]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Switch to current thread in finish_step_over
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #ifndef ELFMAG0
51 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
52 then ELFMAG0 will have been defined. If it didn't get included by
53 gdb_proc_service.h then including it will likely introduce a duplicate
54 definition of elf_fpregset_t. */
55 #include <elf.h>
56 #endif
57 #include "nat/linux-namespaces.h"
58
59 #ifndef SPUFS_MAGIC
60 #define SPUFS_MAGIC 0x23c9b64e
61 #endif
62
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
67 # endif
68 #endif
69
70 #ifndef O_LARGEFILE
71 #define O_LARGEFILE 0
72 #endif
73
74 /* Some targets did not define these ptrace constants from the start,
75 so gdbserver defines them locally here. In the future, these may
76 be removed after they are added to asm/ptrace.h. */
77 #if !(defined(PT_TEXT_ADDR) \
78 || defined(PT_DATA_ADDR) \
79 || defined(PT_TEXT_END_ADDR))
80 #if defined(__mcoldfire__)
81 /* These are still undefined in 3.10 kernels. */
82 #define PT_TEXT_ADDR 49*4
83 #define PT_DATA_ADDR 50*4
84 #define PT_TEXT_END_ADDR 51*4
85 /* BFIN already defines these since at least 2.6.32 kernels. */
86 #elif defined(BFIN)
87 #define PT_TEXT_ADDR 220
88 #define PT_TEXT_END_ADDR 224
89 #define PT_DATA_ADDR 228
90 /* These are still undefined in 3.10 kernels. */
91 #elif defined(__TMS320C6X__)
92 #define PT_TEXT_ADDR (0x10000*4)
93 #define PT_DATA_ADDR (0x10004*4)
94 #define PT_TEXT_END_ADDR (0x10008*4)
95 #endif
96 #endif
97
98 #ifdef HAVE_LINUX_BTRACE
99 # include "nat/linux-btrace.h"
100 # include "btrace-common.h"
101 #endif
102
103 #ifndef HAVE_ELF32_AUXV_T
104 /* Copied from glibc's elf.h. */
105 typedef struct
106 {
107 uint32_t a_type; /* Entry type */
108 union
109 {
110 uint32_t a_val; /* Integer value */
111 /* We use to have pointer elements added here. We cannot do that,
112 though, since it does not work when using 32-bit definitions
113 on 64-bit platforms and vice versa. */
114 } a_un;
115 } Elf32_auxv_t;
116 #endif
117
118 #ifndef HAVE_ELF64_AUXV_T
119 /* Copied from glibc's elf.h. */
120 typedef struct
121 {
122 uint64_t a_type; /* Entry type */
123 union
124 {
125 uint64_t a_val; /* Integer value */
126 /* We use to have pointer elements added here. We cannot do that,
127 though, since it does not work when using 32-bit definitions
128 on 64-bit platforms and vice versa. */
129 } a_un;
130 } Elf64_auxv_t;
131 #endif
132
133 /* Does the current host support PTRACE_GETREGSET? */
134 int have_ptrace_getregset = -1;
135
136 /* LWP accessors. */
137
138 /* See nat/linux-nat.h. */
139
140 ptid_t
141 ptid_of_lwp (struct lwp_info *lwp)
142 {
143 return ptid_of (get_lwp_thread (lwp));
144 }
145
146 /* See nat/linux-nat.h. */
147
148 void
149 lwp_set_arch_private_info (struct lwp_info *lwp,
150 struct arch_lwp_info *info)
151 {
152 lwp->arch_private = info;
153 }
154
155 /* See nat/linux-nat.h. */
156
157 struct arch_lwp_info *
158 lwp_arch_private_info (struct lwp_info *lwp)
159 {
160 return lwp->arch_private;
161 }
162
163 /* See nat/linux-nat.h. */
164
165 int
166 lwp_is_stopped (struct lwp_info *lwp)
167 {
168 return lwp->stopped;
169 }
170
171 /* See nat/linux-nat.h. */
172
173 enum target_stop_reason
174 lwp_stop_reason (struct lwp_info *lwp)
175 {
176 return lwp->stop_reason;
177 }
178
179 /* A list of all unknown processes which receive stop signals. Some
180 other process will presumably claim each of these as forked
181 children momentarily. */
182
183 struct simple_pid_list
184 {
185 /* The process ID. */
186 int pid;
187
188 /* The status as reported by waitpid. */
189 int status;
190
191 /* Next in chain. */
192 struct simple_pid_list *next;
193 };
194 struct simple_pid_list *stopped_pids;
195
196 /* Trivial list manipulation functions to keep track of a list of new
197 stopped processes. */
198
199 static void
200 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
201 {
202 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
203
204 new_pid->pid = pid;
205 new_pid->status = status;
206 new_pid->next = *listp;
207 *listp = new_pid;
208 }
209
210 static int
211 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
212 {
213 struct simple_pid_list **p;
214
215 for (p = listp; *p != NULL; p = &(*p)->next)
216 if ((*p)->pid == pid)
217 {
218 struct simple_pid_list *next = (*p)->next;
219
220 *statusp = (*p)->status;
221 xfree (*p);
222 *p = next;
223 return 1;
224 }
225 return 0;
226 }
227
228 enum stopping_threads_kind
229 {
230 /* Not stopping threads presently. */
231 NOT_STOPPING_THREADS,
232
233 /* Stopping threads. */
234 STOPPING_THREADS,
235
236 /* Stopping and suspending threads. */
237 STOPPING_AND_SUSPENDING_THREADS
238 };
239
240 /* This is set while stop_all_lwps is in effect. */
241 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
242
243 /* FIXME make into a target method? */
244 int using_threads = 1;
245
246 /* True if we're presently stabilizing threads (moving them out of
247 jump pads). */
248 static int stabilizing_threads;
249
250 static void linux_resume_one_lwp (struct lwp_info *lwp,
251 int step, int signal, siginfo_t *info);
252 static void linux_resume (struct thread_resume *resume_info, size_t n);
253 static void stop_all_lwps (int suspend, struct lwp_info *except);
254 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
255 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
256 int *wstat, int options);
257 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
258 static struct lwp_info *add_lwp (ptid_t ptid);
259 static void linux_mourn (struct process_info *process);
260 static int linux_stopped_by_watchpoint (void);
261 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
262 static int lwp_is_marked_dead (struct lwp_info *lwp);
263 static void proceed_all_lwps (void);
264 static int finish_step_over (struct lwp_info *lwp);
265 static int kill_lwp (unsigned long lwpid, int signo);
266 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
267 static void complete_ongoing_step_over (void);
268 static int linux_low_ptrace_options (int attached);
269
270 /* When the event-loop is doing a step-over, this points at the thread
271 being stepped. */
272 ptid_t step_over_bkpt;
273
274 /* True if the low target can hardware single-step. */
275
276 static int
277 can_hardware_single_step (void)
278 {
279 if (the_low_target.supports_hardware_single_step != NULL)
280 return the_low_target.supports_hardware_single_step ();
281 else
282 return 0;
283 }
284
285 /* True if the low target can software single-step. Such targets
286 implement the GET_NEXT_PCS callback. */
287
288 static int
289 can_software_single_step (void)
290 {
291 return (the_low_target.get_next_pcs != NULL);
292 }
293
294 /* True if the low target supports memory breakpoints. If so, we'll
295 have a GET_PC implementation. */
296
297 static int
298 supports_breakpoints (void)
299 {
300 return (the_low_target.get_pc != NULL);
301 }
302
303 /* Returns true if this target can support fast tracepoints. This
304 does not mean that the in-process agent has been loaded in the
305 inferior. */
306
307 static int
308 supports_fast_tracepoints (void)
309 {
310 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
311 }
312
313 /* True if LWP is stopped in its stepping range. */
314
315 static int
316 lwp_in_step_range (struct lwp_info *lwp)
317 {
318 CORE_ADDR pc = lwp->stop_pc;
319
320 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
321 }
322
323 struct pending_signals
324 {
325 int signal;
326 siginfo_t info;
327 struct pending_signals *prev;
328 };
329
330 /* The read/write ends of the pipe registered as waitable file in the
331 event loop. */
332 static int linux_event_pipe[2] = { -1, -1 };
333
334 /* True if we're currently in async mode. */
335 #define target_is_async_p() (linux_event_pipe[0] != -1)
336
337 static void send_sigstop (struct lwp_info *lwp);
338 static void wait_for_sigstop (void);
339
340 /* Return non-zero if HEADER is a 64-bit ELF file. */
341
342 static int
343 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
344 {
345 if (header->e_ident[EI_MAG0] == ELFMAG0
346 && header->e_ident[EI_MAG1] == ELFMAG1
347 && header->e_ident[EI_MAG2] == ELFMAG2
348 && header->e_ident[EI_MAG3] == ELFMAG3)
349 {
350 *machine = header->e_machine;
351 return header->e_ident[EI_CLASS] == ELFCLASS64;
352
353 }
354 *machine = EM_NONE;
355 return -1;
356 }
357
358 /* Return non-zero if FILE is a 64-bit ELF file,
359 zero if the file is not a 64-bit ELF file,
360 and -1 if the file is not accessible or doesn't exist. */
361
362 static int
363 elf_64_file_p (const char *file, unsigned int *machine)
364 {
365 Elf64_Ehdr header;
366 int fd;
367
368 fd = open (file, O_RDONLY);
369 if (fd < 0)
370 return -1;
371
372 if (read (fd, &header, sizeof (header)) != sizeof (header))
373 {
374 close (fd);
375 return 0;
376 }
377 close (fd);
378
379 return elf_64_header_p (&header, machine);
380 }
381
382 /* Accepts an integer PID; Returns true if the executable PID is
383 running is a 64-bit ELF file.. */
384
385 int
386 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
387 {
388 char file[PATH_MAX];
389
390 sprintf (file, "/proc/%d/exe", pid);
391 return elf_64_file_p (file, machine);
392 }
393
394 static void
395 delete_lwp (struct lwp_info *lwp)
396 {
397 struct thread_info *thr = get_lwp_thread (lwp);
398
399 if (debug_threads)
400 debug_printf ("deleting %ld\n", lwpid_of (thr));
401
402 remove_thread (thr);
403 free (lwp->arch_private);
404 free (lwp);
405 }
406
407 /* Add a process to the common process list, and set its private
408 data. */
409
410 static struct process_info *
411 linux_add_process (int pid, int attached)
412 {
413 struct process_info *proc;
414
415 proc = add_process (pid, attached);
416 proc->priv = XCNEW (struct process_info_private);
417
418 if (the_low_target.new_process != NULL)
419 proc->priv->arch_private = the_low_target.new_process ();
420
421 return proc;
422 }
423
424 static CORE_ADDR get_pc (struct lwp_info *lwp);
425
426 /* Call the target arch_setup function on the current thread. */
427
428 static void
429 linux_arch_setup (void)
430 {
431 the_low_target.arch_setup ();
432 }
433
434 /* Call the target arch_setup function on THREAD. */
435
436 static void
437 linux_arch_setup_thread (struct thread_info *thread)
438 {
439 struct thread_info *saved_thread;
440
441 saved_thread = current_thread;
442 current_thread = thread;
443
444 linux_arch_setup ();
445
446 current_thread = saved_thread;
447 }
448
449 /* Handle a GNU/Linux extended wait response. If we see a clone,
450 fork, or vfork event, we need to add the new LWP to our list
451 (and return 0 so as not to report the trap to higher layers).
452 If we see an exec event, we will modify ORIG_EVENT_LWP to point
453 to a new LWP representing the new program. */
454
455 static int
456 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
457 {
458 struct lwp_info *event_lwp = *orig_event_lwp;
459 int event = linux_ptrace_get_extended_event (wstat);
460 struct thread_info *event_thr = get_lwp_thread (event_lwp);
461 struct lwp_info *new_lwp;
462
463 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
464
465 /* All extended events we currently use are mid-syscall. Only
466 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
467 you have to be using PTRACE_SEIZE to get that. */
468 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
469
470 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
471 || (event == PTRACE_EVENT_CLONE))
472 {
473 ptid_t ptid;
474 unsigned long new_pid;
475 int ret, status;
476
477 /* Get the pid of the new lwp. */
478 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
479 &new_pid);
480
481 /* If we haven't already seen the new PID stop, wait for it now. */
482 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
483 {
484 /* The new child has a pending SIGSTOP. We can't affect it until it
485 hits the SIGSTOP, but we're already attached. */
486
487 ret = my_waitpid (new_pid, &status, __WALL);
488
489 if (ret == -1)
490 perror_with_name ("waiting for new child");
491 else if (ret != new_pid)
492 warning ("wait returned unexpected PID %d", ret);
493 else if (!WIFSTOPPED (status))
494 warning ("wait returned unexpected status 0x%x", status);
495 }
496
497 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
498 {
499 struct process_info *parent_proc;
500 struct process_info *child_proc;
501 struct lwp_info *child_lwp;
502 struct thread_info *child_thr;
503 struct target_desc *tdesc;
504
505 ptid = ptid_build (new_pid, new_pid, 0);
506
507 if (debug_threads)
508 {
509 debug_printf ("HEW: Got fork event from LWP %ld, "
510 "new child is %d\n",
511 ptid_get_lwp (ptid_of (event_thr)),
512 ptid_get_pid (ptid));
513 }
514
515 /* Add the new process to the tables and clone the breakpoint
516 lists of the parent. We need to do this even if the new process
517 will be detached, since we will need the process object and the
518 breakpoints to remove any breakpoints from memory when we
519 detach, and the client side will access registers. */
520 child_proc = linux_add_process (new_pid, 0);
521 gdb_assert (child_proc != NULL);
522 child_lwp = add_lwp (ptid);
523 gdb_assert (child_lwp != NULL);
524 child_lwp->stopped = 1;
525 child_lwp->must_set_ptrace_flags = 1;
526 child_lwp->status_pending_p = 0;
527 child_thr = get_lwp_thread (child_lwp);
528 child_thr->last_resume_kind = resume_stop;
529 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
530
531 /* If we're suspending all threads, leave this one suspended
532 too. If the fork/clone parent is stepping over a breakpoint,
533 all other threads have been suspended already. Leave the
534 child suspended too. */
535 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
536 || event_lwp->bp_reinsert != 0)
537 {
538 if (debug_threads)
539 debug_printf ("HEW: leaving child suspended\n");
540 child_lwp->suspended = 1;
541 }
542
543 parent_proc = get_thread_process (event_thr);
544 child_proc->attached = parent_proc->attached;
545 clone_all_breakpoints (&child_proc->breakpoints,
546 &child_proc->raw_breakpoints,
547 parent_proc->breakpoints);
548
549 tdesc = XNEW (struct target_desc);
550 copy_target_description (tdesc, parent_proc->tdesc);
551 child_proc->tdesc = tdesc;
552
553 /* Clone arch-specific process data. */
554 if (the_low_target.new_fork != NULL)
555 the_low_target.new_fork (parent_proc, child_proc);
556
557 /* Save fork info in the parent thread. */
558 if (event == PTRACE_EVENT_FORK)
559 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
560 else if (event == PTRACE_EVENT_VFORK)
561 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
562
563 event_lwp->waitstatus.value.related_pid = ptid;
564
565 /* The status_pending field contains bits denoting the
566 extended event, so when the pending event is handled,
567 the handler will look at lwp->waitstatus. */
568 event_lwp->status_pending_p = 1;
569 event_lwp->status_pending = wstat;
570
571 /* Report the event. */
572 return 0;
573 }
574
575 if (debug_threads)
576 debug_printf ("HEW: Got clone event "
577 "from LWP %ld, new child is LWP %ld\n",
578 lwpid_of (event_thr), new_pid);
579
580 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
581 new_lwp = add_lwp (ptid);
582
583 /* Either we're going to immediately resume the new thread
584 or leave it stopped. linux_resume_one_lwp is a nop if it
585 thinks the thread is currently running, so set this first
586 before calling linux_resume_one_lwp. */
587 new_lwp->stopped = 1;
588
589 /* If we're suspending all threads, leave this one suspended
590 too. If the fork/clone parent is stepping over a breakpoint,
591 all other threads have been suspended already. Leave the
592 child suspended too. */
593 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
594 || event_lwp->bp_reinsert != 0)
595 new_lwp->suspended = 1;
596
597 /* Normally we will get the pending SIGSTOP. But in some cases
598 we might get another signal delivered to the group first.
599 If we do get another signal, be sure not to lose it. */
600 if (WSTOPSIG (status) != SIGSTOP)
601 {
602 new_lwp->stop_expected = 1;
603 new_lwp->status_pending_p = 1;
604 new_lwp->status_pending = status;
605 }
606 else if (report_thread_events)
607 {
608 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
609 new_lwp->status_pending_p = 1;
610 new_lwp->status_pending = status;
611 }
612
613 /* Don't report the event. */
614 return 1;
615 }
616 else if (event == PTRACE_EVENT_VFORK_DONE)
617 {
618 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
619
620 /* Report the event. */
621 return 0;
622 }
623 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
624 {
625 struct process_info *proc;
626 VEC (int) *syscalls_to_catch;
627 ptid_t event_ptid;
628 pid_t event_pid;
629
630 if (debug_threads)
631 {
632 debug_printf ("HEW: Got exec event from LWP %ld\n",
633 lwpid_of (event_thr));
634 }
635
636 /* Get the event ptid. */
637 event_ptid = ptid_of (event_thr);
638 event_pid = ptid_get_pid (event_ptid);
639
640 /* Save the syscall list from the execing process. */
641 proc = get_thread_process (event_thr);
642 syscalls_to_catch = proc->syscalls_to_catch;
643 proc->syscalls_to_catch = NULL;
644
645 /* Delete the execing process and all its threads. */
646 linux_mourn (proc);
647 current_thread = NULL;
648
649 /* Create a new process/lwp/thread. */
650 proc = linux_add_process (event_pid, 0);
651 event_lwp = add_lwp (event_ptid);
652 event_thr = get_lwp_thread (event_lwp);
653 gdb_assert (current_thread == event_thr);
654 linux_arch_setup_thread (event_thr);
655
656 /* Set the event status. */
657 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
658 event_lwp->waitstatus.value.execd_pathname
659 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
660
661 /* Mark the exec status as pending. */
662 event_lwp->stopped = 1;
663 event_lwp->status_pending_p = 1;
664 event_lwp->status_pending = wstat;
665 event_thr->last_resume_kind = resume_continue;
666 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
667
668 /* Update syscall state in the new lwp, effectively mid-syscall too. */
669 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
670
671 /* Restore the list to catch. Don't rely on the client, which is free
672 to avoid sending a new list when the architecture doesn't change.
673 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
674 proc->syscalls_to_catch = syscalls_to_catch;
675
676 /* Report the event. */
677 *orig_event_lwp = event_lwp;
678 return 0;
679 }
680
681 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
682 }
683
684 /* Return the PC as read from the regcache of LWP, without any
685 adjustment. */
686
687 static CORE_ADDR
688 get_pc (struct lwp_info *lwp)
689 {
690 struct thread_info *saved_thread;
691 struct regcache *regcache;
692 CORE_ADDR pc;
693
694 if (the_low_target.get_pc == NULL)
695 return 0;
696
697 saved_thread = current_thread;
698 current_thread = get_lwp_thread (lwp);
699
700 regcache = get_thread_regcache (current_thread, 1);
701 pc = (*the_low_target.get_pc) (regcache);
702
703 if (debug_threads)
704 debug_printf ("pc is 0x%lx\n", (long) pc);
705
706 current_thread = saved_thread;
707 return pc;
708 }
709
710 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
711 Fill *SYSNO with the syscall nr trapped. Fill *SYSRET with the
712 return code. */
713
714 static void
715 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno, int *sysret)
716 {
717 struct thread_info *saved_thread;
718 struct regcache *regcache;
719
720 if (the_low_target.get_syscall_trapinfo == NULL)
721 {
722 /* If we cannot get the syscall trapinfo, report an unknown
723 system call number and -ENOSYS return value. */
724 *sysno = UNKNOWN_SYSCALL;
725 *sysret = -ENOSYS;
726 return;
727 }
728
729 saved_thread = current_thread;
730 current_thread = get_lwp_thread (lwp);
731
732 regcache = get_thread_regcache (current_thread, 1);
733 (*the_low_target.get_syscall_trapinfo) (regcache, sysno, sysret);
734
735 if (debug_threads)
736 {
737 debug_printf ("get_syscall_trapinfo sysno %d sysret %d\n",
738 *sysno, *sysret);
739 }
740
741 current_thread = saved_thread;
742 }
743
744 static int check_stopped_by_watchpoint (struct lwp_info *child);
745
746 /* Called when the LWP stopped for a signal/trap. If it stopped for a
747 trap check what caused it (breakpoint, watchpoint, trace, etc.),
748 and save the result in the LWP's stop_reason field. If it stopped
749 for a breakpoint, decrement the PC if necessary on the lwp's
750 architecture. Returns true if we now have the LWP's stop PC. */
751
752 static int
753 save_stop_reason (struct lwp_info *lwp)
754 {
755 CORE_ADDR pc;
756 CORE_ADDR sw_breakpoint_pc;
757 struct thread_info *saved_thread;
758 #if USE_SIGTRAP_SIGINFO
759 siginfo_t siginfo;
760 #endif
761
762 if (the_low_target.get_pc == NULL)
763 return 0;
764
765 pc = get_pc (lwp);
766 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
767
768 /* breakpoint_at reads from the current thread. */
769 saved_thread = current_thread;
770 current_thread = get_lwp_thread (lwp);
771
772 #if USE_SIGTRAP_SIGINFO
773 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
774 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
775 {
776 if (siginfo.si_signo == SIGTRAP)
777 {
778 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
779 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
780 {
781 /* The si_code is ambiguous on this arch -- check debug
782 registers. */
783 if (!check_stopped_by_watchpoint (lwp))
784 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
785 }
786 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
787 {
788 /* If we determine the LWP stopped for a SW breakpoint,
789 trust it. Particularly don't check watchpoint
790 registers, because at least on s390, we'd find
791 stopped-by-watchpoint as long as there's a watchpoint
792 set. */
793 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
794 }
795 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
796 {
797 /* This can indicate either a hardware breakpoint or
798 hardware watchpoint. Check debug registers. */
799 if (!check_stopped_by_watchpoint (lwp))
800 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
801 }
802 else if (siginfo.si_code == TRAP_TRACE)
803 {
804 /* We may have single stepped an instruction that
805 triggered a watchpoint. In that case, on some
806 architectures (such as x86), instead of TRAP_HWBKPT,
807 si_code indicates TRAP_TRACE, and we need to check
808 the debug registers separately. */
809 if (!check_stopped_by_watchpoint (lwp))
810 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
811 }
812 }
813 }
814 #else
815 /* We may have just stepped a breakpoint instruction. E.g., in
816 non-stop mode, GDB first tells the thread A to step a range, and
817 then the user inserts a breakpoint inside the range. In that
818 case we need to report the breakpoint PC. */
819 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
820 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
821 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
822
823 if (hardware_breakpoint_inserted_here (pc))
824 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
825
826 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
827 check_stopped_by_watchpoint (lwp);
828 #endif
829
830 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
831 {
832 if (debug_threads)
833 {
834 struct thread_info *thr = get_lwp_thread (lwp);
835
836 debug_printf ("CSBB: %s stopped by software breakpoint\n",
837 target_pid_to_str (ptid_of (thr)));
838 }
839
840 /* Back up the PC if necessary. */
841 if (pc != sw_breakpoint_pc)
842 {
843 struct regcache *regcache
844 = get_thread_regcache (current_thread, 1);
845 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
846 }
847
848 /* Update this so we record the correct stop PC below. */
849 pc = sw_breakpoint_pc;
850 }
851 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
852 {
853 if (debug_threads)
854 {
855 struct thread_info *thr = get_lwp_thread (lwp);
856
857 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
858 target_pid_to_str (ptid_of (thr)));
859 }
860 }
861 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
862 {
863 if (debug_threads)
864 {
865 struct thread_info *thr = get_lwp_thread (lwp);
866
867 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
868 target_pid_to_str (ptid_of (thr)));
869 }
870 }
871 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
872 {
873 if (debug_threads)
874 {
875 struct thread_info *thr = get_lwp_thread (lwp);
876
877 debug_printf ("CSBB: %s stopped by trace\n",
878 target_pid_to_str (ptid_of (thr)));
879 }
880 }
881
882 lwp->stop_pc = pc;
883 current_thread = saved_thread;
884 return 1;
885 }
886
887 static struct lwp_info *
888 add_lwp (ptid_t ptid)
889 {
890 struct lwp_info *lwp;
891
892 lwp = XCNEW (struct lwp_info);
893
894 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
895
896 if (the_low_target.new_thread != NULL)
897 the_low_target.new_thread (lwp);
898
899 lwp->thread = add_thread (ptid, lwp);
900
901 return lwp;
902 }
903
904 /* Start an inferior process and returns its pid.
905 ALLARGS is a vector of program-name and args. */
906
907 static int
908 linux_create_inferior (char *program, char **allargs)
909 {
910 struct lwp_info *new_lwp;
911 int pid;
912 ptid_t ptid;
913 struct cleanup *restore_personality
914 = maybe_disable_address_space_randomization (disable_randomization);
915
916 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
917 pid = vfork ();
918 #else
919 pid = fork ();
920 #endif
921 if (pid < 0)
922 perror_with_name ("fork");
923
924 if (pid == 0)
925 {
926 close_most_fds ();
927 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
928
929 setpgid (0, 0);
930
931 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
932 stdout to stderr so that inferior i/o doesn't corrupt the connection.
933 Also, redirect stdin to /dev/null. */
934 if (remote_connection_is_stdio ())
935 {
936 close (0);
937 open ("/dev/null", O_RDONLY);
938 dup2 (2, 1);
939 if (write (2, "stdin/stdout redirected\n",
940 sizeof ("stdin/stdout redirected\n") - 1) < 0)
941 {
942 /* Errors ignored. */;
943 }
944 }
945
946 execv (program, allargs);
947 if (errno == ENOENT)
948 execvp (program, allargs);
949
950 fprintf (stderr, "Cannot exec %s: %s.\n", program,
951 strerror (errno));
952 fflush (stderr);
953 _exit (0177);
954 }
955
956 do_cleanups (restore_personality);
957
958 linux_add_process (pid, 0);
959
960 ptid = ptid_build (pid, pid, 0);
961 new_lwp = add_lwp (ptid);
962 new_lwp->must_set_ptrace_flags = 1;
963
964 return pid;
965 }
966
967 /* Implement the post_create_inferior target_ops method. */
968
969 static void
970 linux_post_create_inferior (void)
971 {
972 struct lwp_info *lwp = get_thread_lwp (current_thread);
973
974 linux_arch_setup ();
975
976 if (lwp->must_set_ptrace_flags)
977 {
978 struct process_info *proc = current_process ();
979 int options = linux_low_ptrace_options (proc->attached);
980
981 linux_enable_event_reporting (lwpid_of (current_thread), options);
982 lwp->must_set_ptrace_flags = 0;
983 }
984 }
985
986 /* Attach to an inferior process. Returns 0 on success, ERRNO on
987 error. */
988
989 int
990 linux_attach_lwp (ptid_t ptid)
991 {
992 struct lwp_info *new_lwp;
993 int lwpid = ptid_get_lwp (ptid);
994
995 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
996 != 0)
997 return errno;
998
999 new_lwp = add_lwp (ptid);
1000
1001 /* We need to wait for SIGSTOP before being able to make the next
1002 ptrace call on this LWP. */
1003 new_lwp->must_set_ptrace_flags = 1;
1004
1005 if (linux_proc_pid_is_stopped (lwpid))
1006 {
1007 if (debug_threads)
1008 debug_printf ("Attached to a stopped process\n");
1009
1010 /* The process is definitely stopped. It is in a job control
1011 stop, unless the kernel predates the TASK_STOPPED /
1012 TASK_TRACED distinction, in which case it might be in a
1013 ptrace stop. Make sure it is in a ptrace stop; from there we
1014 can kill it, signal it, et cetera.
1015
1016 First make sure there is a pending SIGSTOP. Since we are
1017 already attached, the process can not transition from stopped
1018 to running without a PTRACE_CONT; so we know this signal will
1019 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1020 probably already in the queue (unless this kernel is old
1021 enough to use TASK_STOPPED for ptrace stops); but since
1022 SIGSTOP is not an RT signal, it can only be queued once. */
1023 kill_lwp (lwpid, SIGSTOP);
1024
1025 /* Finally, resume the stopped process. This will deliver the
1026 SIGSTOP (or a higher priority signal, just like normal
1027 PTRACE_ATTACH), which we'll catch later on. */
1028 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1029 }
1030
1031 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1032 brings it to a halt.
1033
1034 There are several cases to consider here:
1035
1036 1) gdbserver has already attached to the process and is being notified
1037 of a new thread that is being created.
1038 In this case we should ignore that SIGSTOP and resume the
1039 process. This is handled below by setting stop_expected = 1,
1040 and the fact that add_thread sets last_resume_kind ==
1041 resume_continue.
1042
1043 2) This is the first thread (the process thread), and we're attaching
1044 to it via attach_inferior.
1045 In this case we want the process thread to stop.
1046 This is handled by having linux_attach set last_resume_kind ==
1047 resume_stop after we return.
1048
1049 If the pid we are attaching to is also the tgid, we attach to and
1050 stop all the existing threads. Otherwise, we attach to pid and
1051 ignore any other threads in the same group as this pid.
1052
1053 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1054 existing threads.
1055 In this case we want the thread to stop.
1056 FIXME: This case is currently not properly handled.
1057 We should wait for the SIGSTOP but don't. Things work apparently
1058 because enough time passes between when we ptrace (ATTACH) and when
1059 gdb makes the next ptrace call on the thread.
1060
1061 On the other hand, if we are currently trying to stop all threads, we
1062 should treat the new thread as if we had sent it a SIGSTOP. This works
1063 because we are guaranteed that the add_lwp call above added us to the
1064 end of the list, and so the new thread has not yet reached
1065 wait_for_sigstop (but will). */
1066 new_lwp->stop_expected = 1;
1067
1068 return 0;
1069 }
1070
1071 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1072 already attached. Returns true if a new LWP is found, false
1073 otherwise. */
1074
1075 static int
1076 attach_proc_task_lwp_callback (ptid_t ptid)
1077 {
1078 /* Is this a new thread? */
1079 if (find_thread_ptid (ptid) == NULL)
1080 {
1081 int lwpid = ptid_get_lwp (ptid);
1082 int err;
1083
1084 if (debug_threads)
1085 debug_printf ("Found new lwp %d\n", lwpid);
1086
1087 err = linux_attach_lwp (ptid);
1088
1089 /* Be quiet if we simply raced with the thread exiting. EPERM
1090 is returned if the thread's task still exists, and is marked
1091 as exited or zombie, as well as other conditions, so in that
1092 case, confirm the status in /proc/PID/status. */
1093 if (err == ESRCH
1094 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1095 {
1096 if (debug_threads)
1097 {
1098 debug_printf ("Cannot attach to lwp %d: "
1099 "thread is gone (%d: %s)\n",
1100 lwpid, err, strerror (err));
1101 }
1102 }
1103 else if (err != 0)
1104 {
1105 warning (_("Cannot attach to lwp %d: %s"),
1106 lwpid,
1107 linux_ptrace_attach_fail_reason_string (ptid, err));
1108 }
1109
1110 return 1;
1111 }
1112 return 0;
1113 }
1114
1115 static void async_file_mark (void);
1116
1117 /* Attach to PID. If PID is the tgid, attach to it and all
1118 of its threads. */
1119
1120 static int
1121 linux_attach (unsigned long pid)
1122 {
1123 struct process_info *proc;
1124 struct thread_info *initial_thread;
1125 ptid_t ptid = ptid_build (pid, pid, 0);
1126 int err;
1127
1128 /* Attach to PID. We will check for other threads
1129 soon. */
1130 err = linux_attach_lwp (ptid);
1131 if (err != 0)
1132 error ("Cannot attach to process %ld: %s",
1133 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1134
1135 proc = linux_add_process (pid, 1);
1136
1137 /* Don't ignore the initial SIGSTOP if we just attached to this
1138 process. It will be collected by wait shortly. */
1139 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1140 initial_thread->last_resume_kind = resume_stop;
1141
1142 /* We must attach to every LWP. If /proc is mounted, use that to
1143 find them now. On the one hand, the inferior may be using raw
1144 clone instead of using pthreads. On the other hand, even if it
1145 is using pthreads, GDB may not be connected yet (thread_db needs
1146 to do symbol lookups, through qSymbol). Also, thread_db walks
1147 structures in the inferior's address space to find the list of
1148 threads/LWPs, and those structures may well be corrupted. Note
1149 that once thread_db is loaded, we'll still use it to list threads
1150 and associate pthread info with each LWP. */
1151 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1152
1153 /* GDB will shortly read the xml target description for this
1154 process, to figure out the process' architecture. But the target
1155 description is only filled in when the first process/thread in
1156 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1157 that now, otherwise, if GDB is fast enough, it could read the
1158 target description _before_ that initial stop. */
1159 if (non_stop)
1160 {
1161 struct lwp_info *lwp;
1162 int wstat, lwpid;
1163 ptid_t pid_ptid = pid_to_ptid (pid);
1164
1165 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1166 &wstat, __WALL);
1167 gdb_assert (lwpid > 0);
1168
1169 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1170
1171 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1172 {
1173 lwp->status_pending_p = 1;
1174 lwp->status_pending = wstat;
1175 }
1176
1177 initial_thread->last_resume_kind = resume_continue;
1178
1179 async_file_mark ();
1180
1181 gdb_assert (proc->tdesc != NULL);
1182 }
1183
1184 return 0;
1185 }
1186
1187 struct counter
1188 {
1189 int pid;
1190 int count;
1191 };
1192
1193 static int
1194 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1195 {
1196 struct counter *counter = (struct counter *) args;
1197
1198 if (ptid_get_pid (entry->id) == counter->pid)
1199 {
1200 if (++counter->count > 1)
1201 return 1;
1202 }
1203
1204 return 0;
1205 }
1206
1207 static int
1208 last_thread_of_process_p (int pid)
1209 {
1210 struct counter counter = { pid , 0 };
1211
1212 return (find_inferior (&all_threads,
1213 second_thread_of_pid_p, &counter) == NULL);
1214 }
1215
1216 /* Kill LWP. */
1217
1218 static void
1219 linux_kill_one_lwp (struct lwp_info *lwp)
1220 {
1221 struct thread_info *thr = get_lwp_thread (lwp);
1222 int pid = lwpid_of (thr);
1223
1224 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1225 there is no signal context, and ptrace(PTRACE_KILL) (or
1226 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1227 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1228 alternative is to kill with SIGKILL. We only need one SIGKILL
1229 per process, not one for each thread. But since we still support
1230 support debugging programs using raw clone without CLONE_THREAD,
1231 we send one for each thread. For years, we used PTRACE_KILL
1232 only, so we're being a bit paranoid about some old kernels where
1233 PTRACE_KILL might work better (dubious if there are any such, but
1234 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1235 second, and so we're fine everywhere. */
1236
1237 errno = 0;
1238 kill_lwp (pid, SIGKILL);
1239 if (debug_threads)
1240 {
1241 int save_errno = errno;
1242
1243 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1244 target_pid_to_str (ptid_of (thr)),
1245 save_errno ? strerror (save_errno) : "OK");
1246 }
1247
1248 errno = 0;
1249 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1250 if (debug_threads)
1251 {
1252 int save_errno = errno;
1253
1254 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1255 target_pid_to_str (ptid_of (thr)),
1256 save_errno ? strerror (save_errno) : "OK");
1257 }
1258 }
1259
1260 /* Kill LWP and wait for it to die. */
1261
1262 static void
1263 kill_wait_lwp (struct lwp_info *lwp)
1264 {
1265 struct thread_info *thr = get_lwp_thread (lwp);
1266 int pid = ptid_get_pid (ptid_of (thr));
1267 int lwpid = ptid_get_lwp (ptid_of (thr));
1268 int wstat;
1269 int res;
1270
1271 if (debug_threads)
1272 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1273
1274 do
1275 {
1276 linux_kill_one_lwp (lwp);
1277
1278 /* Make sure it died. Notes:
1279
1280 - The loop is most likely unnecessary.
1281
1282 - We don't use linux_wait_for_event as that could delete lwps
1283 while we're iterating over them. We're not interested in
1284 any pending status at this point, only in making sure all
1285 wait status on the kernel side are collected until the
1286 process is reaped.
1287
1288 - We don't use __WALL here as the __WALL emulation relies on
1289 SIGCHLD, and killing a stopped process doesn't generate
1290 one, nor an exit status.
1291 */
1292 res = my_waitpid (lwpid, &wstat, 0);
1293 if (res == -1 && errno == ECHILD)
1294 res = my_waitpid (lwpid, &wstat, __WCLONE);
1295 } while (res > 0 && WIFSTOPPED (wstat));
1296
1297 /* Even if it was stopped, the child may have already disappeared.
1298 E.g., if it was killed by SIGKILL. */
1299 if (res < 0 && errno != ECHILD)
1300 perror_with_name ("kill_wait_lwp");
1301 }
1302
1303 /* Callback for `find_inferior'. Kills an lwp of a given process,
1304 except the leader. */
1305
1306 static int
1307 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1308 {
1309 struct thread_info *thread = (struct thread_info *) entry;
1310 struct lwp_info *lwp = get_thread_lwp (thread);
1311 int pid = * (int *) args;
1312
1313 if (ptid_get_pid (entry->id) != pid)
1314 return 0;
1315
1316 /* We avoid killing the first thread here, because of a Linux kernel (at
1317 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1318 the children get a chance to be reaped, it will remain a zombie
1319 forever. */
1320
1321 if (lwpid_of (thread) == pid)
1322 {
1323 if (debug_threads)
1324 debug_printf ("lkop: is last of process %s\n",
1325 target_pid_to_str (entry->id));
1326 return 0;
1327 }
1328
1329 kill_wait_lwp (lwp);
1330 return 0;
1331 }
1332
1333 static int
1334 linux_kill (int pid)
1335 {
1336 struct process_info *process;
1337 struct lwp_info *lwp;
1338
1339 process = find_process_pid (pid);
1340 if (process == NULL)
1341 return -1;
1342
1343 /* If we're killing a running inferior, make sure it is stopped
1344 first, as PTRACE_KILL will not work otherwise. */
1345 stop_all_lwps (0, NULL);
1346
1347 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1348
1349 /* See the comment in linux_kill_one_lwp. We did not kill the first
1350 thread in the list, so do so now. */
1351 lwp = find_lwp_pid (pid_to_ptid (pid));
1352
1353 if (lwp == NULL)
1354 {
1355 if (debug_threads)
1356 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1357 pid);
1358 }
1359 else
1360 kill_wait_lwp (lwp);
1361
1362 the_target->mourn (process);
1363
1364 /* Since we presently can only stop all lwps of all processes, we
1365 need to unstop lwps of other processes. */
1366 unstop_all_lwps (0, NULL);
1367 return 0;
1368 }
1369
1370 /* Get pending signal of THREAD, for detaching purposes. This is the
1371 signal the thread last stopped for, which we need to deliver to the
1372 thread when detaching, otherwise, it'd be suppressed/lost. */
1373
1374 static int
1375 get_detach_signal (struct thread_info *thread)
1376 {
1377 enum gdb_signal signo = GDB_SIGNAL_0;
1378 int status;
1379 struct lwp_info *lp = get_thread_lwp (thread);
1380
1381 if (lp->status_pending_p)
1382 status = lp->status_pending;
1383 else
1384 {
1385 /* If the thread had been suspended by gdbserver, and it stopped
1386 cleanly, then it'll have stopped with SIGSTOP. But we don't
1387 want to deliver that SIGSTOP. */
1388 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1389 || thread->last_status.value.sig == GDB_SIGNAL_0)
1390 return 0;
1391
1392 /* Otherwise, we may need to deliver the signal we
1393 intercepted. */
1394 status = lp->last_status;
1395 }
1396
1397 if (!WIFSTOPPED (status))
1398 {
1399 if (debug_threads)
1400 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1401 target_pid_to_str (ptid_of (thread)));
1402 return 0;
1403 }
1404
1405 /* Extended wait statuses aren't real SIGTRAPs. */
1406 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1407 {
1408 if (debug_threads)
1409 debug_printf ("GPS: lwp %s had stopped with extended "
1410 "status: no pending signal\n",
1411 target_pid_to_str (ptid_of (thread)));
1412 return 0;
1413 }
1414
1415 signo = gdb_signal_from_host (WSTOPSIG (status));
1416
1417 if (program_signals_p && !program_signals[signo])
1418 {
1419 if (debug_threads)
1420 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1421 target_pid_to_str (ptid_of (thread)),
1422 gdb_signal_to_string (signo));
1423 return 0;
1424 }
1425 else if (!program_signals_p
1426 /* If we have no way to know which signals GDB does not
1427 want to have passed to the program, assume
1428 SIGTRAP/SIGINT, which is GDB's default. */
1429 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1430 {
1431 if (debug_threads)
1432 debug_printf ("GPS: lwp %s had signal %s, "
1433 "but we don't know if we should pass it. "
1434 "Default to not.\n",
1435 target_pid_to_str (ptid_of (thread)),
1436 gdb_signal_to_string (signo));
1437 return 0;
1438 }
1439 else
1440 {
1441 if (debug_threads)
1442 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1443 target_pid_to_str (ptid_of (thread)),
1444 gdb_signal_to_string (signo));
1445
1446 return WSTOPSIG (status);
1447 }
1448 }
1449
1450 static int
1451 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1452 {
1453 struct thread_info *thread = (struct thread_info *) entry;
1454 struct lwp_info *lwp = get_thread_lwp (thread);
1455 int pid = * (int *) args;
1456 int sig;
1457
1458 if (ptid_get_pid (entry->id) != pid)
1459 return 0;
1460
1461 /* If there is a pending SIGSTOP, get rid of it. */
1462 if (lwp->stop_expected)
1463 {
1464 if (debug_threads)
1465 debug_printf ("Sending SIGCONT to %s\n",
1466 target_pid_to_str (ptid_of (thread)));
1467
1468 kill_lwp (lwpid_of (thread), SIGCONT);
1469 lwp->stop_expected = 0;
1470 }
1471
1472 /* Flush any pending changes to the process's registers. */
1473 regcache_invalidate_thread (thread);
1474
1475 /* Pass on any pending signal for this thread. */
1476 sig = get_detach_signal (thread);
1477
1478 /* Finally, let it resume. */
1479 if (the_low_target.prepare_to_resume != NULL)
1480 the_low_target.prepare_to_resume (lwp);
1481 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1482 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1483 error (_("Can't detach %s: %s"),
1484 target_pid_to_str (ptid_of (thread)),
1485 strerror (errno));
1486
1487 delete_lwp (lwp);
1488 return 0;
1489 }
1490
1491 static int
1492 linux_detach (int pid)
1493 {
1494 struct process_info *process;
1495
1496 process = find_process_pid (pid);
1497 if (process == NULL)
1498 return -1;
1499
1500 /* As there's a step over already in progress, let it finish first,
1501 otherwise nesting a stabilize_threads operation on top gets real
1502 messy. */
1503 complete_ongoing_step_over ();
1504
1505 /* Stop all threads before detaching. First, ptrace requires that
1506 the thread is stopped to sucessfully detach. Second, thread_db
1507 may need to uninstall thread event breakpoints from memory, which
1508 only works with a stopped process anyway. */
1509 stop_all_lwps (0, NULL);
1510
1511 #ifdef USE_THREAD_DB
1512 thread_db_detach (process);
1513 #endif
1514
1515 /* Stabilize threads (move out of jump pads). */
1516 stabilize_threads ();
1517
1518 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1519
1520 the_target->mourn (process);
1521
1522 /* Since we presently can only stop all lwps of all processes, we
1523 need to unstop lwps of other processes. */
1524 unstop_all_lwps (0, NULL);
1525 return 0;
1526 }
1527
1528 /* Remove all LWPs that belong to process PROC from the lwp list. */
1529
1530 static int
1531 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1532 {
1533 struct thread_info *thread = (struct thread_info *) entry;
1534 struct lwp_info *lwp = get_thread_lwp (thread);
1535 struct process_info *process = (struct process_info *) proc;
1536
1537 if (pid_of (thread) == pid_of (process))
1538 delete_lwp (lwp);
1539
1540 return 0;
1541 }
1542
1543 static void
1544 linux_mourn (struct process_info *process)
1545 {
1546 struct process_info_private *priv;
1547
1548 #ifdef USE_THREAD_DB
1549 thread_db_mourn (process);
1550 #endif
1551
1552 find_inferior (&all_threads, delete_lwp_callback, process);
1553
1554 /* Freeing all private data. */
1555 priv = process->priv;
1556 free (priv->arch_private);
1557 free (priv);
1558 process->priv = NULL;
1559
1560 remove_process (process);
1561 }
1562
1563 static void
1564 linux_join (int pid)
1565 {
1566 int status, ret;
1567
1568 do {
1569 ret = my_waitpid (pid, &status, 0);
1570 if (WIFEXITED (status) || WIFSIGNALED (status))
1571 break;
1572 } while (ret != -1 || errno != ECHILD);
1573 }
1574
1575 /* Return nonzero if the given thread is still alive. */
1576 static int
1577 linux_thread_alive (ptid_t ptid)
1578 {
1579 struct lwp_info *lwp = find_lwp_pid (ptid);
1580
1581 /* We assume we always know if a thread exits. If a whole process
1582 exited but we still haven't been able to report it to GDB, we'll
1583 hold on to the last lwp of the dead process. */
1584 if (lwp != NULL)
1585 return !lwp_is_marked_dead (lwp);
1586 else
1587 return 0;
1588 }
1589
1590 /* Return 1 if this lwp still has an interesting status pending. If
1591 not (e.g., it had stopped for a breakpoint that is gone), return
1592 false. */
1593
1594 static int
1595 thread_still_has_status_pending_p (struct thread_info *thread)
1596 {
1597 struct lwp_info *lp = get_thread_lwp (thread);
1598
1599 if (!lp->status_pending_p)
1600 return 0;
1601
1602 if (thread->last_resume_kind != resume_stop
1603 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1604 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1605 {
1606 struct thread_info *saved_thread;
1607 CORE_ADDR pc;
1608 int discard = 0;
1609
1610 gdb_assert (lp->last_status != 0);
1611
1612 pc = get_pc (lp);
1613
1614 saved_thread = current_thread;
1615 current_thread = thread;
1616
1617 if (pc != lp->stop_pc)
1618 {
1619 if (debug_threads)
1620 debug_printf ("PC of %ld changed\n",
1621 lwpid_of (thread));
1622 discard = 1;
1623 }
1624
1625 #if !USE_SIGTRAP_SIGINFO
1626 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1627 && !(*the_low_target.breakpoint_at) (pc))
1628 {
1629 if (debug_threads)
1630 debug_printf ("previous SW breakpoint of %ld gone\n",
1631 lwpid_of (thread));
1632 discard = 1;
1633 }
1634 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1635 && !hardware_breakpoint_inserted_here (pc))
1636 {
1637 if (debug_threads)
1638 debug_printf ("previous HW breakpoint of %ld gone\n",
1639 lwpid_of (thread));
1640 discard = 1;
1641 }
1642 #endif
1643
1644 current_thread = saved_thread;
1645
1646 if (discard)
1647 {
1648 if (debug_threads)
1649 debug_printf ("discarding pending breakpoint status\n");
1650 lp->status_pending_p = 0;
1651 return 0;
1652 }
1653 }
1654
1655 return 1;
1656 }
1657
1658 /* Returns true if LWP is resumed from the client's perspective. */
1659
1660 static int
1661 lwp_resumed (struct lwp_info *lwp)
1662 {
1663 struct thread_info *thread = get_lwp_thread (lwp);
1664
1665 if (thread->last_resume_kind != resume_stop)
1666 return 1;
1667
1668 /* Did gdb send us a `vCont;t', but we haven't reported the
1669 corresponding stop to gdb yet? If so, the thread is still
1670 resumed/running from gdb's perspective. */
1671 if (thread->last_resume_kind == resume_stop
1672 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1673 return 1;
1674
1675 return 0;
1676 }
1677
1678 /* Return 1 if this lwp has an interesting status pending. */
1679 static int
1680 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1681 {
1682 struct thread_info *thread = (struct thread_info *) entry;
1683 struct lwp_info *lp = get_thread_lwp (thread);
1684 ptid_t ptid = * (ptid_t *) arg;
1685
1686 /* Check if we're only interested in events from a specific process
1687 or a specific LWP. */
1688 if (!ptid_match (ptid_of (thread), ptid))
1689 return 0;
1690
1691 if (!lwp_resumed (lp))
1692 return 0;
1693
1694 if (lp->status_pending_p
1695 && !thread_still_has_status_pending_p (thread))
1696 {
1697 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1698 return 0;
1699 }
1700
1701 return lp->status_pending_p;
1702 }
1703
1704 static int
1705 same_lwp (struct inferior_list_entry *entry, void *data)
1706 {
1707 ptid_t ptid = *(ptid_t *) data;
1708 int lwp;
1709
1710 if (ptid_get_lwp (ptid) != 0)
1711 lwp = ptid_get_lwp (ptid);
1712 else
1713 lwp = ptid_get_pid (ptid);
1714
1715 if (ptid_get_lwp (entry->id) == lwp)
1716 return 1;
1717
1718 return 0;
1719 }
1720
1721 struct lwp_info *
1722 find_lwp_pid (ptid_t ptid)
1723 {
1724 struct inferior_list_entry *thread
1725 = find_inferior (&all_threads, same_lwp, &ptid);
1726
1727 if (thread == NULL)
1728 return NULL;
1729
1730 return get_thread_lwp ((struct thread_info *) thread);
1731 }
1732
1733 /* Return the number of known LWPs in the tgid given by PID. */
1734
1735 static int
1736 num_lwps (int pid)
1737 {
1738 struct inferior_list_entry *inf, *tmp;
1739 int count = 0;
1740
1741 ALL_INFERIORS (&all_threads, inf, tmp)
1742 {
1743 if (ptid_get_pid (inf->id) == pid)
1744 count++;
1745 }
1746
1747 return count;
1748 }
1749
1750 /* The arguments passed to iterate_over_lwps. */
1751
1752 struct iterate_over_lwps_args
1753 {
1754 /* The FILTER argument passed to iterate_over_lwps. */
1755 ptid_t filter;
1756
1757 /* The CALLBACK argument passed to iterate_over_lwps. */
1758 iterate_over_lwps_ftype *callback;
1759
1760 /* The DATA argument passed to iterate_over_lwps. */
1761 void *data;
1762 };
1763
1764 /* Callback for find_inferior used by iterate_over_lwps to filter
1765 calls to the callback supplied to that function. Returning a
1766 nonzero value causes find_inferiors to stop iterating and return
1767 the current inferior_list_entry. Returning zero indicates that
1768 find_inferiors should continue iterating. */
1769
1770 static int
1771 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1772 {
1773 struct iterate_over_lwps_args *args
1774 = (struct iterate_over_lwps_args *) args_p;
1775
1776 if (ptid_match (entry->id, args->filter))
1777 {
1778 struct thread_info *thr = (struct thread_info *) entry;
1779 struct lwp_info *lwp = get_thread_lwp (thr);
1780
1781 return (*args->callback) (lwp, args->data);
1782 }
1783
1784 return 0;
1785 }
1786
1787 /* See nat/linux-nat.h. */
1788
1789 struct lwp_info *
1790 iterate_over_lwps (ptid_t filter,
1791 iterate_over_lwps_ftype callback,
1792 void *data)
1793 {
1794 struct iterate_over_lwps_args args = {filter, callback, data};
1795 struct inferior_list_entry *entry;
1796
1797 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1798 if (entry == NULL)
1799 return NULL;
1800
1801 return get_thread_lwp ((struct thread_info *) entry);
1802 }
1803
1804 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1805 their exits until all other threads in the group have exited. */
1806
1807 static void
1808 check_zombie_leaders (void)
1809 {
1810 struct process_info *proc, *tmp;
1811
1812 ALL_PROCESSES (proc, tmp)
1813 {
1814 pid_t leader_pid = pid_of (proc);
1815 struct lwp_info *leader_lp;
1816
1817 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1818
1819 if (debug_threads)
1820 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1821 "num_lwps=%d, zombie=%d\n",
1822 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1823 linux_proc_pid_is_zombie (leader_pid));
1824
1825 if (leader_lp != NULL && !leader_lp->stopped
1826 /* Check if there are other threads in the group, as we may
1827 have raced with the inferior simply exiting. */
1828 && !last_thread_of_process_p (leader_pid)
1829 && linux_proc_pid_is_zombie (leader_pid))
1830 {
1831 /* A leader zombie can mean one of two things:
1832
1833 - It exited, and there's an exit status pending
1834 available, or only the leader exited (not the whole
1835 program). In the latter case, we can't waitpid the
1836 leader's exit status until all other threads are gone.
1837
1838 - There are 3 or more threads in the group, and a thread
1839 other than the leader exec'd. On an exec, the Linux
1840 kernel destroys all other threads (except the execing
1841 one) in the thread group, and resets the execing thread's
1842 tid to the tgid. No exit notification is sent for the
1843 execing thread -- from the ptracer's perspective, it
1844 appears as though the execing thread just vanishes.
1845 Until we reap all other threads except the leader and the
1846 execing thread, the leader will be zombie, and the
1847 execing thread will be in `D (disc sleep)'. As soon as
1848 all other threads are reaped, the execing thread changes
1849 it's tid to the tgid, and the previous (zombie) leader
1850 vanishes, giving place to the "new" leader. We could try
1851 distinguishing the exit and exec cases, by waiting once
1852 more, and seeing if something comes out, but it doesn't
1853 sound useful. The previous leader _does_ go away, and
1854 we'll re-add the new one once we see the exec event
1855 (which is just the same as what would happen if the
1856 previous leader did exit voluntarily before some other
1857 thread execs). */
1858
1859 if (debug_threads)
1860 fprintf (stderr,
1861 "CZL: Thread group leader %d zombie "
1862 "(it exited, or another thread execd).\n",
1863 leader_pid);
1864
1865 delete_lwp (leader_lp);
1866 }
1867 }
1868 }
1869
1870 /* Callback for `find_inferior'. Returns the first LWP that is not
1871 stopped. ARG is a PTID filter. */
1872
1873 static int
1874 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1875 {
1876 struct thread_info *thr = (struct thread_info *) entry;
1877 struct lwp_info *lwp;
1878 ptid_t filter = *(ptid_t *) arg;
1879
1880 if (!ptid_match (ptid_of (thr), filter))
1881 return 0;
1882
1883 lwp = get_thread_lwp (thr);
1884 if (!lwp->stopped)
1885 return 1;
1886
1887 return 0;
1888 }
1889
1890 /* Increment LWP's suspend count. */
1891
1892 static void
1893 lwp_suspended_inc (struct lwp_info *lwp)
1894 {
1895 lwp->suspended++;
1896
1897 if (debug_threads && lwp->suspended > 4)
1898 {
1899 struct thread_info *thread = get_lwp_thread (lwp);
1900
1901 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1902 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1903 }
1904 }
1905
1906 /* Decrement LWP's suspend count. */
1907
1908 static void
1909 lwp_suspended_decr (struct lwp_info *lwp)
1910 {
1911 lwp->suspended--;
1912
1913 if (lwp->suspended < 0)
1914 {
1915 struct thread_info *thread = get_lwp_thread (lwp);
1916
1917 internal_error (__FILE__, __LINE__,
1918 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1919 lwp->suspended);
1920 }
1921 }
1922
1923 /* This function should only be called if the LWP got a SIGTRAP.
1924
1925 Handle any tracepoint steps or hits. Return true if a tracepoint
1926 event was handled, 0 otherwise. */
1927
1928 static int
1929 handle_tracepoints (struct lwp_info *lwp)
1930 {
1931 struct thread_info *tinfo = get_lwp_thread (lwp);
1932 int tpoint_related_event = 0;
1933
1934 gdb_assert (lwp->suspended == 0);
1935
1936 /* If this tracepoint hit causes a tracing stop, we'll immediately
1937 uninsert tracepoints. To do this, we temporarily pause all
1938 threads, unpatch away, and then unpause threads. We need to make
1939 sure the unpausing doesn't resume LWP too. */
1940 lwp_suspended_inc (lwp);
1941
1942 /* And we need to be sure that any all-threads-stopping doesn't try
1943 to move threads out of the jump pads, as it could deadlock the
1944 inferior (LWP could be in the jump pad, maybe even holding the
1945 lock.) */
1946
1947 /* Do any necessary step collect actions. */
1948 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1949
1950 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1951
1952 /* See if we just hit a tracepoint and do its main collect
1953 actions. */
1954 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1955
1956 lwp_suspended_decr (lwp);
1957
1958 gdb_assert (lwp->suspended == 0);
1959 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1960
1961 if (tpoint_related_event)
1962 {
1963 if (debug_threads)
1964 debug_printf ("got a tracepoint event\n");
1965 return 1;
1966 }
1967
1968 return 0;
1969 }
1970
1971 /* Convenience wrapper. Returns true if LWP is presently collecting a
1972 fast tracepoint. */
1973
1974 static int
1975 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1976 struct fast_tpoint_collect_status *status)
1977 {
1978 CORE_ADDR thread_area;
1979 struct thread_info *thread = get_lwp_thread (lwp);
1980
1981 if (the_low_target.get_thread_area == NULL)
1982 return 0;
1983
1984 /* Get the thread area address. This is used to recognize which
1985 thread is which when tracing with the in-process agent library.
1986 We don't read anything from the address, and treat it as opaque;
1987 it's the address itself that we assume is unique per-thread. */
1988 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1989 return 0;
1990
1991 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1992 }
1993
1994 /* The reason we resume in the caller, is because we want to be able
1995 to pass lwp->status_pending as WSTAT, and we need to clear
1996 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1997 refuses to resume. */
1998
1999 static int
2000 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2001 {
2002 struct thread_info *saved_thread;
2003
2004 saved_thread = current_thread;
2005 current_thread = get_lwp_thread (lwp);
2006
2007 if ((wstat == NULL
2008 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2009 && supports_fast_tracepoints ()
2010 && agent_loaded_p ())
2011 {
2012 struct fast_tpoint_collect_status status;
2013 int r;
2014
2015 if (debug_threads)
2016 debug_printf ("Checking whether LWP %ld needs to move out of the "
2017 "jump pad.\n",
2018 lwpid_of (current_thread));
2019
2020 r = linux_fast_tracepoint_collecting (lwp, &status);
2021
2022 if (wstat == NULL
2023 || (WSTOPSIG (*wstat) != SIGILL
2024 && WSTOPSIG (*wstat) != SIGFPE
2025 && WSTOPSIG (*wstat) != SIGSEGV
2026 && WSTOPSIG (*wstat) != SIGBUS))
2027 {
2028 lwp->collecting_fast_tracepoint = r;
2029
2030 if (r != 0)
2031 {
2032 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
2033 {
2034 /* Haven't executed the original instruction yet.
2035 Set breakpoint there, and wait till it's hit,
2036 then single-step until exiting the jump pad. */
2037 lwp->exit_jump_pad_bkpt
2038 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2039 }
2040
2041 if (debug_threads)
2042 debug_printf ("Checking whether LWP %ld needs to move out of "
2043 "the jump pad...it does\n",
2044 lwpid_of (current_thread));
2045 current_thread = saved_thread;
2046
2047 return 1;
2048 }
2049 }
2050 else
2051 {
2052 /* If we get a synchronous signal while collecting, *and*
2053 while executing the (relocated) original instruction,
2054 reset the PC to point at the tpoint address, before
2055 reporting to GDB. Otherwise, it's an IPA lib bug: just
2056 report the signal to GDB, and pray for the best. */
2057
2058 lwp->collecting_fast_tracepoint = 0;
2059
2060 if (r != 0
2061 && (status.adjusted_insn_addr <= lwp->stop_pc
2062 && lwp->stop_pc < status.adjusted_insn_addr_end))
2063 {
2064 siginfo_t info;
2065 struct regcache *regcache;
2066
2067 /* The si_addr on a few signals references the address
2068 of the faulting instruction. Adjust that as
2069 well. */
2070 if ((WSTOPSIG (*wstat) == SIGILL
2071 || WSTOPSIG (*wstat) == SIGFPE
2072 || WSTOPSIG (*wstat) == SIGBUS
2073 || WSTOPSIG (*wstat) == SIGSEGV)
2074 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2075 (PTRACE_TYPE_ARG3) 0, &info) == 0
2076 /* Final check just to make sure we don't clobber
2077 the siginfo of non-kernel-sent signals. */
2078 && (uintptr_t) info.si_addr == lwp->stop_pc)
2079 {
2080 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2081 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2082 (PTRACE_TYPE_ARG3) 0, &info);
2083 }
2084
2085 regcache = get_thread_regcache (current_thread, 1);
2086 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2087 lwp->stop_pc = status.tpoint_addr;
2088
2089 /* Cancel any fast tracepoint lock this thread was
2090 holding. */
2091 force_unlock_trace_buffer ();
2092 }
2093
2094 if (lwp->exit_jump_pad_bkpt != NULL)
2095 {
2096 if (debug_threads)
2097 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2098 "stopping all threads momentarily.\n");
2099
2100 stop_all_lwps (1, lwp);
2101
2102 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2103 lwp->exit_jump_pad_bkpt = NULL;
2104
2105 unstop_all_lwps (1, lwp);
2106
2107 gdb_assert (lwp->suspended >= 0);
2108 }
2109 }
2110 }
2111
2112 if (debug_threads)
2113 debug_printf ("Checking whether LWP %ld needs to move out of the "
2114 "jump pad...no\n",
2115 lwpid_of (current_thread));
2116
2117 current_thread = saved_thread;
2118 return 0;
2119 }
2120
2121 /* Enqueue one signal in the "signals to report later when out of the
2122 jump pad" list. */
2123
2124 static void
2125 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2126 {
2127 struct pending_signals *p_sig;
2128 struct thread_info *thread = get_lwp_thread (lwp);
2129
2130 if (debug_threads)
2131 debug_printf ("Deferring signal %d for LWP %ld.\n",
2132 WSTOPSIG (*wstat), lwpid_of (thread));
2133
2134 if (debug_threads)
2135 {
2136 struct pending_signals *sig;
2137
2138 for (sig = lwp->pending_signals_to_report;
2139 sig != NULL;
2140 sig = sig->prev)
2141 debug_printf (" Already queued %d\n",
2142 sig->signal);
2143
2144 debug_printf (" (no more currently queued signals)\n");
2145 }
2146
2147 /* Don't enqueue non-RT signals if they are already in the deferred
2148 queue. (SIGSTOP being the easiest signal to see ending up here
2149 twice) */
2150 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2151 {
2152 struct pending_signals *sig;
2153
2154 for (sig = lwp->pending_signals_to_report;
2155 sig != NULL;
2156 sig = sig->prev)
2157 {
2158 if (sig->signal == WSTOPSIG (*wstat))
2159 {
2160 if (debug_threads)
2161 debug_printf ("Not requeuing already queued non-RT signal %d"
2162 " for LWP %ld\n",
2163 sig->signal,
2164 lwpid_of (thread));
2165 return;
2166 }
2167 }
2168 }
2169
2170 p_sig = XCNEW (struct pending_signals);
2171 p_sig->prev = lwp->pending_signals_to_report;
2172 p_sig->signal = WSTOPSIG (*wstat);
2173
2174 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2175 &p_sig->info);
2176
2177 lwp->pending_signals_to_report = p_sig;
2178 }
2179
2180 /* Dequeue one signal from the "signals to report later when out of
2181 the jump pad" list. */
2182
2183 static int
2184 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2185 {
2186 struct thread_info *thread = get_lwp_thread (lwp);
2187
2188 if (lwp->pending_signals_to_report != NULL)
2189 {
2190 struct pending_signals **p_sig;
2191
2192 p_sig = &lwp->pending_signals_to_report;
2193 while ((*p_sig)->prev != NULL)
2194 p_sig = &(*p_sig)->prev;
2195
2196 *wstat = W_STOPCODE ((*p_sig)->signal);
2197 if ((*p_sig)->info.si_signo != 0)
2198 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2199 &(*p_sig)->info);
2200 free (*p_sig);
2201 *p_sig = NULL;
2202
2203 if (debug_threads)
2204 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2205 WSTOPSIG (*wstat), lwpid_of (thread));
2206
2207 if (debug_threads)
2208 {
2209 struct pending_signals *sig;
2210
2211 for (sig = lwp->pending_signals_to_report;
2212 sig != NULL;
2213 sig = sig->prev)
2214 debug_printf (" Still queued %d\n",
2215 sig->signal);
2216
2217 debug_printf (" (no more queued signals)\n");
2218 }
2219
2220 return 1;
2221 }
2222
2223 return 0;
2224 }
2225
2226 /* Fetch the possibly triggered data watchpoint info and store it in
2227 CHILD.
2228
2229 On some archs, like x86, that use debug registers to set
2230 watchpoints, it's possible that the way to know which watched
2231 address trapped, is to check the register that is used to select
2232 which address to watch. Problem is, between setting the watchpoint
2233 and reading back which data address trapped, the user may change
2234 the set of watchpoints, and, as a consequence, GDB changes the
2235 debug registers in the inferior. To avoid reading back a stale
2236 stopped-data-address when that happens, we cache in LP the fact
2237 that a watchpoint trapped, and the corresponding data address, as
2238 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2239 registers meanwhile, we have the cached data we can rely on. */
2240
2241 static int
2242 check_stopped_by_watchpoint (struct lwp_info *child)
2243 {
2244 if (the_low_target.stopped_by_watchpoint != NULL)
2245 {
2246 struct thread_info *saved_thread;
2247
2248 saved_thread = current_thread;
2249 current_thread = get_lwp_thread (child);
2250
2251 if (the_low_target.stopped_by_watchpoint ())
2252 {
2253 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2254
2255 if (the_low_target.stopped_data_address != NULL)
2256 child->stopped_data_address
2257 = the_low_target.stopped_data_address ();
2258 else
2259 child->stopped_data_address = 0;
2260 }
2261
2262 current_thread = saved_thread;
2263 }
2264
2265 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2266 }
2267
2268 /* Return the ptrace options that we want to try to enable. */
2269
2270 static int
2271 linux_low_ptrace_options (int attached)
2272 {
2273 int options = 0;
2274
2275 if (!attached)
2276 options |= PTRACE_O_EXITKILL;
2277
2278 if (report_fork_events)
2279 options |= PTRACE_O_TRACEFORK;
2280
2281 if (report_vfork_events)
2282 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2283
2284 if (report_exec_events)
2285 options |= PTRACE_O_TRACEEXEC;
2286
2287 options |= PTRACE_O_TRACESYSGOOD;
2288
2289 return options;
2290 }
2291
2292 /* Do low-level handling of the event, and check if we should go on
2293 and pass it to caller code. Return the affected lwp if we are, or
2294 NULL otherwise. */
2295
2296 static struct lwp_info *
2297 linux_low_filter_event (int lwpid, int wstat)
2298 {
2299 struct lwp_info *child;
2300 struct thread_info *thread;
2301 int have_stop_pc = 0;
2302
2303 child = find_lwp_pid (pid_to_ptid (lwpid));
2304
2305 /* Check for stop events reported by a process we didn't already
2306 know about - anything not already in our LWP list.
2307
2308 If we're expecting to receive stopped processes after
2309 fork, vfork, and clone events, then we'll just add the
2310 new one to our list and go back to waiting for the event
2311 to be reported - the stopped process might be returned
2312 from waitpid before or after the event is.
2313
2314 But note the case of a non-leader thread exec'ing after the
2315 leader having exited, and gone from our lists (because
2316 check_zombie_leaders deleted it). The non-leader thread
2317 changes its tid to the tgid. */
2318
2319 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2320 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2321 {
2322 ptid_t child_ptid;
2323
2324 /* A multi-thread exec after we had seen the leader exiting. */
2325 if (debug_threads)
2326 {
2327 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2328 "after exec.\n", lwpid);
2329 }
2330
2331 child_ptid = ptid_build (lwpid, lwpid, 0);
2332 child = add_lwp (child_ptid);
2333 child->stopped = 1;
2334 current_thread = child->thread;
2335 }
2336
2337 /* If we didn't find a process, one of two things presumably happened:
2338 - A process we started and then detached from has exited. Ignore it.
2339 - A process we are controlling has forked and the new child's stop
2340 was reported to us by the kernel. Save its PID. */
2341 if (child == NULL && WIFSTOPPED (wstat))
2342 {
2343 add_to_pid_list (&stopped_pids, lwpid, wstat);
2344 return NULL;
2345 }
2346 else if (child == NULL)
2347 return NULL;
2348
2349 thread = get_lwp_thread (child);
2350
2351 child->stopped = 1;
2352
2353 child->last_status = wstat;
2354
2355 /* Check if the thread has exited. */
2356 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2357 {
2358 if (debug_threads)
2359 debug_printf ("LLFE: %d exited.\n", lwpid);
2360 /* If there is at least one more LWP, then the exit signal was
2361 not the end of the debugged application and should be
2362 ignored, unless GDB wants to hear about thread exits. */
2363 if (report_thread_events
2364 || last_thread_of_process_p (pid_of (thread)))
2365 {
2366 /* Since events are serialized to GDB core, and we can't
2367 report this one right now. Leave the status pending for
2368 the next time we're able to report it. */
2369 mark_lwp_dead (child, wstat);
2370 return child;
2371 }
2372 else
2373 {
2374 delete_lwp (child);
2375 return NULL;
2376 }
2377 }
2378
2379 gdb_assert (WIFSTOPPED (wstat));
2380
2381 if (WIFSTOPPED (wstat))
2382 {
2383 struct process_info *proc;
2384
2385 /* Architecture-specific setup after inferior is running. */
2386 proc = find_process_pid (pid_of (thread));
2387 if (proc->tdesc == NULL)
2388 {
2389 if (proc->attached)
2390 {
2391 /* This needs to happen after we have attached to the
2392 inferior and it is stopped for the first time, but
2393 before we access any inferior registers. */
2394 linux_arch_setup_thread (thread);
2395 }
2396 else
2397 {
2398 /* The process is started, but GDBserver will do
2399 architecture-specific setup after the program stops at
2400 the first instruction. */
2401 child->status_pending_p = 1;
2402 child->status_pending = wstat;
2403 return child;
2404 }
2405 }
2406 }
2407
2408 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2409 {
2410 struct process_info *proc = find_process_pid (pid_of (thread));
2411 int options = linux_low_ptrace_options (proc->attached);
2412
2413 linux_enable_event_reporting (lwpid, options);
2414 child->must_set_ptrace_flags = 0;
2415 }
2416
2417 /* Always update syscall_state, even if it will be filtered later. */
2418 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2419 {
2420 child->syscall_state
2421 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2422 ? TARGET_WAITKIND_SYSCALL_RETURN
2423 : TARGET_WAITKIND_SYSCALL_ENTRY);
2424 }
2425 else
2426 {
2427 /* Almost all other ptrace-stops are known to be outside of system
2428 calls, with further exceptions in handle_extended_wait. */
2429 child->syscall_state = TARGET_WAITKIND_IGNORE;
2430 }
2431
2432 /* Be careful to not overwrite stop_pc until save_stop_reason is
2433 called. */
2434 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2435 && linux_is_extended_waitstatus (wstat))
2436 {
2437 child->stop_pc = get_pc (child);
2438 if (handle_extended_wait (&child, wstat))
2439 {
2440 /* The event has been handled, so just return without
2441 reporting it. */
2442 return NULL;
2443 }
2444 }
2445
2446 if (linux_wstatus_maybe_breakpoint (wstat))
2447 {
2448 if (save_stop_reason (child))
2449 have_stop_pc = 1;
2450 }
2451
2452 if (!have_stop_pc)
2453 child->stop_pc = get_pc (child);
2454
2455 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2456 && child->stop_expected)
2457 {
2458 if (debug_threads)
2459 debug_printf ("Expected stop.\n");
2460 child->stop_expected = 0;
2461
2462 if (thread->last_resume_kind == resume_stop)
2463 {
2464 /* We want to report the stop to the core. Treat the
2465 SIGSTOP as a normal event. */
2466 if (debug_threads)
2467 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2468 target_pid_to_str (ptid_of (thread)));
2469 }
2470 else if (stopping_threads != NOT_STOPPING_THREADS)
2471 {
2472 /* Stopping threads. We don't want this SIGSTOP to end up
2473 pending. */
2474 if (debug_threads)
2475 debug_printf ("LLW: SIGSTOP caught for %s "
2476 "while stopping threads.\n",
2477 target_pid_to_str (ptid_of (thread)));
2478 return NULL;
2479 }
2480 else
2481 {
2482 /* This is a delayed SIGSTOP. Filter out the event. */
2483 if (debug_threads)
2484 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2485 child->stepping ? "step" : "continue",
2486 target_pid_to_str (ptid_of (thread)));
2487
2488 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2489 return NULL;
2490 }
2491 }
2492
2493 child->status_pending_p = 1;
2494 child->status_pending = wstat;
2495 return child;
2496 }
2497
2498 /* Return true if THREAD is doing hardware single step. */
2499
2500 static int
2501 maybe_hw_step (struct thread_info *thread)
2502 {
2503 if (can_hardware_single_step ())
2504 return 1;
2505 else
2506 {
2507 struct process_info *proc = get_thread_process (thread);
2508
2509 /* GDBserver must insert reinsert breakpoint for software
2510 single step. */
2511 gdb_assert (has_reinsert_breakpoints (proc));
2512 return 0;
2513 }
2514 }
2515
2516 /* Resume LWPs that are currently stopped without any pending status
2517 to report, but are resumed from the core's perspective. */
2518
2519 static void
2520 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2521 {
2522 struct thread_info *thread = (struct thread_info *) entry;
2523 struct lwp_info *lp = get_thread_lwp (thread);
2524
2525 if (lp->stopped
2526 && !lp->suspended
2527 && !lp->status_pending_p
2528 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2529 {
2530 int step = thread->last_resume_kind == resume_step;
2531
2532 if (debug_threads)
2533 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2534 target_pid_to_str (ptid_of (thread)),
2535 paddress (lp->stop_pc),
2536 step);
2537
2538 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2539 }
2540 }
2541
2542 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2543 match FILTER_PTID (leaving others pending). The PTIDs can be:
2544 minus_one_ptid, to specify any child; a pid PTID, specifying all
2545 lwps of a thread group; or a PTID representing a single lwp. Store
2546 the stop status through the status pointer WSTAT. OPTIONS is
2547 passed to the waitpid call. Return 0 if no event was found and
2548 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2549 was found. Return the PID of the stopped child otherwise. */
2550
2551 static int
2552 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2553 int *wstatp, int options)
2554 {
2555 struct thread_info *event_thread;
2556 struct lwp_info *event_child, *requested_child;
2557 sigset_t block_mask, prev_mask;
2558
2559 retry:
2560 /* N.B. event_thread points to the thread_info struct that contains
2561 event_child. Keep them in sync. */
2562 event_thread = NULL;
2563 event_child = NULL;
2564 requested_child = NULL;
2565
2566 /* Check for a lwp with a pending status. */
2567
2568 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2569 {
2570 event_thread = (struct thread_info *)
2571 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2572 if (event_thread != NULL)
2573 event_child = get_thread_lwp (event_thread);
2574 if (debug_threads && event_thread)
2575 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2576 }
2577 else if (!ptid_equal (filter_ptid, null_ptid))
2578 {
2579 requested_child = find_lwp_pid (filter_ptid);
2580
2581 if (stopping_threads == NOT_STOPPING_THREADS
2582 && requested_child->status_pending_p
2583 && requested_child->collecting_fast_tracepoint)
2584 {
2585 enqueue_one_deferred_signal (requested_child,
2586 &requested_child->status_pending);
2587 requested_child->status_pending_p = 0;
2588 requested_child->status_pending = 0;
2589 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2590 }
2591
2592 if (requested_child->suspended
2593 && requested_child->status_pending_p)
2594 {
2595 internal_error (__FILE__, __LINE__,
2596 "requesting an event out of a"
2597 " suspended child?");
2598 }
2599
2600 if (requested_child->status_pending_p)
2601 {
2602 event_child = requested_child;
2603 event_thread = get_lwp_thread (event_child);
2604 }
2605 }
2606
2607 if (event_child != NULL)
2608 {
2609 if (debug_threads)
2610 debug_printf ("Got an event from pending child %ld (%04x)\n",
2611 lwpid_of (event_thread), event_child->status_pending);
2612 *wstatp = event_child->status_pending;
2613 event_child->status_pending_p = 0;
2614 event_child->status_pending = 0;
2615 current_thread = event_thread;
2616 return lwpid_of (event_thread);
2617 }
2618
2619 /* But if we don't find a pending event, we'll have to wait.
2620
2621 We only enter this loop if no process has a pending wait status.
2622 Thus any action taken in response to a wait status inside this
2623 loop is responding as soon as we detect the status, not after any
2624 pending events. */
2625
2626 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2627 all signals while here. */
2628 sigfillset (&block_mask);
2629 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2630
2631 /* Always pull all events out of the kernel. We'll randomly select
2632 an event LWP out of all that have events, to prevent
2633 starvation. */
2634 while (event_child == NULL)
2635 {
2636 pid_t ret = 0;
2637
2638 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2639 quirks:
2640
2641 - If the thread group leader exits while other threads in the
2642 thread group still exist, waitpid(TGID, ...) hangs. That
2643 waitpid won't return an exit status until the other threads
2644 in the group are reaped.
2645
2646 - When a non-leader thread execs, that thread just vanishes
2647 without reporting an exit (so we'd hang if we waited for it
2648 explicitly in that case). The exec event is reported to
2649 the TGID pid. */
2650 errno = 0;
2651 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2652
2653 if (debug_threads)
2654 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2655 ret, errno ? strerror (errno) : "ERRNO-OK");
2656
2657 if (ret > 0)
2658 {
2659 if (debug_threads)
2660 {
2661 debug_printf ("LLW: waitpid %ld received %s\n",
2662 (long) ret, status_to_str (*wstatp));
2663 }
2664
2665 /* Filter all events. IOW, leave all events pending. We'll
2666 randomly select an event LWP out of all that have events
2667 below. */
2668 linux_low_filter_event (ret, *wstatp);
2669 /* Retry until nothing comes out of waitpid. A single
2670 SIGCHLD can indicate more than one child stopped. */
2671 continue;
2672 }
2673
2674 /* Now that we've pulled all events out of the kernel, resume
2675 LWPs that don't have an interesting event to report. */
2676 if (stopping_threads == NOT_STOPPING_THREADS)
2677 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2678
2679 /* ... and find an LWP with a status to report to the core, if
2680 any. */
2681 event_thread = (struct thread_info *)
2682 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2683 if (event_thread != NULL)
2684 {
2685 event_child = get_thread_lwp (event_thread);
2686 *wstatp = event_child->status_pending;
2687 event_child->status_pending_p = 0;
2688 event_child->status_pending = 0;
2689 break;
2690 }
2691
2692 /* Check for zombie thread group leaders. Those can't be reaped
2693 until all other threads in the thread group are. */
2694 check_zombie_leaders ();
2695
2696 /* If there are no resumed children left in the set of LWPs we
2697 want to wait for, bail. We can't just block in
2698 waitpid/sigsuspend, because lwps might have been left stopped
2699 in trace-stop state, and we'd be stuck forever waiting for
2700 their status to change (which would only happen if we resumed
2701 them). Even if WNOHANG is set, this return code is preferred
2702 over 0 (below), as it is more detailed. */
2703 if ((find_inferior (&all_threads,
2704 not_stopped_callback,
2705 &wait_ptid) == NULL))
2706 {
2707 if (debug_threads)
2708 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2709 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2710 return -1;
2711 }
2712
2713 /* No interesting event to report to the caller. */
2714 if ((options & WNOHANG))
2715 {
2716 if (debug_threads)
2717 debug_printf ("WNOHANG set, no event found\n");
2718
2719 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2720 return 0;
2721 }
2722
2723 /* Block until we get an event reported with SIGCHLD. */
2724 if (debug_threads)
2725 debug_printf ("sigsuspend'ing\n");
2726
2727 sigsuspend (&prev_mask);
2728 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2729 goto retry;
2730 }
2731
2732 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2733
2734 current_thread = event_thread;
2735
2736 return lwpid_of (event_thread);
2737 }
2738
2739 /* Wait for an event from child(ren) PTID. PTIDs can be:
2740 minus_one_ptid, to specify any child; a pid PTID, specifying all
2741 lwps of a thread group; or a PTID representing a single lwp. Store
2742 the stop status through the status pointer WSTAT. OPTIONS is
2743 passed to the waitpid call. Return 0 if no event was found and
2744 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2745 was found. Return the PID of the stopped child otherwise. */
2746
2747 static int
2748 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2749 {
2750 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2751 }
2752
2753 /* Count the LWP's that have had events. */
2754
2755 static int
2756 count_events_callback (struct inferior_list_entry *entry, void *data)
2757 {
2758 struct thread_info *thread = (struct thread_info *) entry;
2759 struct lwp_info *lp = get_thread_lwp (thread);
2760 int *count = (int *) data;
2761
2762 gdb_assert (count != NULL);
2763
2764 /* Count only resumed LWPs that have an event pending. */
2765 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2766 && lp->status_pending_p)
2767 (*count)++;
2768
2769 return 0;
2770 }
2771
2772 /* Select the LWP (if any) that is currently being single-stepped. */
2773
2774 static int
2775 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2776 {
2777 struct thread_info *thread = (struct thread_info *) entry;
2778 struct lwp_info *lp = get_thread_lwp (thread);
2779
2780 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2781 && thread->last_resume_kind == resume_step
2782 && lp->status_pending_p)
2783 return 1;
2784 else
2785 return 0;
2786 }
2787
2788 /* Select the Nth LWP that has had an event. */
2789
2790 static int
2791 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2792 {
2793 struct thread_info *thread = (struct thread_info *) entry;
2794 struct lwp_info *lp = get_thread_lwp (thread);
2795 int *selector = (int *) data;
2796
2797 gdb_assert (selector != NULL);
2798
2799 /* Select only resumed LWPs that have an event pending. */
2800 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2801 && lp->status_pending_p)
2802 if ((*selector)-- == 0)
2803 return 1;
2804
2805 return 0;
2806 }
2807
2808 /* Select one LWP out of those that have events pending. */
2809
2810 static void
2811 select_event_lwp (struct lwp_info **orig_lp)
2812 {
2813 int num_events = 0;
2814 int random_selector;
2815 struct thread_info *event_thread = NULL;
2816
2817 /* In all-stop, give preference to the LWP that is being
2818 single-stepped. There will be at most one, and it's the LWP that
2819 the core is most interested in. If we didn't do this, then we'd
2820 have to handle pending step SIGTRAPs somehow in case the core
2821 later continues the previously-stepped thread, otherwise we'd
2822 report the pending SIGTRAP, and the core, not having stepped the
2823 thread, wouldn't understand what the trap was for, and therefore
2824 would report it to the user as a random signal. */
2825 if (!non_stop)
2826 {
2827 event_thread
2828 = (struct thread_info *) find_inferior (&all_threads,
2829 select_singlestep_lwp_callback,
2830 NULL);
2831 if (event_thread != NULL)
2832 {
2833 if (debug_threads)
2834 debug_printf ("SEL: Select single-step %s\n",
2835 target_pid_to_str (ptid_of (event_thread)));
2836 }
2837 }
2838 if (event_thread == NULL)
2839 {
2840 /* No single-stepping LWP. Select one at random, out of those
2841 which have had events. */
2842
2843 /* First see how many events we have. */
2844 find_inferior (&all_threads, count_events_callback, &num_events);
2845 gdb_assert (num_events > 0);
2846
2847 /* Now randomly pick a LWP out of those that have had
2848 events. */
2849 random_selector = (int)
2850 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2851
2852 if (debug_threads && num_events > 1)
2853 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2854 num_events, random_selector);
2855
2856 event_thread
2857 = (struct thread_info *) find_inferior (&all_threads,
2858 select_event_lwp_callback,
2859 &random_selector);
2860 }
2861
2862 if (event_thread != NULL)
2863 {
2864 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2865
2866 /* Switch the event LWP. */
2867 *orig_lp = event_lp;
2868 }
2869 }
2870
2871 /* Decrement the suspend count of an LWP. */
2872
2873 static int
2874 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2875 {
2876 struct thread_info *thread = (struct thread_info *) entry;
2877 struct lwp_info *lwp = get_thread_lwp (thread);
2878
2879 /* Ignore EXCEPT. */
2880 if (lwp == except)
2881 return 0;
2882
2883 lwp_suspended_decr (lwp);
2884 return 0;
2885 }
2886
2887 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2888 NULL. */
2889
2890 static void
2891 unsuspend_all_lwps (struct lwp_info *except)
2892 {
2893 find_inferior (&all_threads, unsuspend_one_lwp, except);
2894 }
2895
2896 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2897 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2898 void *data);
2899 static int lwp_running (struct inferior_list_entry *entry, void *data);
2900 static ptid_t linux_wait_1 (ptid_t ptid,
2901 struct target_waitstatus *ourstatus,
2902 int target_options);
2903
2904 /* Stabilize threads (move out of jump pads).
2905
2906 If a thread is midway collecting a fast tracepoint, we need to
2907 finish the collection and move it out of the jump pad before
2908 reporting the signal.
2909
2910 This avoids recursion while collecting (when a signal arrives
2911 midway, and the signal handler itself collects), which would trash
2912 the trace buffer. In case the user set a breakpoint in a signal
2913 handler, this avoids the backtrace showing the jump pad, etc..
2914 Most importantly, there are certain things we can't do safely if
2915 threads are stopped in a jump pad (or in its callee's). For
2916 example:
2917
2918 - starting a new trace run. A thread still collecting the
2919 previous run, could trash the trace buffer when resumed. The trace
2920 buffer control structures would have been reset but the thread had
2921 no way to tell. The thread could even midway memcpy'ing to the
2922 buffer, which would mean that when resumed, it would clobber the
2923 trace buffer that had been set for a new run.
2924
2925 - we can't rewrite/reuse the jump pads for new tracepoints
2926 safely. Say you do tstart while a thread is stopped midway while
2927 collecting. When the thread is later resumed, it finishes the
2928 collection, and returns to the jump pad, to execute the original
2929 instruction that was under the tracepoint jump at the time the
2930 older run had been started. If the jump pad had been rewritten
2931 since for something else in the new run, the thread would now
2932 execute the wrong / random instructions. */
2933
2934 static void
2935 linux_stabilize_threads (void)
2936 {
2937 struct thread_info *saved_thread;
2938 struct thread_info *thread_stuck;
2939
2940 thread_stuck
2941 = (struct thread_info *) find_inferior (&all_threads,
2942 stuck_in_jump_pad_callback,
2943 NULL);
2944 if (thread_stuck != NULL)
2945 {
2946 if (debug_threads)
2947 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2948 lwpid_of (thread_stuck));
2949 return;
2950 }
2951
2952 saved_thread = current_thread;
2953
2954 stabilizing_threads = 1;
2955
2956 /* Kick 'em all. */
2957 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2958
2959 /* Loop until all are stopped out of the jump pads. */
2960 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2961 {
2962 struct target_waitstatus ourstatus;
2963 struct lwp_info *lwp;
2964 int wstat;
2965
2966 /* Note that we go through the full wait even loop. While
2967 moving threads out of jump pad, we need to be able to step
2968 over internal breakpoints and such. */
2969 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2970
2971 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2972 {
2973 lwp = get_thread_lwp (current_thread);
2974
2975 /* Lock it. */
2976 lwp_suspended_inc (lwp);
2977
2978 if (ourstatus.value.sig != GDB_SIGNAL_0
2979 || current_thread->last_resume_kind == resume_stop)
2980 {
2981 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2982 enqueue_one_deferred_signal (lwp, &wstat);
2983 }
2984 }
2985 }
2986
2987 unsuspend_all_lwps (NULL);
2988
2989 stabilizing_threads = 0;
2990
2991 current_thread = saved_thread;
2992
2993 if (debug_threads)
2994 {
2995 thread_stuck
2996 = (struct thread_info *) find_inferior (&all_threads,
2997 stuck_in_jump_pad_callback,
2998 NULL);
2999 if (thread_stuck != NULL)
3000 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3001 lwpid_of (thread_stuck));
3002 }
3003 }
3004
3005 /* Convenience function that is called when the kernel reports an
3006 event that is not passed out to GDB. */
3007
3008 static ptid_t
3009 ignore_event (struct target_waitstatus *ourstatus)
3010 {
3011 /* If we got an event, there may still be others, as a single
3012 SIGCHLD can indicate more than one child stopped. This forces
3013 another target_wait call. */
3014 async_file_mark ();
3015
3016 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3017 return null_ptid;
3018 }
3019
3020 /* Convenience function that is called when the kernel reports an exit
3021 event. This decides whether to report the event to GDB as a
3022 process exit event, a thread exit event, or to suppress the
3023 event. */
3024
3025 static ptid_t
3026 filter_exit_event (struct lwp_info *event_child,
3027 struct target_waitstatus *ourstatus)
3028 {
3029 struct thread_info *thread = get_lwp_thread (event_child);
3030 ptid_t ptid = ptid_of (thread);
3031
3032 if (!last_thread_of_process_p (pid_of (thread)))
3033 {
3034 if (report_thread_events)
3035 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3036 else
3037 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3038
3039 delete_lwp (event_child);
3040 }
3041 return ptid;
3042 }
3043
3044 /* Returns 1 if GDB is interested in any event_child syscalls. */
3045
3046 static int
3047 gdb_catching_syscalls_p (struct lwp_info *event_child)
3048 {
3049 struct thread_info *thread = get_lwp_thread (event_child);
3050 struct process_info *proc = get_thread_process (thread);
3051
3052 return !VEC_empty (int, proc->syscalls_to_catch);
3053 }
3054
3055 /* Returns 1 if GDB is interested in the event_child syscall.
3056 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3057
3058 static int
3059 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3060 {
3061 int i, iter;
3062 int sysno, sysret;
3063 struct thread_info *thread = get_lwp_thread (event_child);
3064 struct process_info *proc = get_thread_process (thread);
3065
3066 if (VEC_empty (int, proc->syscalls_to_catch))
3067 return 0;
3068
3069 if (VEC_index (int, proc->syscalls_to_catch, 0) == ANY_SYSCALL)
3070 return 1;
3071
3072 get_syscall_trapinfo (event_child, &sysno, &sysret);
3073 for (i = 0;
3074 VEC_iterate (int, proc->syscalls_to_catch, i, iter);
3075 i++)
3076 if (iter == sysno)
3077 return 1;
3078
3079 return 0;
3080 }
3081
3082 /* Wait for process, returns status. */
3083
3084 static ptid_t
3085 linux_wait_1 (ptid_t ptid,
3086 struct target_waitstatus *ourstatus, int target_options)
3087 {
3088 int w;
3089 struct lwp_info *event_child;
3090 int options;
3091 int pid;
3092 int step_over_finished;
3093 int bp_explains_trap;
3094 int maybe_internal_trap;
3095 int report_to_gdb;
3096 int trace_event;
3097 int in_step_range;
3098 int any_resumed;
3099
3100 if (debug_threads)
3101 {
3102 debug_enter ();
3103 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3104 }
3105
3106 /* Translate generic target options into linux options. */
3107 options = __WALL;
3108 if (target_options & TARGET_WNOHANG)
3109 options |= WNOHANG;
3110
3111 bp_explains_trap = 0;
3112 trace_event = 0;
3113 in_step_range = 0;
3114 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3115
3116 /* Find a resumed LWP, if any. */
3117 if (find_inferior (&all_threads,
3118 status_pending_p_callback,
3119 &minus_one_ptid) != NULL)
3120 any_resumed = 1;
3121 else if ((find_inferior (&all_threads,
3122 not_stopped_callback,
3123 &minus_one_ptid) != NULL))
3124 any_resumed = 1;
3125 else
3126 any_resumed = 0;
3127
3128 if (ptid_equal (step_over_bkpt, null_ptid))
3129 pid = linux_wait_for_event (ptid, &w, options);
3130 else
3131 {
3132 if (debug_threads)
3133 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3134 target_pid_to_str (step_over_bkpt));
3135 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3136 }
3137
3138 if (pid == 0 || (pid == -1 && !any_resumed))
3139 {
3140 gdb_assert (target_options & TARGET_WNOHANG);
3141
3142 if (debug_threads)
3143 {
3144 debug_printf ("linux_wait_1 ret = null_ptid, "
3145 "TARGET_WAITKIND_IGNORE\n");
3146 debug_exit ();
3147 }
3148
3149 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3150 return null_ptid;
3151 }
3152 else if (pid == -1)
3153 {
3154 if (debug_threads)
3155 {
3156 debug_printf ("linux_wait_1 ret = null_ptid, "
3157 "TARGET_WAITKIND_NO_RESUMED\n");
3158 debug_exit ();
3159 }
3160
3161 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3162 return null_ptid;
3163 }
3164
3165 event_child = get_thread_lwp (current_thread);
3166
3167 /* linux_wait_for_event only returns an exit status for the last
3168 child of a process. Report it. */
3169 if (WIFEXITED (w) || WIFSIGNALED (w))
3170 {
3171 if (WIFEXITED (w))
3172 {
3173 ourstatus->kind = TARGET_WAITKIND_EXITED;
3174 ourstatus->value.integer = WEXITSTATUS (w);
3175
3176 if (debug_threads)
3177 {
3178 debug_printf ("linux_wait_1 ret = %s, exited with "
3179 "retcode %d\n",
3180 target_pid_to_str (ptid_of (current_thread)),
3181 WEXITSTATUS (w));
3182 debug_exit ();
3183 }
3184 }
3185 else
3186 {
3187 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3188 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3189
3190 if (debug_threads)
3191 {
3192 debug_printf ("linux_wait_1 ret = %s, terminated with "
3193 "signal %d\n",
3194 target_pid_to_str (ptid_of (current_thread)),
3195 WTERMSIG (w));
3196 debug_exit ();
3197 }
3198 }
3199
3200 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3201 return filter_exit_event (event_child, ourstatus);
3202
3203 return ptid_of (current_thread);
3204 }
3205
3206 /* If step-over executes a breakpoint instruction, in the case of a
3207 hardware single step it means a gdb/gdbserver breakpoint had been
3208 planted on top of a permanent breakpoint, in the case of a software
3209 single step it may just mean that gdbserver hit the reinsert breakpoint.
3210 The PC has been adjusted by save_stop_reason to point at
3211 the breakpoint address.
3212 So in the case of the hardware single step advance the PC manually
3213 past the breakpoint and in the case of software single step advance only
3214 if it's not the reinsert_breakpoint we are hitting.
3215 This avoids that a program would keep trapping a permanent breakpoint
3216 forever. */
3217 if (!ptid_equal (step_over_bkpt, null_ptid)
3218 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3219 && (event_child->stepping
3220 || !reinsert_breakpoint_inserted_here (event_child->stop_pc)))
3221 {
3222 int increment_pc = 0;
3223 int breakpoint_kind = 0;
3224 CORE_ADDR stop_pc = event_child->stop_pc;
3225
3226 breakpoint_kind =
3227 the_target->breakpoint_kind_from_current_state (&stop_pc);
3228 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3229
3230 if (debug_threads)
3231 {
3232 debug_printf ("step-over for %s executed software breakpoint\n",
3233 target_pid_to_str (ptid_of (current_thread)));
3234 }
3235
3236 if (increment_pc != 0)
3237 {
3238 struct regcache *regcache
3239 = get_thread_regcache (current_thread, 1);
3240
3241 event_child->stop_pc += increment_pc;
3242 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3243
3244 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3245 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3246 }
3247 }
3248
3249 /* If this event was not handled before, and is not a SIGTRAP, we
3250 report it. SIGILL and SIGSEGV are also treated as traps in case
3251 a breakpoint is inserted at the current PC. If this target does
3252 not support internal breakpoints at all, we also report the
3253 SIGTRAP without further processing; it's of no concern to us. */
3254 maybe_internal_trap
3255 = (supports_breakpoints ()
3256 && (WSTOPSIG (w) == SIGTRAP
3257 || ((WSTOPSIG (w) == SIGILL
3258 || WSTOPSIG (w) == SIGSEGV)
3259 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3260
3261 if (maybe_internal_trap)
3262 {
3263 /* Handle anything that requires bookkeeping before deciding to
3264 report the event or continue waiting. */
3265
3266 /* First check if we can explain the SIGTRAP with an internal
3267 breakpoint, or if we should possibly report the event to GDB.
3268 Do this before anything that may remove or insert a
3269 breakpoint. */
3270 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3271
3272 /* We have a SIGTRAP, possibly a step-over dance has just
3273 finished. If so, tweak the state machine accordingly,
3274 reinsert breakpoints and delete any reinsert (software
3275 single-step) breakpoints. */
3276 step_over_finished = finish_step_over (event_child);
3277
3278 /* Now invoke the callbacks of any internal breakpoints there. */
3279 check_breakpoints (event_child->stop_pc);
3280
3281 /* Handle tracepoint data collecting. This may overflow the
3282 trace buffer, and cause a tracing stop, removing
3283 breakpoints. */
3284 trace_event = handle_tracepoints (event_child);
3285
3286 if (bp_explains_trap)
3287 {
3288 if (debug_threads)
3289 debug_printf ("Hit a gdbserver breakpoint.\n");
3290 }
3291 }
3292 else
3293 {
3294 /* We have some other signal, possibly a step-over dance was in
3295 progress, and it should be cancelled too. */
3296 step_over_finished = finish_step_over (event_child);
3297 }
3298
3299 /* We have all the data we need. Either report the event to GDB, or
3300 resume threads and keep waiting for more. */
3301
3302 /* If we're collecting a fast tracepoint, finish the collection and
3303 move out of the jump pad before delivering a signal. See
3304 linux_stabilize_threads. */
3305
3306 if (WIFSTOPPED (w)
3307 && WSTOPSIG (w) != SIGTRAP
3308 && supports_fast_tracepoints ()
3309 && agent_loaded_p ())
3310 {
3311 if (debug_threads)
3312 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3313 "to defer or adjust it.\n",
3314 WSTOPSIG (w), lwpid_of (current_thread));
3315
3316 /* Allow debugging the jump pad itself. */
3317 if (current_thread->last_resume_kind != resume_step
3318 && maybe_move_out_of_jump_pad (event_child, &w))
3319 {
3320 enqueue_one_deferred_signal (event_child, &w);
3321
3322 if (debug_threads)
3323 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3324 WSTOPSIG (w), lwpid_of (current_thread));
3325
3326 linux_resume_one_lwp (event_child, 0, 0, NULL);
3327
3328 return ignore_event (ourstatus);
3329 }
3330 }
3331
3332 if (event_child->collecting_fast_tracepoint)
3333 {
3334 if (debug_threads)
3335 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3336 "Check if we're already there.\n",
3337 lwpid_of (current_thread),
3338 event_child->collecting_fast_tracepoint);
3339
3340 trace_event = 1;
3341
3342 event_child->collecting_fast_tracepoint
3343 = linux_fast_tracepoint_collecting (event_child, NULL);
3344
3345 if (event_child->collecting_fast_tracepoint != 1)
3346 {
3347 /* No longer need this breakpoint. */
3348 if (event_child->exit_jump_pad_bkpt != NULL)
3349 {
3350 if (debug_threads)
3351 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3352 "stopping all threads momentarily.\n");
3353
3354 /* Other running threads could hit this breakpoint.
3355 We don't handle moribund locations like GDB does,
3356 instead we always pause all threads when removing
3357 breakpoints, so that any step-over or
3358 decr_pc_after_break adjustment is always taken
3359 care of while the breakpoint is still
3360 inserted. */
3361 stop_all_lwps (1, event_child);
3362
3363 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3364 event_child->exit_jump_pad_bkpt = NULL;
3365
3366 unstop_all_lwps (1, event_child);
3367
3368 gdb_assert (event_child->suspended >= 0);
3369 }
3370 }
3371
3372 if (event_child->collecting_fast_tracepoint == 0)
3373 {
3374 if (debug_threads)
3375 debug_printf ("fast tracepoint finished "
3376 "collecting successfully.\n");
3377
3378 /* We may have a deferred signal to report. */
3379 if (dequeue_one_deferred_signal (event_child, &w))
3380 {
3381 if (debug_threads)
3382 debug_printf ("dequeued one signal.\n");
3383 }
3384 else
3385 {
3386 if (debug_threads)
3387 debug_printf ("no deferred signals.\n");
3388
3389 if (stabilizing_threads)
3390 {
3391 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3392 ourstatus->value.sig = GDB_SIGNAL_0;
3393
3394 if (debug_threads)
3395 {
3396 debug_printf ("linux_wait_1 ret = %s, stopped "
3397 "while stabilizing threads\n",
3398 target_pid_to_str (ptid_of (current_thread)));
3399 debug_exit ();
3400 }
3401
3402 return ptid_of (current_thread);
3403 }
3404 }
3405 }
3406 }
3407
3408 /* Check whether GDB would be interested in this event. */
3409
3410 /* Check if GDB is interested in this syscall. */
3411 if (WIFSTOPPED (w)
3412 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3413 && !gdb_catch_this_syscall_p (event_child))
3414 {
3415 if (debug_threads)
3416 {
3417 debug_printf ("Ignored syscall for LWP %ld.\n",
3418 lwpid_of (current_thread));
3419 }
3420
3421 linux_resume_one_lwp (event_child, event_child->stepping,
3422 0, NULL);
3423 return ignore_event (ourstatus);
3424 }
3425
3426 /* If GDB is not interested in this signal, don't stop other
3427 threads, and don't report it to GDB. Just resume the inferior
3428 right away. We do this for threading-related signals as well as
3429 any that GDB specifically requested we ignore. But never ignore
3430 SIGSTOP if we sent it ourselves, and do not ignore signals when
3431 stepping - they may require special handling to skip the signal
3432 handler. Also never ignore signals that could be caused by a
3433 breakpoint. */
3434 if (WIFSTOPPED (w)
3435 && current_thread->last_resume_kind != resume_step
3436 && (
3437 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3438 (current_process ()->priv->thread_db != NULL
3439 && (WSTOPSIG (w) == __SIGRTMIN
3440 || WSTOPSIG (w) == __SIGRTMIN + 1))
3441 ||
3442 #endif
3443 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3444 && !(WSTOPSIG (w) == SIGSTOP
3445 && current_thread->last_resume_kind == resume_stop)
3446 && !linux_wstatus_maybe_breakpoint (w))))
3447 {
3448 siginfo_t info, *info_p;
3449
3450 if (debug_threads)
3451 debug_printf ("Ignored signal %d for LWP %ld.\n",
3452 WSTOPSIG (w), lwpid_of (current_thread));
3453
3454 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3455 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3456 info_p = &info;
3457 else
3458 info_p = NULL;
3459
3460 if (step_over_finished)
3461 {
3462 /* We cancelled this thread's step-over above. We still
3463 need to unsuspend all other LWPs, and set them back
3464 running again while the signal handler runs. */
3465 unsuspend_all_lwps (event_child);
3466
3467 /* Enqueue the pending signal info so that proceed_all_lwps
3468 doesn't lose it. */
3469 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3470
3471 proceed_all_lwps ();
3472 }
3473 else
3474 {
3475 linux_resume_one_lwp (event_child, event_child->stepping,
3476 WSTOPSIG (w), info_p);
3477 }
3478 return ignore_event (ourstatus);
3479 }
3480
3481 /* Note that all addresses are always "out of the step range" when
3482 there's no range to begin with. */
3483 in_step_range = lwp_in_step_range (event_child);
3484
3485 /* If GDB wanted this thread to single step, and the thread is out
3486 of the step range, we always want to report the SIGTRAP, and let
3487 GDB handle it. Watchpoints should always be reported. So should
3488 signals we can't explain. A SIGTRAP we can't explain could be a
3489 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3490 do, we're be able to handle GDB breakpoints on top of internal
3491 breakpoints, by handling the internal breakpoint and still
3492 reporting the event to GDB. If we don't, we're out of luck, GDB
3493 won't see the breakpoint hit. If we see a single-step event but
3494 the thread should be continuing, don't pass the trap to gdb.
3495 That indicates that we had previously finished a single-step but
3496 left the single-step pending -- see
3497 complete_ongoing_step_over. */
3498 report_to_gdb = (!maybe_internal_trap
3499 || (current_thread->last_resume_kind == resume_step
3500 && !in_step_range)
3501 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3502 || (!in_step_range
3503 && !bp_explains_trap
3504 && !trace_event
3505 && !step_over_finished
3506 && !(current_thread->last_resume_kind == resume_continue
3507 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3508 || (gdb_breakpoint_here (event_child->stop_pc)
3509 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3510 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3511 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3512
3513 run_breakpoint_commands (event_child->stop_pc);
3514
3515 /* We found no reason GDB would want us to stop. We either hit one
3516 of our own breakpoints, or finished an internal step GDB
3517 shouldn't know about. */
3518 if (!report_to_gdb)
3519 {
3520 if (debug_threads)
3521 {
3522 if (bp_explains_trap)
3523 debug_printf ("Hit a gdbserver breakpoint.\n");
3524 if (step_over_finished)
3525 debug_printf ("Step-over finished.\n");
3526 if (trace_event)
3527 debug_printf ("Tracepoint event.\n");
3528 if (lwp_in_step_range (event_child))
3529 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3530 paddress (event_child->stop_pc),
3531 paddress (event_child->step_range_start),
3532 paddress (event_child->step_range_end));
3533 }
3534
3535 /* We're not reporting this breakpoint to GDB, so apply the
3536 decr_pc_after_break adjustment to the inferior's regcache
3537 ourselves. */
3538
3539 if (the_low_target.set_pc != NULL)
3540 {
3541 struct regcache *regcache
3542 = get_thread_regcache (current_thread, 1);
3543 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3544 }
3545
3546 /* We may have finished stepping over a breakpoint. If so,
3547 we've stopped and suspended all LWPs momentarily except the
3548 stepping one. This is where we resume them all again. We're
3549 going to keep waiting, so use proceed, which handles stepping
3550 over the next breakpoint. */
3551 if (debug_threads)
3552 debug_printf ("proceeding all threads.\n");
3553
3554 if (step_over_finished)
3555 unsuspend_all_lwps (event_child);
3556
3557 proceed_all_lwps ();
3558 return ignore_event (ourstatus);
3559 }
3560
3561 if (debug_threads)
3562 {
3563 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3564 {
3565 char *str;
3566
3567 str = target_waitstatus_to_string (&event_child->waitstatus);
3568 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3569 lwpid_of (get_lwp_thread (event_child)), str);
3570 xfree (str);
3571 }
3572 if (current_thread->last_resume_kind == resume_step)
3573 {
3574 if (event_child->step_range_start == event_child->step_range_end)
3575 debug_printf ("GDB wanted to single-step, reporting event.\n");
3576 else if (!lwp_in_step_range (event_child))
3577 debug_printf ("Out of step range, reporting event.\n");
3578 }
3579 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3580 debug_printf ("Stopped by watchpoint.\n");
3581 else if (gdb_breakpoint_here (event_child->stop_pc))
3582 debug_printf ("Stopped by GDB breakpoint.\n");
3583 if (debug_threads)
3584 debug_printf ("Hit a non-gdbserver trap event.\n");
3585 }
3586
3587 /* Alright, we're going to report a stop. */
3588
3589 if (!stabilizing_threads)
3590 {
3591 /* In all-stop, stop all threads. */
3592 if (!non_stop)
3593 stop_all_lwps (0, NULL);
3594
3595 /* If we're not waiting for a specific LWP, choose an event LWP
3596 from among those that have had events. Giving equal priority
3597 to all LWPs that have had events helps prevent
3598 starvation. */
3599 if (ptid_equal (ptid, minus_one_ptid))
3600 {
3601 event_child->status_pending_p = 1;
3602 event_child->status_pending = w;
3603
3604 select_event_lwp (&event_child);
3605
3606 /* current_thread and event_child must stay in sync. */
3607 current_thread = get_lwp_thread (event_child);
3608
3609 event_child->status_pending_p = 0;
3610 w = event_child->status_pending;
3611 }
3612
3613 if (step_over_finished)
3614 {
3615 if (!non_stop)
3616 {
3617 /* If we were doing a step-over, all other threads but
3618 the stepping one had been paused in start_step_over,
3619 with their suspend counts incremented. We don't want
3620 to do a full unstop/unpause, because we're in
3621 all-stop mode (so we want threads stopped), but we
3622 still need to unsuspend the other threads, to
3623 decrement their `suspended' count back. */
3624 unsuspend_all_lwps (event_child);
3625 }
3626 else
3627 {
3628 /* If we just finished a step-over, then all threads had
3629 been momentarily paused. In all-stop, that's fine,
3630 we want threads stopped by now anyway. In non-stop,
3631 we need to re-resume threads that GDB wanted to be
3632 running. */
3633 unstop_all_lwps (1, event_child);
3634 }
3635 }
3636
3637 /* Stabilize threads (move out of jump pads). */
3638 if (!non_stop)
3639 stabilize_threads ();
3640 }
3641 else
3642 {
3643 /* If we just finished a step-over, then all threads had been
3644 momentarily paused. In all-stop, that's fine, we want
3645 threads stopped by now anyway. In non-stop, we need to
3646 re-resume threads that GDB wanted to be running. */
3647 if (step_over_finished)
3648 unstop_all_lwps (1, event_child);
3649 }
3650
3651 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3652 {
3653 /* If the reported event is an exit, fork, vfork or exec, let
3654 GDB know. */
3655 *ourstatus = event_child->waitstatus;
3656 /* Clear the event lwp's waitstatus since we handled it already. */
3657 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3658 }
3659 else
3660 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3661
3662 /* Now that we've selected our final event LWP, un-adjust its PC if
3663 it was a software breakpoint, and the client doesn't know we can
3664 adjust the breakpoint ourselves. */
3665 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3666 && !swbreak_feature)
3667 {
3668 int decr_pc = the_low_target.decr_pc_after_break;
3669
3670 if (decr_pc != 0)
3671 {
3672 struct regcache *regcache
3673 = get_thread_regcache (current_thread, 1);
3674 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3675 }
3676 }
3677
3678 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3679 {
3680 int sysret;
3681
3682 get_syscall_trapinfo (event_child,
3683 &ourstatus->value.syscall_number, &sysret);
3684 ourstatus->kind = event_child->syscall_state;
3685 }
3686 else if (current_thread->last_resume_kind == resume_stop
3687 && WSTOPSIG (w) == SIGSTOP)
3688 {
3689 /* A thread that has been requested to stop by GDB with vCont;t,
3690 and it stopped cleanly, so report as SIG0. The use of
3691 SIGSTOP is an implementation detail. */
3692 ourstatus->value.sig = GDB_SIGNAL_0;
3693 }
3694 else if (current_thread->last_resume_kind == resume_stop
3695 && WSTOPSIG (w) != SIGSTOP)
3696 {
3697 /* A thread that has been requested to stop by GDB with vCont;t,
3698 but, it stopped for other reasons. */
3699 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3700 }
3701 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3702 {
3703 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3704 }
3705
3706 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3707
3708 if (debug_threads)
3709 {
3710 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3711 target_pid_to_str (ptid_of (current_thread)),
3712 ourstatus->kind, ourstatus->value.sig);
3713 debug_exit ();
3714 }
3715
3716 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3717 return filter_exit_event (event_child, ourstatus);
3718
3719 return ptid_of (current_thread);
3720 }
3721
3722 /* Get rid of any pending event in the pipe. */
3723 static void
3724 async_file_flush (void)
3725 {
3726 int ret;
3727 char buf;
3728
3729 do
3730 ret = read (linux_event_pipe[0], &buf, 1);
3731 while (ret >= 0 || (ret == -1 && errno == EINTR));
3732 }
3733
3734 /* Put something in the pipe, so the event loop wakes up. */
3735 static void
3736 async_file_mark (void)
3737 {
3738 int ret;
3739
3740 async_file_flush ();
3741
3742 do
3743 ret = write (linux_event_pipe[1], "+", 1);
3744 while (ret == 0 || (ret == -1 && errno == EINTR));
3745
3746 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3747 be awakened anyway. */
3748 }
3749
3750 static ptid_t
3751 linux_wait (ptid_t ptid,
3752 struct target_waitstatus *ourstatus, int target_options)
3753 {
3754 ptid_t event_ptid;
3755
3756 /* Flush the async file first. */
3757 if (target_is_async_p ())
3758 async_file_flush ();
3759
3760 do
3761 {
3762 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3763 }
3764 while ((target_options & TARGET_WNOHANG) == 0
3765 && ptid_equal (event_ptid, null_ptid)
3766 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3767
3768 /* If at least one stop was reported, there may be more. A single
3769 SIGCHLD can signal more than one child stop. */
3770 if (target_is_async_p ()
3771 && (target_options & TARGET_WNOHANG) != 0
3772 && !ptid_equal (event_ptid, null_ptid))
3773 async_file_mark ();
3774
3775 return event_ptid;
3776 }
3777
3778 /* Send a signal to an LWP. */
3779
3780 static int
3781 kill_lwp (unsigned long lwpid, int signo)
3782 {
3783 int ret;
3784
3785 errno = 0;
3786 ret = syscall (__NR_tkill, lwpid, signo);
3787 if (errno == ENOSYS)
3788 {
3789 /* If tkill fails, then we are not using nptl threads, a
3790 configuration we no longer support. */
3791 perror_with_name (("tkill"));
3792 }
3793 return ret;
3794 }
3795
3796 void
3797 linux_stop_lwp (struct lwp_info *lwp)
3798 {
3799 send_sigstop (lwp);
3800 }
3801
3802 static void
3803 send_sigstop (struct lwp_info *lwp)
3804 {
3805 int pid;
3806
3807 pid = lwpid_of (get_lwp_thread (lwp));
3808
3809 /* If we already have a pending stop signal for this process, don't
3810 send another. */
3811 if (lwp->stop_expected)
3812 {
3813 if (debug_threads)
3814 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3815
3816 return;
3817 }
3818
3819 if (debug_threads)
3820 debug_printf ("Sending sigstop to lwp %d\n", pid);
3821
3822 lwp->stop_expected = 1;
3823 kill_lwp (pid, SIGSTOP);
3824 }
3825
3826 static int
3827 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3828 {
3829 struct thread_info *thread = (struct thread_info *) entry;
3830 struct lwp_info *lwp = get_thread_lwp (thread);
3831
3832 /* Ignore EXCEPT. */
3833 if (lwp == except)
3834 return 0;
3835
3836 if (lwp->stopped)
3837 return 0;
3838
3839 send_sigstop (lwp);
3840 return 0;
3841 }
3842
3843 /* Increment the suspend count of an LWP, and stop it, if not stopped
3844 yet. */
3845 static int
3846 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3847 void *except)
3848 {
3849 struct thread_info *thread = (struct thread_info *) entry;
3850 struct lwp_info *lwp = get_thread_lwp (thread);
3851
3852 /* Ignore EXCEPT. */
3853 if (lwp == except)
3854 return 0;
3855
3856 lwp_suspended_inc (lwp);
3857
3858 return send_sigstop_callback (entry, except);
3859 }
3860
3861 static void
3862 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3863 {
3864 /* Store the exit status for later. */
3865 lwp->status_pending_p = 1;
3866 lwp->status_pending = wstat;
3867
3868 /* Store in waitstatus as well, as there's nothing else to process
3869 for this event. */
3870 if (WIFEXITED (wstat))
3871 {
3872 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3873 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3874 }
3875 else if (WIFSIGNALED (wstat))
3876 {
3877 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3878 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3879 }
3880
3881 /* Prevent trying to stop it. */
3882 lwp->stopped = 1;
3883
3884 /* No further stops are expected from a dead lwp. */
3885 lwp->stop_expected = 0;
3886 }
3887
3888 /* Return true if LWP has exited already, and has a pending exit event
3889 to report to GDB. */
3890
3891 static int
3892 lwp_is_marked_dead (struct lwp_info *lwp)
3893 {
3894 return (lwp->status_pending_p
3895 && (WIFEXITED (lwp->status_pending)
3896 || WIFSIGNALED (lwp->status_pending)));
3897 }
3898
3899 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3900
3901 static void
3902 wait_for_sigstop (void)
3903 {
3904 struct thread_info *saved_thread;
3905 ptid_t saved_tid;
3906 int wstat;
3907 int ret;
3908
3909 saved_thread = current_thread;
3910 if (saved_thread != NULL)
3911 saved_tid = saved_thread->entry.id;
3912 else
3913 saved_tid = null_ptid; /* avoid bogus unused warning */
3914
3915 if (debug_threads)
3916 debug_printf ("wait_for_sigstop: pulling events\n");
3917
3918 /* Passing NULL_PTID as filter indicates we want all events to be
3919 left pending. Eventually this returns when there are no
3920 unwaited-for children left. */
3921 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3922 &wstat, __WALL);
3923 gdb_assert (ret == -1);
3924
3925 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3926 current_thread = saved_thread;
3927 else
3928 {
3929 if (debug_threads)
3930 debug_printf ("Previously current thread died.\n");
3931
3932 /* We can't change the current inferior behind GDB's back,
3933 otherwise, a subsequent command may apply to the wrong
3934 process. */
3935 current_thread = NULL;
3936 }
3937 }
3938
3939 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3940 move it out, because we need to report the stop event to GDB. For
3941 example, if the user puts a breakpoint in the jump pad, it's
3942 because she wants to debug it. */
3943
3944 static int
3945 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3946 {
3947 struct thread_info *thread = (struct thread_info *) entry;
3948 struct lwp_info *lwp = get_thread_lwp (thread);
3949
3950 if (lwp->suspended != 0)
3951 {
3952 internal_error (__FILE__, __LINE__,
3953 "LWP %ld is suspended, suspended=%d\n",
3954 lwpid_of (thread), lwp->suspended);
3955 }
3956 gdb_assert (lwp->stopped);
3957
3958 /* Allow debugging the jump pad, gdb_collect, etc.. */
3959 return (supports_fast_tracepoints ()
3960 && agent_loaded_p ()
3961 && (gdb_breakpoint_here (lwp->stop_pc)
3962 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3963 || thread->last_resume_kind == resume_step)
3964 && linux_fast_tracepoint_collecting (lwp, NULL));
3965 }
3966
3967 static void
3968 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3969 {
3970 struct thread_info *thread = (struct thread_info *) entry;
3971 struct thread_info *saved_thread;
3972 struct lwp_info *lwp = get_thread_lwp (thread);
3973 int *wstat;
3974
3975 if (lwp->suspended != 0)
3976 {
3977 internal_error (__FILE__, __LINE__,
3978 "LWP %ld is suspended, suspended=%d\n",
3979 lwpid_of (thread), lwp->suspended);
3980 }
3981 gdb_assert (lwp->stopped);
3982
3983 /* For gdb_breakpoint_here. */
3984 saved_thread = current_thread;
3985 current_thread = thread;
3986
3987 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3988
3989 /* Allow debugging the jump pad, gdb_collect, etc. */
3990 if (!gdb_breakpoint_here (lwp->stop_pc)
3991 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3992 && thread->last_resume_kind != resume_step
3993 && maybe_move_out_of_jump_pad (lwp, wstat))
3994 {
3995 if (debug_threads)
3996 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3997 lwpid_of (thread));
3998
3999 if (wstat)
4000 {
4001 lwp->status_pending_p = 0;
4002 enqueue_one_deferred_signal (lwp, wstat);
4003
4004 if (debug_threads)
4005 debug_printf ("Signal %d for LWP %ld deferred "
4006 "(in jump pad)\n",
4007 WSTOPSIG (*wstat), lwpid_of (thread));
4008 }
4009
4010 linux_resume_one_lwp (lwp, 0, 0, NULL);
4011 }
4012 else
4013 lwp_suspended_inc (lwp);
4014
4015 current_thread = saved_thread;
4016 }
4017
4018 static int
4019 lwp_running (struct inferior_list_entry *entry, void *data)
4020 {
4021 struct thread_info *thread = (struct thread_info *) entry;
4022 struct lwp_info *lwp = get_thread_lwp (thread);
4023
4024 if (lwp_is_marked_dead (lwp))
4025 return 0;
4026 if (lwp->stopped)
4027 return 0;
4028 return 1;
4029 }
4030
4031 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4032 If SUSPEND, then also increase the suspend count of every LWP,
4033 except EXCEPT. */
4034
4035 static void
4036 stop_all_lwps (int suspend, struct lwp_info *except)
4037 {
4038 /* Should not be called recursively. */
4039 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4040
4041 if (debug_threads)
4042 {
4043 debug_enter ();
4044 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4045 suspend ? "stop-and-suspend" : "stop",
4046 except != NULL
4047 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4048 : "none");
4049 }
4050
4051 stopping_threads = (suspend
4052 ? STOPPING_AND_SUSPENDING_THREADS
4053 : STOPPING_THREADS);
4054
4055 if (suspend)
4056 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4057 else
4058 find_inferior (&all_threads, send_sigstop_callback, except);
4059 wait_for_sigstop ();
4060 stopping_threads = NOT_STOPPING_THREADS;
4061
4062 if (debug_threads)
4063 {
4064 debug_printf ("stop_all_lwps done, setting stopping_threads "
4065 "back to !stopping\n");
4066 debug_exit ();
4067 }
4068 }
4069
4070 /* Enqueue one signal in the chain of signals which need to be
4071 delivered to this process on next resume. */
4072
4073 static void
4074 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4075 {
4076 struct pending_signals *p_sig = XNEW (struct pending_signals);
4077
4078 p_sig->prev = lwp->pending_signals;
4079 p_sig->signal = signal;
4080 if (info == NULL)
4081 memset (&p_sig->info, 0, sizeof (siginfo_t));
4082 else
4083 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4084 lwp->pending_signals = p_sig;
4085 }
4086
4087 /* Install breakpoints for software single stepping. */
4088
4089 static void
4090 install_software_single_step_breakpoints (struct lwp_info *lwp)
4091 {
4092 int i;
4093 CORE_ADDR pc;
4094 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4095 VEC (CORE_ADDR) *next_pcs = NULL;
4096 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
4097
4098 next_pcs = (*the_low_target.get_next_pcs) (regcache);
4099
4100 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); ++i)
4101 set_reinsert_breakpoint (pc);
4102
4103 do_cleanups (old_chain);
4104 }
4105
4106 /* Single step via hardware or software single step.
4107 Return 1 if hardware single stepping, 0 if software single stepping
4108 or can't single step. */
4109
4110 static int
4111 single_step (struct lwp_info* lwp)
4112 {
4113 int step = 0;
4114
4115 if (can_hardware_single_step ())
4116 {
4117 step = 1;
4118 }
4119 else if (can_software_single_step ())
4120 {
4121 install_software_single_step_breakpoints (lwp);
4122 step = 0;
4123 }
4124 else
4125 {
4126 if (debug_threads)
4127 debug_printf ("stepping is not implemented on this target");
4128 }
4129
4130 return step;
4131 }
4132
4133 /* The signal can be delivered to the inferior if we are not trying to
4134 finish a fast tracepoint collect. Since signal can be delivered in
4135 the step-over, the program may go to signal handler and trap again
4136 after return from the signal handler. We can live with the spurious
4137 double traps. */
4138
4139 static int
4140 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4141 {
4142 return !lwp->collecting_fast_tracepoint;
4143 }
4144
4145 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4146 SIGNAL is nonzero, give it that signal. */
4147
4148 static void
4149 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4150 int step, int signal, siginfo_t *info)
4151 {
4152 struct thread_info *thread = get_lwp_thread (lwp);
4153 struct thread_info *saved_thread;
4154 int fast_tp_collecting;
4155 int ptrace_request;
4156 struct process_info *proc = get_thread_process (thread);
4157
4158 /* Note that target description may not be initialised
4159 (proc->tdesc == NULL) at this point because the program hasn't
4160 stopped at the first instruction yet. It means GDBserver skips
4161 the extra traps from the wrapper program (see option --wrapper).
4162 Code in this function that requires register access should be
4163 guarded by proc->tdesc == NULL or something else. */
4164
4165 if (lwp->stopped == 0)
4166 return;
4167
4168 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4169
4170 fast_tp_collecting = lwp->collecting_fast_tracepoint;
4171
4172 gdb_assert (!stabilizing_threads || fast_tp_collecting);
4173
4174 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4175 user used the "jump" command, or "set $pc = foo"). */
4176 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4177 {
4178 /* Collecting 'while-stepping' actions doesn't make sense
4179 anymore. */
4180 release_while_stepping_state_list (thread);
4181 }
4182
4183 /* If we have pending signals or status, and a new signal, enqueue the
4184 signal. Also enqueue the signal if it can't be delivered to the
4185 inferior right now. */
4186 if (signal != 0
4187 && (lwp->status_pending_p
4188 || lwp->pending_signals != NULL
4189 || !lwp_signal_can_be_delivered (lwp)))
4190 {
4191 enqueue_pending_signal (lwp, signal, info);
4192
4193 /* Postpone any pending signal. It was enqueued above. */
4194 signal = 0;
4195 }
4196
4197 if (lwp->status_pending_p)
4198 {
4199 if (debug_threads)
4200 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4201 " has pending status\n",
4202 lwpid_of (thread), step ? "step" : "continue",
4203 lwp->stop_expected ? "expected" : "not expected");
4204 return;
4205 }
4206
4207 saved_thread = current_thread;
4208 current_thread = thread;
4209
4210 /* This bit needs some thinking about. If we get a signal that
4211 we must report while a single-step reinsert is still pending,
4212 we often end up resuming the thread. It might be better to
4213 (ew) allow a stack of pending events; then we could be sure that
4214 the reinsert happened right away and not lose any signals.
4215
4216 Making this stack would also shrink the window in which breakpoints are
4217 uninserted (see comment in linux_wait_for_lwp) but not enough for
4218 complete correctness, so it won't solve that problem. It may be
4219 worthwhile just to solve this one, however. */
4220 if (lwp->bp_reinsert != 0)
4221 {
4222 if (debug_threads)
4223 debug_printf (" pending reinsert at 0x%s\n",
4224 paddress (lwp->bp_reinsert));
4225
4226 if (can_hardware_single_step ())
4227 {
4228 if (fast_tp_collecting == 0)
4229 {
4230 if (step == 0)
4231 fprintf (stderr, "BAD - reinserting but not stepping.\n");
4232 if (lwp->suspended)
4233 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
4234 lwp->suspended);
4235 }
4236 }
4237
4238 step = maybe_hw_step (thread);
4239 }
4240
4241 if (fast_tp_collecting == 1)
4242 {
4243 if (debug_threads)
4244 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4245 " (exit-jump-pad-bkpt)\n",
4246 lwpid_of (thread));
4247 }
4248 else if (fast_tp_collecting == 2)
4249 {
4250 if (debug_threads)
4251 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4252 " single-stepping\n",
4253 lwpid_of (thread));
4254
4255 if (can_hardware_single_step ())
4256 step = 1;
4257 else
4258 {
4259 internal_error (__FILE__, __LINE__,
4260 "moving out of jump pad single-stepping"
4261 " not implemented on this target");
4262 }
4263 }
4264
4265 /* If we have while-stepping actions in this thread set it stepping.
4266 If we have a signal to deliver, it may or may not be set to
4267 SIG_IGN, we don't know. Assume so, and allow collecting
4268 while-stepping into a signal handler. A possible smart thing to
4269 do would be to set an internal breakpoint at the signal return
4270 address, continue, and carry on catching this while-stepping
4271 action only when that breakpoint is hit. A future
4272 enhancement. */
4273 if (thread->while_stepping != NULL)
4274 {
4275 if (debug_threads)
4276 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4277 lwpid_of (thread));
4278
4279 step = single_step (lwp);
4280 }
4281
4282 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4283 {
4284 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4285
4286 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4287
4288 if (debug_threads)
4289 {
4290 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4291 (long) lwp->stop_pc);
4292 }
4293 }
4294
4295 /* If we have pending signals, consume one if it can be delivered to
4296 the inferior. */
4297 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4298 {
4299 struct pending_signals **p_sig;
4300
4301 p_sig = &lwp->pending_signals;
4302 while ((*p_sig)->prev != NULL)
4303 p_sig = &(*p_sig)->prev;
4304
4305 signal = (*p_sig)->signal;
4306 if ((*p_sig)->info.si_signo != 0)
4307 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4308 &(*p_sig)->info);
4309
4310 free (*p_sig);
4311 *p_sig = NULL;
4312 }
4313
4314 if (debug_threads)
4315 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4316 lwpid_of (thread), step ? "step" : "continue", signal,
4317 lwp->stop_expected ? "expected" : "not expected");
4318
4319 if (the_low_target.prepare_to_resume != NULL)
4320 the_low_target.prepare_to_resume (lwp);
4321
4322 regcache_invalidate_thread (thread);
4323 errno = 0;
4324 lwp->stepping = step;
4325 if (step)
4326 ptrace_request = PTRACE_SINGLESTEP;
4327 else if (gdb_catching_syscalls_p (lwp))
4328 ptrace_request = PTRACE_SYSCALL;
4329 else
4330 ptrace_request = PTRACE_CONT;
4331 ptrace (ptrace_request,
4332 lwpid_of (thread),
4333 (PTRACE_TYPE_ARG3) 0,
4334 /* Coerce to a uintptr_t first to avoid potential gcc warning
4335 of coercing an 8 byte integer to a 4 byte pointer. */
4336 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4337
4338 current_thread = saved_thread;
4339 if (errno)
4340 perror_with_name ("resuming thread");
4341
4342 /* Successfully resumed. Clear state that no longer makes sense,
4343 and mark the LWP as running. Must not do this before resuming
4344 otherwise if that fails other code will be confused. E.g., we'd
4345 later try to stop the LWP and hang forever waiting for a stop
4346 status. Note that we must not throw after this is cleared,
4347 otherwise handle_zombie_lwp_error would get confused. */
4348 lwp->stopped = 0;
4349 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4350 }
4351
4352 /* Called when we try to resume a stopped LWP and that errors out. If
4353 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4354 or about to become), discard the error, clear any pending status
4355 the LWP may have, and return true (we'll collect the exit status
4356 soon enough). Otherwise, return false. */
4357
4358 static int
4359 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4360 {
4361 struct thread_info *thread = get_lwp_thread (lp);
4362
4363 /* If we get an error after resuming the LWP successfully, we'd
4364 confuse !T state for the LWP being gone. */
4365 gdb_assert (lp->stopped);
4366
4367 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4368 because even if ptrace failed with ESRCH, the tracee may be "not
4369 yet fully dead", but already refusing ptrace requests. In that
4370 case the tracee has 'R (Running)' state for a little bit
4371 (observed in Linux 3.18). See also the note on ESRCH in the
4372 ptrace(2) man page. Instead, check whether the LWP has any state
4373 other than ptrace-stopped. */
4374
4375 /* Don't assume anything if /proc/PID/status can't be read. */
4376 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4377 {
4378 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4379 lp->status_pending_p = 0;
4380 return 1;
4381 }
4382 return 0;
4383 }
4384
4385 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4386 disappears while we try to resume it. */
4387
4388 static void
4389 linux_resume_one_lwp (struct lwp_info *lwp,
4390 int step, int signal, siginfo_t *info)
4391 {
4392 TRY
4393 {
4394 linux_resume_one_lwp_throw (lwp, step, signal, info);
4395 }
4396 CATCH (ex, RETURN_MASK_ERROR)
4397 {
4398 if (!check_ptrace_stopped_lwp_gone (lwp))
4399 throw_exception (ex);
4400 }
4401 END_CATCH
4402 }
4403
4404 struct thread_resume_array
4405 {
4406 struct thread_resume *resume;
4407 size_t n;
4408 };
4409
4410 /* This function is called once per thread via find_inferior.
4411 ARG is a pointer to a thread_resume_array struct.
4412 We look up the thread specified by ENTRY in ARG, and mark the thread
4413 with a pointer to the appropriate resume request.
4414
4415 This algorithm is O(threads * resume elements), but resume elements
4416 is small (and will remain small at least until GDB supports thread
4417 suspension). */
4418
4419 static int
4420 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4421 {
4422 struct thread_info *thread = (struct thread_info *) entry;
4423 struct lwp_info *lwp = get_thread_lwp (thread);
4424 int ndx;
4425 struct thread_resume_array *r;
4426
4427 r = (struct thread_resume_array *) arg;
4428
4429 for (ndx = 0; ndx < r->n; ndx++)
4430 {
4431 ptid_t ptid = r->resume[ndx].thread;
4432 if (ptid_equal (ptid, minus_one_ptid)
4433 || ptid_equal (ptid, entry->id)
4434 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4435 of PID'. */
4436 || (ptid_get_pid (ptid) == pid_of (thread)
4437 && (ptid_is_pid (ptid)
4438 || ptid_get_lwp (ptid) == -1)))
4439 {
4440 if (r->resume[ndx].kind == resume_stop
4441 && thread->last_resume_kind == resume_stop)
4442 {
4443 if (debug_threads)
4444 debug_printf ("already %s LWP %ld at GDB's request\n",
4445 (thread->last_status.kind
4446 == TARGET_WAITKIND_STOPPED)
4447 ? "stopped"
4448 : "stopping",
4449 lwpid_of (thread));
4450
4451 continue;
4452 }
4453
4454 lwp->resume = &r->resume[ndx];
4455 thread->last_resume_kind = lwp->resume->kind;
4456
4457 lwp->step_range_start = lwp->resume->step_range_start;
4458 lwp->step_range_end = lwp->resume->step_range_end;
4459
4460 /* If we had a deferred signal to report, dequeue one now.
4461 This can happen if LWP gets more than one signal while
4462 trying to get out of a jump pad. */
4463 if (lwp->stopped
4464 && !lwp->status_pending_p
4465 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4466 {
4467 lwp->status_pending_p = 1;
4468
4469 if (debug_threads)
4470 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4471 "leaving status pending.\n",
4472 WSTOPSIG (lwp->status_pending),
4473 lwpid_of (thread));
4474 }
4475
4476 return 0;
4477 }
4478 }
4479
4480 /* No resume action for this thread. */
4481 lwp->resume = NULL;
4482
4483 return 0;
4484 }
4485
4486 /* find_inferior callback for linux_resume.
4487 Set *FLAG_P if this lwp has an interesting status pending. */
4488
4489 static int
4490 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4491 {
4492 struct thread_info *thread = (struct thread_info *) entry;
4493 struct lwp_info *lwp = get_thread_lwp (thread);
4494
4495 /* LWPs which will not be resumed are not interesting, because
4496 we might not wait for them next time through linux_wait. */
4497 if (lwp->resume == NULL)
4498 return 0;
4499
4500 if (thread_still_has_status_pending_p (thread))
4501 * (int *) flag_p = 1;
4502
4503 return 0;
4504 }
4505
4506 /* Return 1 if this lwp that GDB wants running is stopped at an
4507 internal breakpoint that we need to step over. It assumes that any
4508 required STOP_PC adjustment has already been propagated to the
4509 inferior's regcache. */
4510
4511 static int
4512 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4513 {
4514 struct thread_info *thread = (struct thread_info *) entry;
4515 struct lwp_info *lwp = get_thread_lwp (thread);
4516 struct thread_info *saved_thread;
4517 CORE_ADDR pc;
4518 struct process_info *proc = get_thread_process (thread);
4519
4520 /* GDBserver is skipping the extra traps from the wrapper program,
4521 don't have to do step over. */
4522 if (proc->tdesc == NULL)
4523 return 0;
4524
4525 /* LWPs which will not be resumed are not interesting, because we
4526 might not wait for them next time through linux_wait. */
4527
4528 if (!lwp->stopped)
4529 {
4530 if (debug_threads)
4531 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4532 lwpid_of (thread));
4533 return 0;
4534 }
4535
4536 if (thread->last_resume_kind == resume_stop)
4537 {
4538 if (debug_threads)
4539 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4540 " stopped\n",
4541 lwpid_of (thread));
4542 return 0;
4543 }
4544
4545 gdb_assert (lwp->suspended >= 0);
4546
4547 if (lwp->suspended)
4548 {
4549 if (debug_threads)
4550 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4551 lwpid_of (thread));
4552 return 0;
4553 }
4554
4555 if (lwp->status_pending_p)
4556 {
4557 if (debug_threads)
4558 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4559 " status.\n",
4560 lwpid_of (thread));
4561 return 0;
4562 }
4563
4564 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4565 or we have. */
4566 pc = get_pc (lwp);
4567
4568 /* If the PC has changed since we stopped, then don't do anything,
4569 and let the breakpoint/tracepoint be hit. This happens if, for
4570 instance, GDB handled the decr_pc_after_break subtraction itself,
4571 GDB is OOL stepping this thread, or the user has issued a "jump"
4572 command, or poked thread's registers herself. */
4573 if (pc != lwp->stop_pc)
4574 {
4575 if (debug_threads)
4576 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4577 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4578 lwpid_of (thread),
4579 paddress (lwp->stop_pc), paddress (pc));
4580 return 0;
4581 }
4582
4583 /* On software single step target, resume the inferior with signal
4584 rather than stepping over. */
4585 if (can_software_single_step ()
4586 && lwp->pending_signals != NULL
4587 && lwp_signal_can_be_delivered (lwp))
4588 {
4589 if (debug_threads)
4590 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4591 " signals.\n",
4592 lwpid_of (thread));
4593
4594 return 0;
4595 }
4596
4597 saved_thread = current_thread;
4598 current_thread = thread;
4599
4600 /* We can only step over breakpoints we know about. */
4601 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4602 {
4603 /* Don't step over a breakpoint that GDB expects to hit
4604 though. If the condition is being evaluated on the target's side
4605 and it evaluate to false, step over this breakpoint as well. */
4606 if (gdb_breakpoint_here (pc)
4607 && gdb_condition_true_at_breakpoint (pc)
4608 && gdb_no_commands_at_breakpoint (pc))
4609 {
4610 if (debug_threads)
4611 debug_printf ("Need step over [LWP %ld]? yes, but found"
4612 " GDB breakpoint at 0x%s; skipping step over\n",
4613 lwpid_of (thread), paddress (pc));
4614
4615 current_thread = saved_thread;
4616 return 0;
4617 }
4618 else
4619 {
4620 if (debug_threads)
4621 debug_printf ("Need step over [LWP %ld]? yes, "
4622 "found breakpoint at 0x%s\n",
4623 lwpid_of (thread), paddress (pc));
4624
4625 /* We've found an lwp that needs stepping over --- return 1 so
4626 that find_inferior stops looking. */
4627 current_thread = saved_thread;
4628
4629 return 1;
4630 }
4631 }
4632
4633 current_thread = saved_thread;
4634
4635 if (debug_threads)
4636 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4637 " at 0x%s\n",
4638 lwpid_of (thread), paddress (pc));
4639
4640 return 0;
4641 }
4642
4643 /* Start a step-over operation on LWP. When LWP stopped at a
4644 breakpoint, to make progress, we need to remove the breakpoint out
4645 of the way. If we let other threads run while we do that, they may
4646 pass by the breakpoint location and miss hitting it. To avoid
4647 that, a step-over momentarily stops all threads while LWP is
4648 single-stepped by either hardware or software while the breakpoint
4649 is temporarily uninserted from the inferior. When the single-step
4650 finishes, we reinsert the breakpoint, and let all threads that are
4651 supposed to be running, run again. */
4652
4653 static int
4654 start_step_over (struct lwp_info *lwp)
4655 {
4656 struct thread_info *thread = get_lwp_thread (lwp);
4657 struct thread_info *saved_thread;
4658 CORE_ADDR pc;
4659 int step;
4660
4661 if (debug_threads)
4662 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4663 lwpid_of (thread));
4664
4665 stop_all_lwps (1, lwp);
4666
4667 if (lwp->suspended != 0)
4668 {
4669 internal_error (__FILE__, __LINE__,
4670 "LWP %ld suspended=%d\n", lwpid_of (thread),
4671 lwp->suspended);
4672 }
4673
4674 if (debug_threads)
4675 debug_printf ("Done stopping all threads for step-over.\n");
4676
4677 /* Note, we should always reach here with an already adjusted PC,
4678 either by GDB (if we're resuming due to GDB's request), or by our
4679 caller, if we just finished handling an internal breakpoint GDB
4680 shouldn't care about. */
4681 pc = get_pc (lwp);
4682
4683 saved_thread = current_thread;
4684 current_thread = thread;
4685
4686 lwp->bp_reinsert = pc;
4687 uninsert_breakpoints_at (pc);
4688 uninsert_fast_tracepoint_jumps_at (pc);
4689
4690 step = single_step (lwp);
4691
4692 current_thread = saved_thread;
4693
4694 linux_resume_one_lwp (lwp, step, 0, NULL);
4695
4696 /* Require next event from this LWP. */
4697 step_over_bkpt = thread->entry.id;
4698 return 1;
4699 }
4700
4701 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4702 start_step_over, if still there, and delete any reinsert
4703 breakpoints we've set, on non hardware single-step targets. */
4704
4705 static int
4706 finish_step_over (struct lwp_info *lwp)
4707 {
4708 if (lwp->bp_reinsert != 0)
4709 {
4710 struct thread_info *saved_thread = current_thread;
4711
4712 if (debug_threads)
4713 debug_printf ("Finished step over.\n");
4714
4715 current_thread = get_lwp_thread (lwp);
4716
4717 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4718 may be no breakpoint to reinsert there by now. */
4719 reinsert_breakpoints_at (lwp->bp_reinsert);
4720 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4721
4722 lwp->bp_reinsert = 0;
4723
4724 /* Delete any software-single-step reinsert breakpoints. No
4725 longer needed. We don't have to worry about other threads
4726 hitting this trap, and later not being able to explain it,
4727 because we were stepping over a breakpoint, and we hold all
4728 threads but LWP stopped while doing that. */
4729 if (!can_hardware_single_step ())
4730 {
4731 gdb_assert (has_reinsert_breakpoints (current_process ()));
4732 delete_reinsert_breakpoints ();
4733 }
4734
4735 step_over_bkpt = null_ptid;
4736 current_thread = saved_thread;
4737 return 1;
4738 }
4739 else
4740 return 0;
4741 }
4742
4743 /* If there's a step over in progress, wait until all threads stop
4744 (that is, until the stepping thread finishes its step), and
4745 unsuspend all lwps. The stepping thread ends with its status
4746 pending, which is processed later when we get back to processing
4747 events. */
4748
4749 static void
4750 complete_ongoing_step_over (void)
4751 {
4752 if (!ptid_equal (step_over_bkpt, null_ptid))
4753 {
4754 struct lwp_info *lwp;
4755 int wstat;
4756 int ret;
4757
4758 if (debug_threads)
4759 debug_printf ("detach: step over in progress, finish it first\n");
4760
4761 /* Passing NULL_PTID as filter indicates we want all events to
4762 be left pending. Eventually this returns when there are no
4763 unwaited-for children left. */
4764 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4765 &wstat, __WALL);
4766 gdb_assert (ret == -1);
4767
4768 lwp = find_lwp_pid (step_over_bkpt);
4769 if (lwp != NULL)
4770 finish_step_over (lwp);
4771 step_over_bkpt = null_ptid;
4772 unsuspend_all_lwps (lwp);
4773 }
4774 }
4775
4776 /* This function is called once per thread. We check the thread's resume
4777 request, which will tell us whether to resume, step, or leave the thread
4778 stopped; and what signal, if any, it should be sent.
4779
4780 For threads which we aren't explicitly told otherwise, we preserve
4781 the stepping flag; this is used for stepping over gdbserver-placed
4782 breakpoints.
4783
4784 If pending_flags was set in any thread, we queue any needed
4785 signals, since we won't actually resume. We already have a pending
4786 event to report, so we don't need to preserve any step requests;
4787 they should be re-issued if necessary. */
4788
4789 static int
4790 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
4791 {
4792 struct thread_info *thread = (struct thread_info *) entry;
4793 struct lwp_info *lwp = get_thread_lwp (thread);
4794 int step;
4795 int leave_all_stopped = * (int *) arg;
4796 int leave_pending;
4797
4798 if (lwp->resume == NULL)
4799 return 0;
4800
4801 if (lwp->resume->kind == resume_stop)
4802 {
4803 if (debug_threads)
4804 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4805
4806 if (!lwp->stopped)
4807 {
4808 if (debug_threads)
4809 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4810
4811 /* Stop the thread, and wait for the event asynchronously,
4812 through the event loop. */
4813 send_sigstop (lwp);
4814 }
4815 else
4816 {
4817 if (debug_threads)
4818 debug_printf ("already stopped LWP %ld\n",
4819 lwpid_of (thread));
4820
4821 /* The LWP may have been stopped in an internal event that
4822 was not meant to be notified back to GDB (e.g., gdbserver
4823 breakpoint), so we should be reporting a stop event in
4824 this case too. */
4825
4826 /* If the thread already has a pending SIGSTOP, this is a
4827 no-op. Otherwise, something later will presumably resume
4828 the thread and this will cause it to cancel any pending
4829 operation, due to last_resume_kind == resume_stop. If
4830 the thread already has a pending status to report, we
4831 will still report it the next time we wait - see
4832 status_pending_p_callback. */
4833
4834 /* If we already have a pending signal to report, then
4835 there's no need to queue a SIGSTOP, as this means we're
4836 midway through moving the LWP out of the jumppad, and we
4837 will report the pending signal as soon as that is
4838 finished. */
4839 if (lwp->pending_signals_to_report == NULL)
4840 send_sigstop (lwp);
4841 }
4842
4843 /* For stop requests, we're done. */
4844 lwp->resume = NULL;
4845 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4846 return 0;
4847 }
4848
4849 /* If this thread which is about to be resumed has a pending status,
4850 then don't resume it - we can just report the pending status.
4851 Likewise if it is suspended, because e.g., another thread is
4852 stepping past a breakpoint. Make sure to queue any signals that
4853 would otherwise be sent. In all-stop mode, we do this decision
4854 based on if *any* thread has a pending status. If there's a
4855 thread that needs the step-over-breakpoint dance, then don't
4856 resume any other thread but that particular one. */
4857 leave_pending = (lwp->suspended
4858 || lwp->status_pending_p
4859 || leave_all_stopped);
4860
4861 if (!leave_pending)
4862 {
4863 if (debug_threads)
4864 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4865
4866 step = (lwp->resume->kind == resume_step);
4867 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
4868 }
4869 else
4870 {
4871 if (debug_threads)
4872 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4873
4874 /* If we have a new signal, enqueue the signal. */
4875 if (lwp->resume->sig != 0)
4876 {
4877 struct pending_signals *p_sig = XCNEW (struct pending_signals);
4878
4879 p_sig->prev = lwp->pending_signals;
4880 p_sig->signal = lwp->resume->sig;
4881
4882 /* If this is the same signal we were previously stopped by,
4883 make sure to queue its siginfo. We can ignore the return
4884 value of ptrace; if it fails, we'll skip
4885 PTRACE_SETSIGINFO. */
4886 if (WIFSTOPPED (lwp->last_status)
4887 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
4888 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4889 &p_sig->info);
4890
4891 lwp->pending_signals = p_sig;
4892 }
4893 }
4894
4895 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4896 lwp->resume = NULL;
4897 return 0;
4898 }
4899
4900 static void
4901 linux_resume (struct thread_resume *resume_info, size_t n)
4902 {
4903 struct thread_resume_array array = { resume_info, n };
4904 struct thread_info *need_step_over = NULL;
4905 int any_pending;
4906 int leave_all_stopped;
4907
4908 if (debug_threads)
4909 {
4910 debug_enter ();
4911 debug_printf ("linux_resume:\n");
4912 }
4913
4914 find_inferior (&all_threads, linux_set_resume_request, &array);
4915
4916 /* If there is a thread which would otherwise be resumed, which has
4917 a pending status, then don't resume any threads - we can just
4918 report the pending status. Make sure to queue any signals that
4919 would otherwise be sent. In non-stop mode, we'll apply this
4920 logic to each thread individually. We consume all pending events
4921 before considering to start a step-over (in all-stop). */
4922 any_pending = 0;
4923 if (!non_stop)
4924 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4925
4926 /* If there is a thread which would otherwise be resumed, which is
4927 stopped at a breakpoint that needs stepping over, then don't
4928 resume any threads - have it step over the breakpoint with all
4929 other threads stopped, then resume all threads again. Make sure
4930 to queue any signals that would otherwise be delivered or
4931 queued. */
4932 if (!any_pending && supports_breakpoints ())
4933 need_step_over
4934 = (struct thread_info *) find_inferior (&all_threads,
4935 need_step_over_p, NULL);
4936
4937 leave_all_stopped = (need_step_over != NULL || any_pending);
4938
4939 if (debug_threads)
4940 {
4941 if (need_step_over != NULL)
4942 debug_printf ("Not resuming all, need step over\n");
4943 else if (any_pending)
4944 debug_printf ("Not resuming, all-stop and found "
4945 "an LWP with pending status\n");
4946 else
4947 debug_printf ("Resuming, no pending status or step over needed\n");
4948 }
4949
4950 /* Even if we're leaving threads stopped, queue all signals we'd
4951 otherwise deliver. */
4952 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4953
4954 if (need_step_over)
4955 start_step_over (get_thread_lwp (need_step_over));
4956
4957 if (debug_threads)
4958 {
4959 debug_printf ("linux_resume done\n");
4960 debug_exit ();
4961 }
4962
4963 /* We may have events that were pending that can/should be sent to
4964 the client now. Trigger a linux_wait call. */
4965 if (target_is_async_p ())
4966 async_file_mark ();
4967 }
4968
4969 /* This function is called once per thread. We check the thread's
4970 last resume request, which will tell us whether to resume, step, or
4971 leave the thread stopped. Any signal the client requested to be
4972 delivered has already been enqueued at this point.
4973
4974 If any thread that GDB wants running is stopped at an internal
4975 breakpoint that needs stepping over, we start a step-over operation
4976 on that particular thread, and leave all others stopped. */
4977
4978 static int
4979 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4980 {
4981 struct thread_info *thread = (struct thread_info *) entry;
4982 struct lwp_info *lwp = get_thread_lwp (thread);
4983 int step;
4984
4985 if (lwp == except)
4986 return 0;
4987
4988 if (debug_threads)
4989 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4990
4991 if (!lwp->stopped)
4992 {
4993 if (debug_threads)
4994 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4995 return 0;
4996 }
4997
4998 if (thread->last_resume_kind == resume_stop
4999 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5000 {
5001 if (debug_threads)
5002 debug_printf (" client wants LWP to remain %ld stopped\n",
5003 lwpid_of (thread));
5004 return 0;
5005 }
5006
5007 if (lwp->status_pending_p)
5008 {
5009 if (debug_threads)
5010 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5011 lwpid_of (thread));
5012 return 0;
5013 }
5014
5015 gdb_assert (lwp->suspended >= 0);
5016
5017 if (lwp->suspended)
5018 {
5019 if (debug_threads)
5020 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5021 return 0;
5022 }
5023
5024 if (thread->last_resume_kind == resume_stop
5025 && lwp->pending_signals_to_report == NULL
5026 && lwp->collecting_fast_tracepoint == 0)
5027 {
5028 /* We haven't reported this LWP as stopped yet (otherwise, the
5029 last_status.kind check above would catch it, and we wouldn't
5030 reach here. This LWP may have been momentarily paused by a
5031 stop_all_lwps call while handling for example, another LWP's
5032 step-over. In that case, the pending expected SIGSTOP signal
5033 that was queued at vCont;t handling time will have already
5034 been consumed by wait_for_sigstop, and so we need to requeue
5035 another one here. Note that if the LWP already has a SIGSTOP
5036 pending, this is a no-op. */
5037
5038 if (debug_threads)
5039 debug_printf ("Client wants LWP %ld to stop. "
5040 "Making sure it has a SIGSTOP pending\n",
5041 lwpid_of (thread));
5042
5043 send_sigstop (lwp);
5044 }
5045
5046 if (thread->last_resume_kind == resume_step)
5047 {
5048 if (debug_threads)
5049 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5050 lwpid_of (thread));
5051 step = 1;
5052 }
5053 else if (lwp->bp_reinsert != 0)
5054 {
5055 if (debug_threads)
5056 debug_printf (" stepping LWP %ld, reinsert set\n",
5057 lwpid_of (thread));
5058
5059 step = maybe_hw_step (thread);
5060 }
5061 else
5062 step = 0;
5063
5064 linux_resume_one_lwp (lwp, step, 0, NULL);
5065 return 0;
5066 }
5067
5068 static int
5069 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5070 {
5071 struct thread_info *thread = (struct thread_info *) entry;
5072 struct lwp_info *lwp = get_thread_lwp (thread);
5073
5074 if (lwp == except)
5075 return 0;
5076
5077 lwp_suspended_decr (lwp);
5078
5079 return proceed_one_lwp (entry, except);
5080 }
5081
5082 /* When we finish a step-over, set threads running again. If there's
5083 another thread that may need a step-over, now's the time to start
5084 it. Eventually, we'll move all threads past their breakpoints. */
5085
5086 static void
5087 proceed_all_lwps (void)
5088 {
5089 struct thread_info *need_step_over;
5090
5091 /* If there is a thread which would otherwise be resumed, which is
5092 stopped at a breakpoint that needs stepping over, then don't
5093 resume any threads - have it step over the breakpoint with all
5094 other threads stopped, then resume all threads again. */
5095
5096 if (supports_breakpoints ())
5097 {
5098 need_step_over
5099 = (struct thread_info *) find_inferior (&all_threads,
5100 need_step_over_p, NULL);
5101
5102 if (need_step_over != NULL)
5103 {
5104 if (debug_threads)
5105 debug_printf ("proceed_all_lwps: found "
5106 "thread %ld needing a step-over\n",
5107 lwpid_of (need_step_over));
5108
5109 start_step_over (get_thread_lwp (need_step_over));
5110 return;
5111 }
5112 }
5113
5114 if (debug_threads)
5115 debug_printf ("Proceeding, no step-over needed\n");
5116
5117 find_inferior (&all_threads, proceed_one_lwp, NULL);
5118 }
5119
5120 /* Stopped LWPs that the client wanted to be running, that don't have
5121 pending statuses, are set to run again, except for EXCEPT, if not
5122 NULL. This undoes a stop_all_lwps call. */
5123
5124 static void
5125 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5126 {
5127 if (debug_threads)
5128 {
5129 debug_enter ();
5130 if (except)
5131 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5132 lwpid_of (get_lwp_thread (except)));
5133 else
5134 debug_printf ("unstopping all lwps\n");
5135 }
5136
5137 if (unsuspend)
5138 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5139 else
5140 find_inferior (&all_threads, proceed_one_lwp, except);
5141
5142 if (debug_threads)
5143 {
5144 debug_printf ("unstop_all_lwps done\n");
5145 debug_exit ();
5146 }
5147 }
5148
5149
5150 #ifdef HAVE_LINUX_REGSETS
5151
5152 #define use_linux_regsets 1
5153
5154 /* Returns true if REGSET has been disabled. */
5155
5156 static int
5157 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5158 {
5159 return (info->disabled_regsets != NULL
5160 && info->disabled_regsets[regset - info->regsets]);
5161 }
5162
5163 /* Disable REGSET. */
5164
5165 static void
5166 disable_regset (struct regsets_info *info, struct regset_info *regset)
5167 {
5168 int dr_offset;
5169
5170 dr_offset = regset - info->regsets;
5171 if (info->disabled_regsets == NULL)
5172 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5173 info->disabled_regsets[dr_offset] = 1;
5174 }
5175
5176 static int
5177 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5178 struct regcache *regcache)
5179 {
5180 struct regset_info *regset;
5181 int saw_general_regs = 0;
5182 int pid;
5183 struct iovec iov;
5184
5185 pid = lwpid_of (current_thread);
5186 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5187 {
5188 void *buf, *data;
5189 int nt_type, res;
5190
5191 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5192 continue;
5193
5194 buf = xmalloc (regset->size);
5195
5196 nt_type = regset->nt_type;
5197 if (nt_type)
5198 {
5199 iov.iov_base = buf;
5200 iov.iov_len = regset->size;
5201 data = (void *) &iov;
5202 }
5203 else
5204 data = buf;
5205
5206 #ifndef __sparc__
5207 res = ptrace (regset->get_request, pid,
5208 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5209 #else
5210 res = ptrace (regset->get_request, pid, data, nt_type);
5211 #endif
5212 if (res < 0)
5213 {
5214 if (errno == EIO)
5215 {
5216 /* If we get EIO on a regset, do not try it again for
5217 this process mode. */
5218 disable_regset (regsets_info, regset);
5219 }
5220 else if (errno == ENODATA)
5221 {
5222 /* ENODATA may be returned if the regset is currently
5223 not "active". This can happen in normal operation,
5224 so suppress the warning in this case. */
5225 }
5226 else
5227 {
5228 char s[256];
5229 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5230 pid);
5231 perror (s);
5232 }
5233 }
5234 else
5235 {
5236 if (regset->type == GENERAL_REGS)
5237 saw_general_regs = 1;
5238 regset->store_function (regcache, buf);
5239 }
5240 free (buf);
5241 }
5242 if (saw_general_regs)
5243 return 0;
5244 else
5245 return 1;
5246 }
5247
5248 static int
5249 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5250 struct regcache *regcache)
5251 {
5252 struct regset_info *regset;
5253 int saw_general_regs = 0;
5254 int pid;
5255 struct iovec iov;
5256
5257 pid = lwpid_of (current_thread);
5258 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5259 {
5260 void *buf, *data;
5261 int nt_type, res;
5262
5263 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5264 || regset->fill_function == NULL)
5265 continue;
5266
5267 buf = xmalloc (regset->size);
5268
5269 /* First fill the buffer with the current register set contents,
5270 in case there are any items in the kernel's regset that are
5271 not in gdbserver's regcache. */
5272
5273 nt_type = regset->nt_type;
5274 if (nt_type)
5275 {
5276 iov.iov_base = buf;
5277 iov.iov_len = regset->size;
5278 data = (void *) &iov;
5279 }
5280 else
5281 data = buf;
5282
5283 #ifndef __sparc__
5284 res = ptrace (regset->get_request, pid,
5285 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5286 #else
5287 res = ptrace (regset->get_request, pid, data, nt_type);
5288 #endif
5289
5290 if (res == 0)
5291 {
5292 /* Then overlay our cached registers on that. */
5293 regset->fill_function (regcache, buf);
5294
5295 /* Only now do we write the register set. */
5296 #ifndef __sparc__
5297 res = ptrace (regset->set_request, pid,
5298 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5299 #else
5300 res = ptrace (regset->set_request, pid, data, nt_type);
5301 #endif
5302 }
5303
5304 if (res < 0)
5305 {
5306 if (errno == EIO)
5307 {
5308 /* If we get EIO on a regset, do not try it again for
5309 this process mode. */
5310 disable_regset (regsets_info, regset);
5311 }
5312 else if (errno == ESRCH)
5313 {
5314 /* At this point, ESRCH should mean the process is
5315 already gone, in which case we simply ignore attempts
5316 to change its registers. See also the related
5317 comment in linux_resume_one_lwp. */
5318 free (buf);
5319 return 0;
5320 }
5321 else
5322 {
5323 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5324 }
5325 }
5326 else if (regset->type == GENERAL_REGS)
5327 saw_general_regs = 1;
5328 free (buf);
5329 }
5330 if (saw_general_regs)
5331 return 0;
5332 else
5333 return 1;
5334 }
5335
5336 #else /* !HAVE_LINUX_REGSETS */
5337
5338 #define use_linux_regsets 0
5339 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5340 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5341
5342 #endif
5343
5344 /* Return 1 if register REGNO is supported by one of the regset ptrace
5345 calls or 0 if it has to be transferred individually. */
5346
5347 static int
5348 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5349 {
5350 unsigned char mask = 1 << (regno % 8);
5351 size_t index = regno / 8;
5352
5353 return (use_linux_regsets
5354 && (regs_info->regset_bitmap == NULL
5355 || (regs_info->regset_bitmap[index] & mask) != 0));
5356 }
5357
5358 #ifdef HAVE_LINUX_USRREGS
5359
5360 static int
5361 register_addr (const struct usrregs_info *usrregs, int regnum)
5362 {
5363 int addr;
5364
5365 if (regnum < 0 || regnum >= usrregs->num_regs)
5366 error ("Invalid register number %d.", regnum);
5367
5368 addr = usrregs->regmap[regnum];
5369
5370 return addr;
5371 }
5372
5373 /* Fetch one register. */
5374 static void
5375 fetch_register (const struct usrregs_info *usrregs,
5376 struct regcache *regcache, int regno)
5377 {
5378 CORE_ADDR regaddr;
5379 int i, size;
5380 char *buf;
5381 int pid;
5382
5383 if (regno >= usrregs->num_regs)
5384 return;
5385 if ((*the_low_target.cannot_fetch_register) (regno))
5386 return;
5387
5388 regaddr = register_addr (usrregs, regno);
5389 if (regaddr == -1)
5390 return;
5391
5392 size = ((register_size (regcache->tdesc, regno)
5393 + sizeof (PTRACE_XFER_TYPE) - 1)
5394 & -sizeof (PTRACE_XFER_TYPE));
5395 buf = (char *) alloca (size);
5396
5397 pid = lwpid_of (current_thread);
5398 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5399 {
5400 errno = 0;
5401 *(PTRACE_XFER_TYPE *) (buf + i) =
5402 ptrace (PTRACE_PEEKUSER, pid,
5403 /* Coerce to a uintptr_t first to avoid potential gcc warning
5404 of coercing an 8 byte integer to a 4 byte pointer. */
5405 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5406 regaddr += sizeof (PTRACE_XFER_TYPE);
5407 if (errno != 0)
5408 error ("reading register %d: %s", regno, strerror (errno));
5409 }
5410
5411 if (the_low_target.supply_ptrace_register)
5412 the_low_target.supply_ptrace_register (regcache, regno, buf);
5413 else
5414 supply_register (regcache, regno, buf);
5415 }
5416
5417 /* Store one register. */
5418 static void
5419 store_register (const struct usrregs_info *usrregs,
5420 struct regcache *regcache, int regno)
5421 {
5422 CORE_ADDR regaddr;
5423 int i, size;
5424 char *buf;
5425 int pid;
5426
5427 if (regno >= usrregs->num_regs)
5428 return;
5429 if ((*the_low_target.cannot_store_register) (regno))
5430 return;
5431
5432 regaddr = register_addr (usrregs, regno);
5433 if (regaddr == -1)
5434 return;
5435
5436 size = ((register_size (regcache->tdesc, regno)
5437 + sizeof (PTRACE_XFER_TYPE) - 1)
5438 & -sizeof (PTRACE_XFER_TYPE));
5439 buf = (char *) alloca (size);
5440 memset (buf, 0, size);
5441
5442 if (the_low_target.collect_ptrace_register)
5443 the_low_target.collect_ptrace_register (regcache, regno, buf);
5444 else
5445 collect_register (regcache, regno, buf);
5446
5447 pid = lwpid_of (current_thread);
5448 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5449 {
5450 errno = 0;
5451 ptrace (PTRACE_POKEUSER, pid,
5452 /* Coerce to a uintptr_t first to avoid potential gcc warning
5453 about coercing an 8 byte integer to a 4 byte pointer. */
5454 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5455 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5456 if (errno != 0)
5457 {
5458 /* At this point, ESRCH should mean the process is
5459 already gone, in which case we simply ignore attempts
5460 to change its registers. See also the related
5461 comment in linux_resume_one_lwp. */
5462 if (errno == ESRCH)
5463 return;
5464
5465 if ((*the_low_target.cannot_store_register) (regno) == 0)
5466 error ("writing register %d: %s", regno, strerror (errno));
5467 }
5468 regaddr += sizeof (PTRACE_XFER_TYPE);
5469 }
5470 }
5471
5472 /* Fetch all registers, or just one, from the child process.
5473 If REGNO is -1, do this for all registers, skipping any that are
5474 assumed to have been retrieved by regsets_fetch_inferior_registers,
5475 unless ALL is non-zero.
5476 Otherwise, REGNO specifies which register (so we can save time). */
5477 static void
5478 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5479 struct regcache *regcache, int regno, int all)
5480 {
5481 struct usrregs_info *usr = regs_info->usrregs;
5482
5483 if (regno == -1)
5484 {
5485 for (regno = 0; regno < usr->num_regs; regno++)
5486 if (all || !linux_register_in_regsets (regs_info, regno))
5487 fetch_register (usr, regcache, regno);
5488 }
5489 else
5490 fetch_register (usr, regcache, regno);
5491 }
5492
5493 /* Store our register values back into the inferior.
5494 If REGNO is -1, do this for all registers, skipping any that are
5495 assumed to have been saved by regsets_store_inferior_registers,
5496 unless ALL is non-zero.
5497 Otherwise, REGNO specifies which register (so we can save time). */
5498 static void
5499 usr_store_inferior_registers (const struct regs_info *regs_info,
5500 struct regcache *regcache, int regno, int all)
5501 {
5502 struct usrregs_info *usr = regs_info->usrregs;
5503
5504 if (regno == -1)
5505 {
5506 for (regno = 0; regno < usr->num_regs; regno++)
5507 if (all || !linux_register_in_regsets (regs_info, regno))
5508 store_register (usr, regcache, regno);
5509 }
5510 else
5511 store_register (usr, regcache, regno);
5512 }
5513
5514 #else /* !HAVE_LINUX_USRREGS */
5515
5516 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5517 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5518
5519 #endif
5520
5521
5522 static void
5523 linux_fetch_registers (struct regcache *regcache, int regno)
5524 {
5525 int use_regsets;
5526 int all = 0;
5527 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5528
5529 if (regno == -1)
5530 {
5531 if (the_low_target.fetch_register != NULL
5532 && regs_info->usrregs != NULL)
5533 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5534 (*the_low_target.fetch_register) (regcache, regno);
5535
5536 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5537 if (regs_info->usrregs != NULL)
5538 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5539 }
5540 else
5541 {
5542 if (the_low_target.fetch_register != NULL
5543 && (*the_low_target.fetch_register) (regcache, regno))
5544 return;
5545
5546 use_regsets = linux_register_in_regsets (regs_info, regno);
5547 if (use_regsets)
5548 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5549 regcache);
5550 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5551 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5552 }
5553 }
5554
5555 static void
5556 linux_store_registers (struct regcache *regcache, int regno)
5557 {
5558 int use_regsets;
5559 int all = 0;
5560 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5561
5562 if (regno == -1)
5563 {
5564 all = regsets_store_inferior_registers (regs_info->regsets_info,
5565 regcache);
5566 if (regs_info->usrregs != NULL)
5567 usr_store_inferior_registers (regs_info, regcache, regno, all);
5568 }
5569 else
5570 {
5571 use_regsets = linux_register_in_regsets (regs_info, regno);
5572 if (use_regsets)
5573 all = regsets_store_inferior_registers (regs_info->regsets_info,
5574 regcache);
5575 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5576 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5577 }
5578 }
5579
5580
5581 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5582 to debugger memory starting at MYADDR. */
5583
5584 static int
5585 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5586 {
5587 int pid = lwpid_of (current_thread);
5588 register PTRACE_XFER_TYPE *buffer;
5589 register CORE_ADDR addr;
5590 register int count;
5591 char filename[64];
5592 register int i;
5593 int ret;
5594 int fd;
5595
5596 /* Try using /proc. Don't bother for one word. */
5597 if (len >= 3 * sizeof (long))
5598 {
5599 int bytes;
5600
5601 /* We could keep this file open and cache it - possibly one per
5602 thread. That requires some juggling, but is even faster. */
5603 sprintf (filename, "/proc/%d/mem", pid);
5604 fd = open (filename, O_RDONLY | O_LARGEFILE);
5605 if (fd == -1)
5606 goto no_proc;
5607
5608 /* If pread64 is available, use it. It's faster if the kernel
5609 supports it (only one syscall), and it's 64-bit safe even on
5610 32-bit platforms (for instance, SPARC debugging a SPARC64
5611 application). */
5612 #ifdef HAVE_PREAD64
5613 bytes = pread64 (fd, myaddr, len, memaddr);
5614 #else
5615 bytes = -1;
5616 if (lseek (fd, memaddr, SEEK_SET) != -1)
5617 bytes = read (fd, myaddr, len);
5618 #endif
5619
5620 close (fd);
5621 if (bytes == len)
5622 return 0;
5623
5624 /* Some data was read, we'll try to get the rest with ptrace. */
5625 if (bytes > 0)
5626 {
5627 memaddr += bytes;
5628 myaddr += bytes;
5629 len -= bytes;
5630 }
5631 }
5632
5633 no_proc:
5634 /* Round starting address down to longword boundary. */
5635 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5636 /* Round ending address up; get number of longwords that makes. */
5637 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5638 / sizeof (PTRACE_XFER_TYPE));
5639 /* Allocate buffer of that many longwords. */
5640 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5641
5642 /* Read all the longwords */
5643 errno = 0;
5644 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5645 {
5646 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5647 about coercing an 8 byte integer to a 4 byte pointer. */
5648 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5649 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5650 (PTRACE_TYPE_ARG4) 0);
5651 if (errno)
5652 break;
5653 }
5654 ret = errno;
5655
5656 /* Copy appropriate bytes out of the buffer. */
5657 if (i > 0)
5658 {
5659 i *= sizeof (PTRACE_XFER_TYPE);
5660 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5661 memcpy (myaddr,
5662 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5663 i < len ? i : len);
5664 }
5665
5666 return ret;
5667 }
5668
5669 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5670 memory at MEMADDR. On failure (cannot write to the inferior)
5671 returns the value of errno. Always succeeds if LEN is zero. */
5672
5673 static int
5674 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5675 {
5676 register int i;
5677 /* Round starting address down to longword boundary. */
5678 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5679 /* Round ending address up; get number of longwords that makes. */
5680 register int count
5681 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5682 / sizeof (PTRACE_XFER_TYPE);
5683
5684 /* Allocate buffer of that many longwords. */
5685 register PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5686
5687 int pid = lwpid_of (current_thread);
5688
5689 if (len == 0)
5690 {
5691 /* Zero length write always succeeds. */
5692 return 0;
5693 }
5694
5695 if (debug_threads)
5696 {
5697 /* Dump up to four bytes. */
5698 char str[4 * 2 + 1];
5699 char *p = str;
5700 int dump = len < 4 ? len : 4;
5701
5702 for (i = 0; i < dump; i++)
5703 {
5704 sprintf (p, "%02x", myaddr[i]);
5705 p += 2;
5706 }
5707 *p = '\0';
5708
5709 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5710 str, (long) memaddr, pid);
5711 }
5712
5713 /* Fill start and end extra bytes of buffer with existing memory data. */
5714
5715 errno = 0;
5716 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5717 about coercing an 8 byte integer to a 4 byte pointer. */
5718 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5719 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5720 (PTRACE_TYPE_ARG4) 0);
5721 if (errno)
5722 return errno;
5723
5724 if (count > 1)
5725 {
5726 errno = 0;
5727 buffer[count - 1]
5728 = ptrace (PTRACE_PEEKTEXT, pid,
5729 /* Coerce to a uintptr_t first to avoid potential gcc warning
5730 about coercing an 8 byte integer to a 4 byte pointer. */
5731 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5732 * sizeof (PTRACE_XFER_TYPE)),
5733 (PTRACE_TYPE_ARG4) 0);
5734 if (errno)
5735 return errno;
5736 }
5737
5738 /* Copy data to be written over corresponding part of buffer. */
5739
5740 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5741 myaddr, len);
5742
5743 /* Write the entire buffer. */
5744
5745 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5746 {
5747 errno = 0;
5748 ptrace (PTRACE_POKETEXT, pid,
5749 /* Coerce to a uintptr_t first to avoid potential gcc warning
5750 about coercing an 8 byte integer to a 4 byte pointer. */
5751 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5752 (PTRACE_TYPE_ARG4) buffer[i]);
5753 if (errno)
5754 return errno;
5755 }
5756
5757 return 0;
5758 }
5759
5760 static void
5761 linux_look_up_symbols (void)
5762 {
5763 #ifdef USE_THREAD_DB
5764 struct process_info *proc = current_process ();
5765
5766 if (proc->priv->thread_db != NULL)
5767 return;
5768
5769 thread_db_init ();
5770 #endif
5771 }
5772
5773 static void
5774 linux_request_interrupt (void)
5775 {
5776 extern unsigned long signal_pid;
5777
5778 /* Send a SIGINT to the process group. This acts just like the user
5779 typed a ^C on the controlling terminal. */
5780 kill (-signal_pid, SIGINT);
5781 }
5782
5783 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5784 to debugger memory starting at MYADDR. */
5785
5786 static int
5787 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5788 {
5789 char filename[PATH_MAX];
5790 int fd, n;
5791 int pid = lwpid_of (current_thread);
5792
5793 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5794
5795 fd = open (filename, O_RDONLY);
5796 if (fd < 0)
5797 return -1;
5798
5799 if (offset != (CORE_ADDR) 0
5800 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5801 n = -1;
5802 else
5803 n = read (fd, myaddr, len);
5804
5805 close (fd);
5806
5807 return n;
5808 }
5809
5810 /* These breakpoint and watchpoint related wrapper functions simply
5811 pass on the function call if the target has registered a
5812 corresponding function. */
5813
5814 static int
5815 linux_supports_z_point_type (char z_type)
5816 {
5817 return (the_low_target.supports_z_point_type != NULL
5818 && the_low_target.supports_z_point_type (z_type));
5819 }
5820
5821 static int
5822 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5823 int size, struct raw_breakpoint *bp)
5824 {
5825 if (type == raw_bkpt_type_sw)
5826 return insert_memory_breakpoint (bp);
5827 else if (the_low_target.insert_point != NULL)
5828 return the_low_target.insert_point (type, addr, size, bp);
5829 else
5830 /* Unsupported (see target.h). */
5831 return 1;
5832 }
5833
5834 static int
5835 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5836 int size, struct raw_breakpoint *bp)
5837 {
5838 if (type == raw_bkpt_type_sw)
5839 return remove_memory_breakpoint (bp);
5840 else if (the_low_target.remove_point != NULL)
5841 return the_low_target.remove_point (type, addr, size, bp);
5842 else
5843 /* Unsupported (see target.h). */
5844 return 1;
5845 }
5846
5847 /* Implement the to_stopped_by_sw_breakpoint target_ops
5848 method. */
5849
5850 static int
5851 linux_stopped_by_sw_breakpoint (void)
5852 {
5853 struct lwp_info *lwp = get_thread_lwp (current_thread);
5854
5855 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5856 }
5857
5858 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5859 method. */
5860
5861 static int
5862 linux_supports_stopped_by_sw_breakpoint (void)
5863 {
5864 return USE_SIGTRAP_SIGINFO;
5865 }
5866
5867 /* Implement the to_stopped_by_hw_breakpoint target_ops
5868 method. */
5869
5870 static int
5871 linux_stopped_by_hw_breakpoint (void)
5872 {
5873 struct lwp_info *lwp = get_thread_lwp (current_thread);
5874
5875 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5876 }
5877
5878 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
5879 method. */
5880
5881 static int
5882 linux_supports_stopped_by_hw_breakpoint (void)
5883 {
5884 return USE_SIGTRAP_SIGINFO;
5885 }
5886
5887 /* Implement the supports_hardware_single_step target_ops method. */
5888
5889 static int
5890 linux_supports_hardware_single_step (void)
5891 {
5892 return can_hardware_single_step ();
5893 }
5894
5895 static int
5896 linux_supports_software_single_step (void)
5897 {
5898 return can_software_single_step ();
5899 }
5900
5901 static int
5902 linux_stopped_by_watchpoint (void)
5903 {
5904 struct lwp_info *lwp = get_thread_lwp (current_thread);
5905
5906 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5907 }
5908
5909 static CORE_ADDR
5910 linux_stopped_data_address (void)
5911 {
5912 struct lwp_info *lwp = get_thread_lwp (current_thread);
5913
5914 return lwp->stopped_data_address;
5915 }
5916
5917 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5918 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5919 && defined(PT_TEXT_END_ADDR)
5920
5921 /* This is only used for targets that define PT_TEXT_ADDR,
5922 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5923 the target has different ways of acquiring this information, like
5924 loadmaps. */
5925
5926 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5927 to tell gdb about. */
5928
5929 static int
5930 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5931 {
5932 unsigned long text, text_end, data;
5933 int pid = lwpid_of (current_thread);
5934
5935 errno = 0;
5936
5937 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5938 (PTRACE_TYPE_ARG4) 0);
5939 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5940 (PTRACE_TYPE_ARG4) 0);
5941 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5942 (PTRACE_TYPE_ARG4) 0);
5943
5944 if (errno == 0)
5945 {
5946 /* Both text and data offsets produced at compile-time (and so
5947 used by gdb) are relative to the beginning of the program,
5948 with the data segment immediately following the text segment.
5949 However, the actual runtime layout in memory may put the data
5950 somewhere else, so when we send gdb a data base-address, we
5951 use the real data base address and subtract the compile-time
5952 data base-address from it (which is just the length of the
5953 text segment). BSS immediately follows data in both
5954 cases. */
5955 *text_p = text;
5956 *data_p = data - (text_end - text);
5957
5958 return 1;
5959 }
5960 return 0;
5961 }
5962 #endif
5963
5964 static int
5965 linux_qxfer_osdata (const char *annex,
5966 unsigned char *readbuf, unsigned const char *writebuf,
5967 CORE_ADDR offset, int len)
5968 {
5969 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5970 }
5971
5972 /* Convert a native/host siginfo object, into/from the siginfo in the
5973 layout of the inferiors' architecture. */
5974
5975 static void
5976 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
5977 {
5978 int done = 0;
5979
5980 if (the_low_target.siginfo_fixup != NULL)
5981 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5982
5983 /* If there was no callback, or the callback didn't do anything,
5984 then just do a straight memcpy. */
5985 if (!done)
5986 {
5987 if (direction == 1)
5988 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5989 else
5990 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5991 }
5992 }
5993
5994 static int
5995 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5996 unsigned const char *writebuf, CORE_ADDR offset, int len)
5997 {
5998 int pid;
5999 siginfo_t siginfo;
6000 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6001
6002 if (current_thread == NULL)
6003 return -1;
6004
6005 pid = lwpid_of (current_thread);
6006
6007 if (debug_threads)
6008 debug_printf ("%s siginfo for lwp %d.\n",
6009 readbuf != NULL ? "Reading" : "Writing",
6010 pid);
6011
6012 if (offset >= sizeof (siginfo))
6013 return -1;
6014
6015 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6016 return -1;
6017
6018 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6019 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6020 inferior with a 64-bit GDBSERVER should look the same as debugging it
6021 with a 32-bit GDBSERVER, we need to convert it. */
6022 siginfo_fixup (&siginfo, inf_siginfo, 0);
6023
6024 if (offset + len > sizeof (siginfo))
6025 len = sizeof (siginfo) - offset;
6026
6027 if (readbuf != NULL)
6028 memcpy (readbuf, inf_siginfo + offset, len);
6029 else
6030 {
6031 memcpy (inf_siginfo + offset, writebuf, len);
6032
6033 /* Convert back to ptrace layout before flushing it out. */
6034 siginfo_fixup (&siginfo, inf_siginfo, 1);
6035
6036 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6037 return -1;
6038 }
6039
6040 return len;
6041 }
6042
6043 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6044 so we notice when children change state; as the handler for the
6045 sigsuspend in my_waitpid. */
6046
6047 static void
6048 sigchld_handler (int signo)
6049 {
6050 int old_errno = errno;
6051
6052 if (debug_threads)
6053 {
6054 do
6055 {
6056 /* fprintf is not async-signal-safe, so call write
6057 directly. */
6058 if (write (2, "sigchld_handler\n",
6059 sizeof ("sigchld_handler\n") - 1) < 0)
6060 break; /* just ignore */
6061 } while (0);
6062 }
6063
6064 if (target_is_async_p ())
6065 async_file_mark (); /* trigger a linux_wait */
6066
6067 errno = old_errno;
6068 }
6069
6070 static int
6071 linux_supports_non_stop (void)
6072 {
6073 return 1;
6074 }
6075
6076 static int
6077 linux_async (int enable)
6078 {
6079 int previous = target_is_async_p ();
6080
6081 if (debug_threads)
6082 debug_printf ("linux_async (%d), previous=%d\n",
6083 enable, previous);
6084
6085 if (previous != enable)
6086 {
6087 sigset_t mask;
6088 sigemptyset (&mask);
6089 sigaddset (&mask, SIGCHLD);
6090
6091 sigprocmask (SIG_BLOCK, &mask, NULL);
6092
6093 if (enable)
6094 {
6095 if (pipe (linux_event_pipe) == -1)
6096 {
6097 linux_event_pipe[0] = -1;
6098 linux_event_pipe[1] = -1;
6099 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6100
6101 warning ("creating event pipe failed.");
6102 return previous;
6103 }
6104
6105 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6106 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6107
6108 /* Register the event loop handler. */
6109 add_file_handler (linux_event_pipe[0],
6110 handle_target_event, NULL);
6111
6112 /* Always trigger a linux_wait. */
6113 async_file_mark ();
6114 }
6115 else
6116 {
6117 delete_file_handler (linux_event_pipe[0]);
6118
6119 close (linux_event_pipe[0]);
6120 close (linux_event_pipe[1]);
6121 linux_event_pipe[0] = -1;
6122 linux_event_pipe[1] = -1;
6123 }
6124
6125 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6126 }
6127
6128 return previous;
6129 }
6130
6131 static int
6132 linux_start_non_stop (int nonstop)
6133 {
6134 /* Register or unregister from event-loop accordingly. */
6135 linux_async (nonstop);
6136
6137 if (target_is_async_p () != (nonstop != 0))
6138 return -1;
6139
6140 return 0;
6141 }
6142
6143 static int
6144 linux_supports_multi_process (void)
6145 {
6146 return 1;
6147 }
6148
6149 /* Check if fork events are supported. */
6150
6151 static int
6152 linux_supports_fork_events (void)
6153 {
6154 return linux_supports_tracefork ();
6155 }
6156
6157 /* Check if vfork events are supported. */
6158
6159 static int
6160 linux_supports_vfork_events (void)
6161 {
6162 return linux_supports_tracefork ();
6163 }
6164
6165 /* Check if exec events are supported. */
6166
6167 static int
6168 linux_supports_exec_events (void)
6169 {
6170 return linux_supports_traceexec ();
6171 }
6172
6173 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
6174 options for the specified lwp. */
6175
6176 static int
6177 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
6178 void *args)
6179 {
6180 struct thread_info *thread = (struct thread_info *) entry;
6181 struct lwp_info *lwp = get_thread_lwp (thread);
6182
6183 if (!lwp->stopped)
6184 {
6185 /* Stop the lwp so we can modify its ptrace options. */
6186 lwp->must_set_ptrace_flags = 1;
6187 linux_stop_lwp (lwp);
6188 }
6189 else
6190 {
6191 /* Already stopped; go ahead and set the ptrace options. */
6192 struct process_info *proc = find_process_pid (pid_of (thread));
6193 int options = linux_low_ptrace_options (proc->attached);
6194
6195 linux_enable_event_reporting (lwpid_of (thread), options);
6196 lwp->must_set_ptrace_flags = 0;
6197 }
6198
6199 return 0;
6200 }
6201
6202 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6203 ptrace flags for all inferiors. This is in case the new GDB connection
6204 doesn't support the same set of events that the previous one did. */
6205
6206 static void
6207 linux_handle_new_gdb_connection (void)
6208 {
6209 pid_t pid;
6210
6211 /* Request that all the lwps reset their ptrace options. */
6212 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6213 }
6214
6215 static int
6216 linux_supports_disable_randomization (void)
6217 {
6218 #ifdef HAVE_PERSONALITY
6219 return 1;
6220 #else
6221 return 0;
6222 #endif
6223 }
6224
6225 static int
6226 linux_supports_agent (void)
6227 {
6228 return 1;
6229 }
6230
6231 static int
6232 linux_supports_range_stepping (void)
6233 {
6234 if (*the_low_target.supports_range_stepping == NULL)
6235 return 0;
6236
6237 return (*the_low_target.supports_range_stepping) ();
6238 }
6239
6240 /* Enumerate spufs IDs for process PID. */
6241 static int
6242 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6243 {
6244 int pos = 0;
6245 int written = 0;
6246 char path[128];
6247 DIR *dir;
6248 struct dirent *entry;
6249
6250 sprintf (path, "/proc/%ld/fd", pid);
6251 dir = opendir (path);
6252 if (!dir)
6253 return -1;
6254
6255 rewinddir (dir);
6256 while ((entry = readdir (dir)) != NULL)
6257 {
6258 struct stat st;
6259 struct statfs stfs;
6260 int fd;
6261
6262 fd = atoi (entry->d_name);
6263 if (!fd)
6264 continue;
6265
6266 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6267 if (stat (path, &st) != 0)
6268 continue;
6269 if (!S_ISDIR (st.st_mode))
6270 continue;
6271
6272 if (statfs (path, &stfs) != 0)
6273 continue;
6274 if (stfs.f_type != SPUFS_MAGIC)
6275 continue;
6276
6277 if (pos >= offset && pos + 4 <= offset + len)
6278 {
6279 *(unsigned int *)(buf + pos - offset) = fd;
6280 written += 4;
6281 }
6282 pos += 4;
6283 }
6284
6285 closedir (dir);
6286 return written;
6287 }
6288
6289 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6290 object type, using the /proc file system. */
6291 static int
6292 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6293 unsigned const char *writebuf,
6294 CORE_ADDR offset, int len)
6295 {
6296 long pid = lwpid_of (current_thread);
6297 char buf[128];
6298 int fd = 0;
6299 int ret = 0;
6300
6301 if (!writebuf && !readbuf)
6302 return -1;
6303
6304 if (!*annex)
6305 {
6306 if (!readbuf)
6307 return -1;
6308 else
6309 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6310 }
6311
6312 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6313 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6314 if (fd <= 0)
6315 return -1;
6316
6317 if (offset != 0
6318 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6319 {
6320 close (fd);
6321 return 0;
6322 }
6323
6324 if (writebuf)
6325 ret = write (fd, writebuf, (size_t) len);
6326 else
6327 ret = read (fd, readbuf, (size_t) len);
6328
6329 close (fd);
6330 return ret;
6331 }
6332
6333 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6334 struct target_loadseg
6335 {
6336 /* Core address to which the segment is mapped. */
6337 Elf32_Addr addr;
6338 /* VMA recorded in the program header. */
6339 Elf32_Addr p_vaddr;
6340 /* Size of this segment in memory. */
6341 Elf32_Word p_memsz;
6342 };
6343
6344 # if defined PT_GETDSBT
6345 struct target_loadmap
6346 {
6347 /* Protocol version number, must be zero. */
6348 Elf32_Word version;
6349 /* Pointer to the DSBT table, its size, and the DSBT index. */
6350 unsigned *dsbt_table;
6351 unsigned dsbt_size, dsbt_index;
6352 /* Number of segments in this map. */
6353 Elf32_Word nsegs;
6354 /* The actual memory map. */
6355 struct target_loadseg segs[/*nsegs*/];
6356 };
6357 # define LINUX_LOADMAP PT_GETDSBT
6358 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6359 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6360 # else
6361 struct target_loadmap
6362 {
6363 /* Protocol version number, must be zero. */
6364 Elf32_Half version;
6365 /* Number of segments in this map. */
6366 Elf32_Half nsegs;
6367 /* The actual memory map. */
6368 struct target_loadseg segs[/*nsegs*/];
6369 };
6370 # define LINUX_LOADMAP PTRACE_GETFDPIC
6371 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6372 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6373 # endif
6374
6375 static int
6376 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6377 unsigned char *myaddr, unsigned int len)
6378 {
6379 int pid = lwpid_of (current_thread);
6380 int addr = -1;
6381 struct target_loadmap *data = NULL;
6382 unsigned int actual_length, copy_length;
6383
6384 if (strcmp (annex, "exec") == 0)
6385 addr = (int) LINUX_LOADMAP_EXEC;
6386 else if (strcmp (annex, "interp") == 0)
6387 addr = (int) LINUX_LOADMAP_INTERP;
6388 else
6389 return -1;
6390
6391 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6392 return -1;
6393
6394 if (data == NULL)
6395 return -1;
6396
6397 actual_length = sizeof (struct target_loadmap)
6398 + sizeof (struct target_loadseg) * data->nsegs;
6399
6400 if (offset < 0 || offset > actual_length)
6401 return -1;
6402
6403 copy_length = actual_length - offset < len ? actual_length - offset : len;
6404 memcpy (myaddr, (char *) data + offset, copy_length);
6405 return copy_length;
6406 }
6407 #else
6408 # define linux_read_loadmap NULL
6409 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6410
6411 static void
6412 linux_process_qsupported (char **features, int count)
6413 {
6414 if (the_low_target.process_qsupported != NULL)
6415 the_low_target.process_qsupported (features, count);
6416 }
6417
6418 static int
6419 linux_supports_catch_syscall (void)
6420 {
6421 return (the_low_target.get_syscall_trapinfo != NULL
6422 && linux_supports_tracesysgood ());
6423 }
6424
6425 static int
6426 linux_get_ipa_tdesc_idx (void)
6427 {
6428 if (the_low_target.get_ipa_tdesc_idx == NULL)
6429 return 0;
6430
6431 return (*the_low_target.get_ipa_tdesc_idx) ();
6432 }
6433
6434 static int
6435 linux_supports_tracepoints (void)
6436 {
6437 if (*the_low_target.supports_tracepoints == NULL)
6438 return 0;
6439
6440 return (*the_low_target.supports_tracepoints) ();
6441 }
6442
6443 static CORE_ADDR
6444 linux_read_pc (struct regcache *regcache)
6445 {
6446 if (the_low_target.get_pc == NULL)
6447 return 0;
6448
6449 return (*the_low_target.get_pc) (regcache);
6450 }
6451
6452 static void
6453 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6454 {
6455 gdb_assert (the_low_target.set_pc != NULL);
6456
6457 (*the_low_target.set_pc) (regcache, pc);
6458 }
6459
6460 static int
6461 linux_thread_stopped (struct thread_info *thread)
6462 {
6463 return get_thread_lwp (thread)->stopped;
6464 }
6465
6466 /* This exposes stop-all-threads functionality to other modules. */
6467
6468 static void
6469 linux_pause_all (int freeze)
6470 {
6471 stop_all_lwps (freeze, NULL);
6472 }
6473
6474 /* This exposes unstop-all-threads functionality to other gdbserver
6475 modules. */
6476
6477 static void
6478 linux_unpause_all (int unfreeze)
6479 {
6480 unstop_all_lwps (unfreeze, NULL);
6481 }
6482
6483 static int
6484 linux_prepare_to_access_memory (void)
6485 {
6486 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6487 running LWP. */
6488 if (non_stop)
6489 linux_pause_all (1);
6490 return 0;
6491 }
6492
6493 static void
6494 linux_done_accessing_memory (void)
6495 {
6496 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6497 running LWP. */
6498 if (non_stop)
6499 linux_unpause_all (1);
6500 }
6501
6502 static int
6503 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6504 CORE_ADDR collector,
6505 CORE_ADDR lockaddr,
6506 ULONGEST orig_size,
6507 CORE_ADDR *jump_entry,
6508 CORE_ADDR *trampoline,
6509 ULONGEST *trampoline_size,
6510 unsigned char *jjump_pad_insn,
6511 ULONGEST *jjump_pad_insn_size,
6512 CORE_ADDR *adjusted_insn_addr,
6513 CORE_ADDR *adjusted_insn_addr_end,
6514 char *err)
6515 {
6516 return (*the_low_target.install_fast_tracepoint_jump_pad)
6517 (tpoint, tpaddr, collector, lockaddr, orig_size,
6518 jump_entry, trampoline, trampoline_size,
6519 jjump_pad_insn, jjump_pad_insn_size,
6520 adjusted_insn_addr, adjusted_insn_addr_end,
6521 err);
6522 }
6523
6524 static struct emit_ops *
6525 linux_emit_ops (void)
6526 {
6527 if (the_low_target.emit_ops != NULL)
6528 return (*the_low_target.emit_ops) ();
6529 else
6530 return NULL;
6531 }
6532
6533 static int
6534 linux_get_min_fast_tracepoint_insn_len (void)
6535 {
6536 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6537 }
6538
6539 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6540
6541 static int
6542 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6543 CORE_ADDR *phdr_memaddr, int *num_phdr)
6544 {
6545 char filename[PATH_MAX];
6546 int fd;
6547 const int auxv_size = is_elf64
6548 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6549 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6550
6551 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6552
6553 fd = open (filename, O_RDONLY);
6554 if (fd < 0)
6555 return 1;
6556
6557 *phdr_memaddr = 0;
6558 *num_phdr = 0;
6559 while (read (fd, buf, auxv_size) == auxv_size
6560 && (*phdr_memaddr == 0 || *num_phdr == 0))
6561 {
6562 if (is_elf64)
6563 {
6564 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6565
6566 switch (aux->a_type)
6567 {
6568 case AT_PHDR:
6569 *phdr_memaddr = aux->a_un.a_val;
6570 break;
6571 case AT_PHNUM:
6572 *num_phdr = aux->a_un.a_val;
6573 break;
6574 }
6575 }
6576 else
6577 {
6578 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6579
6580 switch (aux->a_type)
6581 {
6582 case AT_PHDR:
6583 *phdr_memaddr = aux->a_un.a_val;
6584 break;
6585 case AT_PHNUM:
6586 *num_phdr = aux->a_un.a_val;
6587 break;
6588 }
6589 }
6590 }
6591
6592 close (fd);
6593
6594 if (*phdr_memaddr == 0 || *num_phdr == 0)
6595 {
6596 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6597 "phdr_memaddr = %ld, phdr_num = %d",
6598 (long) *phdr_memaddr, *num_phdr);
6599 return 2;
6600 }
6601
6602 return 0;
6603 }
6604
6605 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6606
6607 static CORE_ADDR
6608 get_dynamic (const int pid, const int is_elf64)
6609 {
6610 CORE_ADDR phdr_memaddr, relocation;
6611 int num_phdr, i;
6612 unsigned char *phdr_buf;
6613 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6614
6615 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6616 return 0;
6617
6618 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6619 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6620
6621 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6622 return 0;
6623
6624 /* Compute relocation: it is expected to be 0 for "regular" executables,
6625 non-zero for PIE ones. */
6626 relocation = -1;
6627 for (i = 0; relocation == -1 && i < num_phdr; i++)
6628 if (is_elf64)
6629 {
6630 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6631
6632 if (p->p_type == PT_PHDR)
6633 relocation = phdr_memaddr - p->p_vaddr;
6634 }
6635 else
6636 {
6637 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6638
6639 if (p->p_type == PT_PHDR)
6640 relocation = phdr_memaddr - p->p_vaddr;
6641 }
6642
6643 if (relocation == -1)
6644 {
6645 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6646 any real world executables, including PIE executables, have always
6647 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6648 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6649 or present DT_DEBUG anyway (fpc binaries are statically linked).
6650
6651 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6652
6653 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6654
6655 return 0;
6656 }
6657
6658 for (i = 0; i < num_phdr; i++)
6659 {
6660 if (is_elf64)
6661 {
6662 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6663
6664 if (p->p_type == PT_DYNAMIC)
6665 return p->p_vaddr + relocation;
6666 }
6667 else
6668 {
6669 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6670
6671 if (p->p_type == PT_DYNAMIC)
6672 return p->p_vaddr + relocation;
6673 }
6674 }
6675
6676 return 0;
6677 }
6678
6679 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6680 can be 0 if the inferior does not yet have the library list initialized.
6681 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6682 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6683
6684 static CORE_ADDR
6685 get_r_debug (const int pid, const int is_elf64)
6686 {
6687 CORE_ADDR dynamic_memaddr;
6688 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6689 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6690 CORE_ADDR map = -1;
6691
6692 dynamic_memaddr = get_dynamic (pid, is_elf64);
6693 if (dynamic_memaddr == 0)
6694 return map;
6695
6696 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6697 {
6698 if (is_elf64)
6699 {
6700 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6701 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6702 union
6703 {
6704 Elf64_Xword map;
6705 unsigned char buf[sizeof (Elf64_Xword)];
6706 }
6707 rld_map;
6708 #endif
6709 #ifdef DT_MIPS_RLD_MAP
6710 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6711 {
6712 if (linux_read_memory (dyn->d_un.d_val,
6713 rld_map.buf, sizeof (rld_map.buf)) == 0)
6714 return rld_map.map;
6715 else
6716 break;
6717 }
6718 #endif /* DT_MIPS_RLD_MAP */
6719 #ifdef DT_MIPS_RLD_MAP_REL
6720 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6721 {
6722 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6723 rld_map.buf, sizeof (rld_map.buf)) == 0)
6724 return rld_map.map;
6725 else
6726 break;
6727 }
6728 #endif /* DT_MIPS_RLD_MAP_REL */
6729
6730 if (dyn->d_tag == DT_DEBUG && map == -1)
6731 map = dyn->d_un.d_val;
6732
6733 if (dyn->d_tag == DT_NULL)
6734 break;
6735 }
6736 else
6737 {
6738 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6739 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6740 union
6741 {
6742 Elf32_Word map;
6743 unsigned char buf[sizeof (Elf32_Word)];
6744 }
6745 rld_map;
6746 #endif
6747 #ifdef DT_MIPS_RLD_MAP
6748 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6749 {
6750 if (linux_read_memory (dyn->d_un.d_val,
6751 rld_map.buf, sizeof (rld_map.buf)) == 0)
6752 return rld_map.map;
6753 else
6754 break;
6755 }
6756 #endif /* DT_MIPS_RLD_MAP */
6757 #ifdef DT_MIPS_RLD_MAP_REL
6758 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6759 {
6760 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6761 rld_map.buf, sizeof (rld_map.buf)) == 0)
6762 return rld_map.map;
6763 else
6764 break;
6765 }
6766 #endif /* DT_MIPS_RLD_MAP_REL */
6767
6768 if (dyn->d_tag == DT_DEBUG && map == -1)
6769 map = dyn->d_un.d_val;
6770
6771 if (dyn->d_tag == DT_NULL)
6772 break;
6773 }
6774
6775 dynamic_memaddr += dyn_size;
6776 }
6777
6778 return map;
6779 }
6780
6781 /* Read one pointer from MEMADDR in the inferior. */
6782
6783 static int
6784 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6785 {
6786 int ret;
6787
6788 /* Go through a union so this works on either big or little endian
6789 hosts, when the inferior's pointer size is smaller than the size
6790 of CORE_ADDR. It is assumed the inferior's endianness is the
6791 same of the superior's. */
6792 union
6793 {
6794 CORE_ADDR core_addr;
6795 unsigned int ui;
6796 unsigned char uc;
6797 } addr;
6798
6799 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6800 if (ret == 0)
6801 {
6802 if (ptr_size == sizeof (CORE_ADDR))
6803 *ptr = addr.core_addr;
6804 else if (ptr_size == sizeof (unsigned int))
6805 *ptr = addr.ui;
6806 else
6807 gdb_assert_not_reached ("unhandled pointer size");
6808 }
6809 return ret;
6810 }
6811
6812 struct link_map_offsets
6813 {
6814 /* Offset and size of r_debug.r_version. */
6815 int r_version_offset;
6816
6817 /* Offset and size of r_debug.r_map. */
6818 int r_map_offset;
6819
6820 /* Offset to l_addr field in struct link_map. */
6821 int l_addr_offset;
6822
6823 /* Offset to l_name field in struct link_map. */
6824 int l_name_offset;
6825
6826 /* Offset to l_ld field in struct link_map. */
6827 int l_ld_offset;
6828
6829 /* Offset to l_next field in struct link_map. */
6830 int l_next_offset;
6831
6832 /* Offset to l_prev field in struct link_map. */
6833 int l_prev_offset;
6834 };
6835
6836 /* Construct qXfer:libraries-svr4:read reply. */
6837
6838 static int
6839 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6840 unsigned const char *writebuf,
6841 CORE_ADDR offset, int len)
6842 {
6843 char *document;
6844 unsigned document_len;
6845 struct process_info_private *const priv = current_process ()->priv;
6846 char filename[PATH_MAX];
6847 int pid, is_elf64;
6848
6849 static const struct link_map_offsets lmo_32bit_offsets =
6850 {
6851 0, /* r_version offset. */
6852 4, /* r_debug.r_map offset. */
6853 0, /* l_addr offset in link_map. */
6854 4, /* l_name offset in link_map. */
6855 8, /* l_ld offset in link_map. */
6856 12, /* l_next offset in link_map. */
6857 16 /* l_prev offset in link_map. */
6858 };
6859
6860 static const struct link_map_offsets lmo_64bit_offsets =
6861 {
6862 0, /* r_version offset. */
6863 8, /* r_debug.r_map offset. */
6864 0, /* l_addr offset in link_map. */
6865 8, /* l_name offset in link_map. */
6866 16, /* l_ld offset in link_map. */
6867 24, /* l_next offset in link_map. */
6868 32 /* l_prev offset in link_map. */
6869 };
6870 const struct link_map_offsets *lmo;
6871 unsigned int machine;
6872 int ptr_size;
6873 CORE_ADDR lm_addr = 0, lm_prev = 0;
6874 int allocated = 1024;
6875 char *p;
6876 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6877 int header_done = 0;
6878
6879 if (writebuf != NULL)
6880 return -2;
6881 if (readbuf == NULL)
6882 return -1;
6883
6884 pid = lwpid_of (current_thread);
6885 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6886 is_elf64 = elf_64_file_p (filename, &machine);
6887 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6888 ptr_size = is_elf64 ? 8 : 4;
6889
6890 while (annex[0] != '\0')
6891 {
6892 const char *sep;
6893 CORE_ADDR *addrp;
6894 int len;
6895
6896 sep = strchr (annex, '=');
6897 if (sep == NULL)
6898 break;
6899
6900 len = sep - annex;
6901 if (len == 5 && startswith (annex, "start"))
6902 addrp = &lm_addr;
6903 else if (len == 4 && startswith (annex, "prev"))
6904 addrp = &lm_prev;
6905 else
6906 {
6907 annex = strchr (sep, ';');
6908 if (annex == NULL)
6909 break;
6910 annex++;
6911 continue;
6912 }
6913
6914 annex = decode_address_to_semicolon (addrp, sep + 1);
6915 }
6916
6917 if (lm_addr == 0)
6918 {
6919 int r_version = 0;
6920
6921 if (priv->r_debug == 0)
6922 priv->r_debug = get_r_debug (pid, is_elf64);
6923
6924 /* We failed to find DT_DEBUG. Such situation will not change
6925 for this inferior - do not retry it. Report it to GDB as
6926 E01, see for the reasons at the GDB solib-svr4.c side. */
6927 if (priv->r_debug == (CORE_ADDR) -1)
6928 return -1;
6929
6930 if (priv->r_debug != 0)
6931 {
6932 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6933 (unsigned char *) &r_version,
6934 sizeof (r_version)) != 0
6935 || r_version != 1)
6936 {
6937 warning ("unexpected r_debug version %d", r_version);
6938 }
6939 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6940 &lm_addr, ptr_size) != 0)
6941 {
6942 warning ("unable to read r_map from 0x%lx",
6943 (long) priv->r_debug + lmo->r_map_offset);
6944 }
6945 }
6946 }
6947
6948 document = (char *) xmalloc (allocated);
6949 strcpy (document, "<library-list-svr4 version=\"1.0\"");
6950 p = document + strlen (document);
6951
6952 while (lm_addr
6953 && read_one_ptr (lm_addr + lmo->l_name_offset,
6954 &l_name, ptr_size) == 0
6955 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6956 &l_addr, ptr_size) == 0
6957 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6958 &l_ld, ptr_size) == 0
6959 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6960 &l_prev, ptr_size) == 0
6961 && read_one_ptr (lm_addr + lmo->l_next_offset,
6962 &l_next, ptr_size) == 0)
6963 {
6964 unsigned char libname[PATH_MAX];
6965
6966 if (lm_prev != l_prev)
6967 {
6968 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6969 (long) lm_prev, (long) l_prev);
6970 break;
6971 }
6972
6973 /* Ignore the first entry even if it has valid name as the first entry
6974 corresponds to the main executable. The first entry should not be
6975 skipped if the dynamic loader was loaded late by a static executable
6976 (see solib-svr4.c parameter ignore_first). But in such case the main
6977 executable does not have PT_DYNAMIC present and this function already
6978 exited above due to failed get_r_debug. */
6979 if (lm_prev == 0)
6980 {
6981 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6982 p = p + strlen (p);
6983 }
6984 else
6985 {
6986 /* Not checking for error because reading may stop before
6987 we've got PATH_MAX worth of characters. */
6988 libname[0] = '\0';
6989 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6990 libname[sizeof (libname) - 1] = '\0';
6991 if (libname[0] != '\0')
6992 {
6993 /* 6x the size for xml_escape_text below. */
6994 size_t len = 6 * strlen ((char *) libname);
6995 char *name;
6996
6997 if (!header_done)
6998 {
6999 /* Terminate `<library-list-svr4'. */
7000 *p++ = '>';
7001 header_done = 1;
7002 }
7003
7004 while (allocated < p - document + len + 200)
7005 {
7006 /* Expand to guarantee sufficient storage. */
7007 uintptr_t document_len = p - document;
7008
7009 document = (char *) xrealloc (document, 2 * allocated);
7010 allocated *= 2;
7011 p = document + document_len;
7012 }
7013
7014 name = xml_escape_text ((char *) libname);
7015 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7016 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7017 name, (unsigned long) lm_addr,
7018 (unsigned long) l_addr, (unsigned long) l_ld);
7019 free (name);
7020 }
7021 }
7022
7023 lm_prev = lm_addr;
7024 lm_addr = l_next;
7025 }
7026
7027 if (!header_done)
7028 {
7029 /* Empty list; terminate `<library-list-svr4'. */
7030 strcpy (p, "/>");
7031 }
7032 else
7033 strcpy (p, "</library-list-svr4>");
7034
7035 document_len = strlen (document);
7036 if (offset < document_len)
7037 document_len -= offset;
7038 else
7039 document_len = 0;
7040 if (len > document_len)
7041 len = document_len;
7042
7043 memcpy (readbuf, document + offset, len);
7044 xfree (document);
7045
7046 return len;
7047 }
7048
7049 #ifdef HAVE_LINUX_BTRACE
7050
7051 /* See to_disable_btrace target method. */
7052
7053 static int
7054 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7055 {
7056 enum btrace_error err;
7057
7058 err = linux_disable_btrace (tinfo);
7059 return (err == BTRACE_ERR_NONE ? 0 : -1);
7060 }
7061
7062 /* Encode an Intel Processor Trace configuration. */
7063
7064 static void
7065 linux_low_encode_pt_config (struct buffer *buffer,
7066 const struct btrace_data_pt_config *config)
7067 {
7068 buffer_grow_str (buffer, "<pt-config>\n");
7069
7070 switch (config->cpu.vendor)
7071 {
7072 case CV_INTEL:
7073 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7074 "model=\"%u\" stepping=\"%u\"/>\n",
7075 config->cpu.family, config->cpu.model,
7076 config->cpu.stepping);
7077 break;
7078
7079 default:
7080 break;
7081 }
7082
7083 buffer_grow_str (buffer, "</pt-config>\n");
7084 }
7085
7086 /* Encode a raw buffer. */
7087
7088 static void
7089 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7090 unsigned int size)
7091 {
7092 if (size == 0)
7093 return;
7094
7095 /* We use hex encoding - see common/rsp-low.h. */
7096 buffer_grow_str (buffer, "<raw>\n");
7097
7098 while (size-- > 0)
7099 {
7100 char elem[2];
7101
7102 elem[0] = tohex ((*data >> 4) & 0xf);
7103 elem[1] = tohex (*data++ & 0xf);
7104
7105 buffer_grow (buffer, elem, 2);
7106 }
7107
7108 buffer_grow_str (buffer, "</raw>\n");
7109 }
7110
7111 /* See to_read_btrace target method. */
7112
7113 static int
7114 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7115 enum btrace_read_type type)
7116 {
7117 struct btrace_data btrace;
7118 struct btrace_block *block;
7119 enum btrace_error err;
7120 int i;
7121
7122 btrace_data_init (&btrace);
7123
7124 err = linux_read_btrace (&btrace, tinfo, type);
7125 if (err != BTRACE_ERR_NONE)
7126 {
7127 if (err == BTRACE_ERR_OVERFLOW)
7128 buffer_grow_str0 (buffer, "E.Overflow.");
7129 else
7130 buffer_grow_str0 (buffer, "E.Generic Error.");
7131
7132 goto err;
7133 }
7134
7135 switch (btrace.format)
7136 {
7137 case BTRACE_FORMAT_NONE:
7138 buffer_grow_str0 (buffer, "E.No Trace.");
7139 goto err;
7140
7141 case BTRACE_FORMAT_BTS:
7142 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7143 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7144
7145 for (i = 0;
7146 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7147 i++)
7148 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7149 paddress (block->begin), paddress (block->end));
7150
7151 buffer_grow_str0 (buffer, "</btrace>\n");
7152 break;
7153
7154 case BTRACE_FORMAT_PT:
7155 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7156 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7157 buffer_grow_str (buffer, "<pt>\n");
7158
7159 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7160
7161 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7162 btrace.variant.pt.size);
7163
7164 buffer_grow_str (buffer, "</pt>\n");
7165 buffer_grow_str0 (buffer, "</btrace>\n");
7166 break;
7167
7168 default:
7169 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7170 goto err;
7171 }
7172
7173 btrace_data_fini (&btrace);
7174 return 0;
7175
7176 err:
7177 btrace_data_fini (&btrace);
7178 return -1;
7179 }
7180
7181 /* See to_btrace_conf target method. */
7182
7183 static int
7184 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7185 struct buffer *buffer)
7186 {
7187 const struct btrace_config *conf;
7188
7189 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7190 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7191
7192 conf = linux_btrace_conf (tinfo);
7193 if (conf != NULL)
7194 {
7195 switch (conf->format)
7196 {
7197 case BTRACE_FORMAT_NONE:
7198 break;
7199
7200 case BTRACE_FORMAT_BTS:
7201 buffer_xml_printf (buffer, "<bts");
7202 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7203 buffer_xml_printf (buffer, " />\n");
7204 break;
7205
7206 case BTRACE_FORMAT_PT:
7207 buffer_xml_printf (buffer, "<pt");
7208 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7209 buffer_xml_printf (buffer, "/>\n");
7210 break;
7211 }
7212 }
7213
7214 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7215 return 0;
7216 }
7217 #endif /* HAVE_LINUX_BTRACE */
7218
7219 /* See nat/linux-nat.h. */
7220
7221 ptid_t
7222 current_lwp_ptid (void)
7223 {
7224 return ptid_of (current_thread);
7225 }
7226
7227 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7228
7229 static int
7230 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7231 {
7232 if (the_low_target.breakpoint_kind_from_pc != NULL)
7233 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7234 else
7235 return default_breakpoint_kind_from_pc (pcptr);
7236 }
7237
7238 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7239
7240 static const gdb_byte *
7241 linux_sw_breakpoint_from_kind (int kind, int *size)
7242 {
7243 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7244
7245 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7246 }
7247
7248 /* Implementation of the target_ops method
7249 "breakpoint_kind_from_current_state". */
7250
7251 static int
7252 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7253 {
7254 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7255 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7256 else
7257 return linux_breakpoint_kind_from_pc (pcptr);
7258 }
7259
7260 /* Default implementation of linux_target_ops method "set_pc" for
7261 32-bit pc register which is literally named "pc". */
7262
7263 void
7264 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7265 {
7266 uint32_t newpc = pc;
7267
7268 supply_register_by_name (regcache, "pc", &newpc);
7269 }
7270
7271 /* Default implementation of linux_target_ops method "get_pc" for
7272 32-bit pc register which is literally named "pc". */
7273
7274 CORE_ADDR
7275 linux_get_pc_32bit (struct regcache *regcache)
7276 {
7277 uint32_t pc;
7278
7279 collect_register_by_name (regcache, "pc", &pc);
7280 if (debug_threads)
7281 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7282 return pc;
7283 }
7284
7285 /* Default implementation of linux_target_ops method "set_pc" for
7286 64-bit pc register which is literally named "pc". */
7287
7288 void
7289 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7290 {
7291 uint64_t newpc = pc;
7292
7293 supply_register_by_name (regcache, "pc", &newpc);
7294 }
7295
7296 /* Default implementation of linux_target_ops method "get_pc" for
7297 64-bit pc register which is literally named "pc". */
7298
7299 CORE_ADDR
7300 linux_get_pc_64bit (struct regcache *regcache)
7301 {
7302 uint64_t pc;
7303
7304 collect_register_by_name (regcache, "pc", &pc);
7305 if (debug_threads)
7306 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7307 return pc;
7308 }
7309
7310
7311 static struct target_ops linux_target_ops = {
7312 linux_create_inferior,
7313 linux_post_create_inferior,
7314 linux_attach,
7315 linux_kill,
7316 linux_detach,
7317 linux_mourn,
7318 linux_join,
7319 linux_thread_alive,
7320 linux_resume,
7321 linux_wait,
7322 linux_fetch_registers,
7323 linux_store_registers,
7324 linux_prepare_to_access_memory,
7325 linux_done_accessing_memory,
7326 linux_read_memory,
7327 linux_write_memory,
7328 linux_look_up_symbols,
7329 linux_request_interrupt,
7330 linux_read_auxv,
7331 linux_supports_z_point_type,
7332 linux_insert_point,
7333 linux_remove_point,
7334 linux_stopped_by_sw_breakpoint,
7335 linux_supports_stopped_by_sw_breakpoint,
7336 linux_stopped_by_hw_breakpoint,
7337 linux_supports_stopped_by_hw_breakpoint,
7338 linux_supports_hardware_single_step,
7339 linux_stopped_by_watchpoint,
7340 linux_stopped_data_address,
7341 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7342 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7343 && defined(PT_TEXT_END_ADDR)
7344 linux_read_offsets,
7345 #else
7346 NULL,
7347 #endif
7348 #ifdef USE_THREAD_DB
7349 thread_db_get_tls_address,
7350 #else
7351 NULL,
7352 #endif
7353 linux_qxfer_spu,
7354 hostio_last_error_from_errno,
7355 linux_qxfer_osdata,
7356 linux_xfer_siginfo,
7357 linux_supports_non_stop,
7358 linux_async,
7359 linux_start_non_stop,
7360 linux_supports_multi_process,
7361 linux_supports_fork_events,
7362 linux_supports_vfork_events,
7363 linux_supports_exec_events,
7364 linux_handle_new_gdb_connection,
7365 #ifdef USE_THREAD_DB
7366 thread_db_handle_monitor_command,
7367 #else
7368 NULL,
7369 #endif
7370 linux_common_core_of_thread,
7371 linux_read_loadmap,
7372 linux_process_qsupported,
7373 linux_supports_tracepoints,
7374 linux_read_pc,
7375 linux_write_pc,
7376 linux_thread_stopped,
7377 NULL,
7378 linux_pause_all,
7379 linux_unpause_all,
7380 linux_stabilize_threads,
7381 linux_install_fast_tracepoint_jump_pad,
7382 linux_emit_ops,
7383 linux_supports_disable_randomization,
7384 linux_get_min_fast_tracepoint_insn_len,
7385 linux_qxfer_libraries_svr4,
7386 linux_supports_agent,
7387 #ifdef HAVE_LINUX_BTRACE
7388 linux_supports_btrace,
7389 linux_enable_btrace,
7390 linux_low_disable_btrace,
7391 linux_low_read_btrace,
7392 linux_low_btrace_conf,
7393 #else
7394 NULL,
7395 NULL,
7396 NULL,
7397 NULL,
7398 NULL,
7399 #endif
7400 linux_supports_range_stepping,
7401 linux_proc_pid_to_exec_file,
7402 linux_mntns_open_cloexec,
7403 linux_mntns_unlink,
7404 linux_mntns_readlink,
7405 linux_breakpoint_kind_from_pc,
7406 linux_sw_breakpoint_from_kind,
7407 linux_proc_tid_get_name,
7408 linux_breakpoint_kind_from_current_state,
7409 linux_supports_software_single_step,
7410 linux_supports_catch_syscall,
7411 linux_get_ipa_tdesc_idx,
7412 };
7413
7414 #ifdef HAVE_LINUX_REGSETS
7415 void
7416 initialize_regsets_info (struct regsets_info *info)
7417 {
7418 for (info->num_regsets = 0;
7419 info->regsets[info->num_regsets].size >= 0;
7420 info->num_regsets++)
7421 ;
7422 }
7423 #endif
7424
7425 void
7426 initialize_low (void)
7427 {
7428 struct sigaction sigchld_action;
7429
7430 memset (&sigchld_action, 0, sizeof (sigchld_action));
7431 set_target_ops (&linux_target_ops);
7432
7433 linux_ptrace_init_warnings ();
7434
7435 sigchld_action.sa_handler = sigchld_handler;
7436 sigemptyset (&sigchld_action.sa_mask);
7437 sigchld_action.sa_flags = SA_RESTART;
7438 sigaction (SIGCHLD, &sigchld_action, NULL);
7439
7440 initialize_low_arch ();
7441
7442 linux_check_ptrace_features ();
7443 }