]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Call enqueue_pending_signal in linux_resume_one_lwp_throw
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #ifndef ELFMAG0
51 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
52 then ELFMAG0 will have been defined. If it didn't get included by
53 gdb_proc_service.h then including it will likely introduce a duplicate
54 definition of elf_fpregset_t. */
55 #include <elf.h>
56 #endif
57 #include "nat/linux-namespaces.h"
58
59 #ifndef SPUFS_MAGIC
60 #define SPUFS_MAGIC 0x23c9b64e
61 #endif
62
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
67 # endif
68 #endif
69
70 #ifndef O_LARGEFILE
71 #define O_LARGEFILE 0
72 #endif
73
74 /* Some targets did not define these ptrace constants from the start,
75 so gdbserver defines them locally here. In the future, these may
76 be removed after they are added to asm/ptrace.h. */
77 #if !(defined(PT_TEXT_ADDR) \
78 || defined(PT_DATA_ADDR) \
79 || defined(PT_TEXT_END_ADDR))
80 #if defined(__mcoldfire__)
81 /* These are still undefined in 3.10 kernels. */
82 #define PT_TEXT_ADDR 49*4
83 #define PT_DATA_ADDR 50*4
84 #define PT_TEXT_END_ADDR 51*4
85 /* BFIN already defines these since at least 2.6.32 kernels. */
86 #elif defined(BFIN)
87 #define PT_TEXT_ADDR 220
88 #define PT_TEXT_END_ADDR 224
89 #define PT_DATA_ADDR 228
90 /* These are still undefined in 3.10 kernels. */
91 #elif defined(__TMS320C6X__)
92 #define PT_TEXT_ADDR (0x10000*4)
93 #define PT_DATA_ADDR (0x10004*4)
94 #define PT_TEXT_END_ADDR (0x10008*4)
95 #endif
96 #endif
97
98 #ifdef HAVE_LINUX_BTRACE
99 # include "nat/linux-btrace.h"
100 # include "btrace-common.h"
101 #endif
102
103 #ifndef HAVE_ELF32_AUXV_T
104 /* Copied from glibc's elf.h. */
105 typedef struct
106 {
107 uint32_t a_type; /* Entry type */
108 union
109 {
110 uint32_t a_val; /* Integer value */
111 /* We use to have pointer elements added here. We cannot do that,
112 though, since it does not work when using 32-bit definitions
113 on 64-bit platforms and vice versa. */
114 } a_un;
115 } Elf32_auxv_t;
116 #endif
117
118 #ifndef HAVE_ELF64_AUXV_T
119 /* Copied from glibc's elf.h. */
120 typedef struct
121 {
122 uint64_t a_type; /* Entry type */
123 union
124 {
125 uint64_t a_val; /* Integer value */
126 /* We use to have pointer elements added here. We cannot do that,
127 though, since it does not work when using 32-bit definitions
128 on 64-bit platforms and vice versa. */
129 } a_un;
130 } Elf64_auxv_t;
131 #endif
132
133 /* Does the current host support PTRACE_GETREGSET? */
134 int have_ptrace_getregset = -1;
135
136 /* LWP accessors. */
137
138 /* See nat/linux-nat.h. */
139
140 ptid_t
141 ptid_of_lwp (struct lwp_info *lwp)
142 {
143 return ptid_of (get_lwp_thread (lwp));
144 }
145
146 /* See nat/linux-nat.h. */
147
148 void
149 lwp_set_arch_private_info (struct lwp_info *lwp,
150 struct arch_lwp_info *info)
151 {
152 lwp->arch_private = info;
153 }
154
155 /* See nat/linux-nat.h. */
156
157 struct arch_lwp_info *
158 lwp_arch_private_info (struct lwp_info *lwp)
159 {
160 return lwp->arch_private;
161 }
162
163 /* See nat/linux-nat.h. */
164
165 int
166 lwp_is_stopped (struct lwp_info *lwp)
167 {
168 return lwp->stopped;
169 }
170
171 /* See nat/linux-nat.h. */
172
173 enum target_stop_reason
174 lwp_stop_reason (struct lwp_info *lwp)
175 {
176 return lwp->stop_reason;
177 }
178
179 /* A list of all unknown processes which receive stop signals. Some
180 other process will presumably claim each of these as forked
181 children momentarily. */
182
183 struct simple_pid_list
184 {
185 /* The process ID. */
186 int pid;
187
188 /* The status as reported by waitpid. */
189 int status;
190
191 /* Next in chain. */
192 struct simple_pid_list *next;
193 };
194 struct simple_pid_list *stopped_pids;
195
196 /* Trivial list manipulation functions to keep track of a list of new
197 stopped processes. */
198
199 static void
200 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
201 {
202 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
203
204 new_pid->pid = pid;
205 new_pid->status = status;
206 new_pid->next = *listp;
207 *listp = new_pid;
208 }
209
210 static int
211 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
212 {
213 struct simple_pid_list **p;
214
215 for (p = listp; *p != NULL; p = &(*p)->next)
216 if ((*p)->pid == pid)
217 {
218 struct simple_pid_list *next = (*p)->next;
219
220 *statusp = (*p)->status;
221 xfree (*p);
222 *p = next;
223 return 1;
224 }
225 return 0;
226 }
227
228 enum stopping_threads_kind
229 {
230 /* Not stopping threads presently. */
231 NOT_STOPPING_THREADS,
232
233 /* Stopping threads. */
234 STOPPING_THREADS,
235
236 /* Stopping and suspending threads. */
237 STOPPING_AND_SUSPENDING_THREADS
238 };
239
240 /* This is set while stop_all_lwps is in effect. */
241 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
242
243 /* FIXME make into a target method? */
244 int using_threads = 1;
245
246 /* True if we're presently stabilizing threads (moving them out of
247 jump pads). */
248 static int stabilizing_threads;
249
250 static void linux_resume_one_lwp (struct lwp_info *lwp,
251 int step, int signal, siginfo_t *info);
252 static void linux_resume (struct thread_resume *resume_info, size_t n);
253 static void stop_all_lwps (int suspend, struct lwp_info *except);
254 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
255 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
256 int *wstat, int options);
257 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
258 static struct lwp_info *add_lwp (ptid_t ptid);
259 static void linux_mourn (struct process_info *process);
260 static int linux_stopped_by_watchpoint (void);
261 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
262 static int lwp_is_marked_dead (struct lwp_info *lwp);
263 static void proceed_all_lwps (void);
264 static int finish_step_over (struct lwp_info *lwp);
265 static int kill_lwp (unsigned long lwpid, int signo);
266 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
267 static void complete_ongoing_step_over (void);
268 static int linux_low_ptrace_options (int attached);
269
270 /* When the event-loop is doing a step-over, this points at the thread
271 being stepped. */
272 ptid_t step_over_bkpt;
273
274 /* True if the low target can hardware single-step. */
275
276 static int
277 can_hardware_single_step (void)
278 {
279 if (the_low_target.supports_hardware_single_step != NULL)
280 return the_low_target.supports_hardware_single_step ();
281 else
282 return 0;
283 }
284
285 /* True if the low target can software single-step. Such targets
286 implement the GET_NEXT_PCS callback. */
287
288 static int
289 can_software_single_step (void)
290 {
291 return (the_low_target.get_next_pcs != NULL);
292 }
293
294 /* True if the low target supports memory breakpoints. If so, we'll
295 have a GET_PC implementation. */
296
297 static int
298 supports_breakpoints (void)
299 {
300 return (the_low_target.get_pc != NULL);
301 }
302
303 /* Returns true if this target can support fast tracepoints. This
304 does not mean that the in-process agent has been loaded in the
305 inferior. */
306
307 static int
308 supports_fast_tracepoints (void)
309 {
310 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
311 }
312
313 /* True if LWP is stopped in its stepping range. */
314
315 static int
316 lwp_in_step_range (struct lwp_info *lwp)
317 {
318 CORE_ADDR pc = lwp->stop_pc;
319
320 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
321 }
322
323 struct pending_signals
324 {
325 int signal;
326 siginfo_t info;
327 struct pending_signals *prev;
328 };
329
330 /* The read/write ends of the pipe registered as waitable file in the
331 event loop. */
332 static int linux_event_pipe[2] = { -1, -1 };
333
334 /* True if we're currently in async mode. */
335 #define target_is_async_p() (linux_event_pipe[0] != -1)
336
337 static void send_sigstop (struct lwp_info *lwp);
338 static void wait_for_sigstop (void);
339
340 /* Return non-zero if HEADER is a 64-bit ELF file. */
341
342 static int
343 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
344 {
345 if (header->e_ident[EI_MAG0] == ELFMAG0
346 && header->e_ident[EI_MAG1] == ELFMAG1
347 && header->e_ident[EI_MAG2] == ELFMAG2
348 && header->e_ident[EI_MAG3] == ELFMAG3)
349 {
350 *machine = header->e_machine;
351 return header->e_ident[EI_CLASS] == ELFCLASS64;
352
353 }
354 *machine = EM_NONE;
355 return -1;
356 }
357
358 /* Return non-zero if FILE is a 64-bit ELF file,
359 zero if the file is not a 64-bit ELF file,
360 and -1 if the file is not accessible or doesn't exist. */
361
362 static int
363 elf_64_file_p (const char *file, unsigned int *machine)
364 {
365 Elf64_Ehdr header;
366 int fd;
367
368 fd = open (file, O_RDONLY);
369 if (fd < 0)
370 return -1;
371
372 if (read (fd, &header, sizeof (header)) != sizeof (header))
373 {
374 close (fd);
375 return 0;
376 }
377 close (fd);
378
379 return elf_64_header_p (&header, machine);
380 }
381
382 /* Accepts an integer PID; Returns true if the executable PID is
383 running is a 64-bit ELF file.. */
384
385 int
386 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
387 {
388 char file[PATH_MAX];
389
390 sprintf (file, "/proc/%d/exe", pid);
391 return elf_64_file_p (file, machine);
392 }
393
394 static void
395 delete_lwp (struct lwp_info *lwp)
396 {
397 struct thread_info *thr = get_lwp_thread (lwp);
398
399 if (debug_threads)
400 debug_printf ("deleting %ld\n", lwpid_of (thr));
401
402 remove_thread (thr);
403 free (lwp->arch_private);
404 free (lwp);
405 }
406
407 /* Add a process to the common process list, and set its private
408 data. */
409
410 static struct process_info *
411 linux_add_process (int pid, int attached)
412 {
413 struct process_info *proc;
414
415 proc = add_process (pid, attached);
416 proc->priv = XCNEW (struct process_info_private);
417
418 if (the_low_target.new_process != NULL)
419 proc->priv->arch_private = the_low_target.new_process ();
420
421 return proc;
422 }
423
424 static CORE_ADDR get_pc (struct lwp_info *lwp);
425
426 /* Call the target arch_setup function on the current thread. */
427
428 static void
429 linux_arch_setup (void)
430 {
431 the_low_target.arch_setup ();
432 }
433
434 /* Call the target arch_setup function on THREAD. */
435
436 static void
437 linux_arch_setup_thread (struct thread_info *thread)
438 {
439 struct thread_info *saved_thread;
440
441 saved_thread = current_thread;
442 current_thread = thread;
443
444 linux_arch_setup ();
445
446 current_thread = saved_thread;
447 }
448
449 /* Handle a GNU/Linux extended wait response. If we see a clone,
450 fork, or vfork event, we need to add the new LWP to our list
451 (and return 0 so as not to report the trap to higher layers).
452 If we see an exec event, we will modify ORIG_EVENT_LWP to point
453 to a new LWP representing the new program. */
454
455 static int
456 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
457 {
458 struct lwp_info *event_lwp = *orig_event_lwp;
459 int event = linux_ptrace_get_extended_event (wstat);
460 struct thread_info *event_thr = get_lwp_thread (event_lwp);
461 struct lwp_info *new_lwp;
462
463 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
464
465 /* All extended events we currently use are mid-syscall. Only
466 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
467 you have to be using PTRACE_SEIZE to get that. */
468 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
469
470 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
471 || (event == PTRACE_EVENT_CLONE))
472 {
473 ptid_t ptid;
474 unsigned long new_pid;
475 int ret, status;
476
477 /* Get the pid of the new lwp. */
478 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
479 &new_pid);
480
481 /* If we haven't already seen the new PID stop, wait for it now. */
482 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
483 {
484 /* The new child has a pending SIGSTOP. We can't affect it until it
485 hits the SIGSTOP, but we're already attached. */
486
487 ret = my_waitpid (new_pid, &status, __WALL);
488
489 if (ret == -1)
490 perror_with_name ("waiting for new child");
491 else if (ret != new_pid)
492 warning ("wait returned unexpected PID %d", ret);
493 else if (!WIFSTOPPED (status))
494 warning ("wait returned unexpected status 0x%x", status);
495 }
496
497 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
498 {
499 struct process_info *parent_proc;
500 struct process_info *child_proc;
501 struct lwp_info *child_lwp;
502 struct thread_info *child_thr;
503 struct target_desc *tdesc;
504
505 ptid = ptid_build (new_pid, new_pid, 0);
506
507 if (debug_threads)
508 {
509 debug_printf ("HEW: Got fork event from LWP %ld, "
510 "new child is %d\n",
511 ptid_get_lwp (ptid_of (event_thr)),
512 ptid_get_pid (ptid));
513 }
514
515 /* Add the new process to the tables and clone the breakpoint
516 lists of the parent. We need to do this even if the new process
517 will be detached, since we will need the process object and the
518 breakpoints to remove any breakpoints from memory when we
519 detach, and the client side will access registers. */
520 child_proc = linux_add_process (new_pid, 0);
521 gdb_assert (child_proc != NULL);
522 child_lwp = add_lwp (ptid);
523 gdb_assert (child_lwp != NULL);
524 child_lwp->stopped = 1;
525 child_lwp->must_set_ptrace_flags = 1;
526 child_lwp->status_pending_p = 0;
527 child_thr = get_lwp_thread (child_lwp);
528 child_thr->last_resume_kind = resume_stop;
529 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
530
531 /* If we're suspending all threads, leave this one suspended
532 too. */
533 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
534 {
535 if (debug_threads)
536 debug_printf ("HEW: leaving child suspended\n");
537 child_lwp->suspended = 1;
538 }
539
540 parent_proc = get_thread_process (event_thr);
541 child_proc->attached = parent_proc->attached;
542 clone_all_breakpoints (&child_proc->breakpoints,
543 &child_proc->raw_breakpoints,
544 parent_proc->breakpoints);
545
546 tdesc = XNEW (struct target_desc);
547 copy_target_description (tdesc, parent_proc->tdesc);
548 child_proc->tdesc = tdesc;
549
550 /* Clone arch-specific process data. */
551 if (the_low_target.new_fork != NULL)
552 the_low_target.new_fork (parent_proc, child_proc);
553
554 /* Save fork info in the parent thread. */
555 if (event == PTRACE_EVENT_FORK)
556 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
557 else if (event == PTRACE_EVENT_VFORK)
558 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
559
560 event_lwp->waitstatus.value.related_pid = ptid;
561
562 /* The status_pending field contains bits denoting the
563 extended event, so when the pending event is handled,
564 the handler will look at lwp->waitstatus. */
565 event_lwp->status_pending_p = 1;
566 event_lwp->status_pending = wstat;
567
568 /* Report the event. */
569 return 0;
570 }
571
572 if (debug_threads)
573 debug_printf ("HEW: Got clone event "
574 "from LWP %ld, new child is LWP %ld\n",
575 lwpid_of (event_thr), new_pid);
576
577 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
578 new_lwp = add_lwp (ptid);
579
580 /* Either we're going to immediately resume the new thread
581 or leave it stopped. linux_resume_one_lwp is a nop if it
582 thinks the thread is currently running, so set this first
583 before calling linux_resume_one_lwp. */
584 new_lwp->stopped = 1;
585
586 /* If we're suspending all threads, leave this one suspended
587 too. */
588 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
589 new_lwp->suspended = 1;
590
591 /* Normally we will get the pending SIGSTOP. But in some cases
592 we might get another signal delivered to the group first.
593 If we do get another signal, be sure not to lose it. */
594 if (WSTOPSIG (status) != SIGSTOP)
595 {
596 new_lwp->stop_expected = 1;
597 new_lwp->status_pending_p = 1;
598 new_lwp->status_pending = status;
599 }
600 else if (report_thread_events)
601 {
602 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
603 new_lwp->status_pending_p = 1;
604 new_lwp->status_pending = status;
605 }
606
607 /* Don't report the event. */
608 return 1;
609 }
610 else if (event == PTRACE_EVENT_VFORK_DONE)
611 {
612 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
613
614 /* Report the event. */
615 return 0;
616 }
617 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
618 {
619 struct process_info *proc;
620 VEC (int) *syscalls_to_catch;
621 ptid_t event_ptid;
622 pid_t event_pid;
623
624 if (debug_threads)
625 {
626 debug_printf ("HEW: Got exec event from LWP %ld\n",
627 lwpid_of (event_thr));
628 }
629
630 /* Get the event ptid. */
631 event_ptid = ptid_of (event_thr);
632 event_pid = ptid_get_pid (event_ptid);
633
634 /* Save the syscall list from the execing process. */
635 proc = get_thread_process (event_thr);
636 syscalls_to_catch = proc->syscalls_to_catch;
637 proc->syscalls_to_catch = NULL;
638
639 /* Delete the execing process and all its threads. */
640 linux_mourn (proc);
641 current_thread = NULL;
642
643 /* Create a new process/lwp/thread. */
644 proc = linux_add_process (event_pid, 0);
645 event_lwp = add_lwp (event_ptid);
646 event_thr = get_lwp_thread (event_lwp);
647 gdb_assert (current_thread == event_thr);
648 linux_arch_setup_thread (event_thr);
649
650 /* Set the event status. */
651 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
652 event_lwp->waitstatus.value.execd_pathname
653 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
654
655 /* Mark the exec status as pending. */
656 event_lwp->stopped = 1;
657 event_lwp->status_pending_p = 1;
658 event_lwp->status_pending = wstat;
659 event_thr->last_resume_kind = resume_continue;
660 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
661
662 /* Update syscall state in the new lwp, effectively mid-syscall too. */
663 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
664
665 /* Restore the list to catch. Don't rely on the client, which is free
666 to avoid sending a new list when the architecture doesn't change.
667 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
668 proc->syscalls_to_catch = syscalls_to_catch;
669
670 /* Report the event. */
671 *orig_event_lwp = event_lwp;
672 return 0;
673 }
674
675 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
676 }
677
678 /* Return the PC as read from the regcache of LWP, without any
679 adjustment. */
680
681 static CORE_ADDR
682 get_pc (struct lwp_info *lwp)
683 {
684 struct thread_info *saved_thread;
685 struct regcache *regcache;
686 CORE_ADDR pc;
687
688 if (the_low_target.get_pc == NULL)
689 return 0;
690
691 saved_thread = current_thread;
692 current_thread = get_lwp_thread (lwp);
693
694 regcache = get_thread_regcache (current_thread, 1);
695 pc = (*the_low_target.get_pc) (regcache);
696
697 if (debug_threads)
698 debug_printf ("pc is 0x%lx\n", (long) pc);
699
700 current_thread = saved_thread;
701 return pc;
702 }
703
704 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
705 Fill *SYSNO with the syscall nr trapped. Fill *SYSRET with the
706 return code. */
707
708 static void
709 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno, int *sysret)
710 {
711 struct thread_info *saved_thread;
712 struct regcache *regcache;
713
714 if (the_low_target.get_syscall_trapinfo == NULL)
715 {
716 /* If we cannot get the syscall trapinfo, report an unknown
717 system call number and -ENOSYS return value. */
718 *sysno = UNKNOWN_SYSCALL;
719 *sysret = -ENOSYS;
720 return;
721 }
722
723 saved_thread = current_thread;
724 current_thread = get_lwp_thread (lwp);
725
726 regcache = get_thread_regcache (current_thread, 1);
727 (*the_low_target.get_syscall_trapinfo) (regcache, sysno, sysret);
728
729 if (debug_threads)
730 {
731 debug_printf ("get_syscall_trapinfo sysno %d sysret %d\n",
732 *sysno, *sysret);
733 }
734
735 current_thread = saved_thread;
736 }
737
738 static int check_stopped_by_watchpoint (struct lwp_info *child);
739
740 /* Called when the LWP stopped for a signal/trap. If it stopped for a
741 trap check what caused it (breakpoint, watchpoint, trace, etc.),
742 and save the result in the LWP's stop_reason field. If it stopped
743 for a breakpoint, decrement the PC if necessary on the lwp's
744 architecture. Returns true if we now have the LWP's stop PC. */
745
746 static int
747 save_stop_reason (struct lwp_info *lwp)
748 {
749 CORE_ADDR pc;
750 CORE_ADDR sw_breakpoint_pc;
751 struct thread_info *saved_thread;
752 #if USE_SIGTRAP_SIGINFO
753 siginfo_t siginfo;
754 #endif
755
756 if (the_low_target.get_pc == NULL)
757 return 0;
758
759 pc = get_pc (lwp);
760 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
761
762 /* breakpoint_at reads from the current thread. */
763 saved_thread = current_thread;
764 current_thread = get_lwp_thread (lwp);
765
766 #if USE_SIGTRAP_SIGINFO
767 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
768 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
769 {
770 if (siginfo.si_signo == SIGTRAP)
771 {
772 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
773 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
774 {
775 /* The si_code is ambiguous on this arch -- check debug
776 registers. */
777 if (!check_stopped_by_watchpoint (lwp))
778 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
779 }
780 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
781 {
782 /* If we determine the LWP stopped for a SW breakpoint,
783 trust it. Particularly don't check watchpoint
784 registers, because at least on s390, we'd find
785 stopped-by-watchpoint as long as there's a watchpoint
786 set. */
787 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
788 }
789 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
790 {
791 /* This can indicate either a hardware breakpoint or
792 hardware watchpoint. Check debug registers. */
793 if (!check_stopped_by_watchpoint (lwp))
794 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
795 }
796 else if (siginfo.si_code == TRAP_TRACE)
797 {
798 /* We may have single stepped an instruction that
799 triggered a watchpoint. In that case, on some
800 architectures (such as x86), instead of TRAP_HWBKPT,
801 si_code indicates TRAP_TRACE, and we need to check
802 the debug registers separately. */
803 if (!check_stopped_by_watchpoint (lwp))
804 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
805 }
806 }
807 }
808 #else
809 /* We may have just stepped a breakpoint instruction. E.g., in
810 non-stop mode, GDB first tells the thread A to step a range, and
811 then the user inserts a breakpoint inside the range. In that
812 case we need to report the breakpoint PC. */
813 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
814 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
815 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
816
817 if (hardware_breakpoint_inserted_here (pc))
818 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
819
820 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
821 check_stopped_by_watchpoint (lwp);
822 #endif
823
824 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
825 {
826 if (debug_threads)
827 {
828 struct thread_info *thr = get_lwp_thread (lwp);
829
830 debug_printf ("CSBB: %s stopped by software breakpoint\n",
831 target_pid_to_str (ptid_of (thr)));
832 }
833
834 /* Back up the PC if necessary. */
835 if (pc != sw_breakpoint_pc)
836 {
837 struct regcache *regcache
838 = get_thread_regcache (current_thread, 1);
839 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
840 }
841
842 /* Update this so we record the correct stop PC below. */
843 pc = sw_breakpoint_pc;
844 }
845 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
846 {
847 if (debug_threads)
848 {
849 struct thread_info *thr = get_lwp_thread (lwp);
850
851 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
852 target_pid_to_str (ptid_of (thr)));
853 }
854 }
855 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
856 {
857 if (debug_threads)
858 {
859 struct thread_info *thr = get_lwp_thread (lwp);
860
861 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
862 target_pid_to_str (ptid_of (thr)));
863 }
864 }
865 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
866 {
867 if (debug_threads)
868 {
869 struct thread_info *thr = get_lwp_thread (lwp);
870
871 debug_printf ("CSBB: %s stopped by trace\n",
872 target_pid_to_str (ptid_of (thr)));
873 }
874 }
875
876 lwp->stop_pc = pc;
877 current_thread = saved_thread;
878 return 1;
879 }
880
881 static struct lwp_info *
882 add_lwp (ptid_t ptid)
883 {
884 struct lwp_info *lwp;
885
886 lwp = XCNEW (struct lwp_info);
887
888 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
889
890 if (the_low_target.new_thread != NULL)
891 the_low_target.new_thread (lwp);
892
893 lwp->thread = add_thread (ptid, lwp);
894
895 return lwp;
896 }
897
898 /* Start an inferior process and returns its pid.
899 ALLARGS is a vector of program-name and args. */
900
901 static int
902 linux_create_inferior (char *program, char **allargs)
903 {
904 struct lwp_info *new_lwp;
905 int pid;
906 ptid_t ptid;
907 struct cleanup *restore_personality
908 = maybe_disable_address_space_randomization (disable_randomization);
909
910 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
911 pid = vfork ();
912 #else
913 pid = fork ();
914 #endif
915 if (pid < 0)
916 perror_with_name ("fork");
917
918 if (pid == 0)
919 {
920 close_most_fds ();
921 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
922
923 setpgid (0, 0);
924
925 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
926 stdout to stderr so that inferior i/o doesn't corrupt the connection.
927 Also, redirect stdin to /dev/null. */
928 if (remote_connection_is_stdio ())
929 {
930 close (0);
931 open ("/dev/null", O_RDONLY);
932 dup2 (2, 1);
933 if (write (2, "stdin/stdout redirected\n",
934 sizeof ("stdin/stdout redirected\n") - 1) < 0)
935 {
936 /* Errors ignored. */;
937 }
938 }
939
940 execv (program, allargs);
941 if (errno == ENOENT)
942 execvp (program, allargs);
943
944 fprintf (stderr, "Cannot exec %s: %s.\n", program,
945 strerror (errno));
946 fflush (stderr);
947 _exit (0177);
948 }
949
950 do_cleanups (restore_personality);
951
952 linux_add_process (pid, 0);
953
954 ptid = ptid_build (pid, pid, 0);
955 new_lwp = add_lwp (ptid);
956 new_lwp->must_set_ptrace_flags = 1;
957
958 return pid;
959 }
960
961 /* Implement the post_create_inferior target_ops method. */
962
963 static void
964 linux_post_create_inferior (void)
965 {
966 struct lwp_info *lwp = get_thread_lwp (current_thread);
967
968 linux_arch_setup ();
969
970 if (lwp->must_set_ptrace_flags)
971 {
972 struct process_info *proc = current_process ();
973 int options = linux_low_ptrace_options (proc->attached);
974
975 linux_enable_event_reporting (lwpid_of (current_thread), options);
976 lwp->must_set_ptrace_flags = 0;
977 }
978 }
979
980 /* Attach to an inferior process. Returns 0 on success, ERRNO on
981 error. */
982
983 int
984 linux_attach_lwp (ptid_t ptid)
985 {
986 struct lwp_info *new_lwp;
987 int lwpid = ptid_get_lwp (ptid);
988
989 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
990 != 0)
991 return errno;
992
993 new_lwp = add_lwp (ptid);
994
995 /* We need to wait for SIGSTOP before being able to make the next
996 ptrace call on this LWP. */
997 new_lwp->must_set_ptrace_flags = 1;
998
999 if (linux_proc_pid_is_stopped (lwpid))
1000 {
1001 if (debug_threads)
1002 debug_printf ("Attached to a stopped process\n");
1003
1004 /* The process is definitely stopped. It is in a job control
1005 stop, unless the kernel predates the TASK_STOPPED /
1006 TASK_TRACED distinction, in which case it might be in a
1007 ptrace stop. Make sure it is in a ptrace stop; from there we
1008 can kill it, signal it, et cetera.
1009
1010 First make sure there is a pending SIGSTOP. Since we are
1011 already attached, the process can not transition from stopped
1012 to running without a PTRACE_CONT; so we know this signal will
1013 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1014 probably already in the queue (unless this kernel is old
1015 enough to use TASK_STOPPED for ptrace stops); but since
1016 SIGSTOP is not an RT signal, it can only be queued once. */
1017 kill_lwp (lwpid, SIGSTOP);
1018
1019 /* Finally, resume the stopped process. This will deliver the
1020 SIGSTOP (or a higher priority signal, just like normal
1021 PTRACE_ATTACH), which we'll catch later on. */
1022 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1023 }
1024
1025 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1026 brings it to a halt.
1027
1028 There are several cases to consider here:
1029
1030 1) gdbserver has already attached to the process and is being notified
1031 of a new thread that is being created.
1032 In this case we should ignore that SIGSTOP and resume the
1033 process. This is handled below by setting stop_expected = 1,
1034 and the fact that add_thread sets last_resume_kind ==
1035 resume_continue.
1036
1037 2) This is the first thread (the process thread), and we're attaching
1038 to it via attach_inferior.
1039 In this case we want the process thread to stop.
1040 This is handled by having linux_attach set last_resume_kind ==
1041 resume_stop after we return.
1042
1043 If the pid we are attaching to is also the tgid, we attach to and
1044 stop all the existing threads. Otherwise, we attach to pid and
1045 ignore any other threads in the same group as this pid.
1046
1047 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1048 existing threads.
1049 In this case we want the thread to stop.
1050 FIXME: This case is currently not properly handled.
1051 We should wait for the SIGSTOP but don't. Things work apparently
1052 because enough time passes between when we ptrace (ATTACH) and when
1053 gdb makes the next ptrace call on the thread.
1054
1055 On the other hand, if we are currently trying to stop all threads, we
1056 should treat the new thread as if we had sent it a SIGSTOP. This works
1057 because we are guaranteed that the add_lwp call above added us to the
1058 end of the list, and so the new thread has not yet reached
1059 wait_for_sigstop (but will). */
1060 new_lwp->stop_expected = 1;
1061
1062 return 0;
1063 }
1064
1065 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1066 already attached. Returns true if a new LWP is found, false
1067 otherwise. */
1068
1069 static int
1070 attach_proc_task_lwp_callback (ptid_t ptid)
1071 {
1072 /* Is this a new thread? */
1073 if (find_thread_ptid (ptid) == NULL)
1074 {
1075 int lwpid = ptid_get_lwp (ptid);
1076 int err;
1077
1078 if (debug_threads)
1079 debug_printf ("Found new lwp %d\n", lwpid);
1080
1081 err = linux_attach_lwp (ptid);
1082
1083 /* Be quiet if we simply raced with the thread exiting. EPERM
1084 is returned if the thread's task still exists, and is marked
1085 as exited or zombie, as well as other conditions, so in that
1086 case, confirm the status in /proc/PID/status. */
1087 if (err == ESRCH
1088 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1089 {
1090 if (debug_threads)
1091 {
1092 debug_printf ("Cannot attach to lwp %d: "
1093 "thread is gone (%d: %s)\n",
1094 lwpid, err, strerror (err));
1095 }
1096 }
1097 else if (err != 0)
1098 {
1099 warning (_("Cannot attach to lwp %d: %s"),
1100 lwpid,
1101 linux_ptrace_attach_fail_reason_string (ptid, err));
1102 }
1103
1104 return 1;
1105 }
1106 return 0;
1107 }
1108
1109 static void async_file_mark (void);
1110
1111 /* Attach to PID. If PID is the tgid, attach to it and all
1112 of its threads. */
1113
1114 static int
1115 linux_attach (unsigned long pid)
1116 {
1117 struct process_info *proc;
1118 struct thread_info *initial_thread;
1119 ptid_t ptid = ptid_build (pid, pid, 0);
1120 int err;
1121
1122 /* Attach to PID. We will check for other threads
1123 soon. */
1124 err = linux_attach_lwp (ptid);
1125 if (err != 0)
1126 error ("Cannot attach to process %ld: %s",
1127 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1128
1129 proc = linux_add_process (pid, 1);
1130
1131 /* Don't ignore the initial SIGSTOP if we just attached to this
1132 process. It will be collected by wait shortly. */
1133 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1134 initial_thread->last_resume_kind = resume_stop;
1135
1136 /* We must attach to every LWP. If /proc is mounted, use that to
1137 find them now. On the one hand, the inferior may be using raw
1138 clone instead of using pthreads. On the other hand, even if it
1139 is using pthreads, GDB may not be connected yet (thread_db needs
1140 to do symbol lookups, through qSymbol). Also, thread_db walks
1141 structures in the inferior's address space to find the list of
1142 threads/LWPs, and those structures may well be corrupted. Note
1143 that once thread_db is loaded, we'll still use it to list threads
1144 and associate pthread info with each LWP. */
1145 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1146
1147 /* GDB will shortly read the xml target description for this
1148 process, to figure out the process' architecture. But the target
1149 description is only filled in when the first process/thread in
1150 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1151 that now, otherwise, if GDB is fast enough, it could read the
1152 target description _before_ that initial stop. */
1153 if (non_stop)
1154 {
1155 struct lwp_info *lwp;
1156 int wstat, lwpid;
1157 ptid_t pid_ptid = pid_to_ptid (pid);
1158
1159 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1160 &wstat, __WALL);
1161 gdb_assert (lwpid > 0);
1162
1163 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1164
1165 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1166 {
1167 lwp->status_pending_p = 1;
1168 lwp->status_pending = wstat;
1169 }
1170
1171 initial_thread->last_resume_kind = resume_continue;
1172
1173 async_file_mark ();
1174
1175 gdb_assert (proc->tdesc != NULL);
1176 }
1177
1178 return 0;
1179 }
1180
1181 struct counter
1182 {
1183 int pid;
1184 int count;
1185 };
1186
1187 static int
1188 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1189 {
1190 struct counter *counter = (struct counter *) args;
1191
1192 if (ptid_get_pid (entry->id) == counter->pid)
1193 {
1194 if (++counter->count > 1)
1195 return 1;
1196 }
1197
1198 return 0;
1199 }
1200
1201 static int
1202 last_thread_of_process_p (int pid)
1203 {
1204 struct counter counter = { pid , 0 };
1205
1206 return (find_inferior (&all_threads,
1207 second_thread_of_pid_p, &counter) == NULL);
1208 }
1209
1210 /* Kill LWP. */
1211
1212 static void
1213 linux_kill_one_lwp (struct lwp_info *lwp)
1214 {
1215 struct thread_info *thr = get_lwp_thread (lwp);
1216 int pid = lwpid_of (thr);
1217
1218 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1219 there is no signal context, and ptrace(PTRACE_KILL) (or
1220 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1221 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1222 alternative is to kill with SIGKILL. We only need one SIGKILL
1223 per process, not one for each thread. But since we still support
1224 support debugging programs using raw clone without CLONE_THREAD,
1225 we send one for each thread. For years, we used PTRACE_KILL
1226 only, so we're being a bit paranoid about some old kernels where
1227 PTRACE_KILL might work better (dubious if there are any such, but
1228 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1229 second, and so we're fine everywhere. */
1230
1231 errno = 0;
1232 kill_lwp (pid, SIGKILL);
1233 if (debug_threads)
1234 {
1235 int save_errno = errno;
1236
1237 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1238 target_pid_to_str (ptid_of (thr)),
1239 save_errno ? strerror (save_errno) : "OK");
1240 }
1241
1242 errno = 0;
1243 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1244 if (debug_threads)
1245 {
1246 int save_errno = errno;
1247
1248 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1249 target_pid_to_str (ptid_of (thr)),
1250 save_errno ? strerror (save_errno) : "OK");
1251 }
1252 }
1253
1254 /* Kill LWP and wait for it to die. */
1255
1256 static void
1257 kill_wait_lwp (struct lwp_info *lwp)
1258 {
1259 struct thread_info *thr = get_lwp_thread (lwp);
1260 int pid = ptid_get_pid (ptid_of (thr));
1261 int lwpid = ptid_get_lwp (ptid_of (thr));
1262 int wstat;
1263 int res;
1264
1265 if (debug_threads)
1266 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1267
1268 do
1269 {
1270 linux_kill_one_lwp (lwp);
1271
1272 /* Make sure it died. Notes:
1273
1274 - The loop is most likely unnecessary.
1275
1276 - We don't use linux_wait_for_event as that could delete lwps
1277 while we're iterating over them. We're not interested in
1278 any pending status at this point, only in making sure all
1279 wait status on the kernel side are collected until the
1280 process is reaped.
1281
1282 - We don't use __WALL here as the __WALL emulation relies on
1283 SIGCHLD, and killing a stopped process doesn't generate
1284 one, nor an exit status.
1285 */
1286 res = my_waitpid (lwpid, &wstat, 0);
1287 if (res == -1 && errno == ECHILD)
1288 res = my_waitpid (lwpid, &wstat, __WCLONE);
1289 } while (res > 0 && WIFSTOPPED (wstat));
1290
1291 /* Even if it was stopped, the child may have already disappeared.
1292 E.g., if it was killed by SIGKILL. */
1293 if (res < 0 && errno != ECHILD)
1294 perror_with_name ("kill_wait_lwp");
1295 }
1296
1297 /* Callback for `find_inferior'. Kills an lwp of a given process,
1298 except the leader. */
1299
1300 static int
1301 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1302 {
1303 struct thread_info *thread = (struct thread_info *) entry;
1304 struct lwp_info *lwp = get_thread_lwp (thread);
1305 int pid = * (int *) args;
1306
1307 if (ptid_get_pid (entry->id) != pid)
1308 return 0;
1309
1310 /* We avoid killing the first thread here, because of a Linux kernel (at
1311 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1312 the children get a chance to be reaped, it will remain a zombie
1313 forever. */
1314
1315 if (lwpid_of (thread) == pid)
1316 {
1317 if (debug_threads)
1318 debug_printf ("lkop: is last of process %s\n",
1319 target_pid_to_str (entry->id));
1320 return 0;
1321 }
1322
1323 kill_wait_lwp (lwp);
1324 return 0;
1325 }
1326
1327 static int
1328 linux_kill (int pid)
1329 {
1330 struct process_info *process;
1331 struct lwp_info *lwp;
1332
1333 process = find_process_pid (pid);
1334 if (process == NULL)
1335 return -1;
1336
1337 /* If we're killing a running inferior, make sure it is stopped
1338 first, as PTRACE_KILL will not work otherwise. */
1339 stop_all_lwps (0, NULL);
1340
1341 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1342
1343 /* See the comment in linux_kill_one_lwp. We did not kill the first
1344 thread in the list, so do so now. */
1345 lwp = find_lwp_pid (pid_to_ptid (pid));
1346
1347 if (lwp == NULL)
1348 {
1349 if (debug_threads)
1350 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1351 pid);
1352 }
1353 else
1354 kill_wait_lwp (lwp);
1355
1356 the_target->mourn (process);
1357
1358 /* Since we presently can only stop all lwps of all processes, we
1359 need to unstop lwps of other processes. */
1360 unstop_all_lwps (0, NULL);
1361 return 0;
1362 }
1363
1364 /* Get pending signal of THREAD, for detaching purposes. This is the
1365 signal the thread last stopped for, which we need to deliver to the
1366 thread when detaching, otherwise, it'd be suppressed/lost. */
1367
1368 static int
1369 get_detach_signal (struct thread_info *thread)
1370 {
1371 enum gdb_signal signo = GDB_SIGNAL_0;
1372 int status;
1373 struct lwp_info *lp = get_thread_lwp (thread);
1374
1375 if (lp->status_pending_p)
1376 status = lp->status_pending;
1377 else
1378 {
1379 /* If the thread had been suspended by gdbserver, and it stopped
1380 cleanly, then it'll have stopped with SIGSTOP. But we don't
1381 want to deliver that SIGSTOP. */
1382 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1383 || thread->last_status.value.sig == GDB_SIGNAL_0)
1384 return 0;
1385
1386 /* Otherwise, we may need to deliver the signal we
1387 intercepted. */
1388 status = lp->last_status;
1389 }
1390
1391 if (!WIFSTOPPED (status))
1392 {
1393 if (debug_threads)
1394 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1395 target_pid_to_str (ptid_of (thread)));
1396 return 0;
1397 }
1398
1399 /* Extended wait statuses aren't real SIGTRAPs. */
1400 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1401 {
1402 if (debug_threads)
1403 debug_printf ("GPS: lwp %s had stopped with extended "
1404 "status: no pending signal\n",
1405 target_pid_to_str (ptid_of (thread)));
1406 return 0;
1407 }
1408
1409 signo = gdb_signal_from_host (WSTOPSIG (status));
1410
1411 if (program_signals_p && !program_signals[signo])
1412 {
1413 if (debug_threads)
1414 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1415 target_pid_to_str (ptid_of (thread)),
1416 gdb_signal_to_string (signo));
1417 return 0;
1418 }
1419 else if (!program_signals_p
1420 /* If we have no way to know which signals GDB does not
1421 want to have passed to the program, assume
1422 SIGTRAP/SIGINT, which is GDB's default. */
1423 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1424 {
1425 if (debug_threads)
1426 debug_printf ("GPS: lwp %s had signal %s, "
1427 "but we don't know if we should pass it. "
1428 "Default to not.\n",
1429 target_pid_to_str (ptid_of (thread)),
1430 gdb_signal_to_string (signo));
1431 return 0;
1432 }
1433 else
1434 {
1435 if (debug_threads)
1436 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1437 target_pid_to_str (ptid_of (thread)),
1438 gdb_signal_to_string (signo));
1439
1440 return WSTOPSIG (status);
1441 }
1442 }
1443
1444 static int
1445 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1446 {
1447 struct thread_info *thread = (struct thread_info *) entry;
1448 struct lwp_info *lwp = get_thread_lwp (thread);
1449 int pid = * (int *) args;
1450 int sig;
1451
1452 if (ptid_get_pid (entry->id) != pid)
1453 return 0;
1454
1455 /* If there is a pending SIGSTOP, get rid of it. */
1456 if (lwp->stop_expected)
1457 {
1458 if (debug_threads)
1459 debug_printf ("Sending SIGCONT to %s\n",
1460 target_pid_to_str (ptid_of (thread)));
1461
1462 kill_lwp (lwpid_of (thread), SIGCONT);
1463 lwp->stop_expected = 0;
1464 }
1465
1466 /* Flush any pending changes to the process's registers. */
1467 regcache_invalidate_thread (thread);
1468
1469 /* Pass on any pending signal for this thread. */
1470 sig = get_detach_signal (thread);
1471
1472 /* Finally, let it resume. */
1473 if (the_low_target.prepare_to_resume != NULL)
1474 the_low_target.prepare_to_resume (lwp);
1475 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1476 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1477 error (_("Can't detach %s: %s"),
1478 target_pid_to_str (ptid_of (thread)),
1479 strerror (errno));
1480
1481 delete_lwp (lwp);
1482 return 0;
1483 }
1484
1485 static int
1486 linux_detach (int pid)
1487 {
1488 struct process_info *process;
1489
1490 process = find_process_pid (pid);
1491 if (process == NULL)
1492 return -1;
1493
1494 /* As there's a step over already in progress, let it finish first,
1495 otherwise nesting a stabilize_threads operation on top gets real
1496 messy. */
1497 complete_ongoing_step_over ();
1498
1499 /* Stop all threads before detaching. First, ptrace requires that
1500 the thread is stopped to sucessfully detach. Second, thread_db
1501 may need to uninstall thread event breakpoints from memory, which
1502 only works with a stopped process anyway. */
1503 stop_all_lwps (0, NULL);
1504
1505 #ifdef USE_THREAD_DB
1506 thread_db_detach (process);
1507 #endif
1508
1509 /* Stabilize threads (move out of jump pads). */
1510 stabilize_threads ();
1511
1512 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1513
1514 the_target->mourn (process);
1515
1516 /* Since we presently can only stop all lwps of all processes, we
1517 need to unstop lwps of other processes. */
1518 unstop_all_lwps (0, NULL);
1519 return 0;
1520 }
1521
1522 /* Remove all LWPs that belong to process PROC from the lwp list. */
1523
1524 static int
1525 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1526 {
1527 struct thread_info *thread = (struct thread_info *) entry;
1528 struct lwp_info *lwp = get_thread_lwp (thread);
1529 struct process_info *process = (struct process_info *) proc;
1530
1531 if (pid_of (thread) == pid_of (process))
1532 delete_lwp (lwp);
1533
1534 return 0;
1535 }
1536
1537 static void
1538 linux_mourn (struct process_info *process)
1539 {
1540 struct process_info_private *priv;
1541
1542 #ifdef USE_THREAD_DB
1543 thread_db_mourn (process);
1544 #endif
1545
1546 find_inferior (&all_threads, delete_lwp_callback, process);
1547
1548 /* Freeing all private data. */
1549 priv = process->priv;
1550 free (priv->arch_private);
1551 free (priv);
1552 process->priv = NULL;
1553
1554 remove_process (process);
1555 }
1556
1557 static void
1558 linux_join (int pid)
1559 {
1560 int status, ret;
1561
1562 do {
1563 ret = my_waitpid (pid, &status, 0);
1564 if (WIFEXITED (status) || WIFSIGNALED (status))
1565 break;
1566 } while (ret != -1 || errno != ECHILD);
1567 }
1568
1569 /* Return nonzero if the given thread is still alive. */
1570 static int
1571 linux_thread_alive (ptid_t ptid)
1572 {
1573 struct lwp_info *lwp = find_lwp_pid (ptid);
1574
1575 /* We assume we always know if a thread exits. If a whole process
1576 exited but we still haven't been able to report it to GDB, we'll
1577 hold on to the last lwp of the dead process. */
1578 if (lwp != NULL)
1579 return !lwp_is_marked_dead (lwp);
1580 else
1581 return 0;
1582 }
1583
1584 /* Return 1 if this lwp still has an interesting status pending. If
1585 not (e.g., it had stopped for a breakpoint that is gone), return
1586 false. */
1587
1588 static int
1589 thread_still_has_status_pending_p (struct thread_info *thread)
1590 {
1591 struct lwp_info *lp = get_thread_lwp (thread);
1592
1593 if (!lp->status_pending_p)
1594 return 0;
1595
1596 if (thread->last_resume_kind != resume_stop
1597 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1598 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1599 {
1600 struct thread_info *saved_thread;
1601 CORE_ADDR pc;
1602 int discard = 0;
1603
1604 gdb_assert (lp->last_status != 0);
1605
1606 pc = get_pc (lp);
1607
1608 saved_thread = current_thread;
1609 current_thread = thread;
1610
1611 if (pc != lp->stop_pc)
1612 {
1613 if (debug_threads)
1614 debug_printf ("PC of %ld changed\n",
1615 lwpid_of (thread));
1616 discard = 1;
1617 }
1618
1619 #if !USE_SIGTRAP_SIGINFO
1620 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1621 && !(*the_low_target.breakpoint_at) (pc))
1622 {
1623 if (debug_threads)
1624 debug_printf ("previous SW breakpoint of %ld gone\n",
1625 lwpid_of (thread));
1626 discard = 1;
1627 }
1628 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1629 && !hardware_breakpoint_inserted_here (pc))
1630 {
1631 if (debug_threads)
1632 debug_printf ("previous HW breakpoint of %ld gone\n",
1633 lwpid_of (thread));
1634 discard = 1;
1635 }
1636 #endif
1637
1638 current_thread = saved_thread;
1639
1640 if (discard)
1641 {
1642 if (debug_threads)
1643 debug_printf ("discarding pending breakpoint status\n");
1644 lp->status_pending_p = 0;
1645 return 0;
1646 }
1647 }
1648
1649 return 1;
1650 }
1651
1652 /* Returns true if LWP is resumed from the client's perspective. */
1653
1654 static int
1655 lwp_resumed (struct lwp_info *lwp)
1656 {
1657 struct thread_info *thread = get_lwp_thread (lwp);
1658
1659 if (thread->last_resume_kind != resume_stop)
1660 return 1;
1661
1662 /* Did gdb send us a `vCont;t', but we haven't reported the
1663 corresponding stop to gdb yet? If so, the thread is still
1664 resumed/running from gdb's perspective. */
1665 if (thread->last_resume_kind == resume_stop
1666 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1667 return 1;
1668
1669 return 0;
1670 }
1671
1672 /* Return 1 if this lwp has an interesting status pending. */
1673 static int
1674 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1675 {
1676 struct thread_info *thread = (struct thread_info *) entry;
1677 struct lwp_info *lp = get_thread_lwp (thread);
1678 ptid_t ptid = * (ptid_t *) arg;
1679
1680 /* Check if we're only interested in events from a specific process
1681 or a specific LWP. */
1682 if (!ptid_match (ptid_of (thread), ptid))
1683 return 0;
1684
1685 if (!lwp_resumed (lp))
1686 return 0;
1687
1688 if (lp->status_pending_p
1689 && !thread_still_has_status_pending_p (thread))
1690 {
1691 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1692 return 0;
1693 }
1694
1695 return lp->status_pending_p;
1696 }
1697
1698 static int
1699 same_lwp (struct inferior_list_entry *entry, void *data)
1700 {
1701 ptid_t ptid = *(ptid_t *) data;
1702 int lwp;
1703
1704 if (ptid_get_lwp (ptid) != 0)
1705 lwp = ptid_get_lwp (ptid);
1706 else
1707 lwp = ptid_get_pid (ptid);
1708
1709 if (ptid_get_lwp (entry->id) == lwp)
1710 return 1;
1711
1712 return 0;
1713 }
1714
1715 struct lwp_info *
1716 find_lwp_pid (ptid_t ptid)
1717 {
1718 struct inferior_list_entry *thread
1719 = find_inferior (&all_threads, same_lwp, &ptid);
1720
1721 if (thread == NULL)
1722 return NULL;
1723
1724 return get_thread_lwp ((struct thread_info *) thread);
1725 }
1726
1727 /* Return the number of known LWPs in the tgid given by PID. */
1728
1729 static int
1730 num_lwps (int pid)
1731 {
1732 struct inferior_list_entry *inf, *tmp;
1733 int count = 0;
1734
1735 ALL_INFERIORS (&all_threads, inf, tmp)
1736 {
1737 if (ptid_get_pid (inf->id) == pid)
1738 count++;
1739 }
1740
1741 return count;
1742 }
1743
1744 /* The arguments passed to iterate_over_lwps. */
1745
1746 struct iterate_over_lwps_args
1747 {
1748 /* The FILTER argument passed to iterate_over_lwps. */
1749 ptid_t filter;
1750
1751 /* The CALLBACK argument passed to iterate_over_lwps. */
1752 iterate_over_lwps_ftype *callback;
1753
1754 /* The DATA argument passed to iterate_over_lwps. */
1755 void *data;
1756 };
1757
1758 /* Callback for find_inferior used by iterate_over_lwps to filter
1759 calls to the callback supplied to that function. Returning a
1760 nonzero value causes find_inferiors to stop iterating and return
1761 the current inferior_list_entry. Returning zero indicates that
1762 find_inferiors should continue iterating. */
1763
1764 static int
1765 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1766 {
1767 struct iterate_over_lwps_args *args
1768 = (struct iterate_over_lwps_args *) args_p;
1769
1770 if (ptid_match (entry->id, args->filter))
1771 {
1772 struct thread_info *thr = (struct thread_info *) entry;
1773 struct lwp_info *lwp = get_thread_lwp (thr);
1774
1775 return (*args->callback) (lwp, args->data);
1776 }
1777
1778 return 0;
1779 }
1780
1781 /* See nat/linux-nat.h. */
1782
1783 struct lwp_info *
1784 iterate_over_lwps (ptid_t filter,
1785 iterate_over_lwps_ftype callback,
1786 void *data)
1787 {
1788 struct iterate_over_lwps_args args = {filter, callback, data};
1789 struct inferior_list_entry *entry;
1790
1791 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1792 if (entry == NULL)
1793 return NULL;
1794
1795 return get_thread_lwp ((struct thread_info *) entry);
1796 }
1797
1798 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1799 their exits until all other threads in the group have exited. */
1800
1801 static void
1802 check_zombie_leaders (void)
1803 {
1804 struct process_info *proc, *tmp;
1805
1806 ALL_PROCESSES (proc, tmp)
1807 {
1808 pid_t leader_pid = pid_of (proc);
1809 struct lwp_info *leader_lp;
1810
1811 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1812
1813 if (debug_threads)
1814 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1815 "num_lwps=%d, zombie=%d\n",
1816 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1817 linux_proc_pid_is_zombie (leader_pid));
1818
1819 if (leader_lp != NULL && !leader_lp->stopped
1820 /* Check if there are other threads in the group, as we may
1821 have raced with the inferior simply exiting. */
1822 && !last_thread_of_process_p (leader_pid)
1823 && linux_proc_pid_is_zombie (leader_pid))
1824 {
1825 /* A leader zombie can mean one of two things:
1826
1827 - It exited, and there's an exit status pending
1828 available, or only the leader exited (not the whole
1829 program). In the latter case, we can't waitpid the
1830 leader's exit status until all other threads are gone.
1831
1832 - There are 3 or more threads in the group, and a thread
1833 other than the leader exec'd. On an exec, the Linux
1834 kernel destroys all other threads (except the execing
1835 one) in the thread group, and resets the execing thread's
1836 tid to the tgid. No exit notification is sent for the
1837 execing thread -- from the ptracer's perspective, it
1838 appears as though the execing thread just vanishes.
1839 Until we reap all other threads except the leader and the
1840 execing thread, the leader will be zombie, and the
1841 execing thread will be in `D (disc sleep)'. As soon as
1842 all other threads are reaped, the execing thread changes
1843 it's tid to the tgid, and the previous (zombie) leader
1844 vanishes, giving place to the "new" leader. We could try
1845 distinguishing the exit and exec cases, by waiting once
1846 more, and seeing if something comes out, but it doesn't
1847 sound useful. The previous leader _does_ go away, and
1848 we'll re-add the new one once we see the exec event
1849 (which is just the same as what would happen if the
1850 previous leader did exit voluntarily before some other
1851 thread execs). */
1852
1853 if (debug_threads)
1854 fprintf (stderr,
1855 "CZL: Thread group leader %d zombie "
1856 "(it exited, or another thread execd).\n",
1857 leader_pid);
1858
1859 delete_lwp (leader_lp);
1860 }
1861 }
1862 }
1863
1864 /* Callback for `find_inferior'. Returns the first LWP that is not
1865 stopped. ARG is a PTID filter. */
1866
1867 static int
1868 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1869 {
1870 struct thread_info *thr = (struct thread_info *) entry;
1871 struct lwp_info *lwp;
1872 ptid_t filter = *(ptid_t *) arg;
1873
1874 if (!ptid_match (ptid_of (thr), filter))
1875 return 0;
1876
1877 lwp = get_thread_lwp (thr);
1878 if (!lwp->stopped)
1879 return 1;
1880
1881 return 0;
1882 }
1883
1884 /* Increment LWP's suspend count. */
1885
1886 static void
1887 lwp_suspended_inc (struct lwp_info *lwp)
1888 {
1889 lwp->suspended++;
1890
1891 if (debug_threads && lwp->suspended > 4)
1892 {
1893 struct thread_info *thread = get_lwp_thread (lwp);
1894
1895 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1896 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1897 }
1898 }
1899
1900 /* Decrement LWP's suspend count. */
1901
1902 static void
1903 lwp_suspended_decr (struct lwp_info *lwp)
1904 {
1905 lwp->suspended--;
1906
1907 if (lwp->suspended < 0)
1908 {
1909 struct thread_info *thread = get_lwp_thread (lwp);
1910
1911 internal_error (__FILE__, __LINE__,
1912 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1913 lwp->suspended);
1914 }
1915 }
1916
1917 /* This function should only be called if the LWP got a SIGTRAP.
1918
1919 Handle any tracepoint steps or hits. Return true if a tracepoint
1920 event was handled, 0 otherwise. */
1921
1922 static int
1923 handle_tracepoints (struct lwp_info *lwp)
1924 {
1925 struct thread_info *tinfo = get_lwp_thread (lwp);
1926 int tpoint_related_event = 0;
1927
1928 gdb_assert (lwp->suspended == 0);
1929
1930 /* If this tracepoint hit causes a tracing stop, we'll immediately
1931 uninsert tracepoints. To do this, we temporarily pause all
1932 threads, unpatch away, and then unpause threads. We need to make
1933 sure the unpausing doesn't resume LWP too. */
1934 lwp_suspended_inc (lwp);
1935
1936 /* And we need to be sure that any all-threads-stopping doesn't try
1937 to move threads out of the jump pads, as it could deadlock the
1938 inferior (LWP could be in the jump pad, maybe even holding the
1939 lock.) */
1940
1941 /* Do any necessary step collect actions. */
1942 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1943
1944 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1945
1946 /* See if we just hit a tracepoint and do its main collect
1947 actions. */
1948 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1949
1950 lwp_suspended_decr (lwp);
1951
1952 gdb_assert (lwp->suspended == 0);
1953 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1954
1955 if (tpoint_related_event)
1956 {
1957 if (debug_threads)
1958 debug_printf ("got a tracepoint event\n");
1959 return 1;
1960 }
1961
1962 return 0;
1963 }
1964
1965 /* Convenience wrapper. Returns true if LWP is presently collecting a
1966 fast tracepoint. */
1967
1968 static int
1969 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1970 struct fast_tpoint_collect_status *status)
1971 {
1972 CORE_ADDR thread_area;
1973 struct thread_info *thread = get_lwp_thread (lwp);
1974
1975 if (the_low_target.get_thread_area == NULL)
1976 return 0;
1977
1978 /* Get the thread area address. This is used to recognize which
1979 thread is which when tracing with the in-process agent library.
1980 We don't read anything from the address, and treat it as opaque;
1981 it's the address itself that we assume is unique per-thread. */
1982 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1983 return 0;
1984
1985 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1986 }
1987
1988 /* The reason we resume in the caller, is because we want to be able
1989 to pass lwp->status_pending as WSTAT, and we need to clear
1990 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1991 refuses to resume. */
1992
1993 static int
1994 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1995 {
1996 struct thread_info *saved_thread;
1997
1998 saved_thread = current_thread;
1999 current_thread = get_lwp_thread (lwp);
2000
2001 if ((wstat == NULL
2002 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2003 && supports_fast_tracepoints ()
2004 && agent_loaded_p ())
2005 {
2006 struct fast_tpoint_collect_status status;
2007 int r;
2008
2009 if (debug_threads)
2010 debug_printf ("Checking whether LWP %ld needs to move out of the "
2011 "jump pad.\n",
2012 lwpid_of (current_thread));
2013
2014 r = linux_fast_tracepoint_collecting (lwp, &status);
2015
2016 if (wstat == NULL
2017 || (WSTOPSIG (*wstat) != SIGILL
2018 && WSTOPSIG (*wstat) != SIGFPE
2019 && WSTOPSIG (*wstat) != SIGSEGV
2020 && WSTOPSIG (*wstat) != SIGBUS))
2021 {
2022 lwp->collecting_fast_tracepoint = r;
2023
2024 if (r != 0)
2025 {
2026 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
2027 {
2028 /* Haven't executed the original instruction yet.
2029 Set breakpoint there, and wait till it's hit,
2030 then single-step until exiting the jump pad. */
2031 lwp->exit_jump_pad_bkpt
2032 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2033 }
2034
2035 if (debug_threads)
2036 debug_printf ("Checking whether LWP %ld needs to move out of "
2037 "the jump pad...it does\n",
2038 lwpid_of (current_thread));
2039 current_thread = saved_thread;
2040
2041 return 1;
2042 }
2043 }
2044 else
2045 {
2046 /* If we get a synchronous signal while collecting, *and*
2047 while executing the (relocated) original instruction,
2048 reset the PC to point at the tpoint address, before
2049 reporting to GDB. Otherwise, it's an IPA lib bug: just
2050 report the signal to GDB, and pray for the best. */
2051
2052 lwp->collecting_fast_tracepoint = 0;
2053
2054 if (r != 0
2055 && (status.adjusted_insn_addr <= lwp->stop_pc
2056 && lwp->stop_pc < status.adjusted_insn_addr_end))
2057 {
2058 siginfo_t info;
2059 struct regcache *regcache;
2060
2061 /* The si_addr on a few signals references the address
2062 of the faulting instruction. Adjust that as
2063 well. */
2064 if ((WSTOPSIG (*wstat) == SIGILL
2065 || WSTOPSIG (*wstat) == SIGFPE
2066 || WSTOPSIG (*wstat) == SIGBUS
2067 || WSTOPSIG (*wstat) == SIGSEGV)
2068 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2069 (PTRACE_TYPE_ARG3) 0, &info) == 0
2070 /* Final check just to make sure we don't clobber
2071 the siginfo of non-kernel-sent signals. */
2072 && (uintptr_t) info.si_addr == lwp->stop_pc)
2073 {
2074 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2075 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2076 (PTRACE_TYPE_ARG3) 0, &info);
2077 }
2078
2079 regcache = get_thread_regcache (current_thread, 1);
2080 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2081 lwp->stop_pc = status.tpoint_addr;
2082
2083 /* Cancel any fast tracepoint lock this thread was
2084 holding. */
2085 force_unlock_trace_buffer ();
2086 }
2087
2088 if (lwp->exit_jump_pad_bkpt != NULL)
2089 {
2090 if (debug_threads)
2091 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2092 "stopping all threads momentarily.\n");
2093
2094 stop_all_lwps (1, lwp);
2095
2096 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2097 lwp->exit_jump_pad_bkpt = NULL;
2098
2099 unstop_all_lwps (1, lwp);
2100
2101 gdb_assert (lwp->suspended >= 0);
2102 }
2103 }
2104 }
2105
2106 if (debug_threads)
2107 debug_printf ("Checking whether LWP %ld needs to move out of the "
2108 "jump pad...no\n",
2109 lwpid_of (current_thread));
2110
2111 current_thread = saved_thread;
2112 return 0;
2113 }
2114
2115 /* Enqueue one signal in the "signals to report later when out of the
2116 jump pad" list. */
2117
2118 static void
2119 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2120 {
2121 struct pending_signals *p_sig;
2122 struct thread_info *thread = get_lwp_thread (lwp);
2123
2124 if (debug_threads)
2125 debug_printf ("Deferring signal %d for LWP %ld.\n",
2126 WSTOPSIG (*wstat), lwpid_of (thread));
2127
2128 if (debug_threads)
2129 {
2130 struct pending_signals *sig;
2131
2132 for (sig = lwp->pending_signals_to_report;
2133 sig != NULL;
2134 sig = sig->prev)
2135 debug_printf (" Already queued %d\n",
2136 sig->signal);
2137
2138 debug_printf (" (no more currently queued signals)\n");
2139 }
2140
2141 /* Don't enqueue non-RT signals if they are already in the deferred
2142 queue. (SIGSTOP being the easiest signal to see ending up here
2143 twice) */
2144 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2145 {
2146 struct pending_signals *sig;
2147
2148 for (sig = lwp->pending_signals_to_report;
2149 sig != NULL;
2150 sig = sig->prev)
2151 {
2152 if (sig->signal == WSTOPSIG (*wstat))
2153 {
2154 if (debug_threads)
2155 debug_printf ("Not requeuing already queued non-RT signal %d"
2156 " for LWP %ld\n",
2157 sig->signal,
2158 lwpid_of (thread));
2159 return;
2160 }
2161 }
2162 }
2163
2164 p_sig = XCNEW (struct pending_signals);
2165 p_sig->prev = lwp->pending_signals_to_report;
2166 p_sig->signal = WSTOPSIG (*wstat);
2167
2168 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2169 &p_sig->info);
2170
2171 lwp->pending_signals_to_report = p_sig;
2172 }
2173
2174 /* Dequeue one signal from the "signals to report later when out of
2175 the jump pad" list. */
2176
2177 static int
2178 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2179 {
2180 struct thread_info *thread = get_lwp_thread (lwp);
2181
2182 if (lwp->pending_signals_to_report != NULL)
2183 {
2184 struct pending_signals **p_sig;
2185
2186 p_sig = &lwp->pending_signals_to_report;
2187 while ((*p_sig)->prev != NULL)
2188 p_sig = &(*p_sig)->prev;
2189
2190 *wstat = W_STOPCODE ((*p_sig)->signal);
2191 if ((*p_sig)->info.si_signo != 0)
2192 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2193 &(*p_sig)->info);
2194 free (*p_sig);
2195 *p_sig = NULL;
2196
2197 if (debug_threads)
2198 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2199 WSTOPSIG (*wstat), lwpid_of (thread));
2200
2201 if (debug_threads)
2202 {
2203 struct pending_signals *sig;
2204
2205 for (sig = lwp->pending_signals_to_report;
2206 sig != NULL;
2207 sig = sig->prev)
2208 debug_printf (" Still queued %d\n",
2209 sig->signal);
2210
2211 debug_printf (" (no more queued signals)\n");
2212 }
2213
2214 return 1;
2215 }
2216
2217 return 0;
2218 }
2219
2220 /* Fetch the possibly triggered data watchpoint info and store it in
2221 CHILD.
2222
2223 On some archs, like x86, that use debug registers to set
2224 watchpoints, it's possible that the way to know which watched
2225 address trapped, is to check the register that is used to select
2226 which address to watch. Problem is, between setting the watchpoint
2227 and reading back which data address trapped, the user may change
2228 the set of watchpoints, and, as a consequence, GDB changes the
2229 debug registers in the inferior. To avoid reading back a stale
2230 stopped-data-address when that happens, we cache in LP the fact
2231 that a watchpoint trapped, and the corresponding data address, as
2232 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2233 registers meanwhile, we have the cached data we can rely on. */
2234
2235 static int
2236 check_stopped_by_watchpoint (struct lwp_info *child)
2237 {
2238 if (the_low_target.stopped_by_watchpoint != NULL)
2239 {
2240 struct thread_info *saved_thread;
2241
2242 saved_thread = current_thread;
2243 current_thread = get_lwp_thread (child);
2244
2245 if (the_low_target.stopped_by_watchpoint ())
2246 {
2247 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2248
2249 if (the_low_target.stopped_data_address != NULL)
2250 child->stopped_data_address
2251 = the_low_target.stopped_data_address ();
2252 else
2253 child->stopped_data_address = 0;
2254 }
2255
2256 current_thread = saved_thread;
2257 }
2258
2259 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2260 }
2261
2262 /* Return the ptrace options that we want to try to enable. */
2263
2264 static int
2265 linux_low_ptrace_options (int attached)
2266 {
2267 int options = 0;
2268
2269 if (!attached)
2270 options |= PTRACE_O_EXITKILL;
2271
2272 if (report_fork_events)
2273 options |= PTRACE_O_TRACEFORK;
2274
2275 if (report_vfork_events)
2276 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2277
2278 if (report_exec_events)
2279 options |= PTRACE_O_TRACEEXEC;
2280
2281 options |= PTRACE_O_TRACESYSGOOD;
2282
2283 return options;
2284 }
2285
2286 /* Do low-level handling of the event, and check if we should go on
2287 and pass it to caller code. Return the affected lwp if we are, or
2288 NULL otherwise. */
2289
2290 static struct lwp_info *
2291 linux_low_filter_event (int lwpid, int wstat)
2292 {
2293 struct lwp_info *child;
2294 struct thread_info *thread;
2295 int have_stop_pc = 0;
2296
2297 child = find_lwp_pid (pid_to_ptid (lwpid));
2298
2299 /* Check for stop events reported by a process we didn't already
2300 know about - anything not already in our LWP list.
2301
2302 If we're expecting to receive stopped processes after
2303 fork, vfork, and clone events, then we'll just add the
2304 new one to our list and go back to waiting for the event
2305 to be reported - the stopped process might be returned
2306 from waitpid before or after the event is.
2307
2308 But note the case of a non-leader thread exec'ing after the
2309 leader having exited, and gone from our lists (because
2310 check_zombie_leaders deleted it). The non-leader thread
2311 changes its tid to the tgid. */
2312
2313 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2314 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2315 {
2316 ptid_t child_ptid;
2317
2318 /* A multi-thread exec after we had seen the leader exiting. */
2319 if (debug_threads)
2320 {
2321 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2322 "after exec.\n", lwpid);
2323 }
2324
2325 child_ptid = ptid_build (lwpid, lwpid, 0);
2326 child = add_lwp (child_ptid);
2327 child->stopped = 1;
2328 current_thread = child->thread;
2329 }
2330
2331 /* If we didn't find a process, one of two things presumably happened:
2332 - A process we started and then detached from has exited. Ignore it.
2333 - A process we are controlling has forked and the new child's stop
2334 was reported to us by the kernel. Save its PID. */
2335 if (child == NULL && WIFSTOPPED (wstat))
2336 {
2337 add_to_pid_list (&stopped_pids, lwpid, wstat);
2338 return NULL;
2339 }
2340 else if (child == NULL)
2341 return NULL;
2342
2343 thread = get_lwp_thread (child);
2344
2345 child->stopped = 1;
2346
2347 child->last_status = wstat;
2348
2349 /* Check if the thread has exited. */
2350 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2351 {
2352 if (debug_threads)
2353 debug_printf ("LLFE: %d exited.\n", lwpid);
2354 /* If there is at least one more LWP, then the exit signal was
2355 not the end of the debugged application and should be
2356 ignored, unless GDB wants to hear about thread exits. */
2357 if (report_thread_events
2358 || last_thread_of_process_p (pid_of (thread)))
2359 {
2360 /* Since events are serialized to GDB core, and we can't
2361 report this one right now. Leave the status pending for
2362 the next time we're able to report it. */
2363 mark_lwp_dead (child, wstat);
2364 return child;
2365 }
2366 else
2367 {
2368 delete_lwp (child);
2369 return NULL;
2370 }
2371 }
2372
2373 gdb_assert (WIFSTOPPED (wstat));
2374
2375 if (WIFSTOPPED (wstat))
2376 {
2377 struct process_info *proc;
2378
2379 /* Architecture-specific setup after inferior is running. */
2380 proc = find_process_pid (pid_of (thread));
2381 if (proc->tdesc == NULL)
2382 {
2383 if (proc->attached)
2384 {
2385 /* This needs to happen after we have attached to the
2386 inferior and it is stopped for the first time, but
2387 before we access any inferior registers. */
2388 linux_arch_setup_thread (thread);
2389 }
2390 else
2391 {
2392 /* The process is started, but GDBserver will do
2393 architecture-specific setup after the program stops at
2394 the first instruction. */
2395 child->status_pending_p = 1;
2396 child->status_pending = wstat;
2397 return child;
2398 }
2399 }
2400 }
2401
2402 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2403 {
2404 struct process_info *proc = find_process_pid (pid_of (thread));
2405 int options = linux_low_ptrace_options (proc->attached);
2406
2407 linux_enable_event_reporting (lwpid, options);
2408 child->must_set_ptrace_flags = 0;
2409 }
2410
2411 /* Always update syscall_state, even if it will be filtered later. */
2412 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2413 {
2414 child->syscall_state
2415 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2416 ? TARGET_WAITKIND_SYSCALL_RETURN
2417 : TARGET_WAITKIND_SYSCALL_ENTRY);
2418 }
2419 else
2420 {
2421 /* Almost all other ptrace-stops are known to be outside of system
2422 calls, with further exceptions in handle_extended_wait. */
2423 child->syscall_state = TARGET_WAITKIND_IGNORE;
2424 }
2425
2426 /* Be careful to not overwrite stop_pc until save_stop_reason is
2427 called. */
2428 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2429 && linux_is_extended_waitstatus (wstat))
2430 {
2431 child->stop_pc = get_pc (child);
2432 if (handle_extended_wait (&child, wstat))
2433 {
2434 /* The event has been handled, so just return without
2435 reporting it. */
2436 return NULL;
2437 }
2438 }
2439
2440 if (WIFSTOPPED (wstat) && linux_wstatus_maybe_breakpoint (wstat))
2441 {
2442 if (save_stop_reason (child))
2443 have_stop_pc = 1;
2444 }
2445
2446 if (!have_stop_pc)
2447 child->stop_pc = get_pc (child);
2448
2449 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2450 && child->stop_expected)
2451 {
2452 if (debug_threads)
2453 debug_printf ("Expected stop.\n");
2454 child->stop_expected = 0;
2455
2456 if (thread->last_resume_kind == resume_stop)
2457 {
2458 /* We want to report the stop to the core. Treat the
2459 SIGSTOP as a normal event. */
2460 if (debug_threads)
2461 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2462 target_pid_to_str (ptid_of (thread)));
2463 }
2464 else if (stopping_threads != NOT_STOPPING_THREADS)
2465 {
2466 /* Stopping threads. We don't want this SIGSTOP to end up
2467 pending. */
2468 if (debug_threads)
2469 debug_printf ("LLW: SIGSTOP caught for %s "
2470 "while stopping threads.\n",
2471 target_pid_to_str (ptid_of (thread)));
2472 return NULL;
2473 }
2474 else
2475 {
2476 /* This is a delayed SIGSTOP. Filter out the event. */
2477 if (debug_threads)
2478 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2479 child->stepping ? "step" : "continue",
2480 target_pid_to_str (ptid_of (thread)));
2481
2482 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2483 return NULL;
2484 }
2485 }
2486
2487 child->status_pending_p = 1;
2488 child->status_pending = wstat;
2489 return child;
2490 }
2491
2492 /* Resume LWPs that are currently stopped without any pending status
2493 to report, but are resumed from the core's perspective. */
2494
2495 static void
2496 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2497 {
2498 struct thread_info *thread = (struct thread_info *) entry;
2499 struct lwp_info *lp = get_thread_lwp (thread);
2500
2501 if (lp->stopped
2502 && !lp->suspended
2503 && !lp->status_pending_p
2504 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2505 {
2506 int step = thread->last_resume_kind == resume_step;
2507
2508 if (debug_threads)
2509 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2510 target_pid_to_str (ptid_of (thread)),
2511 paddress (lp->stop_pc),
2512 step);
2513
2514 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2515 }
2516 }
2517
2518 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2519 match FILTER_PTID (leaving others pending). The PTIDs can be:
2520 minus_one_ptid, to specify any child; a pid PTID, specifying all
2521 lwps of a thread group; or a PTID representing a single lwp. Store
2522 the stop status through the status pointer WSTAT. OPTIONS is
2523 passed to the waitpid call. Return 0 if no event was found and
2524 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2525 was found. Return the PID of the stopped child otherwise. */
2526
2527 static int
2528 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2529 int *wstatp, int options)
2530 {
2531 struct thread_info *event_thread;
2532 struct lwp_info *event_child, *requested_child;
2533 sigset_t block_mask, prev_mask;
2534
2535 retry:
2536 /* N.B. event_thread points to the thread_info struct that contains
2537 event_child. Keep them in sync. */
2538 event_thread = NULL;
2539 event_child = NULL;
2540 requested_child = NULL;
2541
2542 /* Check for a lwp with a pending status. */
2543
2544 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2545 {
2546 event_thread = (struct thread_info *)
2547 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2548 if (event_thread != NULL)
2549 event_child = get_thread_lwp (event_thread);
2550 if (debug_threads && event_thread)
2551 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2552 }
2553 else if (!ptid_equal (filter_ptid, null_ptid))
2554 {
2555 requested_child = find_lwp_pid (filter_ptid);
2556
2557 if (stopping_threads == NOT_STOPPING_THREADS
2558 && requested_child->status_pending_p
2559 && requested_child->collecting_fast_tracepoint)
2560 {
2561 enqueue_one_deferred_signal (requested_child,
2562 &requested_child->status_pending);
2563 requested_child->status_pending_p = 0;
2564 requested_child->status_pending = 0;
2565 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2566 }
2567
2568 if (requested_child->suspended
2569 && requested_child->status_pending_p)
2570 {
2571 internal_error (__FILE__, __LINE__,
2572 "requesting an event out of a"
2573 " suspended child?");
2574 }
2575
2576 if (requested_child->status_pending_p)
2577 {
2578 event_child = requested_child;
2579 event_thread = get_lwp_thread (event_child);
2580 }
2581 }
2582
2583 if (event_child != NULL)
2584 {
2585 if (debug_threads)
2586 debug_printf ("Got an event from pending child %ld (%04x)\n",
2587 lwpid_of (event_thread), event_child->status_pending);
2588 *wstatp = event_child->status_pending;
2589 event_child->status_pending_p = 0;
2590 event_child->status_pending = 0;
2591 current_thread = event_thread;
2592 return lwpid_of (event_thread);
2593 }
2594
2595 /* But if we don't find a pending event, we'll have to wait.
2596
2597 We only enter this loop if no process has a pending wait status.
2598 Thus any action taken in response to a wait status inside this
2599 loop is responding as soon as we detect the status, not after any
2600 pending events. */
2601
2602 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2603 all signals while here. */
2604 sigfillset (&block_mask);
2605 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2606
2607 /* Always pull all events out of the kernel. We'll randomly select
2608 an event LWP out of all that have events, to prevent
2609 starvation. */
2610 while (event_child == NULL)
2611 {
2612 pid_t ret = 0;
2613
2614 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2615 quirks:
2616
2617 - If the thread group leader exits while other threads in the
2618 thread group still exist, waitpid(TGID, ...) hangs. That
2619 waitpid won't return an exit status until the other threads
2620 in the group are reaped.
2621
2622 - When a non-leader thread execs, that thread just vanishes
2623 without reporting an exit (so we'd hang if we waited for it
2624 explicitly in that case). The exec event is reported to
2625 the TGID pid. */
2626 errno = 0;
2627 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2628
2629 if (debug_threads)
2630 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2631 ret, errno ? strerror (errno) : "ERRNO-OK");
2632
2633 if (ret > 0)
2634 {
2635 if (debug_threads)
2636 {
2637 debug_printf ("LLW: waitpid %ld received %s\n",
2638 (long) ret, status_to_str (*wstatp));
2639 }
2640
2641 /* Filter all events. IOW, leave all events pending. We'll
2642 randomly select an event LWP out of all that have events
2643 below. */
2644 linux_low_filter_event (ret, *wstatp);
2645 /* Retry until nothing comes out of waitpid. A single
2646 SIGCHLD can indicate more than one child stopped. */
2647 continue;
2648 }
2649
2650 /* Now that we've pulled all events out of the kernel, resume
2651 LWPs that don't have an interesting event to report. */
2652 if (stopping_threads == NOT_STOPPING_THREADS)
2653 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2654
2655 /* ... and find an LWP with a status to report to the core, if
2656 any. */
2657 event_thread = (struct thread_info *)
2658 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2659 if (event_thread != NULL)
2660 {
2661 event_child = get_thread_lwp (event_thread);
2662 *wstatp = event_child->status_pending;
2663 event_child->status_pending_p = 0;
2664 event_child->status_pending = 0;
2665 break;
2666 }
2667
2668 /* Check for zombie thread group leaders. Those can't be reaped
2669 until all other threads in the thread group are. */
2670 check_zombie_leaders ();
2671
2672 /* If there are no resumed children left in the set of LWPs we
2673 want to wait for, bail. We can't just block in
2674 waitpid/sigsuspend, because lwps might have been left stopped
2675 in trace-stop state, and we'd be stuck forever waiting for
2676 their status to change (which would only happen if we resumed
2677 them). Even if WNOHANG is set, this return code is preferred
2678 over 0 (below), as it is more detailed. */
2679 if ((find_inferior (&all_threads,
2680 not_stopped_callback,
2681 &wait_ptid) == NULL))
2682 {
2683 if (debug_threads)
2684 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2685 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2686 return -1;
2687 }
2688
2689 /* No interesting event to report to the caller. */
2690 if ((options & WNOHANG))
2691 {
2692 if (debug_threads)
2693 debug_printf ("WNOHANG set, no event found\n");
2694
2695 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2696 return 0;
2697 }
2698
2699 /* Block until we get an event reported with SIGCHLD. */
2700 if (debug_threads)
2701 debug_printf ("sigsuspend'ing\n");
2702
2703 sigsuspend (&prev_mask);
2704 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2705 goto retry;
2706 }
2707
2708 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2709
2710 current_thread = event_thread;
2711
2712 return lwpid_of (event_thread);
2713 }
2714
2715 /* Wait for an event from child(ren) PTID. PTIDs can be:
2716 minus_one_ptid, to specify any child; a pid PTID, specifying all
2717 lwps of a thread group; or a PTID representing a single lwp. Store
2718 the stop status through the status pointer WSTAT. OPTIONS is
2719 passed to the waitpid call. Return 0 if no event was found and
2720 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2721 was found. Return the PID of the stopped child otherwise. */
2722
2723 static int
2724 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2725 {
2726 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2727 }
2728
2729 /* Count the LWP's that have had events. */
2730
2731 static int
2732 count_events_callback (struct inferior_list_entry *entry, void *data)
2733 {
2734 struct thread_info *thread = (struct thread_info *) entry;
2735 struct lwp_info *lp = get_thread_lwp (thread);
2736 int *count = (int *) data;
2737
2738 gdb_assert (count != NULL);
2739
2740 /* Count only resumed LWPs that have an event pending. */
2741 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2742 && lp->status_pending_p)
2743 (*count)++;
2744
2745 return 0;
2746 }
2747
2748 /* Select the LWP (if any) that is currently being single-stepped. */
2749
2750 static int
2751 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2752 {
2753 struct thread_info *thread = (struct thread_info *) entry;
2754 struct lwp_info *lp = get_thread_lwp (thread);
2755
2756 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2757 && thread->last_resume_kind == resume_step
2758 && lp->status_pending_p)
2759 return 1;
2760 else
2761 return 0;
2762 }
2763
2764 /* Select the Nth LWP that has had an event. */
2765
2766 static int
2767 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2768 {
2769 struct thread_info *thread = (struct thread_info *) entry;
2770 struct lwp_info *lp = get_thread_lwp (thread);
2771 int *selector = (int *) data;
2772
2773 gdb_assert (selector != NULL);
2774
2775 /* Select only resumed LWPs that have an event pending. */
2776 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2777 && lp->status_pending_p)
2778 if ((*selector)-- == 0)
2779 return 1;
2780
2781 return 0;
2782 }
2783
2784 /* Select one LWP out of those that have events pending. */
2785
2786 static void
2787 select_event_lwp (struct lwp_info **orig_lp)
2788 {
2789 int num_events = 0;
2790 int random_selector;
2791 struct thread_info *event_thread = NULL;
2792
2793 /* In all-stop, give preference to the LWP that is being
2794 single-stepped. There will be at most one, and it's the LWP that
2795 the core is most interested in. If we didn't do this, then we'd
2796 have to handle pending step SIGTRAPs somehow in case the core
2797 later continues the previously-stepped thread, otherwise we'd
2798 report the pending SIGTRAP, and the core, not having stepped the
2799 thread, wouldn't understand what the trap was for, and therefore
2800 would report it to the user as a random signal. */
2801 if (!non_stop)
2802 {
2803 event_thread
2804 = (struct thread_info *) find_inferior (&all_threads,
2805 select_singlestep_lwp_callback,
2806 NULL);
2807 if (event_thread != NULL)
2808 {
2809 if (debug_threads)
2810 debug_printf ("SEL: Select single-step %s\n",
2811 target_pid_to_str (ptid_of (event_thread)));
2812 }
2813 }
2814 if (event_thread == NULL)
2815 {
2816 /* No single-stepping LWP. Select one at random, out of those
2817 which have had events. */
2818
2819 /* First see how many events we have. */
2820 find_inferior (&all_threads, count_events_callback, &num_events);
2821 gdb_assert (num_events > 0);
2822
2823 /* Now randomly pick a LWP out of those that have had
2824 events. */
2825 random_selector = (int)
2826 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2827
2828 if (debug_threads && num_events > 1)
2829 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2830 num_events, random_selector);
2831
2832 event_thread
2833 = (struct thread_info *) find_inferior (&all_threads,
2834 select_event_lwp_callback,
2835 &random_selector);
2836 }
2837
2838 if (event_thread != NULL)
2839 {
2840 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2841
2842 /* Switch the event LWP. */
2843 *orig_lp = event_lp;
2844 }
2845 }
2846
2847 /* Decrement the suspend count of an LWP. */
2848
2849 static int
2850 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2851 {
2852 struct thread_info *thread = (struct thread_info *) entry;
2853 struct lwp_info *lwp = get_thread_lwp (thread);
2854
2855 /* Ignore EXCEPT. */
2856 if (lwp == except)
2857 return 0;
2858
2859 lwp_suspended_decr (lwp);
2860 return 0;
2861 }
2862
2863 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2864 NULL. */
2865
2866 static void
2867 unsuspend_all_lwps (struct lwp_info *except)
2868 {
2869 find_inferior (&all_threads, unsuspend_one_lwp, except);
2870 }
2871
2872 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2873 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2874 void *data);
2875 static int lwp_running (struct inferior_list_entry *entry, void *data);
2876 static ptid_t linux_wait_1 (ptid_t ptid,
2877 struct target_waitstatus *ourstatus,
2878 int target_options);
2879
2880 /* Stabilize threads (move out of jump pads).
2881
2882 If a thread is midway collecting a fast tracepoint, we need to
2883 finish the collection and move it out of the jump pad before
2884 reporting the signal.
2885
2886 This avoids recursion while collecting (when a signal arrives
2887 midway, and the signal handler itself collects), which would trash
2888 the trace buffer. In case the user set a breakpoint in a signal
2889 handler, this avoids the backtrace showing the jump pad, etc..
2890 Most importantly, there are certain things we can't do safely if
2891 threads are stopped in a jump pad (or in its callee's). For
2892 example:
2893
2894 - starting a new trace run. A thread still collecting the
2895 previous run, could trash the trace buffer when resumed. The trace
2896 buffer control structures would have been reset but the thread had
2897 no way to tell. The thread could even midway memcpy'ing to the
2898 buffer, which would mean that when resumed, it would clobber the
2899 trace buffer that had been set for a new run.
2900
2901 - we can't rewrite/reuse the jump pads for new tracepoints
2902 safely. Say you do tstart while a thread is stopped midway while
2903 collecting. When the thread is later resumed, it finishes the
2904 collection, and returns to the jump pad, to execute the original
2905 instruction that was under the tracepoint jump at the time the
2906 older run had been started. If the jump pad had been rewritten
2907 since for something else in the new run, the thread would now
2908 execute the wrong / random instructions. */
2909
2910 static void
2911 linux_stabilize_threads (void)
2912 {
2913 struct thread_info *saved_thread;
2914 struct thread_info *thread_stuck;
2915
2916 thread_stuck
2917 = (struct thread_info *) find_inferior (&all_threads,
2918 stuck_in_jump_pad_callback,
2919 NULL);
2920 if (thread_stuck != NULL)
2921 {
2922 if (debug_threads)
2923 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2924 lwpid_of (thread_stuck));
2925 return;
2926 }
2927
2928 saved_thread = current_thread;
2929
2930 stabilizing_threads = 1;
2931
2932 /* Kick 'em all. */
2933 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2934
2935 /* Loop until all are stopped out of the jump pads. */
2936 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2937 {
2938 struct target_waitstatus ourstatus;
2939 struct lwp_info *lwp;
2940 int wstat;
2941
2942 /* Note that we go through the full wait even loop. While
2943 moving threads out of jump pad, we need to be able to step
2944 over internal breakpoints and such. */
2945 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2946
2947 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2948 {
2949 lwp = get_thread_lwp (current_thread);
2950
2951 /* Lock it. */
2952 lwp_suspended_inc (lwp);
2953
2954 if (ourstatus.value.sig != GDB_SIGNAL_0
2955 || current_thread->last_resume_kind == resume_stop)
2956 {
2957 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2958 enqueue_one_deferred_signal (lwp, &wstat);
2959 }
2960 }
2961 }
2962
2963 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2964
2965 stabilizing_threads = 0;
2966
2967 current_thread = saved_thread;
2968
2969 if (debug_threads)
2970 {
2971 thread_stuck
2972 = (struct thread_info *) find_inferior (&all_threads,
2973 stuck_in_jump_pad_callback,
2974 NULL);
2975 if (thread_stuck != NULL)
2976 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2977 lwpid_of (thread_stuck));
2978 }
2979 }
2980
2981 /* Convenience function that is called when the kernel reports an
2982 event that is not passed out to GDB. */
2983
2984 static ptid_t
2985 ignore_event (struct target_waitstatus *ourstatus)
2986 {
2987 /* If we got an event, there may still be others, as a single
2988 SIGCHLD can indicate more than one child stopped. This forces
2989 another target_wait call. */
2990 async_file_mark ();
2991
2992 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2993 return null_ptid;
2994 }
2995
2996 /* Convenience function that is called when the kernel reports an exit
2997 event. This decides whether to report the event to GDB as a
2998 process exit event, a thread exit event, or to suppress the
2999 event. */
3000
3001 static ptid_t
3002 filter_exit_event (struct lwp_info *event_child,
3003 struct target_waitstatus *ourstatus)
3004 {
3005 struct thread_info *thread = get_lwp_thread (event_child);
3006 ptid_t ptid = ptid_of (thread);
3007
3008 if (!last_thread_of_process_p (pid_of (thread)))
3009 {
3010 if (report_thread_events)
3011 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3012 else
3013 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3014
3015 delete_lwp (event_child);
3016 }
3017 return ptid;
3018 }
3019
3020 /* Returns 1 if GDB is interested in any event_child syscalls. */
3021
3022 static int
3023 gdb_catching_syscalls_p (struct lwp_info *event_child)
3024 {
3025 struct thread_info *thread = get_lwp_thread (event_child);
3026 struct process_info *proc = get_thread_process (thread);
3027
3028 return !VEC_empty (int, proc->syscalls_to_catch);
3029 }
3030
3031 /* Returns 1 if GDB is interested in the event_child syscall.
3032 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3033
3034 static int
3035 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3036 {
3037 int i, iter;
3038 int sysno, sysret;
3039 struct thread_info *thread = get_lwp_thread (event_child);
3040 struct process_info *proc = get_thread_process (thread);
3041
3042 if (VEC_empty (int, proc->syscalls_to_catch))
3043 return 0;
3044
3045 if (VEC_index (int, proc->syscalls_to_catch, 0) == ANY_SYSCALL)
3046 return 1;
3047
3048 get_syscall_trapinfo (event_child, &sysno, &sysret);
3049 for (i = 0;
3050 VEC_iterate (int, proc->syscalls_to_catch, i, iter);
3051 i++)
3052 if (iter == sysno)
3053 return 1;
3054
3055 return 0;
3056 }
3057
3058 /* Wait for process, returns status. */
3059
3060 static ptid_t
3061 linux_wait_1 (ptid_t ptid,
3062 struct target_waitstatus *ourstatus, int target_options)
3063 {
3064 int w;
3065 struct lwp_info *event_child;
3066 int options;
3067 int pid;
3068 int step_over_finished;
3069 int bp_explains_trap;
3070 int maybe_internal_trap;
3071 int report_to_gdb;
3072 int trace_event;
3073 int in_step_range;
3074 int any_resumed;
3075
3076 if (debug_threads)
3077 {
3078 debug_enter ();
3079 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3080 }
3081
3082 /* Translate generic target options into linux options. */
3083 options = __WALL;
3084 if (target_options & TARGET_WNOHANG)
3085 options |= WNOHANG;
3086
3087 bp_explains_trap = 0;
3088 trace_event = 0;
3089 in_step_range = 0;
3090 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3091
3092 /* Find a resumed LWP, if any. */
3093 if (find_inferior (&all_threads,
3094 status_pending_p_callback,
3095 &minus_one_ptid) != NULL)
3096 any_resumed = 1;
3097 else if ((find_inferior (&all_threads,
3098 not_stopped_callback,
3099 &minus_one_ptid) != NULL))
3100 any_resumed = 1;
3101 else
3102 any_resumed = 0;
3103
3104 if (ptid_equal (step_over_bkpt, null_ptid))
3105 pid = linux_wait_for_event (ptid, &w, options);
3106 else
3107 {
3108 if (debug_threads)
3109 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3110 target_pid_to_str (step_over_bkpt));
3111 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3112 }
3113
3114 if (pid == 0 || (pid == -1 && !any_resumed))
3115 {
3116 gdb_assert (target_options & TARGET_WNOHANG);
3117
3118 if (debug_threads)
3119 {
3120 debug_printf ("linux_wait_1 ret = null_ptid, "
3121 "TARGET_WAITKIND_IGNORE\n");
3122 debug_exit ();
3123 }
3124
3125 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3126 return null_ptid;
3127 }
3128 else if (pid == -1)
3129 {
3130 if (debug_threads)
3131 {
3132 debug_printf ("linux_wait_1 ret = null_ptid, "
3133 "TARGET_WAITKIND_NO_RESUMED\n");
3134 debug_exit ();
3135 }
3136
3137 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3138 return null_ptid;
3139 }
3140
3141 event_child = get_thread_lwp (current_thread);
3142
3143 /* linux_wait_for_event only returns an exit status for the last
3144 child of a process. Report it. */
3145 if (WIFEXITED (w) || WIFSIGNALED (w))
3146 {
3147 if (WIFEXITED (w))
3148 {
3149 ourstatus->kind = TARGET_WAITKIND_EXITED;
3150 ourstatus->value.integer = WEXITSTATUS (w);
3151
3152 if (debug_threads)
3153 {
3154 debug_printf ("linux_wait_1 ret = %s, exited with "
3155 "retcode %d\n",
3156 target_pid_to_str (ptid_of (current_thread)),
3157 WEXITSTATUS (w));
3158 debug_exit ();
3159 }
3160 }
3161 else
3162 {
3163 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3164 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3165
3166 if (debug_threads)
3167 {
3168 debug_printf ("linux_wait_1 ret = %s, terminated with "
3169 "signal %d\n",
3170 target_pid_to_str (ptid_of (current_thread)),
3171 WTERMSIG (w));
3172 debug_exit ();
3173 }
3174 }
3175
3176 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3177 return filter_exit_event (event_child, ourstatus);
3178
3179 return ptid_of (current_thread);
3180 }
3181
3182 /* If step-over executes a breakpoint instruction, in the case of a
3183 hardware single step it means a gdb/gdbserver breakpoint had been
3184 planted on top of a permanent breakpoint, in the case of a software
3185 single step it may just mean that gdbserver hit the reinsert breakpoint.
3186 The PC has been adjusted by save_stop_reason to point at
3187 the breakpoint address.
3188 So in the case of the hardware single step advance the PC manually
3189 past the breakpoint and in the case of software single step advance only
3190 if it's not the reinsert_breakpoint we are hitting.
3191 This avoids that a program would keep trapping a permanent breakpoint
3192 forever. */
3193 if (!ptid_equal (step_over_bkpt, null_ptid)
3194 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3195 && (event_child->stepping
3196 || !reinsert_breakpoint_inserted_here (event_child->stop_pc)))
3197 {
3198 int increment_pc = 0;
3199 int breakpoint_kind = 0;
3200 CORE_ADDR stop_pc = event_child->stop_pc;
3201
3202 breakpoint_kind =
3203 the_target->breakpoint_kind_from_current_state (&stop_pc);
3204 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3205
3206 if (debug_threads)
3207 {
3208 debug_printf ("step-over for %s executed software breakpoint\n",
3209 target_pid_to_str (ptid_of (current_thread)));
3210 }
3211
3212 if (increment_pc != 0)
3213 {
3214 struct regcache *regcache
3215 = get_thread_regcache (current_thread, 1);
3216
3217 event_child->stop_pc += increment_pc;
3218 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3219
3220 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3221 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3222 }
3223 }
3224
3225 /* If this event was not handled before, and is not a SIGTRAP, we
3226 report it. SIGILL and SIGSEGV are also treated as traps in case
3227 a breakpoint is inserted at the current PC. If this target does
3228 not support internal breakpoints at all, we also report the
3229 SIGTRAP without further processing; it's of no concern to us. */
3230 maybe_internal_trap
3231 = (supports_breakpoints ()
3232 && (WSTOPSIG (w) == SIGTRAP
3233 || ((WSTOPSIG (w) == SIGILL
3234 || WSTOPSIG (w) == SIGSEGV)
3235 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3236
3237 if (maybe_internal_trap)
3238 {
3239 /* Handle anything that requires bookkeeping before deciding to
3240 report the event or continue waiting. */
3241
3242 /* First check if we can explain the SIGTRAP with an internal
3243 breakpoint, or if we should possibly report the event to GDB.
3244 Do this before anything that may remove or insert a
3245 breakpoint. */
3246 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3247
3248 /* We have a SIGTRAP, possibly a step-over dance has just
3249 finished. If so, tweak the state machine accordingly,
3250 reinsert breakpoints and delete any reinsert (software
3251 single-step) breakpoints. */
3252 step_over_finished = finish_step_over (event_child);
3253
3254 /* Now invoke the callbacks of any internal breakpoints there. */
3255 check_breakpoints (event_child->stop_pc);
3256
3257 /* Handle tracepoint data collecting. This may overflow the
3258 trace buffer, and cause a tracing stop, removing
3259 breakpoints. */
3260 trace_event = handle_tracepoints (event_child);
3261
3262 if (bp_explains_trap)
3263 {
3264 /* If we stepped or ran into an internal breakpoint, we've
3265 already handled it. So next time we resume (from this
3266 PC), we should step over it. */
3267 if (debug_threads)
3268 debug_printf ("Hit a gdbserver breakpoint.\n");
3269
3270 if (breakpoint_here (event_child->stop_pc))
3271 event_child->need_step_over = 1;
3272 }
3273 }
3274 else
3275 {
3276 /* We have some other signal, possibly a step-over dance was in
3277 progress, and it should be cancelled too. */
3278 step_over_finished = finish_step_over (event_child);
3279 }
3280
3281 /* We have all the data we need. Either report the event to GDB, or
3282 resume threads and keep waiting for more. */
3283
3284 /* If we're collecting a fast tracepoint, finish the collection and
3285 move out of the jump pad before delivering a signal. See
3286 linux_stabilize_threads. */
3287
3288 if (WIFSTOPPED (w)
3289 && WSTOPSIG (w) != SIGTRAP
3290 && supports_fast_tracepoints ()
3291 && agent_loaded_p ())
3292 {
3293 if (debug_threads)
3294 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3295 "to defer or adjust it.\n",
3296 WSTOPSIG (w), lwpid_of (current_thread));
3297
3298 /* Allow debugging the jump pad itself. */
3299 if (current_thread->last_resume_kind != resume_step
3300 && maybe_move_out_of_jump_pad (event_child, &w))
3301 {
3302 enqueue_one_deferred_signal (event_child, &w);
3303
3304 if (debug_threads)
3305 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3306 WSTOPSIG (w), lwpid_of (current_thread));
3307
3308 linux_resume_one_lwp (event_child, 0, 0, NULL);
3309
3310 return ignore_event (ourstatus);
3311 }
3312 }
3313
3314 if (event_child->collecting_fast_tracepoint)
3315 {
3316 if (debug_threads)
3317 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3318 "Check if we're already there.\n",
3319 lwpid_of (current_thread),
3320 event_child->collecting_fast_tracepoint);
3321
3322 trace_event = 1;
3323
3324 event_child->collecting_fast_tracepoint
3325 = linux_fast_tracepoint_collecting (event_child, NULL);
3326
3327 if (event_child->collecting_fast_tracepoint != 1)
3328 {
3329 /* No longer need this breakpoint. */
3330 if (event_child->exit_jump_pad_bkpt != NULL)
3331 {
3332 if (debug_threads)
3333 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3334 "stopping all threads momentarily.\n");
3335
3336 /* Other running threads could hit this breakpoint.
3337 We don't handle moribund locations like GDB does,
3338 instead we always pause all threads when removing
3339 breakpoints, so that any step-over or
3340 decr_pc_after_break adjustment is always taken
3341 care of while the breakpoint is still
3342 inserted. */
3343 stop_all_lwps (1, event_child);
3344
3345 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3346 event_child->exit_jump_pad_bkpt = NULL;
3347
3348 unstop_all_lwps (1, event_child);
3349
3350 gdb_assert (event_child->suspended >= 0);
3351 }
3352 }
3353
3354 if (event_child->collecting_fast_tracepoint == 0)
3355 {
3356 if (debug_threads)
3357 debug_printf ("fast tracepoint finished "
3358 "collecting successfully.\n");
3359
3360 /* We may have a deferred signal to report. */
3361 if (dequeue_one_deferred_signal (event_child, &w))
3362 {
3363 if (debug_threads)
3364 debug_printf ("dequeued one signal.\n");
3365 }
3366 else
3367 {
3368 if (debug_threads)
3369 debug_printf ("no deferred signals.\n");
3370
3371 if (stabilizing_threads)
3372 {
3373 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3374 ourstatus->value.sig = GDB_SIGNAL_0;
3375
3376 if (debug_threads)
3377 {
3378 debug_printf ("linux_wait_1 ret = %s, stopped "
3379 "while stabilizing threads\n",
3380 target_pid_to_str (ptid_of (current_thread)));
3381 debug_exit ();
3382 }
3383
3384 return ptid_of (current_thread);
3385 }
3386 }
3387 }
3388 }
3389
3390 /* Check whether GDB would be interested in this event. */
3391
3392 /* Check if GDB is interested in this syscall. */
3393 if (WIFSTOPPED (w)
3394 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3395 && !gdb_catch_this_syscall_p (event_child))
3396 {
3397 if (debug_threads)
3398 {
3399 debug_printf ("Ignored syscall for LWP %ld.\n",
3400 lwpid_of (current_thread));
3401 }
3402
3403 linux_resume_one_lwp (event_child, event_child->stepping,
3404 0, NULL);
3405 return ignore_event (ourstatus);
3406 }
3407
3408 /* If GDB is not interested in this signal, don't stop other
3409 threads, and don't report it to GDB. Just resume the inferior
3410 right away. We do this for threading-related signals as well as
3411 any that GDB specifically requested we ignore. But never ignore
3412 SIGSTOP if we sent it ourselves, and do not ignore signals when
3413 stepping - they may require special handling to skip the signal
3414 handler. Also never ignore signals that could be caused by a
3415 breakpoint. */
3416 if (WIFSTOPPED (w)
3417 && current_thread->last_resume_kind != resume_step
3418 && (
3419 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3420 (current_process ()->priv->thread_db != NULL
3421 && (WSTOPSIG (w) == __SIGRTMIN
3422 || WSTOPSIG (w) == __SIGRTMIN + 1))
3423 ||
3424 #endif
3425 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3426 && !(WSTOPSIG (w) == SIGSTOP
3427 && current_thread->last_resume_kind == resume_stop)
3428 && !linux_wstatus_maybe_breakpoint (w))))
3429 {
3430 siginfo_t info, *info_p;
3431
3432 if (debug_threads)
3433 debug_printf ("Ignored signal %d for LWP %ld.\n",
3434 WSTOPSIG (w), lwpid_of (current_thread));
3435
3436 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3437 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3438 info_p = &info;
3439 else
3440 info_p = NULL;
3441
3442 if (step_over_finished)
3443 {
3444 /* We cancelled this thread's step-over above. We still
3445 need to unsuspend all other LWPs, and set them back
3446 running again while the signal handler runs. */
3447 unsuspend_all_lwps (event_child);
3448
3449 /* Enqueue the pending signal info so that proceed_all_lwps
3450 doesn't lose it. */
3451 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3452
3453 proceed_all_lwps ();
3454 }
3455 else
3456 {
3457 linux_resume_one_lwp (event_child, event_child->stepping,
3458 WSTOPSIG (w), info_p);
3459 }
3460 return ignore_event (ourstatus);
3461 }
3462
3463 /* Note that all addresses are always "out of the step range" when
3464 there's no range to begin with. */
3465 in_step_range = lwp_in_step_range (event_child);
3466
3467 /* If GDB wanted this thread to single step, and the thread is out
3468 of the step range, we always want to report the SIGTRAP, and let
3469 GDB handle it. Watchpoints should always be reported. So should
3470 signals we can't explain. A SIGTRAP we can't explain could be a
3471 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3472 do, we're be able to handle GDB breakpoints on top of internal
3473 breakpoints, by handling the internal breakpoint and still
3474 reporting the event to GDB. If we don't, we're out of luck, GDB
3475 won't see the breakpoint hit. If we see a single-step event but
3476 the thread should be continuing, don't pass the trap to gdb.
3477 That indicates that we had previously finished a single-step but
3478 left the single-step pending -- see
3479 complete_ongoing_step_over. */
3480 report_to_gdb = (!maybe_internal_trap
3481 || (current_thread->last_resume_kind == resume_step
3482 && !in_step_range)
3483 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3484 || (!in_step_range
3485 && !bp_explains_trap
3486 && !trace_event
3487 && !step_over_finished
3488 && !(current_thread->last_resume_kind == resume_continue
3489 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3490 || (gdb_breakpoint_here (event_child->stop_pc)
3491 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3492 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3493 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3494
3495 run_breakpoint_commands (event_child->stop_pc);
3496
3497 /* We found no reason GDB would want us to stop. We either hit one
3498 of our own breakpoints, or finished an internal step GDB
3499 shouldn't know about. */
3500 if (!report_to_gdb)
3501 {
3502 if (debug_threads)
3503 {
3504 if (bp_explains_trap)
3505 debug_printf ("Hit a gdbserver breakpoint.\n");
3506 if (step_over_finished)
3507 debug_printf ("Step-over finished.\n");
3508 if (trace_event)
3509 debug_printf ("Tracepoint event.\n");
3510 if (lwp_in_step_range (event_child))
3511 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3512 paddress (event_child->stop_pc),
3513 paddress (event_child->step_range_start),
3514 paddress (event_child->step_range_end));
3515 }
3516
3517 /* We're not reporting this breakpoint to GDB, so apply the
3518 decr_pc_after_break adjustment to the inferior's regcache
3519 ourselves. */
3520
3521 if (the_low_target.set_pc != NULL)
3522 {
3523 struct regcache *regcache
3524 = get_thread_regcache (current_thread, 1);
3525 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3526 }
3527
3528 /* We may have finished stepping over a breakpoint. If so,
3529 we've stopped and suspended all LWPs momentarily except the
3530 stepping one. This is where we resume them all again. We're
3531 going to keep waiting, so use proceed, which handles stepping
3532 over the next breakpoint. */
3533 if (debug_threads)
3534 debug_printf ("proceeding all threads.\n");
3535
3536 if (step_over_finished)
3537 unsuspend_all_lwps (event_child);
3538
3539 proceed_all_lwps ();
3540 return ignore_event (ourstatus);
3541 }
3542
3543 if (debug_threads)
3544 {
3545 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3546 {
3547 char *str;
3548
3549 str = target_waitstatus_to_string (&event_child->waitstatus);
3550 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3551 lwpid_of (get_lwp_thread (event_child)), str);
3552 xfree (str);
3553 }
3554 if (current_thread->last_resume_kind == resume_step)
3555 {
3556 if (event_child->step_range_start == event_child->step_range_end)
3557 debug_printf ("GDB wanted to single-step, reporting event.\n");
3558 else if (!lwp_in_step_range (event_child))
3559 debug_printf ("Out of step range, reporting event.\n");
3560 }
3561 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3562 debug_printf ("Stopped by watchpoint.\n");
3563 else if (gdb_breakpoint_here (event_child->stop_pc))
3564 debug_printf ("Stopped by GDB breakpoint.\n");
3565 if (debug_threads)
3566 debug_printf ("Hit a non-gdbserver trap event.\n");
3567 }
3568
3569 /* Alright, we're going to report a stop. */
3570
3571 if (!stabilizing_threads)
3572 {
3573 /* In all-stop, stop all threads. */
3574 if (!non_stop)
3575 stop_all_lwps (0, NULL);
3576
3577 /* If we're not waiting for a specific LWP, choose an event LWP
3578 from among those that have had events. Giving equal priority
3579 to all LWPs that have had events helps prevent
3580 starvation. */
3581 if (ptid_equal (ptid, minus_one_ptid))
3582 {
3583 event_child->status_pending_p = 1;
3584 event_child->status_pending = w;
3585
3586 select_event_lwp (&event_child);
3587
3588 /* current_thread and event_child must stay in sync. */
3589 current_thread = get_lwp_thread (event_child);
3590
3591 event_child->status_pending_p = 0;
3592 w = event_child->status_pending;
3593 }
3594
3595 if (step_over_finished)
3596 {
3597 if (!non_stop)
3598 {
3599 /* If we were doing a step-over, all other threads but
3600 the stepping one had been paused in start_step_over,
3601 with their suspend counts incremented. We don't want
3602 to do a full unstop/unpause, because we're in
3603 all-stop mode (so we want threads stopped), but we
3604 still need to unsuspend the other threads, to
3605 decrement their `suspended' count back. */
3606 unsuspend_all_lwps (event_child);
3607 }
3608 else
3609 {
3610 /* If we just finished a step-over, then all threads had
3611 been momentarily paused. In all-stop, that's fine,
3612 we want threads stopped by now anyway. In non-stop,
3613 we need to re-resume threads that GDB wanted to be
3614 running. */
3615 unstop_all_lwps (1, event_child);
3616 }
3617 }
3618
3619 /* Stabilize threads (move out of jump pads). */
3620 if (!non_stop)
3621 stabilize_threads ();
3622 }
3623 else
3624 {
3625 /* If we just finished a step-over, then all threads had been
3626 momentarily paused. In all-stop, that's fine, we want
3627 threads stopped by now anyway. In non-stop, we need to
3628 re-resume threads that GDB wanted to be running. */
3629 if (step_over_finished)
3630 unstop_all_lwps (1, event_child);
3631 }
3632
3633 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3634 {
3635 /* If the reported event is an exit, fork, vfork or exec, let
3636 GDB know. */
3637 *ourstatus = event_child->waitstatus;
3638 /* Clear the event lwp's waitstatus since we handled it already. */
3639 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3640 }
3641 else
3642 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3643
3644 /* Now that we've selected our final event LWP, un-adjust its PC if
3645 it was a software breakpoint, and the client doesn't know we can
3646 adjust the breakpoint ourselves. */
3647 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3648 && !swbreak_feature)
3649 {
3650 int decr_pc = the_low_target.decr_pc_after_break;
3651
3652 if (decr_pc != 0)
3653 {
3654 struct regcache *regcache
3655 = get_thread_regcache (current_thread, 1);
3656 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3657 }
3658 }
3659
3660 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3661 {
3662 int sysret;
3663
3664 get_syscall_trapinfo (event_child,
3665 &ourstatus->value.syscall_number, &sysret);
3666 ourstatus->kind = event_child->syscall_state;
3667 }
3668 else if (current_thread->last_resume_kind == resume_stop
3669 && WSTOPSIG (w) == SIGSTOP)
3670 {
3671 /* A thread that has been requested to stop by GDB with vCont;t,
3672 and it stopped cleanly, so report as SIG0. The use of
3673 SIGSTOP is an implementation detail. */
3674 ourstatus->value.sig = GDB_SIGNAL_0;
3675 }
3676 else if (current_thread->last_resume_kind == resume_stop
3677 && WSTOPSIG (w) != SIGSTOP)
3678 {
3679 /* A thread that has been requested to stop by GDB with vCont;t,
3680 but, it stopped for other reasons. */
3681 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3682 }
3683 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3684 {
3685 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3686 }
3687
3688 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3689
3690 if (debug_threads)
3691 {
3692 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3693 target_pid_to_str (ptid_of (current_thread)),
3694 ourstatus->kind, ourstatus->value.sig);
3695 debug_exit ();
3696 }
3697
3698 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3699 return filter_exit_event (event_child, ourstatus);
3700
3701 return ptid_of (current_thread);
3702 }
3703
3704 /* Get rid of any pending event in the pipe. */
3705 static void
3706 async_file_flush (void)
3707 {
3708 int ret;
3709 char buf;
3710
3711 do
3712 ret = read (linux_event_pipe[0], &buf, 1);
3713 while (ret >= 0 || (ret == -1 && errno == EINTR));
3714 }
3715
3716 /* Put something in the pipe, so the event loop wakes up. */
3717 static void
3718 async_file_mark (void)
3719 {
3720 int ret;
3721
3722 async_file_flush ();
3723
3724 do
3725 ret = write (linux_event_pipe[1], "+", 1);
3726 while (ret == 0 || (ret == -1 && errno == EINTR));
3727
3728 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3729 be awakened anyway. */
3730 }
3731
3732 static ptid_t
3733 linux_wait (ptid_t ptid,
3734 struct target_waitstatus *ourstatus, int target_options)
3735 {
3736 ptid_t event_ptid;
3737
3738 /* Flush the async file first. */
3739 if (target_is_async_p ())
3740 async_file_flush ();
3741
3742 do
3743 {
3744 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3745 }
3746 while ((target_options & TARGET_WNOHANG) == 0
3747 && ptid_equal (event_ptid, null_ptid)
3748 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3749
3750 /* If at least one stop was reported, there may be more. A single
3751 SIGCHLD can signal more than one child stop. */
3752 if (target_is_async_p ()
3753 && (target_options & TARGET_WNOHANG) != 0
3754 && !ptid_equal (event_ptid, null_ptid))
3755 async_file_mark ();
3756
3757 return event_ptid;
3758 }
3759
3760 /* Send a signal to an LWP. */
3761
3762 static int
3763 kill_lwp (unsigned long lwpid, int signo)
3764 {
3765 int ret;
3766
3767 errno = 0;
3768 ret = syscall (__NR_tkill, lwpid, signo);
3769 if (errno == ENOSYS)
3770 {
3771 /* If tkill fails, then we are not using nptl threads, a
3772 configuration we no longer support. */
3773 perror_with_name (("tkill"));
3774 }
3775 return ret;
3776 }
3777
3778 void
3779 linux_stop_lwp (struct lwp_info *lwp)
3780 {
3781 send_sigstop (lwp);
3782 }
3783
3784 static void
3785 send_sigstop (struct lwp_info *lwp)
3786 {
3787 int pid;
3788
3789 pid = lwpid_of (get_lwp_thread (lwp));
3790
3791 /* If we already have a pending stop signal for this process, don't
3792 send another. */
3793 if (lwp->stop_expected)
3794 {
3795 if (debug_threads)
3796 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3797
3798 return;
3799 }
3800
3801 if (debug_threads)
3802 debug_printf ("Sending sigstop to lwp %d\n", pid);
3803
3804 lwp->stop_expected = 1;
3805 kill_lwp (pid, SIGSTOP);
3806 }
3807
3808 static int
3809 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3810 {
3811 struct thread_info *thread = (struct thread_info *) entry;
3812 struct lwp_info *lwp = get_thread_lwp (thread);
3813
3814 /* Ignore EXCEPT. */
3815 if (lwp == except)
3816 return 0;
3817
3818 if (lwp->stopped)
3819 return 0;
3820
3821 send_sigstop (lwp);
3822 return 0;
3823 }
3824
3825 /* Increment the suspend count of an LWP, and stop it, if not stopped
3826 yet. */
3827 static int
3828 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3829 void *except)
3830 {
3831 struct thread_info *thread = (struct thread_info *) entry;
3832 struct lwp_info *lwp = get_thread_lwp (thread);
3833
3834 /* Ignore EXCEPT. */
3835 if (lwp == except)
3836 return 0;
3837
3838 lwp_suspended_inc (lwp);
3839
3840 return send_sigstop_callback (entry, except);
3841 }
3842
3843 static void
3844 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3845 {
3846 /* Store the exit status for later. */
3847 lwp->status_pending_p = 1;
3848 lwp->status_pending = wstat;
3849
3850 /* Store in waitstatus as well, as there's nothing else to process
3851 for this event. */
3852 if (WIFEXITED (wstat))
3853 {
3854 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3855 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3856 }
3857 else if (WIFSIGNALED (wstat))
3858 {
3859 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3860 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3861 }
3862
3863 /* Prevent trying to stop it. */
3864 lwp->stopped = 1;
3865
3866 /* No further stops are expected from a dead lwp. */
3867 lwp->stop_expected = 0;
3868 }
3869
3870 /* Return true if LWP has exited already, and has a pending exit event
3871 to report to GDB. */
3872
3873 static int
3874 lwp_is_marked_dead (struct lwp_info *lwp)
3875 {
3876 return (lwp->status_pending_p
3877 && (WIFEXITED (lwp->status_pending)
3878 || WIFSIGNALED (lwp->status_pending)));
3879 }
3880
3881 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3882
3883 static void
3884 wait_for_sigstop (void)
3885 {
3886 struct thread_info *saved_thread;
3887 ptid_t saved_tid;
3888 int wstat;
3889 int ret;
3890
3891 saved_thread = current_thread;
3892 if (saved_thread != NULL)
3893 saved_tid = saved_thread->entry.id;
3894 else
3895 saved_tid = null_ptid; /* avoid bogus unused warning */
3896
3897 if (debug_threads)
3898 debug_printf ("wait_for_sigstop: pulling events\n");
3899
3900 /* Passing NULL_PTID as filter indicates we want all events to be
3901 left pending. Eventually this returns when there are no
3902 unwaited-for children left. */
3903 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3904 &wstat, __WALL);
3905 gdb_assert (ret == -1);
3906
3907 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3908 current_thread = saved_thread;
3909 else
3910 {
3911 if (debug_threads)
3912 debug_printf ("Previously current thread died.\n");
3913
3914 /* We can't change the current inferior behind GDB's back,
3915 otherwise, a subsequent command may apply to the wrong
3916 process. */
3917 current_thread = NULL;
3918 }
3919 }
3920
3921 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3922 move it out, because we need to report the stop event to GDB. For
3923 example, if the user puts a breakpoint in the jump pad, it's
3924 because she wants to debug it. */
3925
3926 static int
3927 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3928 {
3929 struct thread_info *thread = (struct thread_info *) entry;
3930 struct lwp_info *lwp = get_thread_lwp (thread);
3931
3932 if (lwp->suspended != 0)
3933 {
3934 internal_error (__FILE__, __LINE__,
3935 "LWP %ld is suspended, suspended=%d\n",
3936 lwpid_of (thread), lwp->suspended);
3937 }
3938 gdb_assert (lwp->stopped);
3939
3940 /* Allow debugging the jump pad, gdb_collect, etc.. */
3941 return (supports_fast_tracepoints ()
3942 && agent_loaded_p ()
3943 && (gdb_breakpoint_here (lwp->stop_pc)
3944 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3945 || thread->last_resume_kind == resume_step)
3946 && linux_fast_tracepoint_collecting (lwp, NULL));
3947 }
3948
3949 static void
3950 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3951 {
3952 struct thread_info *thread = (struct thread_info *) entry;
3953 struct thread_info *saved_thread;
3954 struct lwp_info *lwp = get_thread_lwp (thread);
3955 int *wstat;
3956
3957 if (lwp->suspended != 0)
3958 {
3959 internal_error (__FILE__, __LINE__,
3960 "LWP %ld is suspended, suspended=%d\n",
3961 lwpid_of (thread), lwp->suspended);
3962 }
3963 gdb_assert (lwp->stopped);
3964
3965 /* For gdb_breakpoint_here. */
3966 saved_thread = current_thread;
3967 current_thread = thread;
3968
3969 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3970
3971 /* Allow debugging the jump pad, gdb_collect, etc. */
3972 if (!gdb_breakpoint_here (lwp->stop_pc)
3973 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3974 && thread->last_resume_kind != resume_step
3975 && maybe_move_out_of_jump_pad (lwp, wstat))
3976 {
3977 if (debug_threads)
3978 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3979 lwpid_of (thread));
3980
3981 if (wstat)
3982 {
3983 lwp->status_pending_p = 0;
3984 enqueue_one_deferred_signal (lwp, wstat);
3985
3986 if (debug_threads)
3987 debug_printf ("Signal %d for LWP %ld deferred "
3988 "(in jump pad)\n",
3989 WSTOPSIG (*wstat), lwpid_of (thread));
3990 }
3991
3992 linux_resume_one_lwp (lwp, 0, 0, NULL);
3993 }
3994 else
3995 lwp_suspended_inc (lwp);
3996
3997 current_thread = saved_thread;
3998 }
3999
4000 static int
4001 lwp_running (struct inferior_list_entry *entry, void *data)
4002 {
4003 struct thread_info *thread = (struct thread_info *) entry;
4004 struct lwp_info *lwp = get_thread_lwp (thread);
4005
4006 if (lwp_is_marked_dead (lwp))
4007 return 0;
4008 if (lwp->stopped)
4009 return 0;
4010 return 1;
4011 }
4012
4013 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4014 If SUSPEND, then also increase the suspend count of every LWP,
4015 except EXCEPT. */
4016
4017 static void
4018 stop_all_lwps (int suspend, struct lwp_info *except)
4019 {
4020 /* Should not be called recursively. */
4021 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4022
4023 if (debug_threads)
4024 {
4025 debug_enter ();
4026 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4027 suspend ? "stop-and-suspend" : "stop",
4028 except != NULL
4029 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4030 : "none");
4031 }
4032
4033 stopping_threads = (suspend
4034 ? STOPPING_AND_SUSPENDING_THREADS
4035 : STOPPING_THREADS);
4036
4037 if (suspend)
4038 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4039 else
4040 find_inferior (&all_threads, send_sigstop_callback, except);
4041 wait_for_sigstop ();
4042 stopping_threads = NOT_STOPPING_THREADS;
4043
4044 if (debug_threads)
4045 {
4046 debug_printf ("stop_all_lwps done, setting stopping_threads "
4047 "back to !stopping\n");
4048 debug_exit ();
4049 }
4050 }
4051
4052 /* Enqueue one signal in the chain of signals which need to be
4053 delivered to this process on next resume. */
4054
4055 static void
4056 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4057 {
4058 struct pending_signals *p_sig = XNEW (struct pending_signals);
4059
4060 p_sig->prev = lwp->pending_signals;
4061 p_sig->signal = signal;
4062 if (info == NULL)
4063 memset (&p_sig->info, 0, sizeof (siginfo_t));
4064 else
4065 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4066 lwp->pending_signals = p_sig;
4067 }
4068
4069 /* Install breakpoints for software single stepping. */
4070
4071 static void
4072 install_software_single_step_breakpoints (struct lwp_info *lwp)
4073 {
4074 int i;
4075 CORE_ADDR pc;
4076 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4077 VEC (CORE_ADDR) *next_pcs = NULL;
4078 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
4079
4080 next_pcs = (*the_low_target.get_next_pcs) (regcache);
4081
4082 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); ++i)
4083 set_reinsert_breakpoint (pc);
4084
4085 do_cleanups (old_chain);
4086 }
4087
4088 /* Single step via hardware or software single step.
4089 Return 1 if hardware single stepping, 0 if software single stepping
4090 or can't single step. */
4091
4092 static int
4093 single_step (struct lwp_info* lwp)
4094 {
4095 int step = 0;
4096
4097 if (can_hardware_single_step ())
4098 {
4099 step = 1;
4100 }
4101 else if (can_software_single_step ())
4102 {
4103 install_software_single_step_breakpoints (lwp);
4104 step = 0;
4105 }
4106 else
4107 {
4108 if (debug_threads)
4109 debug_printf ("stepping is not implemented on this target");
4110 }
4111
4112 return step;
4113 }
4114
4115 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4116 SIGNAL is nonzero, give it that signal. */
4117
4118 static void
4119 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4120 int step, int signal, siginfo_t *info)
4121 {
4122 struct thread_info *thread = get_lwp_thread (lwp);
4123 struct thread_info *saved_thread;
4124 int fast_tp_collecting;
4125 int ptrace_request;
4126 struct process_info *proc = get_thread_process (thread);
4127
4128 /* Note that target description may not be initialised
4129 (proc->tdesc == NULL) at this point because the program hasn't
4130 stopped at the first instruction yet. It means GDBserver skips
4131 the extra traps from the wrapper program (see option --wrapper).
4132 Code in this function that requires register access should be
4133 guarded by proc->tdesc == NULL or something else. */
4134
4135 if (lwp->stopped == 0)
4136 return;
4137
4138 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4139
4140 fast_tp_collecting = lwp->collecting_fast_tracepoint;
4141
4142 gdb_assert (!stabilizing_threads || fast_tp_collecting);
4143
4144 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4145 user used the "jump" command, or "set $pc = foo"). */
4146 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4147 {
4148 /* Collecting 'while-stepping' actions doesn't make sense
4149 anymore. */
4150 release_while_stepping_state_list (thread);
4151 }
4152
4153 /* If we have pending signals or status, and a new signal, enqueue the
4154 signal. Also enqueue the signal if we are waiting to reinsert a
4155 breakpoint; it will be picked up again below. */
4156 if (signal != 0
4157 && (lwp->status_pending_p
4158 || lwp->pending_signals != NULL
4159 || lwp->bp_reinsert != 0
4160 || fast_tp_collecting))
4161 enqueue_pending_signal (lwp, signal, info);
4162
4163 if (lwp->status_pending_p)
4164 {
4165 if (debug_threads)
4166 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
4167 " has pending status\n",
4168 lwpid_of (thread), step ? "step" : "continue", signal,
4169 lwp->stop_expected ? "expected" : "not expected");
4170 return;
4171 }
4172
4173 saved_thread = current_thread;
4174 current_thread = thread;
4175
4176 if (debug_threads)
4177 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4178 lwpid_of (thread), step ? "step" : "continue", signal,
4179 lwp->stop_expected ? "expected" : "not expected");
4180
4181 /* This bit needs some thinking about. If we get a signal that
4182 we must report while a single-step reinsert is still pending,
4183 we often end up resuming the thread. It might be better to
4184 (ew) allow a stack of pending events; then we could be sure that
4185 the reinsert happened right away and not lose any signals.
4186
4187 Making this stack would also shrink the window in which breakpoints are
4188 uninserted (see comment in linux_wait_for_lwp) but not enough for
4189 complete correctness, so it won't solve that problem. It may be
4190 worthwhile just to solve this one, however. */
4191 if (lwp->bp_reinsert != 0)
4192 {
4193 if (debug_threads)
4194 debug_printf (" pending reinsert at 0x%s\n",
4195 paddress (lwp->bp_reinsert));
4196
4197 if (can_hardware_single_step ())
4198 {
4199 if (fast_tp_collecting == 0)
4200 {
4201 if (step == 0)
4202 fprintf (stderr, "BAD - reinserting but not stepping.\n");
4203 if (lwp->suspended)
4204 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
4205 lwp->suspended);
4206 }
4207
4208 step = 1;
4209 }
4210
4211 /* Postpone any pending signal. It was enqueued above. */
4212 signal = 0;
4213 }
4214
4215 if (fast_tp_collecting == 1)
4216 {
4217 if (debug_threads)
4218 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4219 " (exit-jump-pad-bkpt)\n",
4220 lwpid_of (thread));
4221
4222 /* Postpone any pending signal. It was enqueued above. */
4223 signal = 0;
4224 }
4225 else if (fast_tp_collecting == 2)
4226 {
4227 if (debug_threads)
4228 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4229 " single-stepping\n",
4230 lwpid_of (thread));
4231
4232 if (can_hardware_single_step ())
4233 step = 1;
4234 else
4235 {
4236 internal_error (__FILE__, __LINE__,
4237 "moving out of jump pad single-stepping"
4238 " not implemented on this target");
4239 }
4240
4241 /* Postpone any pending signal. It was enqueued above. */
4242 signal = 0;
4243 }
4244
4245 /* If we have while-stepping actions in this thread set it stepping.
4246 If we have a signal to deliver, it may or may not be set to
4247 SIG_IGN, we don't know. Assume so, and allow collecting
4248 while-stepping into a signal handler. A possible smart thing to
4249 do would be to set an internal breakpoint at the signal return
4250 address, continue, and carry on catching this while-stepping
4251 action only when that breakpoint is hit. A future
4252 enhancement. */
4253 if (thread->while_stepping != NULL)
4254 {
4255 if (debug_threads)
4256 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4257 lwpid_of (thread));
4258
4259 step = single_step (lwp);
4260 }
4261
4262 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4263 {
4264 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4265
4266 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4267
4268 if (debug_threads)
4269 {
4270 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4271 (long) lwp->stop_pc);
4272 }
4273 }
4274
4275 /* If we have pending signals, consume one unless we are trying to
4276 reinsert a breakpoint or we're trying to finish a fast tracepoint
4277 collect. */
4278 if (lwp->pending_signals != NULL
4279 && lwp->bp_reinsert == 0
4280 && fast_tp_collecting == 0)
4281 {
4282 struct pending_signals **p_sig;
4283
4284 p_sig = &lwp->pending_signals;
4285 while ((*p_sig)->prev != NULL)
4286 p_sig = &(*p_sig)->prev;
4287
4288 signal = (*p_sig)->signal;
4289 if ((*p_sig)->info.si_signo != 0)
4290 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4291 &(*p_sig)->info);
4292
4293 free (*p_sig);
4294 *p_sig = NULL;
4295 }
4296
4297 if (the_low_target.prepare_to_resume != NULL)
4298 the_low_target.prepare_to_resume (lwp);
4299
4300 regcache_invalidate_thread (thread);
4301 errno = 0;
4302 lwp->stepping = step;
4303 if (step)
4304 ptrace_request = PTRACE_SINGLESTEP;
4305 else if (gdb_catching_syscalls_p (lwp))
4306 ptrace_request = PTRACE_SYSCALL;
4307 else
4308 ptrace_request = PTRACE_CONT;
4309 ptrace (ptrace_request,
4310 lwpid_of (thread),
4311 (PTRACE_TYPE_ARG3) 0,
4312 /* Coerce to a uintptr_t first to avoid potential gcc warning
4313 of coercing an 8 byte integer to a 4 byte pointer. */
4314 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4315
4316 current_thread = saved_thread;
4317 if (errno)
4318 perror_with_name ("resuming thread");
4319
4320 /* Successfully resumed. Clear state that no longer makes sense,
4321 and mark the LWP as running. Must not do this before resuming
4322 otherwise if that fails other code will be confused. E.g., we'd
4323 later try to stop the LWP and hang forever waiting for a stop
4324 status. Note that we must not throw after this is cleared,
4325 otherwise handle_zombie_lwp_error would get confused. */
4326 lwp->stopped = 0;
4327 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4328 }
4329
4330 /* Called when we try to resume a stopped LWP and that errors out. If
4331 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4332 or about to become), discard the error, clear any pending status
4333 the LWP may have, and return true (we'll collect the exit status
4334 soon enough). Otherwise, return false. */
4335
4336 static int
4337 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4338 {
4339 struct thread_info *thread = get_lwp_thread (lp);
4340
4341 /* If we get an error after resuming the LWP successfully, we'd
4342 confuse !T state for the LWP being gone. */
4343 gdb_assert (lp->stopped);
4344
4345 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4346 because even if ptrace failed with ESRCH, the tracee may be "not
4347 yet fully dead", but already refusing ptrace requests. In that
4348 case the tracee has 'R (Running)' state for a little bit
4349 (observed in Linux 3.18). See also the note on ESRCH in the
4350 ptrace(2) man page. Instead, check whether the LWP has any state
4351 other than ptrace-stopped. */
4352
4353 /* Don't assume anything if /proc/PID/status can't be read. */
4354 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4355 {
4356 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4357 lp->status_pending_p = 0;
4358 return 1;
4359 }
4360 return 0;
4361 }
4362
4363 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4364 disappears while we try to resume it. */
4365
4366 static void
4367 linux_resume_one_lwp (struct lwp_info *lwp,
4368 int step, int signal, siginfo_t *info)
4369 {
4370 TRY
4371 {
4372 linux_resume_one_lwp_throw (lwp, step, signal, info);
4373 }
4374 CATCH (ex, RETURN_MASK_ERROR)
4375 {
4376 if (!check_ptrace_stopped_lwp_gone (lwp))
4377 throw_exception (ex);
4378 }
4379 END_CATCH
4380 }
4381
4382 struct thread_resume_array
4383 {
4384 struct thread_resume *resume;
4385 size_t n;
4386 };
4387
4388 /* This function is called once per thread via find_inferior.
4389 ARG is a pointer to a thread_resume_array struct.
4390 We look up the thread specified by ENTRY in ARG, and mark the thread
4391 with a pointer to the appropriate resume request.
4392
4393 This algorithm is O(threads * resume elements), but resume elements
4394 is small (and will remain small at least until GDB supports thread
4395 suspension). */
4396
4397 static int
4398 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4399 {
4400 struct thread_info *thread = (struct thread_info *) entry;
4401 struct lwp_info *lwp = get_thread_lwp (thread);
4402 int ndx;
4403 struct thread_resume_array *r;
4404
4405 r = (struct thread_resume_array *) arg;
4406
4407 for (ndx = 0; ndx < r->n; ndx++)
4408 {
4409 ptid_t ptid = r->resume[ndx].thread;
4410 if (ptid_equal (ptid, minus_one_ptid)
4411 || ptid_equal (ptid, entry->id)
4412 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4413 of PID'. */
4414 || (ptid_get_pid (ptid) == pid_of (thread)
4415 && (ptid_is_pid (ptid)
4416 || ptid_get_lwp (ptid) == -1)))
4417 {
4418 if (r->resume[ndx].kind == resume_stop
4419 && thread->last_resume_kind == resume_stop)
4420 {
4421 if (debug_threads)
4422 debug_printf ("already %s LWP %ld at GDB's request\n",
4423 (thread->last_status.kind
4424 == TARGET_WAITKIND_STOPPED)
4425 ? "stopped"
4426 : "stopping",
4427 lwpid_of (thread));
4428
4429 continue;
4430 }
4431
4432 lwp->resume = &r->resume[ndx];
4433 thread->last_resume_kind = lwp->resume->kind;
4434
4435 lwp->step_range_start = lwp->resume->step_range_start;
4436 lwp->step_range_end = lwp->resume->step_range_end;
4437
4438 /* If we had a deferred signal to report, dequeue one now.
4439 This can happen if LWP gets more than one signal while
4440 trying to get out of a jump pad. */
4441 if (lwp->stopped
4442 && !lwp->status_pending_p
4443 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4444 {
4445 lwp->status_pending_p = 1;
4446
4447 if (debug_threads)
4448 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4449 "leaving status pending.\n",
4450 WSTOPSIG (lwp->status_pending),
4451 lwpid_of (thread));
4452 }
4453
4454 return 0;
4455 }
4456 }
4457
4458 /* No resume action for this thread. */
4459 lwp->resume = NULL;
4460
4461 return 0;
4462 }
4463
4464 /* find_inferior callback for linux_resume.
4465 Set *FLAG_P if this lwp has an interesting status pending. */
4466
4467 static int
4468 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4469 {
4470 struct thread_info *thread = (struct thread_info *) entry;
4471 struct lwp_info *lwp = get_thread_lwp (thread);
4472
4473 /* LWPs which will not be resumed are not interesting, because
4474 we might not wait for them next time through linux_wait. */
4475 if (lwp->resume == NULL)
4476 return 0;
4477
4478 if (thread_still_has_status_pending_p (thread))
4479 * (int *) flag_p = 1;
4480
4481 return 0;
4482 }
4483
4484 /* Return 1 if this lwp that GDB wants running is stopped at an
4485 internal breakpoint that we need to step over. It assumes that any
4486 required STOP_PC adjustment has already been propagated to the
4487 inferior's regcache. */
4488
4489 static int
4490 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4491 {
4492 struct thread_info *thread = (struct thread_info *) entry;
4493 struct lwp_info *lwp = get_thread_lwp (thread);
4494 struct thread_info *saved_thread;
4495 CORE_ADDR pc;
4496 struct process_info *proc = get_thread_process (thread);
4497
4498 /* GDBserver is skipping the extra traps from the wrapper program,
4499 don't have to do step over. */
4500 if (proc->tdesc == NULL)
4501 return 0;
4502
4503 /* LWPs which will not be resumed are not interesting, because we
4504 might not wait for them next time through linux_wait. */
4505
4506 if (!lwp->stopped)
4507 {
4508 if (debug_threads)
4509 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4510 lwpid_of (thread));
4511 return 0;
4512 }
4513
4514 if (thread->last_resume_kind == resume_stop)
4515 {
4516 if (debug_threads)
4517 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4518 " stopped\n",
4519 lwpid_of (thread));
4520 return 0;
4521 }
4522
4523 gdb_assert (lwp->suspended >= 0);
4524
4525 if (lwp->suspended)
4526 {
4527 if (debug_threads)
4528 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4529 lwpid_of (thread));
4530 return 0;
4531 }
4532
4533 if (!lwp->need_step_over)
4534 {
4535 if (debug_threads)
4536 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
4537 }
4538
4539 if (lwp->status_pending_p)
4540 {
4541 if (debug_threads)
4542 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4543 " status.\n",
4544 lwpid_of (thread));
4545 return 0;
4546 }
4547
4548 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4549 or we have. */
4550 pc = get_pc (lwp);
4551
4552 /* If the PC has changed since we stopped, then don't do anything,
4553 and let the breakpoint/tracepoint be hit. This happens if, for
4554 instance, GDB handled the decr_pc_after_break subtraction itself,
4555 GDB is OOL stepping this thread, or the user has issued a "jump"
4556 command, or poked thread's registers herself. */
4557 if (pc != lwp->stop_pc)
4558 {
4559 if (debug_threads)
4560 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4561 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4562 lwpid_of (thread),
4563 paddress (lwp->stop_pc), paddress (pc));
4564
4565 lwp->need_step_over = 0;
4566 return 0;
4567 }
4568
4569 saved_thread = current_thread;
4570 current_thread = thread;
4571
4572 /* We can only step over breakpoints we know about. */
4573 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4574 {
4575 /* Don't step over a breakpoint that GDB expects to hit
4576 though. If the condition is being evaluated on the target's side
4577 and it evaluate to false, step over this breakpoint as well. */
4578 if (gdb_breakpoint_here (pc)
4579 && gdb_condition_true_at_breakpoint (pc)
4580 && gdb_no_commands_at_breakpoint (pc))
4581 {
4582 if (debug_threads)
4583 debug_printf ("Need step over [LWP %ld]? yes, but found"
4584 " GDB breakpoint at 0x%s; skipping step over\n",
4585 lwpid_of (thread), paddress (pc));
4586
4587 current_thread = saved_thread;
4588 return 0;
4589 }
4590 else
4591 {
4592 if (debug_threads)
4593 debug_printf ("Need step over [LWP %ld]? yes, "
4594 "found breakpoint at 0x%s\n",
4595 lwpid_of (thread), paddress (pc));
4596
4597 /* We've found an lwp that needs stepping over --- return 1 so
4598 that find_inferior stops looking. */
4599 current_thread = saved_thread;
4600
4601 /* If the step over is cancelled, this is set again. */
4602 lwp->need_step_over = 0;
4603 return 1;
4604 }
4605 }
4606
4607 current_thread = saved_thread;
4608
4609 if (debug_threads)
4610 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4611 " at 0x%s\n",
4612 lwpid_of (thread), paddress (pc));
4613
4614 return 0;
4615 }
4616
4617 /* Start a step-over operation on LWP. When LWP stopped at a
4618 breakpoint, to make progress, we need to remove the breakpoint out
4619 of the way. If we let other threads run while we do that, they may
4620 pass by the breakpoint location and miss hitting it. To avoid
4621 that, a step-over momentarily stops all threads while LWP is
4622 single-stepped while the breakpoint is temporarily uninserted from
4623 the inferior. When the single-step finishes, we reinsert the
4624 breakpoint, and let all threads that are supposed to be running,
4625 run again.
4626
4627 On targets that don't support hardware single-step, we don't
4628 currently support full software single-stepping. Instead, we only
4629 support stepping over the thread event breakpoint, by asking the
4630 low target where to place a reinsert breakpoint. Since this
4631 routine assumes the breakpoint being stepped over is a thread event
4632 breakpoint, it usually assumes the return address of the current
4633 function is a good enough place to set the reinsert breakpoint. */
4634
4635 static int
4636 start_step_over (struct lwp_info *lwp)
4637 {
4638 struct thread_info *thread = get_lwp_thread (lwp);
4639 struct thread_info *saved_thread;
4640 CORE_ADDR pc;
4641 int step;
4642
4643 if (debug_threads)
4644 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4645 lwpid_of (thread));
4646
4647 stop_all_lwps (1, lwp);
4648
4649 if (lwp->suspended != 0)
4650 {
4651 internal_error (__FILE__, __LINE__,
4652 "LWP %ld suspended=%d\n", lwpid_of (thread),
4653 lwp->suspended);
4654 }
4655
4656 if (debug_threads)
4657 debug_printf ("Done stopping all threads for step-over.\n");
4658
4659 /* Note, we should always reach here with an already adjusted PC,
4660 either by GDB (if we're resuming due to GDB's request), or by our
4661 caller, if we just finished handling an internal breakpoint GDB
4662 shouldn't care about. */
4663 pc = get_pc (lwp);
4664
4665 saved_thread = current_thread;
4666 current_thread = thread;
4667
4668 lwp->bp_reinsert = pc;
4669 uninsert_breakpoints_at (pc);
4670 uninsert_fast_tracepoint_jumps_at (pc);
4671
4672 step = single_step (lwp);
4673
4674 current_thread = saved_thread;
4675
4676 linux_resume_one_lwp (lwp, step, 0, NULL);
4677
4678 /* Require next event from this LWP. */
4679 step_over_bkpt = thread->entry.id;
4680 return 1;
4681 }
4682
4683 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4684 start_step_over, if still there, and delete any reinsert
4685 breakpoints we've set, on non hardware single-step targets. */
4686
4687 static int
4688 finish_step_over (struct lwp_info *lwp)
4689 {
4690 if (lwp->bp_reinsert != 0)
4691 {
4692 if (debug_threads)
4693 debug_printf ("Finished step over.\n");
4694
4695 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4696 may be no breakpoint to reinsert there by now. */
4697 reinsert_breakpoints_at (lwp->bp_reinsert);
4698 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4699
4700 lwp->bp_reinsert = 0;
4701
4702 /* Delete any software-single-step reinsert breakpoints. No
4703 longer needed. We don't have to worry about other threads
4704 hitting this trap, and later not being able to explain it,
4705 because we were stepping over a breakpoint, and we hold all
4706 threads but LWP stopped while doing that. */
4707 if (!can_hardware_single_step ())
4708 delete_reinsert_breakpoints ();
4709
4710 step_over_bkpt = null_ptid;
4711 return 1;
4712 }
4713 else
4714 return 0;
4715 }
4716
4717 /* If there's a step over in progress, wait until all threads stop
4718 (that is, until the stepping thread finishes its step), and
4719 unsuspend all lwps. The stepping thread ends with its status
4720 pending, which is processed later when we get back to processing
4721 events. */
4722
4723 static void
4724 complete_ongoing_step_over (void)
4725 {
4726 if (!ptid_equal (step_over_bkpt, null_ptid))
4727 {
4728 struct lwp_info *lwp;
4729 int wstat;
4730 int ret;
4731
4732 if (debug_threads)
4733 debug_printf ("detach: step over in progress, finish it first\n");
4734
4735 /* Passing NULL_PTID as filter indicates we want all events to
4736 be left pending. Eventually this returns when there are no
4737 unwaited-for children left. */
4738 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4739 &wstat, __WALL);
4740 gdb_assert (ret == -1);
4741
4742 lwp = find_lwp_pid (step_over_bkpt);
4743 if (lwp != NULL)
4744 finish_step_over (lwp);
4745 step_over_bkpt = null_ptid;
4746 unsuspend_all_lwps (lwp);
4747 }
4748 }
4749
4750 /* This function is called once per thread. We check the thread's resume
4751 request, which will tell us whether to resume, step, or leave the thread
4752 stopped; and what signal, if any, it should be sent.
4753
4754 For threads which we aren't explicitly told otherwise, we preserve
4755 the stepping flag; this is used for stepping over gdbserver-placed
4756 breakpoints.
4757
4758 If pending_flags was set in any thread, we queue any needed
4759 signals, since we won't actually resume. We already have a pending
4760 event to report, so we don't need to preserve any step requests;
4761 they should be re-issued if necessary. */
4762
4763 static int
4764 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
4765 {
4766 struct thread_info *thread = (struct thread_info *) entry;
4767 struct lwp_info *lwp = get_thread_lwp (thread);
4768 int step;
4769 int leave_all_stopped = * (int *) arg;
4770 int leave_pending;
4771
4772 if (lwp->resume == NULL)
4773 return 0;
4774
4775 if (lwp->resume->kind == resume_stop)
4776 {
4777 if (debug_threads)
4778 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4779
4780 if (!lwp->stopped)
4781 {
4782 if (debug_threads)
4783 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4784
4785 /* Stop the thread, and wait for the event asynchronously,
4786 through the event loop. */
4787 send_sigstop (lwp);
4788 }
4789 else
4790 {
4791 if (debug_threads)
4792 debug_printf ("already stopped LWP %ld\n",
4793 lwpid_of (thread));
4794
4795 /* The LWP may have been stopped in an internal event that
4796 was not meant to be notified back to GDB (e.g., gdbserver
4797 breakpoint), so we should be reporting a stop event in
4798 this case too. */
4799
4800 /* If the thread already has a pending SIGSTOP, this is a
4801 no-op. Otherwise, something later will presumably resume
4802 the thread and this will cause it to cancel any pending
4803 operation, due to last_resume_kind == resume_stop. If
4804 the thread already has a pending status to report, we
4805 will still report it the next time we wait - see
4806 status_pending_p_callback. */
4807
4808 /* If we already have a pending signal to report, then
4809 there's no need to queue a SIGSTOP, as this means we're
4810 midway through moving the LWP out of the jumppad, and we
4811 will report the pending signal as soon as that is
4812 finished. */
4813 if (lwp->pending_signals_to_report == NULL)
4814 send_sigstop (lwp);
4815 }
4816
4817 /* For stop requests, we're done. */
4818 lwp->resume = NULL;
4819 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4820 return 0;
4821 }
4822
4823 /* If this thread which is about to be resumed has a pending status,
4824 then don't resume it - we can just report the pending status.
4825 Likewise if it is suspended, because e.g., another thread is
4826 stepping past a breakpoint. Make sure to queue any signals that
4827 would otherwise be sent. In all-stop mode, we do this decision
4828 based on if *any* thread has a pending status. If there's a
4829 thread that needs the step-over-breakpoint dance, then don't
4830 resume any other thread but that particular one. */
4831 leave_pending = (lwp->suspended
4832 || lwp->status_pending_p
4833 || leave_all_stopped);
4834
4835 if (!leave_pending)
4836 {
4837 if (debug_threads)
4838 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4839
4840 step = (lwp->resume->kind == resume_step);
4841 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
4842 }
4843 else
4844 {
4845 if (debug_threads)
4846 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4847
4848 /* If we have a new signal, enqueue the signal. */
4849 if (lwp->resume->sig != 0)
4850 {
4851 struct pending_signals *p_sig = XCNEW (struct pending_signals);
4852
4853 p_sig->prev = lwp->pending_signals;
4854 p_sig->signal = lwp->resume->sig;
4855
4856 /* If this is the same signal we were previously stopped by,
4857 make sure to queue its siginfo. We can ignore the return
4858 value of ptrace; if it fails, we'll skip
4859 PTRACE_SETSIGINFO. */
4860 if (WIFSTOPPED (lwp->last_status)
4861 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
4862 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4863 &p_sig->info);
4864
4865 lwp->pending_signals = p_sig;
4866 }
4867 }
4868
4869 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4870 lwp->resume = NULL;
4871 return 0;
4872 }
4873
4874 static void
4875 linux_resume (struct thread_resume *resume_info, size_t n)
4876 {
4877 struct thread_resume_array array = { resume_info, n };
4878 struct thread_info *need_step_over = NULL;
4879 int any_pending;
4880 int leave_all_stopped;
4881
4882 if (debug_threads)
4883 {
4884 debug_enter ();
4885 debug_printf ("linux_resume:\n");
4886 }
4887
4888 find_inferior (&all_threads, linux_set_resume_request, &array);
4889
4890 /* If there is a thread which would otherwise be resumed, which has
4891 a pending status, then don't resume any threads - we can just
4892 report the pending status. Make sure to queue any signals that
4893 would otherwise be sent. In non-stop mode, we'll apply this
4894 logic to each thread individually. We consume all pending events
4895 before considering to start a step-over (in all-stop). */
4896 any_pending = 0;
4897 if (!non_stop)
4898 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4899
4900 /* If there is a thread which would otherwise be resumed, which is
4901 stopped at a breakpoint that needs stepping over, then don't
4902 resume any threads - have it step over the breakpoint with all
4903 other threads stopped, then resume all threads again. Make sure
4904 to queue any signals that would otherwise be delivered or
4905 queued. */
4906 if (!any_pending && supports_breakpoints ())
4907 need_step_over
4908 = (struct thread_info *) find_inferior (&all_threads,
4909 need_step_over_p, NULL);
4910
4911 leave_all_stopped = (need_step_over != NULL || any_pending);
4912
4913 if (debug_threads)
4914 {
4915 if (need_step_over != NULL)
4916 debug_printf ("Not resuming all, need step over\n");
4917 else if (any_pending)
4918 debug_printf ("Not resuming, all-stop and found "
4919 "an LWP with pending status\n");
4920 else
4921 debug_printf ("Resuming, no pending status or step over needed\n");
4922 }
4923
4924 /* Even if we're leaving threads stopped, queue all signals we'd
4925 otherwise deliver. */
4926 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4927
4928 if (need_step_over)
4929 start_step_over (get_thread_lwp (need_step_over));
4930
4931 if (debug_threads)
4932 {
4933 debug_printf ("linux_resume done\n");
4934 debug_exit ();
4935 }
4936
4937 /* We may have events that were pending that can/should be sent to
4938 the client now. Trigger a linux_wait call. */
4939 if (target_is_async_p ())
4940 async_file_mark ();
4941 }
4942
4943 /* This function is called once per thread. We check the thread's
4944 last resume request, which will tell us whether to resume, step, or
4945 leave the thread stopped. Any signal the client requested to be
4946 delivered has already been enqueued at this point.
4947
4948 If any thread that GDB wants running is stopped at an internal
4949 breakpoint that needs stepping over, we start a step-over operation
4950 on that particular thread, and leave all others stopped. */
4951
4952 static int
4953 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4954 {
4955 struct thread_info *thread = (struct thread_info *) entry;
4956 struct lwp_info *lwp = get_thread_lwp (thread);
4957 int step;
4958
4959 if (lwp == except)
4960 return 0;
4961
4962 if (debug_threads)
4963 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4964
4965 if (!lwp->stopped)
4966 {
4967 if (debug_threads)
4968 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4969 return 0;
4970 }
4971
4972 if (thread->last_resume_kind == resume_stop
4973 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4974 {
4975 if (debug_threads)
4976 debug_printf (" client wants LWP to remain %ld stopped\n",
4977 lwpid_of (thread));
4978 return 0;
4979 }
4980
4981 if (lwp->status_pending_p)
4982 {
4983 if (debug_threads)
4984 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4985 lwpid_of (thread));
4986 return 0;
4987 }
4988
4989 gdb_assert (lwp->suspended >= 0);
4990
4991 if (lwp->suspended)
4992 {
4993 if (debug_threads)
4994 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4995 return 0;
4996 }
4997
4998 if (thread->last_resume_kind == resume_stop
4999 && lwp->pending_signals_to_report == NULL
5000 && lwp->collecting_fast_tracepoint == 0)
5001 {
5002 /* We haven't reported this LWP as stopped yet (otherwise, the
5003 last_status.kind check above would catch it, and we wouldn't
5004 reach here. This LWP may have been momentarily paused by a
5005 stop_all_lwps call while handling for example, another LWP's
5006 step-over. In that case, the pending expected SIGSTOP signal
5007 that was queued at vCont;t handling time will have already
5008 been consumed by wait_for_sigstop, and so we need to requeue
5009 another one here. Note that if the LWP already has a SIGSTOP
5010 pending, this is a no-op. */
5011
5012 if (debug_threads)
5013 debug_printf ("Client wants LWP %ld to stop. "
5014 "Making sure it has a SIGSTOP pending\n",
5015 lwpid_of (thread));
5016
5017 send_sigstop (lwp);
5018 }
5019
5020 if (thread->last_resume_kind == resume_step)
5021 {
5022 if (debug_threads)
5023 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5024 lwpid_of (thread));
5025 step = 1;
5026 }
5027 else if (lwp->bp_reinsert != 0)
5028 {
5029 if (debug_threads)
5030 debug_printf (" stepping LWP %ld, reinsert set\n",
5031 lwpid_of (thread));
5032 step = 1;
5033 }
5034 else
5035 step = 0;
5036
5037 linux_resume_one_lwp (lwp, step, 0, NULL);
5038 return 0;
5039 }
5040
5041 static int
5042 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5043 {
5044 struct thread_info *thread = (struct thread_info *) entry;
5045 struct lwp_info *lwp = get_thread_lwp (thread);
5046
5047 if (lwp == except)
5048 return 0;
5049
5050 lwp_suspended_decr (lwp);
5051
5052 return proceed_one_lwp (entry, except);
5053 }
5054
5055 /* When we finish a step-over, set threads running again. If there's
5056 another thread that may need a step-over, now's the time to start
5057 it. Eventually, we'll move all threads past their breakpoints. */
5058
5059 static void
5060 proceed_all_lwps (void)
5061 {
5062 struct thread_info *need_step_over;
5063
5064 /* If there is a thread which would otherwise be resumed, which is
5065 stopped at a breakpoint that needs stepping over, then don't
5066 resume any threads - have it step over the breakpoint with all
5067 other threads stopped, then resume all threads again. */
5068
5069 if (supports_breakpoints ())
5070 {
5071 need_step_over
5072 = (struct thread_info *) find_inferior (&all_threads,
5073 need_step_over_p, NULL);
5074
5075 if (need_step_over != NULL)
5076 {
5077 if (debug_threads)
5078 debug_printf ("proceed_all_lwps: found "
5079 "thread %ld needing a step-over\n",
5080 lwpid_of (need_step_over));
5081
5082 start_step_over (get_thread_lwp (need_step_over));
5083 return;
5084 }
5085 }
5086
5087 if (debug_threads)
5088 debug_printf ("Proceeding, no step-over needed\n");
5089
5090 find_inferior (&all_threads, proceed_one_lwp, NULL);
5091 }
5092
5093 /* Stopped LWPs that the client wanted to be running, that don't have
5094 pending statuses, are set to run again, except for EXCEPT, if not
5095 NULL. This undoes a stop_all_lwps call. */
5096
5097 static void
5098 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5099 {
5100 if (debug_threads)
5101 {
5102 debug_enter ();
5103 if (except)
5104 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5105 lwpid_of (get_lwp_thread (except)));
5106 else
5107 debug_printf ("unstopping all lwps\n");
5108 }
5109
5110 if (unsuspend)
5111 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5112 else
5113 find_inferior (&all_threads, proceed_one_lwp, except);
5114
5115 if (debug_threads)
5116 {
5117 debug_printf ("unstop_all_lwps done\n");
5118 debug_exit ();
5119 }
5120 }
5121
5122
5123 #ifdef HAVE_LINUX_REGSETS
5124
5125 #define use_linux_regsets 1
5126
5127 /* Returns true if REGSET has been disabled. */
5128
5129 static int
5130 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5131 {
5132 return (info->disabled_regsets != NULL
5133 && info->disabled_regsets[regset - info->regsets]);
5134 }
5135
5136 /* Disable REGSET. */
5137
5138 static void
5139 disable_regset (struct regsets_info *info, struct regset_info *regset)
5140 {
5141 int dr_offset;
5142
5143 dr_offset = regset - info->regsets;
5144 if (info->disabled_regsets == NULL)
5145 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5146 info->disabled_regsets[dr_offset] = 1;
5147 }
5148
5149 static int
5150 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5151 struct regcache *regcache)
5152 {
5153 struct regset_info *regset;
5154 int saw_general_regs = 0;
5155 int pid;
5156 struct iovec iov;
5157
5158 pid = lwpid_of (current_thread);
5159 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5160 {
5161 void *buf, *data;
5162 int nt_type, res;
5163
5164 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5165 continue;
5166
5167 buf = xmalloc (regset->size);
5168
5169 nt_type = regset->nt_type;
5170 if (nt_type)
5171 {
5172 iov.iov_base = buf;
5173 iov.iov_len = regset->size;
5174 data = (void *) &iov;
5175 }
5176 else
5177 data = buf;
5178
5179 #ifndef __sparc__
5180 res = ptrace (regset->get_request, pid,
5181 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5182 #else
5183 res = ptrace (regset->get_request, pid, data, nt_type);
5184 #endif
5185 if (res < 0)
5186 {
5187 if (errno == EIO)
5188 {
5189 /* If we get EIO on a regset, do not try it again for
5190 this process mode. */
5191 disable_regset (regsets_info, regset);
5192 }
5193 else if (errno == ENODATA)
5194 {
5195 /* ENODATA may be returned if the regset is currently
5196 not "active". This can happen in normal operation,
5197 so suppress the warning in this case. */
5198 }
5199 else
5200 {
5201 char s[256];
5202 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5203 pid);
5204 perror (s);
5205 }
5206 }
5207 else
5208 {
5209 if (regset->type == GENERAL_REGS)
5210 saw_general_regs = 1;
5211 regset->store_function (regcache, buf);
5212 }
5213 free (buf);
5214 }
5215 if (saw_general_regs)
5216 return 0;
5217 else
5218 return 1;
5219 }
5220
5221 static int
5222 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5223 struct regcache *regcache)
5224 {
5225 struct regset_info *regset;
5226 int saw_general_regs = 0;
5227 int pid;
5228 struct iovec iov;
5229
5230 pid = lwpid_of (current_thread);
5231 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5232 {
5233 void *buf, *data;
5234 int nt_type, res;
5235
5236 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5237 || regset->fill_function == NULL)
5238 continue;
5239
5240 buf = xmalloc (regset->size);
5241
5242 /* First fill the buffer with the current register set contents,
5243 in case there are any items in the kernel's regset that are
5244 not in gdbserver's regcache. */
5245
5246 nt_type = regset->nt_type;
5247 if (nt_type)
5248 {
5249 iov.iov_base = buf;
5250 iov.iov_len = regset->size;
5251 data = (void *) &iov;
5252 }
5253 else
5254 data = buf;
5255
5256 #ifndef __sparc__
5257 res = ptrace (regset->get_request, pid,
5258 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5259 #else
5260 res = ptrace (regset->get_request, pid, data, nt_type);
5261 #endif
5262
5263 if (res == 0)
5264 {
5265 /* Then overlay our cached registers on that. */
5266 regset->fill_function (regcache, buf);
5267
5268 /* Only now do we write the register set. */
5269 #ifndef __sparc__
5270 res = ptrace (regset->set_request, pid,
5271 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5272 #else
5273 res = ptrace (regset->set_request, pid, data, nt_type);
5274 #endif
5275 }
5276
5277 if (res < 0)
5278 {
5279 if (errno == EIO)
5280 {
5281 /* If we get EIO on a regset, do not try it again for
5282 this process mode. */
5283 disable_regset (regsets_info, regset);
5284 }
5285 else if (errno == ESRCH)
5286 {
5287 /* At this point, ESRCH should mean the process is
5288 already gone, in which case we simply ignore attempts
5289 to change its registers. See also the related
5290 comment in linux_resume_one_lwp. */
5291 free (buf);
5292 return 0;
5293 }
5294 else
5295 {
5296 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5297 }
5298 }
5299 else if (regset->type == GENERAL_REGS)
5300 saw_general_regs = 1;
5301 free (buf);
5302 }
5303 if (saw_general_regs)
5304 return 0;
5305 else
5306 return 1;
5307 }
5308
5309 #else /* !HAVE_LINUX_REGSETS */
5310
5311 #define use_linux_regsets 0
5312 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5313 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5314
5315 #endif
5316
5317 /* Return 1 if register REGNO is supported by one of the regset ptrace
5318 calls or 0 if it has to be transferred individually. */
5319
5320 static int
5321 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5322 {
5323 unsigned char mask = 1 << (regno % 8);
5324 size_t index = regno / 8;
5325
5326 return (use_linux_regsets
5327 && (regs_info->regset_bitmap == NULL
5328 || (regs_info->regset_bitmap[index] & mask) != 0));
5329 }
5330
5331 #ifdef HAVE_LINUX_USRREGS
5332
5333 static int
5334 register_addr (const struct usrregs_info *usrregs, int regnum)
5335 {
5336 int addr;
5337
5338 if (regnum < 0 || regnum >= usrregs->num_regs)
5339 error ("Invalid register number %d.", regnum);
5340
5341 addr = usrregs->regmap[regnum];
5342
5343 return addr;
5344 }
5345
5346 /* Fetch one register. */
5347 static void
5348 fetch_register (const struct usrregs_info *usrregs,
5349 struct regcache *regcache, int regno)
5350 {
5351 CORE_ADDR regaddr;
5352 int i, size;
5353 char *buf;
5354 int pid;
5355
5356 if (regno >= usrregs->num_regs)
5357 return;
5358 if ((*the_low_target.cannot_fetch_register) (regno))
5359 return;
5360
5361 regaddr = register_addr (usrregs, regno);
5362 if (regaddr == -1)
5363 return;
5364
5365 size = ((register_size (regcache->tdesc, regno)
5366 + sizeof (PTRACE_XFER_TYPE) - 1)
5367 & -sizeof (PTRACE_XFER_TYPE));
5368 buf = (char *) alloca (size);
5369
5370 pid = lwpid_of (current_thread);
5371 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5372 {
5373 errno = 0;
5374 *(PTRACE_XFER_TYPE *) (buf + i) =
5375 ptrace (PTRACE_PEEKUSER, pid,
5376 /* Coerce to a uintptr_t first to avoid potential gcc warning
5377 of coercing an 8 byte integer to a 4 byte pointer. */
5378 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5379 regaddr += sizeof (PTRACE_XFER_TYPE);
5380 if (errno != 0)
5381 error ("reading register %d: %s", regno, strerror (errno));
5382 }
5383
5384 if (the_low_target.supply_ptrace_register)
5385 the_low_target.supply_ptrace_register (regcache, regno, buf);
5386 else
5387 supply_register (regcache, regno, buf);
5388 }
5389
5390 /* Store one register. */
5391 static void
5392 store_register (const struct usrregs_info *usrregs,
5393 struct regcache *regcache, int regno)
5394 {
5395 CORE_ADDR regaddr;
5396 int i, size;
5397 char *buf;
5398 int pid;
5399
5400 if (regno >= usrregs->num_regs)
5401 return;
5402 if ((*the_low_target.cannot_store_register) (regno))
5403 return;
5404
5405 regaddr = register_addr (usrregs, regno);
5406 if (regaddr == -1)
5407 return;
5408
5409 size = ((register_size (regcache->tdesc, regno)
5410 + sizeof (PTRACE_XFER_TYPE) - 1)
5411 & -sizeof (PTRACE_XFER_TYPE));
5412 buf = (char *) alloca (size);
5413 memset (buf, 0, size);
5414
5415 if (the_low_target.collect_ptrace_register)
5416 the_low_target.collect_ptrace_register (regcache, regno, buf);
5417 else
5418 collect_register (regcache, regno, buf);
5419
5420 pid = lwpid_of (current_thread);
5421 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5422 {
5423 errno = 0;
5424 ptrace (PTRACE_POKEUSER, pid,
5425 /* Coerce to a uintptr_t first to avoid potential gcc warning
5426 about coercing an 8 byte integer to a 4 byte pointer. */
5427 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5428 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5429 if (errno != 0)
5430 {
5431 /* At this point, ESRCH should mean the process is
5432 already gone, in which case we simply ignore attempts
5433 to change its registers. See also the related
5434 comment in linux_resume_one_lwp. */
5435 if (errno == ESRCH)
5436 return;
5437
5438 if ((*the_low_target.cannot_store_register) (regno) == 0)
5439 error ("writing register %d: %s", regno, strerror (errno));
5440 }
5441 regaddr += sizeof (PTRACE_XFER_TYPE);
5442 }
5443 }
5444
5445 /* Fetch all registers, or just one, from the child process.
5446 If REGNO is -1, do this for all registers, skipping any that are
5447 assumed to have been retrieved by regsets_fetch_inferior_registers,
5448 unless ALL is non-zero.
5449 Otherwise, REGNO specifies which register (so we can save time). */
5450 static void
5451 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5452 struct regcache *regcache, int regno, int all)
5453 {
5454 struct usrregs_info *usr = regs_info->usrregs;
5455
5456 if (regno == -1)
5457 {
5458 for (regno = 0; regno < usr->num_regs; regno++)
5459 if (all || !linux_register_in_regsets (regs_info, regno))
5460 fetch_register (usr, regcache, regno);
5461 }
5462 else
5463 fetch_register (usr, regcache, regno);
5464 }
5465
5466 /* Store our register values back into the inferior.
5467 If REGNO is -1, do this for all registers, skipping any that are
5468 assumed to have been saved by regsets_store_inferior_registers,
5469 unless ALL is non-zero.
5470 Otherwise, REGNO specifies which register (so we can save time). */
5471 static void
5472 usr_store_inferior_registers (const struct regs_info *regs_info,
5473 struct regcache *regcache, int regno, int all)
5474 {
5475 struct usrregs_info *usr = regs_info->usrregs;
5476
5477 if (regno == -1)
5478 {
5479 for (regno = 0; regno < usr->num_regs; regno++)
5480 if (all || !linux_register_in_regsets (regs_info, regno))
5481 store_register (usr, regcache, regno);
5482 }
5483 else
5484 store_register (usr, regcache, regno);
5485 }
5486
5487 #else /* !HAVE_LINUX_USRREGS */
5488
5489 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5490 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5491
5492 #endif
5493
5494
5495 static void
5496 linux_fetch_registers (struct regcache *regcache, int regno)
5497 {
5498 int use_regsets;
5499 int all = 0;
5500 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5501
5502 if (regno == -1)
5503 {
5504 if (the_low_target.fetch_register != NULL
5505 && regs_info->usrregs != NULL)
5506 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5507 (*the_low_target.fetch_register) (regcache, regno);
5508
5509 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5510 if (regs_info->usrregs != NULL)
5511 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5512 }
5513 else
5514 {
5515 if (the_low_target.fetch_register != NULL
5516 && (*the_low_target.fetch_register) (regcache, regno))
5517 return;
5518
5519 use_regsets = linux_register_in_regsets (regs_info, regno);
5520 if (use_regsets)
5521 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5522 regcache);
5523 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5524 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5525 }
5526 }
5527
5528 static void
5529 linux_store_registers (struct regcache *regcache, int regno)
5530 {
5531 int use_regsets;
5532 int all = 0;
5533 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5534
5535 if (regno == -1)
5536 {
5537 all = regsets_store_inferior_registers (regs_info->regsets_info,
5538 regcache);
5539 if (regs_info->usrregs != NULL)
5540 usr_store_inferior_registers (regs_info, regcache, regno, all);
5541 }
5542 else
5543 {
5544 use_regsets = linux_register_in_regsets (regs_info, regno);
5545 if (use_regsets)
5546 all = regsets_store_inferior_registers (regs_info->regsets_info,
5547 regcache);
5548 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5549 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5550 }
5551 }
5552
5553
5554 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5555 to debugger memory starting at MYADDR. */
5556
5557 static int
5558 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5559 {
5560 int pid = lwpid_of (current_thread);
5561 register PTRACE_XFER_TYPE *buffer;
5562 register CORE_ADDR addr;
5563 register int count;
5564 char filename[64];
5565 register int i;
5566 int ret;
5567 int fd;
5568
5569 /* Try using /proc. Don't bother for one word. */
5570 if (len >= 3 * sizeof (long))
5571 {
5572 int bytes;
5573
5574 /* We could keep this file open and cache it - possibly one per
5575 thread. That requires some juggling, but is even faster. */
5576 sprintf (filename, "/proc/%d/mem", pid);
5577 fd = open (filename, O_RDONLY | O_LARGEFILE);
5578 if (fd == -1)
5579 goto no_proc;
5580
5581 /* If pread64 is available, use it. It's faster if the kernel
5582 supports it (only one syscall), and it's 64-bit safe even on
5583 32-bit platforms (for instance, SPARC debugging a SPARC64
5584 application). */
5585 #ifdef HAVE_PREAD64
5586 bytes = pread64 (fd, myaddr, len, memaddr);
5587 #else
5588 bytes = -1;
5589 if (lseek (fd, memaddr, SEEK_SET) != -1)
5590 bytes = read (fd, myaddr, len);
5591 #endif
5592
5593 close (fd);
5594 if (bytes == len)
5595 return 0;
5596
5597 /* Some data was read, we'll try to get the rest with ptrace. */
5598 if (bytes > 0)
5599 {
5600 memaddr += bytes;
5601 myaddr += bytes;
5602 len -= bytes;
5603 }
5604 }
5605
5606 no_proc:
5607 /* Round starting address down to longword boundary. */
5608 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5609 /* Round ending address up; get number of longwords that makes. */
5610 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5611 / sizeof (PTRACE_XFER_TYPE));
5612 /* Allocate buffer of that many longwords. */
5613 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5614
5615 /* Read all the longwords */
5616 errno = 0;
5617 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5618 {
5619 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5620 about coercing an 8 byte integer to a 4 byte pointer. */
5621 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5622 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5623 (PTRACE_TYPE_ARG4) 0);
5624 if (errno)
5625 break;
5626 }
5627 ret = errno;
5628
5629 /* Copy appropriate bytes out of the buffer. */
5630 if (i > 0)
5631 {
5632 i *= sizeof (PTRACE_XFER_TYPE);
5633 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5634 memcpy (myaddr,
5635 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5636 i < len ? i : len);
5637 }
5638
5639 return ret;
5640 }
5641
5642 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5643 memory at MEMADDR. On failure (cannot write to the inferior)
5644 returns the value of errno. Always succeeds if LEN is zero. */
5645
5646 static int
5647 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5648 {
5649 register int i;
5650 /* Round starting address down to longword boundary. */
5651 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5652 /* Round ending address up; get number of longwords that makes. */
5653 register int count
5654 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5655 / sizeof (PTRACE_XFER_TYPE);
5656
5657 /* Allocate buffer of that many longwords. */
5658 register PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5659
5660 int pid = lwpid_of (current_thread);
5661
5662 if (len == 0)
5663 {
5664 /* Zero length write always succeeds. */
5665 return 0;
5666 }
5667
5668 if (debug_threads)
5669 {
5670 /* Dump up to four bytes. */
5671 char str[4 * 2 + 1];
5672 char *p = str;
5673 int dump = len < 4 ? len : 4;
5674
5675 for (i = 0; i < dump; i++)
5676 {
5677 sprintf (p, "%02x", myaddr[i]);
5678 p += 2;
5679 }
5680 *p = '\0';
5681
5682 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5683 str, (long) memaddr, pid);
5684 }
5685
5686 /* Fill start and end extra bytes of buffer with existing memory data. */
5687
5688 errno = 0;
5689 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5690 about coercing an 8 byte integer to a 4 byte pointer. */
5691 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5692 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5693 (PTRACE_TYPE_ARG4) 0);
5694 if (errno)
5695 return errno;
5696
5697 if (count > 1)
5698 {
5699 errno = 0;
5700 buffer[count - 1]
5701 = ptrace (PTRACE_PEEKTEXT, pid,
5702 /* Coerce to a uintptr_t first to avoid potential gcc warning
5703 about coercing an 8 byte integer to a 4 byte pointer. */
5704 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5705 * sizeof (PTRACE_XFER_TYPE)),
5706 (PTRACE_TYPE_ARG4) 0);
5707 if (errno)
5708 return errno;
5709 }
5710
5711 /* Copy data to be written over corresponding part of buffer. */
5712
5713 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5714 myaddr, len);
5715
5716 /* Write the entire buffer. */
5717
5718 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5719 {
5720 errno = 0;
5721 ptrace (PTRACE_POKETEXT, pid,
5722 /* Coerce to a uintptr_t first to avoid potential gcc warning
5723 about coercing an 8 byte integer to a 4 byte pointer. */
5724 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5725 (PTRACE_TYPE_ARG4) buffer[i]);
5726 if (errno)
5727 return errno;
5728 }
5729
5730 return 0;
5731 }
5732
5733 static void
5734 linux_look_up_symbols (void)
5735 {
5736 #ifdef USE_THREAD_DB
5737 struct process_info *proc = current_process ();
5738
5739 if (proc->priv->thread_db != NULL)
5740 return;
5741
5742 thread_db_init ();
5743 #endif
5744 }
5745
5746 static void
5747 linux_request_interrupt (void)
5748 {
5749 extern unsigned long signal_pid;
5750
5751 /* Send a SIGINT to the process group. This acts just like the user
5752 typed a ^C on the controlling terminal. */
5753 kill (-signal_pid, SIGINT);
5754 }
5755
5756 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5757 to debugger memory starting at MYADDR. */
5758
5759 static int
5760 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5761 {
5762 char filename[PATH_MAX];
5763 int fd, n;
5764 int pid = lwpid_of (current_thread);
5765
5766 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5767
5768 fd = open (filename, O_RDONLY);
5769 if (fd < 0)
5770 return -1;
5771
5772 if (offset != (CORE_ADDR) 0
5773 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5774 n = -1;
5775 else
5776 n = read (fd, myaddr, len);
5777
5778 close (fd);
5779
5780 return n;
5781 }
5782
5783 /* These breakpoint and watchpoint related wrapper functions simply
5784 pass on the function call if the target has registered a
5785 corresponding function. */
5786
5787 static int
5788 linux_supports_z_point_type (char z_type)
5789 {
5790 return (the_low_target.supports_z_point_type != NULL
5791 && the_low_target.supports_z_point_type (z_type));
5792 }
5793
5794 static int
5795 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5796 int size, struct raw_breakpoint *bp)
5797 {
5798 if (type == raw_bkpt_type_sw)
5799 return insert_memory_breakpoint (bp);
5800 else if (the_low_target.insert_point != NULL)
5801 return the_low_target.insert_point (type, addr, size, bp);
5802 else
5803 /* Unsupported (see target.h). */
5804 return 1;
5805 }
5806
5807 static int
5808 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5809 int size, struct raw_breakpoint *bp)
5810 {
5811 if (type == raw_bkpt_type_sw)
5812 return remove_memory_breakpoint (bp);
5813 else if (the_low_target.remove_point != NULL)
5814 return the_low_target.remove_point (type, addr, size, bp);
5815 else
5816 /* Unsupported (see target.h). */
5817 return 1;
5818 }
5819
5820 /* Implement the to_stopped_by_sw_breakpoint target_ops
5821 method. */
5822
5823 static int
5824 linux_stopped_by_sw_breakpoint (void)
5825 {
5826 struct lwp_info *lwp = get_thread_lwp (current_thread);
5827
5828 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5829 }
5830
5831 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5832 method. */
5833
5834 static int
5835 linux_supports_stopped_by_sw_breakpoint (void)
5836 {
5837 return USE_SIGTRAP_SIGINFO;
5838 }
5839
5840 /* Implement the to_stopped_by_hw_breakpoint target_ops
5841 method. */
5842
5843 static int
5844 linux_stopped_by_hw_breakpoint (void)
5845 {
5846 struct lwp_info *lwp = get_thread_lwp (current_thread);
5847
5848 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5849 }
5850
5851 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
5852 method. */
5853
5854 static int
5855 linux_supports_stopped_by_hw_breakpoint (void)
5856 {
5857 return USE_SIGTRAP_SIGINFO;
5858 }
5859
5860 /* Implement the supports_hardware_single_step target_ops method. */
5861
5862 static int
5863 linux_supports_hardware_single_step (void)
5864 {
5865 return can_hardware_single_step ();
5866 }
5867
5868 static int
5869 linux_supports_software_single_step (void)
5870 {
5871 return can_software_single_step ();
5872 }
5873
5874 static int
5875 linux_stopped_by_watchpoint (void)
5876 {
5877 struct lwp_info *lwp = get_thread_lwp (current_thread);
5878
5879 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5880 }
5881
5882 static CORE_ADDR
5883 linux_stopped_data_address (void)
5884 {
5885 struct lwp_info *lwp = get_thread_lwp (current_thread);
5886
5887 return lwp->stopped_data_address;
5888 }
5889
5890 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5891 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5892 && defined(PT_TEXT_END_ADDR)
5893
5894 /* This is only used for targets that define PT_TEXT_ADDR,
5895 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5896 the target has different ways of acquiring this information, like
5897 loadmaps. */
5898
5899 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5900 to tell gdb about. */
5901
5902 static int
5903 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5904 {
5905 unsigned long text, text_end, data;
5906 int pid = lwpid_of (current_thread);
5907
5908 errno = 0;
5909
5910 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5911 (PTRACE_TYPE_ARG4) 0);
5912 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5913 (PTRACE_TYPE_ARG4) 0);
5914 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5915 (PTRACE_TYPE_ARG4) 0);
5916
5917 if (errno == 0)
5918 {
5919 /* Both text and data offsets produced at compile-time (and so
5920 used by gdb) are relative to the beginning of the program,
5921 with the data segment immediately following the text segment.
5922 However, the actual runtime layout in memory may put the data
5923 somewhere else, so when we send gdb a data base-address, we
5924 use the real data base address and subtract the compile-time
5925 data base-address from it (which is just the length of the
5926 text segment). BSS immediately follows data in both
5927 cases. */
5928 *text_p = text;
5929 *data_p = data - (text_end - text);
5930
5931 return 1;
5932 }
5933 return 0;
5934 }
5935 #endif
5936
5937 static int
5938 linux_qxfer_osdata (const char *annex,
5939 unsigned char *readbuf, unsigned const char *writebuf,
5940 CORE_ADDR offset, int len)
5941 {
5942 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5943 }
5944
5945 /* Convert a native/host siginfo object, into/from the siginfo in the
5946 layout of the inferiors' architecture. */
5947
5948 static void
5949 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
5950 {
5951 int done = 0;
5952
5953 if (the_low_target.siginfo_fixup != NULL)
5954 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5955
5956 /* If there was no callback, or the callback didn't do anything,
5957 then just do a straight memcpy. */
5958 if (!done)
5959 {
5960 if (direction == 1)
5961 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5962 else
5963 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5964 }
5965 }
5966
5967 static int
5968 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5969 unsigned const char *writebuf, CORE_ADDR offset, int len)
5970 {
5971 int pid;
5972 siginfo_t siginfo;
5973 gdb_byte inf_siginfo[sizeof (siginfo_t)];
5974
5975 if (current_thread == NULL)
5976 return -1;
5977
5978 pid = lwpid_of (current_thread);
5979
5980 if (debug_threads)
5981 debug_printf ("%s siginfo for lwp %d.\n",
5982 readbuf != NULL ? "Reading" : "Writing",
5983 pid);
5984
5985 if (offset >= sizeof (siginfo))
5986 return -1;
5987
5988 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5989 return -1;
5990
5991 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5992 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5993 inferior with a 64-bit GDBSERVER should look the same as debugging it
5994 with a 32-bit GDBSERVER, we need to convert it. */
5995 siginfo_fixup (&siginfo, inf_siginfo, 0);
5996
5997 if (offset + len > sizeof (siginfo))
5998 len = sizeof (siginfo) - offset;
5999
6000 if (readbuf != NULL)
6001 memcpy (readbuf, inf_siginfo + offset, len);
6002 else
6003 {
6004 memcpy (inf_siginfo + offset, writebuf, len);
6005
6006 /* Convert back to ptrace layout before flushing it out. */
6007 siginfo_fixup (&siginfo, inf_siginfo, 1);
6008
6009 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6010 return -1;
6011 }
6012
6013 return len;
6014 }
6015
6016 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6017 so we notice when children change state; as the handler for the
6018 sigsuspend in my_waitpid. */
6019
6020 static void
6021 sigchld_handler (int signo)
6022 {
6023 int old_errno = errno;
6024
6025 if (debug_threads)
6026 {
6027 do
6028 {
6029 /* fprintf is not async-signal-safe, so call write
6030 directly. */
6031 if (write (2, "sigchld_handler\n",
6032 sizeof ("sigchld_handler\n") - 1) < 0)
6033 break; /* just ignore */
6034 } while (0);
6035 }
6036
6037 if (target_is_async_p ())
6038 async_file_mark (); /* trigger a linux_wait */
6039
6040 errno = old_errno;
6041 }
6042
6043 static int
6044 linux_supports_non_stop (void)
6045 {
6046 return 1;
6047 }
6048
6049 static int
6050 linux_async (int enable)
6051 {
6052 int previous = target_is_async_p ();
6053
6054 if (debug_threads)
6055 debug_printf ("linux_async (%d), previous=%d\n",
6056 enable, previous);
6057
6058 if (previous != enable)
6059 {
6060 sigset_t mask;
6061 sigemptyset (&mask);
6062 sigaddset (&mask, SIGCHLD);
6063
6064 sigprocmask (SIG_BLOCK, &mask, NULL);
6065
6066 if (enable)
6067 {
6068 if (pipe (linux_event_pipe) == -1)
6069 {
6070 linux_event_pipe[0] = -1;
6071 linux_event_pipe[1] = -1;
6072 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6073
6074 warning ("creating event pipe failed.");
6075 return previous;
6076 }
6077
6078 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6079 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6080
6081 /* Register the event loop handler. */
6082 add_file_handler (linux_event_pipe[0],
6083 handle_target_event, NULL);
6084
6085 /* Always trigger a linux_wait. */
6086 async_file_mark ();
6087 }
6088 else
6089 {
6090 delete_file_handler (linux_event_pipe[0]);
6091
6092 close (linux_event_pipe[0]);
6093 close (linux_event_pipe[1]);
6094 linux_event_pipe[0] = -1;
6095 linux_event_pipe[1] = -1;
6096 }
6097
6098 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6099 }
6100
6101 return previous;
6102 }
6103
6104 static int
6105 linux_start_non_stop (int nonstop)
6106 {
6107 /* Register or unregister from event-loop accordingly. */
6108 linux_async (nonstop);
6109
6110 if (target_is_async_p () != (nonstop != 0))
6111 return -1;
6112
6113 return 0;
6114 }
6115
6116 static int
6117 linux_supports_multi_process (void)
6118 {
6119 return 1;
6120 }
6121
6122 /* Check if fork events are supported. */
6123
6124 static int
6125 linux_supports_fork_events (void)
6126 {
6127 return linux_supports_tracefork ();
6128 }
6129
6130 /* Check if vfork events are supported. */
6131
6132 static int
6133 linux_supports_vfork_events (void)
6134 {
6135 return linux_supports_tracefork ();
6136 }
6137
6138 /* Check if exec events are supported. */
6139
6140 static int
6141 linux_supports_exec_events (void)
6142 {
6143 return linux_supports_traceexec ();
6144 }
6145
6146 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
6147 options for the specified lwp. */
6148
6149 static int
6150 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
6151 void *args)
6152 {
6153 struct thread_info *thread = (struct thread_info *) entry;
6154 struct lwp_info *lwp = get_thread_lwp (thread);
6155
6156 if (!lwp->stopped)
6157 {
6158 /* Stop the lwp so we can modify its ptrace options. */
6159 lwp->must_set_ptrace_flags = 1;
6160 linux_stop_lwp (lwp);
6161 }
6162 else
6163 {
6164 /* Already stopped; go ahead and set the ptrace options. */
6165 struct process_info *proc = find_process_pid (pid_of (thread));
6166 int options = linux_low_ptrace_options (proc->attached);
6167
6168 linux_enable_event_reporting (lwpid_of (thread), options);
6169 lwp->must_set_ptrace_flags = 0;
6170 }
6171
6172 return 0;
6173 }
6174
6175 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6176 ptrace flags for all inferiors. This is in case the new GDB connection
6177 doesn't support the same set of events that the previous one did. */
6178
6179 static void
6180 linux_handle_new_gdb_connection (void)
6181 {
6182 pid_t pid;
6183
6184 /* Request that all the lwps reset their ptrace options. */
6185 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6186 }
6187
6188 static int
6189 linux_supports_disable_randomization (void)
6190 {
6191 #ifdef HAVE_PERSONALITY
6192 return 1;
6193 #else
6194 return 0;
6195 #endif
6196 }
6197
6198 static int
6199 linux_supports_agent (void)
6200 {
6201 return 1;
6202 }
6203
6204 static int
6205 linux_supports_range_stepping (void)
6206 {
6207 if (*the_low_target.supports_range_stepping == NULL)
6208 return 0;
6209
6210 return (*the_low_target.supports_range_stepping) ();
6211 }
6212
6213 /* Enumerate spufs IDs for process PID. */
6214 static int
6215 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6216 {
6217 int pos = 0;
6218 int written = 0;
6219 char path[128];
6220 DIR *dir;
6221 struct dirent *entry;
6222
6223 sprintf (path, "/proc/%ld/fd", pid);
6224 dir = opendir (path);
6225 if (!dir)
6226 return -1;
6227
6228 rewinddir (dir);
6229 while ((entry = readdir (dir)) != NULL)
6230 {
6231 struct stat st;
6232 struct statfs stfs;
6233 int fd;
6234
6235 fd = atoi (entry->d_name);
6236 if (!fd)
6237 continue;
6238
6239 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6240 if (stat (path, &st) != 0)
6241 continue;
6242 if (!S_ISDIR (st.st_mode))
6243 continue;
6244
6245 if (statfs (path, &stfs) != 0)
6246 continue;
6247 if (stfs.f_type != SPUFS_MAGIC)
6248 continue;
6249
6250 if (pos >= offset && pos + 4 <= offset + len)
6251 {
6252 *(unsigned int *)(buf + pos - offset) = fd;
6253 written += 4;
6254 }
6255 pos += 4;
6256 }
6257
6258 closedir (dir);
6259 return written;
6260 }
6261
6262 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6263 object type, using the /proc file system. */
6264 static int
6265 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6266 unsigned const char *writebuf,
6267 CORE_ADDR offset, int len)
6268 {
6269 long pid = lwpid_of (current_thread);
6270 char buf[128];
6271 int fd = 0;
6272 int ret = 0;
6273
6274 if (!writebuf && !readbuf)
6275 return -1;
6276
6277 if (!*annex)
6278 {
6279 if (!readbuf)
6280 return -1;
6281 else
6282 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6283 }
6284
6285 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6286 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6287 if (fd <= 0)
6288 return -1;
6289
6290 if (offset != 0
6291 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6292 {
6293 close (fd);
6294 return 0;
6295 }
6296
6297 if (writebuf)
6298 ret = write (fd, writebuf, (size_t) len);
6299 else
6300 ret = read (fd, readbuf, (size_t) len);
6301
6302 close (fd);
6303 return ret;
6304 }
6305
6306 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6307 struct target_loadseg
6308 {
6309 /* Core address to which the segment is mapped. */
6310 Elf32_Addr addr;
6311 /* VMA recorded in the program header. */
6312 Elf32_Addr p_vaddr;
6313 /* Size of this segment in memory. */
6314 Elf32_Word p_memsz;
6315 };
6316
6317 # if defined PT_GETDSBT
6318 struct target_loadmap
6319 {
6320 /* Protocol version number, must be zero. */
6321 Elf32_Word version;
6322 /* Pointer to the DSBT table, its size, and the DSBT index. */
6323 unsigned *dsbt_table;
6324 unsigned dsbt_size, dsbt_index;
6325 /* Number of segments in this map. */
6326 Elf32_Word nsegs;
6327 /* The actual memory map. */
6328 struct target_loadseg segs[/*nsegs*/];
6329 };
6330 # define LINUX_LOADMAP PT_GETDSBT
6331 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6332 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6333 # else
6334 struct target_loadmap
6335 {
6336 /* Protocol version number, must be zero. */
6337 Elf32_Half version;
6338 /* Number of segments in this map. */
6339 Elf32_Half nsegs;
6340 /* The actual memory map. */
6341 struct target_loadseg segs[/*nsegs*/];
6342 };
6343 # define LINUX_LOADMAP PTRACE_GETFDPIC
6344 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6345 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6346 # endif
6347
6348 static int
6349 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6350 unsigned char *myaddr, unsigned int len)
6351 {
6352 int pid = lwpid_of (current_thread);
6353 int addr = -1;
6354 struct target_loadmap *data = NULL;
6355 unsigned int actual_length, copy_length;
6356
6357 if (strcmp (annex, "exec") == 0)
6358 addr = (int) LINUX_LOADMAP_EXEC;
6359 else if (strcmp (annex, "interp") == 0)
6360 addr = (int) LINUX_LOADMAP_INTERP;
6361 else
6362 return -1;
6363
6364 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6365 return -1;
6366
6367 if (data == NULL)
6368 return -1;
6369
6370 actual_length = sizeof (struct target_loadmap)
6371 + sizeof (struct target_loadseg) * data->nsegs;
6372
6373 if (offset < 0 || offset > actual_length)
6374 return -1;
6375
6376 copy_length = actual_length - offset < len ? actual_length - offset : len;
6377 memcpy (myaddr, (char *) data + offset, copy_length);
6378 return copy_length;
6379 }
6380 #else
6381 # define linux_read_loadmap NULL
6382 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6383
6384 static void
6385 linux_process_qsupported (char **features, int count)
6386 {
6387 if (the_low_target.process_qsupported != NULL)
6388 the_low_target.process_qsupported (features, count);
6389 }
6390
6391 static int
6392 linux_supports_catch_syscall (void)
6393 {
6394 return (the_low_target.get_syscall_trapinfo != NULL
6395 && linux_supports_tracesysgood ());
6396 }
6397
6398 static int
6399 linux_get_ipa_tdesc_idx (void)
6400 {
6401 if (the_low_target.get_ipa_tdesc_idx == NULL)
6402 return 0;
6403
6404 return (*the_low_target.get_ipa_tdesc_idx) ();
6405 }
6406
6407 static int
6408 linux_supports_tracepoints (void)
6409 {
6410 if (*the_low_target.supports_tracepoints == NULL)
6411 return 0;
6412
6413 return (*the_low_target.supports_tracepoints) ();
6414 }
6415
6416 static CORE_ADDR
6417 linux_read_pc (struct regcache *regcache)
6418 {
6419 if (the_low_target.get_pc == NULL)
6420 return 0;
6421
6422 return (*the_low_target.get_pc) (regcache);
6423 }
6424
6425 static void
6426 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6427 {
6428 gdb_assert (the_low_target.set_pc != NULL);
6429
6430 (*the_low_target.set_pc) (regcache, pc);
6431 }
6432
6433 static int
6434 linux_thread_stopped (struct thread_info *thread)
6435 {
6436 return get_thread_lwp (thread)->stopped;
6437 }
6438
6439 /* This exposes stop-all-threads functionality to other modules. */
6440
6441 static void
6442 linux_pause_all (int freeze)
6443 {
6444 stop_all_lwps (freeze, NULL);
6445 }
6446
6447 /* This exposes unstop-all-threads functionality to other gdbserver
6448 modules. */
6449
6450 static void
6451 linux_unpause_all (int unfreeze)
6452 {
6453 unstop_all_lwps (unfreeze, NULL);
6454 }
6455
6456 static int
6457 linux_prepare_to_access_memory (void)
6458 {
6459 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6460 running LWP. */
6461 if (non_stop)
6462 linux_pause_all (1);
6463 return 0;
6464 }
6465
6466 static void
6467 linux_done_accessing_memory (void)
6468 {
6469 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6470 running LWP. */
6471 if (non_stop)
6472 linux_unpause_all (1);
6473 }
6474
6475 static int
6476 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6477 CORE_ADDR collector,
6478 CORE_ADDR lockaddr,
6479 ULONGEST orig_size,
6480 CORE_ADDR *jump_entry,
6481 CORE_ADDR *trampoline,
6482 ULONGEST *trampoline_size,
6483 unsigned char *jjump_pad_insn,
6484 ULONGEST *jjump_pad_insn_size,
6485 CORE_ADDR *adjusted_insn_addr,
6486 CORE_ADDR *adjusted_insn_addr_end,
6487 char *err)
6488 {
6489 return (*the_low_target.install_fast_tracepoint_jump_pad)
6490 (tpoint, tpaddr, collector, lockaddr, orig_size,
6491 jump_entry, trampoline, trampoline_size,
6492 jjump_pad_insn, jjump_pad_insn_size,
6493 adjusted_insn_addr, adjusted_insn_addr_end,
6494 err);
6495 }
6496
6497 static struct emit_ops *
6498 linux_emit_ops (void)
6499 {
6500 if (the_low_target.emit_ops != NULL)
6501 return (*the_low_target.emit_ops) ();
6502 else
6503 return NULL;
6504 }
6505
6506 static int
6507 linux_get_min_fast_tracepoint_insn_len (void)
6508 {
6509 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6510 }
6511
6512 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6513
6514 static int
6515 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6516 CORE_ADDR *phdr_memaddr, int *num_phdr)
6517 {
6518 char filename[PATH_MAX];
6519 int fd;
6520 const int auxv_size = is_elf64
6521 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6522 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6523
6524 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6525
6526 fd = open (filename, O_RDONLY);
6527 if (fd < 0)
6528 return 1;
6529
6530 *phdr_memaddr = 0;
6531 *num_phdr = 0;
6532 while (read (fd, buf, auxv_size) == auxv_size
6533 && (*phdr_memaddr == 0 || *num_phdr == 0))
6534 {
6535 if (is_elf64)
6536 {
6537 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6538
6539 switch (aux->a_type)
6540 {
6541 case AT_PHDR:
6542 *phdr_memaddr = aux->a_un.a_val;
6543 break;
6544 case AT_PHNUM:
6545 *num_phdr = aux->a_un.a_val;
6546 break;
6547 }
6548 }
6549 else
6550 {
6551 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6552
6553 switch (aux->a_type)
6554 {
6555 case AT_PHDR:
6556 *phdr_memaddr = aux->a_un.a_val;
6557 break;
6558 case AT_PHNUM:
6559 *num_phdr = aux->a_un.a_val;
6560 break;
6561 }
6562 }
6563 }
6564
6565 close (fd);
6566
6567 if (*phdr_memaddr == 0 || *num_phdr == 0)
6568 {
6569 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6570 "phdr_memaddr = %ld, phdr_num = %d",
6571 (long) *phdr_memaddr, *num_phdr);
6572 return 2;
6573 }
6574
6575 return 0;
6576 }
6577
6578 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6579
6580 static CORE_ADDR
6581 get_dynamic (const int pid, const int is_elf64)
6582 {
6583 CORE_ADDR phdr_memaddr, relocation;
6584 int num_phdr, i;
6585 unsigned char *phdr_buf;
6586 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6587
6588 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6589 return 0;
6590
6591 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6592 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6593
6594 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6595 return 0;
6596
6597 /* Compute relocation: it is expected to be 0 for "regular" executables,
6598 non-zero for PIE ones. */
6599 relocation = -1;
6600 for (i = 0; relocation == -1 && i < num_phdr; i++)
6601 if (is_elf64)
6602 {
6603 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6604
6605 if (p->p_type == PT_PHDR)
6606 relocation = phdr_memaddr - p->p_vaddr;
6607 }
6608 else
6609 {
6610 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6611
6612 if (p->p_type == PT_PHDR)
6613 relocation = phdr_memaddr - p->p_vaddr;
6614 }
6615
6616 if (relocation == -1)
6617 {
6618 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6619 any real world executables, including PIE executables, have always
6620 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6621 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6622 or present DT_DEBUG anyway (fpc binaries are statically linked).
6623
6624 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6625
6626 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6627
6628 return 0;
6629 }
6630
6631 for (i = 0; i < num_phdr; i++)
6632 {
6633 if (is_elf64)
6634 {
6635 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6636
6637 if (p->p_type == PT_DYNAMIC)
6638 return p->p_vaddr + relocation;
6639 }
6640 else
6641 {
6642 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6643
6644 if (p->p_type == PT_DYNAMIC)
6645 return p->p_vaddr + relocation;
6646 }
6647 }
6648
6649 return 0;
6650 }
6651
6652 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6653 can be 0 if the inferior does not yet have the library list initialized.
6654 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6655 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6656
6657 static CORE_ADDR
6658 get_r_debug (const int pid, const int is_elf64)
6659 {
6660 CORE_ADDR dynamic_memaddr;
6661 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6662 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6663 CORE_ADDR map = -1;
6664
6665 dynamic_memaddr = get_dynamic (pid, is_elf64);
6666 if (dynamic_memaddr == 0)
6667 return map;
6668
6669 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6670 {
6671 if (is_elf64)
6672 {
6673 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6674 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6675 union
6676 {
6677 Elf64_Xword map;
6678 unsigned char buf[sizeof (Elf64_Xword)];
6679 }
6680 rld_map;
6681 #endif
6682 #ifdef DT_MIPS_RLD_MAP
6683 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6684 {
6685 if (linux_read_memory (dyn->d_un.d_val,
6686 rld_map.buf, sizeof (rld_map.buf)) == 0)
6687 return rld_map.map;
6688 else
6689 break;
6690 }
6691 #endif /* DT_MIPS_RLD_MAP */
6692 #ifdef DT_MIPS_RLD_MAP_REL
6693 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6694 {
6695 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6696 rld_map.buf, sizeof (rld_map.buf)) == 0)
6697 return rld_map.map;
6698 else
6699 break;
6700 }
6701 #endif /* DT_MIPS_RLD_MAP_REL */
6702
6703 if (dyn->d_tag == DT_DEBUG && map == -1)
6704 map = dyn->d_un.d_val;
6705
6706 if (dyn->d_tag == DT_NULL)
6707 break;
6708 }
6709 else
6710 {
6711 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6712 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6713 union
6714 {
6715 Elf32_Word map;
6716 unsigned char buf[sizeof (Elf32_Word)];
6717 }
6718 rld_map;
6719 #endif
6720 #ifdef DT_MIPS_RLD_MAP
6721 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6722 {
6723 if (linux_read_memory (dyn->d_un.d_val,
6724 rld_map.buf, sizeof (rld_map.buf)) == 0)
6725 return rld_map.map;
6726 else
6727 break;
6728 }
6729 #endif /* DT_MIPS_RLD_MAP */
6730 #ifdef DT_MIPS_RLD_MAP_REL
6731 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6732 {
6733 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6734 rld_map.buf, sizeof (rld_map.buf)) == 0)
6735 return rld_map.map;
6736 else
6737 break;
6738 }
6739 #endif /* DT_MIPS_RLD_MAP_REL */
6740
6741 if (dyn->d_tag == DT_DEBUG && map == -1)
6742 map = dyn->d_un.d_val;
6743
6744 if (dyn->d_tag == DT_NULL)
6745 break;
6746 }
6747
6748 dynamic_memaddr += dyn_size;
6749 }
6750
6751 return map;
6752 }
6753
6754 /* Read one pointer from MEMADDR in the inferior. */
6755
6756 static int
6757 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6758 {
6759 int ret;
6760
6761 /* Go through a union so this works on either big or little endian
6762 hosts, when the inferior's pointer size is smaller than the size
6763 of CORE_ADDR. It is assumed the inferior's endianness is the
6764 same of the superior's. */
6765 union
6766 {
6767 CORE_ADDR core_addr;
6768 unsigned int ui;
6769 unsigned char uc;
6770 } addr;
6771
6772 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6773 if (ret == 0)
6774 {
6775 if (ptr_size == sizeof (CORE_ADDR))
6776 *ptr = addr.core_addr;
6777 else if (ptr_size == sizeof (unsigned int))
6778 *ptr = addr.ui;
6779 else
6780 gdb_assert_not_reached ("unhandled pointer size");
6781 }
6782 return ret;
6783 }
6784
6785 struct link_map_offsets
6786 {
6787 /* Offset and size of r_debug.r_version. */
6788 int r_version_offset;
6789
6790 /* Offset and size of r_debug.r_map. */
6791 int r_map_offset;
6792
6793 /* Offset to l_addr field in struct link_map. */
6794 int l_addr_offset;
6795
6796 /* Offset to l_name field in struct link_map. */
6797 int l_name_offset;
6798
6799 /* Offset to l_ld field in struct link_map. */
6800 int l_ld_offset;
6801
6802 /* Offset to l_next field in struct link_map. */
6803 int l_next_offset;
6804
6805 /* Offset to l_prev field in struct link_map. */
6806 int l_prev_offset;
6807 };
6808
6809 /* Construct qXfer:libraries-svr4:read reply. */
6810
6811 static int
6812 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6813 unsigned const char *writebuf,
6814 CORE_ADDR offset, int len)
6815 {
6816 char *document;
6817 unsigned document_len;
6818 struct process_info_private *const priv = current_process ()->priv;
6819 char filename[PATH_MAX];
6820 int pid, is_elf64;
6821
6822 static const struct link_map_offsets lmo_32bit_offsets =
6823 {
6824 0, /* r_version offset. */
6825 4, /* r_debug.r_map offset. */
6826 0, /* l_addr offset in link_map. */
6827 4, /* l_name offset in link_map. */
6828 8, /* l_ld offset in link_map. */
6829 12, /* l_next offset in link_map. */
6830 16 /* l_prev offset in link_map. */
6831 };
6832
6833 static const struct link_map_offsets lmo_64bit_offsets =
6834 {
6835 0, /* r_version offset. */
6836 8, /* r_debug.r_map offset. */
6837 0, /* l_addr offset in link_map. */
6838 8, /* l_name offset in link_map. */
6839 16, /* l_ld offset in link_map. */
6840 24, /* l_next offset in link_map. */
6841 32 /* l_prev offset in link_map. */
6842 };
6843 const struct link_map_offsets *lmo;
6844 unsigned int machine;
6845 int ptr_size;
6846 CORE_ADDR lm_addr = 0, lm_prev = 0;
6847 int allocated = 1024;
6848 char *p;
6849 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6850 int header_done = 0;
6851
6852 if (writebuf != NULL)
6853 return -2;
6854 if (readbuf == NULL)
6855 return -1;
6856
6857 pid = lwpid_of (current_thread);
6858 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6859 is_elf64 = elf_64_file_p (filename, &machine);
6860 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6861 ptr_size = is_elf64 ? 8 : 4;
6862
6863 while (annex[0] != '\0')
6864 {
6865 const char *sep;
6866 CORE_ADDR *addrp;
6867 int len;
6868
6869 sep = strchr (annex, '=');
6870 if (sep == NULL)
6871 break;
6872
6873 len = sep - annex;
6874 if (len == 5 && startswith (annex, "start"))
6875 addrp = &lm_addr;
6876 else if (len == 4 && startswith (annex, "prev"))
6877 addrp = &lm_prev;
6878 else
6879 {
6880 annex = strchr (sep, ';');
6881 if (annex == NULL)
6882 break;
6883 annex++;
6884 continue;
6885 }
6886
6887 annex = decode_address_to_semicolon (addrp, sep + 1);
6888 }
6889
6890 if (lm_addr == 0)
6891 {
6892 int r_version = 0;
6893
6894 if (priv->r_debug == 0)
6895 priv->r_debug = get_r_debug (pid, is_elf64);
6896
6897 /* We failed to find DT_DEBUG. Such situation will not change
6898 for this inferior - do not retry it. Report it to GDB as
6899 E01, see for the reasons at the GDB solib-svr4.c side. */
6900 if (priv->r_debug == (CORE_ADDR) -1)
6901 return -1;
6902
6903 if (priv->r_debug != 0)
6904 {
6905 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6906 (unsigned char *) &r_version,
6907 sizeof (r_version)) != 0
6908 || r_version != 1)
6909 {
6910 warning ("unexpected r_debug version %d", r_version);
6911 }
6912 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6913 &lm_addr, ptr_size) != 0)
6914 {
6915 warning ("unable to read r_map from 0x%lx",
6916 (long) priv->r_debug + lmo->r_map_offset);
6917 }
6918 }
6919 }
6920
6921 document = (char *) xmalloc (allocated);
6922 strcpy (document, "<library-list-svr4 version=\"1.0\"");
6923 p = document + strlen (document);
6924
6925 while (lm_addr
6926 && read_one_ptr (lm_addr + lmo->l_name_offset,
6927 &l_name, ptr_size) == 0
6928 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6929 &l_addr, ptr_size) == 0
6930 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6931 &l_ld, ptr_size) == 0
6932 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6933 &l_prev, ptr_size) == 0
6934 && read_one_ptr (lm_addr + lmo->l_next_offset,
6935 &l_next, ptr_size) == 0)
6936 {
6937 unsigned char libname[PATH_MAX];
6938
6939 if (lm_prev != l_prev)
6940 {
6941 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6942 (long) lm_prev, (long) l_prev);
6943 break;
6944 }
6945
6946 /* Ignore the first entry even if it has valid name as the first entry
6947 corresponds to the main executable. The first entry should not be
6948 skipped if the dynamic loader was loaded late by a static executable
6949 (see solib-svr4.c parameter ignore_first). But in such case the main
6950 executable does not have PT_DYNAMIC present and this function already
6951 exited above due to failed get_r_debug. */
6952 if (lm_prev == 0)
6953 {
6954 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6955 p = p + strlen (p);
6956 }
6957 else
6958 {
6959 /* Not checking for error because reading may stop before
6960 we've got PATH_MAX worth of characters. */
6961 libname[0] = '\0';
6962 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6963 libname[sizeof (libname) - 1] = '\0';
6964 if (libname[0] != '\0')
6965 {
6966 /* 6x the size for xml_escape_text below. */
6967 size_t len = 6 * strlen ((char *) libname);
6968 char *name;
6969
6970 if (!header_done)
6971 {
6972 /* Terminate `<library-list-svr4'. */
6973 *p++ = '>';
6974 header_done = 1;
6975 }
6976
6977 while (allocated < p - document + len + 200)
6978 {
6979 /* Expand to guarantee sufficient storage. */
6980 uintptr_t document_len = p - document;
6981
6982 document = (char *) xrealloc (document, 2 * allocated);
6983 allocated *= 2;
6984 p = document + document_len;
6985 }
6986
6987 name = xml_escape_text ((char *) libname);
6988 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
6989 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6990 name, (unsigned long) lm_addr,
6991 (unsigned long) l_addr, (unsigned long) l_ld);
6992 free (name);
6993 }
6994 }
6995
6996 lm_prev = lm_addr;
6997 lm_addr = l_next;
6998 }
6999
7000 if (!header_done)
7001 {
7002 /* Empty list; terminate `<library-list-svr4'. */
7003 strcpy (p, "/>");
7004 }
7005 else
7006 strcpy (p, "</library-list-svr4>");
7007
7008 document_len = strlen (document);
7009 if (offset < document_len)
7010 document_len -= offset;
7011 else
7012 document_len = 0;
7013 if (len > document_len)
7014 len = document_len;
7015
7016 memcpy (readbuf, document + offset, len);
7017 xfree (document);
7018
7019 return len;
7020 }
7021
7022 #ifdef HAVE_LINUX_BTRACE
7023
7024 /* See to_disable_btrace target method. */
7025
7026 static int
7027 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7028 {
7029 enum btrace_error err;
7030
7031 err = linux_disable_btrace (tinfo);
7032 return (err == BTRACE_ERR_NONE ? 0 : -1);
7033 }
7034
7035 /* Encode an Intel Processor Trace configuration. */
7036
7037 static void
7038 linux_low_encode_pt_config (struct buffer *buffer,
7039 const struct btrace_data_pt_config *config)
7040 {
7041 buffer_grow_str (buffer, "<pt-config>\n");
7042
7043 switch (config->cpu.vendor)
7044 {
7045 case CV_INTEL:
7046 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7047 "model=\"%u\" stepping=\"%u\"/>\n",
7048 config->cpu.family, config->cpu.model,
7049 config->cpu.stepping);
7050 break;
7051
7052 default:
7053 break;
7054 }
7055
7056 buffer_grow_str (buffer, "</pt-config>\n");
7057 }
7058
7059 /* Encode a raw buffer. */
7060
7061 static void
7062 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7063 unsigned int size)
7064 {
7065 if (size == 0)
7066 return;
7067
7068 /* We use hex encoding - see common/rsp-low.h. */
7069 buffer_grow_str (buffer, "<raw>\n");
7070
7071 while (size-- > 0)
7072 {
7073 char elem[2];
7074
7075 elem[0] = tohex ((*data >> 4) & 0xf);
7076 elem[1] = tohex (*data++ & 0xf);
7077
7078 buffer_grow (buffer, elem, 2);
7079 }
7080
7081 buffer_grow_str (buffer, "</raw>\n");
7082 }
7083
7084 /* See to_read_btrace target method. */
7085
7086 static int
7087 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7088 enum btrace_read_type type)
7089 {
7090 struct btrace_data btrace;
7091 struct btrace_block *block;
7092 enum btrace_error err;
7093 int i;
7094
7095 btrace_data_init (&btrace);
7096
7097 err = linux_read_btrace (&btrace, tinfo, type);
7098 if (err != BTRACE_ERR_NONE)
7099 {
7100 if (err == BTRACE_ERR_OVERFLOW)
7101 buffer_grow_str0 (buffer, "E.Overflow.");
7102 else
7103 buffer_grow_str0 (buffer, "E.Generic Error.");
7104
7105 goto err;
7106 }
7107
7108 switch (btrace.format)
7109 {
7110 case BTRACE_FORMAT_NONE:
7111 buffer_grow_str0 (buffer, "E.No Trace.");
7112 goto err;
7113
7114 case BTRACE_FORMAT_BTS:
7115 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7116 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7117
7118 for (i = 0;
7119 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7120 i++)
7121 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7122 paddress (block->begin), paddress (block->end));
7123
7124 buffer_grow_str0 (buffer, "</btrace>\n");
7125 break;
7126
7127 case BTRACE_FORMAT_PT:
7128 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7129 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7130 buffer_grow_str (buffer, "<pt>\n");
7131
7132 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7133
7134 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7135 btrace.variant.pt.size);
7136
7137 buffer_grow_str (buffer, "</pt>\n");
7138 buffer_grow_str0 (buffer, "</btrace>\n");
7139 break;
7140
7141 default:
7142 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7143 goto err;
7144 }
7145
7146 btrace_data_fini (&btrace);
7147 return 0;
7148
7149 err:
7150 btrace_data_fini (&btrace);
7151 return -1;
7152 }
7153
7154 /* See to_btrace_conf target method. */
7155
7156 static int
7157 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7158 struct buffer *buffer)
7159 {
7160 const struct btrace_config *conf;
7161
7162 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7163 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7164
7165 conf = linux_btrace_conf (tinfo);
7166 if (conf != NULL)
7167 {
7168 switch (conf->format)
7169 {
7170 case BTRACE_FORMAT_NONE:
7171 break;
7172
7173 case BTRACE_FORMAT_BTS:
7174 buffer_xml_printf (buffer, "<bts");
7175 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7176 buffer_xml_printf (buffer, " />\n");
7177 break;
7178
7179 case BTRACE_FORMAT_PT:
7180 buffer_xml_printf (buffer, "<pt");
7181 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7182 buffer_xml_printf (buffer, "/>\n");
7183 break;
7184 }
7185 }
7186
7187 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7188 return 0;
7189 }
7190 #endif /* HAVE_LINUX_BTRACE */
7191
7192 /* See nat/linux-nat.h. */
7193
7194 ptid_t
7195 current_lwp_ptid (void)
7196 {
7197 return ptid_of (current_thread);
7198 }
7199
7200 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7201
7202 static int
7203 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7204 {
7205 if (the_low_target.breakpoint_kind_from_pc != NULL)
7206 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7207 else
7208 return default_breakpoint_kind_from_pc (pcptr);
7209 }
7210
7211 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7212
7213 static const gdb_byte *
7214 linux_sw_breakpoint_from_kind (int kind, int *size)
7215 {
7216 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7217
7218 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7219 }
7220
7221 /* Implementation of the target_ops method
7222 "breakpoint_kind_from_current_state". */
7223
7224 static int
7225 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7226 {
7227 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7228 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7229 else
7230 return linux_breakpoint_kind_from_pc (pcptr);
7231 }
7232
7233 /* Default implementation of linux_target_ops method "set_pc" for
7234 32-bit pc register which is literally named "pc". */
7235
7236 void
7237 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7238 {
7239 uint32_t newpc = pc;
7240
7241 supply_register_by_name (regcache, "pc", &newpc);
7242 }
7243
7244 /* Default implementation of linux_target_ops method "get_pc" for
7245 32-bit pc register which is literally named "pc". */
7246
7247 CORE_ADDR
7248 linux_get_pc_32bit (struct regcache *regcache)
7249 {
7250 uint32_t pc;
7251
7252 collect_register_by_name (regcache, "pc", &pc);
7253 if (debug_threads)
7254 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7255 return pc;
7256 }
7257
7258 /* Default implementation of linux_target_ops method "set_pc" for
7259 64-bit pc register which is literally named "pc". */
7260
7261 void
7262 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7263 {
7264 uint64_t newpc = pc;
7265
7266 supply_register_by_name (regcache, "pc", &newpc);
7267 }
7268
7269 /* Default implementation of linux_target_ops method "get_pc" for
7270 64-bit pc register which is literally named "pc". */
7271
7272 CORE_ADDR
7273 linux_get_pc_64bit (struct regcache *regcache)
7274 {
7275 uint64_t pc;
7276
7277 collect_register_by_name (regcache, "pc", &pc);
7278 if (debug_threads)
7279 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7280 return pc;
7281 }
7282
7283
7284 static struct target_ops linux_target_ops = {
7285 linux_create_inferior,
7286 linux_post_create_inferior,
7287 linux_attach,
7288 linux_kill,
7289 linux_detach,
7290 linux_mourn,
7291 linux_join,
7292 linux_thread_alive,
7293 linux_resume,
7294 linux_wait,
7295 linux_fetch_registers,
7296 linux_store_registers,
7297 linux_prepare_to_access_memory,
7298 linux_done_accessing_memory,
7299 linux_read_memory,
7300 linux_write_memory,
7301 linux_look_up_symbols,
7302 linux_request_interrupt,
7303 linux_read_auxv,
7304 linux_supports_z_point_type,
7305 linux_insert_point,
7306 linux_remove_point,
7307 linux_stopped_by_sw_breakpoint,
7308 linux_supports_stopped_by_sw_breakpoint,
7309 linux_stopped_by_hw_breakpoint,
7310 linux_supports_stopped_by_hw_breakpoint,
7311 linux_supports_hardware_single_step,
7312 linux_stopped_by_watchpoint,
7313 linux_stopped_data_address,
7314 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7315 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7316 && defined(PT_TEXT_END_ADDR)
7317 linux_read_offsets,
7318 #else
7319 NULL,
7320 #endif
7321 #ifdef USE_THREAD_DB
7322 thread_db_get_tls_address,
7323 #else
7324 NULL,
7325 #endif
7326 linux_qxfer_spu,
7327 hostio_last_error_from_errno,
7328 linux_qxfer_osdata,
7329 linux_xfer_siginfo,
7330 linux_supports_non_stop,
7331 linux_async,
7332 linux_start_non_stop,
7333 linux_supports_multi_process,
7334 linux_supports_fork_events,
7335 linux_supports_vfork_events,
7336 linux_supports_exec_events,
7337 linux_handle_new_gdb_connection,
7338 #ifdef USE_THREAD_DB
7339 thread_db_handle_monitor_command,
7340 #else
7341 NULL,
7342 #endif
7343 linux_common_core_of_thread,
7344 linux_read_loadmap,
7345 linux_process_qsupported,
7346 linux_supports_tracepoints,
7347 linux_read_pc,
7348 linux_write_pc,
7349 linux_thread_stopped,
7350 NULL,
7351 linux_pause_all,
7352 linux_unpause_all,
7353 linux_stabilize_threads,
7354 linux_install_fast_tracepoint_jump_pad,
7355 linux_emit_ops,
7356 linux_supports_disable_randomization,
7357 linux_get_min_fast_tracepoint_insn_len,
7358 linux_qxfer_libraries_svr4,
7359 linux_supports_agent,
7360 #ifdef HAVE_LINUX_BTRACE
7361 linux_supports_btrace,
7362 linux_enable_btrace,
7363 linux_low_disable_btrace,
7364 linux_low_read_btrace,
7365 linux_low_btrace_conf,
7366 #else
7367 NULL,
7368 NULL,
7369 NULL,
7370 NULL,
7371 NULL,
7372 #endif
7373 linux_supports_range_stepping,
7374 linux_proc_pid_to_exec_file,
7375 linux_mntns_open_cloexec,
7376 linux_mntns_unlink,
7377 linux_mntns_readlink,
7378 linux_breakpoint_kind_from_pc,
7379 linux_sw_breakpoint_from_kind,
7380 linux_proc_tid_get_name,
7381 linux_breakpoint_kind_from_current_state,
7382 linux_supports_software_single_step,
7383 linux_supports_catch_syscall,
7384 linux_get_ipa_tdesc_idx,
7385 };
7386
7387 #ifdef HAVE_LINUX_REGSETS
7388 void
7389 initialize_regsets_info (struct regsets_info *info)
7390 {
7391 for (info->num_regsets = 0;
7392 info->regsets[info->num_regsets].size >= 0;
7393 info->num_regsets++)
7394 ;
7395 }
7396 #endif
7397
7398 void
7399 initialize_low (void)
7400 {
7401 struct sigaction sigchld_action;
7402
7403 memset (&sigchld_action, 0, sizeof (sigchld_action));
7404 set_target_ops (&linux_target_ops);
7405
7406 linux_ptrace_init_warnings ();
7407
7408 sigchld_action.sa_handler = sigchld_handler;
7409 sigemptyset (&sigchld_action.sa_mask);
7410 sigchld_action.sa_flags = SA_RESTART;
7411 sigaction (SIGCHLD, &sigchld_action, NULL);
7412
7413 initialize_low_arch ();
7414
7415 linux_check_ptrace_features ();
7416 }