]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Remove usage of find_inferior in reset_lwp_ptrace_options_callback
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (thread_info *thread, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417
418 if (the_low_target.delete_thread != NULL)
419 the_low_target.delete_thread (lwp->arch_private);
420 else
421 gdb_assert (lwp->arch_private == NULL);
422
423 free (lwp);
424 }
425
426 /* Add a process to the common process list, and set its private
427 data. */
428
429 static struct process_info *
430 linux_add_process (int pid, int attached)
431 {
432 struct process_info *proc;
433
434 proc = add_process (pid, attached);
435 proc->priv = XCNEW (struct process_info_private);
436
437 if (the_low_target.new_process != NULL)
438 proc->priv->arch_private = the_low_target.new_process ();
439
440 return proc;
441 }
442
443 static CORE_ADDR get_pc (struct lwp_info *lwp);
444
445 /* Call the target arch_setup function on the current thread. */
446
447 static void
448 linux_arch_setup (void)
449 {
450 the_low_target.arch_setup ();
451 }
452
453 /* Call the target arch_setup function on THREAD. */
454
455 static void
456 linux_arch_setup_thread (struct thread_info *thread)
457 {
458 struct thread_info *saved_thread;
459
460 saved_thread = current_thread;
461 current_thread = thread;
462
463 linux_arch_setup ();
464
465 current_thread = saved_thread;
466 }
467
468 /* Handle a GNU/Linux extended wait response. If we see a clone,
469 fork, or vfork event, we need to add the new LWP to our list
470 (and return 0 so as not to report the trap to higher layers).
471 If we see an exec event, we will modify ORIG_EVENT_LWP to point
472 to a new LWP representing the new program. */
473
474 static int
475 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
476 {
477 struct lwp_info *event_lwp = *orig_event_lwp;
478 int event = linux_ptrace_get_extended_event (wstat);
479 struct thread_info *event_thr = get_lwp_thread (event_lwp);
480 struct lwp_info *new_lwp;
481
482 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
483
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
488
489 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
490 || (event == PTRACE_EVENT_CLONE))
491 {
492 ptid_t ptid;
493 unsigned long new_pid;
494 int ret, status;
495
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
498 &new_pid);
499
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
502 {
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
505
506 ret = my_waitpid (new_pid, &status, __WALL);
507
508 if (ret == -1)
509 perror_with_name ("waiting for new child");
510 else if (ret != new_pid)
511 warning ("wait returned unexpected PID %d", ret);
512 else if (!WIFSTOPPED (status))
513 warning ("wait returned unexpected status 0x%x", status);
514 }
515
516 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
517 {
518 struct process_info *parent_proc;
519 struct process_info *child_proc;
520 struct lwp_info *child_lwp;
521 struct thread_info *child_thr;
522 struct target_desc *tdesc;
523
524 ptid = ptid_build (new_pid, new_pid, 0);
525
526 if (debug_threads)
527 {
528 debug_printf ("HEW: Got fork event from LWP %ld, "
529 "new child is %d\n",
530 ptid_get_lwp (ptid_of (event_thr)),
531 ptid_get_pid (ptid));
532 }
533
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc = linux_add_process (new_pid, 0);
540 gdb_assert (child_proc != NULL);
541 child_lwp = add_lwp (ptid);
542 gdb_assert (child_lwp != NULL);
543 child_lwp->stopped = 1;
544 child_lwp->must_set_ptrace_flags = 1;
545 child_lwp->status_pending_p = 0;
546 child_thr = get_lwp_thread (child_lwp);
547 child_thr->last_resume_kind = resume_stop;
548 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
549
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp->bp_reinsert != 0)
556 {
557 if (debug_threads)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp->suspended = 1;
560 }
561
562 parent_proc = get_thread_process (event_thr);
563 child_proc->attached = parent_proc->attached;
564
565 if (event_lwp->bp_reinsert != 0
566 && can_software_single_step ()
567 && event == PTRACE_EVENT_VFORK)
568 {
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr);
574 }
575
576 clone_all_breakpoints (child_thr, event_thr);
577
578 tdesc = allocate_target_description ();
579 copy_target_description (tdesc, parent_proc->tdesc);
580 child_proc->tdesc = tdesc;
581
582 /* Clone arch-specific process data. */
583 if (the_low_target.new_fork != NULL)
584 the_low_target.new_fork (parent_proc, child_proc);
585
586 /* Save fork info in the parent thread. */
587 if (event == PTRACE_EVENT_FORK)
588 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
589 else if (event == PTRACE_EVENT_VFORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
591
592 event_lwp->waitstatus.value.related_pid = ptid;
593
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp->status_pending_p = 1;
598 event_lwp->status_pending = wstat;
599
600 /* Link the threads until the parent event is passed on to
601 higher layers. */
602 event_lwp->fork_relative = child_lwp;
603 child_lwp->fork_relative = event_lwp;
604
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
609 child is done. */
610 if (event_lwp->bp_reinsert != 0
611 && can_software_single_step ())
612 {
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr);
617
618 gdb_assert (has_single_step_breakpoints (event_thr));
619 gdb_assert (!has_single_step_breakpoints (child_thr));
620 }
621
622 /* Report the event. */
623 return 0;
624 }
625
626 if (debug_threads)
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr), new_pid);
630
631 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
632 new_lwp = add_lwp (ptid);
633
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp->stopped = 1;
639
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp->bp_reinsert != 0)
646 new_lwp->suspended = 1;
647
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status) != SIGSTOP)
652 {
653 new_lwp->stop_expected = 1;
654 new_lwp->status_pending_p = 1;
655 new_lwp->status_pending = status;
656 }
657 else if (report_thread_events)
658 {
659 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663
664 thread_db_notice_clone (event_thr, ptid);
665
666 /* Don't report the event. */
667 return 1;
668 }
669 else if (event == PTRACE_EVENT_VFORK_DONE)
670 {
671 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
672
673 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
674 {
675 reinsert_single_step_breakpoints (event_thr);
676
677 gdb_assert (has_single_step_breakpoints (event_thr));
678 }
679
680 /* Report the event. */
681 return 0;
682 }
683 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
684 {
685 struct process_info *proc;
686 std::vector<int> syscalls_to_catch;
687 ptid_t event_ptid;
688 pid_t event_pid;
689
690 if (debug_threads)
691 {
692 debug_printf ("HEW: Got exec event from LWP %ld\n",
693 lwpid_of (event_thr));
694 }
695
696 /* Get the event ptid. */
697 event_ptid = ptid_of (event_thr);
698 event_pid = ptid_get_pid (event_ptid);
699
700 /* Save the syscall list from the execing process. */
701 proc = get_thread_process (event_thr);
702 syscalls_to_catch = std::move (proc->syscalls_to_catch);
703
704 /* Delete the execing process and all its threads. */
705 linux_mourn (proc);
706 current_thread = NULL;
707
708 /* Create a new process/lwp/thread. */
709 proc = linux_add_process (event_pid, 0);
710 event_lwp = add_lwp (event_ptid);
711 event_thr = get_lwp_thread (event_lwp);
712 gdb_assert (current_thread == event_thr);
713 linux_arch_setup_thread (event_thr);
714
715 /* Set the event status. */
716 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
717 event_lwp->waitstatus.value.execd_pathname
718 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
719
720 /* Mark the exec status as pending. */
721 event_lwp->stopped = 1;
722 event_lwp->status_pending_p = 1;
723 event_lwp->status_pending = wstat;
724 event_thr->last_resume_kind = resume_continue;
725 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
726
727 /* Update syscall state in the new lwp, effectively mid-syscall too. */
728 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
729
730 /* Restore the list to catch. Don't rely on the client, which is free
731 to avoid sending a new list when the architecture doesn't change.
732 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
733 proc->syscalls_to_catch = std::move (syscalls_to_catch);
734
735 /* Report the event. */
736 *orig_event_lwp = event_lwp;
737 return 0;
738 }
739
740 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
741 }
742
743 /* Return the PC as read from the regcache of LWP, without any
744 adjustment. */
745
746 static CORE_ADDR
747 get_pc (struct lwp_info *lwp)
748 {
749 struct thread_info *saved_thread;
750 struct regcache *regcache;
751 CORE_ADDR pc;
752
753 if (the_low_target.get_pc == NULL)
754 return 0;
755
756 saved_thread = current_thread;
757 current_thread = get_lwp_thread (lwp);
758
759 regcache = get_thread_regcache (current_thread, 1);
760 pc = (*the_low_target.get_pc) (regcache);
761
762 if (debug_threads)
763 debug_printf ("pc is 0x%lx\n", (long) pc);
764
765 current_thread = saved_thread;
766 return pc;
767 }
768
769 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
770 Fill *SYSNO with the syscall nr trapped. */
771
772 static void
773 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
774 {
775 struct thread_info *saved_thread;
776 struct regcache *regcache;
777
778 if (the_low_target.get_syscall_trapinfo == NULL)
779 {
780 /* If we cannot get the syscall trapinfo, report an unknown
781 system call number. */
782 *sysno = UNKNOWN_SYSCALL;
783 return;
784 }
785
786 saved_thread = current_thread;
787 current_thread = get_lwp_thread (lwp);
788
789 regcache = get_thread_regcache (current_thread, 1);
790 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
791
792 if (debug_threads)
793 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
794
795 current_thread = saved_thread;
796 }
797
798 static int check_stopped_by_watchpoint (struct lwp_info *child);
799
800 /* Called when the LWP stopped for a signal/trap. If it stopped for a
801 trap check what caused it (breakpoint, watchpoint, trace, etc.),
802 and save the result in the LWP's stop_reason field. If it stopped
803 for a breakpoint, decrement the PC if necessary on the lwp's
804 architecture. Returns true if we now have the LWP's stop PC. */
805
806 static int
807 save_stop_reason (struct lwp_info *lwp)
808 {
809 CORE_ADDR pc;
810 CORE_ADDR sw_breakpoint_pc;
811 struct thread_info *saved_thread;
812 #if USE_SIGTRAP_SIGINFO
813 siginfo_t siginfo;
814 #endif
815
816 if (the_low_target.get_pc == NULL)
817 return 0;
818
819 pc = get_pc (lwp);
820 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
821
822 /* breakpoint_at reads from the current thread. */
823 saved_thread = current_thread;
824 current_thread = get_lwp_thread (lwp);
825
826 #if USE_SIGTRAP_SIGINFO
827 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
828 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
829 {
830 if (siginfo.si_signo == SIGTRAP)
831 {
832 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
833 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
834 {
835 /* The si_code is ambiguous on this arch -- check debug
836 registers. */
837 if (!check_stopped_by_watchpoint (lwp))
838 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
839 }
840 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
841 {
842 /* If we determine the LWP stopped for a SW breakpoint,
843 trust it. Particularly don't check watchpoint
844 registers, because at least on s390, we'd find
845 stopped-by-watchpoint as long as there's a watchpoint
846 set. */
847 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
848 }
849 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
850 {
851 /* This can indicate either a hardware breakpoint or
852 hardware watchpoint. Check debug registers. */
853 if (!check_stopped_by_watchpoint (lwp))
854 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
855 }
856 else if (siginfo.si_code == TRAP_TRACE)
857 {
858 /* We may have single stepped an instruction that
859 triggered a watchpoint. In that case, on some
860 architectures (such as x86), instead of TRAP_HWBKPT,
861 si_code indicates TRAP_TRACE, and we need to check
862 the debug registers separately. */
863 if (!check_stopped_by_watchpoint (lwp))
864 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
865 }
866 }
867 }
868 #else
869 /* We may have just stepped a breakpoint instruction. E.g., in
870 non-stop mode, GDB first tells the thread A to step a range, and
871 then the user inserts a breakpoint inside the range. In that
872 case we need to report the breakpoint PC. */
873 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
874 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
875 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
876
877 if (hardware_breakpoint_inserted_here (pc))
878 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
879
880 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
881 check_stopped_by_watchpoint (lwp);
882 #endif
883
884 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
885 {
886 if (debug_threads)
887 {
888 struct thread_info *thr = get_lwp_thread (lwp);
889
890 debug_printf ("CSBB: %s stopped by software breakpoint\n",
891 target_pid_to_str (ptid_of (thr)));
892 }
893
894 /* Back up the PC if necessary. */
895 if (pc != sw_breakpoint_pc)
896 {
897 struct regcache *regcache
898 = get_thread_regcache (current_thread, 1);
899 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
900 }
901
902 /* Update this so we record the correct stop PC below. */
903 pc = sw_breakpoint_pc;
904 }
905 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
906 {
907 if (debug_threads)
908 {
909 struct thread_info *thr = get_lwp_thread (lwp);
910
911 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
912 target_pid_to_str (ptid_of (thr)));
913 }
914 }
915 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
916 {
917 if (debug_threads)
918 {
919 struct thread_info *thr = get_lwp_thread (lwp);
920
921 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
922 target_pid_to_str (ptid_of (thr)));
923 }
924 }
925 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
926 {
927 if (debug_threads)
928 {
929 struct thread_info *thr = get_lwp_thread (lwp);
930
931 debug_printf ("CSBB: %s stopped by trace\n",
932 target_pid_to_str (ptid_of (thr)));
933 }
934 }
935
936 lwp->stop_pc = pc;
937 current_thread = saved_thread;
938 return 1;
939 }
940
941 static struct lwp_info *
942 add_lwp (ptid_t ptid)
943 {
944 struct lwp_info *lwp;
945
946 lwp = XCNEW (struct lwp_info);
947
948 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
949
950 if (the_low_target.new_thread != NULL)
951 the_low_target.new_thread (lwp);
952
953 lwp->thread = add_thread (ptid, lwp);
954
955 return lwp;
956 }
957
958 /* Callback to be used when calling fork_inferior, responsible for
959 actually initiating the tracing of the inferior. */
960
961 static void
962 linux_ptrace_fun ()
963 {
964 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
965 (PTRACE_TYPE_ARG4) 0) < 0)
966 trace_start_error_with_name ("ptrace");
967
968 if (setpgid (0, 0) < 0)
969 trace_start_error_with_name ("setpgid");
970
971 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
972 stdout to stderr so that inferior i/o doesn't corrupt the connection.
973 Also, redirect stdin to /dev/null. */
974 if (remote_connection_is_stdio ())
975 {
976 if (close (0) < 0)
977 trace_start_error_with_name ("close");
978 if (open ("/dev/null", O_RDONLY) < 0)
979 trace_start_error_with_name ("open");
980 if (dup2 (2, 1) < 0)
981 trace_start_error_with_name ("dup2");
982 if (write (2, "stdin/stdout redirected\n",
983 sizeof ("stdin/stdout redirected\n") - 1) < 0)
984 {
985 /* Errors ignored. */;
986 }
987 }
988 }
989
990 /* Start an inferior process and returns its pid.
991 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
992 are its arguments. */
993
994 static int
995 linux_create_inferior (const char *program,
996 const std::vector<char *> &program_args)
997 {
998 struct lwp_info *new_lwp;
999 int pid;
1000 ptid_t ptid;
1001 struct cleanup *restore_personality
1002 = maybe_disable_address_space_randomization (disable_randomization);
1003 std::string str_program_args = stringify_argv (program_args);
1004
1005 pid = fork_inferior (program,
1006 str_program_args.c_str (),
1007 get_environ ()->envp (), linux_ptrace_fun,
1008 NULL, NULL, NULL, NULL);
1009
1010 do_cleanups (restore_personality);
1011
1012 linux_add_process (pid, 0);
1013
1014 ptid = ptid_build (pid, pid, 0);
1015 new_lwp = add_lwp (ptid);
1016 new_lwp->must_set_ptrace_flags = 1;
1017
1018 post_fork_inferior (pid, program);
1019
1020 return pid;
1021 }
1022
1023 /* Implement the post_create_inferior target_ops method. */
1024
1025 static void
1026 linux_post_create_inferior (void)
1027 {
1028 struct lwp_info *lwp = get_thread_lwp (current_thread);
1029
1030 linux_arch_setup ();
1031
1032 if (lwp->must_set_ptrace_flags)
1033 {
1034 struct process_info *proc = current_process ();
1035 int options = linux_low_ptrace_options (proc->attached);
1036
1037 linux_enable_event_reporting (lwpid_of (current_thread), options);
1038 lwp->must_set_ptrace_flags = 0;
1039 }
1040 }
1041
1042 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1043 error. */
1044
1045 int
1046 linux_attach_lwp (ptid_t ptid)
1047 {
1048 struct lwp_info *new_lwp;
1049 int lwpid = ptid_get_lwp (ptid);
1050
1051 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1052 != 0)
1053 return errno;
1054
1055 new_lwp = add_lwp (ptid);
1056
1057 /* We need to wait for SIGSTOP before being able to make the next
1058 ptrace call on this LWP. */
1059 new_lwp->must_set_ptrace_flags = 1;
1060
1061 if (linux_proc_pid_is_stopped (lwpid))
1062 {
1063 if (debug_threads)
1064 debug_printf ("Attached to a stopped process\n");
1065
1066 /* The process is definitely stopped. It is in a job control
1067 stop, unless the kernel predates the TASK_STOPPED /
1068 TASK_TRACED distinction, in which case it might be in a
1069 ptrace stop. Make sure it is in a ptrace stop; from there we
1070 can kill it, signal it, et cetera.
1071
1072 First make sure there is a pending SIGSTOP. Since we are
1073 already attached, the process can not transition from stopped
1074 to running without a PTRACE_CONT; so we know this signal will
1075 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1076 probably already in the queue (unless this kernel is old
1077 enough to use TASK_STOPPED for ptrace stops); but since
1078 SIGSTOP is not an RT signal, it can only be queued once. */
1079 kill_lwp (lwpid, SIGSTOP);
1080
1081 /* Finally, resume the stopped process. This will deliver the
1082 SIGSTOP (or a higher priority signal, just like normal
1083 PTRACE_ATTACH), which we'll catch later on. */
1084 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1085 }
1086
1087 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1088 brings it to a halt.
1089
1090 There are several cases to consider here:
1091
1092 1) gdbserver has already attached to the process and is being notified
1093 of a new thread that is being created.
1094 In this case we should ignore that SIGSTOP and resume the
1095 process. This is handled below by setting stop_expected = 1,
1096 and the fact that add_thread sets last_resume_kind ==
1097 resume_continue.
1098
1099 2) This is the first thread (the process thread), and we're attaching
1100 to it via attach_inferior.
1101 In this case we want the process thread to stop.
1102 This is handled by having linux_attach set last_resume_kind ==
1103 resume_stop after we return.
1104
1105 If the pid we are attaching to is also the tgid, we attach to and
1106 stop all the existing threads. Otherwise, we attach to pid and
1107 ignore any other threads in the same group as this pid.
1108
1109 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1110 existing threads.
1111 In this case we want the thread to stop.
1112 FIXME: This case is currently not properly handled.
1113 We should wait for the SIGSTOP but don't. Things work apparently
1114 because enough time passes between when we ptrace (ATTACH) and when
1115 gdb makes the next ptrace call on the thread.
1116
1117 On the other hand, if we are currently trying to stop all threads, we
1118 should treat the new thread as if we had sent it a SIGSTOP. This works
1119 because we are guaranteed that the add_lwp call above added us to the
1120 end of the list, and so the new thread has not yet reached
1121 wait_for_sigstop (but will). */
1122 new_lwp->stop_expected = 1;
1123
1124 return 0;
1125 }
1126
1127 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1128 already attached. Returns true if a new LWP is found, false
1129 otherwise. */
1130
1131 static int
1132 attach_proc_task_lwp_callback (ptid_t ptid)
1133 {
1134 /* Is this a new thread? */
1135 if (find_thread_ptid (ptid) == NULL)
1136 {
1137 int lwpid = ptid_get_lwp (ptid);
1138 int err;
1139
1140 if (debug_threads)
1141 debug_printf ("Found new lwp %d\n", lwpid);
1142
1143 err = linux_attach_lwp (ptid);
1144
1145 /* Be quiet if we simply raced with the thread exiting. EPERM
1146 is returned if the thread's task still exists, and is marked
1147 as exited or zombie, as well as other conditions, so in that
1148 case, confirm the status in /proc/PID/status. */
1149 if (err == ESRCH
1150 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1151 {
1152 if (debug_threads)
1153 {
1154 debug_printf ("Cannot attach to lwp %d: "
1155 "thread is gone (%d: %s)\n",
1156 lwpid, err, strerror (err));
1157 }
1158 }
1159 else if (err != 0)
1160 {
1161 warning (_("Cannot attach to lwp %d: %s"),
1162 lwpid,
1163 linux_ptrace_attach_fail_reason_string (ptid, err));
1164 }
1165
1166 return 1;
1167 }
1168 return 0;
1169 }
1170
1171 static void async_file_mark (void);
1172
1173 /* Attach to PID. If PID is the tgid, attach to it and all
1174 of its threads. */
1175
1176 static int
1177 linux_attach (unsigned long pid)
1178 {
1179 struct process_info *proc;
1180 struct thread_info *initial_thread;
1181 ptid_t ptid = ptid_build (pid, pid, 0);
1182 int err;
1183
1184 /* Attach to PID. We will check for other threads
1185 soon. */
1186 err = linux_attach_lwp (ptid);
1187 if (err != 0)
1188 error ("Cannot attach to process %ld: %s",
1189 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1190
1191 proc = linux_add_process (pid, 1);
1192
1193 /* Don't ignore the initial SIGSTOP if we just attached to this
1194 process. It will be collected by wait shortly. */
1195 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1196 initial_thread->last_resume_kind = resume_stop;
1197
1198 /* We must attach to every LWP. If /proc is mounted, use that to
1199 find them now. On the one hand, the inferior may be using raw
1200 clone instead of using pthreads. On the other hand, even if it
1201 is using pthreads, GDB may not be connected yet (thread_db needs
1202 to do symbol lookups, through qSymbol). Also, thread_db walks
1203 structures in the inferior's address space to find the list of
1204 threads/LWPs, and those structures may well be corrupted. Note
1205 that once thread_db is loaded, we'll still use it to list threads
1206 and associate pthread info with each LWP. */
1207 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1208
1209 /* GDB will shortly read the xml target description for this
1210 process, to figure out the process' architecture. But the target
1211 description is only filled in when the first process/thread in
1212 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1213 that now, otherwise, if GDB is fast enough, it could read the
1214 target description _before_ that initial stop. */
1215 if (non_stop)
1216 {
1217 struct lwp_info *lwp;
1218 int wstat, lwpid;
1219 ptid_t pid_ptid = pid_to_ptid (pid);
1220
1221 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1222 &wstat, __WALL);
1223 gdb_assert (lwpid > 0);
1224
1225 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1226
1227 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1228 {
1229 lwp->status_pending_p = 1;
1230 lwp->status_pending = wstat;
1231 }
1232
1233 initial_thread->last_resume_kind = resume_continue;
1234
1235 async_file_mark ();
1236
1237 gdb_assert (proc->tdesc != NULL);
1238 }
1239
1240 return 0;
1241 }
1242
1243 struct counter
1244 {
1245 int pid;
1246 int count;
1247 };
1248
1249 static int
1250 second_thread_of_pid_p (thread_info *thread, void *args)
1251 {
1252 struct counter *counter = (struct counter *) args;
1253
1254 if (thread->id.pid () == counter->pid)
1255 {
1256 if (++counter->count > 1)
1257 return 1;
1258 }
1259
1260 return 0;
1261 }
1262
1263 static int
1264 last_thread_of_process_p (int pid)
1265 {
1266 struct counter counter = { pid , 0 };
1267
1268 return (find_inferior (&all_threads,
1269 second_thread_of_pid_p, &counter) == NULL);
1270 }
1271
1272 /* Kill LWP. */
1273
1274 static void
1275 linux_kill_one_lwp (struct lwp_info *lwp)
1276 {
1277 struct thread_info *thr = get_lwp_thread (lwp);
1278 int pid = lwpid_of (thr);
1279
1280 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1281 there is no signal context, and ptrace(PTRACE_KILL) (or
1282 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1283 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1284 alternative is to kill with SIGKILL. We only need one SIGKILL
1285 per process, not one for each thread. But since we still support
1286 support debugging programs using raw clone without CLONE_THREAD,
1287 we send one for each thread. For years, we used PTRACE_KILL
1288 only, so we're being a bit paranoid about some old kernels where
1289 PTRACE_KILL might work better (dubious if there are any such, but
1290 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1291 second, and so we're fine everywhere. */
1292
1293 errno = 0;
1294 kill_lwp (pid, SIGKILL);
1295 if (debug_threads)
1296 {
1297 int save_errno = errno;
1298
1299 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1300 target_pid_to_str (ptid_of (thr)),
1301 save_errno ? strerror (save_errno) : "OK");
1302 }
1303
1304 errno = 0;
1305 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1306 if (debug_threads)
1307 {
1308 int save_errno = errno;
1309
1310 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1311 target_pid_to_str (ptid_of (thr)),
1312 save_errno ? strerror (save_errno) : "OK");
1313 }
1314 }
1315
1316 /* Kill LWP and wait for it to die. */
1317
1318 static void
1319 kill_wait_lwp (struct lwp_info *lwp)
1320 {
1321 struct thread_info *thr = get_lwp_thread (lwp);
1322 int pid = ptid_get_pid (ptid_of (thr));
1323 int lwpid = ptid_get_lwp (ptid_of (thr));
1324 int wstat;
1325 int res;
1326
1327 if (debug_threads)
1328 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1329
1330 do
1331 {
1332 linux_kill_one_lwp (lwp);
1333
1334 /* Make sure it died. Notes:
1335
1336 - The loop is most likely unnecessary.
1337
1338 - We don't use linux_wait_for_event as that could delete lwps
1339 while we're iterating over them. We're not interested in
1340 any pending status at this point, only in making sure all
1341 wait status on the kernel side are collected until the
1342 process is reaped.
1343
1344 - We don't use __WALL here as the __WALL emulation relies on
1345 SIGCHLD, and killing a stopped process doesn't generate
1346 one, nor an exit status.
1347 */
1348 res = my_waitpid (lwpid, &wstat, 0);
1349 if (res == -1 && errno == ECHILD)
1350 res = my_waitpid (lwpid, &wstat, __WCLONE);
1351 } while (res > 0 && WIFSTOPPED (wstat));
1352
1353 /* Even if it was stopped, the child may have already disappeared.
1354 E.g., if it was killed by SIGKILL. */
1355 if (res < 0 && errno != ECHILD)
1356 perror_with_name ("kill_wait_lwp");
1357 }
1358
1359 /* Callback for `find_inferior'. Kills an lwp of a given process,
1360 except the leader. */
1361
1362 static int
1363 kill_one_lwp_callback (thread_info *thread, void *args)
1364 {
1365 struct lwp_info *lwp = get_thread_lwp (thread);
1366 int pid = * (int *) args;
1367
1368 if (thread->id.pid () != pid)
1369 return 0;
1370
1371 /* We avoid killing the first thread here, because of a Linux kernel (at
1372 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1373 the children get a chance to be reaped, it will remain a zombie
1374 forever. */
1375
1376 if (lwpid_of (thread) == pid)
1377 {
1378 if (debug_threads)
1379 debug_printf ("lkop: is last of process %s\n",
1380 target_pid_to_str (thread->id));
1381 return 0;
1382 }
1383
1384 kill_wait_lwp (lwp);
1385 return 0;
1386 }
1387
1388 static int
1389 linux_kill (int pid)
1390 {
1391 struct process_info *process;
1392 struct lwp_info *lwp;
1393
1394 process = find_process_pid (pid);
1395 if (process == NULL)
1396 return -1;
1397
1398 /* If we're killing a running inferior, make sure it is stopped
1399 first, as PTRACE_KILL will not work otherwise. */
1400 stop_all_lwps (0, NULL);
1401
1402 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1403
1404 /* See the comment in linux_kill_one_lwp. We did not kill the first
1405 thread in the list, so do so now. */
1406 lwp = find_lwp_pid (pid_to_ptid (pid));
1407
1408 if (lwp == NULL)
1409 {
1410 if (debug_threads)
1411 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1412 pid);
1413 }
1414 else
1415 kill_wait_lwp (lwp);
1416
1417 the_target->mourn (process);
1418
1419 /* Since we presently can only stop all lwps of all processes, we
1420 need to unstop lwps of other processes. */
1421 unstop_all_lwps (0, NULL);
1422 return 0;
1423 }
1424
1425 /* Get pending signal of THREAD, for detaching purposes. This is the
1426 signal the thread last stopped for, which we need to deliver to the
1427 thread when detaching, otherwise, it'd be suppressed/lost. */
1428
1429 static int
1430 get_detach_signal (struct thread_info *thread)
1431 {
1432 enum gdb_signal signo = GDB_SIGNAL_0;
1433 int status;
1434 struct lwp_info *lp = get_thread_lwp (thread);
1435
1436 if (lp->status_pending_p)
1437 status = lp->status_pending;
1438 else
1439 {
1440 /* If the thread had been suspended by gdbserver, and it stopped
1441 cleanly, then it'll have stopped with SIGSTOP. But we don't
1442 want to deliver that SIGSTOP. */
1443 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1444 || thread->last_status.value.sig == GDB_SIGNAL_0)
1445 return 0;
1446
1447 /* Otherwise, we may need to deliver the signal we
1448 intercepted. */
1449 status = lp->last_status;
1450 }
1451
1452 if (!WIFSTOPPED (status))
1453 {
1454 if (debug_threads)
1455 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1456 target_pid_to_str (ptid_of (thread)));
1457 return 0;
1458 }
1459
1460 /* Extended wait statuses aren't real SIGTRAPs. */
1461 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1462 {
1463 if (debug_threads)
1464 debug_printf ("GPS: lwp %s had stopped with extended "
1465 "status: no pending signal\n",
1466 target_pid_to_str (ptid_of (thread)));
1467 return 0;
1468 }
1469
1470 signo = gdb_signal_from_host (WSTOPSIG (status));
1471
1472 if (program_signals_p && !program_signals[signo])
1473 {
1474 if (debug_threads)
1475 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1476 target_pid_to_str (ptid_of (thread)),
1477 gdb_signal_to_string (signo));
1478 return 0;
1479 }
1480 else if (!program_signals_p
1481 /* If we have no way to know which signals GDB does not
1482 want to have passed to the program, assume
1483 SIGTRAP/SIGINT, which is GDB's default. */
1484 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1485 {
1486 if (debug_threads)
1487 debug_printf ("GPS: lwp %s had signal %s, "
1488 "but we don't know if we should pass it. "
1489 "Default to not.\n",
1490 target_pid_to_str (ptid_of (thread)),
1491 gdb_signal_to_string (signo));
1492 return 0;
1493 }
1494 else
1495 {
1496 if (debug_threads)
1497 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1498 target_pid_to_str (ptid_of (thread)),
1499 gdb_signal_to_string (signo));
1500
1501 return WSTOPSIG (status);
1502 }
1503 }
1504
1505 /* Detach from LWP. */
1506
1507 static void
1508 linux_detach_one_lwp (struct lwp_info *lwp)
1509 {
1510 struct thread_info *thread = get_lwp_thread (lwp);
1511 int sig;
1512 int lwpid;
1513
1514 /* If there is a pending SIGSTOP, get rid of it. */
1515 if (lwp->stop_expected)
1516 {
1517 if (debug_threads)
1518 debug_printf ("Sending SIGCONT to %s\n",
1519 target_pid_to_str (ptid_of (thread)));
1520
1521 kill_lwp (lwpid_of (thread), SIGCONT);
1522 lwp->stop_expected = 0;
1523 }
1524
1525 /* Pass on any pending signal for this thread. */
1526 sig = get_detach_signal (thread);
1527
1528 /* Preparing to resume may try to write registers, and fail if the
1529 lwp is zombie. If that happens, ignore the error. We'll handle
1530 it below, when detach fails with ESRCH. */
1531 TRY
1532 {
1533 /* Flush any pending changes to the process's registers. */
1534 regcache_invalidate_thread (thread);
1535
1536 /* Finally, let it resume. */
1537 if (the_low_target.prepare_to_resume != NULL)
1538 the_low_target.prepare_to_resume (lwp);
1539 }
1540 CATCH (ex, RETURN_MASK_ERROR)
1541 {
1542 if (!check_ptrace_stopped_lwp_gone (lwp))
1543 throw_exception (ex);
1544 }
1545 END_CATCH
1546
1547 lwpid = lwpid_of (thread);
1548 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1549 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1550 {
1551 int save_errno = errno;
1552
1553 /* We know the thread exists, so ESRCH must mean the lwp is
1554 zombie. This can happen if one of the already-detached
1555 threads exits the whole thread group. In that case we're
1556 still attached, and must reap the lwp. */
1557 if (save_errno == ESRCH)
1558 {
1559 int ret, status;
1560
1561 ret = my_waitpid (lwpid, &status, __WALL);
1562 if (ret == -1)
1563 {
1564 warning (_("Couldn't reap LWP %d while detaching: %s"),
1565 lwpid, strerror (errno));
1566 }
1567 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1568 {
1569 warning (_("Reaping LWP %d while detaching "
1570 "returned unexpected status 0x%x"),
1571 lwpid, status);
1572 }
1573 }
1574 else
1575 {
1576 error (_("Can't detach %s: %s"),
1577 target_pid_to_str (ptid_of (thread)),
1578 strerror (save_errno));
1579 }
1580 }
1581 else if (debug_threads)
1582 {
1583 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1584 target_pid_to_str (ptid_of (thread)),
1585 strsignal (sig));
1586 }
1587
1588 delete_lwp (lwp);
1589 }
1590
1591 /* Callback for find_inferior. Detaches from non-leader threads of a
1592 given process. */
1593
1594 static int
1595 linux_detach_lwp_callback (thread_info *thread, void *args)
1596 {
1597 struct lwp_info *lwp = get_thread_lwp (thread);
1598 int pid = *(int *) args;
1599 int lwpid = lwpid_of (thread);
1600
1601 /* Skip other processes. */
1602 if (thread->id.pid () != pid)
1603 return 0;
1604
1605 /* We don't actually detach from the thread group leader just yet.
1606 If the thread group exits, we must reap the zombie clone lwps
1607 before we're able to reap the leader. */
1608 if (thread->id.pid () == lwpid)
1609 return 0;
1610
1611 linux_detach_one_lwp (lwp);
1612 return 0;
1613 }
1614
1615 static int
1616 linux_detach (int pid)
1617 {
1618 struct process_info *process;
1619 struct lwp_info *main_lwp;
1620
1621 process = find_process_pid (pid);
1622 if (process == NULL)
1623 return -1;
1624
1625 /* As there's a step over already in progress, let it finish first,
1626 otherwise nesting a stabilize_threads operation on top gets real
1627 messy. */
1628 complete_ongoing_step_over ();
1629
1630 /* Stop all threads before detaching. First, ptrace requires that
1631 the thread is stopped to sucessfully detach. Second, thread_db
1632 may need to uninstall thread event breakpoints from memory, which
1633 only works with a stopped process anyway. */
1634 stop_all_lwps (0, NULL);
1635
1636 #ifdef USE_THREAD_DB
1637 thread_db_detach (process);
1638 #endif
1639
1640 /* Stabilize threads (move out of jump pads). */
1641 stabilize_threads ();
1642
1643 /* Detach from the clone lwps first. If the thread group exits just
1644 while we're detaching, we must reap the clone lwps before we're
1645 able to reap the leader. */
1646 find_inferior (&all_threads, linux_detach_lwp_callback, &pid);
1647
1648 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1649 linux_detach_one_lwp (main_lwp);
1650
1651 the_target->mourn (process);
1652
1653 /* Since we presently can only stop all lwps of all processes, we
1654 need to unstop lwps of other processes. */
1655 unstop_all_lwps (0, NULL);
1656 return 0;
1657 }
1658
1659 /* Remove all LWPs that belong to process PROC from the lwp list. */
1660
1661 static int
1662 delete_lwp_callback (thread_info *thread, void *proc)
1663 {
1664 struct lwp_info *lwp = get_thread_lwp (thread);
1665 struct process_info *process = (struct process_info *) proc;
1666
1667 if (pid_of (thread) == pid_of (process))
1668 delete_lwp (lwp);
1669
1670 return 0;
1671 }
1672
1673 static void
1674 linux_mourn (struct process_info *process)
1675 {
1676 struct process_info_private *priv;
1677
1678 #ifdef USE_THREAD_DB
1679 thread_db_mourn (process);
1680 #endif
1681
1682 find_inferior (&all_threads, delete_lwp_callback, process);
1683
1684 /* Freeing all private data. */
1685 priv = process->priv;
1686 if (the_low_target.delete_process != NULL)
1687 the_low_target.delete_process (priv->arch_private);
1688 else
1689 gdb_assert (priv->arch_private == NULL);
1690 free (priv);
1691 process->priv = NULL;
1692
1693 remove_process (process);
1694 }
1695
1696 static void
1697 linux_join (int pid)
1698 {
1699 int status, ret;
1700
1701 do {
1702 ret = my_waitpid (pid, &status, 0);
1703 if (WIFEXITED (status) || WIFSIGNALED (status))
1704 break;
1705 } while (ret != -1 || errno != ECHILD);
1706 }
1707
1708 /* Return nonzero if the given thread is still alive. */
1709 static int
1710 linux_thread_alive (ptid_t ptid)
1711 {
1712 struct lwp_info *lwp = find_lwp_pid (ptid);
1713
1714 /* We assume we always know if a thread exits. If a whole process
1715 exited but we still haven't been able to report it to GDB, we'll
1716 hold on to the last lwp of the dead process. */
1717 if (lwp != NULL)
1718 return !lwp_is_marked_dead (lwp);
1719 else
1720 return 0;
1721 }
1722
1723 /* Return 1 if this lwp still has an interesting status pending. If
1724 not (e.g., it had stopped for a breakpoint that is gone), return
1725 false. */
1726
1727 static int
1728 thread_still_has_status_pending_p (struct thread_info *thread)
1729 {
1730 struct lwp_info *lp = get_thread_lwp (thread);
1731
1732 if (!lp->status_pending_p)
1733 return 0;
1734
1735 if (thread->last_resume_kind != resume_stop
1736 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1737 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1738 {
1739 struct thread_info *saved_thread;
1740 CORE_ADDR pc;
1741 int discard = 0;
1742
1743 gdb_assert (lp->last_status != 0);
1744
1745 pc = get_pc (lp);
1746
1747 saved_thread = current_thread;
1748 current_thread = thread;
1749
1750 if (pc != lp->stop_pc)
1751 {
1752 if (debug_threads)
1753 debug_printf ("PC of %ld changed\n",
1754 lwpid_of (thread));
1755 discard = 1;
1756 }
1757
1758 #if !USE_SIGTRAP_SIGINFO
1759 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1760 && !(*the_low_target.breakpoint_at) (pc))
1761 {
1762 if (debug_threads)
1763 debug_printf ("previous SW breakpoint of %ld gone\n",
1764 lwpid_of (thread));
1765 discard = 1;
1766 }
1767 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1768 && !hardware_breakpoint_inserted_here (pc))
1769 {
1770 if (debug_threads)
1771 debug_printf ("previous HW breakpoint of %ld gone\n",
1772 lwpid_of (thread));
1773 discard = 1;
1774 }
1775 #endif
1776
1777 current_thread = saved_thread;
1778
1779 if (discard)
1780 {
1781 if (debug_threads)
1782 debug_printf ("discarding pending breakpoint status\n");
1783 lp->status_pending_p = 0;
1784 return 0;
1785 }
1786 }
1787
1788 return 1;
1789 }
1790
1791 /* Returns true if LWP is resumed from the client's perspective. */
1792
1793 static int
1794 lwp_resumed (struct lwp_info *lwp)
1795 {
1796 struct thread_info *thread = get_lwp_thread (lwp);
1797
1798 if (thread->last_resume_kind != resume_stop)
1799 return 1;
1800
1801 /* Did gdb send us a `vCont;t', but we haven't reported the
1802 corresponding stop to gdb yet? If so, the thread is still
1803 resumed/running from gdb's perspective. */
1804 if (thread->last_resume_kind == resume_stop
1805 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1806 return 1;
1807
1808 return 0;
1809 }
1810
1811 /* Return 1 if this lwp has an interesting status pending. */
1812 static int
1813 status_pending_p_callback (thread_info *thread, void *arg)
1814 {
1815 struct lwp_info *lp = get_thread_lwp (thread);
1816 ptid_t ptid = * (ptid_t *) arg;
1817
1818 /* Check if we're only interested in events from a specific process
1819 or a specific LWP. */
1820 if (!ptid_match (ptid_of (thread), ptid))
1821 return 0;
1822
1823 if (!lwp_resumed (lp))
1824 return 0;
1825
1826 if (lp->status_pending_p
1827 && !thread_still_has_status_pending_p (thread))
1828 {
1829 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1830 return 0;
1831 }
1832
1833 return lp->status_pending_p;
1834 }
1835
1836 static int
1837 same_lwp (thread_info *thread, void *data)
1838 {
1839 ptid_t ptid = *(ptid_t *) data;
1840 int lwp;
1841
1842 if (ptid_get_lwp (ptid) != 0)
1843 lwp = ptid_get_lwp (ptid);
1844 else
1845 lwp = ptid_get_pid (ptid);
1846
1847 if (thread->id.lwp () == lwp)
1848 return 1;
1849
1850 return 0;
1851 }
1852
1853 struct lwp_info *
1854 find_lwp_pid (ptid_t ptid)
1855 {
1856 thread_info *thread = find_inferior (&all_threads, same_lwp, &ptid);
1857
1858 if (thread == NULL)
1859 return NULL;
1860
1861 return get_thread_lwp (thread);
1862 }
1863
1864 /* Return the number of known LWPs in the tgid given by PID. */
1865
1866 static int
1867 num_lwps (int pid)
1868 {
1869 int count = 0;
1870
1871 for_each_thread (pid, [&] (thread_info *thread)
1872 {
1873 count++;
1874 });
1875
1876 return count;
1877 }
1878
1879 /* The arguments passed to iterate_over_lwps. */
1880
1881 struct iterate_over_lwps_args
1882 {
1883 /* The FILTER argument passed to iterate_over_lwps. */
1884 ptid_t filter;
1885
1886 /* The CALLBACK argument passed to iterate_over_lwps. */
1887 iterate_over_lwps_ftype *callback;
1888
1889 /* The DATA argument passed to iterate_over_lwps. */
1890 void *data;
1891 };
1892
1893 /* Callback for find_inferior used by iterate_over_lwps to filter
1894 calls to the callback supplied to that function. Returning a
1895 nonzero value causes find_inferiors to stop iterating and return
1896 the current inferior_list_entry. Returning zero indicates that
1897 find_inferiors should continue iterating. */
1898
1899 static int
1900 iterate_over_lwps_filter (thread_info *thread, void *args_p)
1901 {
1902 struct iterate_over_lwps_args *args
1903 = (struct iterate_over_lwps_args *) args_p;
1904
1905 if (thread->id.matches (args->filter))
1906 {
1907 struct lwp_info *lwp = get_thread_lwp (thread);
1908
1909 return (*args->callback) (lwp, args->data);
1910 }
1911
1912 return 0;
1913 }
1914
1915 /* See nat/linux-nat.h. */
1916
1917 struct lwp_info *
1918 iterate_over_lwps (ptid_t filter,
1919 iterate_over_lwps_ftype callback,
1920 void *data)
1921 {
1922 struct iterate_over_lwps_args args = {filter, callback, data};
1923
1924 thread_info *thread = find_inferior (&all_threads, iterate_over_lwps_filter,
1925 &args);
1926 if (thread == NULL)
1927 return NULL;
1928
1929 return get_thread_lwp (thread);
1930 }
1931
1932 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1933 their exits until all other threads in the group have exited. */
1934
1935 static void
1936 check_zombie_leaders (void)
1937 {
1938 for_each_process ([] (process_info *proc) {
1939 pid_t leader_pid = pid_of (proc);
1940 struct lwp_info *leader_lp;
1941
1942 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1943
1944 if (debug_threads)
1945 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1946 "num_lwps=%d, zombie=%d\n",
1947 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1948 linux_proc_pid_is_zombie (leader_pid));
1949
1950 if (leader_lp != NULL && !leader_lp->stopped
1951 /* Check if there are other threads in the group, as we may
1952 have raced with the inferior simply exiting. */
1953 && !last_thread_of_process_p (leader_pid)
1954 && linux_proc_pid_is_zombie (leader_pid))
1955 {
1956 /* A leader zombie can mean one of two things:
1957
1958 - It exited, and there's an exit status pending
1959 available, or only the leader exited (not the whole
1960 program). In the latter case, we can't waitpid the
1961 leader's exit status until all other threads are gone.
1962
1963 - There are 3 or more threads in the group, and a thread
1964 other than the leader exec'd. On an exec, the Linux
1965 kernel destroys all other threads (except the execing
1966 one) in the thread group, and resets the execing thread's
1967 tid to the tgid. No exit notification is sent for the
1968 execing thread -- from the ptracer's perspective, it
1969 appears as though the execing thread just vanishes.
1970 Until we reap all other threads except the leader and the
1971 execing thread, the leader will be zombie, and the
1972 execing thread will be in `D (disc sleep)'. As soon as
1973 all other threads are reaped, the execing thread changes
1974 it's tid to the tgid, and the previous (zombie) leader
1975 vanishes, giving place to the "new" leader. We could try
1976 distinguishing the exit and exec cases, by waiting once
1977 more, and seeing if something comes out, but it doesn't
1978 sound useful. The previous leader _does_ go away, and
1979 we'll re-add the new one once we see the exec event
1980 (which is just the same as what would happen if the
1981 previous leader did exit voluntarily before some other
1982 thread execs). */
1983
1984 if (debug_threads)
1985 debug_printf ("CZL: Thread group leader %d zombie "
1986 "(it exited, or another thread execd).\n",
1987 leader_pid);
1988
1989 delete_lwp (leader_lp);
1990 }
1991 });
1992 }
1993
1994 /* Callback for `find_inferior'. Returns the first LWP that is not
1995 stopped. ARG is a PTID filter. */
1996
1997 static int
1998 not_stopped_callback (thread_info *thread, void *arg)
1999 {
2000 struct lwp_info *lwp;
2001 ptid_t filter = *(ptid_t *) arg;
2002
2003 if (!ptid_match (ptid_of (thread), filter))
2004 return 0;
2005
2006 lwp = get_thread_lwp (thread);
2007 if (!lwp->stopped)
2008 return 1;
2009
2010 return 0;
2011 }
2012
2013 /* Increment LWP's suspend count. */
2014
2015 static void
2016 lwp_suspended_inc (struct lwp_info *lwp)
2017 {
2018 lwp->suspended++;
2019
2020 if (debug_threads && lwp->suspended > 4)
2021 {
2022 struct thread_info *thread = get_lwp_thread (lwp);
2023
2024 debug_printf ("LWP %ld has a suspiciously high suspend count,"
2025 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
2026 }
2027 }
2028
2029 /* Decrement LWP's suspend count. */
2030
2031 static void
2032 lwp_suspended_decr (struct lwp_info *lwp)
2033 {
2034 lwp->suspended--;
2035
2036 if (lwp->suspended < 0)
2037 {
2038 struct thread_info *thread = get_lwp_thread (lwp);
2039
2040 internal_error (__FILE__, __LINE__,
2041 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
2042 lwp->suspended);
2043 }
2044 }
2045
2046 /* This function should only be called if the LWP got a SIGTRAP.
2047
2048 Handle any tracepoint steps or hits. Return true if a tracepoint
2049 event was handled, 0 otherwise. */
2050
2051 static int
2052 handle_tracepoints (struct lwp_info *lwp)
2053 {
2054 struct thread_info *tinfo = get_lwp_thread (lwp);
2055 int tpoint_related_event = 0;
2056
2057 gdb_assert (lwp->suspended == 0);
2058
2059 /* If this tracepoint hit causes a tracing stop, we'll immediately
2060 uninsert tracepoints. To do this, we temporarily pause all
2061 threads, unpatch away, and then unpause threads. We need to make
2062 sure the unpausing doesn't resume LWP too. */
2063 lwp_suspended_inc (lwp);
2064
2065 /* And we need to be sure that any all-threads-stopping doesn't try
2066 to move threads out of the jump pads, as it could deadlock the
2067 inferior (LWP could be in the jump pad, maybe even holding the
2068 lock.) */
2069
2070 /* Do any necessary step collect actions. */
2071 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2072
2073 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2074
2075 /* See if we just hit a tracepoint and do its main collect
2076 actions. */
2077 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2078
2079 lwp_suspended_decr (lwp);
2080
2081 gdb_assert (lwp->suspended == 0);
2082 gdb_assert (!stabilizing_threads
2083 || (lwp->collecting_fast_tracepoint
2084 != fast_tpoint_collect_result::not_collecting));
2085
2086 if (tpoint_related_event)
2087 {
2088 if (debug_threads)
2089 debug_printf ("got a tracepoint event\n");
2090 return 1;
2091 }
2092
2093 return 0;
2094 }
2095
2096 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2097 collection status. */
2098
2099 static fast_tpoint_collect_result
2100 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2101 struct fast_tpoint_collect_status *status)
2102 {
2103 CORE_ADDR thread_area;
2104 struct thread_info *thread = get_lwp_thread (lwp);
2105
2106 if (the_low_target.get_thread_area == NULL)
2107 return fast_tpoint_collect_result::not_collecting;
2108
2109 /* Get the thread area address. This is used to recognize which
2110 thread is which when tracing with the in-process agent library.
2111 We don't read anything from the address, and treat it as opaque;
2112 it's the address itself that we assume is unique per-thread. */
2113 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2114 return fast_tpoint_collect_result::not_collecting;
2115
2116 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2117 }
2118
2119 /* The reason we resume in the caller, is because we want to be able
2120 to pass lwp->status_pending as WSTAT, and we need to clear
2121 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2122 refuses to resume. */
2123
2124 static int
2125 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2126 {
2127 struct thread_info *saved_thread;
2128
2129 saved_thread = current_thread;
2130 current_thread = get_lwp_thread (lwp);
2131
2132 if ((wstat == NULL
2133 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2134 && supports_fast_tracepoints ()
2135 && agent_loaded_p ())
2136 {
2137 struct fast_tpoint_collect_status status;
2138
2139 if (debug_threads)
2140 debug_printf ("Checking whether LWP %ld needs to move out of the "
2141 "jump pad.\n",
2142 lwpid_of (current_thread));
2143
2144 fast_tpoint_collect_result r
2145 = linux_fast_tracepoint_collecting (lwp, &status);
2146
2147 if (wstat == NULL
2148 || (WSTOPSIG (*wstat) != SIGILL
2149 && WSTOPSIG (*wstat) != SIGFPE
2150 && WSTOPSIG (*wstat) != SIGSEGV
2151 && WSTOPSIG (*wstat) != SIGBUS))
2152 {
2153 lwp->collecting_fast_tracepoint = r;
2154
2155 if (r != fast_tpoint_collect_result::not_collecting)
2156 {
2157 if (r == fast_tpoint_collect_result::before_insn
2158 && lwp->exit_jump_pad_bkpt == NULL)
2159 {
2160 /* Haven't executed the original instruction yet.
2161 Set breakpoint there, and wait till it's hit,
2162 then single-step until exiting the jump pad. */
2163 lwp->exit_jump_pad_bkpt
2164 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2165 }
2166
2167 if (debug_threads)
2168 debug_printf ("Checking whether LWP %ld needs to move out of "
2169 "the jump pad...it does\n",
2170 lwpid_of (current_thread));
2171 current_thread = saved_thread;
2172
2173 return 1;
2174 }
2175 }
2176 else
2177 {
2178 /* If we get a synchronous signal while collecting, *and*
2179 while executing the (relocated) original instruction,
2180 reset the PC to point at the tpoint address, before
2181 reporting to GDB. Otherwise, it's an IPA lib bug: just
2182 report the signal to GDB, and pray for the best. */
2183
2184 lwp->collecting_fast_tracepoint
2185 = fast_tpoint_collect_result::not_collecting;
2186
2187 if (r != fast_tpoint_collect_result::not_collecting
2188 && (status.adjusted_insn_addr <= lwp->stop_pc
2189 && lwp->stop_pc < status.adjusted_insn_addr_end))
2190 {
2191 siginfo_t info;
2192 struct regcache *regcache;
2193
2194 /* The si_addr on a few signals references the address
2195 of the faulting instruction. Adjust that as
2196 well. */
2197 if ((WSTOPSIG (*wstat) == SIGILL
2198 || WSTOPSIG (*wstat) == SIGFPE
2199 || WSTOPSIG (*wstat) == SIGBUS
2200 || WSTOPSIG (*wstat) == SIGSEGV)
2201 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2202 (PTRACE_TYPE_ARG3) 0, &info) == 0
2203 /* Final check just to make sure we don't clobber
2204 the siginfo of non-kernel-sent signals. */
2205 && (uintptr_t) info.si_addr == lwp->stop_pc)
2206 {
2207 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2208 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2209 (PTRACE_TYPE_ARG3) 0, &info);
2210 }
2211
2212 regcache = get_thread_regcache (current_thread, 1);
2213 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2214 lwp->stop_pc = status.tpoint_addr;
2215
2216 /* Cancel any fast tracepoint lock this thread was
2217 holding. */
2218 force_unlock_trace_buffer ();
2219 }
2220
2221 if (lwp->exit_jump_pad_bkpt != NULL)
2222 {
2223 if (debug_threads)
2224 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2225 "stopping all threads momentarily.\n");
2226
2227 stop_all_lwps (1, lwp);
2228
2229 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2230 lwp->exit_jump_pad_bkpt = NULL;
2231
2232 unstop_all_lwps (1, lwp);
2233
2234 gdb_assert (lwp->suspended >= 0);
2235 }
2236 }
2237 }
2238
2239 if (debug_threads)
2240 debug_printf ("Checking whether LWP %ld needs to move out of the "
2241 "jump pad...no\n",
2242 lwpid_of (current_thread));
2243
2244 current_thread = saved_thread;
2245 return 0;
2246 }
2247
2248 /* Enqueue one signal in the "signals to report later when out of the
2249 jump pad" list. */
2250
2251 static void
2252 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2253 {
2254 struct pending_signals *p_sig;
2255 struct thread_info *thread = get_lwp_thread (lwp);
2256
2257 if (debug_threads)
2258 debug_printf ("Deferring signal %d for LWP %ld.\n",
2259 WSTOPSIG (*wstat), lwpid_of (thread));
2260
2261 if (debug_threads)
2262 {
2263 struct pending_signals *sig;
2264
2265 for (sig = lwp->pending_signals_to_report;
2266 sig != NULL;
2267 sig = sig->prev)
2268 debug_printf (" Already queued %d\n",
2269 sig->signal);
2270
2271 debug_printf (" (no more currently queued signals)\n");
2272 }
2273
2274 /* Don't enqueue non-RT signals if they are already in the deferred
2275 queue. (SIGSTOP being the easiest signal to see ending up here
2276 twice) */
2277 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2278 {
2279 struct pending_signals *sig;
2280
2281 for (sig = lwp->pending_signals_to_report;
2282 sig != NULL;
2283 sig = sig->prev)
2284 {
2285 if (sig->signal == WSTOPSIG (*wstat))
2286 {
2287 if (debug_threads)
2288 debug_printf ("Not requeuing already queued non-RT signal %d"
2289 " for LWP %ld\n",
2290 sig->signal,
2291 lwpid_of (thread));
2292 return;
2293 }
2294 }
2295 }
2296
2297 p_sig = XCNEW (struct pending_signals);
2298 p_sig->prev = lwp->pending_signals_to_report;
2299 p_sig->signal = WSTOPSIG (*wstat);
2300
2301 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2302 &p_sig->info);
2303
2304 lwp->pending_signals_to_report = p_sig;
2305 }
2306
2307 /* Dequeue one signal from the "signals to report later when out of
2308 the jump pad" list. */
2309
2310 static int
2311 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2312 {
2313 struct thread_info *thread = get_lwp_thread (lwp);
2314
2315 if (lwp->pending_signals_to_report != NULL)
2316 {
2317 struct pending_signals **p_sig;
2318
2319 p_sig = &lwp->pending_signals_to_report;
2320 while ((*p_sig)->prev != NULL)
2321 p_sig = &(*p_sig)->prev;
2322
2323 *wstat = W_STOPCODE ((*p_sig)->signal);
2324 if ((*p_sig)->info.si_signo != 0)
2325 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2326 &(*p_sig)->info);
2327 free (*p_sig);
2328 *p_sig = NULL;
2329
2330 if (debug_threads)
2331 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2332 WSTOPSIG (*wstat), lwpid_of (thread));
2333
2334 if (debug_threads)
2335 {
2336 struct pending_signals *sig;
2337
2338 for (sig = lwp->pending_signals_to_report;
2339 sig != NULL;
2340 sig = sig->prev)
2341 debug_printf (" Still queued %d\n",
2342 sig->signal);
2343
2344 debug_printf (" (no more queued signals)\n");
2345 }
2346
2347 return 1;
2348 }
2349
2350 return 0;
2351 }
2352
2353 /* Fetch the possibly triggered data watchpoint info and store it in
2354 CHILD.
2355
2356 On some archs, like x86, that use debug registers to set
2357 watchpoints, it's possible that the way to know which watched
2358 address trapped, is to check the register that is used to select
2359 which address to watch. Problem is, between setting the watchpoint
2360 and reading back which data address trapped, the user may change
2361 the set of watchpoints, and, as a consequence, GDB changes the
2362 debug registers in the inferior. To avoid reading back a stale
2363 stopped-data-address when that happens, we cache in LP the fact
2364 that a watchpoint trapped, and the corresponding data address, as
2365 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2366 registers meanwhile, we have the cached data we can rely on. */
2367
2368 static int
2369 check_stopped_by_watchpoint (struct lwp_info *child)
2370 {
2371 if (the_low_target.stopped_by_watchpoint != NULL)
2372 {
2373 struct thread_info *saved_thread;
2374
2375 saved_thread = current_thread;
2376 current_thread = get_lwp_thread (child);
2377
2378 if (the_low_target.stopped_by_watchpoint ())
2379 {
2380 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2381
2382 if (the_low_target.stopped_data_address != NULL)
2383 child->stopped_data_address
2384 = the_low_target.stopped_data_address ();
2385 else
2386 child->stopped_data_address = 0;
2387 }
2388
2389 current_thread = saved_thread;
2390 }
2391
2392 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2393 }
2394
2395 /* Return the ptrace options that we want to try to enable. */
2396
2397 static int
2398 linux_low_ptrace_options (int attached)
2399 {
2400 int options = 0;
2401
2402 if (!attached)
2403 options |= PTRACE_O_EXITKILL;
2404
2405 if (report_fork_events)
2406 options |= PTRACE_O_TRACEFORK;
2407
2408 if (report_vfork_events)
2409 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2410
2411 if (report_exec_events)
2412 options |= PTRACE_O_TRACEEXEC;
2413
2414 options |= PTRACE_O_TRACESYSGOOD;
2415
2416 return options;
2417 }
2418
2419 /* Do low-level handling of the event, and check if we should go on
2420 and pass it to caller code. Return the affected lwp if we are, or
2421 NULL otherwise. */
2422
2423 static struct lwp_info *
2424 linux_low_filter_event (int lwpid, int wstat)
2425 {
2426 struct lwp_info *child;
2427 struct thread_info *thread;
2428 int have_stop_pc = 0;
2429
2430 child = find_lwp_pid (pid_to_ptid (lwpid));
2431
2432 /* Check for stop events reported by a process we didn't already
2433 know about - anything not already in our LWP list.
2434
2435 If we're expecting to receive stopped processes after
2436 fork, vfork, and clone events, then we'll just add the
2437 new one to our list and go back to waiting for the event
2438 to be reported - the stopped process might be returned
2439 from waitpid before or after the event is.
2440
2441 But note the case of a non-leader thread exec'ing after the
2442 leader having exited, and gone from our lists (because
2443 check_zombie_leaders deleted it). The non-leader thread
2444 changes its tid to the tgid. */
2445
2446 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2447 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2448 {
2449 ptid_t child_ptid;
2450
2451 /* A multi-thread exec after we had seen the leader exiting. */
2452 if (debug_threads)
2453 {
2454 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2455 "after exec.\n", lwpid);
2456 }
2457
2458 child_ptid = ptid_build (lwpid, lwpid, 0);
2459 child = add_lwp (child_ptid);
2460 child->stopped = 1;
2461 current_thread = child->thread;
2462 }
2463
2464 /* If we didn't find a process, one of two things presumably happened:
2465 - A process we started and then detached from has exited. Ignore it.
2466 - A process we are controlling has forked and the new child's stop
2467 was reported to us by the kernel. Save its PID. */
2468 if (child == NULL && WIFSTOPPED (wstat))
2469 {
2470 add_to_pid_list (&stopped_pids, lwpid, wstat);
2471 return NULL;
2472 }
2473 else if (child == NULL)
2474 return NULL;
2475
2476 thread = get_lwp_thread (child);
2477
2478 child->stopped = 1;
2479
2480 child->last_status = wstat;
2481
2482 /* Check if the thread has exited. */
2483 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2484 {
2485 if (debug_threads)
2486 debug_printf ("LLFE: %d exited.\n", lwpid);
2487
2488 if (finish_step_over (child))
2489 {
2490 /* Unsuspend all other LWPs, and set them back running again. */
2491 unsuspend_all_lwps (child);
2492 }
2493
2494 /* If there is at least one more LWP, then the exit signal was
2495 not the end of the debugged application and should be
2496 ignored, unless GDB wants to hear about thread exits. */
2497 if (report_thread_events
2498 || last_thread_of_process_p (pid_of (thread)))
2499 {
2500 /* Since events are serialized to GDB core, and we can't
2501 report this one right now. Leave the status pending for
2502 the next time we're able to report it. */
2503 mark_lwp_dead (child, wstat);
2504 return child;
2505 }
2506 else
2507 {
2508 delete_lwp (child);
2509 return NULL;
2510 }
2511 }
2512
2513 gdb_assert (WIFSTOPPED (wstat));
2514
2515 if (WIFSTOPPED (wstat))
2516 {
2517 struct process_info *proc;
2518
2519 /* Architecture-specific setup after inferior is running. */
2520 proc = find_process_pid (pid_of (thread));
2521 if (proc->tdesc == NULL)
2522 {
2523 if (proc->attached)
2524 {
2525 /* This needs to happen after we have attached to the
2526 inferior and it is stopped for the first time, but
2527 before we access any inferior registers. */
2528 linux_arch_setup_thread (thread);
2529 }
2530 else
2531 {
2532 /* The process is started, but GDBserver will do
2533 architecture-specific setup after the program stops at
2534 the first instruction. */
2535 child->status_pending_p = 1;
2536 child->status_pending = wstat;
2537 return child;
2538 }
2539 }
2540 }
2541
2542 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2543 {
2544 struct process_info *proc = find_process_pid (pid_of (thread));
2545 int options = linux_low_ptrace_options (proc->attached);
2546
2547 linux_enable_event_reporting (lwpid, options);
2548 child->must_set_ptrace_flags = 0;
2549 }
2550
2551 /* Always update syscall_state, even if it will be filtered later. */
2552 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2553 {
2554 child->syscall_state
2555 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2556 ? TARGET_WAITKIND_SYSCALL_RETURN
2557 : TARGET_WAITKIND_SYSCALL_ENTRY);
2558 }
2559 else
2560 {
2561 /* Almost all other ptrace-stops are known to be outside of system
2562 calls, with further exceptions in handle_extended_wait. */
2563 child->syscall_state = TARGET_WAITKIND_IGNORE;
2564 }
2565
2566 /* Be careful to not overwrite stop_pc until save_stop_reason is
2567 called. */
2568 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2569 && linux_is_extended_waitstatus (wstat))
2570 {
2571 child->stop_pc = get_pc (child);
2572 if (handle_extended_wait (&child, wstat))
2573 {
2574 /* The event has been handled, so just return without
2575 reporting it. */
2576 return NULL;
2577 }
2578 }
2579
2580 if (linux_wstatus_maybe_breakpoint (wstat))
2581 {
2582 if (save_stop_reason (child))
2583 have_stop_pc = 1;
2584 }
2585
2586 if (!have_stop_pc)
2587 child->stop_pc = get_pc (child);
2588
2589 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2590 && child->stop_expected)
2591 {
2592 if (debug_threads)
2593 debug_printf ("Expected stop.\n");
2594 child->stop_expected = 0;
2595
2596 if (thread->last_resume_kind == resume_stop)
2597 {
2598 /* We want to report the stop to the core. Treat the
2599 SIGSTOP as a normal event. */
2600 if (debug_threads)
2601 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2602 target_pid_to_str (ptid_of (thread)));
2603 }
2604 else if (stopping_threads != NOT_STOPPING_THREADS)
2605 {
2606 /* Stopping threads. We don't want this SIGSTOP to end up
2607 pending. */
2608 if (debug_threads)
2609 debug_printf ("LLW: SIGSTOP caught for %s "
2610 "while stopping threads.\n",
2611 target_pid_to_str (ptid_of (thread)));
2612 return NULL;
2613 }
2614 else
2615 {
2616 /* This is a delayed SIGSTOP. Filter out the event. */
2617 if (debug_threads)
2618 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2619 child->stepping ? "step" : "continue",
2620 target_pid_to_str (ptid_of (thread)));
2621
2622 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2623 return NULL;
2624 }
2625 }
2626
2627 child->status_pending_p = 1;
2628 child->status_pending = wstat;
2629 return child;
2630 }
2631
2632 /* Return true if THREAD is doing hardware single step. */
2633
2634 static int
2635 maybe_hw_step (struct thread_info *thread)
2636 {
2637 if (can_hardware_single_step ())
2638 return 1;
2639 else
2640 {
2641 /* GDBserver must insert single-step breakpoint for software
2642 single step. */
2643 gdb_assert (has_single_step_breakpoints (thread));
2644 return 0;
2645 }
2646 }
2647
2648 /* Resume LWPs that are currently stopped without any pending status
2649 to report, but are resumed from the core's perspective. */
2650
2651 static void
2652 resume_stopped_resumed_lwps (thread_info *thread)
2653 {
2654 struct lwp_info *lp = get_thread_lwp (thread);
2655
2656 if (lp->stopped
2657 && !lp->suspended
2658 && !lp->status_pending_p
2659 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2660 {
2661 int step = 0;
2662
2663 if (thread->last_resume_kind == resume_step)
2664 step = maybe_hw_step (thread);
2665
2666 if (debug_threads)
2667 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2668 target_pid_to_str (ptid_of (thread)),
2669 paddress (lp->stop_pc),
2670 step);
2671
2672 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2673 }
2674 }
2675
2676 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2677 match FILTER_PTID (leaving others pending). The PTIDs can be:
2678 minus_one_ptid, to specify any child; a pid PTID, specifying all
2679 lwps of a thread group; or a PTID representing a single lwp. Store
2680 the stop status through the status pointer WSTAT. OPTIONS is
2681 passed to the waitpid call. Return 0 if no event was found and
2682 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2683 was found. Return the PID of the stopped child otherwise. */
2684
2685 static int
2686 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2687 int *wstatp, int options)
2688 {
2689 struct thread_info *event_thread;
2690 struct lwp_info *event_child, *requested_child;
2691 sigset_t block_mask, prev_mask;
2692
2693 retry:
2694 /* N.B. event_thread points to the thread_info struct that contains
2695 event_child. Keep them in sync. */
2696 event_thread = NULL;
2697 event_child = NULL;
2698 requested_child = NULL;
2699
2700 /* Check for a lwp with a pending status. */
2701
2702 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2703 {
2704 event_thread = (struct thread_info *)
2705 find_inferior_in_random (&all_threads, status_pending_p_callback,
2706 &filter_ptid);
2707 if (event_thread != NULL)
2708 event_child = get_thread_lwp (event_thread);
2709 if (debug_threads && event_thread)
2710 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2711 }
2712 else if (!ptid_equal (filter_ptid, null_ptid))
2713 {
2714 requested_child = find_lwp_pid (filter_ptid);
2715
2716 if (stopping_threads == NOT_STOPPING_THREADS
2717 && requested_child->status_pending_p
2718 && (requested_child->collecting_fast_tracepoint
2719 != fast_tpoint_collect_result::not_collecting))
2720 {
2721 enqueue_one_deferred_signal (requested_child,
2722 &requested_child->status_pending);
2723 requested_child->status_pending_p = 0;
2724 requested_child->status_pending = 0;
2725 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2726 }
2727
2728 if (requested_child->suspended
2729 && requested_child->status_pending_p)
2730 {
2731 internal_error (__FILE__, __LINE__,
2732 "requesting an event out of a"
2733 " suspended child?");
2734 }
2735
2736 if (requested_child->status_pending_p)
2737 {
2738 event_child = requested_child;
2739 event_thread = get_lwp_thread (event_child);
2740 }
2741 }
2742
2743 if (event_child != NULL)
2744 {
2745 if (debug_threads)
2746 debug_printf ("Got an event from pending child %ld (%04x)\n",
2747 lwpid_of (event_thread), event_child->status_pending);
2748 *wstatp = event_child->status_pending;
2749 event_child->status_pending_p = 0;
2750 event_child->status_pending = 0;
2751 current_thread = event_thread;
2752 return lwpid_of (event_thread);
2753 }
2754
2755 /* But if we don't find a pending event, we'll have to wait.
2756
2757 We only enter this loop if no process has a pending wait status.
2758 Thus any action taken in response to a wait status inside this
2759 loop is responding as soon as we detect the status, not after any
2760 pending events. */
2761
2762 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2763 all signals while here. */
2764 sigfillset (&block_mask);
2765 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2766
2767 /* Always pull all events out of the kernel. We'll randomly select
2768 an event LWP out of all that have events, to prevent
2769 starvation. */
2770 while (event_child == NULL)
2771 {
2772 pid_t ret = 0;
2773
2774 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2775 quirks:
2776
2777 - If the thread group leader exits while other threads in the
2778 thread group still exist, waitpid(TGID, ...) hangs. That
2779 waitpid won't return an exit status until the other threads
2780 in the group are reaped.
2781
2782 - When a non-leader thread execs, that thread just vanishes
2783 without reporting an exit (so we'd hang if we waited for it
2784 explicitly in that case). The exec event is reported to
2785 the TGID pid. */
2786 errno = 0;
2787 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2788
2789 if (debug_threads)
2790 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2791 ret, errno ? strerror (errno) : "ERRNO-OK");
2792
2793 if (ret > 0)
2794 {
2795 if (debug_threads)
2796 {
2797 debug_printf ("LLW: waitpid %ld received %s\n",
2798 (long) ret, status_to_str (*wstatp));
2799 }
2800
2801 /* Filter all events. IOW, leave all events pending. We'll
2802 randomly select an event LWP out of all that have events
2803 below. */
2804 linux_low_filter_event (ret, *wstatp);
2805 /* Retry until nothing comes out of waitpid. A single
2806 SIGCHLD can indicate more than one child stopped. */
2807 continue;
2808 }
2809
2810 /* Now that we've pulled all events out of the kernel, resume
2811 LWPs that don't have an interesting event to report. */
2812 if (stopping_threads == NOT_STOPPING_THREADS)
2813 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2814
2815 /* ... and find an LWP with a status to report to the core, if
2816 any. */
2817 event_thread = (struct thread_info *)
2818 find_inferior_in_random (&all_threads, status_pending_p_callback,
2819 &filter_ptid);
2820 if (event_thread != NULL)
2821 {
2822 event_child = get_thread_lwp (event_thread);
2823 *wstatp = event_child->status_pending;
2824 event_child->status_pending_p = 0;
2825 event_child->status_pending = 0;
2826 break;
2827 }
2828
2829 /* Check for zombie thread group leaders. Those can't be reaped
2830 until all other threads in the thread group are. */
2831 check_zombie_leaders ();
2832
2833 /* If there are no resumed children left in the set of LWPs we
2834 want to wait for, bail. We can't just block in
2835 waitpid/sigsuspend, because lwps might have been left stopped
2836 in trace-stop state, and we'd be stuck forever waiting for
2837 their status to change (which would only happen if we resumed
2838 them). Even if WNOHANG is set, this return code is preferred
2839 over 0 (below), as it is more detailed. */
2840 if ((find_inferior (&all_threads,
2841 not_stopped_callback,
2842 &wait_ptid) == NULL))
2843 {
2844 if (debug_threads)
2845 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2846 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2847 return -1;
2848 }
2849
2850 /* No interesting event to report to the caller. */
2851 if ((options & WNOHANG))
2852 {
2853 if (debug_threads)
2854 debug_printf ("WNOHANG set, no event found\n");
2855
2856 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2857 return 0;
2858 }
2859
2860 /* Block until we get an event reported with SIGCHLD. */
2861 if (debug_threads)
2862 debug_printf ("sigsuspend'ing\n");
2863
2864 sigsuspend (&prev_mask);
2865 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2866 goto retry;
2867 }
2868
2869 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2870
2871 current_thread = event_thread;
2872
2873 return lwpid_of (event_thread);
2874 }
2875
2876 /* Wait for an event from child(ren) PTID. PTIDs can be:
2877 minus_one_ptid, to specify any child; a pid PTID, specifying all
2878 lwps of a thread group; or a PTID representing a single lwp. Store
2879 the stop status through the status pointer WSTAT. OPTIONS is
2880 passed to the waitpid call. Return 0 if no event was found and
2881 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2882 was found. Return the PID of the stopped child otherwise. */
2883
2884 static int
2885 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2886 {
2887 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2888 }
2889
2890 /* Count the LWP's that have had events. */
2891
2892 static int
2893 count_events_callback (thread_info *thread, void *data)
2894 {
2895 struct lwp_info *lp = get_thread_lwp (thread);
2896 int *count = (int *) data;
2897
2898 gdb_assert (count != NULL);
2899
2900 /* Count only resumed LWPs that have an event pending. */
2901 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2902 && lp->status_pending_p)
2903 (*count)++;
2904
2905 return 0;
2906 }
2907
2908 /* Select the LWP (if any) that is currently being single-stepped. */
2909
2910 static int
2911 select_singlestep_lwp_callback (thread_info *thread, void *data)
2912 {
2913 struct lwp_info *lp = get_thread_lwp (thread);
2914
2915 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2916 && thread->last_resume_kind == resume_step
2917 && lp->status_pending_p)
2918 return 1;
2919 else
2920 return 0;
2921 }
2922
2923 /* Select the Nth LWP that has had an event. */
2924
2925 static int
2926 select_event_lwp_callback (thread_info *thread, void *data)
2927 {
2928 struct lwp_info *lp = get_thread_lwp (thread);
2929 int *selector = (int *) data;
2930
2931 gdb_assert (selector != NULL);
2932
2933 /* Select only resumed LWPs that have an event pending. */
2934 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2935 && lp->status_pending_p)
2936 if ((*selector)-- == 0)
2937 return 1;
2938
2939 return 0;
2940 }
2941
2942 /* Select one LWP out of those that have events pending. */
2943
2944 static void
2945 select_event_lwp (struct lwp_info **orig_lp)
2946 {
2947 int num_events = 0;
2948 int random_selector;
2949 struct thread_info *event_thread = NULL;
2950
2951 /* In all-stop, give preference to the LWP that is being
2952 single-stepped. There will be at most one, and it's the LWP that
2953 the core is most interested in. If we didn't do this, then we'd
2954 have to handle pending step SIGTRAPs somehow in case the core
2955 later continues the previously-stepped thread, otherwise we'd
2956 report the pending SIGTRAP, and the core, not having stepped the
2957 thread, wouldn't understand what the trap was for, and therefore
2958 would report it to the user as a random signal. */
2959 if (!non_stop)
2960 {
2961 event_thread
2962 = (struct thread_info *) find_inferior (&all_threads,
2963 select_singlestep_lwp_callback,
2964 NULL);
2965 if (event_thread != NULL)
2966 {
2967 if (debug_threads)
2968 debug_printf ("SEL: Select single-step %s\n",
2969 target_pid_to_str (ptid_of (event_thread)));
2970 }
2971 }
2972 if (event_thread == NULL)
2973 {
2974 /* No single-stepping LWP. Select one at random, out of those
2975 which have had events. */
2976
2977 /* First see how many events we have. */
2978 find_inferior (&all_threads, count_events_callback, &num_events);
2979 gdb_assert (num_events > 0);
2980
2981 /* Now randomly pick a LWP out of those that have had
2982 events. */
2983 random_selector = (int)
2984 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2985
2986 if (debug_threads && num_events > 1)
2987 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2988 num_events, random_selector);
2989
2990 event_thread
2991 = (struct thread_info *) find_inferior (&all_threads,
2992 select_event_lwp_callback,
2993 &random_selector);
2994 }
2995
2996 if (event_thread != NULL)
2997 {
2998 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2999
3000 /* Switch the event LWP. */
3001 *orig_lp = event_lp;
3002 }
3003 }
3004
3005 /* Decrement the suspend count of an LWP. */
3006
3007 static int
3008 unsuspend_one_lwp (thread_info *thread, void *except)
3009 {
3010 struct lwp_info *lwp = get_thread_lwp (thread);
3011
3012 /* Ignore EXCEPT. */
3013 if (lwp == except)
3014 return 0;
3015
3016 lwp_suspended_decr (lwp);
3017 return 0;
3018 }
3019
3020 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
3021 NULL. */
3022
3023 static void
3024 unsuspend_all_lwps (struct lwp_info *except)
3025 {
3026 find_inferior (&all_threads, unsuspend_one_lwp, except);
3027 }
3028
3029 static void move_out_of_jump_pad_callback (thread_info *thread);
3030 static int stuck_in_jump_pad_callback (thread_info *thread, void *data);
3031 static int lwp_running (thread_info *thread, void *data);
3032 static ptid_t linux_wait_1 (ptid_t ptid,
3033 struct target_waitstatus *ourstatus,
3034 int target_options);
3035
3036 /* Stabilize threads (move out of jump pads).
3037
3038 If a thread is midway collecting a fast tracepoint, we need to
3039 finish the collection and move it out of the jump pad before
3040 reporting the signal.
3041
3042 This avoids recursion while collecting (when a signal arrives
3043 midway, and the signal handler itself collects), which would trash
3044 the trace buffer. In case the user set a breakpoint in a signal
3045 handler, this avoids the backtrace showing the jump pad, etc..
3046 Most importantly, there are certain things we can't do safely if
3047 threads are stopped in a jump pad (or in its callee's). For
3048 example:
3049
3050 - starting a new trace run. A thread still collecting the
3051 previous run, could trash the trace buffer when resumed. The trace
3052 buffer control structures would have been reset but the thread had
3053 no way to tell. The thread could even midway memcpy'ing to the
3054 buffer, which would mean that when resumed, it would clobber the
3055 trace buffer that had been set for a new run.
3056
3057 - we can't rewrite/reuse the jump pads for new tracepoints
3058 safely. Say you do tstart while a thread is stopped midway while
3059 collecting. When the thread is later resumed, it finishes the
3060 collection, and returns to the jump pad, to execute the original
3061 instruction that was under the tracepoint jump at the time the
3062 older run had been started. If the jump pad had been rewritten
3063 since for something else in the new run, the thread would now
3064 execute the wrong / random instructions. */
3065
3066 static void
3067 linux_stabilize_threads (void)
3068 {
3069 struct thread_info *saved_thread;
3070 struct thread_info *thread_stuck;
3071
3072 thread_stuck
3073 = (struct thread_info *) find_inferior (&all_threads,
3074 stuck_in_jump_pad_callback,
3075 NULL);
3076 if (thread_stuck != NULL)
3077 {
3078 if (debug_threads)
3079 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
3080 lwpid_of (thread_stuck));
3081 return;
3082 }
3083
3084 saved_thread = current_thread;
3085
3086 stabilizing_threads = 1;
3087
3088 /* Kick 'em all. */
3089 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
3090
3091 /* Loop until all are stopped out of the jump pads. */
3092 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
3093 {
3094 struct target_waitstatus ourstatus;
3095 struct lwp_info *lwp;
3096 int wstat;
3097
3098 /* Note that we go through the full wait even loop. While
3099 moving threads out of jump pad, we need to be able to step
3100 over internal breakpoints and such. */
3101 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
3102
3103 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
3104 {
3105 lwp = get_thread_lwp (current_thread);
3106
3107 /* Lock it. */
3108 lwp_suspended_inc (lwp);
3109
3110 if (ourstatus.value.sig != GDB_SIGNAL_0
3111 || current_thread->last_resume_kind == resume_stop)
3112 {
3113 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3114 enqueue_one_deferred_signal (lwp, &wstat);
3115 }
3116 }
3117 }
3118
3119 unsuspend_all_lwps (NULL);
3120
3121 stabilizing_threads = 0;
3122
3123 current_thread = saved_thread;
3124
3125 if (debug_threads)
3126 {
3127 thread_stuck
3128 = (struct thread_info *) find_inferior (&all_threads,
3129 stuck_in_jump_pad_callback,
3130 NULL);
3131 if (thread_stuck != NULL)
3132 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3133 lwpid_of (thread_stuck));
3134 }
3135 }
3136
3137 /* Convenience function that is called when the kernel reports an
3138 event that is not passed out to GDB. */
3139
3140 static ptid_t
3141 ignore_event (struct target_waitstatus *ourstatus)
3142 {
3143 /* If we got an event, there may still be others, as a single
3144 SIGCHLD can indicate more than one child stopped. This forces
3145 another target_wait call. */
3146 async_file_mark ();
3147
3148 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3149 return null_ptid;
3150 }
3151
3152 /* Convenience function that is called when the kernel reports an exit
3153 event. This decides whether to report the event to GDB as a
3154 process exit event, a thread exit event, or to suppress the
3155 event. */
3156
3157 static ptid_t
3158 filter_exit_event (struct lwp_info *event_child,
3159 struct target_waitstatus *ourstatus)
3160 {
3161 struct thread_info *thread = get_lwp_thread (event_child);
3162 ptid_t ptid = ptid_of (thread);
3163
3164 if (!last_thread_of_process_p (pid_of (thread)))
3165 {
3166 if (report_thread_events)
3167 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3168 else
3169 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3170
3171 delete_lwp (event_child);
3172 }
3173 return ptid;
3174 }
3175
3176 /* Returns 1 if GDB is interested in any event_child syscalls. */
3177
3178 static int
3179 gdb_catching_syscalls_p (struct lwp_info *event_child)
3180 {
3181 struct thread_info *thread = get_lwp_thread (event_child);
3182 struct process_info *proc = get_thread_process (thread);
3183
3184 return !proc->syscalls_to_catch.empty ();
3185 }
3186
3187 /* Returns 1 if GDB is interested in the event_child syscall.
3188 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3189
3190 static int
3191 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3192 {
3193 int sysno;
3194 struct thread_info *thread = get_lwp_thread (event_child);
3195 struct process_info *proc = get_thread_process (thread);
3196
3197 if (proc->syscalls_to_catch.empty ())
3198 return 0;
3199
3200 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3201 return 1;
3202
3203 get_syscall_trapinfo (event_child, &sysno);
3204
3205 for (int iter : proc->syscalls_to_catch)
3206 if (iter == sysno)
3207 return 1;
3208
3209 return 0;
3210 }
3211
3212 /* Wait for process, returns status. */
3213
3214 static ptid_t
3215 linux_wait_1 (ptid_t ptid,
3216 struct target_waitstatus *ourstatus, int target_options)
3217 {
3218 int w;
3219 struct lwp_info *event_child;
3220 int options;
3221 int pid;
3222 int step_over_finished;
3223 int bp_explains_trap;
3224 int maybe_internal_trap;
3225 int report_to_gdb;
3226 int trace_event;
3227 int in_step_range;
3228 int any_resumed;
3229
3230 if (debug_threads)
3231 {
3232 debug_enter ();
3233 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3234 }
3235
3236 /* Translate generic target options into linux options. */
3237 options = __WALL;
3238 if (target_options & TARGET_WNOHANG)
3239 options |= WNOHANG;
3240
3241 bp_explains_trap = 0;
3242 trace_event = 0;
3243 in_step_range = 0;
3244 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3245
3246 /* Find a resumed LWP, if any. */
3247 if (find_inferior (&all_threads,
3248 status_pending_p_callback,
3249 &minus_one_ptid) != NULL)
3250 any_resumed = 1;
3251 else if ((find_inferior (&all_threads,
3252 not_stopped_callback,
3253 &minus_one_ptid) != NULL))
3254 any_resumed = 1;
3255 else
3256 any_resumed = 0;
3257
3258 if (ptid_equal (step_over_bkpt, null_ptid))
3259 pid = linux_wait_for_event (ptid, &w, options);
3260 else
3261 {
3262 if (debug_threads)
3263 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3264 target_pid_to_str (step_over_bkpt));
3265 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3266 }
3267
3268 if (pid == 0 || (pid == -1 && !any_resumed))
3269 {
3270 gdb_assert (target_options & TARGET_WNOHANG);
3271
3272 if (debug_threads)
3273 {
3274 debug_printf ("linux_wait_1 ret = null_ptid, "
3275 "TARGET_WAITKIND_IGNORE\n");
3276 debug_exit ();
3277 }
3278
3279 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3280 return null_ptid;
3281 }
3282 else if (pid == -1)
3283 {
3284 if (debug_threads)
3285 {
3286 debug_printf ("linux_wait_1 ret = null_ptid, "
3287 "TARGET_WAITKIND_NO_RESUMED\n");
3288 debug_exit ();
3289 }
3290
3291 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3292 return null_ptid;
3293 }
3294
3295 event_child = get_thread_lwp (current_thread);
3296
3297 /* linux_wait_for_event only returns an exit status for the last
3298 child of a process. Report it. */
3299 if (WIFEXITED (w) || WIFSIGNALED (w))
3300 {
3301 if (WIFEXITED (w))
3302 {
3303 ourstatus->kind = TARGET_WAITKIND_EXITED;
3304 ourstatus->value.integer = WEXITSTATUS (w);
3305
3306 if (debug_threads)
3307 {
3308 debug_printf ("linux_wait_1 ret = %s, exited with "
3309 "retcode %d\n",
3310 target_pid_to_str (ptid_of (current_thread)),
3311 WEXITSTATUS (w));
3312 debug_exit ();
3313 }
3314 }
3315 else
3316 {
3317 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3318 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3319
3320 if (debug_threads)
3321 {
3322 debug_printf ("linux_wait_1 ret = %s, terminated with "
3323 "signal %d\n",
3324 target_pid_to_str (ptid_of (current_thread)),
3325 WTERMSIG (w));
3326 debug_exit ();
3327 }
3328 }
3329
3330 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3331 return filter_exit_event (event_child, ourstatus);
3332
3333 return ptid_of (current_thread);
3334 }
3335
3336 /* If step-over executes a breakpoint instruction, in the case of a
3337 hardware single step it means a gdb/gdbserver breakpoint had been
3338 planted on top of a permanent breakpoint, in the case of a software
3339 single step it may just mean that gdbserver hit the reinsert breakpoint.
3340 The PC has been adjusted by save_stop_reason to point at
3341 the breakpoint address.
3342 So in the case of the hardware single step advance the PC manually
3343 past the breakpoint and in the case of software single step advance only
3344 if it's not the single_step_breakpoint we are hitting.
3345 This avoids that a program would keep trapping a permanent breakpoint
3346 forever. */
3347 if (!ptid_equal (step_over_bkpt, null_ptid)
3348 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3349 && (event_child->stepping
3350 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3351 {
3352 int increment_pc = 0;
3353 int breakpoint_kind = 0;
3354 CORE_ADDR stop_pc = event_child->stop_pc;
3355
3356 breakpoint_kind =
3357 the_target->breakpoint_kind_from_current_state (&stop_pc);
3358 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3359
3360 if (debug_threads)
3361 {
3362 debug_printf ("step-over for %s executed software breakpoint\n",
3363 target_pid_to_str (ptid_of (current_thread)));
3364 }
3365
3366 if (increment_pc != 0)
3367 {
3368 struct regcache *regcache
3369 = get_thread_regcache (current_thread, 1);
3370
3371 event_child->stop_pc += increment_pc;
3372 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3373
3374 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3375 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3376 }
3377 }
3378
3379 /* If this event was not handled before, and is not a SIGTRAP, we
3380 report it. SIGILL and SIGSEGV are also treated as traps in case
3381 a breakpoint is inserted at the current PC. If this target does
3382 not support internal breakpoints at all, we also report the
3383 SIGTRAP without further processing; it's of no concern to us. */
3384 maybe_internal_trap
3385 = (supports_breakpoints ()
3386 && (WSTOPSIG (w) == SIGTRAP
3387 || ((WSTOPSIG (w) == SIGILL
3388 || WSTOPSIG (w) == SIGSEGV)
3389 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3390
3391 if (maybe_internal_trap)
3392 {
3393 /* Handle anything that requires bookkeeping before deciding to
3394 report the event or continue waiting. */
3395
3396 /* First check if we can explain the SIGTRAP with an internal
3397 breakpoint, or if we should possibly report the event to GDB.
3398 Do this before anything that may remove or insert a
3399 breakpoint. */
3400 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3401
3402 /* We have a SIGTRAP, possibly a step-over dance has just
3403 finished. If so, tweak the state machine accordingly,
3404 reinsert breakpoints and delete any single-step
3405 breakpoints. */
3406 step_over_finished = finish_step_over (event_child);
3407
3408 /* Now invoke the callbacks of any internal breakpoints there. */
3409 check_breakpoints (event_child->stop_pc);
3410
3411 /* Handle tracepoint data collecting. This may overflow the
3412 trace buffer, and cause a tracing stop, removing
3413 breakpoints. */
3414 trace_event = handle_tracepoints (event_child);
3415
3416 if (bp_explains_trap)
3417 {
3418 if (debug_threads)
3419 debug_printf ("Hit a gdbserver breakpoint.\n");
3420 }
3421 }
3422 else
3423 {
3424 /* We have some other signal, possibly a step-over dance was in
3425 progress, and it should be cancelled too. */
3426 step_over_finished = finish_step_over (event_child);
3427 }
3428
3429 /* We have all the data we need. Either report the event to GDB, or
3430 resume threads and keep waiting for more. */
3431
3432 /* If we're collecting a fast tracepoint, finish the collection and
3433 move out of the jump pad before delivering a signal. See
3434 linux_stabilize_threads. */
3435
3436 if (WIFSTOPPED (w)
3437 && WSTOPSIG (w) != SIGTRAP
3438 && supports_fast_tracepoints ()
3439 && agent_loaded_p ())
3440 {
3441 if (debug_threads)
3442 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3443 "to defer or adjust it.\n",
3444 WSTOPSIG (w), lwpid_of (current_thread));
3445
3446 /* Allow debugging the jump pad itself. */
3447 if (current_thread->last_resume_kind != resume_step
3448 && maybe_move_out_of_jump_pad (event_child, &w))
3449 {
3450 enqueue_one_deferred_signal (event_child, &w);
3451
3452 if (debug_threads)
3453 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3454 WSTOPSIG (w), lwpid_of (current_thread));
3455
3456 linux_resume_one_lwp (event_child, 0, 0, NULL);
3457
3458 if (debug_threads)
3459 debug_exit ();
3460 return ignore_event (ourstatus);
3461 }
3462 }
3463
3464 if (event_child->collecting_fast_tracepoint
3465 != fast_tpoint_collect_result::not_collecting)
3466 {
3467 if (debug_threads)
3468 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3469 "Check if we're already there.\n",
3470 lwpid_of (current_thread),
3471 (int) event_child->collecting_fast_tracepoint);
3472
3473 trace_event = 1;
3474
3475 event_child->collecting_fast_tracepoint
3476 = linux_fast_tracepoint_collecting (event_child, NULL);
3477
3478 if (event_child->collecting_fast_tracepoint
3479 != fast_tpoint_collect_result::before_insn)
3480 {
3481 /* No longer need this breakpoint. */
3482 if (event_child->exit_jump_pad_bkpt != NULL)
3483 {
3484 if (debug_threads)
3485 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3486 "stopping all threads momentarily.\n");
3487
3488 /* Other running threads could hit this breakpoint.
3489 We don't handle moribund locations like GDB does,
3490 instead we always pause all threads when removing
3491 breakpoints, so that any step-over or
3492 decr_pc_after_break adjustment is always taken
3493 care of while the breakpoint is still
3494 inserted. */
3495 stop_all_lwps (1, event_child);
3496
3497 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3498 event_child->exit_jump_pad_bkpt = NULL;
3499
3500 unstop_all_lwps (1, event_child);
3501
3502 gdb_assert (event_child->suspended >= 0);
3503 }
3504 }
3505
3506 if (event_child->collecting_fast_tracepoint
3507 == fast_tpoint_collect_result::not_collecting)
3508 {
3509 if (debug_threads)
3510 debug_printf ("fast tracepoint finished "
3511 "collecting successfully.\n");
3512
3513 /* We may have a deferred signal to report. */
3514 if (dequeue_one_deferred_signal (event_child, &w))
3515 {
3516 if (debug_threads)
3517 debug_printf ("dequeued one signal.\n");
3518 }
3519 else
3520 {
3521 if (debug_threads)
3522 debug_printf ("no deferred signals.\n");
3523
3524 if (stabilizing_threads)
3525 {
3526 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3527 ourstatus->value.sig = GDB_SIGNAL_0;
3528
3529 if (debug_threads)
3530 {
3531 debug_printf ("linux_wait_1 ret = %s, stopped "
3532 "while stabilizing threads\n",
3533 target_pid_to_str (ptid_of (current_thread)));
3534 debug_exit ();
3535 }
3536
3537 return ptid_of (current_thread);
3538 }
3539 }
3540 }
3541 }
3542
3543 /* Check whether GDB would be interested in this event. */
3544
3545 /* Check if GDB is interested in this syscall. */
3546 if (WIFSTOPPED (w)
3547 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3548 && !gdb_catch_this_syscall_p (event_child))
3549 {
3550 if (debug_threads)
3551 {
3552 debug_printf ("Ignored syscall for LWP %ld.\n",
3553 lwpid_of (current_thread));
3554 }
3555
3556 linux_resume_one_lwp (event_child, event_child->stepping,
3557 0, NULL);
3558
3559 if (debug_threads)
3560 debug_exit ();
3561 return ignore_event (ourstatus);
3562 }
3563
3564 /* If GDB is not interested in this signal, don't stop other
3565 threads, and don't report it to GDB. Just resume the inferior
3566 right away. We do this for threading-related signals as well as
3567 any that GDB specifically requested we ignore. But never ignore
3568 SIGSTOP if we sent it ourselves, and do not ignore signals when
3569 stepping - they may require special handling to skip the signal
3570 handler. Also never ignore signals that could be caused by a
3571 breakpoint. */
3572 if (WIFSTOPPED (w)
3573 && current_thread->last_resume_kind != resume_step
3574 && (
3575 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3576 (current_process ()->priv->thread_db != NULL
3577 && (WSTOPSIG (w) == __SIGRTMIN
3578 || WSTOPSIG (w) == __SIGRTMIN + 1))
3579 ||
3580 #endif
3581 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3582 && !(WSTOPSIG (w) == SIGSTOP
3583 && current_thread->last_resume_kind == resume_stop)
3584 && !linux_wstatus_maybe_breakpoint (w))))
3585 {
3586 siginfo_t info, *info_p;
3587
3588 if (debug_threads)
3589 debug_printf ("Ignored signal %d for LWP %ld.\n",
3590 WSTOPSIG (w), lwpid_of (current_thread));
3591
3592 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3593 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3594 info_p = &info;
3595 else
3596 info_p = NULL;
3597
3598 if (step_over_finished)
3599 {
3600 /* We cancelled this thread's step-over above. We still
3601 need to unsuspend all other LWPs, and set them back
3602 running again while the signal handler runs. */
3603 unsuspend_all_lwps (event_child);
3604
3605 /* Enqueue the pending signal info so that proceed_all_lwps
3606 doesn't lose it. */
3607 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3608
3609 proceed_all_lwps ();
3610 }
3611 else
3612 {
3613 linux_resume_one_lwp (event_child, event_child->stepping,
3614 WSTOPSIG (w), info_p);
3615 }
3616
3617 if (debug_threads)
3618 debug_exit ();
3619
3620 return ignore_event (ourstatus);
3621 }
3622
3623 /* Note that all addresses are always "out of the step range" when
3624 there's no range to begin with. */
3625 in_step_range = lwp_in_step_range (event_child);
3626
3627 /* If GDB wanted this thread to single step, and the thread is out
3628 of the step range, we always want to report the SIGTRAP, and let
3629 GDB handle it. Watchpoints should always be reported. So should
3630 signals we can't explain. A SIGTRAP we can't explain could be a
3631 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3632 do, we're be able to handle GDB breakpoints on top of internal
3633 breakpoints, by handling the internal breakpoint and still
3634 reporting the event to GDB. If we don't, we're out of luck, GDB
3635 won't see the breakpoint hit. If we see a single-step event but
3636 the thread should be continuing, don't pass the trap to gdb.
3637 That indicates that we had previously finished a single-step but
3638 left the single-step pending -- see
3639 complete_ongoing_step_over. */
3640 report_to_gdb = (!maybe_internal_trap
3641 || (current_thread->last_resume_kind == resume_step
3642 && !in_step_range)
3643 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3644 || (!in_step_range
3645 && !bp_explains_trap
3646 && !trace_event
3647 && !step_over_finished
3648 && !(current_thread->last_resume_kind == resume_continue
3649 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3650 || (gdb_breakpoint_here (event_child->stop_pc)
3651 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3652 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3653 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3654
3655 run_breakpoint_commands (event_child->stop_pc);
3656
3657 /* We found no reason GDB would want us to stop. We either hit one
3658 of our own breakpoints, or finished an internal step GDB
3659 shouldn't know about. */
3660 if (!report_to_gdb)
3661 {
3662 if (debug_threads)
3663 {
3664 if (bp_explains_trap)
3665 debug_printf ("Hit a gdbserver breakpoint.\n");
3666 if (step_over_finished)
3667 debug_printf ("Step-over finished.\n");
3668 if (trace_event)
3669 debug_printf ("Tracepoint event.\n");
3670 if (lwp_in_step_range (event_child))
3671 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3672 paddress (event_child->stop_pc),
3673 paddress (event_child->step_range_start),
3674 paddress (event_child->step_range_end));
3675 }
3676
3677 /* We're not reporting this breakpoint to GDB, so apply the
3678 decr_pc_after_break adjustment to the inferior's regcache
3679 ourselves. */
3680
3681 if (the_low_target.set_pc != NULL)
3682 {
3683 struct regcache *regcache
3684 = get_thread_regcache (current_thread, 1);
3685 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3686 }
3687
3688 if (step_over_finished)
3689 {
3690 /* If we have finished stepping over a breakpoint, we've
3691 stopped and suspended all LWPs momentarily except the
3692 stepping one. This is where we resume them all again.
3693 We're going to keep waiting, so use proceed, which
3694 handles stepping over the next breakpoint. */
3695 unsuspend_all_lwps (event_child);
3696 }
3697 else
3698 {
3699 /* Remove the single-step breakpoints if any. Note that
3700 there isn't single-step breakpoint if we finished stepping
3701 over. */
3702 if (can_software_single_step ()
3703 && has_single_step_breakpoints (current_thread))
3704 {
3705 stop_all_lwps (0, event_child);
3706 delete_single_step_breakpoints (current_thread);
3707 unstop_all_lwps (0, event_child);
3708 }
3709 }
3710
3711 if (debug_threads)
3712 debug_printf ("proceeding all threads.\n");
3713 proceed_all_lwps ();
3714
3715 if (debug_threads)
3716 debug_exit ();
3717
3718 return ignore_event (ourstatus);
3719 }
3720
3721 if (debug_threads)
3722 {
3723 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3724 {
3725 std::string str
3726 = target_waitstatus_to_string (&event_child->waitstatus);
3727
3728 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3729 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3730 }
3731 if (current_thread->last_resume_kind == resume_step)
3732 {
3733 if (event_child->step_range_start == event_child->step_range_end)
3734 debug_printf ("GDB wanted to single-step, reporting event.\n");
3735 else if (!lwp_in_step_range (event_child))
3736 debug_printf ("Out of step range, reporting event.\n");
3737 }
3738 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3739 debug_printf ("Stopped by watchpoint.\n");
3740 else if (gdb_breakpoint_here (event_child->stop_pc))
3741 debug_printf ("Stopped by GDB breakpoint.\n");
3742 if (debug_threads)
3743 debug_printf ("Hit a non-gdbserver trap event.\n");
3744 }
3745
3746 /* Alright, we're going to report a stop. */
3747
3748 /* Remove single-step breakpoints. */
3749 if (can_software_single_step ())
3750 {
3751 /* Remove single-step breakpoints or not. It it is true, stop all
3752 lwps, so that other threads won't hit the breakpoint in the
3753 staled memory. */
3754 int remove_single_step_breakpoints_p = 0;
3755
3756 if (non_stop)
3757 {
3758 remove_single_step_breakpoints_p
3759 = has_single_step_breakpoints (current_thread);
3760 }
3761 else
3762 {
3763 /* In all-stop, a stop reply cancels all previous resume
3764 requests. Delete all single-step breakpoints. */
3765
3766 find_thread ([&] (thread_info *thread) {
3767 if (has_single_step_breakpoints (thread))
3768 {
3769 remove_single_step_breakpoints_p = 1;
3770 return true;
3771 }
3772
3773 return false;
3774 });
3775 }
3776
3777 if (remove_single_step_breakpoints_p)
3778 {
3779 /* If we remove single-step breakpoints from memory, stop all lwps,
3780 so that other threads won't hit the breakpoint in the staled
3781 memory. */
3782 stop_all_lwps (0, event_child);
3783
3784 if (non_stop)
3785 {
3786 gdb_assert (has_single_step_breakpoints (current_thread));
3787 delete_single_step_breakpoints (current_thread);
3788 }
3789 else
3790 {
3791 for_each_thread ([] (thread_info *thread){
3792 if (has_single_step_breakpoints (thread))
3793 delete_single_step_breakpoints (thread);
3794 });
3795 }
3796
3797 unstop_all_lwps (0, event_child);
3798 }
3799 }
3800
3801 if (!stabilizing_threads)
3802 {
3803 /* In all-stop, stop all threads. */
3804 if (!non_stop)
3805 stop_all_lwps (0, NULL);
3806
3807 if (step_over_finished)
3808 {
3809 if (!non_stop)
3810 {
3811 /* If we were doing a step-over, all other threads but
3812 the stepping one had been paused in start_step_over,
3813 with their suspend counts incremented. We don't want
3814 to do a full unstop/unpause, because we're in
3815 all-stop mode (so we want threads stopped), but we
3816 still need to unsuspend the other threads, to
3817 decrement their `suspended' count back. */
3818 unsuspend_all_lwps (event_child);
3819 }
3820 else
3821 {
3822 /* If we just finished a step-over, then all threads had
3823 been momentarily paused. In all-stop, that's fine,
3824 we want threads stopped by now anyway. In non-stop,
3825 we need to re-resume threads that GDB wanted to be
3826 running. */
3827 unstop_all_lwps (1, event_child);
3828 }
3829 }
3830
3831 /* If we're not waiting for a specific LWP, choose an event LWP
3832 from among those that have had events. Giving equal priority
3833 to all LWPs that have had events helps prevent
3834 starvation. */
3835 if (ptid_equal (ptid, minus_one_ptid))
3836 {
3837 event_child->status_pending_p = 1;
3838 event_child->status_pending = w;
3839
3840 select_event_lwp (&event_child);
3841
3842 /* current_thread and event_child must stay in sync. */
3843 current_thread = get_lwp_thread (event_child);
3844
3845 event_child->status_pending_p = 0;
3846 w = event_child->status_pending;
3847 }
3848
3849
3850 /* Stabilize threads (move out of jump pads). */
3851 if (!non_stop)
3852 stabilize_threads ();
3853 }
3854 else
3855 {
3856 /* If we just finished a step-over, then all threads had been
3857 momentarily paused. In all-stop, that's fine, we want
3858 threads stopped by now anyway. In non-stop, we need to
3859 re-resume threads that GDB wanted to be running. */
3860 if (step_over_finished)
3861 unstop_all_lwps (1, event_child);
3862 }
3863
3864 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3865 {
3866 /* If the reported event is an exit, fork, vfork or exec, let
3867 GDB know. */
3868
3869 /* Break the unreported fork relationship chain. */
3870 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3871 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3872 {
3873 event_child->fork_relative->fork_relative = NULL;
3874 event_child->fork_relative = NULL;
3875 }
3876
3877 *ourstatus = event_child->waitstatus;
3878 /* Clear the event lwp's waitstatus since we handled it already. */
3879 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3880 }
3881 else
3882 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3883
3884 /* Now that we've selected our final event LWP, un-adjust its PC if
3885 it was a software breakpoint, and the client doesn't know we can
3886 adjust the breakpoint ourselves. */
3887 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3888 && !swbreak_feature)
3889 {
3890 int decr_pc = the_low_target.decr_pc_after_break;
3891
3892 if (decr_pc != 0)
3893 {
3894 struct regcache *regcache
3895 = get_thread_regcache (current_thread, 1);
3896 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3897 }
3898 }
3899
3900 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3901 {
3902 get_syscall_trapinfo (event_child,
3903 &ourstatus->value.syscall_number);
3904 ourstatus->kind = event_child->syscall_state;
3905 }
3906 else if (current_thread->last_resume_kind == resume_stop
3907 && WSTOPSIG (w) == SIGSTOP)
3908 {
3909 /* A thread that has been requested to stop by GDB with vCont;t,
3910 and it stopped cleanly, so report as SIG0. The use of
3911 SIGSTOP is an implementation detail. */
3912 ourstatus->value.sig = GDB_SIGNAL_0;
3913 }
3914 else if (current_thread->last_resume_kind == resume_stop
3915 && WSTOPSIG (w) != SIGSTOP)
3916 {
3917 /* A thread that has been requested to stop by GDB with vCont;t,
3918 but, it stopped for other reasons. */
3919 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3920 }
3921 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3922 {
3923 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3924 }
3925
3926 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3927
3928 if (debug_threads)
3929 {
3930 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3931 target_pid_to_str (ptid_of (current_thread)),
3932 ourstatus->kind, ourstatus->value.sig);
3933 debug_exit ();
3934 }
3935
3936 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3937 return filter_exit_event (event_child, ourstatus);
3938
3939 return ptid_of (current_thread);
3940 }
3941
3942 /* Get rid of any pending event in the pipe. */
3943 static void
3944 async_file_flush (void)
3945 {
3946 int ret;
3947 char buf;
3948
3949 do
3950 ret = read (linux_event_pipe[0], &buf, 1);
3951 while (ret >= 0 || (ret == -1 && errno == EINTR));
3952 }
3953
3954 /* Put something in the pipe, so the event loop wakes up. */
3955 static void
3956 async_file_mark (void)
3957 {
3958 int ret;
3959
3960 async_file_flush ();
3961
3962 do
3963 ret = write (linux_event_pipe[1], "+", 1);
3964 while (ret == 0 || (ret == -1 && errno == EINTR));
3965
3966 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3967 be awakened anyway. */
3968 }
3969
3970 static ptid_t
3971 linux_wait (ptid_t ptid,
3972 struct target_waitstatus *ourstatus, int target_options)
3973 {
3974 ptid_t event_ptid;
3975
3976 /* Flush the async file first. */
3977 if (target_is_async_p ())
3978 async_file_flush ();
3979
3980 do
3981 {
3982 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3983 }
3984 while ((target_options & TARGET_WNOHANG) == 0
3985 && ptid_equal (event_ptid, null_ptid)
3986 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3987
3988 /* If at least one stop was reported, there may be more. A single
3989 SIGCHLD can signal more than one child stop. */
3990 if (target_is_async_p ()
3991 && (target_options & TARGET_WNOHANG) != 0
3992 && !ptid_equal (event_ptid, null_ptid))
3993 async_file_mark ();
3994
3995 return event_ptid;
3996 }
3997
3998 /* Send a signal to an LWP. */
3999
4000 static int
4001 kill_lwp (unsigned long lwpid, int signo)
4002 {
4003 int ret;
4004
4005 errno = 0;
4006 ret = syscall (__NR_tkill, lwpid, signo);
4007 if (errno == ENOSYS)
4008 {
4009 /* If tkill fails, then we are not using nptl threads, a
4010 configuration we no longer support. */
4011 perror_with_name (("tkill"));
4012 }
4013 return ret;
4014 }
4015
4016 void
4017 linux_stop_lwp (struct lwp_info *lwp)
4018 {
4019 send_sigstop (lwp);
4020 }
4021
4022 static void
4023 send_sigstop (struct lwp_info *lwp)
4024 {
4025 int pid;
4026
4027 pid = lwpid_of (get_lwp_thread (lwp));
4028
4029 /* If we already have a pending stop signal for this process, don't
4030 send another. */
4031 if (lwp->stop_expected)
4032 {
4033 if (debug_threads)
4034 debug_printf ("Have pending sigstop for lwp %d\n", pid);
4035
4036 return;
4037 }
4038
4039 if (debug_threads)
4040 debug_printf ("Sending sigstop to lwp %d\n", pid);
4041
4042 lwp->stop_expected = 1;
4043 kill_lwp (pid, SIGSTOP);
4044 }
4045
4046 static int
4047 send_sigstop_callback (thread_info *thread, void *except)
4048 {
4049 struct lwp_info *lwp = get_thread_lwp (thread);
4050
4051 /* Ignore EXCEPT. */
4052 if (lwp == except)
4053 return 0;
4054
4055 if (lwp->stopped)
4056 return 0;
4057
4058 send_sigstop (lwp);
4059 return 0;
4060 }
4061
4062 /* Increment the suspend count of an LWP, and stop it, if not stopped
4063 yet. */
4064 static int
4065 suspend_and_send_sigstop_callback (thread_info *thread, void *except)
4066 {
4067 struct lwp_info *lwp = get_thread_lwp (thread);
4068
4069 /* Ignore EXCEPT. */
4070 if (lwp == except)
4071 return 0;
4072
4073 lwp_suspended_inc (lwp);
4074
4075 return send_sigstop_callback (thread, except);
4076 }
4077
4078 static void
4079 mark_lwp_dead (struct lwp_info *lwp, int wstat)
4080 {
4081 /* Store the exit status for later. */
4082 lwp->status_pending_p = 1;
4083 lwp->status_pending = wstat;
4084
4085 /* Store in waitstatus as well, as there's nothing else to process
4086 for this event. */
4087 if (WIFEXITED (wstat))
4088 {
4089 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
4090 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
4091 }
4092 else if (WIFSIGNALED (wstat))
4093 {
4094 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
4095 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
4096 }
4097
4098 /* Prevent trying to stop it. */
4099 lwp->stopped = 1;
4100
4101 /* No further stops are expected from a dead lwp. */
4102 lwp->stop_expected = 0;
4103 }
4104
4105 /* Return true if LWP has exited already, and has a pending exit event
4106 to report to GDB. */
4107
4108 static int
4109 lwp_is_marked_dead (struct lwp_info *lwp)
4110 {
4111 return (lwp->status_pending_p
4112 && (WIFEXITED (lwp->status_pending)
4113 || WIFSIGNALED (lwp->status_pending)));
4114 }
4115
4116 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4117
4118 static void
4119 wait_for_sigstop (void)
4120 {
4121 struct thread_info *saved_thread;
4122 ptid_t saved_tid;
4123 int wstat;
4124 int ret;
4125
4126 saved_thread = current_thread;
4127 if (saved_thread != NULL)
4128 saved_tid = saved_thread->id;
4129 else
4130 saved_tid = null_ptid; /* avoid bogus unused warning */
4131
4132 if (debug_threads)
4133 debug_printf ("wait_for_sigstop: pulling events\n");
4134
4135 /* Passing NULL_PTID as filter indicates we want all events to be
4136 left pending. Eventually this returns when there are no
4137 unwaited-for children left. */
4138 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4139 &wstat, __WALL);
4140 gdb_assert (ret == -1);
4141
4142 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4143 current_thread = saved_thread;
4144 else
4145 {
4146 if (debug_threads)
4147 debug_printf ("Previously current thread died.\n");
4148
4149 /* We can't change the current inferior behind GDB's back,
4150 otherwise, a subsequent command may apply to the wrong
4151 process. */
4152 current_thread = NULL;
4153 }
4154 }
4155
4156 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
4157 move it out, because we need to report the stop event to GDB. For
4158 example, if the user puts a breakpoint in the jump pad, it's
4159 because she wants to debug it. */
4160
4161 static int
4162 stuck_in_jump_pad_callback (thread_info *thread, void *data)
4163 {
4164 struct lwp_info *lwp = get_thread_lwp (thread);
4165
4166 if (lwp->suspended != 0)
4167 {
4168 internal_error (__FILE__, __LINE__,
4169 "LWP %ld is suspended, suspended=%d\n",
4170 lwpid_of (thread), lwp->suspended);
4171 }
4172 gdb_assert (lwp->stopped);
4173
4174 /* Allow debugging the jump pad, gdb_collect, etc.. */
4175 return (supports_fast_tracepoints ()
4176 && agent_loaded_p ()
4177 && (gdb_breakpoint_here (lwp->stop_pc)
4178 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4179 || thread->last_resume_kind == resume_step)
4180 && (linux_fast_tracepoint_collecting (lwp, NULL)
4181 != fast_tpoint_collect_result::not_collecting));
4182 }
4183
4184 static void
4185 move_out_of_jump_pad_callback (thread_info *thread)
4186 {
4187 struct thread_info *saved_thread;
4188 struct lwp_info *lwp = get_thread_lwp (thread);
4189 int *wstat;
4190
4191 if (lwp->suspended != 0)
4192 {
4193 internal_error (__FILE__, __LINE__,
4194 "LWP %ld is suspended, suspended=%d\n",
4195 lwpid_of (thread), lwp->suspended);
4196 }
4197 gdb_assert (lwp->stopped);
4198
4199 /* For gdb_breakpoint_here. */
4200 saved_thread = current_thread;
4201 current_thread = thread;
4202
4203 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4204
4205 /* Allow debugging the jump pad, gdb_collect, etc. */
4206 if (!gdb_breakpoint_here (lwp->stop_pc)
4207 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4208 && thread->last_resume_kind != resume_step
4209 && maybe_move_out_of_jump_pad (lwp, wstat))
4210 {
4211 if (debug_threads)
4212 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4213 lwpid_of (thread));
4214
4215 if (wstat)
4216 {
4217 lwp->status_pending_p = 0;
4218 enqueue_one_deferred_signal (lwp, wstat);
4219
4220 if (debug_threads)
4221 debug_printf ("Signal %d for LWP %ld deferred "
4222 "(in jump pad)\n",
4223 WSTOPSIG (*wstat), lwpid_of (thread));
4224 }
4225
4226 linux_resume_one_lwp (lwp, 0, 0, NULL);
4227 }
4228 else
4229 lwp_suspended_inc (lwp);
4230
4231 current_thread = saved_thread;
4232 }
4233
4234 static int
4235 lwp_running (thread_info *thread, void *data)
4236 {
4237 struct lwp_info *lwp = get_thread_lwp (thread);
4238
4239 if (lwp_is_marked_dead (lwp))
4240 return 0;
4241 if (lwp->stopped)
4242 return 0;
4243 return 1;
4244 }
4245
4246 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4247 If SUSPEND, then also increase the suspend count of every LWP,
4248 except EXCEPT. */
4249
4250 static void
4251 stop_all_lwps (int suspend, struct lwp_info *except)
4252 {
4253 /* Should not be called recursively. */
4254 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4255
4256 if (debug_threads)
4257 {
4258 debug_enter ();
4259 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4260 suspend ? "stop-and-suspend" : "stop",
4261 except != NULL
4262 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4263 : "none");
4264 }
4265
4266 stopping_threads = (suspend
4267 ? STOPPING_AND_SUSPENDING_THREADS
4268 : STOPPING_THREADS);
4269
4270 if (suspend)
4271 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4272 else
4273 find_inferior (&all_threads, send_sigstop_callback, except);
4274 wait_for_sigstop ();
4275 stopping_threads = NOT_STOPPING_THREADS;
4276
4277 if (debug_threads)
4278 {
4279 debug_printf ("stop_all_lwps done, setting stopping_threads "
4280 "back to !stopping\n");
4281 debug_exit ();
4282 }
4283 }
4284
4285 /* Enqueue one signal in the chain of signals which need to be
4286 delivered to this process on next resume. */
4287
4288 static void
4289 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4290 {
4291 struct pending_signals *p_sig = XNEW (struct pending_signals);
4292
4293 p_sig->prev = lwp->pending_signals;
4294 p_sig->signal = signal;
4295 if (info == NULL)
4296 memset (&p_sig->info, 0, sizeof (siginfo_t));
4297 else
4298 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4299 lwp->pending_signals = p_sig;
4300 }
4301
4302 /* Install breakpoints for software single stepping. */
4303
4304 static void
4305 install_software_single_step_breakpoints (struct lwp_info *lwp)
4306 {
4307 struct thread_info *thread = get_lwp_thread (lwp);
4308 struct regcache *regcache = get_thread_regcache (thread, 1);
4309 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4310
4311 current_thread = thread;
4312 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4313
4314 for (CORE_ADDR pc : next_pcs)
4315 set_single_step_breakpoint (pc, current_ptid);
4316
4317 do_cleanups (old_chain);
4318 }
4319
4320 /* Single step via hardware or software single step.
4321 Return 1 if hardware single stepping, 0 if software single stepping
4322 or can't single step. */
4323
4324 static int
4325 single_step (struct lwp_info* lwp)
4326 {
4327 int step = 0;
4328
4329 if (can_hardware_single_step ())
4330 {
4331 step = 1;
4332 }
4333 else if (can_software_single_step ())
4334 {
4335 install_software_single_step_breakpoints (lwp);
4336 step = 0;
4337 }
4338 else
4339 {
4340 if (debug_threads)
4341 debug_printf ("stepping is not implemented on this target");
4342 }
4343
4344 return step;
4345 }
4346
4347 /* The signal can be delivered to the inferior if we are not trying to
4348 finish a fast tracepoint collect. Since signal can be delivered in
4349 the step-over, the program may go to signal handler and trap again
4350 after return from the signal handler. We can live with the spurious
4351 double traps. */
4352
4353 static int
4354 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4355 {
4356 return (lwp->collecting_fast_tracepoint
4357 == fast_tpoint_collect_result::not_collecting);
4358 }
4359
4360 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4361 SIGNAL is nonzero, give it that signal. */
4362
4363 static void
4364 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4365 int step, int signal, siginfo_t *info)
4366 {
4367 struct thread_info *thread = get_lwp_thread (lwp);
4368 struct thread_info *saved_thread;
4369 int ptrace_request;
4370 struct process_info *proc = get_thread_process (thread);
4371
4372 /* Note that target description may not be initialised
4373 (proc->tdesc == NULL) at this point because the program hasn't
4374 stopped at the first instruction yet. It means GDBserver skips
4375 the extra traps from the wrapper program (see option --wrapper).
4376 Code in this function that requires register access should be
4377 guarded by proc->tdesc == NULL or something else. */
4378
4379 if (lwp->stopped == 0)
4380 return;
4381
4382 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4383
4384 fast_tpoint_collect_result fast_tp_collecting
4385 = lwp->collecting_fast_tracepoint;
4386
4387 gdb_assert (!stabilizing_threads
4388 || (fast_tp_collecting
4389 != fast_tpoint_collect_result::not_collecting));
4390
4391 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4392 user used the "jump" command, or "set $pc = foo"). */
4393 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4394 {
4395 /* Collecting 'while-stepping' actions doesn't make sense
4396 anymore. */
4397 release_while_stepping_state_list (thread);
4398 }
4399
4400 /* If we have pending signals or status, and a new signal, enqueue the
4401 signal. Also enqueue the signal if it can't be delivered to the
4402 inferior right now. */
4403 if (signal != 0
4404 && (lwp->status_pending_p
4405 || lwp->pending_signals != NULL
4406 || !lwp_signal_can_be_delivered (lwp)))
4407 {
4408 enqueue_pending_signal (lwp, signal, info);
4409
4410 /* Postpone any pending signal. It was enqueued above. */
4411 signal = 0;
4412 }
4413
4414 if (lwp->status_pending_p)
4415 {
4416 if (debug_threads)
4417 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4418 " has pending status\n",
4419 lwpid_of (thread), step ? "step" : "continue",
4420 lwp->stop_expected ? "expected" : "not expected");
4421 return;
4422 }
4423
4424 saved_thread = current_thread;
4425 current_thread = thread;
4426
4427 /* This bit needs some thinking about. If we get a signal that
4428 we must report while a single-step reinsert is still pending,
4429 we often end up resuming the thread. It might be better to
4430 (ew) allow a stack of pending events; then we could be sure that
4431 the reinsert happened right away and not lose any signals.
4432
4433 Making this stack would also shrink the window in which breakpoints are
4434 uninserted (see comment in linux_wait_for_lwp) but not enough for
4435 complete correctness, so it won't solve that problem. It may be
4436 worthwhile just to solve this one, however. */
4437 if (lwp->bp_reinsert != 0)
4438 {
4439 if (debug_threads)
4440 debug_printf (" pending reinsert at 0x%s\n",
4441 paddress (lwp->bp_reinsert));
4442
4443 if (can_hardware_single_step ())
4444 {
4445 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4446 {
4447 if (step == 0)
4448 warning ("BAD - reinserting but not stepping.");
4449 if (lwp->suspended)
4450 warning ("BAD - reinserting and suspended(%d).",
4451 lwp->suspended);
4452 }
4453 }
4454
4455 step = maybe_hw_step (thread);
4456 }
4457
4458 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4459 {
4460 if (debug_threads)
4461 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4462 " (exit-jump-pad-bkpt)\n",
4463 lwpid_of (thread));
4464 }
4465 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4466 {
4467 if (debug_threads)
4468 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4469 " single-stepping\n",
4470 lwpid_of (thread));
4471
4472 if (can_hardware_single_step ())
4473 step = 1;
4474 else
4475 {
4476 internal_error (__FILE__, __LINE__,
4477 "moving out of jump pad single-stepping"
4478 " not implemented on this target");
4479 }
4480 }
4481
4482 /* If we have while-stepping actions in this thread set it stepping.
4483 If we have a signal to deliver, it may or may not be set to
4484 SIG_IGN, we don't know. Assume so, and allow collecting
4485 while-stepping into a signal handler. A possible smart thing to
4486 do would be to set an internal breakpoint at the signal return
4487 address, continue, and carry on catching this while-stepping
4488 action only when that breakpoint is hit. A future
4489 enhancement. */
4490 if (thread->while_stepping != NULL)
4491 {
4492 if (debug_threads)
4493 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4494 lwpid_of (thread));
4495
4496 step = single_step (lwp);
4497 }
4498
4499 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4500 {
4501 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4502
4503 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4504
4505 if (debug_threads)
4506 {
4507 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4508 (long) lwp->stop_pc);
4509 }
4510 }
4511
4512 /* If we have pending signals, consume one if it can be delivered to
4513 the inferior. */
4514 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4515 {
4516 struct pending_signals **p_sig;
4517
4518 p_sig = &lwp->pending_signals;
4519 while ((*p_sig)->prev != NULL)
4520 p_sig = &(*p_sig)->prev;
4521
4522 signal = (*p_sig)->signal;
4523 if ((*p_sig)->info.si_signo != 0)
4524 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4525 &(*p_sig)->info);
4526
4527 free (*p_sig);
4528 *p_sig = NULL;
4529 }
4530
4531 if (debug_threads)
4532 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4533 lwpid_of (thread), step ? "step" : "continue", signal,
4534 lwp->stop_expected ? "expected" : "not expected");
4535
4536 if (the_low_target.prepare_to_resume != NULL)
4537 the_low_target.prepare_to_resume (lwp);
4538
4539 regcache_invalidate_thread (thread);
4540 errno = 0;
4541 lwp->stepping = step;
4542 if (step)
4543 ptrace_request = PTRACE_SINGLESTEP;
4544 else if (gdb_catching_syscalls_p (lwp))
4545 ptrace_request = PTRACE_SYSCALL;
4546 else
4547 ptrace_request = PTRACE_CONT;
4548 ptrace (ptrace_request,
4549 lwpid_of (thread),
4550 (PTRACE_TYPE_ARG3) 0,
4551 /* Coerce to a uintptr_t first to avoid potential gcc warning
4552 of coercing an 8 byte integer to a 4 byte pointer. */
4553 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4554
4555 current_thread = saved_thread;
4556 if (errno)
4557 perror_with_name ("resuming thread");
4558
4559 /* Successfully resumed. Clear state that no longer makes sense,
4560 and mark the LWP as running. Must not do this before resuming
4561 otherwise if that fails other code will be confused. E.g., we'd
4562 later try to stop the LWP and hang forever waiting for a stop
4563 status. Note that we must not throw after this is cleared,
4564 otherwise handle_zombie_lwp_error would get confused. */
4565 lwp->stopped = 0;
4566 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4567 }
4568
4569 /* Called when we try to resume a stopped LWP and that errors out. If
4570 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4571 or about to become), discard the error, clear any pending status
4572 the LWP may have, and return true (we'll collect the exit status
4573 soon enough). Otherwise, return false. */
4574
4575 static int
4576 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4577 {
4578 struct thread_info *thread = get_lwp_thread (lp);
4579
4580 /* If we get an error after resuming the LWP successfully, we'd
4581 confuse !T state for the LWP being gone. */
4582 gdb_assert (lp->stopped);
4583
4584 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4585 because even if ptrace failed with ESRCH, the tracee may be "not
4586 yet fully dead", but already refusing ptrace requests. In that
4587 case the tracee has 'R (Running)' state for a little bit
4588 (observed in Linux 3.18). See also the note on ESRCH in the
4589 ptrace(2) man page. Instead, check whether the LWP has any state
4590 other than ptrace-stopped. */
4591
4592 /* Don't assume anything if /proc/PID/status can't be read. */
4593 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4594 {
4595 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4596 lp->status_pending_p = 0;
4597 return 1;
4598 }
4599 return 0;
4600 }
4601
4602 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4603 disappears while we try to resume it. */
4604
4605 static void
4606 linux_resume_one_lwp (struct lwp_info *lwp,
4607 int step, int signal, siginfo_t *info)
4608 {
4609 TRY
4610 {
4611 linux_resume_one_lwp_throw (lwp, step, signal, info);
4612 }
4613 CATCH (ex, RETURN_MASK_ERROR)
4614 {
4615 if (!check_ptrace_stopped_lwp_gone (lwp))
4616 throw_exception (ex);
4617 }
4618 END_CATCH
4619 }
4620
4621 struct thread_resume_array
4622 {
4623 struct thread_resume *resume;
4624 size_t n;
4625 };
4626
4627 /* This function is called once per thread via find_inferior.
4628 ARG is a pointer to a thread_resume_array struct.
4629 We look up the thread specified by ENTRY in ARG, and mark the thread
4630 with a pointer to the appropriate resume request.
4631
4632 This algorithm is O(threads * resume elements), but resume elements
4633 is small (and will remain small at least until GDB supports thread
4634 suspension). */
4635
4636 static int
4637 linux_set_resume_request (thread_info *thread, void *arg)
4638 {
4639 struct lwp_info *lwp = get_thread_lwp (thread);
4640 int ndx;
4641 struct thread_resume_array *r;
4642
4643 r = (struct thread_resume_array *) arg;
4644
4645 for (ndx = 0; ndx < r->n; ndx++)
4646 {
4647 ptid_t ptid = r->resume[ndx].thread;
4648 if (ptid_equal (ptid, minus_one_ptid)
4649 || ptid == thread->id
4650 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4651 of PID'. */
4652 || (ptid_get_pid (ptid) == pid_of (thread)
4653 && (ptid_is_pid (ptid)
4654 || ptid_get_lwp (ptid) == -1)))
4655 {
4656 if (r->resume[ndx].kind == resume_stop
4657 && thread->last_resume_kind == resume_stop)
4658 {
4659 if (debug_threads)
4660 debug_printf ("already %s LWP %ld at GDB's request\n",
4661 (thread->last_status.kind
4662 == TARGET_WAITKIND_STOPPED)
4663 ? "stopped"
4664 : "stopping",
4665 lwpid_of (thread));
4666
4667 continue;
4668 }
4669
4670 /* Ignore (wildcard) resume requests for already-resumed
4671 threads. */
4672 if (r->resume[ndx].kind != resume_stop
4673 && thread->last_resume_kind != resume_stop)
4674 {
4675 if (debug_threads)
4676 debug_printf ("already %s LWP %ld at GDB's request\n",
4677 (thread->last_resume_kind
4678 == resume_step)
4679 ? "stepping"
4680 : "continuing",
4681 lwpid_of (thread));
4682 continue;
4683 }
4684
4685 /* Don't let wildcard resumes resume fork children that GDB
4686 does not yet know are new fork children. */
4687 if (lwp->fork_relative != NULL)
4688 {
4689 struct lwp_info *rel = lwp->fork_relative;
4690
4691 if (rel->status_pending_p
4692 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4693 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4694 {
4695 if (debug_threads)
4696 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4697 lwpid_of (thread));
4698 continue;
4699 }
4700 }
4701
4702 /* If the thread has a pending event that has already been
4703 reported to GDBserver core, but GDB has not pulled the
4704 event out of the vStopped queue yet, likewise, ignore the
4705 (wildcard) resume request. */
4706 if (in_queued_stop_replies (thread->id))
4707 {
4708 if (debug_threads)
4709 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4710 lwpid_of (thread));
4711 continue;
4712 }
4713
4714 lwp->resume = &r->resume[ndx];
4715 thread->last_resume_kind = lwp->resume->kind;
4716
4717 lwp->step_range_start = lwp->resume->step_range_start;
4718 lwp->step_range_end = lwp->resume->step_range_end;
4719
4720 /* If we had a deferred signal to report, dequeue one now.
4721 This can happen if LWP gets more than one signal while
4722 trying to get out of a jump pad. */
4723 if (lwp->stopped
4724 && !lwp->status_pending_p
4725 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4726 {
4727 lwp->status_pending_p = 1;
4728
4729 if (debug_threads)
4730 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4731 "leaving status pending.\n",
4732 WSTOPSIG (lwp->status_pending),
4733 lwpid_of (thread));
4734 }
4735
4736 return 0;
4737 }
4738 }
4739
4740 /* No resume action for this thread. */
4741 lwp->resume = NULL;
4742
4743 return 0;
4744 }
4745
4746 /* find_inferior callback for linux_resume.
4747 Set *FLAG_P if this lwp has an interesting status pending. */
4748
4749 static int
4750 resume_status_pending_p (thread_info *thread, void *flag_p)
4751 {
4752 struct lwp_info *lwp = get_thread_lwp (thread);
4753
4754 /* LWPs which will not be resumed are not interesting, because
4755 we might not wait for them next time through linux_wait. */
4756 if (lwp->resume == NULL)
4757 return 0;
4758
4759 if (thread_still_has_status_pending_p (thread))
4760 * (int *) flag_p = 1;
4761
4762 return 0;
4763 }
4764
4765 /* Return 1 if this lwp that GDB wants running is stopped at an
4766 internal breakpoint that we need to step over. It assumes that any
4767 required STOP_PC adjustment has already been propagated to the
4768 inferior's regcache. */
4769
4770 static int
4771 need_step_over_p (thread_info *thread, void *dummy)
4772 {
4773 struct lwp_info *lwp = get_thread_lwp (thread);
4774 struct thread_info *saved_thread;
4775 CORE_ADDR pc;
4776 struct process_info *proc = get_thread_process (thread);
4777
4778 /* GDBserver is skipping the extra traps from the wrapper program,
4779 don't have to do step over. */
4780 if (proc->tdesc == NULL)
4781 return 0;
4782
4783 /* LWPs which will not be resumed are not interesting, because we
4784 might not wait for them next time through linux_wait. */
4785
4786 if (!lwp->stopped)
4787 {
4788 if (debug_threads)
4789 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4790 lwpid_of (thread));
4791 return 0;
4792 }
4793
4794 if (thread->last_resume_kind == resume_stop)
4795 {
4796 if (debug_threads)
4797 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4798 " stopped\n",
4799 lwpid_of (thread));
4800 return 0;
4801 }
4802
4803 gdb_assert (lwp->suspended >= 0);
4804
4805 if (lwp->suspended)
4806 {
4807 if (debug_threads)
4808 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4809 lwpid_of (thread));
4810 return 0;
4811 }
4812
4813 if (lwp->status_pending_p)
4814 {
4815 if (debug_threads)
4816 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4817 " status.\n",
4818 lwpid_of (thread));
4819 return 0;
4820 }
4821
4822 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4823 or we have. */
4824 pc = get_pc (lwp);
4825
4826 /* If the PC has changed since we stopped, then don't do anything,
4827 and let the breakpoint/tracepoint be hit. This happens if, for
4828 instance, GDB handled the decr_pc_after_break subtraction itself,
4829 GDB is OOL stepping this thread, or the user has issued a "jump"
4830 command, or poked thread's registers herself. */
4831 if (pc != lwp->stop_pc)
4832 {
4833 if (debug_threads)
4834 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4835 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4836 lwpid_of (thread),
4837 paddress (lwp->stop_pc), paddress (pc));
4838 return 0;
4839 }
4840
4841 /* On software single step target, resume the inferior with signal
4842 rather than stepping over. */
4843 if (can_software_single_step ()
4844 && lwp->pending_signals != NULL
4845 && lwp_signal_can_be_delivered (lwp))
4846 {
4847 if (debug_threads)
4848 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4849 " signals.\n",
4850 lwpid_of (thread));
4851
4852 return 0;
4853 }
4854
4855 saved_thread = current_thread;
4856 current_thread = thread;
4857
4858 /* We can only step over breakpoints we know about. */
4859 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4860 {
4861 /* Don't step over a breakpoint that GDB expects to hit
4862 though. If the condition is being evaluated on the target's side
4863 and it evaluate to false, step over this breakpoint as well. */
4864 if (gdb_breakpoint_here (pc)
4865 && gdb_condition_true_at_breakpoint (pc)
4866 && gdb_no_commands_at_breakpoint (pc))
4867 {
4868 if (debug_threads)
4869 debug_printf ("Need step over [LWP %ld]? yes, but found"
4870 " GDB breakpoint at 0x%s; skipping step over\n",
4871 lwpid_of (thread), paddress (pc));
4872
4873 current_thread = saved_thread;
4874 return 0;
4875 }
4876 else
4877 {
4878 if (debug_threads)
4879 debug_printf ("Need step over [LWP %ld]? yes, "
4880 "found breakpoint at 0x%s\n",
4881 lwpid_of (thread), paddress (pc));
4882
4883 /* We've found an lwp that needs stepping over --- return 1 so
4884 that find_inferior stops looking. */
4885 current_thread = saved_thread;
4886
4887 return 1;
4888 }
4889 }
4890
4891 current_thread = saved_thread;
4892
4893 if (debug_threads)
4894 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4895 " at 0x%s\n",
4896 lwpid_of (thread), paddress (pc));
4897
4898 return 0;
4899 }
4900
4901 /* Start a step-over operation on LWP. When LWP stopped at a
4902 breakpoint, to make progress, we need to remove the breakpoint out
4903 of the way. If we let other threads run while we do that, they may
4904 pass by the breakpoint location and miss hitting it. To avoid
4905 that, a step-over momentarily stops all threads while LWP is
4906 single-stepped by either hardware or software while the breakpoint
4907 is temporarily uninserted from the inferior. When the single-step
4908 finishes, we reinsert the breakpoint, and let all threads that are
4909 supposed to be running, run again. */
4910
4911 static int
4912 start_step_over (struct lwp_info *lwp)
4913 {
4914 struct thread_info *thread = get_lwp_thread (lwp);
4915 struct thread_info *saved_thread;
4916 CORE_ADDR pc;
4917 int step;
4918
4919 if (debug_threads)
4920 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4921 lwpid_of (thread));
4922
4923 stop_all_lwps (1, lwp);
4924
4925 if (lwp->suspended != 0)
4926 {
4927 internal_error (__FILE__, __LINE__,
4928 "LWP %ld suspended=%d\n", lwpid_of (thread),
4929 lwp->suspended);
4930 }
4931
4932 if (debug_threads)
4933 debug_printf ("Done stopping all threads for step-over.\n");
4934
4935 /* Note, we should always reach here with an already adjusted PC,
4936 either by GDB (if we're resuming due to GDB's request), or by our
4937 caller, if we just finished handling an internal breakpoint GDB
4938 shouldn't care about. */
4939 pc = get_pc (lwp);
4940
4941 saved_thread = current_thread;
4942 current_thread = thread;
4943
4944 lwp->bp_reinsert = pc;
4945 uninsert_breakpoints_at (pc);
4946 uninsert_fast_tracepoint_jumps_at (pc);
4947
4948 step = single_step (lwp);
4949
4950 current_thread = saved_thread;
4951
4952 linux_resume_one_lwp (lwp, step, 0, NULL);
4953
4954 /* Require next event from this LWP. */
4955 step_over_bkpt = thread->id;
4956 return 1;
4957 }
4958
4959 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4960 start_step_over, if still there, and delete any single-step
4961 breakpoints we've set, on non hardware single-step targets. */
4962
4963 static int
4964 finish_step_over (struct lwp_info *lwp)
4965 {
4966 if (lwp->bp_reinsert != 0)
4967 {
4968 struct thread_info *saved_thread = current_thread;
4969
4970 if (debug_threads)
4971 debug_printf ("Finished step over.\n");
4972
4973 current_thread = get_lwp_thread (lwp);
4974
4975 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4976 may be no breakpoint to reinsert there by now. */
4977 reinsert_breakpoints_at (lwp->bp_reinsert);
4978 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4979
4980 lwp->bp_reinsert = 0;
4981
4982 /* Delete any single-step breakpoints. No longer needed. We
4983 don't have to worry about other threads hitting this trap,
4984 and later not being able to explain it, because we were
4985 stepping over a breakpoint, and we hold all threads but
4986 LWP stopped while doing that. */
4987 if (!can_hardware_single_step ())
4988 {
4989 gdb_assert (has_single_step_breakpoints (current_thread));
4990 delete_single_step_breakpoints (current_thread);
4991 }
4992
4993 step_over_bkpt = null_ptid;
4994 current_thread = saved_thread;
4995 return 1;
4996 }
4997 else
4998 return 0;
4999 }
5000
5001 /* If there's a step over in progress, wait until all threads stop
5002 (that is, until the stepping thread finishes its step), and
5003 unsuspend all lwps. The stepping thread ends with its status
5004 pending, which is processed later when we get back to processing
5005 events. */
5006
5007 static void
5008 complete_ongoing_step_over (void)
5009 {
5010 if (!ptid_equal (step_over_bkpt, null_ptid))
5011 {
5012 struct lwp_info *lwp;
5013 int wstat;
5014 int ret;
5015
5016 if (debug_threads)
5017 debug_printf ("detach: step over in progress, finish it first\n");
5018
5019 /* Passing NULL_PTID as filter indicates we want all events to
5020 be left pending. Eventually this returns when there are no
5021 unwaited-for children left. */
5022 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
5023 &wstat, __WALL);
5024 gdb_assert (ret == -1);
5025
5026 lwp = find_lwp_pid (step_over_bkpt);
5027 if (lwp != NULL)
5028 finish_step_over (lwp);
5029 step_over_bkpt = null_ptid;
5030 unsuspend_all_lwps (lwp);
5031 }
5032 }
5033
5034 /* This function is called once per thread. We check the thread's resume
5035 request, which will tell us whether to resume, step, or leave the thread
5036 stopped; and what signal, if any, it should be sent.
5037
5038 For threads which we aren't explicitly told otherwise, we preserve
5039 the stepping flag; this is used for stepping over gdbserver-placed
5040 breakpoints.
5041
5042 If pending_flags was set in any thread, we queue any needed
5043 signals, since we won't actually resume. We already have a pending
5044 event to report, so we don't need to preserve any step requests;
5045 they should be re-issued if necessary. */
5046
5047 static int
5048 linux_resume_one_thread (thread_info *thread, void *arg)
5049 {
5050 struct lwp_info *lwp = get_thread_lwp (thread);
5051 int leave_all_stopped = * (int *) arg;
5052 int leave_pending;
5053
5054 if (lwp->resume == NULL)
5055 return 0;
5056
5057 if (lwp->resume->kind == resume_stop)
5058 {
5059 if (debug_threads)
5060 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
5061
5062 if (!lwp->stopped)
5063 {
5064 if (debug_threads)
5065 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
5066
5067 /* Stop the thread, and wait for the event asynchronously,
5068 through the event loop. */
5069 send_sigstop (lwp);
5070 }
5071 else
5072 {
5073 if (debug_threads)
5074 debug_printf ("already stopped LWP %ld\n",
5075 lwpid_of (thread));
5076
5077 /* The LWP may have been stopped in an internal event that
5078 was not meant to be notified back to GDB (e.g., gdbserver
5079 breakpoint), so we should be reporting a stop event in
5080 this case too. */
5081
5082 /* If the thread already has a pending SIGSTOP, this is a
5083 no-op. Otherwise, something later will presumably resume
5084 the thread and this will cause it to cancel any pending
5085 operation, due to last_resume_kind == resume_stop. If
5086 the thread already has a pending status to report, we
5087 will still report it the next time we wait - see
5088 status_pending_p_callback. */
5089
5090 /* If we already have a pending signal to report, then
5091 there's no need to queue a SIGSTOP, as this means we're
5092 midway through moving the LWP out of the jumppad, and we
5093 will report the pending signal as soon as that is
5094 finished. */
5095 if (lwp->pending_signals_to_report == NULL)
5096 send_sigstop (lwp);
5097 }
5098
5099 /* For stop requests, we're done. */
5100 lwp->resume = NULL;
5101 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5102 return 0;
5103 }
5104
5105 /* If this thread which is about to be resumed has a pending status,
5106 then don't resume it - we can just report the pending status.
5107 Likewise if it is suspended, because e.g., another thread is
5108 stepping past a breakpoint. Make sure to queue any signals that
5109 would otherwise be sent. In all-stop mode, we do this decision
5110 based on if *any* thread has a pending status. If there's a
5111 thread that needs the step-over-breakpoint dance, then don't
5112 resume any other thread but that particular one. */
5113 leave_pending = (lwp->suspended
5114 || lwp->status_pending_p
5115 || leave_all_stopped);
5116
5117 /* If we have a new signal, enqueue the signal. */
5118 if (lwp->resume->sig != 0)
5119 {
5120 siginfo_t info, *info_p;
5121
5122 /* If this is the same signal we were previously stopped by,
5123 make sure to queue its siginfo. */
5124 if (WIFSTOPPED (lwp->last_status)
5125 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5126 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5127 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5128 info_p = &info;
5129 else
5130 info_p = NULL;
5131
5132 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5133 }
5134
5135 if (!leave_pending)
5136 {
5137 if (debug_threads)
5138 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5139
5140 proceed_one_lwp (thread, NULL);
5141 }
5142 else
5143 {
5144 if (debug_threads)
5145 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5146 }
5147
5148 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5149 lwp->resume = NULL;
5150 return 0;
5151 }
5152
5153 static void
5154 linux_resume (struct thread_resume *resume_info, size_t n)
5155 {
5156 struct thread_resume_array array = { resume_info, n };
5157 struct thread_info *need_step_over = NULL;
5158 int any_pending;
5159 int leave_all_stopped;
5160
5161 if (debug_threads)
5162 {
5163 debug_enter ();
5164 debug_printf ("linux_resume:\n");
5165 }
5166
5167 find_inferior (&all_threads, linux_set_resume_request, &array);
5168
5169 /* If there is a thread which would otherwise be resumed, which has
5170 a pending status, then don't resume any threads - we can just
5171 report the pending status. Make sure to queue any signals that
5172 would otherwise be sent. In non-stop mode, we'll apply this
5173 logic to each thread individually. We consume all pending events
5174 before considering to start a step-over (in all-stop). */
5175 any_pending = 0;
5176 if (!non_stop)
5177 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
5178
5179 /* If there is a thread which would otherwise be resumed, which is
5180 stopped at a breakpoint that needs stepping over, then don't
5181 resume any threads - have it step over the breakpoint with all
5182 other threads stopped, then resume all threads again. Make sure
5183 to queue any signals that would otherwise be delivered or
5184 queued. */
5185 if (!any_pending && supports_breakpoints ())
5186 need_step_over
5187 = (struct thread_info *) find_inferior (&all_threads,
5188 need_step_over_p, NULL);
5189
5190 leave_all_stopped = (need_step_over != NULL || any_pending);
5191
5192 if (debug_threads)
5193 {
5194 if (need_step_over != NULL)
5195 debug_printf ("Not resuming all, need step over\n");
5196 else if (any_pending)
5197 debug_printf ("Not resuming, all-stop and found "
5198 "an LWP with pending status\n");
5199 else
5200 debug_printf ("Resuming, no pending status or step over needed\n");
5201 }
5202
5203 /* Even if we're leaving threads stopped, queue all signals we'd
5204 otherwise deliver. */
5205 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5206
5207 if (need_step_over)
5208 start_step_over (get_thread_lwp (need_step_over));
5209
5210 if (debug_threads)
5211 {
5212 debug_printf ("linux_resume done\n");
5213 debug_exit ();
5214 }
5215
5216 /* We may have events that were pending that can/should be sent to
5217 the client now. Trigger a linux_wait call. */
5218 if (target_is_async_p ())
5219 async_file_mark ();
5220 }
5221
5222 /* This function is called once per thread. We check the thread's
5223 last resume request, which will tell us whether to resume, step, or
5224 leave the thread stopped. Any signal the client requested to be
5225 delivered has already been enqueued at this point.
5226
5227 If any thread that GDB wants running is stopped at an internal
5228 breakpoint that needs stepping over, we start a step-over operation
5229 on that particular thread, and leave all others stopped. */
5230
5231 static int
5232 proceed_one_lwp (thread_info *thread, void *except)
5233 {
5234 struct lwp_info *lwp = get_thread_lwp (thread);
5235 int step;
5236
5237 if (lwp == except)
5238 return 0;
5239
5240 if (debug_threads)
5241 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5242
5243 if (!lwp->stopped)
5244 {
5245 if (debug_threads)
5246 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5247 return 0;
5248 }
5249
5250 if (thread->last_resume_kind == resume_stop
5251 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5252 {
5253 if (debug_threads)
5254 debug_printf (" client wants LWP to remain %ld stopped\n",
5255 lwpid_of (thread));
5256 return 0;
5257 }
5258
5259 if (lwp->status_pending_p)
5260 {
5261 if (debug_threads)
5262 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5263 lwpid_of (thread));
5264 return 0;
5265 }
5266
5267 gdb_assert (lwp->suspended >= 0);
5268
5269 if (lwp->suspended)
5270 {
5271 if (debug_threads)
5272 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5273 return 0;
5274 }
5275
5276 if (thread->last_resume_kind == resume_stop
5277 && lwp->pending_signals_to_report == NULL
5278 && (lwp->collecting_fast_tracepoint
5279 == fast_tpoint_collect_result::not_collecting))
5280 {
5281 /* We haven't reported this LWP as stopped yet (otherwise, the
5282 last_status.kind check above would catch it, and we wouldn't
5283 reach here. This LWP may have been momentarily paused by a
5284 stop_all_lwps call while handling for example, another LWP's
5285 step-over. In that case, the pending expected SIGSTOP signal
5286 that was queued at vCont;t handling time will have already
5287 been consumed by wait_for_sigstop, and so we need to requeue
5288 another one here. Note that if the LWP already has a SIGSTOP
5289 pending, this is a no-op. */
5290
5291 if (debug_threads)
5292 debug_printf ("Client wants LWP %ld to stop. "
5293 "Making sure it has a SIGSTOP pending\n",
5294 lwpid_of (thread));
5295
5296 send_sigstop (lwp);
5297 }
5298
5299 if (thread->last_resume_kind == resume_step)
5300 {
5301 if (debug_threads)
5302 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5303 lwpid_of (thread));
5304
5305 /* If resume_step is requested by GDB, install single-step
5306 breakpoints when the thread is about to be actually resumed if
5307 the single-step breakpoints weren't removed. */
5308 if (can_software_single_step ()
5309 && !has_single_step_breakpoints (thread))
5310 install_software_single_step_breakpoints (lwp);
5311
5312 step = maybe_hw_step (thread);
5313 }
5314 else if (lwp->bp_reinsert != 0)
5315 {
5316 if (debug_threads)
5317 debug_printf (" stepping LWP %ld, reinsert set\n",
5318 lwpid_of (thread));
5319
5320 step = maybe_hw_step (thread);
5321 }
5322 else
5323 step = 0;
5324
5325 linux_resume_one_lwp (lwp, step, 0, NULL);
5326 return 0;
5327 }
5328
5329 static int
5330 unsuspend_and_proceed_one_lwp (thread_info *thread, void *except)
5331 {
5332 struct lwp_info *lwp = get_thread_lwp (thread);
5333
5334 if (lwp == except)
5335 return 0;
5336
5337 lwp_suspended_decr (lwp);
5338
5339 return proceed_one_lwp (thread, except);
5340 }
5341
5342 /* When we finish a step-over, set threads running again. If there's
5343 another thread that may need a step-over, now's the time to start
5344 it. Eventually, we'll move all threads past their breakpoints. */
5345
5346 static void
5347 proceed_all_lwps (void)
5348 {
5349 struct thread_info *need_step_over;
5350
5351 /* If there is a thread which would otherwise be resumed, which is
5352 stopped at a breakpoint that needs stepping over, then don't
5353 resume any threads - have it step over the breakpoint with all
5354 other threads stopped, then resume all threads again. */
5355
5356 if (supports_breakpoints ())
5357 {
5358 need_step_over
5359 = (struct thread_info *) find_inferior (&all_threads,
5360 need_step_over_p, NULL);
5361
5362 if (need_step_over != NULL)
5363 {
5364 if (debug_threads)
5365 debug_printf ("proceed_all_lwps: found "
5366 "thread %ld needing a step-over\n",
5367 lwpid_of (need_step_over));
5368
5369 start_step_over (get_thread_lwp (need_step_over));
5370 return;
5371 }
5372 }
5373
5374 if (debug_threads)
5375 debug_printf ("Proceeding, no step-over needed\n");
5376
5377 find_inferior (&all_threads, proceed_one_lwp, NULL);
5378 }
5379
5380 /* Stopped LWPs that the client wanted to be running, that don't have
5381 pending statuses, are set to run again, except for EXCEPT, if not
5382 NULL. This undoes a stop_all_lwps call. */
5383
5384 static void
5385 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5386 {
5387 if (debug_threads)
5388 {
5389 debug_enter ();
5390 if (except)
5391 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5392 lwpid_of (get_lwp_thread (except)));
5393 else
5394 debug_printf ("unstopping all lwps\n");
5395 }
5396
5397 if (unsuspend)
5398 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5399 else
5400 find_inferior (&all_threads, proceed_one_lwp, except);
5401
5402 if (debug_threads)
5403 {
5404 debug_printf ("unstop_all_lwps done\n");
5405 debug_exit ();
5406 }
5407 }
5408
5409
5410 #ifdef HAVE_LINUX_REGSETS
5411
5412 #define use_linux_regsets 1
5413
5414 /* Returns true if REGSET has been disabled. */
5415
5416 static int
5417 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5418 {
5419 return (info->disabled_regsets != NULL
5420 && info->disabled_regsets[regset - info->regsets]);
5421 }
5422
5423 /* Disable REGSET. */
5424
5425 static void
5426 disable_regset (struct regsets_info *info, struct regset_info *regset)
5427 {
5428 int dr_offset;
5429
5430 dr_offset = regset - info->regsets;
5431 if (info->disabled_regsets == NULL)
5432 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5433 info->disabled_regsets[dr_offset] = 1;
5434 }
5435
5436 static int
5437 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5438 struct regcache *regcache)
5439 {
5440 struct regset_info *regset;
5441 int saw_general_regs = 0;
5442 int pid;
5443 struct iovec iov;
5444
5445 pid = lwpid_of (current_thread);
5446 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5447 {
5448 void *buf, *data;
5449 int nt_type, res;
5450
5451 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5452 continue;
5453
5454 buf = xmalloc (regset->size);
5455
5456 nt_type = regset->nt_type;
5457 if (nt_type)
5458 {
5459 iov.iov_base = buf;
5460 iov.iov_len = regset->size;
5461 data = (void *) &iov;
5462 }
5463 else
5464 data = buf;
5465
5466 #ifndef __sparc__
5467 res = ptrace (regset->get_request, pid,
5468 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5469 #else
5470 res = ptrace (regset->get_request, pid, data, nt_type);
5471 #endif
5472 if (res < 0)
5473 {
5474 if (errno == EIO)
5475 {
5476 /* If we get EIO on a regset, do not try it again for
5477 this process mode. */
5478 disable_regset (regsets_info, regset);
5479 }
5480 else if (errno == ENODATA)
5481 {
5482 /* ENODATA may be returned if the regset is currently
5483 not "active". This can happen in normal operation,
5484 so suppress the warning in this case. */
5485 }
5486 else if (errno == ESRCH)
5487 {
5488 /* At this point, ESRCH should mean the process is
5489 already gone, in which case we simply ignore attempts
5490 to read its registers. */
5491 }
5492 else
5493 {
5494 char s[256];
5495 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5496 pid);
5497 perror (s);
5498 }
5499 }
5500 else
5501 {
5502 if (regset->type == GENERAL_REGS)
5503 saw_general_regs = 1;
5504 regset->store_function (regcache, buf);
5505 }
5506 free (buf);
5507 }
5508 if (saw_general_regs)
5509 return 0;
5510 else
5511 return 1;
5512 }
5513
5514 static int
5515 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5516 struct regcache *regcache)
5517 {
5518 struct regset_info *regset;
5519 int saw_general_regs = 0;
5520 int pid;
5521 struct iovec iov;
5522
5523 pid = lwpid_of (current_thread);
5524 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5525 {
5526 void *buf, *data;
5527 int nt_type, res;
5528
5529 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5530 || regset->fill_function == NULL)
5531 continue;
5532
5533 buf = xmalloc (regset->size);
5534
5535 /* First fill the buffer with the current register set contents,
5536 in case there are any items in the kernel's regset that are
5537 not in gdbserver's regcache. */
5538
5539 nt_type = regset->nt_type;
5540 if (nt_type)
5541 {
5542 iov.iov_base = buf;
5543 iov.iov_len = regset->size;
5544 data = (void *) &iov;
5545 }
5546 else
5547 data = buf;
5548
5549 #ifndef __sparc__
5550 res = ptrace (regset->get_request, pid,
5551 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5552 #else
5553 res = ptrace (regset->get_request, pid, data, nt_type);
5554 #endif
5555
5556 if (res == 0)
5557 {
5558 /* Then overlay our cached registers on that. */
5559 regset->fill_function (regcache, buf);
5560
5561 /* Only now do we write the register set. */
5562 #ifndef __sparc__
5563 res = ptrace (regset->set_request, pid,
5564 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5565 #else
5566 res = ptrace (regset->set_request, pid, data, nt_type);
5567 #endif
5568 }
5569
5570 if (res < 0)
5571 {
5572 if (errno == EIO)
5573 {
5574 /* If we get EIO on a regset, do not try it again for
5575 this process mode. */
5576 disable_regset (regsets_info, regset);
5577 }
5578 else if (errno == ESRCH)
5579 {
5580 /* At this point, ESRCH should mean the process is
5581 already gone, in which case we simply ignore attempts
5582 to change its registers. See also the related
5583 comment in linux_resume_one_lwp. */
5584 free (buf);
5585 return 0;
5586 }
5587 else
5588 {
5589 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5590 }
5591 }
5592 else if (regset->type == GENERAL_REGS)
5593 saw_general_regs = 1;
5594 free (buf);
5595 }
5596 if (saw_general_regs)
5597 return 0;
5598 else
5599 return 1;
5600 }
5601
5602 #else /* !HAVE_LINUX_REGSETS */
5603
5604 #define use_linux_regsets 0
5605 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5606 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5607
5608 #endif
5609
5610 /* Return 1 if register REGNO is supported by one of the regset ptrace
5611 calls or 0 if it has to be transferred individually. */
5612
5613 static int
5614 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5615 {
5616 unsigned char mask = 1 << (regno % 8);
5617 size_t index = regno / 8;
5618
5619 return (use_linux_regsets
5620 && (regs_info->regset_bitmap == NULL
5621 || (regs_info->regset_bitmap[index] & mask) != 0));
5622 }
5623
5624 #ifdef HAVE_LINUX_USRREGS
5625
5626 static int
5627 register_addr (const struct usrregs_info *usrregs, int regnum)
5628 {
5629 int addr;
5630
5631 if (regnum < 0 || regnum >= usrregs->num_regs)
5632 error ("Invalid register number %d.", regnum);
5633
5634 addr = usrregs->regmap[regnum];
5635
5636 return addr;
5637 }
5638
5639 /* Fetch one register. */
5640 static void
5641 fetch_register (const struct usrregs_info *usrregs,
5642 struct regcache *regcache, int regno)
5643 {
5644 CORE_ADDR regaddr;
5645 int i, size;
5646 char *buf;
5647 int pid;
5648
5649 if (regno >= usrregs->num_regs)
5650 return;
5651 if ((*the_low_target.cannot_fetch_register) (regno))
5652 return;
5653
5654 regaddr = register_addr (usrregs, regno);
5655 if (regaddr == -1)
5656 return;
5657
5658 size = ((register_size (regcache->tdesc, regno)
5659 + sizeof (PTRACE_XFER_TYPE) - 1)
5660 & -sizeof (PTRACE_XFER_TYPE));
5661 buf = (char *) alloca (size);
5662
5663 pid = lwpid_of (current_thread);
5664 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5665 {
5666 errno = 0;
5667 *(PTRACE_XFER_TYPE *) (buf + i) =
5668 ptrace (PTRACE_PEEKUSER, pid,
5669 /* Coerce to a uintptr_t first to avoid potential gcc warning
5670 of coercing an 8 byte integer to a 4 byte pointer. */
5671 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5672 regaddr += sizeof (PTRACE_XFER_TYPE);
5673 if (errno != 0)
5674 error ("reading register %d: %s", regno, strerror (errno));
5675 }
5676
5677 if (the_low_target.supply_ptrace_register)
5678 the_low_target.supply_ptrace_register (regcache, regno, buf);
5679 else
5680 supply_register (regcache, regno, buf);
5681 }
5682
5683 /* Store one register. */
5684 static void
5685 store_register (const struct usrregs_info *usrregs,
5686 struct regcache *regcache, int regno)
5687 {
5688 CORE_ADDR regaddr;
5689 int i, size;
5690 char *buf;
5691 int pid;
5692
5693 if (regno >= usrregs->num_regs)
5694 return;
5695 if ((*the_low_target.cannot_store_register) (regno))
5696 return;
5697
5698 regaddr = register_addr (usrregs, regno);
5699 if (regaddr == -1)
5700 return;
5701
5702 size = ((register_size (regcache->tdesc, regno)
5703 + sizeof (PTRACE_XFER_TYPE) - 1)
5704 & -sizeof (PTRACE_XFER_TYPE));
5705 buf = (char *) alloca (size);
5706 memset (buf, 0, size);
5707
5708 if (the_low_target.collect_ptrace_register)
5709 the_low_target.collect_ptrace_register (regcache, regno, buf);
5710 else
5711 collect_register (regcache, regno, buf);
5712
5713 pid = lwpid_of (current_thread);
5714 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5715 {
5716 errno = 0;
5717 ptrace (PTRACE_POKEUSER, pid,
5718 /* Coerce to a uintptr_t first to avoid potential gcc warning
5719 about coercing an 8 byte integer to a 4 byte pointer. */
5720 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5721 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5722 if (errno != 0)
5723 {
5724 /* At this point, ESRCH should mean the process is
5725 already gone, in which case we simply ignore attempts
5726 to change its registers. See also the related
5727 comment in linux_resume_one_lwp. */
5728 if (errno == ESRCH)
5729 return;
5730
5731 if ((*the_low_target.cannot_store_register) (regno) == 0)
5732 error ("writing register %d: %s", regno, strerror (errno));
5733 }
5734 regaddr += sizeof (PTRACE_XFER_TYPE);
5735 }
5736 }
5737
5738 /* Fetch all registers, or just one, from the child process.
5739 If REGNO is -1, do this for all registers, skipping any that are
5740 assumed to have been retrieved by regsets_fetch_inferior_registers,
5741 unless ALL is non-zero.
5742 Otherwise, REGNO specifies which register (so we can save time). */
5743 static void
5744 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5745 struct regcache *regcache, int regno, int all)
5746 {
5747 struct usrregs_info *usr = regs_info->usrregs;
5748
5749 if (regno == -1)
5750 {
5751 for (regno = 0; regno < usr->num_regs; regno++)
5752 if (all || !linux_register_in_regsets (regs_info, regno))
5753 fetch_register (usr, regcache, regno);
5754 }
5755 else
5756 fetch_register (usr, regcache, regno);
5757 }
5758
5759 /* Store our register values back into the inferior.
5760 If REGNO is -1, do this for all registers, skipping any that are
5761 assumed to have been saved by regsets_store_inferior_registers,
5762 unless ALL is non-zero.
5763 Otherwise, REGNO specifies which register (so we can save time). */
5764 static void
5765 usr_store_inferior_registers (const struct regs_info *regs_info,
5766 struct regcache *regcache, int regno, int all)
5767 {
5768 struct usrregs_info *usr = regs_info->usrregs;
5769
5770 if (regno == -1)
5771 {
5772 for (regno = 0; regno < usr->num_regs; regno++)
5773 if (all || !linux_register_in_regsets (regs_info, regno))
5774 store_register (usr, regcache, regno);
5775 }
5776 else
5777 store_register (usr, regcache, regno);
5778 }
5779
5780 #else /* !HAVE_LINUX_USRREGS */
5781
5782 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5783 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5784
5785 #endif
5786
5787
5788 static void
5789 linux_fetch_registers (struct regcache *regcache, int regno)
5790 {
5791 int use_regsets;
5792 int all = 0;
5793 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5794
5795 if (regno == -1)
5796 {
5797 if (the_low_target.fetch_register != NULL
5798 && regs_info->usrregs != NULL)
5799 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5800 (*the_low_target.fetch_register) (regcache, regno);
5801
5802 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5803 if (regs_info->usrregs != NULL)
5804 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5805 }
5806 else
5807 {
5808 if (the_low_target.fetch_register != NULL
5809 && (*the_low_target.fetch_register) (regcache, regno))
5810 return;
5811
5812 use_regsets = linux_register_in_regsets (regs_info, regno);
5813 if (use_regsets)
5814 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5815 regcache);
5816 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5817 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5818 }
5819 }
5820
5821 static void
5822 linux_store_registers (struct regcache *regcache, int regno)
5823 {
5824 int use_regsets;
5825 int all = 0;
5826 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5827
5828 if (regno == -1)
5829 {
5830 all = regsets_store_inferior_registers (regs_info->regsets_info,
5831 regcache);
5832 if (regs_info->usrregs != NULL)
5833 usr_store_inferior_registers (regs_info, regcache, regno, all);
5834 }
5835 else
5836 {
5837 use_regsets = linux_register_in_regsets (regs_info, regno);
5838 if (use_regsets)
5839 all = regsets_store_inferior_registers (regs_info->regsets_info,
5840 regcache);
5841 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5842 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5843 }
5844 }
5845
5846
5847 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5848 to debugger memory starting at MYADDR. */
5849
5850 static int
5851 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5852 {
5853 int pid = lwpid_of (current_thread);
5854 PTRACE_XFER_TYPE *buffer;
5855 CORE_ADDR addr;
5856 int count;
5857 char filename[64];
5858 int i;
5859 int ret;
5860 int fd;
5861
5862 /* Try using /proc. Don't bother for one word. */
5863 if (len >= 3 * sizeof (long))
5864 {
5865 int bytes;
5866
5867 /* We could keep this file open and cache it - possibly one per
5868 thread. That requires some juggling, but is even faster. */
5869 sprintf (filename, "/proc/%d/mem", pid);
5870 fd = open (filename, O_RDONLY | O_LARGEFILE);
5871 if (fd == -1)
5872 goto no_proc;
5873
5874 /* If pread64 is available, use it. It's faster if the kernel
5875 supports it (only one syscall), and it's 64-bit safe even on
5876 32-bit platforms (for instance, SPARC debugging a SPARC64
5877 application). */
5878 #ifdef HAVE_PREAD64
5879 bytes = pread64 (fd, myaddr, len, memaddr);
5880 #else
5881 bytes = -1;
5882 if (lseek (fd, memaddr, SEEK_SET) != -1)
5883 bytes = read (fd, myaddr, len);
5884 #endif
5885
5886 close (fd);
5887 if (bytes == len)
5888 return 0;
5889
5890 /* Some data was read, we'll try to get the rest with ptrace. */
5891 if (bytes > 0)
5892 {
5893 memaddr += bytes;
5894 myaddr += bytes;
5895 len -= bytes;
5896 }
5897 }
5898
5899 no_proc:
5900 /* Round starting address down to longword boundary. */
5901 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5902 /* Round ending address up; get number of longwords that makes. */
5903 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5904 / sizeof (PTRACE_XFER_TYPE));
5905 /* Allocate buffer of that many longwords. */
5906 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5907
5908 /* Read all the longwords */
5909 errno = 0;
5910 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5911 {
5912 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5913 about coercing an 8 byte integer to a 4 byte pointer. */
5914 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5915 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5916 (PTRACE_TYPE_ARG4) 0);
5917 if (errno)
5918 break;
5919 }
5920 ret = errno;
5921
5922 /* Copy appropriate bytes out of the buffer. */
5923 if (i > 0)
5924 {
5925 i *= sizeof (PTRACE_XFER_TYPE);
5926 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5927 memcpy (myaddr,
5928 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5929 i < len ? i : len);
5930 }
5931
5932 return ret;
5933 }
5934
5935 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5936 memory at MEMADDR. On failure (cannot write to the inferior)
5937 returns the value of errno. Always succeeds if LEN is zero. */
5938
5939 static int
5940 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5941 {
5942 int i;
5943 /* Round starting address down to longword boundary. */
5944 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5945 /* Round ending address up; get number of longwords that makes. */
5946 int count
5947 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5948 / sizeof (PTRACE_XFER_TYPE);
5949
5950 /* Allocate buffer of that many longwords. */
5951 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5952
5953 int pid = lwpid_of (current_thread);
5954
5955 if (len == 0)
5956 {
5957 /* Zero length write always succeeds. */
5958 return 0;
5959 }
5960
5961 if (debug_threads)
5962 {
5963 /* Dump up to four bytes. */
5964 char str[4 * 2 + 1];
5965 char *p = str;
5966 int dump = len < 4 ? len : 4;
5967
5968 for (i = 0; i < dump; i++)
5969 {
5970 sprintf (p, "%02x", myaddr[i]);
5971 p += 2;
5972 }
5973 *p = '\0';
5974
5975 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5976 str, (long) memaddr, pid);
5977 }
5978
5979 /* Fill start and end extra bytes of buffer with existing memory data. */
5980
5981 errno = 0;
5982 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5983 about coercing an 8 byte integer to a 4 byte pointer. */
5984 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5985 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5986 (PTRACE_TYPE_ARG4) 0);
5987 if (errno)
5988 return errno;
5989
5990 if (count > 1)
5991 {
5992 errno = 0;
5993 buffer[count - 1]
5994 = ptrace (PTRACE_PEEKTEXT, pid,
5995 /* Coerce to a uintptr_t first to avoid potential gcc warning
5996 about coercing an 8 byte integer to a 4 byte pointer. */
5997 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5998 * sizeof (PTRACE_XFER_TYPE)),
5999 (PTRACE_TYPE_ARG4) 0);
6000 if (errno)
6001 return errno;
6002 }
6003
6004 /* Copy data to be written over corresponding part of buffer. */
6005
6006 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
6007 myaddr, len);
6008
6009 /* Write the entire buffer. */
6010
6011 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
6012 {
6013 errno = 0;
6014 ptrace (PTRACE_POKETEXT, pid,
6015 /* Coerce to a uintptr_t first to avoid potential gcc warning
6016 about coercing an 8 byte integer to a 4 byte pointer. */
6017 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
6018 (PTRACE_TYPE_ARG4) buffer[i]);
6019 if (errno)
6020 return errno;
6021 }
6022
6023 return 0;
6024 }
6025
6026 static void
6027 linux_look_up_symbols (void)
6028 {
6029 #ifdef USE_THREAD_DB
6030 struct process_info *proc = current_process ();
6031
6032 if (proc->priv->thread_db != NULL)
6033 return;
6034
6035 thread_db_init ();
6036 #endif
6037 }
6038
6039 static void
6040 linux_request_interrupt (void)
6041 {
6042 /* Send a SIGINT to the process group. This acts just like the user
6043 typed a ^C on the controlling terminal. */
6044 kill (-signal_pid, SIGINT);
6045 }
6046
6047 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
6048 to debugger memory starting at MYADDR. */
6049
6050 static int
6051 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
6052 {
6053 char filename[PATH_MAX];
6054 int fd, n;
6055 int pid = lwpid_of (current_thread);
6056
6057 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6058
6059 fd = open (filename, O_RDONLY);
6060 if (fd < 0)
6061 return -1;
6062
6063 if (offset != (CORE_ADDR) 0
6064 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6065 n = -1;
6066 else
6067 n = read (fd, myaddr, len);
6068
6069 close (fd);
6070
6071 return n;
6072 }
6073
6074 /* These breakpoint and watchpoint related wrapper functions simply
6075 pass on the function call if the target has registered a
6076 corresponding function. */
6077
6078 static int
6079 linux_supports_z_point_type (char z_type)
6080 {
6081 return (the_low_target.supports_z_point_type != NULL
6082 && the_low_target.supports_z_point_type (z_type));
6083 }
6084
6085 static int
6086 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
6087 int size, struct raw_breakpoint *bp)
6088 {
6089 if (type == raw_bkpt_type_sw)
6090 return insert_memory_breakpoint (bp);
6091 else if (the_low_target.insert_point != NULL)
6092 return the_low_target.insert_point (type, addr, size, bp);
6093 else
6094 /* Unsupported (see target.h). */
6095 return 1;
6096 }
6097
6098 static int
6099 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
6100 int size, struct raw_breakpoint *bp)
6101 {
6102 if (type == raw_bkpt_type_sw)
6103 return remove_memory_breakpoint (bp);
6104 else if (the_low_target.remove_point != NULL)
6105 return the_low_target.remove_point (type, addr, size, bp);
6106 else
6107 /* Unsupported (see target.h). */
6108 return 1;
6109 }
6110
6111 /* Implement the to_stopped_by_sw_breakpoint target_ops
6112 method. */
6113
6114 static int
6115 linux_stopped_by_sw_breakpoint (void)
6116 {
6117 struct lwp_info *lwp = get_thread_lwp (current_thread);
6118
6119 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6120 }
6121
6122 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6123 method. */
6124
6125 static int
6126 linux_supports_stopped_by_sw_breakpoint (void)
6127 {
6128 return USE_SIGTRAP_SIGINFO;
6129 }
6130
6131 /* Implement the to_stopped_by_hw_breakpoint target_ops
6132 method. */
6133
6134 static int
6135 linux_stopped_by_hw_breakpoint (void)
6136 {
6137 struct lwp_info *lwp = get_thread_lwp (current_thread);
6138
6139 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6140 }
6141
6142 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6143 method. */
6144
6145 static int
6146 linux_supports_stopped_by_hw_breakpoint (void)
6147 {
6148 return USE_SIGTRAP_SIGINFO;
6149 }
6150
6151 /* Implement the supports_hardware_single_step target_ops method. */
6152
6153 static int
6154 linux_supports_hardware_single_step (void)
6155 {
6156 return can_hardware_single_step ();
6157 }
6158
6159 static int
6160 linux_supports_software_single_step (void)
6161 {
6162 return can_software_single_step ();
6163 }
6164
6165 static int
6166 linux_stopped_by_watchpoint (void)
6167 {
6168 struct lwp_info *lwp = get_thread_lwp (current_thread);
6169
6170 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6171 }
6172
6173 static CORE_ADDR
6174 linux_stopped_data_address (void)
6175 {
6176 struct lwp_info *lwp = get_thread_lwp (current_thread);
6177
6178 return lwp->stopped_data_address;
6179 }
6180
6181 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6182 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6183 && defined(PT_TEXT_END_ADDR)
6184
6185 /* This is only used for targets that define PT_TEXT_ADDR,
6186 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6187 the target has different ways of acquiring this information, like
6188 loadmaps. */
6189
6190 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6191 to tell gdb about. */
6192
6193 static int
6194 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6195 {
6196 unsigned long text, text_end, data;
6197 int pid = lwpid_of (current_thread);
6198
6199 errno = 0;
6200
6201 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6202 (PTRACE_TYPE_ARG4) 0);
6203 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6204 (PTRACE_TYPE_ARG4) 0);
6205 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6206 (PTRACE_TYPE_ARG4) 0);
6207
6208 if (errno == 0)
6209 {
6210 /* Both text and data offsets produced at compile-time (and so
6211 used by gdb) are relative to the beginning of the program,
6212 with the data segment immediately following the text segment.
6213 However, the actual runtime layout in memory may put the data
6214 somewhere else, so when we send gdb a data base-address, we
6215 use the real data base address and subtract the compile-time
6216 data base-address from it (which is just the length of the
6217 text segment). BSS immediately follows data in both
6218 cases. */
6219 *text_p = text;
6220 *data_p = data - (text_end - text);
6221
6222 return 1;
6223 }
6224 return 0;
6225 }
6226 #endif
6227
6228 static int
6229 linux_qxfer_osdata (const char *annex,
6230 unsigned char *readbuf, unsigned const char *writebuf,
6231 CORE_ADDR offset, int len)
6232 {
6233 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6234 }
6235
6236 /* Convert a native/host siginfo object, into/from the siginfo in the
6237 layout of the inferiors' architecture. */
6238
6239 static void
6240 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6241 {
6242 int done = 0;
6243
6244 if (the_low_target.siginfo_fixup != NULL)
6245 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6246
6247 /* If there was no callback, or the callback didn't do anything,
6248 then just do a straight memcpy. */
6249 if (!done)
6250 {
6251 if (direction == 1)
6252 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6253 else
6254 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6255 }
6256 }
6257
6258 static int
6259 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6260 unsigned const char *writebuf, CORE_ADDR offset, int len)
6261 {
6262 int pid;
6263 siginfo_t siginfo;
6264 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6265
6266 if (current_thread == NULL)
6267 return -1;
6268
6269 pid = lwpid_of (current_thread);
6270
6271 if (debug_threads)
6272 debug_printf ("%s siginfo for lwp %d.\n",
6273 readbuf != NULL ? "Reading" : "Writing",
6274 pid);
6275
6276 if (offset >= sizeof (siginfo))
6277 return -1;
6278
6279 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6280 return -1;
6281
6282 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6283 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6284 inferior with a 64-bit GDBSERVER should look the same as debugging it
6285 with a 32-bit GDBSERVER, we need to convert it. */
6286 siginfo_fixup (&siginfo, inf_siginfo, 0);
6287
6288 if (offset + len > sizeof (siginfo))
6289 len = sizeof (siginfo) - offset;
6290
6291 if (readbuf != NULL)
6292 memcpy (readbuf, inf_siginfo + offset, len);
6293 else
6294 {
6295 memcpy (inf_siginfo + offset, writebuf, len);
6296
6297 /* Convert back to ptrace layout before flushing it out. */
6298 siginfo_fixup (&siginfo, inf_siginfo, 1);
6299
6300 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6301 return -1;
6302 }
6303
6304 return len;
6305 }
6306
6307 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6308 so we notice when children change state; as the handler for the
6309 sigsuspend in my_waitpid. */
6310
6311 static void
6312 sigchld_handler (int signo)
6313 {
6314 int old_errno = errno;
6315
6316 if (debug_threads)
6317 {
6318 do
6319 {
6320 /* fprintf is not async-signal-safe, so call write
6321 directly. */
6322 if (write (2, "sigchld_handler\n",
6323 sizeof ("sigchld_handler\n") - 1) < 0)
6324 break; /* just ignore */
6325 } while (0);
6326 }
6327
6328 if (target_is_async_p ())
6329 async_file_mark (); /* trigger a linux_wait */
6330
6331 errno = old_errno;
6332 }
6333
6334 static int
6335 linux_supports_non_stop (void)
6336 {
6337 return 1;
6338 }
6339
6340 static int
6341 linux_async (int enable)
6342 {
6343 int previous = target_is_async_p ();
6344
6345 if (debug_threads)
6346 debug_printf ("linux_async (%d), previous=%d\n",
6347 enable, previous);
6348
6349 if (previous != enable)
6350 {
6351 sigset_t mask;
6352 sigemptyset (&mask);
6353 sigaddset (&mask, SIGCHLD);
6354
6355 sigprocmask (SIG_BLOCK, &mask, NULL);
6356
6357 if (enable)
6358 {
6359 if (pipe (linux_event_pipe) == -1)
6360 {
6361 linux_event_pipe[0] = -1;
6362 linux_event_pipe[1] = -1;
6363 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6364
6365 warning ("creating event pipe failed.");
6366 return previous;
6367 }
6368
6369 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6370 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6371
6372 /* Register the event loop handler. */
6373 add_file_handler (linux_event_pipe[0],
6374 handle_target_event, NULL);
6375
6376 /* Always trigger a linux_wait. */
6377 async_file_mark ();
6378 }
6379 else
6380 {
6381 delete_file_handler (linux_event_pipe[0]);
6382
6383 close (linux_event_pipe[0]);
6384 close (linux_event_pipe[1]);
6385 linux_event_pipe[0] = -1;
6386 linux_event_pipe[1] = -1;
6387 }
6388
6389 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6390 }
6391
6392 return previous;
6393 }
6394
6395 static int
6396 linux_start_non_stop (int nonstop)
6397 {
6398 /* Register or unregister from event-loop accordingly. */
6399 linux_async (nonstop);
6400
6401 if (target_is_async_p () != (nonstop != 0))
6402 return -1;
6403
6404 return 0;
6405 }
6406
6407 static int
6408 linux_supports_multi_process (void)
6409 {
6410 return 1;
6411 }
6412
6413 /* Check if fork events are supported. */
6414
6415 static int
6416 linux_supports_fork_events (void)
6417 {
6418 return linux_supports_tracefork ();
6419 }
6420
6421 /* Check if vfork events are supported. */
6422
6423 static int
6424 linux_supports_vfork_events (void)
6425 {
6426 return linux_supports_tracefork ();
6427 }
6428
6429 /* Check if exec events are supported. */
6430
6431 static int
6432 linux_supports_exec_events (void)
6433 {
6434 return linux_supports_traceexec ();
6435 }
6436
6437 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6438 ptrace flags for all inferiors. This is in case the new GDB connection
6439 doesn't support the same set of events that the previous one did. */
6440
6441 static void
6442 linux_handle_new_gdb_connection (void)
6443 {
6444 /* Request that all the lwps reset their ptrace options. */
6445 for_each_thread ([] (thread_info *thread)
6446 {
6447 struct lwp_info *lwp = get_thread_lwp (thread);
6448
6449 if (!lwp->stopped)
6450 {
6451 /* Stop the lwp so we can modify its ptrace options. */
6452 lwp->must_set_ptrace_flags = 1;
6453 linux_stop_lwp (lwp);
6454 }
6455 else
6456 {
6457 /* Already stopped; go ahead and set the ptrace options. */
6458 struct process_info *proc = find_process_pid (pid_of (thread));
6459 int options = linux_low_ptrace_options (proc->attached);
6460
6461 linux_enable_event_reporting (lwpid_of (thread), options);
6462 lwp->must_set_ptrace_flags = 0;
6463 }
6464 });
6465 }
6466
6467 static int
6468 linux_supports_disable_randomization (void)
6469 {
6470 #ifdef HAVE_PERSONALITY
6471 return 1;
6472 #else
6473 return 0;
6474 #endif
6475 }
6476
6477 static int
6478 linux_supports_agent (void)
6479 {
6480 return 1;
6481 }
6482
6483 static int
6484 linux_supports_range_stepping (void)
6485 {
6486 if (can_software_single_step ())
6487 return 1;
6488 if (*the_low_target.supports_range_stepping == NULL)
6489 return 0;
6490
6491 return (*the_low_target.supports_range_stepping) ();
6492 }
6493
6494 /* Enumerate spufs IDs for process PID. */
6495 static int
6496 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6497 {
6498 int pos = 0;
6499 int written = 0;
6500 char path[128];
6501 DIR *dir;
6502 struct dirent *entry;
6503
6504 sprintf (path, "/proc/%ld/fd", pid);
6505 dir = opendir (path);
6506 if (!dir)
6507 return -1;
6508
6509 rewinddir (dir);
6510 while ((entry = readdir (dir)) != NULL)
6511 {
6512 struct stat st;
6513 struct statfs stfs;
6514 int fd;
6515
6516 fd = atoi (entry->d_name);
6517 if (!fd)
6518 continue;
6519
6520 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6521 if (stat (path, &st) != 0)
6522 continue;
6523 if (!S_ISDIR (st.st_mode))
6524 continue;
6525
6526 if (statfs (path, &stfs) != 0)
6527 continue;
6528 if (stfs.f_type != SPUFS_MAGIC)
6529 continue;
6530
6531 if (pos >= offset && pos + 4 <= offset + len)
6532 {
6533 *(unsigned int *)(buf + pos - offset) = fd;
6534 written += 4;
6535 }
6536 pos += 4;
6537 }
6538
6539 closedir (dir);
6540 return written;
6541 }
6542
6543 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6544 object type, using the /proc file system. */
6545 static int
6546 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6547 unsigned const char *writebuf,
6548 CORE_ADDR offset, int len)
6549 {
6550 long pid = lwpid_of (current_thread);
6551 char buf[128];
6552 int fd = 0;
6553 int ret = 0;
6554
6555 if (!writebuf && !readbuf)
6556 return -1;
6557
6558 if (!*annex)
6559 {
6560 if (!readbuf)
6561 return -1;
6562 else
6563 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6564 }
6565
6566 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6567 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6568 if (fd <= 0)
6569 return -1;
6570
6571 if (offset != 0
6572 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6573 {
6574 close (fd);
6575 return 0;
6576 }
6577
6578 if (writebuf)
6579 ret = write (fd, writebuf, (size_t) len);
6580 else
6581 ret = read (fd, readbuf, (size_t) len);
6582
6583 close (fd);
6584 return ret;
6585 }
6586
6587 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6588 struct target_loadseg
6589 {
6590 /* Core address to which the segment is mapped. */
6591 Elf32_Addr addr;
6592 /* VMA recorded in the program header. */
6593 Elf32_Addr p_vaddr;
6594 /* Size of this segment in memory. */
6595 Elf32_Word p_memsz;
6596 };
6597
6598 # if defined PT_GETDSBT
6599 struct target_loadmap
6600 {
6601 /* Protocol version number, must be zero. */
6602 Elf32_Word version;
6603 /* Pointer to the DSBT table, its size, and the DSBT index. */
6604 unsigned *dsbt_table;
6605 unsigned dsbt_size, dsbt_index;
6606 /* Number of segments in this map. */
6607 Elf32_Word nsegs;
6608 /* The actual memory map. */
6609 struct target_loadseg segs[/*nsegs*/];
6610 };
6611 # define LINUX_LOADMAP PT_GETDSBT
6612 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6613 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6614 # else
6615 struct target_loadmap
6616 {
6617 /* Protocol version number, must be zero. */
6618 Elf32_Half version;
6619 /* Number of segments in this map. */
6620 Elf32_Half nsegs;
6621 /* The actual memory map. */
6622 struct target_loadseg segs[/*nsegs*/];
6623 };
6624 # define LINUX_LOADMAP PTRACE_GETFDPIC
6625 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6626 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6627 # endif
6628
6629 static int
6630 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6631 unsigned char *myaddr, unsigned int len)
6632 {
6633 int pid = lwpid_of (current_thread);
6634 int addr = -1;
6635 struct target_loadmap *data = NULL;
6636 unsigned int actual_length, copy_length;
6637
6638 if (strcmp (annex, "exec") == 0)
6639 addr = (int) LINUX_LOADMAP_EXEC;
6640 else if (strcmp (annex, "interp") == 0)
6641 addr = (int) LINUX_LOADMAP_INTERP;
6642 else
6643 return -1;
6644
6645 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6646 return -1;
6647
6648 if (data == NULL)
6649 return -1;
6650
6651 actual_length = sizeof (struct target_loadmap)
6652 + sizeof (struct target_loadseg) * data->nsegs;
6653
6654 if (offset < 0 || offset > actual_length)
6655 return -1;
6656
6657 copy_length = actual_length - offset < len ? actual_length - offset : len;
6658 memcpy (myaddr, (char *) data + offset, copy_length);
6659 return copy_length;
6660 }
6661 #else
6662 # define linux_read_loadmap NULL
6663 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6664
6665 static void
6666 linux_process_qsupported (char **features, int count)
6667 {
6668 if (the_low_target.process_qsupported != NULL)
6669 the_low_target.process_qsupported (features, count);
6670 }
6671
6672 static int
6673 linux_supports_catch_syscall (void)
6674 {
6675 return (the_low_target.get_syscall_trapinfo != NULL
6676 && linux_supports_tracesysgood ());
6677 }
6678
6679 static int
6680 linux_get_ipa_tdesc_idx (void)
6681 {
6682 if (the_low_target.get_ipa_tdesc_idx == NULL)
6683 return 0;
6684
6685 return (*the_low_target.get_ipa_tdesc_idx) ();
6686 }
6687
6688 static int
6689 linux_supports_tracepoints (void)
6690 {
6691 if (*the_low_target.supports_tracepoints == NULL)
6692 return 0;
6693
6694 return (*the_low_target.supports_tracepoints) ();
6695 }
6696
6697 static CORE_ADDR
6698 linux_read_pc (struct regcache *regcache)
6699 {
6700 if (the_low_target.get_pc == NULL)
6701 return 0;
6702
6703 return (*the_low_target.get_pc) (regcache);
6704 }
6705
6706 static void
6707 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6708 {
6709 gdb_assert (the_low_target.set_pc != NULL);
6710
6711 (*the_low_target.set_pc) (regcache, pc);
6712 }
6713
6714 static int
6715 linux_thread_stopped (struct thread_info *thread)
6716 {
6717 return get_thread_lwp (thread)->stopped;
6718 }
6719
6720 /* This exposes stop-all-threads functionality to other modules. */
6721
6722 static void
6723 linux_pause_all (int freeze)
6724 {
6725 stop_all_lwps (freeze, NULL);
6726 }
6727
6728 /* This exposes unstop-all-threads functionality to other gdbserver
6729 modules. */
6730
6731 static void
6732 linux_unpause_all (int unfreeze)
6733 {
6734 unstop_all_lwps (unfreeze, NULL);
6735 }
6736
6737 static int
6738 linux_prepare_to_access_memory (void)
6739 {
6740 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6741 running LWP. */
6742 if (non_stop)
6743 linux_pause_all (1);
6744 return 0;
6745 }
6746
6747 static void
6748 linux_done_accessing_memory (void)
6749 {
6750 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6751 running LWP. */
6752 if (non_stop)
6753 linux_unpause_all (1);
6754 }
6755
6756 static int
6757 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6758 CORE_ADDR collector,
6759 CORE_ADDR lockaddr,
6760 ULONGEST orig_size,
6761 CORE_ADDR *jump_entry,
6762 CORE_ADDR *trampoline,
6763 ULONGEST *trampoline_size,
6764 unsigned char *jjump_pad_insn,
6765 ULONGEST *jjump_pad_insn_size,
6766 CORE_ADDR *adjusted_insn_addr,
6767 CORE_ADDR *adjusted_insn_addr_end,
6768 char *err)
6769 {
6770 return (*the_low_target.install_fast_tracepoint_jump_pad)
6771 (tpoint, tpaddr, collector, lockaddr, orig_size,
6772 jump_entry, trampoline, trampoline_size,
6773 jjump_pad_insn, jjump_pad_insn_size,
6774 adjusted_insn_addr, adjusted_insn_addr_end,
6775 err);
6776 }
6777
6778 static struct emit_ops *
6779 linux_emit_ops (void)
6780 {
6781 if (the_low_target.emit_ops != NULL)
6782 return (*the_low_target.emit_ops) ();
6783 else
6784 return NULL;
6785 }
6786
6787 static int
6788 linux_get_min_fast_tracepoint_insn_len (void)
6789 {
6790 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6791 }
6792
6793 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6794
6795 static int
6796 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6797 CORE_ADDR *phdr_memaddr, int *num_phdr)
6798 {
6799 char filename[PATH_MAX];
6800 int fd;
6801 const int auxv_size = is_elf64
6802 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6803 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6804
6805 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6806
6807 fd = open (filename, O_RDONLY);
6808 if (fd < 0)
6809 return 1;
6810
6811 *phdr_memaddr = 0;
6812 *num_phdr = 0;
6813 while (read (fd, buf, auxv_size) == auxv_size
6814 && (*phdr_memaddr == 0 || *num_phdr == 0))
6815 {
6816 if (is_elf64)
6817 {
6818 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6819
6820 switch (aux->a_type)
6821 {
6822 case AT_PHDR:
6823 *phdr_memaddr = aux->a_un.a_val;
6824 break;
6825 case AT_PHNUM:
6826 *num_phdr = aux->a_un.a_val;
6827 break;
6828 }
6829 }
6830 else
6831 {
6832 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6833
6834 switch (aux->a_type)
6835 {
6836 case AT_PHDR:
6837 *phdr_memaddr = aux->a_un.a_val;
6838 break;
6839 case AT_PHNUM:
6840 *num_phdr = aux->a_un.a_val;
6841 break;
6842 }
6843 }
6844 }
6845
6846 close (fd);
6847
6848 if (*phdr_memaddr == 0 || *num_phdr == 0)
6849 {
6850 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6851 "phdr_memaddr = %ld, phdr_num = %d",
6852 (long) *phdr_memaddr, *num_phdr);
6853 return 2;
6854 }
6855
6856 return 0;
6857 }
6858
6859 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6860
6861 static CORE_ADDR
6862 get_dynamic (const int pid, const int is_elf64)
6863 {
6864 CORE_ADDR phdr_memaddr, relocation;
6865 int num_phdr, i;
6866 unsigned char *phdr_buf;
6867 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6868
6869 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6870 return 0;
6871
6872 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6873 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6874
6875 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6876 return 0;
6877
6878 /* Compute relocation: it is expected to be 0 for "regular" executables,
6879 non-zero for PIE ones. */
6880 relocation = -1;
6881 for (i = 0; relocation == -1 && i < num_phdr; i++)
6882 if (is_elf64)
6883 {
6884 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6885
6886 if (p->p_type == PT_PHDR)
6887 relocation = phdr_memaddr - p->p_vaddr;
6888 }
6889 else
6890 {
6891 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6892
6893 if (p->p_type == PT_PHDR)
6894 relocation = phdr_memaddr - p->p_vaddr;
6895 }
6896
6897 if (relocation == -1)
6898 {
6899 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6900 any real world executables, including PIE executables, have always
6901 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6902 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6903 or present DT_DEBUG anyway (fpc binaries are statically linked).
6904
6905 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6906
6907 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6908
6909 return 0;
6910 }
6911
6912 for (i = 0; i < num_phdr; i++)
6913 {
6914 if (is_elf64)
6915 {
6916 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6917
6918 if (p->p_type == PT_DYNAMIC)
6919 return p->p_vaddr + relocation;
6920 }
6921 else
6922 {
6923 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6924
6925 if (p->p_type == PT_DYNAMIC)
6926 return p->p_vaddr + relocation;
6927 }
6928 }
6929
6930 return 0;
6931 }
6932
6933 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6934 can be 0 if the inferior does not yet have the library list initialized.
6935 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6936 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6937
6938 static CORE_ADDR
6939 get_r_debug (const int pid, const int is_elf64)
6940 {
6941 CORE_ADDR dynamic_memaddr;
6942 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6943 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6944 CORE_ADDR map = -1;
6945
6946 dynamic_memaddr = get_dynamic (pid, is_elf64);
6947 if (dynamic_memaddr == 0)
6948 return map;
6949
6950 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6951 {
6952 if (is_elf64)
6953 {
6954 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6955 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6956 union
6957 {
6958 Elf64_Xword map;
6959 unsigned char buf[sizeof (Elf64_Xword)];
6960 }
6961 rld_map;
6962 #endif
6963 #ifdef DT_MIPS_RLD_MAP
6964 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6965 {
6966 if (linux_read_memory (dyn->d_un.d_val,
6967 rld_map.buf, sizeof (rld_map.buf)) == 0)
6968 return rld_map.map;
6969 else
6970 break;
6971 }
6972 #endif /* DT_MIPS_RLD_MAP */
6973 #ifdef DT_MIPS_RLD_MAP_REL
6974 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6975 {
6976 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6977 rld_map.buf, sizeof (rld_map.buf)) == 0)
6978 return rld_map.map;
6979 else
6980 break;
6981 }
6982 #endif /* DT_MIPS_RLD_MAP_REL */
6983
6984 if (dyn->d_tag == DT_DEBUG && map == -1)
6985 map = dyn->d_un.d_val;
6986
6987 if (dyn->d_tag == DT_NULL)
6988 break;
6989 }
6990 else
6991 {
6992 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6993 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6994 union
6995 {
6996 Elf32_Word map;
6997 unsigned char buf[sizeof (Elf32_Word)];
6998 }
6999 rld_map;
7000 #endif
7001 #ifdef DT_MIPS_RLD_MAP
7002 if (dyn->d_tag == DT_MIPS_RLD_MAP)
7003 {
7004 if (linux_read_memory (dyn->d_un.d_val,
7005 rld_map.buf, sizeof (rld_map.buf)) == 0)
7006 return rld_map.map;
7007 else
7008 break;
7009 }
7010 #endif /* DT_MIPS_RLD_MAP */
7011 #ifdef DT_MIPS_RLD_MAP_REL
7012 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
7013 {
7014 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
7015 rld_map.buf, sizeof (rld_map.buf)) == 0)
7016 return rld_map.map;
7017 else
7018 break;
7019 }
7020 #endif /* DT_MIPS_RLD_MAP_REL */
7021
7022 if (dyn->d_tag == DT_DEBUG && map == -1)
7023 map = dyn->d_un.d_val;
7024
7025 if (dyn->d_tag == DT_NULL)
7026 break;
7027 }
7028
7029 dynamic_memaddr += dyn_size;
7030 }
7031
7032 return map;
7033 }
7034
7035 /* Read one pointer from MEMADDR in the inferior. */
7036
7037 static int
7038 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
7039 {
7040 int ret;
7041
7042 /* Go through a union so this works on either big or little endian
7043 hosts, when the inferior's pointer size is smaller than the size
7044 of CORE_ADDR. It is assumed the inferior's endianness is the
7045 same of the superior's. */
7046 union
7047 {
7048 CORE_ADDR core_addr;
7049 unsigned int ui;
7050 unsigned char uc;
7051 } addr;
7052
7053 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
7054 if (ret == 0)
7055 {
7056 if (ptr_size == sizeof (CORE_ADDR))
7057 *ptr = addr.core_addr;
7058 else if (ptr_size == sizeof (unsigned int))
7059 *ptr = addr.ui;
7060 else
7061 gdb_assert_not_reached ("unhandled pointer size");
7062 }
7063 return ret;
7064 }
7065
7066 struct link_map_offsets
7067 {
7068 /* Offset and size of r_debug.r_version. */
7069 int r_version_offset;
7070
7071 /* Offset and size of r_debug.r_map. */
7072 int r_map_offset;
7073
7074 /* Offset to l_addr field in struct link_map. */
7075 int l_addr_offset;
7076
7077 /* Offset to l_name field in struct link_map. */
7078 int l_name_offset;
7079
7080 /* Offset to l_ld field in struct link_map. */
7081 int l_ld_offset;
7082
7083 /* Offset to l_next field in struct link_map. */
7084 int l_next_offset;
7085
7086 /* Offset to l_prev field in struct link_map. */
7087 int l_prev_offset;
7088 };
7089
7090 /* Construct qXfer:libraries-svr4:read reply. */
7091
7092 static int
7093 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
7094 unsigned const char *writebuf,
7095 CORE_ADDR offset, int len)
7096 {
7097 char *document;
7098 unsigned document_len;
7099 struct process_info_private *const priv = current_process ()->priv;
7100 char filename[PATH_MAX];
7101 int pid, is_elf64;
7102
7103 static const struct link_map_offsets lmo_32bit_offsets =
7104 {
7105 0, /* r_version offset. */
7106 4, /* r_debug.r_map offset. */
7107 0, /* l_addr offset in link_map. */
7108 4, /* l_name offset in link_map. */
7109 8, /* l_ld offset in link_map. */
7110 12, /* l_next offset in link_map. */
7111 16 /* l_prev offset in link_map. */
7112 };
7113
7114 static const struct link_map_offsets lmo_64bit_offsets =
7115 {
7116 0, /* r_version offset. */
7117 8, /* r_debug.r_map offset. */
7118 0, /* l_addr offset in link_map. */
7119 8, /* l_name offset in link_map. */
7120 16, /* l_ld offset in link_map. */
7121 24, /* l_next offset in link_map. */
7122 32 /* l_prev offset in link_map. */
7123 };
7124 const struct link_map_offsets *lmo;
7125 unsigned int machine;
7126 int ptr_size;
7127 CORE_ADDR lm_addr = 0, lm_prev = 0;
7128 int allocated = 1024;
7129 char *p;
7130 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7131 int header_done = 0;
7132
7133 if (writebuf != NULL)
7134 return -2;
7135 if (readbuf == NULL)
7136 return -1;
7137
7138 pid = lwpid_of (current_thread);
7139 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7140 is_elf64 = elf_64_file_p (filename, &machine);
7141 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7142 ptr_size = is_elf64 ? 8 : 4;
7143
7144 while (annex[0] != '\0')
7145 {
7146 const char *sep;
7147 CORE_ADDR *addrp;
7148 int len;
7149
7150 sep = strchr (annex, '=');
7151 if (sep == NULL)
7152 break;
7153
7154 len = sep - annex;
7155 if (len == 5 && startswith (annex, "start"))
7156 addrp = &lm_addr;
7157 else if (len == 4 && startswith (annex, "prev"))
7158 addrp = &lm_prev;
7159 else
7160 {
7161 annex = strchr (sep, ';');
7162 if (annex == NULL)
7163 break;
7164 annex++;
7165 continue;
7166 }
7167
7168 annex = decode_address_to_semicolon (addrp, sep + 1);
7169 }
7170
7171 if (lm_addr == 0)
7172 {
7173 int r_version = 0;
7174
7175 if (priv->r_debug == 0)
7176 priv->r_debug = get_r_debug (pid, is_elf64);
7177
7178 /* We failed to find DT_DEBUG. Such situation will not change
7179 for this inferior - do not retry it. Report it to GDB as
7180 E01, see for the reasons at the GDB solib-svr4.c side. */
7181 if (priv->r_debug == (CORE_ADDR) -1)
7182 return -1;
7183
7184 if (priv->r_debug != 0)
7185 {
7186 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7187 (unsigned char *) &r_version,
7188 sizeof (r_version)) != 0
7189 || r_version != 1)
7190 {
7191 warning ("unexpected r_debug version %d", r_version);
7192 }
7193 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7194 &lm_addr, ptr_size) != 0)
7195 {
7196 warning ("unable to read r_map from 0x%lx",
7197 (long) priv->r_debug + lmo->r_map_offset);
7198 }
7199 }
7200 }
7201
7202 document = (char *) xmalloc (allocated);
7203 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7204 p = document + strlen (document);
7205
7206 while (lm_addr
7207 && read_one_ptr (lm_addr + lmo->l_name_offset,
7208 &l_name, ptr_size) == 0
7209 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7210 &l_addr, ptr_size) == 0
7211 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7212 &l_ld, ptr_size) == 0
7213 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7214 &l_prev, ptr_size) == 0
7215 && read_one_ptr (lm_addr + lmo->l_next_offset,
7216 &l_next, ptr_size) == 0)
7217 {
7218 unsigned char libname[PATH_MAX];
7219
7220 if (lm_prev != l_prev)
7221 {
7222 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7223 (long) lm_prev, (long) l_prev);
7224 break;
7225 }
7226
7227 /* Ignore the first entry even if it has valid name as the first entry
7228 corresponds to the main executable. The first entry should not be
7229 skipped if the dynamic loader was loaded late by a static executable
7230 (see solib-svr4.c parameter ignore_first). But in such case the main
7231 executable does not have PT_DYNAMIC present and this function already
7232 exited above due to failed get_r_debug. */
7233 if (lm_prev == 0)
7234 {
7235 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7236 p = p + strlen (p);
7237 }
7238 else
7239 {
7240 /* Not checking for error because reading may stop before
7241 we've got PATH_MAX worth of characters. */
7242 libname[0] = '\0';
7243 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7244 libname[sizeof (libname) - 1] = '\0';
7245 if (libname[0] != '\0')
7246 {
7247 /* 6x the size for xml_escape_text below. */
7248 size_t len = 6 * strlen ((char *) libname);
7249
7250 if (!header_done)
7251 {
7252 /* Terminate `<library-list-svr4'. */
7253 *p++ = '>';
7254 header_done = 1;
7255 }
7256
7257 while (allocated < p - document + len + 200)
7258 {
7259 /* Expand to guarantee sufficient storage. */
7260 uintptr_t document_len = p - document;
7261
7262 document = (char *) xrealloc (document, 2 * allocated);
7263 allocated *= 2;
7264 p = document + document_len;
7265 }
7266
7267 std::string name = xml_escape_text ((char *) libname);
7268 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7269 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7270 name.c_str (), (unsigned long) lm_addr,
7271 (unsigned long) l_addr, (unsigned long) l_ld);
7272 }
7273 }
7274
7275 lm_prev = lm_addr;
7276 lm_addr = l_next;
7277 }
7278
7279 if (!header_done)
7280 {
7281 /* Empty list; terminate `<library-list-svr4'. */
7282 strcpy (p, "/>");
7283 }
7284 else
7285 strcpy (p, "</library-list-svr4>");
7286
7287 document_len = strlen (document);
7288 if (offset < document_len)
7289 document_len -= offset;
7290 else
7291 document_len = 0;
7292 if (len > document_len)
7293 len = document_len;
7294
7295 memcpy (readbuf, document + offset, len);
7296 xfree (document);
7297
7298 return len;
7299 }
7300
7301 #ifdef HAVE_LINUX_BTRACE
7302
7303 /* See to_disable_btrace target method. */
7304
7305 static int
7306 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7307 {
7308 enum btrace_error err;
7309
7310 err = linux_disable_btrace (tinfo);
7311 return (err == BTRACE_ERR_NONE ? 0 : -1);
7312 }
7313
7314 /* Encode an Intel Processor Trace configuration. */
7315
7316 static void
7317 linux_low_encode_pt_config (struct buffer *buffer,
7318 const struct btrace_data_pt_config *config)
7319 {
7320 buffer_grow_str (buffer, "<pt-config>\n");
7321
7322 switch (config->cpu.vendor)
7323 {
7324 case CV_INTEL:
7325 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7326 "model=\"%u\" stepping=\"%u\"/>\n",
7327 config->cpu.family, config->cpu.model,
7328 config->cpu.stepping);
7329 break;
7330
7331 default:
7332 break;
7333 }
7334
7335 buffer_grow_str (buffer, "</pt-config>\n");
7336 }
7337
7338 /* Encode a raw buffer. */
7339
7340 static void
7341 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7342 unsigned int size)
7343 {
7344 if (size == 0)
7345 return;
7346
7347 /* We use hex encoding - see common/rsp-low.h. */
7348 buffer_grow_str (buffer, "<raw>\n");
7349
7350 while (size-- > 0)
7351 {
7352 char elem[2];
7353
7354 elem[0] = tohex ((*data >> 4) & 0xf);
7355 elem[1] = tohex (*data++ & 0xf);
7356
7357 buffer_grow (buffer, elem, 2);
7358 }
7359
7360 buffer_grow_str (buffer, "</raw>\n");
7361 }
7362
7363 /* See to_read_btrace target method. */
7364
7365 static int
7366 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7367 enum btrace_read_type type)
7368 {
7369 struct btrace_data btrace;
7370 struct btrace_block *block;
7371 enum btrace_error err;
7372 int i;
7373
7374 btrace_data_init (&btrace);
7375
7376 err = linux_read_btrace (&btrace, tinfo, type);
7377 if (err != BTRACE_ERR_NONE)
7378 {
7379 if (err == BTRACE_ERR_OVERFLOW)
7380 buffer_grow_str0 (buffer, "E.Overflow.");
7381 else
7382 buffer_grow_str0 (buffer, "E.Generic Error.");
7383
7384 goto err;
7385 }
7386
7387 switch (btrace.format)
7388 {
7389 case BTRACE_FORMAT_NONE:
7390 buffer_grow_str0 (buffer, "E.No Trace.");
7391 goto err;
7392
7393 case BTRACE_FORMAT_BTS:
7394 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7395 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7396
7397 for (i = 0;
7398 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7399 i++)
7400 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7401 paddress (block->begin), paddress (block->end));
7402
7403 buffer_grow_str0 (buffer, "</btrace>\n");
7404 break;
7405
7406 case BTRACE_FORMAT_PT:
7407 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7408 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7409 buffer_grow_str (buffer, "<pt>\n");
7410
7411 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7412
7413 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7414 btrace.variant.pt.size);
7415
7416 buffer_grow_str (buffer, "</pt>\n");
7417 buffer_grow_str0 (buffer, "</btrace>\n");
7418 break;
7419
7420 default:
7421 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7422 goto err;
7423 }
7424
7425 btrace_data_fini (&btrace);
7426 return 0;
7427
7428 err:
7429 btrace_data_fini (&btrace);
7430 return -1;
7431 }
7432
7433 /* See to_btrace_conf target method. */
7434
7435 static int
7436 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7437 struct buffer *buffer)
7438 {
7439 const struct btrace_config *conf;
7440
7441 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7442 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7443
7444 conf = linux_btrace_conf (tinfo);
7445 if (conf != NULL)
7446 {
7447 switch (conf->format)
7448 {
7449 case BTRACE_FORMAT_NONE:
7450 break;
7451
7452 case BTRACE_FORMAT_BTS:
7453 buffer_xml_printf (buffer, "<bts");
7454 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7455 buffer_xml_printf (buffer, " />\n");
7456 break;
7457
7458 case BTRACE_FORMAT_PT:
7459 buffer_xml_printf (buffer, "<pt");
7460 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7461 buffer_xml_printf (buffer, "/>\n");
7462 break;
7463 }
7464 }
7465
7466 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7467 return 0;
7468 }
7469 #endif /* HAVE_LINUX_BTRACE */
7470
7471 /* See nat/linux-nat.h. */
7472
7473 ptid_t
7474 current_lwp_ptid (void)
7475 {
7476 return ptid_of (current_thread);
7477 }
7478
7479 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7480
7481 static int
7482 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7483 {
7484 if (the_low_target.breakpoint_kind_from_pc != NULL)
7485 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7486 else
7487 return default_breakpoint_kind_from_pc (pcptr);
7488 }
7489
7490 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7491
7492 static const gdb_byte *
7493 linux_sw_breakpoint_from_kind (int kind, int *size)
7494 {
7495 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7496
7497 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7498 }
7499
7500 /* Implementation of the target_ops method
7501 "breakpoint_kind_from_current_state". */
7502
7503 static int
7504 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7505 {
7506 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7507 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7508 else
7509 return linux_breakpoint_kind_from_pc (pcptr);
7510 }
7511
7512 /* Default implementation of linux_target_ops method "set_pc" for
7513 32-bit pc register which is literally named "pc". */
7514
7515 void
7516 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7517 {
7518 uint32_t newpc = pc;
7519
7520 supply_register_by_name (regcache, "pc", &newpc);
7521 }
7522
7523 /* Default implementation of linux_target_ops method "get_pc" for
7524 32-bit pc register which is literally named "pc". */
7525
7526 CORE_ADDR
7527 linux_get_pc_32bit (struct regcache *regcache)
7528 {
7529 uint32_t pc;
7530
7531 collect_register_by_name (regcache, "pc", &pc);
7532 if (debug_threads)
7533 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7534 return pc;
7535 }
7536
7537 /* Default implementation of linux_target_ops method "set_pc" for
7538 64-bit pc register which is literally named "pc". */
7539
7540 void
7541 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7542 {
7543 uint64_t newpc = pc;
7544
7545 supply_register_by_name (regcache, "pc", &newpc);
7546 }
7547
7548 /* Default implementation of linux_target_ops method "get_pc" for
7549 64-bit pc register which is literally named "pc". */
7550
7551 CORE_ADDR
7552 linux_get_pc_64bit (struct regcache *regcache)
7553 {
7554 uint64_t pc;
7555
7556 collect_register_by_name (regcache, "pc", &pc);
7557 if (debug_threads)
7558 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7559 return pc;
7560 }
7561
7562
7563 static struct target_ops linux_target_ops = {
7564 linux_create_inferior,
7565 linux_post_create_inferior,
7566 linux_attach,
7567 linux_kill,
7568 linux_detach,
7569 linux_mourn,
7570 linux_join,
7571 linux_thread_alive,
7572 linux_resume,
7573 linux_wait,
7574 linux_fetch_registers,
7575 linux_store_registers,
7576 linux_prepare_to_access_memory,
7577 linux_done_accessing_memory,
7578 linux_read_memory,
7579 linux_write_memory,
7580 linux_look_up_symbols,
7581 linux_request_interrupt,
7582 linux_read_auxv,
7583 linux_supports_z_point_type,
7584 linux_insert_point,
7585 linux_remove_point,
7586 linux_stopped_by_sw_breakpoint,
7587 linux_supports_stopped_by_sw_breakpoint,
7588 linux_stopped_by_hw_breakpoint,
7589 linux_supports_stopped_by_hw_breakpoint,
7590 linux_supports_hardware_single_step,
7591 linux_stopped_by_watchpoint,
7592 linux_stopped_data_address,
7593 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7594 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7595 && defined(PT_TEXT_END_ADDR)
7596 linux_read_offsets,
7597 #else
7598 NULL,
7599 #endif
7600 #ifdef USE_THREAD_DB
7601 thread_db_get_tls_address,
7602 #else
7603 NULL,
7604 #endif
7605 linux_qxfer_spu,
7606 hostio_last_error_from_errno,
7607 linux_qxfer_osdata,
7608 linux_xfer_siginfo,
7609 linux_supports_non_stop,
7610 linux_async,
7611 linux_start_non_stop,
7612 linux_supports_multi_process,
7613 linux_supports_fork_events,
7614 linux_supports_vfork_events,
7615 linux_supports_exec_events,
7616 linux_handle_new_gdb_connection,
7617 #ifdef USE_THREAD_DB
7618 thread_db_handle_monitor_command,
7619 #else
7620 NULL,
7621 #endif
7622 linux_common_core_of_thread,
7623 linux_read_loadmap,
7624 linux_process_qsupported,
7625 linux_supports_tracepoints,
7626 linux_read_pc,
7627 linux_write_pc,
7628 linux_thread_stopped,
7629 NULL,
7630 linux_pause_all,
7631 linux_unpause_all,
7632 linux_stabilize_threads,
7633 linux_install_fast_tracepoint_jump_pad,
7634 linux_emit_ops,
7635 linux_supports_disable_randomization,
7636 linux_get_min_fast_tracepoint_insn_len,
7637 linux_qxfer_libraries_svr4,
7638 linux_supports_agent,
7639 #ifdef HAVE_LINUX_BTRACE
7640 linux_supports_btrace,
7641 linux_enable_btrace,
7642 linux_low_disable_btrace,
7643 linux_low_read_btrace,
7644 linux_low_btrace_conf,
7645 #else
7646 NULL,
7647 NULL,
7648 NULL,
7649 NULL,
7650 NULL,
7651 #endif
7652 linux_supports_range_stepping,
7653 linux_proc_pid_to_exec_file,
7654 linux_mntns_open_cloexec,
7655 linux_mntns_unlink,
7656 linux_mntns_readlink,
7657 linux_breakpoint_kind_from_pc,
7658 linux_sw_breakpoint_from_kind,
7659 linux_proc_tid_get_name,
7660 linux_breakpoint_kind_from_current_state,
7661 linux_supports_software_single_step,
7662 linux_supports_catch_syscall,
7663 linux_get_ipa_tdesc_idx,
7664 #if USE_THREAD_DB
7665 thread_db_thread_handle,
7666 #else
7667 NULL,
7668 #endif
7669 };
7670
7671 #ifdef HAVE_LINUX_REGSETS
7672 void
7673 initialize_regsets_info (struct regsets_info *info)
7674 {
7675 for (info->num_regsets = 0;
7676 info->regsets[info->num_regsets].size >= 0;
7677 info->num_regsets++)
7678 ;
7679 }
7680 #endif
7681
7682 void
7683 initialize_low (void)
7684 {
7685 struct sigaction sigchld_action;
7686
7687 memset (&sigchld_action, 0, sizeof (sigchld_action));
7688 set_target_ops (&linux_target_ops);
7689
7690 linux_ptrace_init_warnings ();
7691
7692 sigchld_action.sa_handler = sigchld_handler;
7693 sigemptyset (&sigchld_action.sa_mask);
7694 sigchld_action.sa_flags = SA_RESTART;
7695 sigaction (SIGCHLD, &sigchld_action, NULL);
7696
7697 initialize_low_arch ();
7698
7699 linux_check_ptrace_features ();
7700 }