1746
1747 gdb_assert (lp->last_status != 0);
1748
1749 pc = get_pc (lp);
1750
1751 saved_thread = current_thread;
1752 current_thread = thread;
1753
1754 if (pc != lp->stop_pc)
1755 {
1756 if (debug_threads)
1757 debug_printf ("PC of %ld changed\n",
1758 lwpid_of (thread));
1759 discard = 1;
1760 }
1761
1762 #if !USE_SIGTRAP_SIGINFO
1763 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1764 && !(*the_low_target.breakpoint_at) (pc))
1765 {
1766 if (debug_threads)
1767 debug_printf ("previous SW breakpoint of %ld gone\n",
1768 lwpid_of (thread));
1769 discard = 1;
1770 }
1771 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1772 && !hardware_breakpoint_inserted_here (pc))
1773 {
1774 if (debug_threads)
1775 debug_printf ("previous HW breakpoint of %ld gone\n",
1776 lwpid_of (thread));
1777 discard = 1;
1778 }
1779 #endif
1780
1781 current_thread = saved_thread;
1782
1783 if (discard)
1784 {
1785 if (debug_threads)
1786 debug_printf ("discarding pending breakpoint status\n");
1787 lp->status_pending_p = 0;
1788 return 0;
1789 }
1790 }
1791
1792 return 1;
1793 }
1794
1795 /* Returns true if LWP is resumed from the client's perspective. */
1796
1797 static int
1798 lwp_resumed (struct lwp_info *lwp)
1799 {
1800 struct thread_info *thread = get_lwp_thread (lwp);
1801
1802 if (thread->last_resume_kind != resume_stop)
1803 return 1;
1804
1805 /* Did gdb send us a `vCont;t', but we haven't reported the
1806 corresponding stop to gdb yet? If so, the thread is still
1807 resumed/running from gdb's perspective. */
1808 if (thread->last_resume_kind == resume_stop
1809 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1810 return 1;
1811
1812 return 0;
1813 }
1814
1815 /* Return 1 if this lwp has an interesting status pending. */
1816 static int
1817 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1818 {
1819 struct thread_info *thread = (struct thread_info *) entry;
1820 struct lwp_info *lp = get_thread_lwp (thread);
1821 ptid_t ptid = * (ptid_t *) arg;
1822
1823 /* Check if we're only interested in events from a specific process
1824 or a specific LWP. */
1825 if (!ptid_match (ptid_of (thread), ptid))
1826 return 0;
1827
1828 if (!lwp_resumed (lp))
1829 return 0;
1830
1831 if (lp->status_pending_p
1832 && !thread_still_has_status_pending_p (thread))
1833 {
1834 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1835 return 0;
1836 }
1837
1838 return lp->status_pending_p;
1839 }
1840
1841 static int
1842 same_lwp (struct inferior_list_entry *entry, void *data)
1843 {
1844 ptid_t ptid = *(ptid_t *) data;
1845 int lwp;
1846
1847 if (ptid_get_lwp (ptid) != 0)
1848 lwp = ptid_get_lwp (ptid);
1849 else
1850 lwp = ptid_get_pid (ptid);
1851
1852 if (ptid_get_lwp (entry->id) == lwp)
1853 return 1;
1854
1855 return 0;
1856 }
1857
1858 struct lwp_info *
1859 find_lwp_pid (ptid_t ptid)
1860 {
1861 struct inferior_list_entry *thread
1862 = find_inferior (&all_threads, same_lwp, &ptid);
1863
1864 if (thread == NULL)
1865 return NULL;
1866
1867 return get_thread_lwp ((struct thread_info *) thread);
1868 }
1869
1870 /* Return the number of known LWPs in the tgid given by PID. */
1871
1872 static int
1873 num_lwps (int pid)
1874 {
1875 struct inferior_list_entry *inf, *tmp;
1876 int count = 0;
1877
1878 ALL_INFERIORS (&all_threads, inf, tmp)
1879 {
1880 if (ptid_get_pid (inf->id) == pid)
1881 count++;
1882 }
1883
1884 return count;
1885 }
1886
1887 /* The arguments passed to iterate_over_lwps. */
1888
1889 struct iterate_over_lwps_args
1890 {
1891 /* The FILTER argument passed to iterate_over_lwps. */
1892 ptid_t filter;
1893
1894 /* The CALLBACK argument passed to iterate_over_lwps. */
1895 iterate_over_lwps_ftype *callback;
1896
1897 /* The DATA argument passed to iterate_over_lwps. */
1898 void *data;
1899 };
1900
1901 /* Callback for find_inferior used by iterate_over_lwps to filter
1902 calls to the callback supplied to that function. Returning a
1903 nonzero value causes find_inferiors to stop iterating and return
1904 the current inferior_list_entry. Returning zero indicates that
1905 find_inferiors should continue iterating. */
1906
1907 static int
1908 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1909 {
1910 struct iterate_over_lwps_args *args
1911 = (struct iterate_over_lwps_args *) args_p;
1912
1913 if (ptid_match (entry->id, args->filter))
1914 {
1915 struct thread_info *thr = (struct thread_info *) entry;
1916 struct lwp_info *lwp = get_thread_lwp (thr);
1917
1918 return (*args->callback) (lwp, args->data);
1919 }
1920
1921 return 0;
1922 }
1923
1924 /* See nat/linux-nat.h. */
1925
1926 struct lwp_info *
1927 iterate_over_lwps (ptid_t filter,
1928 iterate_over_lwps_ftype callback,
1929 void *data)
1930 {
1931 struct iterate_over_lwps_args args = {filter, callback, data};
1932 struct inferior_list_entry *entry;
1933
1934 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1935 if (entry == NULL)
1936 return NULL;
1937
1938 return get_thread_lwp ((struct thread_info *) entry);
1939 }
1940
1941 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1942 their exits until all other threads in the group have exited. */
1943
1944 static void
1945 check_zombie_leaders (void)
1946 {
1947 for_each_process ([] (process_info *proc) {
1948 pid_t leader_pid = pid_of (proc);
1949 struct lwp_info *leader_lp;
1950
1951 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1952
1953 if (debug_threads)
1954 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1955 "num_lwps=%d, zombie=%d\n",
1956 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1957 linux_proc_pid_is_zombie (leader_pid));
1958
1959 if (leader_lp != NULL && !leader_lp->stopped
1960 /* Check if there are other threads in the group, as we may
1961 have raced with the inferior simply exiting. */
1962 && !last_thread_of_process_p (leader_pid)
1963 && linux_proc_pid_is_zombie (leader_pid))
1964 {
1965 /* A leader zombie can mean one of two things:
1966
1967 - It exited, and there's an exit status pending
1968 available, or only the leader exited (not the whole
1969 program). In the latter case, we can't waitpid the
1970 leader's exit status until all other threads are gone.
1971
1972 - There are 3 or more threads in the group, and a thread
1973 other than the leader exec'd. On an exec, the Linux
1974 kernel destroys all other threads (except the execing
1975 one) in the thread group, and resets the execing thread's
1976 tid to the tgid. No exit notification is sent for the
1977 execing thread -- from the ptracer's perspective, it
1978 appears as though the execing thread just vanishes.
1979 Until we reap all other threads except the leader and the
1980 execing thread, the leader will be zombie, and the
1981 execing thread will be in `D (disc sleep)'. As soon as
1982 all other threads are reaped, the execing thread changes
1983 it's tid to the tgid, and the previous (zombie) leader
1984 vanishes, giving place to the "new" leader. We could try
1985 distinguishing the exit and exec cases, by waiting once
1986 more, and seeing if something comes out, but it doesn't
1987 sound useful. The previous leader _does_ go away, and
1988 we'll re-add the new one once we see the exec event
1989 (which is just the same as what would happen if the
1990 previous leader did exit voluntarily before some other
1991 thread execs). */
1992
1993 if (debug_threads)
1994 debug_printf ("CZL: Thread group leader %d zombie "
1995 "(it exited, or another thread execd).\n",
1996 leader_pid);
1997
1998 delete_lwp (leader_lp);
1999 }
2000 });
2001 }
2002
2003 /* Callback for `find_inferior'. Returns the first LWP that is not
2004 stopped. ARG is a PTID filter. */
2005
2006 static int
2007 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
2008 {
2009 struct thread_info *thr = (struct thread_info *) entry;
2010 struct lwp_info *lwp;
2011 ptid_t filter = *(ptid_t *) arg;
2012
2013 if (!ptid_match (ptid_of (thr), filter))
2014 return 0;
2015
2016 lwp = get_thread_lwp (thr);
2017 if (!lwp->stopped)
2018 return 1;
2019
2020 return 0;
2021 }
2022
2023 /* Increment LWP's suspend count. */
2024
2025 static void
2026 lwp_suspended_inc (struct lwp_info *lwp)
2027 {
2028 lwp->suspended++;
2029
2030 if (debug_threads && lwp->suspended > 4)
2031 {
2032 struct thread_info *thread = get_lwp_thread (lwp);
2033
2034 debug_printf ("LWP %ld has a suspiciously high suspend count,"
2035 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
2036 }
2037 }
2038
2039 /* Decrement LWP's suspend count. */
2040
2041 static void
2042 lwp_suspended_decr (struct lwp_info *lwp)
2043 {
2044 lwp->suspended--;
2045
2046 if (lwp->suspended < 0)
2047 {
2048 struct thread_info *thread = get_lwp_thread (lwp);
2049
2050 internal_error (__FILE__, __LINE__,
2051 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
2052 lwp->suspended);
2053 }
2054 }
2055
2056 /* This function should only be called if the LWP got a SIGTRAP.
2057
2058 Handle any tracepoint steps or hits. Return true if a tracepoint
2059 event was handled, 0 otherwise. */
2060
2061 static int
2062 handle_tracepoints (struct lwp_info *lwp)
2063 {
2064 struct thread_info *tinfo = get_lwp_thread (lwp);
2065 int tpoint_related_event = 0;
2066
2067 gdb_assert (lwp->suspended == 0);
2068
2069 /* If this tracepoint hit causes a tracing stop, we'll immediately
2070 uninsert tracepoints. To do this, we temporarily pause all
2071 threads, unpatch away, and then unpause threads. We need to make
2072 sure the unpausing doesn't resume LWP too. */
2073 lwp_suspended_inc (lwp);
2074
2075 /* And we need to be sure that any all-threads-stopping doesn't try
2076 to move threads out of the jump pads, as it could deadlock the
2077 inferior (LWP could be in the jump pad, maybe even holding the
2078 lock.) */
2079
2080 /* Do any necessary step collect actions. */
2081 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2082
2083 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2084
2085 /* See if we just hit a tracepoint and do its main collect
2086 actions. */
2087 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2088
2089 lwp_suspended_decr (lwp);
2090
2091 gdb_assert (lwp->suspended == 0);
2092 gdb_assert (!stabilizing_threads
2093 || (lwp->collecting_fast_tracepoint
2094 != fast_tpoint_collect_result::not_collecting));
2095
2096 if (tpoint_related_event)
2097 {
2098 if (debug_threads)
2099 debug_printf ("got a tracepoint event\n");
2100 return 1;
2101 }
2102
2103 return 0;
2104 }
2105
2106 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2107 collection status. */
2108
2109 static fast_tpoint_collect_result
2110 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2111 struct fast_tpoint_collect_status *status)
2112 {
2113 CORE_ADDR thread_area;
2114 struct thread_info *thread = get_lwp_thread (lwp);
2115
2116 if (the_low_target.get_thread_area == NULL)
2117 return fast_tpoint_collect_result::not_collecting;
2118
2119 /* Get the thread area address. This is used to recognize which
2120 thread is which when tracing with the in-process agent library.
2121 We don't read anything from the address, and treat it as opaque;
2122 it's the address itself that we assume is unique per-thread. */
2123 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2124 return fast_tpoint_collect_result::not_collecting;
2125
2126 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2127 }
2128
2129 /* The reason we resume in the caller, is because we want to be able
2130 to pass lwp->status_pending as WSTAT, and we need to clear
2131 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2132 refuses to resume. */
2133
2134 static int
2135 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2136 {
2137 struct thread_info *saved_thread;
2138
2139 saved_thread = current_thread;
2140 current_thread = get_lwp_thread (lwp);
2141
2142 if ((wstat == NULL
2143 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2144 && supports_fast_tracepoints ()
2145 && agent_loaded_p ())
2146 {
2147 struct fast_tpoint_collect_status status;
2148
2149 if (debug_threads)
2150 debug_printf ("Checking whether LWP %ld needs to move out of the "
2151 "jump pad.\n",
2152 lwpid_of (current_thread));
2153
2154 fast_tpoint_collect_result r
2155 = linux_fast_tracepoint_collecting (lwp, &status);
2156
2157 if (wstat == NULL
2158 || (WSTOPSIG (*wstat) != SIGILL
2159 && WSTOPSIG (*wstat) != SIGFPE
2160 && WSTOPSIG (*wstat) != SIGSEGV
2161 && WSTOPSIG (*wstat) != SIGBUS))
2162 {
2163 lwp->collecting_fast_tracepoint = r;
2164
2165 if (r != fast_tpoint_collect_result::not_collecting)
2166 {
2167 if (r == fast_tpoint_collect_result::before_insn
2168 && lwp->exit_jump_pad_bkpt == NULL)
2169 {
2170 /* Haven't executed the original instruction yet.
2171 Set breakpoint there, and wait till it's hit,
2172 then single-step until exiting the jump pad. */
2173 lwp->exit_jump_pad_bkpt
2174 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2175 }
2176
2177 if (debug_threads)
2178 debug_printf ("Checking whether LWP %ld needs to move out of "
2179 "the jump pad...it does\n",
2180 lwpid_of (current_thread));
2181 current_thread = saved_thread;
2182
2183 return 1;
2184 }
2185 }
2186 else
2187 {
2188 /* If we get a synchronous signal while collecting, *and*
2189 while executing the (relocated) original instruction,
2190 reset the PC to point at the tpoint address, before
2191 reporting to GDB. Otherwise, it's an IPA lib bug: just
2192 report the signal to GDB, and pray for the best. */
2193
2194 lwp->collecting_fast_tracepoint
2195 = fast_tpoint_collect_result::not_collecting;
2196
2197 if (r != fast_tpoint_collect_result::not_collecting
2198 && (status.adjusted_insn_addr <= lwp->stop_pc
2199 && lwp->stop_pc < status.adjusted_insn_addr_end))
2200 {
2201 siginfo_t info;
2202 struct regcache *regcache;
2203
2204 /* The si_addr on a few signals references the address
2205 of the faulting instruction. Adjust that as
2206 well. */
2207 if ((WSTOPSIG (*wstat) == SIGILL
2208 || WSTOPSIG (*wstat) == SIGFPE
2209 || WSTOPSIG (*wstat) == SIGBUS
2210 || WSTOPSIG (*wstat) == SIGSEGV)
2211 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2212 (PTRACE_TYPE_ARG3) 0, &info) == 0
2213 /* Final check just to make sure we don't clobber
2214 the siginfo of non-kernel-sent signals. */
2215 && (uintptr_t) info.si_addr == lwp->stop_pc)
2216 {
2217 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2218 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2219 (PTRACE_TYPE_ARG3) 0, &info);
2220 }
2221
2222 regcache = get_thread_regcache (current_thread, 1);
2223 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2224 lwp->stop_pc = status.tpoint_addr;
2225
2226 /* Cancel any fast tracepoint lock this thread was
2227 holding. */
2228 force_unlock_trace_buffer ();
2229 }
2230
2231 if (lwp->exit_jump_pad_bkpt != NULL)
2232 {
2233 if (debug_threads)
2234 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2235 "stopping all threads momentarily.\n");
2236
2237 stop_all_lwps (1, lwp);
2238
2239 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2240 lwp->exit_jump_pad_bkpt = NULL;
2241
2242 unstop_all_lwps (1, lwp);
2243
2244 gdb_assert (lwp->suspended >= 0);
2245 }
2246 }
2247 }
2248
2249 if (debug_threads)
2250 debug_printf ("Checking whether LWP %ld needs to move out of the "
2251 "jump pad...no\n",
2252 lwpid_of (current_thread));
2253
2254 current_thread = saved_thread;
2255 return 0;
2256 }
2257
2258 /* Enqueue one signal in the "signals to report later when out of the
2259 jump pad" list. */
2260
2261 static void
2262 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2263 {
2264 struct pending_signals *p_sig;
2265 struct thread_info *thread = get_lwp_thread (lwp);
2266
2267 if (debug_threads)
2268 debug_printf ("Deferring signal %d for LWP %ld.\n",
2269 WSTOPSIG (*wstat), lwpid_of (thread));
2270
2271 if (debug_threads)
2272 {
2273 struct pending_signals *sig;
2274
2275 for (sig = lwp->pending_signals_to_report;
2276 sig != NULL;
2277 sig = sig->prev)
2278 debug_printf (" Already queued %d\n",
2279 sig->signal);
2280
2281 debug_printf (" (no more currently queued signals)\n");
2282 }
2283
2284 /* Don't enqueue non-RT signals if they are already in the deferred
2285 queue. (SIGSTOP being the easiest signal to see ending up here
2286 twice) */
2287 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2288 {
2289 struct pending_signals *sig;
2290
2291 for (sig = lwp->pending_signals_to_report;
2292 sig != NULL;
2293 sig = sig->prev)
2294 {
2295 if (sig->signal == WSTOPSIG (*wstat))
2296 {
2297 if (debug_threads)
2298 debug_printf ("Not requeuing already queued non-RT signal %d"
2299 " for LWP %ld\n",
2300 sig->signal,
2301 lwpid_of (thread));
2302 return;
2303 }
2304 }
2305 }
2306
2307 p_sig = XCNEW (struct pending_signals);
2308 p_sig->prev = lwp->pending_signals_to_report;
2309 p_sig->signal = WSTOPSIG (*wstat);
2310
2311 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2312 &p_sig->info);
2313
2314 lwp->pending_signals_to_report = p_sig;
2315 }
2316
2317 /* Dequeue one signal from the "signals to report later when out of
2318 the jump pad" list. */
2319
2320 static int
2321 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2322 {
2323 struct thread_info *thread = get_lwp_thread (lwp);
2324
2325 if (lwp->pending_signals_to_report != NULL)
2326 {
2327 struct pending_signals **p_sig;
2328
2329 p_sig = &lwp->pending_signals_to_report;
2330 while ((*p_sig)->prev != NULL)
2331 p_sig = &(*p_sig)->prev;
2332
2333 *wstat = W_STOPCODE ((*p_sig)->signal);
2334 if ((*p_sig)->info.si_signo != 0)
2335 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2336 &(*p_sig)->info);
2337 free (*p_sig);
2338 *p_sig = NULL;
2339
2340 if (debug_threads)
2341 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2342 WSTOPSIG (*wstat), lwpid_of (thread));
2343
2344 if (debug_threads)
2345 {
2346 struct pending_signals *sig;
2347
2348 for (sig = lwp->pending_signals_to_report;
2349 sig != NULL;
2350 sig = sig->prev)
2351 debug_printf (" Still queued %d\n",
2352 sig->signal);
2353
2354 debug_printf (" (no more queued signals)\n");
2355 }
2356
2357 return 1;
2358 }
2359
2360 return 0;
2361 }
2362
2363 /* Fetch the possibly triggered data watchpoint info and store it in
2364 CHILD.
2365
2366 On some archs, like x86, that use debug registers to set
2367 watchpoints, it's possible that the way to know which watched
2368 address trapped, is to check the register that is used to select
2369 which address to watch. Problem is, between setting the watchpoint
2370 and reading back which data address trapped, the user may change
2371 the set of watchpoints, and, as a consequence, GDB changes the
2372 debug registers in the inferior. To avoid reading back a stale
2373 stopped-data-address when that happens, we cache in LP the fact
2374 that a watchpoint trapped, and the corresponding data address, as
2375 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2376 registers meanwhile, we have the cached data we can rely on. */
2377
2378 static int
2379 check_stopped_by_watchpoint (struct lwp_info *child)
2380 {
2381 if (the_low_target.stopped_by_watchpoint != NULL)
2382 {
2383 struct thread_info *saved_thread;
2384
2385 saved_thread = current_thread;
2386 current_thread = get_lwp_thread (child);
2387
2388 if (the_low_target.stopped_by_watchpoint ())
2389 {
2390 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2391
2392 if (the_low_target.stopped_data_address != NULL)
2393 child->stopped_data_address
2394 = the_low_target.stopped_data_address ();
2395 else
2396 child->stopped_data_address = 0;
2397 }
2398
2399 current_thread = saved_thread;
2400 }
2401
2402 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2403 }
2404
2405 /* Return the ptrace options that we want to try to enable. */
2406
2407 static int
2408 linux_low_ptrace_options (int attached)
2409 {
2410 int options = 0;
2411
2412 if (!attached)
2413 options |= PTRACE_O_EXITKILL;
2414
2415 if (report_fork_events)
2416 options |= PTRACE_O_TRACEFORK;
2417
2418 if (report_vfork_events)
2419 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2420
2421 if (report_exec_events)
2422 options |= PTRACE_O_TRACEEXEC;
2423
2424 options |= PTRACE_O_TRACESYSGOOD;
2425
2426 return options;
2427 }
2428
2429 /* Do low-level handling of the event, and check if we should go on
2430 and pass it to caller code. Return the affected lwp if we are, or
2431 NULL otherwise. */
2432
2433 static struct lwp_info *
2434 linux_low_filter_event (int lwpid, int wstat)
2435 {
2436 struct lwp_info *child;
2437 struct thread_info *thread;
2438 int have_stop_pc = 0;
2439
2440 child = find_lwp_pid (pid_to_ptid (lwpid));
2441
2442 /* Check for stop events reported by a process we didn't already
2443 know about - anything not already in our LWP list.
2444
2445 If we're expecting to receive stopped processes after
2446 fork, vfork, and clone events, then we'll just add the
2447 new one to our list and go back to waiting for the event
2448 to be reported - the stopped process might be returned
2449 from waitpid before or after the event is.
2450
2451 But note the case of a non-leader thread exec'ing after the
2452 leader having exited, and gone from our lists (because
2453 check_zombie_leaders deleted it). The non-leader thread
2454 changes its tid to the tgid. */
2455
2456 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2457 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2458 {
2459 ptid_t child_ptid;
2460
2461 /* A multi-thread exec after we had seen the leader exiting. */
2462 if (debug_threads)
2463 {
2464 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2465 "after exec.\n", lwpid);
2466 }
2467
2468 child_ptid = ptid_build (lwpid, lwpid, 0);
2469 child = add_lwp (child_ptid);
2470 child->stopped = 1;
2471 current_thread = child->thread;
2472 }
2473
2474 /* If we didn't find a process, one of two things presumably happened:
2475 - A process we started and then detached from has exited. Ignore it.
2476 - A process we are controlling has forked and the new child's stop
2477 was reported to us by the kernel. Save its PID. */
2478 if (child == NULL && WIFSTOPPED (wstat))
2479 {
2480 add_to_pid_list (&stopped_pids, lwpid, wstat);
2481 return NULL;
2482 }
2483 else if (child == NULL)
2484 return NULL;
2485
2486 thread = get_lwp_thread (child);
2487
2488 child->stopped = 1;
2489
2490 child->last_status = wstat;
2491
2492 /* Check if the thread has exited. */
2493 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2494 {
2495 if (debug_threads)
2496 debug_printf ("LLFE: %d exited.\n", lwpid);
2497
2498 if (finish_step_over (child))
2499 {
2500 /* Unsuspend all other LWPs, and set them back running again. */
2501 unsuspend_all_lwps (child);
2502 }
2503
2504 /* If there is at least one more LWP, then the exit signal was
2505 not the end of the debugged application and should be
2506 ignored, unless GDB wants to hear about thread exits. */
2507 if (report_thread_events
2508 || last_thread_of_process_p (pid_of (thread)))
2509 {
2510 /* Since events are serialized to GDB core, and we can't
2511 report this one right now. Leave the status pending for
2512 the next time we're able to report it. */
2513 mark_lwp_dead (child, wstat);
2514 return child;
2515 }
2516 else
2517 {
2518 delete_lwp (child);
2519 return NULL;
2520 }
2521 }
2522
2523 gdb_assert (WIFSTOPPED (wstat));
2524
2525 if (WIFSTOPPED (wstat))
2526 {
2527 struct process_info *proc;
2528
2529 /* Architecture-specific setup after inferior is running. */
2530 proc = find_process_pid (pid_of (thread));
2531 if (proc->tdesc == NULL)
2532 {
2533 if (proc->attached)
2534 {
2535 /* This needs to happen after we have attached to the
2536 inferior and it is stopped for the first time, but
2537 before we access any inferior registers. */
2538 linux_arch_setup_thread (thread);
2539 }
2540 else
2541 {
2542 /* The process is started, but GDBserver will do
2543 architecture-specific setup after the program stops at
2544 the first instruction. */
2545 child->status_pending_p = 1;
2546 child->status_pending = wstat;
2547 return child;
2548 }
2549 }
2550 }
2551
2552 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2553 {
2554 struct process_info *proc = find_process_pid (pid_of (thread));
2555 int options = linux_low_ptrace_options (proc->attached);
2556
2557 linux_enable_event_reporting (lwpid, options);
2558 child->must_set_ptrace_flags = 0;
2559 }
2560
2561 /* Always update syscall_state, even if it will be filtered later. */
2562 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2563 {
2564 child->syscall_state
2565 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2566 ? TARGET_WAITKIND_SYSCALL_RETURN
2567 : TARGET_WAITKIND_SYSCALL_ENTRY);
2568 }
2569 else
2570 {
2571 /* Almost all other ptrace-stops are known to be outside of system
2572 calls, with further exceptions in handle_extended_wait. */
2573 child->syscall_state = TARGET_WAITKIND_IGNORE;
2574 }
2575
2576 /* Be careful to not overwrite stop_pc until save_stop_reason is
2577 called. */
2578 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2579 && linux_is_extended_waitstatus (wstat))
2580 {
2581 child->stop_pc = get_pc (child);
2582 if (handle_extended_wait (&child, wstat))
2583 {
2584 /* The event has been handled, so just return without
2585 reporting it. */
2586 return NULL;
2587 }
2588 }
2589
2590 if (linux_wstatus_maybe_breakpoint (wstat))
2591 {
2592 if (save_stop_reason (child))
2593 have_stop_pc = 1;
2594 }
2595
2596 if (!have_stop_pc)
2597 child->stop_pc = get_pc (child);
2598
2599 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2600 && child->stop_expected)
2601 {
2602 if (debug_threads)
2603 debug_printf ("Expected stop.\n");
2604 child->stop_expected = 0;
2605
2606 if (thread->last_resume_kind == resume_stop)
2607 {
2608 /* We want to report the stop to the core. Treat the
2609 SIGSTOP as a normal event. */
2610 if (debug_threads)
2611 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2612 target_pid_to_str (ptid_of (thread)));
2613 }
2614 else if (stopping_threads != NOT_STOPPING_THREADS)
2615 {
2616 /* Stopping threads. We don't want this SIGSTOP to end up
2617 pending. */
2618 if (debug_threads)
2619 debug_printf ("LLW: SIGSTOP caught for %s "
2620 "while stopping threads.\n",
2621 target_pid_to_str (ptid_of (thread)));
2622 return NULL;
2623 }
2624 else
2625 {
2626 /* This is a delayed SIGSTOP. Filter out the event. */
2627 if (debug_threads)
2628 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2629 child->stepping ? "step" : "continue",
2630 target_pid_to_str (ptid_of (thread)));
2631
2632 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2633 return NULL;
2634 }
2635 }
2636
2637 child->status_pending_p = 1;
2638 child->status_pending = wstat;
2639 return child;
2640 }
2641
2642 /* Return true if THREAD is doing hardware single step. */
2643
2644 static int
2645 maybe_hw_step (struct thread_info *thread)
2646 {
2647 if (can_hardware_single_step ())
2648 return 1;
2649 else
2650 {
2651 /* GDBserver must insert single-step breakpoint for software
2652 single step. */
2653 gdb_assert (has_single_step_breakpoints (thread));
2654 return 0;
2655 }
2656 }
2657
2658 /* Resume LWPs that are currently stopped without any pending status
2659 to report, but are resumed from the core's perspective. */
2660
2661 static void
2662 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2663 {
2664 struct thread_info *thread = (struct thread_info *) entry;
2665 struct lwp_info *lp = get_thread_lwp (thread);
2666
2667 if (lp->stopped
2668 && !lp->suspended
2669 && !lp->status_pending_p
2670 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2671 {
2672 int step = 0;
2673
2674 if (thread->last_resume_kind == resume_step)
2675 step = maybe_hw_step (thread);
2676
2677 if (debug_threads)
2678 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2679 target_pid_to_str (ptid_of (thread)),
2680 paddress (lp->stop_pc),
2681 step);
2682
2683 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2684 }
2685 }
2686
2687 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2688 match FILTER_PTID (leaving others pending). The PTIDs can be:
2689 minus_one_ptid, to specify any child; a pid PTID, specifying all
2690 lwps of a thread group; or a PTID representing a single lwp. Store
2691 the stop status through the status pointer WSTAT. OPTIONS is
2692 passed to the waitpid call. Return 0 if no event was found and
2693 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2694 was found. Return the PID of the stopped child otherwise. */
2695
2696 static int
2697 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2698 int *wstatp, int options)
2699 {
2700 struct thread_info *event_thread;
2701 struct lwp_info *event_child, *requested_child;
2702 sigset_t block_mask, prev_mask;
2703
2704 retry:
2705 /* N.B. event_thread points to the thread_info struct that contains
2706 event_child. Keep them in sync. */
2707 event_thread = NULL;
2708 event_child = NULL;
2709 requested_child = NULL;
2710
2711 /* Check for a lwp with a pending status. */
2712
2713 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2714 {
2715 event_thread = (struct thread_info *)
2716 find_inferior_in_random (&all_threads, status_pending_p_callback,
2717 &filter_ptid);
2718 if (event_thread != NULL)
2719 event_child = get_thread_lwp (event_thread);
2720 if (debug_threads && event_thread)
2721 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2722 }
2723 else if (!ptid_equal (filter_ptid, null_ptid))
2724 {
2725 requested_child = find_lwp_pid (filter_ptid);
2726
2727 if (stopping_threads == NOT_STOPPING_THREADS
2728 && requested_child->status_pending_p
2729 && (requested_child->collecting_fast_tracepoint
2730 != fast_tpoint_collect_result::not_collecting))
2731 {
2732 enqueue_one_deferred_signal (requested_child,
2733 &requested_child->status_pending);
2734 requested_child->status_pending_p = 0;
2735 requested_child->status_pending = 0;
2736 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2737 }
2738
2739 if (requested_child->suspended
2740 && requested_child->status_pending_p)
2741 {
2742 internal_error (__FILE__, __LINE__,
2743 "requesting an event out of a"
2744 " suspended child?");
2745 }
2746
2747 if (requested_child->status_pending_p)
2748 {
2749 event_child = requested_child;
2750 event_thread = get_lwp_thread (event_child);
2751 }
2752 }
2753
2754 if (event_child != NULL)
2755 {
2756 if (debug_threads)
2757 debug_printf ("Got an event from pending child %ld (%04x)\n",
2758 lwpid_of (event_thread), event_child->status_pending);
2759 *wstatp = event_child->status_pending;
2760 event_child->status_pending_p = 0;
2761 event_child->status_pending = 0;
2762 current_thread = event_thread;
2763 return lwpid_of (event_thread);
2764 }
2765
2766 /* But if we don't find a pending event, we'll have to wait.
2767
2768 We only enter this loop if no process has a pending wait status.
2769 Thus any action taken in response to a wait status inside this
2770 loop is responding as soon as we detect the status, not after any
2771 pending events. */
2772
2773 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2774 all signals while here. */
2775 sigfillset (&block_mask);
2776 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2777
2778 /* Always pull all events out of the kernel. We'll randomly select
2779 an event LWP out of all that have events, to prevent
2780 starvation. */
2781 while (event_child == NULL)
2782 {
2783 pid_t ret = 0;
2784
2785 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2786 quirks:
2787
2788 - If the thread group leader exits while other threads in the
2789 thread group still exist, waitpid(TGID, ...) hangs. That
2790 waitpid won't return an exit status until the other threads
2791 in the group are reaped.
2792
2793 - When a non-leader thread execs, that thread just vanishes
2794 without reporting an exit (so we'd hang if we waited for it
2795 explicitly in that case). The exec event is reported to
2796 the TGID pid. */
2797 errno = 0;
2798 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2799
2800 if (debug_threads)
2801 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2802 ret, errno ? strerror (errno) : "ERRNO-OK");
2803
2804 if (ret > 0)
2805 {
2806 if (debug_threads)
2807 {
2808 debug_printf ("LLW: waitpid %ld received %s\n",
2809 (long) ret, status_to_str (*wstatp));
2810 }
2811
2812 /* Filter all events. IOW, leave all events pending. We'll
2813 randomly select an event LWP out of all that have events
2814 below. */
2815 linux_low_filter_event (ret, *wstatp);
2816 /* Retry until nothing comes out of waitpid. A single
2817 SIGCHLD can indicate more than one child stopped. */
2818 continue;
2819 }
2820
2821 /* Now that we've pulled all events out of the kernel, resume
2822 LWPs that don't have an interesting event to report. */
2823 if (stopping_threads == NOT_STOPPING_THREADS)
2824 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2825
2826 /* ... and find an LWP with a status to report to the core, if
2827 any. */
2828 event_thread = (struct thread_info *)
2829 find_inferior_in_random (&all_threads, status_pending_p_callback,
2830 &filter_ptid);
2831 if (event_thread != NULL)
2832 {
2833 event_child = get_thread_lwp (event_thread);
2834 *wstatp = event_child->status_pending;
2835 event_child->status_pending_p = 0;
2836 event_child->status_pending = 0;
2837 break;
2838 }
2839
2840 /* Check for zombie thread group leaders. Those can't be reaped
2841 until all other threads in the thread group are. */
2842 check_zombie_leaders ();
2843
2844 /* If there are no resumed children left in the set of LWPs we
2845 want to wait for, bail. We can't just block in
2846 waitpid/sigsuspend, because lwps might have been left stopped
2847 in trace-stop state, and we'd be stuck forever waiting for
2848 their status to change (which would only happen if we resumed
2849 them). Even if WNOHANG is set, this return code is preferred
2850 over 0 (below), as it is more detailed. */
2851 if ((find_inferior (&all_threads,
2852 not_stopped_callback,
2853 &wait_ptid) == NULL))
2854 {
2855 if (debug_threads)
2856 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2857 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2858 return -1;
2859 }
2860
2861 /* No interesting event to report to the caller. */
2862 if ((options & WNOHANG))
2863 {
2864 if (debug_threads)
2865 debug_printf ("WNOHANG set, no event found\n");
2866
2867 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2868 return 0;
2869 }
2870
2871 /* Block until we get an event reported with SIGCHLD. */
2872 if (debug_threads)
2873 debug_printf ("sigsuspend'ing\n");
2874
2875 sigsuspend (&prev_mask);
2876 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2877 goto retry;
2878 }
2879
2880 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2881
2882 current_thread = event_thread;
2883
2884 return lwpid_of (event_thread);
2885 }
2886
2887 /* Wait for an event from child(ren) PTID. PTIDs can be:
2888 minus_one_ptid, to specify any child; a pid PTID, specifying all
2889 lwps of a thread group; or a PTID representing a single lwp. Store
2890 the stop status through the status pointer WSTAT. OPTIONS is
2891 passed to the waitpid call. Return 0 if no event was found and
2892 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2893 was found. Return the PID of the stopped child otherwise. */
2894
2895 static int
2896 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2897 {
2898 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2899 }
2900
2901 /* Count the LWP's that have had events. */
2902
2903 static int
2904 count_events_callback (struct inferior_list_entry *entry, void *data)
2905 {
2906 struct thread_info *thread = (struct thread_info *) entry;
2907 struct lwp_info *lp = get_thread_lwp (thread);
2908 int *count = (int *) data;
2909
2910 gdb_assert (count != NULL);
2911
2912 /* Count only resumed LWPs that have an event pending. */
2913 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2914 && lp->status_pending_p)
2915 (*count)++;
2916
2917 return 0;
2918 }
2919
2920 /* Select the LWP (if any) that is currently being single-stepped. */
2921
2922 static int
2923 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2924 {
2925 struct thread_info *thread = (struct thread_info *) entry;
2926 struct lwp_info *lp = get_thread_lwp (thread);
2927
2928 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2929 && thread->last_resume_kind == resume_step
2930 && lp->status_pending_p)
2931 return 1;
2932 else
2933 return 0;
2934 }
2935
2936 /* Select the Nth LWP that has had an event. */
2937
2938 static int
2939 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2940 {
2941 struct thread_info *thread = (struct thread_info *) entry;
2942 struct lwp_info *lp = get_thread_lwp (thread);
2943 int *selector = (int *) data;
2944
2945 gdb_assert (selector != NULL);
2946
2947 /* Select only resumed LWPs that have an event pending. */
2948 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2949 && lp->status_pending_p)
2950 if ((*selector)-- == 0)
2951 return 1;
2952
2953 return 0;
2954 }
2955
2956 /* Select one LWP out of those that have events pending. */
2957
2958 static void
2959 select_event_lwp (struct lwp_info **orig_lp)
2960 {
2961 int num_events = 0;
2962 int random_selector;
2963 struct thread_info *event_thread = NULL;
2964
2965 /* In all-stop, give preference to the LWP that is being
2966 single-stepped. There will be at most one, and it's the LWP that
2967 the core is most interested in. If we didn't do this, then we'd
2968 have to handle pending step SIGTRAPs somehow in case the core
2969 later continues the previously-stepped thread, otherwise we'd
2970 report the pending SIGTRAP, and the core, not having stepped the
2971 thread, wouldn't understand what the trap was for, and therefore
2972 would report it to the user as a random signal. */
2973 if (!non_stop)
2974 {
2975 event_thread
2976 = (struct thread_info *) find_inferior (&all_threads,
2977 select_singlestep_lwp_callback,
2978 NULL);
2979 if (event_thread != NULL)
2980 {
2981 if (debug_threads)
2982 debug_printf ("SEL: Select single-step %s\n",
2983 target_pid_to_str (ptid_of (event_thread)));
2984 }
2985 }
2986 if (event_thread == NULL)
2987 {
2988 /* No single-stepping LWP. Select one at random, out of those
2989 which have had events. */
2990
2991 /* First see how many events we have. */
2992 find_inferior (&all_threads, count_events_callback, &num_events);
2993 gdb_assert (num_events > 0);
2994
2995 /* Now randomly pick a LWP out of those that have had
2996 events. */
2997 random_selector = (int)
2998 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2999
3000 if (debug_threads && num_events > 1)
3001 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
3002 num_events, random_selector);
3003
3004 event_thread
3005 = (struct thread_info *) find_inferior (&all_threads,
3006 select_event_lwp_callback,
3007 &random_selector);
3008 }
3009
3010 if (event_thread != NULL)
3011 {
3012 struct lwp_info *event_lp = get_thread_lwp (event_thread);
3013
3014 /* Switch the event LWP. */
3015 *orig_lp = event_lp;
3016 }
3017 }
3018
3019 /* Decrement the suspend count of an LWP. */
3020
3021 static int
3022 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
3023 {
3024 struct thread_info *thread = (struct thread_info *) entry;
3025 struct lwp_info *lwp = get_thread_lwp (thread);
3026
3027 /* Ignore EXCEPT. */
3028 if (lwp == except)
3029 return 0;
3030
3031 lwp_suspended_decr (lwp);
3032 return 0;
3033 }
3034
3035 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
3036 NULL. */
3037
3038 static void
3039 unsuspend_all_lwps (struct lwp_info *except)
3040 {
3041 find_inferior (&all_threads, unsuspend_one_lwp, except);
3042 }
3043
3044 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
3045 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
3046 void *data);
3047 static int lwp_running (struct inferior_list_entry *entry, void *data);
3048 static ptid_t linux_wait_1 (ptid_t ptid,
3049 struct target_waitstatus *ourstatus,
3050 int target_options);
3051
3052 /* Stabilize threads (move out of jump pads).
3053
3054 If a thread is midway collecting a fast tracepoint, we need to
3055 finish the collection and move it out of the jump pad before
3056 reporting the signal.
3057
3058 This avoids recursion while collecting (when a signal arrives
3059 midway, and the signal handler itself collects), which would trash
3060 the trace buffer. In case the user set a breakpoint in a signal
3061 handler, this avoids the backtrace showing the jump pad, etc..
3062 Most importantly, there are certain things we can't do safely if
3063 threads are stopped in a jump pad (or in its callee's). For
3064 example:
3065
3066 - starting a new trace run. A thread still collecting the
3067 previous run, could trash the trace buffer when resumed. The trace
3068 buffer control structures would have been reset but the thread had
3069 no way to tell. The thread could even midway memcpy'ing to the
3070 buffer, which would mean that when resumed, it would clobber the
3071 trace buffer that had been set for a new run.
3072
3073 - we can't rewrite/reuse the jump pads for new tracepoints
3074 safely. Say you do tstart while a thread is stopped midway while
3075 collecting. When the thread is later resumed, it finishes the
3076 collection, and returns to the jump pad, to execute the original
3077 instruction that was under the tracepoint jump at the time the
3078 older run had been started. If the jump pad had been rewritten
3079 since for something else in the new run, the thread would now
3080 execute the wrong / random instructions. */
3081
3082 static void
3083 linux_stabilize_threads (void)
3084 {
3085 struct thread_info *saved_thread;
3086 struct thread_info *thread_stuck;
3087
3088 thread_stuck
3089 = (struct thread_info *) find_inferior (&all_threads,
3090 stuck_in_jump_pad_callback,
3091 NULL);
3092 if (thread_stuck != NULL)
3093 {
3094 if (debug_threads)
3095 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
3096 lwpid_of (thread_stuck));
3097 return;
3098 }
3099
3100 saved_thread = current_thread;
3101
3102 stabilizing_threads = 1;
3103
3104 /* Kick 'em all. */
3105 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
3106
3107 /* Loop until all are stopped out of the jump pads. */
3108 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
3109 {
3110 struct target_waitstatus ourstatus;
3111 struct lwp_info *lwp;
3112 int wstat;
3113
3114 /* Note that we go through the full wait even loop. While
3115 moving threads out of jump pad, we need to be able to step
3116 over internal breakpoints and such. */
3117 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
3118
3119 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
3120 {
3121 lwp = get_thread_lwp (current_thread);
3122
3123 /* Lock it. */
3124 lwp_suspended_inc (lwp);
3125
3126 if (ourstatus.value.sig != GDB_SIGNAL_0
3127 || current_thread->last_resume_kind == resume_stop)
3128 {
3129 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3130 enqueue_one_deferred_signal (lwp, &wstat);
3131 }
3132 }
3133 }
3134
3135 unsuspend_all_lwps (NULL);
3136
3137 stabilizing_threads = 0;
3138
3139 current_thread = saved_thread;
3140
3141 if (debug_threads)
3142 {
3143 thread_stuck
3144 = (struct thread_info *) find_inferior (&all_threads,
3145 stuck_in_jump_pad_callback,
3146 NULL);
3147 if (thread_stuck != NULL)
3148 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3149 lwpid_of (thread_stuck));
3150 }
3151 }
3152
3153 /* Convenience function that is called when the kernel reports an
3154 event that is not passed out to GDB. */
3155
3156 static ptid_t
3157 ignore_event (struct target_waitstatus *ourstatus)
3158 {
3159 /* If we got an event, there may still be others, as a single
3160 SIGCHLD can indicate more than one child stopped. This forces
3161 another target_wait call. */
3162 async_file_mark ();
3163
3164 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3165 return null_ptid;
3166 }
3167
3168 /* Convenience function that is called when the kernel reports an exit
3169 event. This decides whether to report the event to GDB as a
3170 process exit event, a thread exit event, or to suppress the
3171 event. */
3172
3173 static ptid_t
3174 filter_exit_event (struct lwp_info *event_child,
3175 struct target_waitstatus *ourstatus)
3176 {
3177 struct thread_info *thread = get_lwp_thread (event_child);
3178 ptid_t ptid = ptid_of (thread);
3179
3180 if (!last_thread_of_process_p (pid_of (thread)))
3181 {
3182 if (report_thread_events)
3183 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3184 else
3185 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3186
3187 delete_lwp (event_child);
3188 }
3189 return ptid;
3190 }
3191
3192 /* Returns 1 if GDB is interested in any event_child syscalls. */
3193
3194 static int
3195 gdb_catching_syscalls_p (struct lwp_info *event_child)
3196 {
3197 struct thread_info *thread = get_lwp_thread (event_child);
3198 struct process_info *proc = get_thread_process (thread);
3199
3200 return !VEC_empty (int, proc->syscalls_to_catch);
3201 }
3202
3203 /* Returns 1 if GDB is interested in the event_child syscall.
3204 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3205
3206 static int
3207 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3208 {
3209 int i, iter;
3210 int sysno;
3211 struct thread_info *thread = get_lwp_thread (event_child);
3212 struct process_info *proc = get_thread_process (thread);
3213
3214 if (VEC_empty (int, proc->syscalls_to_catch))
3215 return 0;
3216
3217 if (VEC_index (int, proc->syscalls_to_catch, 0) == ANY_SYSCALL)
3218 return 1;
3219
3220 get_syscall_trapinfo (event_child, &sysno);
3221 for (i = 0;
3222 VEC_iterate (int, proc->syscalls_to_catch, i, iter);
3223 i++)
3224 if (iter == sysno)
3225 return 1;
3226
3227 return 0;
3228 }
3229
3230 /* Wait for process, returns status. */
3231
3232 static ptid_t
3233 linux_wait_1 (ptid_t ptid,
3234 struct target_waitstatus *ourstatus, int target_options)
3235 {
3236 int w;
3237 struct lwp_info *event_child;
3238 int options;
3239 int pid;
3240 int step_over_finished;
3241 int bp_explains_trap;
3242 int maybe_internal_trap;
3243 int report_to_gdb;
3244 int trace_event;
3245 int in_step_range;
3246 int any_resumed;
3247
3248 if (debug_threads)
3249 {
3250 debug_enter ();
3251 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3252 }
3253
3254 /* Translate generic target options into linux options. */
3255 options = __WALL;
3256 if (target_options & TARGET_WNOHANG)
3257 options |= WNOHANG;
3258
3259 bp_explains_trap = 0;
3260 trace_event = 0;
3261 in_step_range = 0;
3262 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3263
3264 /* Find a resumed LWP, if any. */
3265 if (find_inferior (&all_threads,
3266 status_pending_p_callback,
3267 &minus_one_ptid) != NULL)
3268 any_resumed = 1;
3269 else if ((find_inferior (&all_threads,
3270 not_stopped_callback,
3271 &minus_one_ptid) != NULL))
3272 any_resumed = 1;
3273 else
3274 any_resumed = 0;
3275
3276 if (ptid_equal (step_over_bkpt, null_ptid))
3277 pid = linux_wait_for_event (ptid, &w, options);
3278 else
3279 {
3280 if (debug_threads)
3281 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3282 target_pid_to_str (step_over_bkpt));
3283 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3284 }
3285
3286 if (pid == 0 || (pid == -1 && !any_resumed))
3287 {
3288 gdb_assert (target_options & TARGET_WNOHANG);
3289
3290 if (debug_threads)
3291 {
3292 debug_printf ("linux_wait_1 ret = null_ptid, "
3293 "TARGET_WAITKIND_IGNORE\n");
3294 debug_exit ();
3295 }
3296
3297 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3298 return null_ptid;
3299 }
3300 else if (pid == -1)
3301 {
3302 if (debug_threads)
3303 {
3304 debug_printf ("linux_wait_1 ret = null_ptid, "
3305 "TARGET_WAITKIND_NO_RESUMED\n");
3306 debug_exit ();
3307 }
3308
3309 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3310 return null_ptid;
3311 }
3312
3313 event_child = get_thread_lwp (current_thread);
3314
3315 /* linux_wait_for_event only returns an exit status for the last
3316 child of a process. Report it. */
3317 if (WIFEXITED (w) || WIFSIGNALED (w))
3318 {
3319 if (WIFEXITED (w))
3320 {
3321 ourstatus->kind = TARGET_WAITKIND_EXITED;
3322 ourstatus->value.integer = WEXITSTATUS (w);
3323
3324 if (debug_threads)
3325 {
3326 debug_printf ("linux_wait_1 ret = %s, exited with "
3327 "retcode %d\n",
3328 target_pid_to_str (ptid_of (current_thread)),
3329 WEXITSTATUS (w));
3330 debug_exit ();
3331 }
3332 }
3333 else
3334 {
3335 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3336 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3337
3338 if (debug_threads)
3339 {
3340 debug_printf ("linux_wait_1 ret = %s, terminated with "
3341 "signal %d\n",
3342 target_pid_to_str (ptid_of (current_thread)),
3343 WTERMSIG (w));
3344 debug_exit ();
3345 }
3346 }
3347
3348 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3349 return filter_exit_event (event_child, ourstatus);
3350
3351 return ptid_of (current_thread);
3352 }
3353
3354 /* If step-over executes a breakpoint instruction, in the case of a
3355 hardware single step it means a gdb/gdbserver breakpoint had been
3356 planted on top of a permanent breakpoint, in the case of a software
3357 single step it may just mean that gdbserver hit the reinsert breakpoint.
3358 The PC has been adjusted by save_stop_reason to point at
3359 the breakpoint address.
3360 So in the case of the hardware single step advance the PC manually
3361 past the breakpoint and in the case of software single step advance only
3362 if it's not the single_step_breakpoint we are hitting.
3363 This avoids that a program would keep trapping a permanent breakpoint
3364 forever. */
3365 if (!ptid_equal (step_over_bkpt, null_ptid)
3366 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3367 && (event_child->stepping
3368 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3369 {
3370 int increment_pc = 0;
3371 int breakpoint_kind = 0;
3372 CORE_ADDR stop_pc = event_child->stop_pc;
3373
3374 breakpoint_kind =
3375 the_target->breakpoint_kind_from_current_state (&stop_pc);
3376 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3377
3378 if (debug_threads)
3379 {
3380 debug_printf ("step-over for %s executed software breakpoint\n",
3381 target_pid_to_str (ptid_of (current_thread)));
3382 }
3383
3384 if (increment_pc != 0)
3385 {
3386 struct regcache *regcache
3387 = get_thread_regcache (current_thread, 1);
3388
3389 event_child->stop_pc += increment_pc;
3390 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3391
3392 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3393 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3394 }
3395 }
3396
3397 /* If this event was not handled before, and is not a SIGTRAP, we
3398 report it. SIGILL and SIGSEGV are also treated as traps in case
3399 a breakpoint is inserted at the current PC. If this target does
3400 not support internal breakpoints at all, we also report the
3401 SIGTRAP without further processing; it's of no concern to us. */
3402 maybe_internal_trap
3403 = (supports_breakpoints ()
3404 && (WSTOPSIG (w) == SIGTRAP
3405 || ((WSTOPSIG (w) == SIGILL
3406 || WSTOPSIG (w) == SIGSEGV)
3407 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3408
3409 if (maybe_internal_trap)
3410 {
3411 /* Handle anything that requires bookkeeping before deciding to
3412 report the event or continue waiting. */
3413
3414 /* First check if we can explain the SIGTRAP with an internal
3415 breakpoint, or if we should possibly report the event to GDB.
3416 Do this before anything that may remove or insert a
3417 breakpoint. */
3418 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3419
3420 /* We have a SIGTRAP, possibly a step-over dance has just
3421 finished. If so, tweak the state machine accordingly,
3422 reinsert breakpoints and delete any single-step
3423 breakpoints. */
3424 step_over_finished = finish_step_over (event_child);
3425
3426 /* Now invoke the callbacks of any internal breakpoints there. */
3427 check_breakpoints (event_child->stop_pc);
3428
3429 /* Handle tracepoint data collecting. This may overflow the
3430 trace buffer, and cause a tracing stop, removing
3431 breakpoints. */
3432 trace_event = handle_tracepoints (event_child);
3433
3434 if (bp_explains_trap)
3435 {
3436 if (debug_threads)
3437 debug_printf ("Hit a gdbserver breakpoint.\n");
3438 }
3439 }
3440 else
3441 {
3442 /* We have some other signal, possibly a step-over dance was in
3443 progress, and it should be cancelled too. */
3444 step_over_finished = finish_step_over (event_child);
3445 }
3446
3447 /* We have all the data we need. Either report the event to GDB, or
3448 resume threads and keep waiting for more. */
3449
3450 /* If we're collecting a fast tracepoint, finish the collection and
3451 move out of the jump pad before delivering a signal. See
3452 linux_stabilize_threads. */
3453
3454 if (WIFSTOPPED (w)
3455 && WSTOPSIG (w) != SIGTRAP
3456 && supports_fast_tracepoints ()
3457 && agent_loaded_p ())
3458 {
3459 if (debug_threads)
3460 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3461 "to defer or adjust it.\n",
3462 WSTOPSIG (w), lwpid_of (current_thread));
3463
3464 /* Allow debugging the jump pad itself. */
3465 if (current_thread->last_resume_kind != resume_step
3466 && maybe_move_out_of_jump_pad (event_child, &w))
3467 {
3468 enqueue_one_deferred_signal (event_child, &w);
3469
3470 if (debug_threads)
3471 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3472 WSTOPSIG (w), lwpid_of (current_thread));
3473
3474 linux_resume_one_lwp (event_child, 0, 0, NULL);
3475
3476 if (debug_threads)
3477 debug_exit ();
3478 return ignore_event (ourstatus);
3479 }
3480 }
3481
3482 if (event_child->collecting_fast_tracepoint
3483 != fast_tpoint_collect_result::not_collecting)
3484 {
3485 if (debug_threads)
3486 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3487 "Check if we're already there.\n",
3488 lwpid_of (current_thread),
3489 (int) event_child->collecting_fast_tracepoint);
3490
3491 trace_event = 1;
3492
3493 event_child->collecting_fast_tracepoint
3494 = linux_fast_tracepoint_collecting (event_child, NULL);
3495
3496 if (event_child->collecting_fast_tracepoint
3497 != fast_tpoint_collect_result::before_insn)
3498 {
3499 /* No longer need this breakpoint. */
3500 if (event_child->exit_jump_pad_bkpt != NULL)
3501 {
3502 if (debug_threads)
3503 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3504 "stopping all threads momentarily.\n");
3505
3506 /* Other running threads could hit this breakpoint.
3507 We don't handle moribund locations like GDB does,
3508 instead we always pause all threads when removing
3509 breakpoints, so that any step-over or
3510 decr_pc_after_break adjustment is always taken
3511 care of while the breakpoint is still
3512 inserted. */
3513 stop_all_lwps (1, event_child);
3514
3515 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3516 event_child->exit_jump_pad_bkpt = NULL;
3517
3518 unstop_all_lwps (1, event_child);
3519
3520 gdb_assert (event_child->suspended >= 0);
3521 }
3522 }
3523
3524 if (event_child->collecting_fast_tracepoint
3525 == fast_tpoint_collect_result::not_collecting)
3526 {
3527 if (debug_threads)
3528 debug_printf ("fast tracepoint finished "
3529 "collecting successfully.\n");
3530
3531 /* We may have a deferred signal to report. */
3532 if (dequeue_one_deferred_signal (event_child, &w))
3533 {
3534 if (debug_threads)
3535 debug_printf ("dequeued one signal.\n");
3536 }
3537 else
3538 {
3539 if (debug_threads)
3540 debug_printf ("no deferred signals.\n");
3541
3542 if (stabilizing_threads)
3543 {
3544 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3545 ourstatus->value.sig = GDB_SIGNAL_0;
3546
3547 if (debug_threads)
3548 {
3549 debug_printf ("linux_wait_1 ret = %s, stopped "
3550 "while stabilizing threads\n",
3551 target_pid_to_str (ptid_of (current_thread)));
3552 debug_exit ();
3553 }
3554
3555 return ptid_of (current_thread);
3556 }
3557 }
3558 }
3559 }
3560
3561 /* Check whether GDB would be interested in this event. */
3562
3563 /* Check if GDB is interested in this syscall. */
3564 if (WIFSTOPPED (w)
3565 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3566 && !gdb_catch_this_syscall_p (event_child))
3567 {
3568 if (debug_threads)
3569 {
3570 debug_printf ("Ignored syscall for LWP %ld.\n",
3571 lwpid_of (current_thread));
3572 }
3573
3574 linux_resume_one_lwp (event_child, event_child->stepping,
3575 0, NULL);
3576
3577 if (debug_threads)
3578 debug_exit ();
3579 return ignore_event (ourstatus);
3580 }
3581
3582 /* If GDB is not interested in this signal, don't stop other
3583 threads, and don't report it to GDB. Just resume the inferior
3584 right away. We do this for threading-related signals as well as
3585 any that GDB specifically requested we ignore. But never ignore
3586 SIGSTOP if we sent it ourselves, and do not ignore signals when
3587 stepping - they may require special handling to skip the signal
3588 handler. Also never ignore signals that could be caused by a
3589 breakpoint. */
3590 if (WIFSTOPPED (w)
3591 && current_thread->last_resume_kind != resume_step
3592 && (
3593 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3594 (current_process ()->priv->thread_db != NULL
3595 && (WSTOPSIG (w) == __SIGRTMIN
3596 || WSTOPSIG (w) == __SIGRTMIN + 1))
3597 ||
3598 #endif
3599 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3600 && !(WSTOPSIG (w) == SIGSTOP
3601 && current_thread->last_resume_kind == resume_stop)
3602 && !linux_wstatus_maybe_breakpoint (w))))
3603 {
3604 siginfo_t info, *info_p;
3605
3606 if (debug_threads)
3607 debug_printf ("Ignored signal %d for LWP %ld.\n",
3608 WSTOPSIG (w), lwpid_of (current_thread));
3609
3610 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3611 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3612 info_p = &info;
3613 else
3614 info_p = NULL;
3615
3616 if (step_over_finished)
3617 {
3618 /* We cancelled this thread's step-over above. We still
3619 need to unsuspend all other LWPs, and set them back
3620 running again while the signal handler runs. */
3621 unsuspend_all_lwps (event_child);
3622
3623 /* Enqueue the pending signal info so that proceed_all_lwps
3624 doesn't lose it. */
3625 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3626
3627 proceed_all_lwps ();
3628 }
3629 else
3630 {
3631 linux_resume_one_lwp (event_child, event_child->stepping,
3632 WSTOPSIG (w), info_p);
3633 }
3634
3635 if (debug_threads)
3636 debug_exit ();
3637
3638 return ignore_event (ourstatus);
3639 }
3640
3641 /* Note that all addresses are always "out of the step range" when
3642 there's no range to begin with. */
3643 in_step_range = lwp_in_step_range (event_child);
3644
3645 /* If GDB wanted this thread to single step, and the thread is out
3646 of the step range, we always want to report the SIGTRAP, and let
3647 GDB handle it. Watchpoints should always be reported. So should
3648 signals we can't explain. A SIGTRAP we can't explain could be a
3649 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3650 do, we're be able to handle GDB breakpoints on top of internal
3651 breakpoints, by handling the internal breakpoint and still
3652 reporting the event to GDB. If we don't, we're out of luck, GDB
3653 won't see the breakpoint hit. If we see a single-step event but
3654 the thread should be continuing, don't pass the trap to gdb.
3655 That indicates that we had previously finished a single-step but
3656 left the single-step pending -- see
3657 complete_ongoing_step_over. */
3658 report_to_gdb = (!maybe_internal_trap
3659 || (current_thread->last_resume_kind == resume_step
3660 && !in_step_range)
3661 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3662 || (!in_step_range
3663 && !bp_explains_trap
3664 && !trace_event
3665 && !step_over_finished
3666 && !(current_thread->last_resume_kind == resume_continue
3667 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3668 || (gdb_breakpoint_here (event_child->stop_pc)
3669 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3670 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3671 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3672
3673 run_breakpoint_commands (event_child->stop_pc);
3674
3675 /* We found no reason GDB would want us to stop. We either hit one
3676 of our own breakpoints, or finished an internal step GDB
3677 shouldn't know about. */
3678 if (!report_to_gdb)
3679 {
3680 if (debug_threads)
3681 {
3682 if (bp_explains_trap)
3683 debug_printf ("Hit a gdbserver breakpoint.\n");
3684 if (step_over_finished)
3685 debug_printf ("Step-over finished.\n");
3686 if (trace_event)
3687 debug_printf ("Tracepoint event.\n");
3688 if (lwp_in_step_range (event_child))
3689 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3690 paddress (event_child->stop_pc),
3691 paddress (event_child->step_range_start),
3692 paddress (event_child->step_range_end));
3693 }
3694
3695 /* We're not reporting this breakpoint to GDB, so apply the
3696 decr_pc_after_break adjustment to the inferior's regcache
3697 ourselves. */
3698
3699 if (the_low_target.set_pc != NULL)
3700 {
3701 struct regcache *regcache
3702 = get_thread_regcache (current_thread, 1);
3703 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3704 }
3705
3706 if (step_over_finished)
3707 {
3708 /* If we have finished stepping over a breakpoint, we've
3709 stopped and suspended all LWPs momentarily except the
3710 stepping one. This is where we resume them all again.
3711 We're going to keep waiting, so use proceed, which
3712 handles stepping over the next breakpoint. */
3713 unsuspend_all_lwps (event_child);
3714 }
3715 else
3716 {
3717 /* Remove the single-step breakpoints if any. Note that
3718 there isn't single-step breakpoint if we finished stepping
3719 over. */
3720 if (can_software_single_step ()
3721 && has_single_step_breakpoints (current_thread))
3722 {
3723 stop_all_lwps (0, event_child);
3724 delete_single_step_breakpoints (current_thread);
3725 unstop_all_lwps (0, event_child);
3726 }
3727 }
3728
3729 if (debug_threads)
3730 debug_printf ("proceeding all threads.\n");
3731 proceed_all_lwps ();
3732
3733 if (debug_threads)
3734 debug_exit ();
3735
3736 return ignore_event (ourstatus);
3737 }
3738
3739 if (debug_threads)
3740 {
3741 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3742 {
3743 std::string str
3744 = target_waitstatus_to_string (&event_child->waitstatus);
3745
3746 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3747 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3748 }
3749 if (current_thread->last_resume_kind == resume_step)
3750 {
3751 if (event_child->step_range_start == event_child->step_range_end)
3752 debug_printf ("GDB wanted to single-step, reporting event.\n");
3753 else if (!lwp_in_step_range (event_child))
3754 debug_printf ("Out of step range, reporting event.\n");
3755 }
3756 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3757 debug_printf ("Stopped by watchpoint.\n");
3758 else if (gdb_breakpoint_here (event_child->stop_pc))
3759 debug_printf ("Stopped by GDB breakpoint.\n");
3760 if (debug_threads)
3761 debug_printf ("Hit a non-gdbserver trap event.\n");
3762 }
3763
3764 /* Alright, we're going to report a stop. */
3765
3766 /* Remove single-step breakpoints. */
3767 if (can_software_single_step ())
3768 {
3769 /* Remove single-step breakpoints or not. It it is true, stop all
3770 lwps, so that other threads won't hit the breakpoint in the
3771 staled memory. */
3772 int remove_single_step_breakpoints_p = 0;
3773
3774 if (non_stop)
3775 {
3776 remove_single_step_breakpoints_p
3777 = has_single_step_breakpoints (current_thread);
3778 }
3779 else
3780 {
3781 /* In all-stop, a stop reply cancels all previous resume
3782 requests. Delete all single-step breakpoints. */
3783 struct inferior_list_entry *inf, *tmp;
3784
3785 ALL_INFERIORS (&all_threads, inf, tmp)
3786 {
3787 struct thread_info *thread = (struct thread_info *) inf;
3788
3789 if (has_single_step_breakpoints (thread))
3790 {
3791 remove_single_step_breakpoints_p = 1;
3792 break;
3793 }
3794 }
3795 }
3796
3797 if (remove_single_step_breakpoints_p)
3798 {
3799 /* If we remove single-step breakpoints from memory, stop all lwps,
3800 so that other threads won't hit the breakpoint in the staled
3801 memory. */
3802 stop_all_lwps (0, event_child);
3803
3804 if (non_stop)
3805 {
3806 gdb_assert (has_single_step_breakpoints (current_thread));
3807 delete_single_step_breakpoints (current_thread);
3808 }
3809 else
3810 {
3811 struct inferior_list_entry *inf, *tmp;
3812
3813 ALL_INFERIORS (&all_threads, inf, tmp)
3814 {
3815 struct thread_info *thread = (struct thread_info *) inf;
3816
3817 if (has_single_step_breakpoints (thread))
3818 delete_single_step_breakpoints (thread);
3819 }
3820 }
3821
3822 unstop_all_lwps (0, event_child);
3823 }
3824 }
3825
3826 if (!stabilizing_threads)
3827 {
3828 /* In all-stop, stop all threads. */
3829 if (!non_stop)
3830 stop_all_lwps (0, NULL);
3831
3832 if (step_over_finished)
3833 {
3834 if (!non_stop)
3835 {
3836 /* If we were doing a step-over, all other threads but
3837 the stepping one had been paused in start_step_over,
3838 with their suspend counts incremented. We don't want
3839 to do a full unstop/unpause, because we're in
3840 all-stop mode (so we want threads stopped), but we
3841 still need to unsuspend the other threads, to
3842 decrement their `suspended' count back. */
3843 unsuspend_all_lwps (event_child);
3844 }
3845 else
3846 {
3847 /* If we just finished a step-over, then all threads had
3848 been momentarily paused. In all-stop, that's fine,
3849 we want threads stopped by now anyway. In non-stop,
3850 we need to re-resume threads that GDB wanted to be
3851 running. */
3852 unstop_all_lwps (1, event_child);
3853 }
3854 }
3855
3856 /* If we're not waiting for a specific LWP, choose an event LWP
3857 from among those that have had events. Giving equal priority
3858 to all LWPs that have had events helps prevent
3859 starvation. */
3860 if (ptid_equal (ptid, minus_one_ptid))
3861 {
3862 event_child->status_pending_p = 1;
3863 event_child->status_pending = w;
3864
3865 select_event_lwp (&event_child);
3866
3867 /* current_thread and event_child must stay in sync. */
3868 current_thread = get_lwp_thread (event_child);
3869
3870 event_child->status_pending_p = 0;
3871 w = event_child->status_pending;
3872 }
3873
3874
3875 /* Stabilize threads (move out of jump pads). */
3876 if (!non_stop)
3877 stabilize_threads ();
3878 }
3879 else
3880 {
3881 /* If we just finished a step-over, then all threads had been
3882 momentarily paused. In all-stop, that's fine, we want
3883 threads stopped by now anyway. In non-stop, we need to
3884 re-resume threads that GDB wanted to be running. */
3885 if (step_over_finished)
3886 unstop_all_lwps (1, event_child);
3887 }
3888
3889 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3890 {
3891 /* If the reported event is an exit, fork, vfork or exec, let
3892 GDB know. */
3893
3894 /* Break the unreported fork relationship chain. */
3895 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3896 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3897 {
3898 event_child->fork_relative->fork_relative = NULL;
3899 event_child->fork_relative = NULL;
3900 }
3901
3902 *ourstatus = event_child->waitstatus;
3903 /* Clear the event lwp's waitstatus since we handled it already. */
3904 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3905 }
3906 else
3907 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3908
3909 /* Now that we've selected our final event LWP, un-adjust its PC if
3910 it was a software breakpoint, and the client doesn't know we can
3911 adjust the breakpoint ourselves. */
3912 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3913 && !swbreak_feature)
3914 {
3915 int decr_pc = the_low_target.decr_pc_after_break;
3916
3917 if (decr_pc != 0)
3918 {
3919 struct regcache *regcache
3920 = get_thread_regcache (current_thread, 1);
3921 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3922 }
3923 }
3924
3925 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3926 {
3927 get_syscall_trapinfo (event_child,
3928 &ourstatus->value.syscall_number);
3929 ourstatus->kind = event_child->syscall_state;
3930 }
3931 else if (current_thread->last_resume_kind == resume_stop
3932 && WSTOPSIG (w) == SIGSTOP)
3933 {
3934 /* A thread that has been requested to stop by GDB with vCont;t,
3935 and it stopped cleanly, so report as SIG0. The use of
3936 SIGSTOP is an implementation detail. */
3937 ourstatus->value.sig = GDB_SIGNAL_0;
3938 }
3939 else if (current_thread->last_resume_kind == resume_stop
3940 && WSTOPSIG (w) != SIGSTOP)
3941 {
3942 /* A thread that has been requested to stop by GDB with vCont;t,
3943 but, it stopped for other reasons. */
3944 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3945 }
3946 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3947 {
3948 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3949 }
3950
3951 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3952
3953 if (debug_threads)
3954 {
3955 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3956 target_pid_to_str (ptid_of (current_thread)),
3957 ourstatus->kind, ourstatus->value.sig);
3958 debug_exit ();
3959 }
3960
3961 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3962 return filter_exit_event (event_child, ourstatus);
3963
3964 return ptid_of (current_thread);
3965 }
3966
3967 /* Get rid of any pending event in the pipe. */
3968 static void
3969 async_file_flush (void)
3970 {
3971 int ret;
3972 char buf;
3973
3974 do
3975 ret = read (linux_event_pipe[0], &buf, 1);
3976 while (ret >= 0 || (ret == -1 && errno == EINTR));
3977 }
3978
3979 /* Put something in the pipe, so the event loop wakes up. */
3980 static void
3981 async_file_mark (void)
3982 {
3983 int ret;
3984
3985 async_file_flush ();
3986
3987 do
3988 ret = write (linux_event_pipe[1], "+", 1);
3989 while (ret == 0 || (ret == -1 && errno == EINTR));
3990
3991 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3992 be awakened anyway. */
3993 }
3994
3995 static ptid_t
3996 linux_wait (ptid_t ptid,
3997 struct target_waitstatus *ourstatus, int target_options)
3998 {
3999 ptid_t event_ptid;
4000
4001 /* Flush the async file first. */
4002 if (target_is_async_p ())
4003 async_file_flush ();
4004
4005 do
4006 {
4007 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
4008 }
4009 while ((target_options & TARGET_WNOHANG) == 0
4010 && ptid_equal (event_ptid, null_ptid)
4011 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
4012
4013 /* If at least one stop was reported, there may be more. A single
4014 SIGCHLD can signal more than one child stop. */
4015 if (target_is_async_p ()
4016 && (target_options & TARGET_WNOHANG) != 0
4017 && !ptid_equal (event_ptid, null_ptid))
4018 async_file_mark ();
4019
4020 return event_ptid;
4021 }
4022
4023 /* Send a signal to an LWP. */
4024
4025 static int
4026 kill_lwp (unsigned long lwpid, int signo)
4027 {
4028 int ret;
4029
4030 errno = 0;
4031 ret = syscall (__NR_tkill, lwpid, signo);
4032 if (errno == ENOSYS)
4033 {
4034 /* If tkill fails, then we are not using nptl threads, a
4035 configuration we no longer support. */
4036 perror_with_name (("tkill"));
4037 }
4038 return ret;
4039 }
4040
4041 void
4042 linux_stop_lwp (struct lwp_info *lwp)
4043 {
4044 send_sigstop (lwp);
4045 }
4046
4047 static void
4048 send_sigstop (struct lwp_info *lwp)
4049 {
4050 int pid;
4051
4052 pid = lwpid_of (get_lwp_thread (lwp));
4053
4054 /* If we already have a pending stop signal for this process, don't
4055 send another. */
4056 if (lwp->stop_expected)
4057 {
4058 if (debug_threads)
4059 debug_printf ("Have pending sigstop for lwp %d\n", pid);
4060
4061 return;
4062 }
4063
4064 if (debug_threads)
4065 debug_printf ("Sending sigstop to lwp %d\n", pid);
4066
4067 lwp->stop_expected = 1;
4068 kill_lwp (pid, SIGSTOP);
4069 }
4070
4071 static int
4072 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
4073 {
4074 struct thread_info *thread = (struct thread_info *) entry;
4075 struct lwp_info *lwp = get_thread_lwp (thread);
4076
4077 /* Ignore EXCEPT. */
4078 if (lwp == except)
4079 return 0;
4080
4081 if (lwp->stopped)
4082 return 0;
4083
4084 send_sigstop (lwp);
4085 return 0;
4086 }
4087
4088 /* Increment the suspend count of an LWP, and stop it, if not stopped
4089 yet. */
4090 static int
4091 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
4092 void *except)
4093 {
4094 struct thread_info *thread = (struct thread_info *) entry;
4095 struct lwp_info *lwp = get_thread_lwp (thread);
4096
4097 /* Ignore EXCEPT. */
4098 if (lwp == except)
4099 return 0;
4100
4101 lwp_suspended_inc (lwp);
4102
4103 return send_sigstop_callback (entry, except);
4104 }
4105
4106 static void
4107 mark_lwp_dead (struct lwp_info *lwp, int wstat)
4108 {
4109 /* Store the exit status for later. */
4110 lwp->status_pending_p = 1;
4111 lwp->status_pending = wstat;
4112
4113 /* Store in waitstatus as well, as there's nothing else to process
4114 for this event. */
4115 if (WIFEXITED (wstat))
4116 {
4117 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
4118 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
4119 }
4120 else if (WIFSIGNALED (wstat))
4121 {
4122 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
4123 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
4124 }
4125
4126 /* Prevent trying to stop it. */
4127 lwp->stopped = 1;
4128
4129 /* No further stops are expected from a dead lwp. */
4130 lwp->stop_expected = 0;
4131 }
4132
4133 /* Return true if LWP has exited already, and has a pending exit event
4134 to report to GDB. */
4135
4136 static int
4137 lwp_is_marked_dead (struct lwp_info *lwp)
4138 {
4139 return (lwp->status_pending_p
4140 && (WIFEXITED (lwp->status_pending)
4141 || WIFSIGNALED (lwp->status_pending)));
4142 }
4143
4144 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4145
4146 static void
4147 wait_for_sigstop (void)
4148 {
4149 struct thread_info *saved_thread;
4150 ptid_t saved_tid;
4151 int wstat;
4152 int ret;
4153
4154 saved_thread = current_thread;
4155 if (saved_thread != NULL)
4156 saved_tid = saved_thread->entry.id;
4157 else
4158 saved_tid = null_ptid; /* avoid bogus unused warning */
4159
4160 if (debug_threads)
4161 debug_printf ("wait_for_sigstop: pulling events\n");
4162
4163 /* Passing NULL_PTID as filter indicates we want all events to be
4164 left pending. Eventually this returns when there are no
4165 unwaited-for children left. */
4166 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4167 &wstat, __WALL);
4168 gdb_assert (ret == -1);
4169
4170 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4171 current_thread = saved_thread;
4172 else
4173 {
4174 if (debug_threads)
4175 debug_printf ("Previously current thread died.\n");
4176
4177 /* We can't change the current inferior behind GDB's back,
4178 otherwise, a subsequent command may apply to the wrong
4179 process. */
4180 current_thread = NULL;
4181 }
4182 }
4183
4184 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
4185 move it out, because we need to report the stop event to GDB. For
4186 example, if the user puts a breakpoint in the jump pad, it's
4187 because she wants to debug it. */
4188
4189 static int
4190 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
4191 {
4192 struct thread_info *thread = (struct thread_info *) entry;
4193 struct lwp_info *lwp = get_thread_lwp (thread);
4194
4195 if (lwp->suspended != 0)
4196 {
4197 internal_error (__FILE__, __LINE__,
4198 "LWP %ld is suspended, suspended=%d\n",
4199 lwpid_of (thread), lwp->suspended);
4200 }
4201 gdb_assert (lwp->stopped);
4202
4203 /* Allow debugging the jump pad, gdb_collect, etc.. */
4204 return (supports_fast_tracepoints ()
4205 && agent_loaded_p ()
4206 && (gdb_breakpoint_here (lwp->stop_pc)
4207 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4208 || thread->last_resume_kind == resume_step)
4209 && (linux_fast_tracepoint_collecting (lwp, NULL)
4210 != fast_tpoint_collect_result::not_collecting));
4211 }
4212
4213 static void
4214 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
4215 {
4216 struct thread_info *thread = (struct thread_info *) entry;
4217 struct thread_info *saved_thread;
4218 struct lwp_info *lwp = get_thread_lwp (thread);
4219 int *wstat;
4220
4221 if (lwp->suspended != 0)
4222 {
4223 internal_error (__FILE__, __LINE__,
4224 "LWP %ld is suspended, suspended=%d\n",
4225 lwpid_of (thread), lwp->suspended);
4226 }
4227 gdb_assert (lwp->stopped);
4228
4229 /* For gdb_breakpoint_here. */
4230 saved_thread = current_thread;
4231 current_thread = thread;
4232
4233 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4234
4235 /* Allow debugging the jump pad, gdb_collect, etc. */
4236 if (!gdb_breakpoint_here (lwp->stop_pc)
4237 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4238 && thread->last_resume_kind != resume_step
4239 && maybe_move_out_of_jump_pad (lwp, wstat))
4240 {
4241 if (debug_threads)
4242 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4243 lwpid_of (thread));
4244
4245 if (wstat)
4246 {
4247 lwp->status_pending_p = 0;
4248 enqueue_one_deferred_signal (lwp, wstat);
4249
4250 if (debug_threads)
4251 debug_printf ("Signal %d for LWP %ld deferred "
4252 "(in jump pad)\n",
4253 WSTOPSIG (*wstat), lwpid_of (thread));
4254 }
4255
4256 linux_resume_one_lwp (lwp, 0, 0, NULL);
4257 }
4258 else
4259 lwp_suspended_inc (lwp);
4260
4261 current_thread = saved_thread;
4262 }
4263
4264 static int
4265 lwp_running (struct inferior_list_entry *entry, void *data)
4266 {
4267 struct thread_info *thread = (struct thread_info *) entry;
4268 struct lwp_info *lwp = get_thread_lwp (thread);
4269
4270 if (lwp_is_marked_dead (lwp))
4271 return 0;
4272 if (lwp->stopped)
4273 return 0;
4274 return 1;
4275 }
4276
4277 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4278 If SUSPEND, then also increase the suspend count of every LWP,
4279 except EXCEPT. */
4280
4281 static void
4282 stop_all_lwps (int suspend, struct lwp_info *except)
4283 {
4284 /* Should not be called recursively. */
4285 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4286
4287 if (debug_threads)
4288 {
4289 debug_enter ();
4290 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4291 suspend ? "stop-and-suspend" : "stop",
4292 except != NULL
4293 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4294 : "none");
4295 }
4296
4297 stopping_threads = (suspend
4298 ? STOPPING_AND_SUSPENDING_THREADS
4299 : STOPPING_THREADS);
4300
4301 if (suspend)
4302 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4303 else
4304 find_inferior (&all_threads, send_sigstop_callback, except);
4305 wait_for_sigstop ();
4306 stopping_threads = NOT_STOPPING_THREADS;
4307
4308 if (debug_threads)
4309 {
4310 debug_printf ("stop_all_lwps done, setting stopping_threads "
4311 "back to !stopping\n");
4312 debug_exit ();
4313 }
4314 }
4315
4316 /* Enqueue one signal in the chain of signals which need to be
4317 delivered to this process on next resume. */
4318
4319 static void
4320 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4321 {
4322 struct pending_signals *p_sig = XNEW (struct pending_signals);
4323
4324 p_sig->prev = lwp->pending_signals;
4325 p_sig->signal = signal;
4326 if (info == NULL)
4327 memset (&p_sig->info, 0, sizeof (siginfo_t));
4328 else
4329 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4330 lwp->pending_signals = p_sig;
4331 }
4332
4333 /* Install breakpoints for software single stepping. */
4334
4335 static void
4336 install_software_single_step_breakpoints (struct lwp_info *lwp)
4337 {
4338 struct thread_info *thread = get_lwp_thread (lwp);
4339 struct regcache *regcache = get_thread_regcache (thread, 1);
4340 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4341
4342 current_thread = thread;
4343 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4344
4345 for (CORE_ADDR pc : next_pcs)
4346 set_single_step_breakpoint (pc, current_ptid);
4347
4348 do_cleanups (old_chain);
4349 }
4350
4351 /* Single step via hardware or software single step.
4352 Return 1 if hardware single stepping, 0 if software single stepping
4353 or can't single step. */
4354
4355 static int
4356 single_step (struct lwp_info* lwp)
4357 {
4358 int step = 0;
4359
4360 if (can_hardware_single_step ())
4361 {
4362 step = 1;
4363 }
4364 else if (can_software_single_step ())
4365 {
4366 install_software_single_step_breakpoints (lwp);
4367 step = 0;
4368 }
4369 else
4370 {
4371 if (debug_threads)
4372 debug_printf ("stepping is not implemented on this target");
4373 }
4374
4375 return step;
4376 }
4377
4378 /* The signal can be delivered to the inferior if we are not trying to
4379 finish a fast tracepoint collect. Since signal can be delivered in
4380 the step-over, the program may go to signal handler and trap again
4381 after return from the signal handler. We can live with the spurious
4382 double traps. */
4383
4384 static int
4385 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4386 {
4387 return (lwp->collecting_fast_tracepoint
4388 == fast_tpoint_collect_result::not_collecting);
4389 }
4390
4391 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4392 SIGNAL is nonzero, give it that signal. */
4393
4394 static void
4395 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4396 int step, int signal, siginfo_t *info)
4397 {
4398 struct thread_info *thread = get_lwp_thread (lwp);
4399 struct thread_info *saved_thread;
4400 int ptrace_request;
4401 struct process_info *proc = get_thread_process (thread);
4402
4403 /* Note that target description may not be initialised
4404 (proc->tdesc == NULL) at this point because the program hasn't
4405 stopped at the first instruction yet. It means GDBserver skips
4406 the extra traps from the wrapper program (see option --wrapper).
4407 Code in this function that requires register access should be
4408 guarded by proc->tdesc == NULL or something else. */
4409
4410 if (lwp->stopped == 0)
4411 return;
4412
4413 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4414
4415 fast_tpoint_collect_result fast_tp_collecting
4416 = lwp->collecting_fast_tracepoint;
4417
4418 gdb_assert (!stabilizing_threads
4419 || (fast_tp_collecting
4420 != fast_tpoint_collect_result::not_collecting));
4421
4422 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4423 user used the "jump" command, or "set $pc = foo"). */
4424 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4425 {
4426 /* Collecting 'while-stepping' actions doesn't make sense
4427 anymore. */
4428 release_while_stepping_state_list (thread);
4429 }
4430
4431 /* If we have pending signals or status, and a new signal, enqueue the
4432 signal. Also enqueue the signal if it can't be delivered to the
4433 inferior right now. */
4434 if (signal != 0
4435 && (lwp->status_pending_p
4436 || lwp->pending_signals != NULL
4437 || !lwp_signal_can_be_delivered (lwp)))
4438 {
4439 enqueue_pending_signal (lwp, signal, info);
4440
4441 /* Postpone any pending signal. It was enqueued above. */
4442 signal = 0;
4443 }
4444
4445 if (lwp->status_pending_p)
4446 {
4447 if (debug_threads)
4448 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4449 " has pending status\n",
4450 lwpid_of (thread), step ? "step" : "continue",
4451 lwp->stop_expected ? "expected" : "not expected");
4452 return;
4453 }
4454
4455 saved_thread = current_thread;
4456 current_thread = thread;
4457
4458 /* This bit needs some thinking about. If we get a signal that
4459 we must report while a single-step reinsert is still pending,
4460 we often end up resuming the thread. It might be better to
4461 (ew) allow a stack of pending events; then we could be sure that
4462 the reinsert happened right away and not lose any signals.
4463
4464 Making this stack would also shrink the window in which breakpoints are
4465 uninserted (see comment in linux_wait_for_lwp) but not enough for
4466 complete correctness, so it won't solve that problem. It may be
4467 worthwhile just to solve this one, however. */
4468 if (lwp->bp_reinsert != 0)
4469 {
4470 if (debug_threads)
4471 debug_printf (" pending reinsert at 0x%s\n",
4472 paddress (lwp->bp_reinsert));
4473
4474 if (can_hardware_single_step ())
4475 {
4476 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4477 {
4478 if (step == 0)
4479 warning ("BAD - reinserting but not stepping.");
4480 if (lwp->suspended)
4481 warning ("BAD - reinserting and suspended(%d).",
4482 lwp->suspended);
4483 }
4484 }
4485
4486 step = maybe_hw_step (thread);
4487 }
4488
4489 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4490 {
4491 if (debug_threads)
4492 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4493 " (exit-jump-pad-bkpt)\n",
4494 lwpid_of (thread));
4495 }
4496 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4497 {
4498 if (debug_threads)
4499 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4500 " single-stepping\n",
4501 lwpid_of (thread));
4502
4503 if (can_hardware_single_step ())
4504 step = 1;
4505 else
4506 {
4507 internal_error (__FILE__, __LINE__,
4508 "moving out of jump pad single-stepping"
4509 " not implemented on this target");
4510 }
4511 }
4512
4513 /* If we have while-stepping actions in this thread set it stepping.
4514 If we have a signal to deliver, it may or may not be set to
4515 SIG_IGN, we don't know. Assume so, and allow collecting
4516 while-stepping into a signal handler. A possible smart thing to
4517 do would be to set an internal breakpoint at the signal return
4518 address, continue, and carry on catching this while-stepping
4519 action only when that breakpoint is hit. A future
4520 enhancement. */
4521 if (thread->while_stepping != NULL)
4522 {
4523 if (debug_threads)
4524 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4525 lwpid_of (thread));
4526
4527 step = single_step (lwp);
4528 }
4529
4530 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4531 {
4532 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4533
4534 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4535
4536 if (debug_threads)
4537 {
4538 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4539 (long) lwp->stop_pc);
4540 }
4541 }
4542
4543 /* If we have pending signals, consume one if it can be delivered to
4544 the inferior. */
4545 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4546 {
4547 struct pending_signals **p_sig;
4548
4549 p_sig = &lwp->pending_signals;
4550 while ((*p_sig)->prev != NULL)
4551 p_sig = &(*p_sig)->prev;
4552
4553 signal = (*p_sig)->signal;
4554 if ((*p_sig)->info.si_signo != 0)
4555 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4556 &(*p_sig)->info);
4557
4558 free (*p_sig);
4559 *p_sig = NULL;
4560 }
4561
4562 if (debug_threads)
4563 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4564 lwpid_of (thread), step ? "step" : "continue", signal,
4565 lwp->stop_expected ? "expected" : "not expected");
4566
4567 if (the_low_target.prepare_to_resume != NULL)
4568 the_low_target.prepare_to_resume (lwp);
4569
4570 regcache_invalidate_thread (thread);
4571 errno = 0;
4572 lwp->stepping = step;
4573 if (step)
4574 ptrace_request = PTRACE_SINGLESTEP;
4575 else if (gdb_catching_syscalls_p (lwp))
4576 ptrace_request = PTRACE_SYSCALL;
4577 else
4578 ptrace_request = PTRACE_CONT;
4579 ptrace (ptrace_request,
4580 lwpid_of (thread),
4581 (PTRACE_TYPE_ARG3) 0,
4582 /* Coerce to a uintptr_t first to avoid potential gcc warning
4583 of coercing an 8 byte integer to a 4 byte pointer. */
4584 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4585
4586 current_thread = saved_thread;
4587 if (errno)
4588 perror_with_name ("resuming thread");
4589
4590 /* Successfully resumed. Clear state that no longer makes sense,
4591 and mark the LWP as running. Must not do this before resuming
4592 otherwise if that fails other code will be confused. E.g., we'd
4593 later try to stop the LWP and hang forever waiting for a stop
4594 status. Note that we must not throw after this is cleared,
4595 otherwise handle_zombie_lwp_error would get confused. */
4596 lwp->stopped = 0;
4597 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4598 }
4599
4600 /* Called when we try to resume a stopped LWP and that errors out. If
4601 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4602 or about to become), discard the error, clear any pending status
4603 the LWP may have, and return true (we'll collect the exit status
4604 soon enough). Otherwise, return false. */
4605
4606 static int
4607 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4608 {
4609 struct thread_info *thread = get_lwp_thread (lp);
4610
4611 /* If we get an error after resuming the LWP successfully, we'd
4612 confuse !T state for the LWP being gone. */
4613 gdb_assert (lp->stopped);
4614
4615 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4616 because even if ptrace failed with ESRCH, the tracee may be "not
4617 yet fully dead", but already refusing ptrace requests. In that
4618 case the tracee has 'R (Running)' state for a little bit
4619 (observed in Linux 3.18). See also the note on ESRCH in the
4620 ptrace(2) man page. Instead, check whether the LWP has any state
4621 other than ptrace-stopped. */
4622
4623 /* Don't assume anything if /proc/PID/status can't be read. */
4624 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4625 {
4626 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4627 lp->status_pending_p = 0;
4628 return 1;
4629 }
4630 return 0;
4631 }
4632
4633 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4634 disappears while we try to resume it. */
4635
4636 static void
4637 linux_resume_one_lwp (struct lwp_info *lwp,
4638 int step, int signal, siginfo_t *info)
4639 {
4640 TRY
4641 {
4642 linux_resume_one_lwp_throw (lwp, step, signal, info);
4643 }
4644 CATCH (ex, RETURN_MASK_ERROR)
4645 {
4646 if (!check_ptrace_stopped_lwp_gone (lwp))
4647 throw_exception (ex);
4648 }
4649 END_CATCH
4650 }
4651
4652 struct thread_resume_array
4653 {
4654 struct thread_resume *resume;
4655 size_t n;
4656 };
4657
4658 /* This function is called once per thread via find_inferior.
4659 ARG is a pointer to a thread_resume_array struct.
4660 We look up the thread specified by ENTRY in ARG, and mark the thread
4661 with a pointer to the appropriate resume request.
4662
4663 This algorithm is O(threads * resume elements), but resume elements
4664 is small (and will remain small at least until GDB supports thread
4665 suspension). */
4666
4667 static int
4668 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4669 {
4670 struct thread_info *thread = (struct thread_info *) entry;
4671 struct lwp_info *lwp = get_thread_lwp (thread);
4672 int ndx;
4673 struct thread_resume_array *r;
4674
4675 r = (struct thread_resume_array *) arg;
4676
4677 for (ndx = 0; ndx < r->n; ndx++)
4678 {
4679 ptid_t ptid = r->resume[ndx].thread;
4680 if (ptid_equal (ptid, minus_one_ptid)
4681 || ptid_equal (ptid, entry->id)
4682 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4683 of PID'. */
4684 || (ptid_get_pid (ptid) == pid_of (thread)
4685 && (ptid_is_pid (ptid)
4686 || ptid_get_lwp (ptid) == -1)))
4687 {
4688 if (r->resume[ndx].kind == resume_stop
4689 && thread->last_resume_kind == resume_stop)
4690 {
4691 if (debug_threads)
4692 debug_printf ("already %s LWP %ld at GDB's request\n",
4693 (thread->last_status.kind
4694 == TARGET_WAITKIND_STOPPED)
4695 ? "stopped"
4696 : "stopping",
4697 lwpid_of (thread));
4698
4699 continue;
4700 }
4701
4702 /* Ignore (wildcard) resume requests for already-resumed
4703 threads. */
4704 if (r->resume[ndx].kind != resume_stop
4705 && thread->last_resume_kind != resume_stop)
4706 {
4707 if (debug_threads)
4708 debug_printf ("already %s LWP %ld at GDB's request\n",
4709 (thread->last_resume_kind
4710 == resume_step)
4711 ? "stepping"
4712 : "continuing",
4713 lwpid_of (thread));
4714 continue;
4715 }
4716
4717 /* Don't let wildcard resumes resume fork children that GDB
4718 does not yet know are new fork children. */
4719 if (lwp->fork_relative != NULL)
4720 {
4721 struct lwp_info *rel = lwp->fork_relative;
4722
4723 if (rel->status_pending_p
4724 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4725 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4726 {
4727 if (debug_threads)
4728 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4729 lwpid_of (thread));
4730 continue;
4731 }
4732 }
4733
4734 /* If the thread has a pending event that has already been
4735 reported to GDBserver core, but GDB has not pulled the
4736 event out of the vStopped queue yet, likewise, ignore the
4737 (wildcard) resume request. */
4738 if (in_queued_stop_replies (entry->id))
4739 {
4740 if (debug_threads)
4741 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4742 lwpid_of (thread));
4743 continue;
4744 }
4745
4746 lwp->resume = &r->resume[ndx];
4747 thread->last_resume_kind = lwp->resume->kind;
4748
4749 lwp->step_range_start = lwp->resume->step_range_start;
4750 lwp->step_range_end = lwp->resume->step_range_end;
4751
4752 /* If we had a deferred signal to report, dequeue one now.
4753 This can happen if LWP gets more than one signal while
4754 trying to get out of a jump pad. */
4755 if (lwp->stopped
4756 && !lwp->status_pending_p
4757 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4758 {
4759 lwp->status_pending_p = 1;
4760
4761 if (debug_threads)
4762 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4763 "leaving status pending.\n",
4764 WSTOPSIG (lwp->status_pending),
4765 lwpid_of (thread));
4766 }
4767
4768 return 0;
4769 }
4770 }
4771
4772 /* No resume action for this thread. */
4773 lwp->resume = NULL;
4774
4775 return 0;
4776 }
4777
4778 /* find_inferior callback for linux_resume.
4779 Set *FLAG_P if this lwp has an interesting status pending. */
4780
4781 static int
4782 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4783 {
4784 struct thread_info *thread = (struct thread_info *) entry;
4785 struct lwp_info *lwp = get_thread_lwp (thread);
4786
4787 /* LWPs which will not be resumed are not interesting, because
4788 we might not wait for them next time through linux_wait. */
4789 if (lwp->resume == NULL)
4790 return 0;
4791
4792 if (thread_still_has_status_pending_p (thread))
4793 * (int *) flag_p = 1;
4794
4795 return 0;
4796 }
4797
4798 /* Return 1 if this lwp that GDB wants running is stopped at an
4799 internal breakpoint that we need to step over. It assumes that any
4800 required STOP_PC adjustment has already been propagated to the
4801 inferior's regcache. */
4802
4803 static int
4804 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4805 {
4806 struct thread_info *thread = (struct thread_info *) entry;
4807 struct lwp_info *lwp = get_thread_lwp (thread);
4808 struct thread_info *saved_thread;
4809 CORE_ADDR pc;
4810 struct process_info *proc = get_thread_process (thread);
4811
4812 /* GDBserver is skipping the extra traps from the wrapper program,
4813 don't have to do step over. */
4814 if (proc->tdesc == NULL)
4815 return 0;
4816
4817 /* LWPs which will not be resumed are not interesting, because we
4818 might not wait for them next time through linux_wait. */
4819
4820 if (!lwp->stopped)
4821 {
4822 if (debug_threads)
4823 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4824 lwpid_of (thread));
4825 return 0;
4826 }
4827
4828 if (thread->last_resume_kind == resume_stop)
4829 {
4830 if (debug_threads)
4831 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4832 " stopped\n",
4833 lwpid_of (thread));
4834 return 0;
4835 }
4836
4837 gdb_assert (lwp->suspended >= 0);
4838
4839 if (lwp->suspended)
4840 {
4841 if (debug_threads)
4842 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4843 lwpid_of (thread));
4844 return 0;
4845 }
4846
4847 if (lwp->status_pending_p)
4848 {
4849 if (debug_threads)
4850 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4851 " status.\n",
4852 lwpid_of (thread));
4853 return 0;
4854 }
4855
4856 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4857 or we have. */
4858 pc = get_pc (lwp);
4859
4860 /* If the PC has changed since we stopped, then don't do anything,
4861 and let the breakpoint/tracepoint be hit. This happens if, for
4862 instance, GDB handled the decr_pc_after_break subtraction itself,
4863 GDB is OOL stepping this thread, or the user has issued a "jump"
4864 command, or poked thread's registers herself. */
4865 if (pc != lwp->stop_pc)
4866 {
4867 if (debug_threads)
4868 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4869 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4870 lwpid_of (thread),
4871 paddress (lwp->stop_pc), paddress (pc));
4872 return 0;
4873 }
4874
4875 /* On software single step target, resume the inferior with signal
4876 rather than stepping over. */
4877 if (can_software_single_step ()
4878 && lwp->pending_signals != NULL
4879 && lwp_signal_can_be_delivered (lwp))
4880 {
4881 if (debug_threads)
4882 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4883 " signals.\n",
4884 lwpid_of (thread));
4885
4886 return 0;
4887 }
4888
4889 saved_thread = current_thread;
4890 current_thread = thread;
4891
4892 /* We can only step over breakpoints we know about. */
4893 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4894 {
4895 /* Don't step over a breakpoint that GDB expects to hit
4896 though. If the condition is being evaluated on the target's side
4897 and it evaluate to false, step over this breakpoint as well. */
4898 if (gdb_breakpoint_here (pc)
4899 && gdb_condition_true_at_breakpoint (pc)
4900 && gdb_no_commands_at_breakpoint (pc))
4901 {
4902 if (debug_threads)
4903 debug_printf ("Need step over [LWP %ld]? yes, but found"
4904 " GDB breakpoint at 0x%s; skipping step over\n",
4905 lwpid_of (thread), paddress (pc));
4906
4907 current_thread = saved_thread;
4908 return 0;
4909 }
4910 else
4911 {
4912 if (debug_threads)
4913 debug_printf ("Need step over [LWP %ld]? yes, "
4914 "found breakpoint at 0x%s\n",
4915 lwpid_of (thread), paddress (pc));
4916
4917 /* We've found an lwp that needs stepping over --- return 1 so
4918 that find_inferior stops looking. */
4919 current_thread = saved_thread;
4920
4921 return 1;
4922 }
4923 }
4924
4925 current_thread = saved_thread;
4926
4927 if (debug_threads)
4928 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4929 " at 0x%s\n",
4930 lwpid_of (thread), paddress (pc));
4931
4932 return 0;
4933 }
4934
4935 /* Start a step-over operation on LWP. When LWP stopped at a
4936 breakpoint, to make progress, we need to remove the breakpoint out
4937 of the way. If we let other threads run while we do that, they may
4938 pass by the breakpoint location and miss hitting it. To avoid
4939 that, a step-over momentarily stops all threads while LWP is
4940 single-stepped by either hardware or software while the breakpoint
4941 is temporarily uninserted from the inferior. When the single-step
4942 finishes, we reinsert the breakpoint, and let all threads that are
4943 supposed to be running, run again. */
4944
4945 static int
4946 start_step_over (struct lwp_info *lwp)
4947 {
4948 struct thread_info *thread = get_lwp_thread (lwp);
4949 struct thread_info *saved_thread;
4950 CORE_ADDR pc;
4951 int step;
4952
4953 if (debug_threads)
4954 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4955 lwpid_of (thread));
4956
4957 stop_all_lwps (1, lwp);
4958
4959 if (lwp->suspended != 0)
4960 {
4961 internal_error (__FILE__, __LINE__,
4962 "LWP %ld suspended=%d\n", lwpid_of (thread),
4963 lwp->suspended);
4964 }
4965
4966 if (debug_threads)
4967 debug_printf ("Done stopping all threads for step-over.\n");
4968
4969 /* Note, we should always reach here with an already adjusted PC,
4970 either by GDB (if we're resuming due to GDB's request), or by our
4971 caller, if we just finished handling an internal breakpoint GDB
4972 shouldn't care about. */
4973 pc = get_pc (lwp);
4974
4975 saved_thread = current_thread;
4976 current_thread = thread;
4977
4978 lwp->bp_reinsert = pc;
4979 uninsert_breakpoints_at (pc);
4980 uninsert_fast_tracepoint_jumps_at (pc);
4981
4982 step = single_step (lwp);
4983
4984 current_thread = saved_thread;
4985
4986 linux_resume_one_lwp (lwp, step, 0, NULL);
4987
4988 /* Require next event from this LWP. */
4989 step_over_bkpt = thread->entry.id;
4990 return 1;
4991 }
4992
4993 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4994 start_step_over, if still there, and delete any single-step
4995 breakpoints we've set, on non hardware single-step targets. */
4996
4997 static int
4998 finish_step_over (struct lwp_info *lwp)
4999 {
5000 if (lwp->bp_reinsert != 0)
5001 {
5002 struct thread_info *saved_thread = current_thread;
5003
5004 if (debug_threads)
5005 debug_printf ("Finished step over.\n");
5006
5007 current_thread = get_lwp_thread (lwp);
5008
5009 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
5010 may be no breakpoint to reinsert there by now. */
5011 reinsert_breakpoints_at (lwp->bp_reinsert);
5012 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
5013
5014 lwp->bp_reinsert = 0;
5015
5016 /* Delete any single-step breakpoints. No longer needed. We
5017 don't have to worry about other threads hitting this trap,
5018 and later not being able to explain it, because we were
5019 stepping over a breakpoint, and we hold all threads but
5020 LWP stopped while doing that. */
5021 if (!can_hardware_single_step ())
5022 {
5023 gdb_assert (has_single_step_breakpoints (current_thread));
5024 delete_single_step_breakpoints (current_thread);
5025 }
5026
5027 step_over_bkpt = null_ptid;
5028 current_thread = saved_thread;
5029 return 1;
5030 }
5031 else
5032 return 0;
5033 }
5034
5035 /* If there's a step over in progress, wait until all threads stop
5036 (that is, until the stepping thread finishes its step), and
5037 unsuspend all lwps. The stepping thread ends with its status
5038 pending, which is processed later when we get back to processing
5039 events. */
5040
5041 static void
5042 complete_ongoing_step_over (void)
5043 {
5044 if (!ptid_equal (step_over_bkpt, null_ptid))
5045 {
5046 struct lwp_info *lwp;
5047 int wstat;
5048 int ret;
5049
5050 if (debug_threads)
5051 debug_printf ("detach: step over in progress, finish it first\n");
5052
5053 /* Passing NULL_PTID as filter indicates we want all events to
5054 be left pending. Eventually this returns when there are no
5055 unwaited-for children left. */
5056 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
5057 &wstat, __WALL);
5058 gdb_assert (ret == -1);
5059
5060 lwp = find_lwp_pid (step_over_bkpt);
5061 if (lwp != NULL)
5062 finish_step_over (lwp);
5063 step_over_bkpt = null_ptid;
5064 unsuspend_all_lwps (lwp);
5065 }
5066 }
5067
5068 /* This function is called once per thread. We check the thread's resume
5069 request, which will tell us whether to resume, step, or leave the thread
5070 stopped; and what signal, if any, it should be sent.
5071
5072 For threads which we aren't explicitly told otherwise, we preserve
5073 the stepping flag; this is used for stepping over gdbserver-placed
5074 breakpoints.
5075
5076 If pending_flags was set in any thread, we queue any needed
5077 signals, since we won't actually resume. We already have a pending
5078 event to report, so we don't need to preserve any step requests;
5079 they should be re-issued if necessary. */
5080
5081 static int
5082 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
5083 {
5084 struct thread_info *thread = (struct thread_info *) entry;
5085 struct lwp_info *lwp = get_thread_lwp (thread);
5086 int leave_all_stopped = * (int *) arg;
5087 int leave_pending;
5088
5089 if (lwp->resume == NULL)
5090 return 0;
5091
5092 if (lwp->resume->kind == resume_stop)
5093 {
5094 if (debug_threads)
5095 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
5096
5097 if (!lwp->stopped)
5098 {
5099 if (debug_threads)
5100 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
5101
5102 /* Stop the thread, and wait for the event asynchronously,
5103 through the event loop. */
5104 send_sigstop (lwp);
5105 }
5106 else
5107 {
5108 if (debug_threads)
5109 debug_printf ("already stopped LWP %ld\n",
5110 lwpid_of (thread));
5111
5112 /* The LWP may have been stopped in an internal event that
5113 was not meant to be notified back to GDB (e.g., gdbserver
5114 breakpoint), so we should be reporting a stop event in
5115 this case too. */
5116
5117 /* If the thread already has a pending SIGSTOP, this is a
5118 no-op. Otherwise, something later will presumably resume
5119 the thread and this will cause it to cancel any pending
5120 operation, due to last_resume_kind == resume_stop. If
5121 the thread already has a pending status to report, we
5122 will still report it the next time we wait - see
5123 status_pending_p_callback. */
5124
5125 /* If we already have a pending signal to report, then
5126 there's no need to queue a SIGSTOP, as this means we're
5127 midway through moving the LWP out of the jumppad, and we
5128 will report the pending signal as soon as that is
5129 finished. */
5130 if (lwp->pending_signals_to_report == NULL)
5131 send_sigstop (lwp);
5132 }
5133
5134 /* For stop requests, we're done. */
5135 lwp->resume = NULL;
5136 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5137 return 0;
5138 }
5139
5140 /* If this thread which is about to be resumed has a pending status,
5141 then don't resume it - we can just report the pending status.
5142 Likewise if it is suspended, because e.g., another thread is
5143 stepping past a breakpoint. Make sure to queue any signals that
5144 would otherwise be sent. In all-stop mode, we do this decision
5145 based on if *any* thread has a pending status. If there's a
5146 thread that needs the step-over-breakpoint dance, then don't
5147 resume any other thread but that particular one. */
5148 leave_pending = (lwp->suspended
5149 || lwp->status_pending_p
5150 || leave_all_stopped);
5151
5152 /* If we have a new signal, enqueue the signal. */
5153 if (lwp->resume->sig != 0)
5154 {
5155 siginfo_t info, *info_p;
5156
5157 /* If this is the same signal we were previously stopped by,
5158 make sure to queue its siginfo. */
5159 if (WIFSTOPPED (lwp->last_status)
5160 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5161 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5162 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5163 info_p = &info;
5164 else
5165 info_p = NULL;
5166
5167 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5168 }
5169
5170 if (!leave_pending)
5171 {
5172 if (debug_threads)
5173 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5174
5175 proceed_one_lwp (entry, NULL);
5176 }
5177 else
5178 {
5179 if (debug_threads)
5180 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5181 }
5182
5183 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5184 lwp->resume = NULL;
5185 return 0;
5186 }
5187
5188 static void
5189 linux_resume (struct thread_resume *resume_info, size_t n)
5190 {
5191 struct thread_resume_array array = { resume_info, n };
5192 struct thread_info *need_step_over = NULL;
5193 int any_pending;
5194 int leave_all_stopped;
5195
5196 if (debug_threads)
5197 {
5198 debug_enter ();
5199 debug_printf ("linux_resume:\n");
5200 }
5201
5202 find_inferior (&all_threads, linux_set_resume_request, &array);
5203
5204 /* If there is a thread which would otherwise be resumed, which has
5205 a pending status, then don't resume any threads - we can just
5206 report the pending status. Make sure to queue any signals that
5207 would otherwise be sent. In non-stop mode, we'll apply this
5208 logic to each thread individually. We consume all pending events
5209 before considering to start a step-over (in all-stop). */
5210 any_pending = 0;
5211 if (!non_stop)
5212 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
5213
5214 /* If there is a thread which would otherwise be resumed, which is
5215 stopped at a breakpoint that needs stepping over, then don't
5216 resume any threads - have it step over the breakpoint with all
5217 other threads stopped, then resume all threads again. Make sure
5218 to queue any signals that would otherwise be delivered or
5219 queued. */
5220 if (!any_pending && supports_breakpoints ())
5221 need_step_over
5222 = (struct thread_info *) find_inferior (&all_threads,
5223 need_step_over_p, NULL);
5224
5225 leave_all_stopped = (need_step_over != NULL || any_pending);
5226
5227 if (debug_threads)
5228 {
5229 if (need_step_over != NULL)
5230 debug_printf ("Not resuming all, need step over\n");
5231 else if (any_pending)
5232 debug_printf ("Not resuming, all-stop and found "
5233 "an LWP with pending status\n");
5234 else
5235 debug_printf ("Resuming, no pending status or step over needed\n");
5236 }
5237
5238 /* Even if we're leaving threads stopped, queue all signals we'd
5239 otherwise deliver. */
5240 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5241
5242 if (need_step_over)
5243 start_step_over (get_thread_lwp (need_step_over));
5244
5245 if (debug_threads)
5246 {
5247 debug_printf ("linux_resume done\n");
5248 debug_exit ();
5249 }
5250
5251 /* We may have events that were pending that can/should be sent to
5252 the client now. Trigger a linux_wait call. */
5253 if (target_is_async_p ())
5254 async_file_mark ();
5255 }
5256
5257 /* This function is called once per thread. We check the thread's
5258 last resume request, which will tell us whether to resume, step, or
5259 leave the thread stopped. Any signal the client requested to be
5260 delivered has already been enqueued at this point.
5261
5262 If any thread that GDB wants running is stopped at an internal
5263 breakpoint that needs stepping over, we start a step-over operation
5264 on that particular thread, and leave all others stopped. */
5265
5266 static int
5267 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5268 {
5269 struct thread_info *thread = (struct thread_info *) entry;
5270 struct lwp_info *lwp = get_thread_lwp (thread);
5271 int step;
5272
5273 if (lwp == except)
5274 return 0;
5275
5276 if (debug_threads)
5277 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5278
5279 if (!lwp->stopped)
5280 {
5281 if (debug_threads)
5282 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5283 return 0;
5284 }
5285
5286 if (thread->last_resume_kind == resume_stop
5287 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5288 {
5289 if (debug_threads)
5290 debug_printf (" client wants LWP to remain %ld stopped\n",
5291 lwpid_of (thread));
5292 return 0;
5293 }
5294
5295 if (lwp->status_pending_p)
5296 {
5297 if (debug_threads)
5298 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5299 lwpid_of (thread));
5300 return 0;
5301 }
5302
5303 gdb_assert (lwp->suspended >= 0);
5304
5305 if (lwp->suspended)
5306 {
5307 if (debug_threads)
5308 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5309 return 0;
5310 }
5311
5312 if (thread->last_resume_kind == resume_stop
5313 && lwp->pending_signals_to_report == NULL
5314 && (lwp->collecting_fast_tracepoint
5315 == fast_tpoint_collect_result::not_collecting))
5316 {
5317 /* We haven't reported this LWP as stopped yet (otherwise, the
5318 last_status.kind check above would catch it, and we wouldn't
5319 reach here. This LWP may have been momentarily paused by a
5320 stop_all_lwps call while handling for example, another LWP's
5321 step-over. In that case, the pending expected SIGSTOP signal
5322 that was queued at vCont;t handling time will have already
5323 been consumed by wait_for_sigstop, and so we need to requeue
5324 another one here. Note that if the LWP already has a SIGSTOP
5325 pending, this is a no-op. */
5326
5327 if (debug_threads)
5328 debug_printf ("Client wants LWP %ld to stop. "
5329 "Making sure it has a SIGSTOP pending\n",
5330 lwpid_of (thread));
5331
5332 send_sigstop (lwp);
5333 }
5334
5335 if (thread->last_resume_kind == resume_step)
5336 {
5337 if (debug_threads)
5338 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5339 lwpid_of (thread));
5340
5341 /* If resume_step is requested by GDB, install single-step
5342 breakpoints when the thread is about to be actually resumed if
5343 the single-step breakpoints weren't removed. */
5344 if (can_software_single_step ()
5345 && !has_single_step_breakpoints (thread))
5346 install_software_single_step_breakpoints (lwp);
5347
5348 step = maybe_hw_step (thread);
5349 }
5350 else if (lwp->bp_reinsert != 0)
5351 {
5352 if (debug_threads)
5353 debug_printf (" stepping LWP %ld, reinsert set\n",
5354 lwpid_of (thread));
5355
5356 step = maybe_hw_step (thread);
5357 }
5358 else
5359 step = 0;
5360
5361 linux_resume_one_lwp (lwp, step, 0, NULL);
5362 return 0;
5363 }
5364
5365 static int
5366 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5367 {
5368 struct thread_info *thread = (struct thread_info *) entry;
5369 struct lwp_info *lwp = get_thread_lwp (thread);
5370
5371 if (lwp == except)
5372 return 0;
5373
5374 lwp_suspended_decr (lwp);
5375
5376 return proceed_one_lwp (entry, except);
5377 }
5378
5379 /* When we finish a step-over, set threads running again. If there's
5380 another thread that may need a step-over, now's the time to start
5381 it. Eventually, we'll move all threads past their breakpoints. */
5382
5383 static void
5384 proceed_all_lwps (void)
5385 {
5386 struct thread_info *need_step_over;
5387
5388 /* If there is a thread which would otherwise be resumed, which is
5389 stopped at a breakpoint that needs stepping over, then don't
5390 resume any threads - have it step over the breakpoint with all
5391 other threads stopped, then resume all threads again. */
5392
5393 if (supports_breakpoints ())
5394 {
5395 need_step_over
5396 = (struct thread_info *) find_inferior (&all_threads,
5397 need_step_over_p, NULL);
5398
5399 if (need_step_over != NULL)
5400 {
5401 if (debug_threads)
5402 debug_printf ("proceed_all_lwps: found "
5403 "thread %ld needing a step-over\n",
5404 lwpid_of (need_step_over));
5405
5406 start_step_over (get_thread_lwp (need_step_over));
5407 return;
5408 }
5409 }
5410
5411 if (debug_threads)
5412 debug_printf ("Proceeding, no step-over needed\n");
5413
5414 find_inferior (&all_threads, proceed_one_lwp, NULL);
5415 }
5416
5417 /* Stopped LWPs that the client wanted to be running, that don't have
5418 pending statuses, are set to run again, except for EXCEPT, if not
5419 NULL. This undoes a stop_all_lwps call. */
5420
5421 static void
5422 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5423 {
5424 if (debug_threads)
5425 {
5426 debug_enter ();
5427 if (except)
5428 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5429 lwpid_of (get_lwp_thread (except)));
5430 else
5431 debug_printf ("unstopping all lwps\n");
5432 }
5433
5434 if (unsuspend)
5435 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5436 else
5437 find_inferior (&all_threads, proceed_one_lwp, except);
5438
5439 if (debug_threads)
5440 {
5441 debug_printf ("unstop_all_lwps done\n");
5442 debug_exit ();
5443 }
5444 }
5445
5446
5447 #ifdef HAVE_LINUX_REGSETS
5448
5449 #define use_linux_regsets 1
5450
5451 /* Returns true if REGSET has been disabled. */
5452
5453 static int
5454 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5455 {
5456 return (info->disabled_regsets != NULL
5457 && info->disabled_regsets[regset - info->regsets]);
5458 }
5459
5460 /* Disable REGSET. */
5461
5462 static void
5463 disable_regset (struct regsets_info *info, struct regset_info *regset)
5464 {
5465 int dr_offset;
5466
5467 dr_offset = regset - info->regsets;
5468 if (info->disabled_regsets == NULL)
5469 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5470 info->disabled_regsets[dr_offset] = 1;
5471 }
5472
5473 static int
5474 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5475 struct regcache *regcache)
5476 {
5477 struct regset_info *regset;
5478 int saw_general_regs = 0;
5479 int pid;
5480 struct iovec iov;
5481
5482 pid = lwpid_of (current_thread);
5483 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5484 {
5485 void *buf, *data;
5486 int nt_type, res;
5487
5488 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5489 continue;
5490
5491 buf = xmalloc (regset->size);
5492
5493 nt_type = regset->nt_type;
5494 if (nt_type)
5495 {
5496 iov.iov_base = buf;
5497 iov.iov_len = regset->size;
5498 data = (void *) &iov;
5499 }
5500 else
5501 data = buf;
5502
5503 #ifndef __sparc__
5504 res = ptrace (regset->get_request, pid,
5505 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5506 #else
5507 res = ptrace (regset->get_request, pid, data, nt_type);
5508 #endif
5509 if (res < 0)
5510 {
5511 if (errno == EIO)
5512 {
5513 /* If we get EIO on a regset, do not try it again for
5514 this process mode. */
5515 disable_regset (regsets_info, regset);
5516 }
5517 else if (errno == ENODATA)
5518 {
5519 /* ENODATA may be returned if the regset is currently
5520 not "active". This can happen in normal operation,
5521 so suppress the warning in this case. */
5522 }
5523 else if (errno == ESRCH)
5524 {
5525 /* At this point, ESRCH should mean the process is
5526 already gone, in which case we simply ignore attempts
5527 to read its registers. */
5528 }
5529 else
5530 {
5531 char s[256];
5532 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5533 pid);
5534 perror (s);
5535 }
5536 }
5537 else
5538 {
5539 if (regset->type == GENERAL_REGS)
5540 saw_general_regs = 1;
5541 regset->store_function (regcache, buf);
5542 }
5543 free (buf);
5544 }
5545 if (saw_general_regs)
5546 return 0;
5547 else
5548 return 1;
5549 }
5550
5551 static int
5552 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5553 struct regcache *regcache)
5554 {
5555 struct regset_info *regset;
5556 int saw_general_regs = 0;
5557 int pid;
5558 struct iovec iov;
5559
5560 pid = lwpid_of (current_thread);
5561 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5562 {
5563 void *buf, *data;
5564 int nt_type, res;
5565
5566 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5567 || regset->fill_function == NULL)
5568 continue;
5569
5570 buf = xmalloc (regset->size);
5571
5572 /* First fill the buffer with the current register set contents,
5573 in case there are any items in the kernel's regset that are
5574 not in gdbserver's regcache. */
5575
5576 nt_type = regset->nt_type;
5577 if (nt_type)
5578 {
5579 iov.iov_base = buf;
5580 iov.iov_len = regset->size;
5581 data = (void *) &iov;
5582 }
5583 else
5584 data = buf;
5585
5586 #ifndef __sparc__
5587 res = ptrace (regset->get_request, pid,
5588 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5589 #else
5590 res = ptrace (regset->get_request, pid, data, nt_type);
5591 #endif
5592
5593 if (res == 0)
5594 {
5595 /* Then overlay our cached registers on that. */
5596 regset->fill_function (regcache, buf);
5597
5598 /* Only now do we write the register set. */
5599 #ifndef __sparc__
5600 res = ptrace (regset->set_request, pid,
5601 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5602 #else
5603 res = ptrace (regset->set_request, pid, data, nt_type);
5604 #endif
5605 }
5606
5607 if (res < 0)
5608 {
5609 if (errno == EIO)
5610 {
5611 /* If we get EIO on a regset, do not try it again for
5612 this process mode. */
5613 disable_regset (regsets_info, regset);
5614 }
5615 else if (errno == ESRCH)
5616 {
5617 /* At this point, ESRCH should mean the process is
5618 already gone, in which case we simply ignore attempts
5619 to change its registers. See also the related
5620 comment in linux_resume_one_lwp. */
5621 free (buf);
5622 return 0;
5623 }
5624 else
5625 {
5626 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5627 }
5628 }
5629 else if (regset->type == GENERAL_REGS)
5630 saw_general_regs = 1;
5631 free (buf);
5632 }
5633 if (saw_general_regs)
5634 return 0;
5635 else
5636 return 1;
5637 }
5638
5639 #else /* !HAVE_LINUX_REGSETS */
5640
5641 #define use_linux_regsets 0
5642 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5643 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5644
5645 #endif
5646
5647 /* Return 1 if register REGNO is supported by one of the regset ptrace
5648 calls or 0 if it has to be transferred individually. */
5649
5650 static int
5651 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5652 {
5653 unsigned char mask = 1 << (regno % 8);
5654 size_t index = regno / 8;
5655
5656 return (use_linux_regsets
5657 && (regs_info->regset_bitmap == NULL
5658 || (regs_info->regset_bitmap[index] & mask) != 0));
5659 }
5660
5661 #ifdef HAVE_LINUX_USRREGS
5662
5663 static int
5664 register_addr (const struct usrregs_info *usrregs, int regnum)
5665 {
5666 int addr;
5667
5668 if (regnum < 0 || regnum >= usrregs->num_regs)
5669 error ("Invalid register number %d.", regnum);
5670
5671 addr = usrregs->regmap[regnum];
5672
5673 return addr;
5674 }
5675
5676 /* Fetch one register. */
5677 static void
5678 fetch_register (const struct usrregs_info *usrregs,
5679 struct regcache *regcache, int regno)
5680 {
5681 CORE_ADDR regaddr;
5682 int i, size;
5683 char *buf;
5684 int pid;
5685
5686 if (regno >= usrregs->num_regs)
5687 return;
5688 if ((*the_low_target.cannot_fetch_register) (regno))
5689 return;
5690
5691 regaddr = register_addr (usrregs, regno);
5692 if (regaddr == -1)
5693 return;
5694
5695 size = ((register_size (regcache->tdesc, regno)
5696 + sizeof (PTRACE_XFER_TYPE) - 1)
5697 & -sizeof (PTRACE_XFER_TYPE));
5698 buf = (char *) alloca (size);
5699
5700 pid = lwpid_of (current_thread);
5701 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5702 {
5703 errno = 0;
5704 *(PTRACE_XFER_TYPE *) (buf + i) =
5705 ptrace (PTRACE_PEEKUSER, pid,
5706 /* Coerce to a uintptr_t first to avoid potential gcc warning
5707 of coercing an 8 byte integer to a 4 byte pointer. */
5708 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5709 regaddr += sizeof (PTRACE_XFER_TYPE);
5710 if (errno != 0)
5711 error ("reading register %d: %s", regno, strerror (errno));
5712 }
5713
5714 if (the_low_target.supply_ptrace_register)
5715 the_low_target.supply_ptrace_register (regcache, regno, buf);
5716 else
5717 supply_register (regcache, regno, buf);
5718 }
5719
5720 /* Store one register. */
5721 static void
5722 store_register (const struct usrregs_info *usrregs,
5723 struct regcache *regcache, int regno)
5724 {
5725 CORE_ADDR regaddr;
5726 int i, size;
5727 char *buf;
5728 int pid;
5729
5730 if (regno >= usrregs->num_regs)
5731 return;
5732 if ((*the_low_target.cannot_store_register) (regno))
5733 return;
5734
5735 regaddr = register_addr (usrregs, regno);
5736 if (regaddr == -1)
5737 return;
5738
5739 size = ((register_size (regcache->tdesc, regno)
5740 + sizeof (PTRACE_XFER_TYPE) - 1)
5741 & -sizeof (PTRACE_XFER_TYPE));
5742 buf = (char *) alloca (size);
5743 memset (buf, 0, size);
5744
5745 if (the_low_target.collect_ptrace_register)
5746 the_low_target.collect_ptrace_register (regcache, regno, buf);
5747 else
5748 collect_register (regcache, regno, buf);
5749
5750 pid = lwpid_of (current_thread);
5751 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5752 {
5753 errno = 0;
5754 ptrace (PTRACE_POKEUSER, pid,
5755 /* Coerce to a uintptr_t first to avoid potential gcc warning
5756 about coercing an 8 byte integer to a 4 byte pointer. */
5757 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5758 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5759 if (errno != 0)
5760 {
5761 /* At this point, ESRCH should mean the process is
5762 already gone, in which case we simply ignore attempts
5763 to change its registers. See also the related
5764 comment in linux_resume_one_lwp. */
5765 if (errno == ESRCH)
5766 return;
5767
5768 if ((*the_low_target.cannot_store_register) (regno) == 0)
5769 error ("writing register %d: %s", regno, strerror (errno));
5770 }
5771 regaddr += sizeof (PTRACE_XFER_TYPE);
5772 }
5773 }
5774
5775 /* Fetch all registers, or just one, from the child process.
5776 If REGNO is -1, do this for all registers, skipping any that are
5777 assumed to have been retrieved by regsets_fetch_inferior_registers,
5778 unless ALL is non-zero.
5779 Otherwise, REGNO specifies which register (so we can save time). */
5780 static void
5781 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5782 struct regcache *regcache, int regno, int all)
5783 {
5784 struct usrregs_info *usr = regs_info->usrregs;
5785
5786 if (regno == -1)
5787 {
5788 for (regno = 0; regno < usr->num_regs; regno++)
5789 if (all || !linux_register_in_regsets (regs_info, regno))
5790 fetch_register (usr, regcache, regno);
5791 }
5792 else
5793 fetch_register (usr, regcache, regno);
5794 }
5795
5796 /* Store our register values back into the inferior.
5797 If REGNO is -1, do this for all registers, skipping any that are
5798 assumed to have been saved by regsets_store_inferior_registers,
5799 unless ALL is non-zero.
5800 Otherwise, REGNO specifies which register (so we can save time). */
5801 static void
5802 usr_store_inferior_registers (const struct regs_info *regs_info,
5803 struct regcache *regcache, int regno, int all)
5804 {
5805 struct usrregs_info *usr = regs_info->usrregs;
5806
5807 if (regno == -1)
5808 {
5809 for (regno = 0; regno < usr->num_regs; regno++)
5810 if (all || !linux_register_in_regsets (regs_info, regno))
5811 store_register (usr, regcache, regno);
5812 }
5813 else
5814 store_register (usr, regcache, regno);
5815 }
5816
5817 #else /* !HAVE_LINUX_USRREGS */
5818
5819 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5820 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5821
5822 #endif
5823
5824
5825 static void
5826 linux_fetch_registers (struct regcache *regcache, int regno)
5827 {
5828 int use_regsets;
5829 int all = 0;
5830 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5831
5832 if (regno == -1)
5833 {
5834 if (the_low_target.fetch_register != NULL
5835 && regs_info->usrregs != NULL)
5836 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5837 (*the_low_target.fetch_register) (regcache, regno);
5838
5839 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5840 if (regs_info->usrregs != NULL)
5841 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5842 }
5843 else
5844 {
5845 if (the_low_target.fetch_register != NULL
5846 && (*the_low_target.fetch_register) (regcache, regno))
5847 return;
5848
5849 use_regsets = linux_register_in_regsets (regs_info, regno);
5850 if (use_regsets)
5851 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5852 regcache);
5853 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5854 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5855 }
5856 }
5857
5858 static void
5859 linux_store_registers (struct regcache *regcache, int regno)
5860 {
5861 int use_regsets;
5862 int all = 0;
5863 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5864
5865 if (regno == -1)
5866 {
5867 all = regsets_store_inferior_registers (regs_info->regsets_info,
5868 regcache);
5869 if (regs_info->usrregs != NULL)
5870 usr_store_inferior_registers (regs_info, regcache, regno, all);
5871 }
5872 else
5873 {
5874 use_regsets = linux_register_in_regsets (regs_info, regno);
5875 if (use_regsets)
5876 all = regsets_store_inferior_registers (regs_info->regsets_info,
5877 regcache);
5878 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5879 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5880 }
5881 }
5882
5883
5884 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5885 to debugger memory starting at MYADDR. */
5886
5887 static int
5888 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5889 {
5890 int pid = lwpid_of (current_thread);
5891 PTRACE_XFER_TYPE *buffer;
5892 CORE_ADDR addr;
5893 int count;
5894 char filename[64];
5895 int i;
5896 int ret;
5897 int fd;
5898
5899 /* Try using /proc. Don't bother for one word. */
5900 if (len >= 3 * sizeof (long))
5901 {
5902 int bytes;
5903
5904 /* We could keep this file open and cache it - possibly one per
5905 thread. That requires some juggling, but is even faster. */
5906 sprintf (filename, "/proc/%d/mem", pid);
5907 fd = open (filename, O_RDONLY | O_LARGEFILE);
5908 if (fd == -1)
5909 goto no_proc;
5910
5911 /* If pread64 is available, use it. It's faster if the kernel
5912 supports it (only one syscall), and it's 64-bit safe even on
5913 32-bit platforms (for instance, SPARC debugging a SPARC64
5914 application). */
5915 #ifdef HAVE_PREAD64
5916 bytes = pread64 (fd, myaddr, len, memaddr);
5917 #else
5918 bytes = -1;
5919 if (lseek (fd, memaddr, SEEK_SET) != -1)
5920 bytes = read (fd, myaddr, len);
5921 #endif
5922
5923 close (fd);
5924 if (bytes == len)
5925 return 0;
5926
5927 /* Some data was read, we'll try to get the rest with ptrace. */
5928 if (bytes > 0)
5929 {
5930 memaddr += bytes;
5931 myaddr += bytes;
5932 len -= bytes;
5933 }
5934 }
5935
5936 no_proc:
5937 /* Round starting address down to longword boundary. */
5938 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5939 /* Round ending address up; get number of longwords that makes. */
5940 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5941 / sizeof (PTRACE_XFER_TYPE));
5942 /* Allocate buffer of that many longwords. */
5943 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5944
5945 /* Read all the longwords */
5946 errno = 0;
5947 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5948 {
5949 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5950 about coercing an 8 byte integer to a 4 byte pointer. */
5951 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5952 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5953 (PTRACE_TYPE_ARG4) 0);
5954 if (errno)
5955 break;
5956 }
5957 ret = errno;
5958
5959 /* Copy appropriate bytes out of the buffer. */
5960 if (i > 0)
5961 {
5962 i *= sizeof (PTRACE_XFER_TYPE);
5963 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5964 memcpy (myaddr,
5965 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5966 i < len ? i : len);
5967 }
5968
5969 return ret;
5970 }
5971
5972 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5973 memory at MEMADDR. On failure (cannot write to the inferior)
5974 returns the value of errno. Always succeeds if LEN is zero. */
5975
5976 static int
5977 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5978 {
5979 int i;
5980 /* Round starting address down to longword boundary. */
5981 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5982 /* Round ending address up; get number of longwords that makes. */
5983 int count
5984 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5985 / sizeof (PTRACE_XFER_TYPE);
5986
5987 /* Allocate buffer of that many longwords. */
5988 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5989
5990 int pid = lwpid_of (current_thread);
5991
5992 if (len == 0)
5993 {
5994 /* Zero length write always succeeds. */
5995 return 0;
5996 }
5997
5998 if (debug_threads)
5999 {
6000 /* Dump up to four bytes. */
6001 char str[4 * 2 + 1];
6002 char *p = str;
6003 int dump = len < 4 ? len : 4;
6004
6005 for (i = 0; i < dump; i++)
6006 {
6007 sprintf (p, "%02x", myaddr[i]);
6008 p += 2;
6009 }
6010 *p = '\0';
6011
6012 debug_printf ("Writing %s to 0x%08lx in process %d\n",
6013 str, (long) memaddr, pid);
6014 }
6015
6016 /* Fill start and end extra bytes of buffer with existing memory data. */
6017
6018 errno = 0;
6019 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
6020 about coercing an 8 byte integer to a 4 byte pointer. */
6021 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
6022 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
6023 (PTRACE_TYPE_ARG4) 0);
6024 if (errno)
6025 return errno;
6026
6027 if (count > 1)
6028 {
6029 errno = 0;
6030 buffer[count - 1]
6031 = ptrace (PTRACE_PEEKTEXT, pid,
6032 /* Coerce to a uintptr_t first to avoid potential gcc warning
6033 about coercing an 8 byte integer to a 4 byte pointer. */
6034 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
6035 * sizeof (PTRACE_XFER_TYPE)),
6036 (PTRACE_TYPE_ARG4) 0);
6037 if (errno)
6038 return errno;
6039 }
6040
6041 /* Copy data to be written over corresponding part of buffer. */
6042
6043 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
6044 myaddr, len);
6045
6046 /* Write the entire buffer. */
6047
6048 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
6049 {
6050 errno = 0;
6051 ptrace (PTRACE_POKETEXT, pid,
6052 /* Coerce to a uintptr_t first to avoid potential gcc warning
6053 about coercing an 8 byte integer to a 4 byte pointer. */
6054 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
6055 (PTRACE_TYPE_ARG4) buffer[i]);
6056 if (errno)
6057 return errno;
6058 }
6059
6060 return 0;
6061 }
6062
6063 static void
6064 linux_look_up_symbols (void)
6065 {
6066 #ifdef USE_THREAD_DB
6067 struct process_info *proc = current_process ();
6068
6069 if (proc->priv->thread_db != NULL)
6070 return;
6071
6072 thread_db_init ();
6073 #endif
6074 }
6075
6076 static void
6077 linux_request_interrupt (void)
6078 {
6079 /* Send a SIGINT to the process group. This acts just like the user
6080 typed a ^C on the controlling terminal. */
6081 kill (-signal_pid, SIGINT);
6082 }
6083
6084 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
6085 to debugger memory starting at MYADDR. */
6086
6087 static int
6088 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
6089 {
6090 char filename[PATH_MAX];
6091 int fd, n;
6092 int pid = lwpid_of (current_thread);
6093
6094 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6095
6096 fd = open (filename, O_RDONLY);
6097 if (fd < 0)
6098 return -1;
6099
6100 if (offset != (CORE_ADDR) 0
6101 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6102 n = -1;
6103 else
6104 n = read (fd, myaddr, len);
6105
6106 close (fd);
6107
6108 return n;
6109 }
6110
6111 /* These breakpoint and watchpoint related wrapper functions simply
6112 pass on the function call if the target has registered a
6113 corresponding function. */
6114
6115 static int
6116 linux_supports_z_point_type (char z_type)
6117 {
6118 return (the_low_target.supports_z_point_type != NULL
6119 && the_low_target.supports_z_point_type (z_type));
6120 }
6121
6122 static int
6123 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
6124 int size, struct raw_breakpoint *bp)
6125 {
6126 if (type == raw_bkpt_type_sw)
6127 return insert_memory_breakpoint (bp);
6128 else if (the_low_target.insert_point != NULL)
6129 return the_low_target.insert_point (type, addr, size, bp);
6130 else
6131 /* Unsupported (see target.h). */
6132 return 1;
6133 }
6134
6135 static int
6136 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
6137 int size, struct raw_breakpoint *bp)
6138 {
6139 if (type == raw_bkpt_type_sw)
6140 return remove_memory_breakpoint (bp);
6141 else if (the_low_target.remove_point != NULL)
6142 return the_low_target.remove_point (type, addr, size, bp);
6143 else
6144 /* Unsupported (see target.h). */
6145 return 1;
6146 }
6147
6148 /* Implement the to_stopped_by_sw_breakpoint target_ops
6149 method. */
6150
6151 static int
6152 linux_stopped_by_sw_breakpoint (void)
6153 {
6154 struct lwp_info *lwp = get_thread_lwp (current_thread);
6155
6156 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6157 }
6158
6159 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6160 method. */
6161
6162 static int
6163 linux_supports_stopped_by_sw_breakpoint (void)
6164 {
6165 return USE_SIGTRAP_SIGINFO;
6166 }
6167
6168 /* Implement the to_stopped_by_hw_breakpoint target_ops
6169 method. */
6170
6171 static int
6172 linux_stopped_by_hw_breakpoint (void)
6173 {
6174 struct lwp_info *lwp = get_thread_lwp (current_thread);
6175
6176 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6177 }
6178
6179 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6180 method. */
6181
6182 static int
6183 linux_supports_stopped_by_hw_breakpoint (void)
6184 {
6185 return USE_SIGTRAP_SIGINFO;
6186 }
6187
6188 /* Implement the supports_hardware_single_step target_ops method. */
6189
6190 static int
6191 linux_supports_hardware_single_step (void)
6192 {
6193 return can_hardware_single_step ();
6194 }
6195
6196 static int
6197 linux_supports_software_single_step (void)
6198 {
6199 return can_software_single_step ();
6200 }
6201
6202 static int
6203 linux_stopped_by_watchpoint (void)
6204 {
6205 struct lwp_info *lwp = get_thread_lwp (current_thread);
6206
6207 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6208 }
6209
6210 static CORE_ADDR
6211 linux_stopped_data_address (void)
6212 {
6213 struct lwp_info *lwp = get_thread_lwp (current_thread);
6214
6215 return lwp->stopped_data_address;
6216 }
6217
6218 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6219 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6220 && defined(PT_TEXT_END_ADDR)
6221
6222 /* This is only used for targets that define PT_TEXT_ADDR,
6223 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6224 the target has different ways of acquiring this information, like
6225 loadmaps. */
6226
6227 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6228 to tell gdb about. */
6229
6230 static int
6231 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6232 {
6233 unsigned long text, text_end, data;
6234 int pid = lwpid_of (current_thread);
6235
6236 errno = 0;
6237
6238 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6239 (PTRACE_TYPE_ARG4) 0);
6240 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6241 (PTRACE_TYPE_ARG4) 0);
6242 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6243 (PTRACE_TYPE_ARG4) 0);
6244
6245 if (errno == 0)
6246 {
6247 /* Both text and data offsets produced at compile-time (and so
6248 used by gdb) are relative to the beginning of the program,
6249 with the data segment immediately following the text segment.
6250 However, the actual runtime layout in memory may put the data
6251 somewhere else, so when we send gdb a data base-address, we
6252 use the real data base address and subtract the compile-time
6253 data base-address from it (which is just the length of the
6254 text segment). BSS immediately follows data in both
6255 cases. */
6256 *text_p = text;
6257 *data_p = data - (text_end - text);
6258
6259 return 1;
6260 }
6261 return 0;
6262 }
6263 #endif
6264
6265 static int
6266 linux_qxfer_osdata (const char *annex,
6267 unsigned char *readbuf, unsigned const char *writebuf,
6268 CORE_ADDR offset, int len)
6269 {
6270 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6271 }
6272
6273 /* Convert a native/host siginfo object, into/from the siginfo in the
6274 layout of the inferiors' architecture. */
6275
6276 static void
6277 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6278 {
6279 int done = 0;
6280
6281 if (the_low_target.siginfo_fixup != NULL)
6282 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6283
6284 /* If there was no callback, or the callback didn't do anything,
6285 then just do a straight memcpy. */
6286 if (!done)
6287 {
6288 if (direction == 1)
6289 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6290 else
6291 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6292 }
6293 }
6294
6295 static int
6296 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6297 unsigned const char *writebuf, CORE_ADDR offset, int len)
6298 {
6299 int pid;
6300 siginfo_t siginfo;
6301 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6302
6303 if (current_thread == NULL)
6304 return -1;
6305
6306 pid = lwpid_of (current_thread);
6307
6308 if (debug_threads)
6309 debug_printf ("%s siginfo for lwp %d.\n",
6310 readbuf != NULL ? "Reading" : "Writing",
6311 pid);
6312
6313 if (offset >= sizeof (siginfo))
6314 return -1;
6315
6316 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6317 return -1;
6318
6319 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6320 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6321 inferior with a 64-bit GDBSERVER should look the same as debugging it
6322 with a 32-bit GDBSERVER, we need to convert it. */
6323 siginfo_fixup (&siginfo, inf_siginfo, 0);
6324
6325 if (offset + len > sizeof (siginfo))
6326 len = sizeof (siginfo) - offset;
6327
6328 if (readbuf != NULL)
6329 memcpy (readbuf, inf_siginfo + offset, len);
6330 else
6331 {
6332 memcpy (inf_siginfo + offset, writebuf, len);
6333
6334 /* Convert back to ptrace layout before flushing it out. */
6335 siginfo_fixup (&siginfo, inf_siginfo, 1);
6336
6337 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6338 return -1;
6339 }
6340
6341 return len;
6342 }
6343
6344 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6345 so we notice when children change state; as the handler for the
6346 sigsuspend in my_waitpid. */
6347
6348 static void
6349 sigchld_handler (int signo)
6350 {
6351 int old_errno = errno;
6352
6353 if (debug_threads)
6354 {
6355 do
6356 {
6357 /* fprintf is not async-signal-safe, so call write
6358 directly. */
6359 if (write (2, "sigchld_handler\n",
6360 sizeof ("sigchld_handler\n") - 1) < 0)
6361 break; /* just ignore */
6362 } while (0);
6363 }
6364
6365 if (target_is_async_p ())
6366 async_file_mark (); /* trigger a linux_wait */
6367
6368 errno = old_errno;
6369 }
6370
6371 static int
6372 linux_supports_non_stop (void)
6373 {
6374 return 1;
6375 }
6376
6377 static int
6378 linux_async (int enable)
6379 {
6380 int previous = target_is_async_p ();
6381
6382 if (debug_threads)
6383 debug_printf ("linux_async (%d), previous=%d\n",
6384 enable, previous);
6385
6386 if (previous != enable)
6387 {
6388 sigset_t mask;
6389 sigemptyset (&mask);
6390 sigaddset (&mask, SIGCHLD);
6391
6392 sigprocmask (SIG_BLOCK, &mask, NULL);
6393
6394 if (enable)
6395 {
6396 if (pipe (linux_event_pipe) == -1)
6397 {
6398 linux_event_pipe[0] = -1;
6399 linux_event_pipe[1] = -1;
6400 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6401
6402 warning ("creating event pipe failed.");
6403 return previous;
6404 }
6405
6406 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6407 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6408
6409 /* Register the event loop handler. */
6410 add_file_handler (linux_event_pipe[0],
6411 handle_target_event, NULL);
6412
6413 /* Always trigger a linux_wait. */
6414 async_file_mark ();
6415 }
6416 else
6417 {
6418 delete_file_handler (linux_event_pipe[0]);
6419
6420 close (linux_event_pipe[0]);
6421 close (linux_event_pipe[1]);
6422 linux_event_pipe[0] = -1;
6423 linux_event_pipe[1] = -1;
6424 }
6425
6426 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6427 }
6428
6429 return previous;
6430 }
6431
6432 static int
6433 linux_start_non_stop (int nonstop)
6434 {
6435 /* Register or unregister from event-loop accordingly. */
6436 linux_async (nonstop);
6437
6438 if (target_is_async_p () != (nonstop != 0))
6439 return -1;
6440
6441 return 0;
6442 }
6443
6444 static int
6445 linux_supports_multi_process (void)
6446 {
6447 return 1;
6448 }
6449
6450 /* Check if fork events are supported. */
6451
6452 static int
6453 linux_supports_fork_events (void)
6454 {
6455 return linux_supports_tracefork ();
6456 }
6457
6458 /* Check if vfork events are supported. */
6459
6460 static int
6461 linux_supports_vfork_events (void)
6462 {
6463 return linux_supports_tracefork ();
6464 }
6465
6466 /* Check if exec events are supported. */
6467
6468 static int
6469 linux_supports_exec_events (void)
6470 {
6471 return linux_supports_traceexec ();
6472 }
6473
6474 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
6475 options for the specified lwp. */
6476
6477 static int
6478 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
6479 void *args)
6480 {
6481 struct thread_info *thread = (struct thread_info *) entry;
6482 struct lwp_info *lwp = get_thread_lwp (thread);
6483
6484 if (!lwp->stopped)
6485 {
6486 /* Stop the lwp so we can modify its ptrace options. */
6487 lwp->must_set_ptrace_flags = 1;
6488 linux_stop_lwp (lwp);
6489 }
6490 else
6491 {
6492 /* Already stopped; go ahead and set the ptrace options. */
6493 struct process_info *proc = find_process_pid (pid_of (thread));
6494 int options = linux_low_ptrace_options (proc->attached);
6495
6496 linux_enable_event_reporting (lwpid_of (thread), options);
6497 lwp->must_set_ptrace_flags = 0;
6498 }
6499
6500 return 0;
6501 }
6502
6503 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6504 ptrace flags for all inferiors. This is in case the new GDB connection
6505 doesn't support the same set of events that the previous one did. */
6506
6507 static void
6508 linux_handle_new_gdb_connection (void)
6509 {
6510 pid_t pid;
6511
6512 /* Request that all the lwps reset their ptrace options. */
6513 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6514 }
6515
6516 static int
6517 linux_supports_disable_randomization (void)
6518 {
6519 #ifdef HAVE_PERSONALITY
6520 return 1;
6521 #else
6522 return 0;
6523 #endif
6524 }
6525
6526 static int
6527 linux_supports_agent (void)
6528 {
6529 return 1;
6530 }
6531
6532 static int
6533 linux_supports_range_stepping (void)
6534 {
6535 if (can_software_single_step ())
6536 return 1;
6537 if (*the_low_target.supports_range_stepping == NULL)
6538 return 0;
6539
6540 return (*the_low_target.supports_range_stepping) ();
6541 }
6542
6543 /* Enumerate spufs IDs for process PID. */
6544 static int
6545 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6546 {
6547 int pos = 0;
6548 int written = 0;
6549 char path[128];
6550 DIR *dir;
6551 struct dirent *entry;
6552
6553 sprintf (path, "/proc/%ld/fd", pid);
6554 dir = opendir (path);
6555 if (!dir)
6556 return -1;
6557
6558 rewinddir (dir);
6559 while ((entry = readdir (dir)) != NULL)
6560 {
6561 struct stat st;
6562 struct statfs stfs;
6563 int fd;
6564
6565 fd = atoi (entry->d_name);
6566 if (!fd)
6567 continue;
6568
6569 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6570 if (stat (path, &st) != 0)
6571 continue;
6572 if (!S_ISDIR (st.st_mode))
6573 continue;
6574
6575 if (statfs (path, &stfs) != 0)
6576 continue;
6577 if (stfs.f_type != SPUFS_MAGIC)
6578 continue;
6579
6580 if (pos >= offset && pos + 4 <= offset + len)
6581 {
6582 *(unsigned int *)(buf + pos - offset) = fd;
6583 written += 4;
6584 }
6585 pos += 4;
6586 }
6587
6588 closedir (dir);
6589 return written;
6590 }
6591
6592 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6593 object type, using the /proc file system. */
6594 static int
6595 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6596 unsigned const char *writebuf,
6597 CORE_ADDR offset, int len)
6598 {
6599 long pid = lwpid_of (current_thread);
6600 char buf[128];
6601 int fd = 0;
6602 int ret = 0;
6603
6604 if (!writebuf && !readbuf)
6605 return -1;
6606
6607 if (!*annex)
6608 {
6609 if (!readbuf)
6610 return -1;
6611 else
6612 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6613 }
6614
6615 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6616 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6617 if (fd <= 0)
6618 return -1;
6619
6620 if (offset != 0
6621 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6622 {
6623 close (fd);
6624 return 0;
6625 }
6626
6627 if (writebuf)
6628 ret = write (fd, writebuf, (size_t) len);
6629 else
6630 ret = read (fd, readbuf, (size_t) len);
6631
6632 close (fd);
6633 return ret;
6634 }
6635
6636 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6637 struct target_loadseg
6638 {
6639 /* Core address to which the segment is mapped. */
6640 Elf32_Addr addr;
6641 /* VMA recorded in the program header. */
6642 Elf32_Addr p_vaddr;
6643 /* Size of this segment in memory. */
6644 Elf32_Word p_memsz;
6645 };
6646
6647 # if defined PT_GETDSBT
6648 struct target_loadmap
6649 {
6650 /* Protocol version number, must be zero. */
6651 Elf32_Word version;
6652 /* Pointer to the DSBT table, its size, and the DSBT index. */
6653 unsigned *dsbt_table;
6654 unsigned dsbt_size, dsbt_index;
6655 /* Number of segments in this map. */
6656 Elf32_Word nsegs;
6657 /* The actual memory map. */
6658 struct target_loadseg segs[/*nsegs*/];
6659 };
6660 # define LINUX_LOADMAP PT_GETDSBT
6661 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6662 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6663 # else
6664 struct target_loadmap
6665 {
6666 /* Protocol version number, must be zero. */
6667 Elf32_Half version;
6668 /* Number of segments in this map. */
6669 Elf32_Half nsegs;
6670 /* The actual memory map. */
6671 struct target_loadseg segs[/*nsegs*/];
6672 };
6673 # define LINUX_LOADMAP PTRACE_GETFDPIC
6674 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6675 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6676 # endif
6677
6678 static int
6679 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6680 unsigned char *myaddr, unsigned int len)
6681 {
6682 int pid = lwpid_of (current_thread);
6683 int addr = -1;
6684 struct target_loadmap *data = NULL;
6685 unsigned int actual_length, copy_length;
6686
6687 if (strcmp (annex, "exec") == 0)
6688 addr = (int) LINUX_LOADMAP_EXEC;
6689 else if (strcmp (annex, "interp") == 0)
6690 addr = (int) LINUX_LOADMAP_INTERP;
6691 else
6692 return -1;
6693
6694 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6695 return -1;
6696
6697 if (data == NULL)
6698 return -1;
6699
6700 actual_length = sizeof (struct target_loadmap)
6701 + sizeof (struct target_loadseg) * data->nsegs;
6702
6703 if (offset < 0 || offset > actual_length)
6704 return -1;
6705
6706 copy_length = actual_length - offset < len ? actual_length - offset : len;
6707 memcpy (myaddr, (char *) data + offset, copy_length);
6708 return copy_length;
6709 }
6710 #else
6711 # define linux_read_loadmap NULL
6712 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6713
6714 static void
6715 linux_process_qsupported (char **features, int count)
6716 {
6717 if (the_low_target.process_qsupported != NULL)
6718 the_low_target.process_qsupported (features, count);
6719 }
6720
6721 static int
6722 linux_supports_catch_syscall (void)
6723 {
6724 return (the_low_target.get_syscall_trapinfo != NULL
6725 && linux_supports_tracesysgood ());
6726 }
6727
6728 static int
6729 linux_get_ipa_tdesc_idx (void)
6730 {
6731 if (the_low_target.get_ipa_tdesc_idx == NULL)
6732 return 0;
6733
6734 return (*the_low_target.get_ipa_tdesc_idx) ();
6735 }
6736
6737 static int
6738 linux_supports_tracepoints (void)
6739 {
6740 if (*the_low_target.supports_tracepoints == NULL)
6741 return 0;
6742
6743 return (*the_low_target.supports_tracepoints) ();
6744 }
6745
6746 static CORE_ADDR
6747 linux_read_pc (struct regcache *regcache)
6748 {
6749 if (the_low_target.get_pc == NULL)
6750 return 0;
6751
6752 return (*the_low_target.get_pc) (regcache);
6753 }
6754
6755 static void
6756 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6757 {
6758 gdb_assert (the_low_target.set_pc != NULL);
6759
6760 (*the_low_target.set_pc) (regcache, pc);
6761 }
6762
6763 static int
6764 linux_thread_stopped (struct thread_info *thread)
6765 {
6766 return get_thread_lwp (thread)->stopped;
6767 }
6768
6769 /* This exposes stop-all-threads functionality to other modules. */
6770
6771 static void
6772 linux_pause_all (int freeze)
6773 {
6774 stop_all_lwps (freeze, NULL);
6775 }
6776
6777 /* This exposes unstop-all-threads functionality to other gdbserver
6778 modules. */
6779
6780 static void
6781 linux_unpause_all (int unfreeze)
6782 {
6783 unstop_all_lwps (unfreeze, NULL);
6784 }
6785
6786 static int
6787 linux_prepare_to_access_memory (void)
6788 {
6789 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6790 running LWP. */
6791 if (non_stop)
6792 linux_pause_all (1);
6793 return 0;
6794 }
6795
6796 static void
6797 linux_done_accessing_memory (void)
6798 {
6799 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6800 running LWP. */
6801 if (non_stop)
6802 linux_unpause_all (1);
6803 }
6804
6805 static int
6806 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6807 CORE_ADDR collector,
6808 CORE_ADDR lockaddr,
6809 ULONGEST orig_size,
6810 CORE_ADDR *jump_entry,
6811 CORE_ADDR *trampoline,
6812 ULONGEST *trampoline_size,
6813 unsigned char *jjump_pad_insn,
6814 ULONGEST *jjump_pad_insn_size,
6815 CORE_ADDR *adjusted_insn_addr,
6816 CORE_ADDR *adjusted_insn_addr_end,
6817 char *err)
6818 {
6819 return (*the_low_target.install_fast_tracepoint_jump_pad)
6820 (tpoint, tpaddr, collector, lockaddr, orig_size,
6821 jump_entry, trampoline, trampoline_size,
6822 jjump_pad_insn, jjump_pad_insn_size,
6823 adjusted_insn_addr, adjusted_insn_addr_end,
6824 err);
6825 }
6826
6827 static struct emit_ops *
6828 linux_emit_ops (void)
6829 {
6830 if (the_low_target.emit_ops != NULL)
6831 return (*the_low_target.emit_ops) ();
6832 else
6833 return NULL;
6834 }
6835
6836 static int
6837 linux_get_min_fast_tracepoint_insn_len (void)
6838 {
6839 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6840 }
6841
6842 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6843
6844 static int
6845 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6846 CORE_ADDR *phdr_memaddr, int *num_phdr)
6847 {
6848 char filename[PATH_MAX];
6849 int fd;
6850 const int auxv_size = is_elf64
6851 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6852 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6853
6854 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6855
6856 fd = open (filename, O_RDONLY);
6857 if (fd < 0)
6858 return 1;
6859
6860 *phdr_memaddr = 0;
6861 *num_phdr = 0;
6862 while (read (fd, buf, auxv_size) == auxv_size
6863 && (*phdr_memaddr == 0 || *num_phdr == 0))
6864 {
6865 if (is_elf64)
6866 {
6867 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6868
6869 switch (aux->a_type)
6870 {
6871 case AT_PHDR:
6872 *phdr_memaddr = aux->a_un.a_val;
6873 break;
6874 case AT_PHNUM:
6875 *num_phdr = aux->a_un.a_val;
6876 break;
6877 }
6878 }
6879 else
6880 {
6881 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6882
6883 switch (aux->a_type)
6884 {
6885 case AT_PHDR:
6886 *phdr_memaddr = aux->a_un.a_val;
6887 break;
6888 case AT_PHNUM:
6889 *num_phdr = aux->a_un.a_val;
6890 break;
6891 }
6892 }
6893 }
6894
6895 close (fd);
6896
6897 if (*phdr_memaddr == 0 || *num_phdr == 0)
6898 {
6899 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6900 "phdr_memaddr = %ld, phdr_num = %d",
6901 (long) *phdr_memaddr, *num_phdr);
6902 return 2;
6903 }
6904
6905 return 0;
6906 }
6907
6908 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6909
6910 static CORE_ADDR
6911 get_dynamic (const int pid, const int is_elf64)
6912 {
6913 CORE_ADDR phdr_memaddr, relocation;
6914 int num_phdr, i;
6915 unsigned char *phdr_buf;
6916 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6917
6918 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6919 return 0;
6920
6921 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6922 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6923
6924 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6925 return 0;
6926
6927 /* Compute relocation: it is expected to be 0 for "regular" executables,
6928 non-zero for PIE ones. */
6929 relocation = -1;
6930 for (i = 0; relocation == -1 && i < num_phdr; i++)
6931 if (is_elf64)
6932 {
6933 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6934
6935 if (p->p_type == PT_PHDR)
6936 relocation = phdr_memaddr - p->p_vaddr;
6937 }
6938 else
6939 {
6940 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6941
6942 if (p->p_type == PT_PHDR)
6943 relocation = phdr_memaddr - p->p_vaddr;
6944 }
6945
6946 if (relocation == -1)
6947 {
6948 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6949 any real world executables, including PIE executables, have always
6950 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6951 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6952 or present DT_DEBUG anyway (fpc binaries are statically linked).
6953
6954 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6955
6956 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6957
6958 return 0;
6959 }
6960
6961 for (i = 0; i < num_phdr; i++)
6962 {
6963 if (is_elf64)
6964 {
6965 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6966
6967 if (p->p_type == PT_DYNAMIC)
6968 return p->p_vaddr + relocation;
6969 }
6970 else
6971 {
6972 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6973
6974 if (p->p_type == PT_DYNAMIC)
6975 return p->p_vaddr + relocation;
6976 }
6977 }
6978
6979 return 0;
6980 }
6981
6982 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6983 can be 0 if the inferior does not yet have the library list initialized.
6984 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6985 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6986
6987 static CORE_ADDR
6988 get_r_debug (const int pid, const int is_elf64)
6989 {
6990 CORE_ADDR dynamic_memaddr;
6991 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6992 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6993 CORE_ADDR map = -1;
6994
6995 dynamic_memaddr = get_dynamic (pid, is_elf64);
6996 if (dynamic_memaddr == 0)
6997 return map;
6998
6999 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
7000 {
7001 if (is_elf64)
7002 {
7003 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
7004 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
7005 union
7006 {
7007 Elf64_Xword map;
7008 unsigned char buf[sizeof (Elf64_Xword)];
7009 }
7010 rld_map;
7011 #endif
7012 #ifdef DT_MIPS_RLD_MAP
7013 if (dyn->d_tag == DT_MIPS_RLD_MAP)
7014 {
7015 if (linux_read_memory (dyn->d_un.d_val,
7016 rld_map.buf, sizeof (rld_map.buf)) == 0)
7017 return rld_map.map;
7018 else
7019 break;
7020 }
7021 #endif /* DT_MIPS_RLD_MAP */
7022 #ifdef DT_MIPS_RLD_MAP_REL
7023 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
7024 {
7025 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
7026 rld_map.buf, sizeof (rld_map.buf)) == 0)
7027 return rld_map.map;
7028 else
7029 break;
7030 }
7031 #endif /* DT_MIPS_RLD_MAP_REL */
7032
7033 if (dyn->d_tag == DT_DEBUG && map == -1)
7034 map = dyn->d_un.d_val;
7035
7036 if (dyn->d_tag == DT_NULL)
7037 break;
7038 }
7039 else
7040 {
7041 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
7042 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
7043 union
7044 {
7045 Elf32_Word map;
7046 unsigned char buf[sizeof (Elf32_Word)];
7047 }
7048 rld_map;
7049 #endif
7050 #ifdef DT_MIPS_RLD_MAP
7051 if (dyn->d_tag == DT_MIPS_RLD_MAP)
7052 {
7053 if (linux_read_memory (dyn->d_un.d_val,
7054 rld_map.buf, sizeof (rld_map.buf)) == 0)
7055 return rld_map.map;
7056 else
7057 break;
7058 }
7059 #endif /* DT_MIPS_RLD_MAP */
7060 #ifdef DT_MIPS_RLD_MAP_REL
7061 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
7062 {
7063 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
7064 rld_map.buf, sizeof (rld_map.buf)) == 0)
7065 return rld_map.map;
7066 else
7067 break;
7068 }
7069 #endif /* DT_MIPS_RLD_MAP_REL */
7070
7071 if (dyn->d_tag == DT_DEBUG && map == -1)
7072 map = dyn->d_un.d_val;
7073
7074 if (dyn->d_tag == DT_NULL)
7075 break;
7076 }
7077
7078 dynamic_memaddr += dyn_size;
7079 }
7080
7081 return map;
7082 }
7083
7084 /* Read one pointer from MEMADDR in the inferior. */
7085
7086 static int
7087 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
7088 {
7089 int ret;
7090
7091 /* Go through a union so this works on either big or little endian
7092 hosts, when the inferior's pointer size is smaller than the size
7093 of CORE_ADDR. It is assumed the inferior's endianness is the
7094 same of the superior's. */
7095 union
7096 {
7097 CORE_ADDR core_addr;
7098 unsigned int ui;
7099 unsigned char uc;
7100 } addr;
7101
7102 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
7103 if (ret == 0)
7104 {
7105 if (ptr_size == sizeof (CORE_ADDR))
7106 *ptr = addr.core_addr;
7107 else if (ptr_size == sizeof (unsigned int))
7108 *ptr = addr.ui;
7109 else
7110 gdb_assert_not_reached ("unhandled pointer size");
7111 }
7112 return ret;
7113 }
7114
7115 struct link_map_offsets
7116 {
7117 /* Offset and size of r_debug.r_version. */
7118 int r_version_offset;
7119
7120 /* Offset and size of r_debug.r_map. */
7121 int r_map_offset;
7122
7123 /* Offset to l_addr field in struct link_map. */
7124 int l_addr_offset;
7125
7126 /* Offset to l_name field in struct link_map. */
7127 int l_name_offset;
7128
7129 /* Offset to l_ld field in struct link_map. */
7130 int l_ld_offset;
7131
7132 /* Offset to l_next field in struct link_map. */
7133 int l_next_offset;
7134
7135 /* Offset to l_prev field in struct link_map. */
7136 int l_prev_offset;
7137 };
7138
7139 /* Construct qXfer:libraries-svr4:read reply. */
7140
7141 static int
7142 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
7143 unsigned const char *writebuf,
7144 CORE_ADDR offset, int len)
7145 {
7146 char *document;
7147 unsigned document_len;
7148 struct process_info_private *const priv = current_process ()->priv;
7149 char filename[PATH_MAX];
7150 int pid, is_elf64;
7151
7152 static const struct link_map_offsets lmo_32bit_offsets =
7153 {
7154 0, /* r_version offset. */
7155 4, /* r_debug.r_map offset. */
7156 0, /* l_addr offset in link_map. */
7157 4, /* l_name offset in link_map. */
7158 8, /* l_ld offset in link_map. */
7159 12, /* l_next offset in link_map. */
7160 16 /* l_prev offset in link_map. */
7161 };
7162
7163 static const struct link_map_offsets lmo_64bit_offsets =
7164 {
7165 0, /* r_version offset. */
7166 8, /* r_debug.r_map offset. */
7167 0, /* l_addr offset in link_map. */
7168 8, /* l_name offset in link_map. */
7169 16, /* l_ld offset in link_map. */
7170 24, /* l_next offset in link_map. */
7171 32 /* l_prev offset in link_map. */
7172 };
7173 const struct link_map_offsets *lmo;
7174 unsigned int machine;
7175 int ptr_size;
7176 CORE_ADDR lm_addr = 0, lm_prev = 0;
7177 int allocated = 1024;
7178 char *p;
7179 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7180 int header_done = 0;
7181
7182 if (writebuf != NULL)
7183 return -2;
7184 if (readbuf == NULL)
7185 return -1;
7186
7187 pid = lwpid_of (current_thread);
7188 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7189 is_elf64 = elf_64_file_p (filename, &machine);
7190 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7191 ptr_size = is_elf64 ? 8 : 4;
7192
7193 while (annex[0] != '\0')
7194 {
7195 const char *sep;
7196 CORE_ADDR *addrp;
7197 int len;
7198
7199 sep = strchr (annex, '=');
7200 if (sep == NULL)
7201 break;
7202
7203 len = sep - annex;
7204 if (len == 5 && startswith (annex, "start"))
7205 addrp = &lm_addr;
7206 else if (len == 4 && startswith (annex, "prev"))
7207 addrp = &lm_prev;
7208 else
7209 {
7210 annex = strchr (sep, ';');
7211 if (annex == NULL)
7212 break;
7213 annex++;
7214 continue;
7215 }
7216
7217 annex = decode_address_to_semicolon (addrp, sep + 1);
7218 }
7219
7220 if (lm_addr == 0)
7221 {
7222 int r_version = 0;
7223
7224 if (priv->r_debug == 0)
7225 priv->r_debug = get_r_debug (pid, is_elf64);
7226
7227 /* We failed to find DT_DEBUG. Such situation will not change
7228 for this inferior - do not retry it. Report it to GDB as
7229 E01, see for the reasons at the GDB solib-svr4.c side. */
7230 if (priv->r_debug == (CORE_ADDR) -1)
7231 return -1;
7232
7233 if (priv->r_debug != 0)
7234 {
7235 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7236 (unsigned char *) &r_version,
7237 sizeof (r_version)) != 0
7238 || r_version != 1)
7239 {
7240 warning ("unexpected r_debug version %d", r_version);
7241 }
7242 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7243 &lm_addr, ptr_size) != 0)
7244 {
7245 warning ("unable to read r_map from 0x%lx",
7246 (long) priv->r_debug + lmo->r_map_offset);
7247 }
7248 }
7249 }
7250
7251 document = (char *) xmalloc (allocated);
7252 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7253 p = document + strlen (document);
7254
7255 while (lm_addr
7256 && read_one_ptr (lm_addr + lmo->l_name_offset,
7257 &l_name, ptr_size) == 0
7258 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7259 &l_addr, ptr_size) == 0
7260 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7261 &l_ld, ptr_size) == 0
7262 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7263 &l_prev, ptr_size) == 0
7264 && read_one_ptr (lm_addr + lmo->l_next_offset,
7265 &l_next, ptr_size) == 0)
7266 {
7267 unsigned char libname[PATH_MAX];
7268
7269 if (lm_prev != l_prev)
7270 {
7271 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7272 (long) lm_prev, (long) l_prev);
7273 break;
7274 }
7275
7276 /* Ignore the first entry even if it has valid name as the first entry
7277 corresponds to the main executable. The first entry should not be
7278 skipped if the dynamic loader was loaded late by a static executable
7279 (see solib-svr4.c parameter ignore_first). But in such case the main
7280 executable does not have PT_DYNAMIC present and this function already
7281 exited above due to failed get_r_debug. */
7282 if (lm_prev == 0)
7283 {
7284 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7285 p = p + strlen (p);
7286 }
7287 else
7288 {
7289 /* Not checking for error because reading may stop before
7290 we've got PATH_MAX worth of characters. */
7291 libname[0] = '\0';
7292 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7293 libname[sizeof (libname) - 1] = '\0';
7294 if (libname[0] != '\0')
7295 {
7296 /* 6x the size for xml_escape_text below. */
7297 size_t len = 6 * strlen ((char *) libname);
7298
7299 if (!header_done)
7300 {
7301 /* Terminate `<library-list-svr4'. */
7302 *p++ = '>';
7303 header_done = 1;
7304 }
7305
7306 while (allocated < p - document + len + 200)
7307 {
7308 /* Expand to guarantee sufficient storage. */
7309 uintptr_t document_len = p - document;
7310
7311 document = (char *) xrealloc (document, 2 * allocated);
7312 allocated *= 2;
7313 p = document + document_len;
7314 }
7315
7316 std::string name = xml_escape_text ((char *) libname);
7317 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7318 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7319 name.c_str (), (unsigned long) lm_addr,
7320 (unsigned long) l_addr, (unsigned long) l_ld);
7321 }
7322 }
7323
7324 lm_prev = lm_addr;
7325 lm_addr = l_next;
7326 }
7327
7328 if (!header_done)
7329 {
7330 /* Empty list; terminate `<library-list-svr4'. */
7331 strcpy (p, "/>");
7332 }
7333 else
7334 strcpy (p, "</library-list-svr4>");
7335
7336 document_len = strlen (document);
7337 if (offset < document_len)
7338 document_len -= offset;
7339 else
7340 document_len = 0;
7341 if (len > document_len)
7342 len = document_len;
7343
7344 memcpy (readbuf, document + offset, len);
7345 xfree (document);
7346
7347 return len;
7348 }
7349
7350 #ifdef HAVE_LINUX_BTRACE
7351
7352 /* See to_disable_btrace target method. */
7353
7354 static int
7355 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7356 {
7357 enum btrace_error err;
7358
7359 err = linux_disable_btrace (tinfo);
7360 return (err == BTRACE_ERR_NONE ? 0 : -1);
7361 }
7362
7363 /* Encode an Intel Processor Trace configuration. */
7364
7365 static void
7366 linux_low_encode_pt_config (struct buffer *buffer,
7367 const struct btrace_data_pt_config *config)
7368 {
7369 buffer_grow_str (buffer, "<pt-config>\n");
7370
7371 switch (config->cpu.vendor)
7372 {
7373 case CV_INTEL:
7374 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7375 "model=\"%u\" stepping=\"%u\"/>\n",
7376 config->cpu.family, config->cpu.model,
7377 config->cpu.stepping);
7378 break;
7379
7380 default:
7381 break;
7382 }
7383
7384 buffer_grow_str (buffer, "</pt-config>\n");
7385 }
7386
7387 /* Encode a raw buffer. */
7388
7389 static void
7390 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7391 unsigned int size)
7392 {
7393 if (size == 0)
7394 return;
7395
7396 /* We use hex encoding - see common/rsp-low.h. */
7397 buffer_grow_str (buffer, "<raw>\n");
7398
7399 while (size-- > 0)
7400 {
7401 char elem[2];
7402
7403 elem[0] = tohex ((*data >> 4) & 0xf);
7404 elem[1] = tohex (*data++ & 0xf);
7405
7406 buffer_grow (buffer, elem, 2);
7407 }
7408
7409 buffer_grow_str (buffer, "</raw>\n");
7410 }
7411
7412 /* See to_read_btrace target method. */
7413
7414 static int
7415 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7416 enum btrace_read_type type)
7417 {
7418 struct btrace_data btrace;
7419 struct btrace_block *block;
7420 enum btrace_error err;
7421 int i;
7422
7423 btrace_data_init (&btrace);
7424
7425 err = linux_read_btrace (&btrace, tinfo, type);
7426 if (err != BTRACE_ERR_NONE)
7427 {
7428 if (err == BTRACE_ERR_OVERFLOW)
7429 buffer_grow_str0 (buffer, "E.Overflow.");
7430 else
7431 buffer_grow_str0 (buffer, "E.Generic Error.");
7432
7433 goto err;
7434 }
7435
7436 switch (btrace.format)
7437 {
7438 case BTRACE_FORMAT_NONE:
7439 buffer_grow_str0 (buffer, "E.No Trace.");
7440 goto err;
7441
7442 case BTRACE_FORMAT_BTS:
7443 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7444 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7445
7446 for (i = 0;
7447 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7448 i++)
7449 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7450 paddress (block->begin), paddress (block->end));
7451
7452 buffer_grow_str0 (buffer, "</btrace>\n");
7453 break;
7454
7455 case BTRACE_FORMAT_PT:
7456 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7457 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7458 buffer_grow_str (buffer, "<pt>\n");
7459
7460 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7461
7462 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7463 btrace.variant.pt.size);
7464
7465 buffer_grow_str (buffer, "</pt>\n");
7466 buffer_grow_str0 (buffer, "</btrace>\n");
7467 break;
7468
7469 default:
7470 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7471 goto err;
7472 }
7473
7474 btrace_data_fini (&btrace);
7475 return 0;
7476
7477 err:
7478 btrace_data_fini (&btrace);
7479 return -1;
7480 }
7481
7482 /* See to_btrace_conf target method. */
7483
7484 static int
7485 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7486 struct buffer *buffer)
7487 {
7488 const struct btrace_config *conf;
7489
7490 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7491 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7492
7493 conf = linux_btrace_conf (tinfo);
7494 if (conf != NULL)
7495 {
7496 switch (conf->format)
7497 {
7498 case BTRACE_FORMAT_NONE:
7499 break;
7500
7501 case BTRACE_FORMAT_BTS:
7502 buffer_xml_printf (buffer, "<bts");
7503 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7504 buffer_xml_printf (buffer, " />\n");
7505 break;
7506
7507 case BTRACE_FORMAT_PT:
7508 buffer_xml_printf (buffer, "<pt");
7509 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7510 buffer_xml_printf (buffer, "/>\n");
7511 break;
7512 }
7513 }
7514
7515 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7516 return 0;
7517 }
7518 #endif /* HAVE_LINUX_BTRACE */
7519
7520 /* See nat/linux-nat.h. */
7521
7522 ptid_t
7523 current_lwp_ptid (void)
7524 {
7525 return ptid_of (current_thread);
7526 }
7527
7528 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7529
7530 static int
7531 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7532 {
7533 if (the_low_target.breakpoint_kind_from_pc != NULL)
7534 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7535 else
7536 return default_breakpoint_kind_from_pc (pcptr);
7537 }
7538
7539 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7540
7541 static const gdb_byte *
7542 linux_sw_breakpoint_from_kind (int kind, int *size)
7543 {
7544 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7545
7546 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7547 }
7548
7549 /* Implementation of the target_ops method
7550 "breakpoint_kind_from_current_state". */
7551
7552 static int
7553 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7554 {
7555 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7556 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7557 else
7558 return linux_breakpoint_kind_from_pc (pcptr);
7559 }
7560
7561 /* Default implementation of linux_target_ops method "set_pc" for
7562 32-bit pc register which is literally named "pc". */
7563
7564 void
7565 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7566 {
7567 uint32_t newpc = pc;
7568
7569 supply_register_by_name (regcache, "pc", &newpc);
7570 }
7571
7572 /* Default implementation of linux_target_ops method "get_pc" for
7573 32-bit pc register which is literally named "pc". */
7574
7575 CORE_ADDR
7576 linux_get_pc_32bit (struct regcache *regcache)
7577 {
7578 uint32_t pc;
7579
7580 collect_register_by_name (regcache, "pc", &pc);
7581 if (debug_threads)
7582 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7583 return pc;
7584 }
7585
7586 /* Default implementation of linux_target_ops method "set_pc" for
7587 64-bit pc register which is literally named "pc". */
7588
7589 void
7590 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7591 {
7592 uint64_t newpc = pc;
7593
7594 supply_register_by_name (regcache, "pc", &newpc);
7595 }
7596
7597 /* Default implementation of linux_target_ops method "get_pc" for
7598 64-bit pc register which is literally named "pc". */
7599
7600 CORE_ADDR
7601 linux_get_pc_64bit (struct regcache *regcache)
7602 {
7603 uint64_t pc;
7604
7605 collect_register_by_name (regcache, "pc", &pc);
7606 if (debug_threads)
7607 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7608 return pc;
7609 }
7610
7611
7612 static struct target_ops linux_target_ops = {
7613 linux_create_inferior,
7614 linux_post_create_inferior,
7615 linux_attach,
7616 linux_kill,
7617 linux_detach,
7618 linux_mourn,
7619 linux_join,
7620 linux_thread_alive,
7621 linux_resume,
7622 linux_wait,
7623 linux_fetch_registers,
7624 linux_store_registers,
7625 linux_prepare_to_access_memory,
7626 linux_done_accessing_memory,
7627 linux_read_memory,
7628 linux_write_memory,
7629 linux_look_up_symbols,
7630 linux_request_interrupt,
7631 linux_read_auxv,
7632 linux_supports_z_point_type,
7633 linux_insert_point,
7634 linux_remove_point,
7635 linux_stopped_by_sw_breakpoint,
7636 linux_supports_stopped_by_sw_breakpoint,
7637 linux_stopped_by_hw_breakpoint,
7638 linux_supports_stopped_by_hw_breakpoint,
7639 linux_supports_hardware_single_step,
7640 linux_stopped_by_watchpoint,
7641 linux_stopped_data_address,
7642 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7643 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7644 && defined(PT_TEXT_END_ADDR)
7645 linux_read_offsets,
7646 #else
7647 NULL,
7648 #endif
7649 #ifdef USE_THREAD_DB
7650 thread_db_get_tls_address,
7651 #else
7652 NULL,
7653 #endif
7654 linux_qxfer_spu,
7655 hostio_last_error_from_errno,
7656 linux_qxfer_osdata,
7657 linux_xfer_siginfo,
7658 linux_supports_non_stop,
7659 linux_async,
7660 linux_start_non_stop,
7661 linux_supports_multi_process,
7662 linux_supports_fork_events,
7663 linux_supports_vfork_events,
7664 linux_supports_exec_events,
7665 linux_handle_new_gdb_connection,
7666 #ifdef USE_THREAD_DB
7667 thread_db_handle_monitor_command,
7668 #else
7669 NULL,
7670 #endif
7671 linux_common_core_of_thread,
7672 linux_read_loadmap,
7673 linux_process_qsupported,
7674 linux_supports_tracepoints,
7675 linux_read_pc,
7676 linux_write_pc,
7677 linux_thread_stopped,
7678 NULL,
7679 linux_pause_all,
7680 linux_unpause_all,
7681 linux_stabilize_threads,
7682 linux_install_fast_tracepoint_jump_pad,
7683 linux_emit_ops,
7684 linux_supports_disable_randomization,
7685 linux_get_min_fast_tracepoint_insn_len,
7686 linux_qxfer_libraries_svr4,
7687 linux_supports_agent,
7688 #ifdef HAVE_LINUX_BTRACE
7689 linux_supports_btrace,
7690 linux_enable_btrace,
7691 linux_low_disable_btrace,
7692 linux_low_read_btrace,
7693 linux_low_btrace_conf,
7694 #else
7695 NULL,
7696 NULL,
7697 NULL,
7698 NULL,
7699 NULL,
7700 #endif
7701 linux_supports_range_stepping,
7702 linux_proc_pid_to_exec_file,
7703 linux_mntns_open_cloexec,
7704 linux_mntns_unlink,
7705 linux_mntns_readlink,
7706 linux_breakpoint_kind_from_pc,
7707 linux_sw_breakpoint_from_kind,
7708 linux_proc_tid_get_name,
7709 linux_breakpoint_kind_from_current_state,
7710 linux_supports_software_single_step,
7711 linux_supports_catch_syscall,
7712 linux_get_ipa_tdesc_idx,
7713 #if USE_THREAD_DB
7714 thread_db_thread_handle,
7715 #else
7716 NULL,
7717 #endif
7718 };
7719
7720 #ifdef HAVE_LINUX_REGSETS
7721 void
7722 initialize_regsets_info (struct regsets_info *info)
7723 {
7724 for (info->num_regsets = 0;
7725 info->regsets[info->num_regsets].size >= 0;
7726 info->num_regsets++)
7727 ;
7728 }
7729 #endif
7730
7731 void
7732 initialize_low (void)
7733 {
7734 struct sigaction sigchld_action;
7735
7736 memset (&sigchld_action, 0, sizeof (sigchld_action));
7737 set_target_ops (&linux_target_ops);
7738
7739 linux_ptrace_init_warnings ();
7740
7741 sigchld_action.sa_handler = sigchld_handler;
7742 sigemptyset (&sigchld_action.sa_mask);
7743 sigchld_action.sa_flags = SA_RESTART;
7744 sigaction (SIGCHLD, &sigchld_action, NULL);
7745
7746 initialize_low_arch ();
7747
7748 linux_check_ptrace_features ();
7749 }