]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/target.h
gdb/gdbserver/
[thirdparty/binutils-gdb.git] / gdb / gdbserver / target.h
1 /* Target operations for the remote server for GDB.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 Contributed by MontaVista Software.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #ifndef TARGET_H
23 #define TARGET_H
24
25 struct emit_ops;
26
27 /* Ways to "resume" a thread. */
28
29 enum resume_kind
30 {
31 /* Thread should continue. */
32 resume_continue,
33
34 /* Thread should single-step. */
35 resume_step,
36
37 /* Thread should be stopped. */
38 resume_stop
39 };
40
41 /* This structure describes how to resume a particular thread (or all
42 threads) based on the client's request. If thread is -1, then this
43 entry applies to all threads. These are passed around as an
44 array. */
45
46 struct thread_resume
47 {
48 ptid_t thread;
49
50 /* How to "resume". */
51 enum resume_kind kind;
52
53 /* If non-zero, send this signal when we resume, or to stop the
54 thread. If stopping a thread, and this is 0, the target should
55 stop the thread however it best decides to (e.g., SIGSTOP on
56 linux; SuspendThread on win32). This is a host signal value (not
57 enum target_signal). */
58 int sig;
59 };
60
61 /* Generally, what has the program done? */
62 enum target_waitkind
63 {
64 /* The program has exited. The exit status is in
65 value.integer. */
66 TARGET_WAITKIND_EXITED,
67
68 /* The program has stopped with a signal. Which signal is in
69 value.sig. */
70 TARGET_WAITKIND_STOPPED,
71
72 /* The program has terminated with a signal. Which signal is in
73 value.sig. */
74 TARGET_WAITKIND_SIGNALLED,
75
76 /* The program is letting us know that it dynamically loaded
77 something. */
78 TARGET_WAITKIND_LOADED,
79
80 /* The program has exec'ed a new executable file. The new file's
81 pathname is pointed to by value.execd_pathname. */
82 TARGET_WAITKIND_EXECD,
83
84 /* Nothing of interest to GDB happened, but we stopped anyway. */
85 TARGET_WAITKIND_SPURIOUS,
86
87 /* An event has occurred, but we should wait again. In this case,
88 we want to go back to the event loop and wait there for another
89 event from the inferior. */
90 TARGET_WAITKIND_IGNORE
91 };
92
93 struct target_waitstatus
94 {
95 enum target_waitkind kind;
96
97 /* Forked child pid, execd pathname, exit status or signal number. */
98 union
99 {
100 int integer;
101 enum target_signal sig;
102 ptid_t related_pid;
103 char *execd_pathname;
104 }
105 value;
106 };
107
108 /* Options that can be passed to target_ops->wait. */
109
110 #define TARGET_WNOHANG 1
111
112 struct target_ops
113 {
114 /* Start a new process.
115
116 PROGRAM is a path to the program to execute.
117 ARGS is a standard NULL-terminated array of arguments,
118 to be passed to the inferior as ``argv''.
119
120 Returns the new PID on success, -1 on failure. Registers the new
121 process with the process list. */
122
123 int (*create_inferior) (char *program, char **args);
124
125 /* Attach to a running process.
126
127 PID is the process ID to attach to, specified by the user
128 or a higher layer.
129
130 Returns -1 if attaching is unsupported, 0 on success, and calls
131 error() otherwise. */
132
133 int (*attach) (unsigned long pid);
134
135 /* Kill inferior PID. Return -1 on failure, and 0 on success. */
136
137 int (*kill) (int pid);
138
139 /* Detach from inferior PID. Return -1 on failure, and 0 on
140 success. */
141
142 int (*detach) (int pid);
143
144 /* The inferior process has died. Do what is right. */
145
146 void (*mourn) (struct process_info *proc);
147
148 /* Wait for inferior PID to exit. */
149 void (*join) (int pid);
150
151 /* Return 1 iff the thread with process ID PID is alive. */
152
153 int (*thread_alive) (ptid_t pid);
154
155 /* Resume the inferior process. */
156
157 void (*resume) (struct thread_resume *resume_info, size_t n);
158
159 /* Wait for the inferior process or thread to change state. Store
160 status through argument pointer STATUS.
161
162 PTID = -1 to wait for any pid to do something, PTID(pid,0,0) to
163 wait for any thread of process pid to do something. Return ptid
164 of child, or -1 in case of error; store status through argument
165 pointer STATUS. OPTIONS is a bit set of options defined as
166 TARGET_W* above. If options contains TARGET_WNOHANG and there's
167 no child stop to report, return is
168 null_ptid/TARGET_WAITKIND_IGNORE. */
169
170 ptid_t (*wait) (ptid_t ptid, struct target_waitstatus *status, int options);
171
172 /* Fetch registers from the inferior process.
173
174 If REGNO is -1, fetch all registers; otherwise, fetch at least REGNO. */
175
176 void (*fetch_registers) (struct regcache *regcache, int regno);
177
178 /* Store registers to the inferior process.
179
180 If REGNO is -1, store all registers; otherwise, store at least REGNO. */
181
182 void (*store_registers) (struct regcache *regcache, int regno);
183
184 /* Prepare to read or write memory from the inferior process.
185 Targets use this to do what is necessary to get the state of the
186 inferior such that it is possible to access memory.
187
188 This should generally only be called from client facing routines,
189 such as gdb_read_memory/gdb_write_memory, or the insert_point
190 callbacks.
191
192 Like `read_memory' and `write_memory' below, returns 0 on success
193 and errno on failure. */
194
195 int (*prepare_to_access_memory) (void);
196
197 /* Undo the effects of prepare_to_access_memory. */
198
199 void (*done_accessing_memory) (void);
200
201 /* Read memory from the inferior process. This should generally be
202 called through read_inferior_memory, which handles breakpoint shadowing.
203
204 Read LEN bytes at MEMADDR into a buffer at MYADDR.
205
206 Returns 0 on success and errno on failure. */
207
208 int (*read_memory) (CORE_ADDR memaddr, unsigned char *myaddr, int len);
209
210 /* Write memory to the inferior process. This should generally be
211 called through write_inferior_memory, which handles breakpoint shadowing.
212
213 Write LEN bytes from the buffer at MYADDR to MEMADDR.
214
215 Returns 0 on success and errno on failure. */
216
217 int (*write_memory) (CORE_ADDR memaddr, const unsigned char *myaddr,
218 int len);
219
220 /* Query GDB for the values of any symbols we're interested in.
221 This function is called whenever we receive a "qSymbols::"
222 query, which corresponds to every time more symbols (might)
223 become available. NULL if we aren't interested in any
224 symbols. */
225
226 void (*look_up_symbols) (void);
227
228 /* Send an interrupt request to the inferior process,
229 however is appropriate. */
230
231 void (*request_interrupt) (void);
232
233 /* Read auxiliary vector data from the inferior process.
234
235 Read LEN bytes at OFFSET into a buffer at MYADDR. */
236
237 int (*read_auxv) (CORE_ADDR offset, unsigned char *myaddr,
238 unsigned int len);
239
240 /* Insert and remove a break or watchpoint.
241 Returns 0 on success, -1 on failure and 1 on unsupported.
242 The type is coded as follows:
243 '0' - software-breakpoint
244 '1' - hardware-breakpoint
245 '2' - write watchpoint
246 '3' - read watchpoint
247 '4' - access watchpoint */
248
249 int (*insert_point) (char type, CORE_ADDR addr, int len);
250 int (*remove_point) (char type, CORE_ADDR addr, int len);
251
252 /* Returns 1 if target was stopped due to a watchpoint hit, 0 otherwise. */
253
254 int (*stopped_by_watchpoint) (void);
255
256 /* Returns the address associated with the watchpoint that hit, if any;
257 returns 0 otherwise. */
258
259 CORE_ADDR (*stopped_data_address) (void);
260
261 /* Reports the text, data offsets of the executable. This is
262 needed for uclinux where the executable is relocated during load
263 time. */
264
265 int (*read_offsets) (CORE_ADDR *text, CORE_ADDR *data);
266
267 /* Fetch the address associated with a specific thread local storage
268 area, determined by the specified THREAD, OFFSET, and LOAD_MODULE.
269 Stores it in *ADDRESS and returns zero on success; otherwise returns
270 an error code. A return value of -1 means this system does not
271 support the operation. */
272
273 int (*get_tls_address) (struct thread_info *thread, CORE_ADDR offset,
274 CORE_ADDR load_module, CORE_ADDR *address);
275
276 /* Read/Write from/to spufs using qXfer packets. */
277 int (*qxfer_spu) (const char *annex, unsigned char *readbuf,
278 unsigned const char *writebuf, CORE_ADDR offset, int len);
279
280 /* Fill BUF with an hostio error packet representing the last hostio
281 error. */
282 void (*hostio_last_error) (char *buf);
283
284 /* Read/Write OS data using qXfer packets. */
285 int (*qxfer_osdata) (const char *annex, unsigned char *readbuf,
286 unsigned const char *writebuf, CORE_ADDR offset,
287 int len);
288
289 /* Read/Write extra signal info. */
290 int (*qxfer_siginfo) (const char *annex, unsigned char *readbuf,
291 unsigned const char *writebuf,
292 CORE_ADDR offset, int len);
293
294 int (*supports_non_stop) (void);
295
296 /* Enables async target events. Returns the previous enable
297 state. */
298 int (*async) (int enable);
299
300 /* Switch to non-stop (1) or all-stop (0) mode. Return 0 on
301 success, -1 otherwise. */
302 int (*start_non_stop) (int);
303
304 /* Returns true if the target supports multi-process debugging. */
305 int (*supports_multi_process) (void);
306
307 /* If not NULL, target-specific routine to process monitor command.
308 Returns 1 if handled, or 0 to perform default processing. */
309 int (*handle_monitor_command) (char *);
310
311 /* Returns the core given a thread, or -1 if not known. */
312 int (*core_of_thread) (ptid_t);
313
314 /* Read loadmaps. Read LEN bytes at OFFSET into a buffer at MYADDR. */
315 int (*read_loadmap) (const char *annex, CORE_ADDR offset,
316 unsigned char *myaddr, unsigned int len);
317
318 /* Target specific qSupported support. */
319 void (*process_qsupported) (const char *);
320
321 /* Return 1 if the target supports tracepoints, 0 (or leave the
322 callback NULL) otherwise. */
323 int (*supports_tracepoints) (void);
324
325 /* Read PC from REGCACHE. */
326 CORE_ADDR (*read_pc) (struct regcache *regcache);
327
328 /* Write PC to REGCACHE. */
329 void (*write_pc) (struct regcache *regcache, CORE_ADDR pc);
330
331 /* Return true if THREAD is known to be stopped now. */
332 int (*thread_stopped) (struct thread_info *thread);
333
334 /* Read Thread Information Block address. */
335 int (*get_tib_address) (ptid_t ptid, CORE_ADDR *address);
336
337 /* Pause all threads. If FREEZE, arrange for any resume attempt be
338 be ignored until an unpause_all call unfreezes threads again.
339 There can be nested calls to pause_all, so a freeze counter
340 should be maintained. */
341 void (*pause_all) (int freeze);
342
343 /* Unpause all threads. Threads that hadn't been resumed by the
344 client should be left stopped. Basically a pause/unpause call
345 pair should not end up resuming threads that were stopped before
346 the pause call. */
347 void (*unpause_all) (int unfreeze);
348
349 /* Cancel all pending breakpoints hits in all threads. */
350 void (*cancel_breakpoints) (void);
351
352 /* Stabilize all threads. That is, force them out of jump pads. */
353 void (*stabilize_threads) (void);
354
355 /* Install a fast tracepoint jump pad. TPOINT is the address of the
356 tracepoint internal object as used by the IPA agent. TPADDR is
357 the address of tracepoint. COLLECTOR is address of the function
358 the jump pad redirects to. LOCKADDR is the address of the jump
359 pad lock object. ORIG_SIZE is the size in bytes of the
360 instruction at TPADDR. JUMP_ENTRY points to the address of the
361 jump pad entry, and on return holds the address past the end of
362 the created jump pad. JJUMP_PAD_INSN is a buffer containing a
363 copy of the instruction at TPADDR. ADJUST_INSN_ADDR and
364 ADJUST_INSN_ADDR_END are output parameters that return the
365 address range where the instruction at TPADDR was relocated
366 to. */
367 int (*install_fast_tracepoint_jump_pad) (CORE_ADDR tpoint, CORE_ADDR tpaddr,
368 CORE_ADDR collector,
369 CORE_ADDR lockaddr,
370 ULONGEST orig_size,
371 CORE_ADDR *jump_entry,
372 unsigned char *jjump_pad_insn,
373 ULONGEST *jjump_pad_insn_size,
374 CORE_ADDR *adjusted_insn_addr,
375 CORE_ADDR *adjusted_insn_addr_end);
376
377 /* Return the bytecode operations vector for the current inferior.
378 Returns NULL if bytecode compilation is not supported. */
379 struct emit_ops *(*emit_ops) (void);
380 };
381
382 extern struct target_ops *the_target;
383
384 void set_target_ops (struct target_ops *);
385
386 #define create_inferior(program, args) \
387 (*the_target->create_inferior) (program, args)
388
389 #define myattach(pid) \
390 (*the_target->attach) (pid)
391
392 #define kill_inferior(pid) \
393 (*the_target->kill) (pid)
394
395 #define detach_inferior(pid) \
396 (*the_target->detach) (pid)
397
398 #define mourn_inferior(PROC) \
399 (*the_target->mourn) (PROC)
400
401 #define mythread_alive(pid) \
402 (*the_target->thread_alive) (pid)
403
404 #define fetch_inferior_registers(regcache, regno) \
405 (*the_target->fetch_registers) (regcache, regno)
406
407 #define store_inferior_registers(regcache, regno) \
408 (*the_target->store_registers) (regcache, regno)
409
410 #define join_inferior(pid) \
411 (*the_target->join) (pid)
412
413 #define target_supports_non_stop() \
414 (the_target->supports_non_stop ? (*the_target->supports_non_stop ) () : 0)
415
416 #define target_async(enable) \
417 (the_target->async ? (*the_target->async) (enable) : 0)
418
419 #define target_supports_multi_process() \
420 (the_target->supports_multi_process ? \
421 (*the_target->supports_multi_process) () : 0)
422
423 #define target_process_qsupported(query) \
424 do \
425 { \
426 if (the_target->process_qsupported) \
427 the_target->process_qsupported (query); \
428 } while (0)
429
430 #define target_supports_tracepoints() \
431 (the_target->supports_tracepoints \
432 ? (*the_target->supports_tracepoints) () : 0)
433
434 #define target_supports_fast_tracepoints() \
435 (the_target->install_fast_tracepoint_jump_pad != NULL)
436
437 #define thread_stopped(thread) \
438 (*the_target->thread_stopped) (thread)
439
440 #define pause_all(freeze) \
441 do \
442 { \
443 if (the_target->pause_all) \
444 (*the_target->pause_all) (freeze); \
445 } while (0)
446
447 #define unpause_all(unfreeze) \
448 do \
449 { \
450 if (the_target->unpause_all) \
451 (*the_target->unpause_all) (unfreeze); \
452 } while (0)
453
454 #define cancel_breakpoints() \
455 do \
456 { \
457 if (the_target->cancel_breakpoints) \
458 (*the_target->cancel_breakpoints) (); \
459 } while (0)
460
461 #define stabilize_threads() \
462 do \
463 { \
464 if (the_target->stabilize_threads) \
465 (*the_target->stabilize_threads) (); \
466 } while (0)
467
468 #define install_fast_tracepoint_jump_pad(tpoint, tpaddr, \
469 collector, lockaddr, \
470 orig_size, \
471 jump_entry, jjump_pad_insn, \
472 jjump_pad_insn_size, \
473 adjusted_insn_addr, \
474 adjusted_insn_addr_end) \
475 (*the_target->install_fast_tracepoint_jump_pad) (tpoint, tpaddr, \
476 collector,lockaddr, \
477 orig_size, jump_entry, \
478 jjump_pad_insn, \
479 jjump_pad_insn_size, \
480 adjusted_insn_addr, \
481 adjusted_insn_addr_end)
482
483 #define target_emit_ops() \
484 (the_target->emit_ops ? (*the_target->emit_ops) () : NULL)
485
486 /* Start non-stop mode, returns 0 on success, -1 on failure. */
487
488 int start_non_stop (int nonstop);
489
490 ptid_t mywait (ptid_t ptid, struct target_waitstatus *ourstatus, int options,
491 int connected_wait);
492
493 #define prepare_to_access_memory() \
494 (the_target->prepare_to_access_memory \
495 ? (*the_target->prepare_to_access_memory) () \
496 : 0)
497
498 #define done_accessing_memory() \
499 do \
500 { \
501 if (the_target->done_accessing_memory) \
502 (*the_target->done_accessing_memory) (); \
503 } while (0)
504
505 int read_inferior_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len);
506
507 int write_inferior_memory (CORE_ADDR memaddr, const unsigned char *myaddr,
508 int len);
509
510 void set_desired_inferior (int id);
511
512 const char *target_pid_to_str (ptid_t);
513
514 const char *target_waitstatus_to_string (const struct target_waitstatus *);
515
516 #endif /* TARGET_H */