]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.c
run copyright.sh for 2011.
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65
66 /* Floatformat pairs. */
67 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70 };
71 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74 };
75 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78 };
79 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82 };
83 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86 };
87 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90 };
91 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94 };
95 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98 };
99 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102 };
103 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106 };
107 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110 };
111 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double,
113 &floatformat_ibm_long_double
114 };
115
116
117 int opaque_type_resolution = 1;
118 static void
119 show_opaque_type_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122 {
123 fprintf_filtered (file, _("\
124 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
125 value);
126 }
127
128 int overload_debug = 0;
129 static void
130 show_overload_debug (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
134 value);
135 }
136
137 struct extra
138 {
139 char str[128];
140 int len;
141 }; /* Maximum extension is 128! FIXME */
142
143 static void print_bit_vector (B_TYPE *, int);
144 static void print_arg_types (struct field *, int, int);
145 static void dump_fn_fieldlists (struct type *, int);
146 static void print_cplus_stuff (struct type *, int);
147
148
149 /* Allocate a new OBJFILE-associated type structure and fill it
150 with some defaults. Space for the type structure is allocated
151 on the objfile's objfile_obstack. */
152
153 struct type *
154 alloc_type (struct objfile *objfile)
155 {
156 struct type *type;
157
158 gdb_assert (objfile != NULL);
159
160 /* Alloc the structure and start off with all fields zeroed. */
161 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
162 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
163 struct main_type);
164 OBJSTAT (objfile, n_types++);
165
166 TYPE_OBJFILE_OWNED (type) = 1;
167 TYPE_OWNER (type).objfile = objfile;
168
169 /* Initialize the fields that might not be zero. */
170
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
172 TYPE_VPTR_FIELDNO (type) = -1;
173 TYPE_CHAIN (type) = type; /* Chain back to itself. */
174
175 return type;
176 }
177
178 /* Allocate a new GDBARCH-associated type structure and fill it
179 with some defaults. Space for the type structure is allocated
180 on the heap. */
181
182 struct type *
183 alloc_type_arch (struct gdbarch *gdbarch)
184 {
185 struct type *type;
186
187 gdb_assert (gdbarch != NULL);
188
189 /* Alloc the structure and start off with all fields zeroed. */
190
191 type = XZALLOC (struct type);
192 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
193
194 TYPE_OBJFILE_OWNED (type) = 0;
195 TYPE_OWNER (type).gdbarch = gdbarch;
196
197 /* Initialize the fields that might not be zero. */
198
199 TYPE_CODE (type) = TYPE_CODE_UNDEF;
200 TYPE_VPTR_FIELDNO (type) = -1;
201 TYPE_CHAIN (type) = type; /* Chain back to itself. */
202
203 return type;
204 }
205
206 /* If TYPE is objfile-associated, allocate a new type structure
207 associated with the same objfile. If TYPE is gdbarch-associated,
208 allocate a new type structure associated with the same gdbarch. */
209
210 struct type *
211 alloc_type_copy (const struct type *type)
212 {
213 if (TYPE_OBJFILE_OWNED (type))
214 return alloc_type (TYPE_OWNER (type).objfile);
215 else
216 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
217 }
218
219 /* If TYPE is gdbarch-associated, return that architecture.
220 If TYPE is objfile-associated, return that objfile's architecture. */
221
222 struct gdbarch *
223 get_type_arch (const struct type *type)
224 {
225 if (TYPE_OBJFILE_OWNED (type))
226 return get_objfile_arch (TYPE_OWNER (type).objfile);
227 else
228 return TYPE_OWNER (type).gdbarch;
229 }
230
231
232 /* Alloc a new type instance structure, fill it with some defaults,
233 and point it at OLDTYPE. Allocate the new type instance from the
234 same place as OLDTYPE. */
235
236 static struct type *
237 alloc_type_instance (struct type *oldtype)
238 {
239 struct type *type;
240
241 /* Allocate the structure. */
242
243 if (! TYPE_OBJFILE_OWNED (oldtype))
244 type = XZALLOC (struct type);
245 else
246 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
247 struct type);
248
249 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
250
251 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
252
253 return type;
254 }
255
256 /* Clear all remnants of the previous type at TYPE, in preparation for
257 replacing it with something else. Preserve owner information. */
258 static void
259 smash_type (struct type *type)
260 {
261 int objfile_owned = TYPE_OBJFILE_OWNED (type);
262 union type_owner owner = TYPE_OWNER (type);
263
264 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
265
266 /* Restore owner information. */
267 TYPE_OBJFILE_OWNED (type) = objfile_owned;
268 TYPE_OWNER (type) = owner;
269
270 /* For now, delete the rings. */
271 TYPE_CHAIN (type) = type;
272
273 /* For now, leave the pointer/reference types alone. */
274 }
275
276 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
277 to a pointer to memory where the pointer type should be stored.
278 If *TYPEPTR is zero, update it to point to the pointer type we return.
279 We allocate new memory if needed. */
280
281 struct type *
282 make_pointer_type (struct type *type, struct type **typeptr)
283 {
284 struct type *ntype; /* New type */
285 struct type *chain;
286
287 ntype = TYPE_POINTER_TYPE (type);
288
289 if (ntype)
290 {
291 if (typeptr == 0)
292 return ntype; /* Don't care about alloc,
293 and have new type. */
294 else if (*typeptr == 0)
295 {
296 *typeptr = ntype; /* Tracking alloc, and have new type. */
297 return ntype;
298 }
299 }
300
301 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
302 {
303 ntype = alloc_type_copy (type);
304 if (typeptr)
305 *typeptr = ntype;
306 }
307 else /* We have storage, but need to reset it. */
308 {
309 ntype = *typeptr;
310 chain = TYPE_CHAIN (ntype);
311 smash_type (ntype);
312 TYPE_CHAIN (ntype) = chain;
313 }
314
315 TYPE_TARGET_TYPE (ntype) = type;
316 TYPE_POINTER_TYPE (type) = ntype;
317
318 /* FIXME! Assume the machine has only one representation for
319 pointers! */
320
321 TYPE_LENGTH (ntype)
322 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
323 TYPE_CODE (ntype) = TYPE_CODE_PTR;
324
325 /* Mark pointers as unsigned. The target converts between pointers
326 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
327 gdbarch_address_to_pointer. */
328 TYPE_UNSIGNED (ntype) = 1;
329
330 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
331 TYPE_POINTER_TYPE (type) = ntype;
332
333 /* Update the length of all the other variants of this type. */
334 chain = TYPE_CHAIN (ntype);
335 while (chain != ntype)
336 {
337 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
338 chain = TYPE_CHAIN (chain);
339 }
340
341 return ntype;
342 }
343
344 /* Given a type TYPE, return a type of pointers to that type.
345 May need to construct such a type if this is the first use. */
346
347 struct type *
348 lookup_pointer_type (struct type *type)
349 {
350 return make_pointer_type (type, (struct type **) 0);
351 }
352
353 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
354 points to a pointer to memory where the reference type should be
355 stored. If *TYPEPTR is zero, update it to point to the reference
356 type we return. We allocate new memory if needed. */
357
358 struct type *
359 make_reference_type (struct type *type, struct type **typeptr)
360 {
361 struct type *ntype; /* New type */
362 struct type *chain;
363
364 ntype = TYPE_REFERENCE_TYPE (type);
365
366 if (ntype)
367 {
368 if (typeptr == 0)
369 return ntype; /* Don't care about alloc,
370 and have new type. */
371 else if (*typeptr == 0)
372 {
373 *typeptr = ntype; /* Tracking alloc, and have new type. */
374 return ntype;
375 }
376 }
377
378 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
379 {
380 ntype = alloc_type_copy (type);
381 if (typeptr)
382 *typeptr = ntype;
383 }
384 else /* We have storage, but need to reset it. */
385 {
386 ntype = *typeptr;
387 chain = TYPE_CHAIN (ntype);
388 smash_type (ntype);
389 TYPE_CHAIN (ntype) = chain;
390 }
391
392 TYPE_TARGET_TYPE (ntype) = type;
393 TYPE_REFERENCE_TYPE (type) = ntype;
394
395 /* FIXME! Assume the machine has only one representation for
396 references, and that it matches the (only) representation for
397 pointers! */
398
399 TYPE_LENGTH (ntype) =
400 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
401 TYPE_CODE (ntype) = TYPE_CODE_REF;
402
403 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
404 TYPE_REFERENCE_TYPE (type) = ntype;
405
406 /* Update the length of all the other variants of this type. */
407 chain = TYPE_CHAIN (ntype);
408 while (chain != ntype)
409 {
410 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
411 chain = TYPE_CHAIN (chain);
412 }
413
414 return ntype;
415 }
416
417 /* Same as above, but caller doesn't care about memory allocation
418 details. */
419
420 struct type *
421 lookup_reference_type (struct type *type)
422 {
423 return make_reference_type (type, (struct type **) 0);
424 }
425
426 /* Lookup a function type that returns type TYPE. TYPEPTR, if
427 nonzero, points to a pointer to memory where the function type
428 should be stored. If *TYPEPTR is zero, update it to point to the
429 function type we return. We allocate new memory if needed. */
430
431 struct type *
432 make_function_type (struct type *type, struct type **typeptr)
433 {
434 struct type *ntype; /* New type */
435
436 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
437 {
438 ntype = alloc_type_copy (type);
439 if (typeptr)
440 *typeptr = ntype;
441 }
442 else /* We have storage, but need to reset it. */
443 {
444 ntype = *typeptr;
445 smash_type (ntype);
446 }
447
448 TYPE_TARGET_TYPE (ntype) = type;
449
450 TYPE_LENGTH (ntype) = 1;
451 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
452
453 return ntype;
454 }
455
456
457 /* Given a type TYPE, return a type of functions that return that type.
458 May need to construct such a type if this is the first use. */
459
460 struct type *
461 lookup_function_type (struct type *type)
462 {
463 return make_function_type (type, (struct type **) 0);
464 }
465
466 /* Identify address space identifier by name --
467 return the integer flag defined in gdbtypes.h. */
468 extern int
469 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
470 {
471 int type_flags;
472
473 /* Check for known address space delimiters. */
474 if (!strcmp (space_identifier, "code"))
475 return TYPE_INSTANCE_FLAG_CODE_SPACE;
476 else if (!strcmp (space_identifier, "data"))
477 return TYPE_INSTANCE_FLAG_DATA_SPACE;
478 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
479 && gdbarch_address_class_name_to_type_flags (gdbarch,
480 space_identifier,
481 &type_flags))
482 return type_flags;
483 else
484 error (_("Unknown address space specifier: \"%s\""), space_identifier);
485 }
486
487 /* Identify address space identifier by integer flag as defined in
488 gdbtypes.h -- return the string version of the adress space name. */
489
490 const char *
491 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
492 {
493 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
494 return "code";
495 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
496 return "data";
497 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
498 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
499 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
500 else
501 return NULL;
502 }
503
504 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
505
506 If STORAGE is non-NULL, create the new type instance there.
507 STORAGE must be in the same obstack as TYPE. */
508
509 static struct type *
510 make_qualified_type (struct type *type, int new_flags,
511 struct type *storage)
512 {
513 struct type *ntype;
514
515 ntype = type;
516 do
517 {
518 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
519 return ntype;
520 ntype = TYPE_CHAIN (ntype);
521 }
522 while (ntype != type);
523
524 /* Create a new type instance. */
525 if (storage == NULL)
526 ntype = alloc_type_instance (type);
527 else
528 {
529 /* If STORAGE was provided, it had better be in the same objfile
530 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
531 if one objfile is freed and the other kept, we'd have
532 dangling pointers. */
533 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
534
535 ntype = storage;
536 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
537 TYPE_CHAIN (ntype) = ntype;
538 }
539
540 /* Pointers or references to the original type are not relevant to
541 the new type. */
542 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
543 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
544
545 /* Chain the new qualified type to the old type. */
546 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
547 TYPE_CHAIN (type) = ntype;
548
549 /* Now set the instance flags and return the new type. */
550 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
551
552 /* Set length of new type to that of the original type. */
553 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
554
555 return ntype;
556 }
557
558 /* Make an address-space-delimited variant of a type -- a type that
559 is identical to the one supplied except that it has an address
560 space attribute attached to it (such as "code" or "data").
561
562 The space attributes "code" and "data" are for Harvard
563 architectures. The address space attributes are for architectures
564 which have alternately sized pointers or pointers with alternate
565 representations. */
566
567 struct type *
568 make_type_with_address_space (struct type *type, int space_flag)
569 {
570 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
571 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
572 | TYPE_INSTANCE_FLAG_DATA_SPACE
573 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
574 | space_flag);
575
576 return make_qualified_type (type, new_flags, NULL);
577 }
578
579 /* Make a "c-v" variant of a type -- a type that is identical to the
580 one supplied except that it may have const or volatile attributes
581 CNST is a flag for setting the const attribute
582 VOLTL is a flag for setting the volatile attribute
583 TYPE is the base type whose variant we are creating.
584
585 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
586 storage to hold the new qualified type; *TYPEPTR and TYPE must be
587 in the same objfile. Otherwise, allocate fresh memory for the new
588 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
589 new type we construct. */
590 struct type *
591 make_cv_type (int cnst, int voltl,
592 struct type *type,
593 struct type **typeptr)
594 {
595 struct type *ntype; /* New type */
596
597 int new_flags = (TYPE_INSTANCE_FLAGS (type)
598 & ~(TYPE_INSTANCE_FLAG_CONST
599 | TYPE_INSTANCE_FLAG_VOLATILE));
600
601 if (cnst)
602 new_flags |= TYPE_INSTANCE_FLAG_CONST;
603
604 if (voltl)
605 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
606
607 if (typeptr && *typeptr != NULL)
608 {
609 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
610 a C-V variant chain that threads across objfiles: if one
611 objfile gets freed, then the other has a broken C-V chain.
612
613 This code used to try to copy over the main type from TYPE to
614 *TYPEPTR if they were in different objfiles, but that's
615 wrong, too: TYPE may have a field list or member function
616 lists, which refer to types of their own, etc. etc. The
617 whole shebang would need to be copied over recursively; you
618 can't have inter-objfile pointers. The only thing to do is
619 to leave stub types as stub types, and look them up afresh by
620 name each time you encounter them. */
621 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
622 }
623
624 ntype = make_qualified_type (type, new_flags,
625 typeptr ? *typeptr : NULL);
626
627 if (typeptr != NULL)
628 *typeptr = ntype;
629
630 return ntype;
631 }
632
633 /* Replace the contents of ntype with the type *type. This changes the
634 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
635 the changes are propogated to all types in the TYPE_CHAIN.
636
637 In order to build recursive types, it's inevitable that we'll need
638 to update types in place --- but this sort of indiscriminate
639 smashing is ugly, and needs to be replaced with something more
640 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
641 clear if more steps are needed. */
642 void
643 replace_type (struct type *ntype, struct type *type)
644 {
645 struct type *chain;
646
647 /* These two types had better be in the same objfile. Otherwise,
648 the assignment of one type's main type structure to the other
649 will produce a type with references to objects (names; field
650 lists; etc.) allocated on an objfile other than its own. */
651 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
652
653 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
654
655 /* The type length is not a part of the main type. Update it for
656 each type on the variant chain. */
657 chain = ntype;
658 do
659 {
660 /* Assert that this element of the chain has no address-class bits
661 set in its flags. Such type variants might have type lengths
662 which are supposed to be different from the non-address-class
663 variants. This assertion shouldn't ever be triggered because
664 symbol readers which do construct address-class variants don't
665 call replace_type(). */
666 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
667
668 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
669 chain = TYPE_CHAIN (chain);
670 }
671 while (ntype != chain);
672
673 /* Assert that the two types have equivalent instance qualifiers.
674 This should be true for at least all of our debug readers. */
675 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
676 }
677
678 /* Implement direct support for MEMBER_TYPE in GNU C++.
679 May need to construct such a type if this is the first use.
680 The TYPE is the type of the member. The DOMAIN is the type
681 of the aggregate that the member belongs to. */
682
683 struct type *
684 lookup_memberptr_type (struct type *type, struct type *domain)
685 {
686 struct type *mtype;
687
688 mtype = alloc_type_copy (type);
689 smash_to_memberptr_type (mtype, domain, type);
690 return mtype;
691 }
692
693 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
694
695 struct type *
696 lookup_methodptr_type (struct type *to_type)
697 {
698 struct type *mtype;
699
700 mtype = alloc_type_copy (to_type);
701 smash_to_methodptr_type (mtype, to_type);
702 return mtype;
703 }
704
705 /* Allocate a stub method whose return type is TYPE. This apparently
706 happens for speed of symbol reading, since parsing out the
707 arguments to the method is cpu-intensive, the way we are doing it.
708 So, we will fill in arguments later. This always returns a fresh
709 type. */
710
711 struct type *
712 allocate_stub_method (struct type *type)
713 {
714 struct type *mtype;
715
716 mtype = alloc_type_copy (type);
717 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
718 TYPE_LENGTH (mtype) = 1;
719 TYPE_STUB (mtype) = 1;
720 TYPE_TARGET_TYPE (mtype) = type;
721 /* _DOMAIN_TYPE (mtype) = unknown yet */
722 return mtype;
723 }
724
725 /* Create a range type using either a blank type supplied in
726 RESULT_TYPE, or creating a new type, inheriting the objfile from
727 INDEX_TYPE.
728
729 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
730 to HIGH_BOUND, inclusive.
731
732 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
733 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
734
735 struct type *
736 create_range_type (struct type *result_type, struct type *index_type,
737 LONGEST low_bound, LONGEST high_bound)
738 {
739 if (result_type == NULL)
740 result_type = alloc_type_copy (index_type);
741 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
742 TYPE_TARGET_TYPE (result_type) = index_type;
743 if (TYPE_STUB (index_type))
744 TYPE_TARGET_STUB (result_type) = 1;
745 else
746 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
747 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
748 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
749 TYPE_LOW_BOUND (result_type) = low_bound;
750 TYPE_HIGH_BOUND (result_type) = high_bound;
751
752 if (low_bound >= 0)
753 TYPE_UNSIGNED (result_type) = 1;
754
755 return result_type;
756 }
757
758 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
759 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
760 bounds will fit in LONGEST), or -1 otherwise. */
761
762 int
763 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
764 {
765 CHECK_TYPEDEF (type);
766 switch (TYPE_CODE (type))
767 {
768 case TYPE_CODE_RANGE:
769 *lowp = TYPE_LOW_BOUND (type);
770 *highp = TYPE_HIGH_BOUND (type);
771 return 1;
772 case TYPE_CODE_ENUM:
773 if (TYPE_NFIELDS (type) > 0)
774 {
775 /* The enums may not be sorted by value, so search all
776 entries */
777 int i;
778
779 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
780 for (i = 0; i < TYPE_NFIELDS (type); i++)
781 {
782 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
783 *lowp = TYPE_FIELD_BITPOS (type, i);
784 if (TYPE_FIELD_BITPOS (type, i) > *highp)
785 *highp = TYPE_FIELD_BITPOS (type, i);
786 }
787
788 /* Set unsigned indicator if warranted. */
789 if (*lowp >= 0)
790 {
791 TYPE_UNSIGNED (type) = 1;
792 }
793 }
794 else
795 {
796 *lowp = 0;
797 *highp = -1;
798 }
799 return 0;
800 case TYPE_CODE_BOOL:
801 *lowp = 0;
802 *highp = 1;
803 return 0;
804 case TYPE_CODE_INT:
805 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
806 return -1;
807 if (!TYPE_UNSIGNED (type))
808 {
809 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
810 *highp = -*lowp - 1;
811 return 0;
812 }
813 /* ... fall through for unsigned ints ... */
814 case TYPE_CODE_CHAR:
815 *lowp = 0;
816 /* This round-about calculation is to avoid shifting by
817 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
818 if TYPE_LENGTH (type) == sizeof (LONGEST). */
819 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
820 *highp = (*highp - 1) | *highp;
821 return 0;
822 default:
823 return -1;
824 }
825 }
826
827 /* Assuming TYPE is a simple, non-empty array type, compute its upper
828 and lower bound. Save the low bound into LOW_BOUND if not NULL.
829 Save the high bound into HIGH_BOUND if not NULL.
830
831 Return 1 if the operation was successful. Return zero otherwise,
832 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
833
834 We now simply use get_discrete_bounds call to get the values
835 of the low and high bounds.
836 get_discrete_bounds can return three values:
837 1, meaning that index is a range,
838 0, meaning that index is a discrete type,
839 or -1 for failure. */
840
841 int
842 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
843 {
844 struct type *index = TYPE_INDEX_TYPE (type);
845 LONGEST low = 0;
846 LONGEST high = 0;
847 int res;
848
849 if (index == NULL)
850 return 0;
851
852 res = get_discrete_bounds (index, &low, &high);
853 if (res == -1)
854 return 0;
855
856 /* Check if the array bounds are undefined. */
857 if (res == 1
858 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
859 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
860 return 0;
861
862 if (low_bound)
863 *low_bound = low;
864
865 if (high_bound)
866 *high_bound = high;
867
868 return 1;
869 }
870
871 /* Create an array type using either a blank type supplied in
872 RESULT_TYPE, or creating a new type, inheriting the objfile from
873 RANGE_TYPE.
874
875 Elements will be of type ELEMENT_TYPE, the indices will be of type
876 RANGE_TYPE.
877
878 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
879 sure it is TYPE_CODE_UNDEF before we bash it into an array
880 type? */
881
882 struct type *
883 create_array_type (struct type *result_type,
884 struct type *element_type,
885 struct type *range_type)
886 {
887 LONGEST low_bound, high_bound;
888
889 if (result_type == NULL)
890 result_type = alloc_type_copy (range_type);
891
892 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
893 TYPE_TARGET_TYPE (result_type) = element_type;
894 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
895 low_bound = high_bound = 0;
896 CHECK_TYPEDEF (element_type);
897 /* Be careful when setting the array length. Ada arrays can be
898 empty arrays with the high_bound being smaller than the low_bound.
899 In such cases, the array length should be zero. */
900 if (high_bound < low_bound)
901 TYPE_LENGTH (result_type) = 0;
902 else
903 TYPE_LENGTH (result_type) =
904 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
905 TYPE_NFIELDS (result_type) = 1;
906 TYPE_FIELDS (result_type) =
907 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
908 TYPE_INDEX_TYPE (result_type) = range_type;
909 TYPE_VPTR_FIELDNO (result_type) = -1;
910
911 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
912 if (TYPE_LENGTH (result_type) == 0)
913 TYPE_TARGET_STUB (result_type) = 1;
914
915 return result_type;
916 }
917
918 struct type *
919 lookup_array_range_type (struct type *element_type,
920 int low_bound, int high_bound)
921 {
922 struct gdbarch *gdbarch = get_type_arch (element_type);
923 struct type *index_type = builtin_type (gdbarch)->builtin_int;
924 struct type *range_type
925 = create_range_type (NULL, index_type, low_bound, high_bound);
926
927 return create_array_type (NULL, element_type, range_type);
928 }
929
930 /* Create a string type using either a blank type supplied in
931 RESULT_TYPE, or creating a new type. String types are similar
932 enough to array of char types that we can use create_array_type to
933 build the basic type and then bash it into a string type.
934
935 For fixed length strings, the range type contains 0 as the lower
936 bound and the length of the string minus one as the upper bound.
937
938 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
939 sure it is TYPE_CODE_UNDEF before we bash it into a string
940 type? */
941
942 struct type *
943 create_string_type (struct type *result_type,
944 struct type *string_char_type,
945 struct type *range_type)
946 {
947 result_type = create_array_type (result_type,
948 string_char_type,
949 range_type);
950 TYPE_CODE (result_type) = TYPE_CODE_STRING;
951 return result_type;
952 }
953
954 struct type *
955 lookup_string_range_type (struct type *string_char_type,
956 int low_bound, int high_bound)
957 {
958 struct type *result_type;
959
960 result_type = lookup_array_range_type (string_char_type,
961 low_bound, high_bound);
962 TYPE_CODE (result_type) = TYPE_CODE_STRING;
963 return result_type;
964 }
965
966 struct type *
967 create_set_type (struct type *result_type, struct type *domain_type)
968 {
969 if (result_type == NULL)
970 result_type = alloc_type_copy (domain_type);
971
972 TYPE_CODE (result_type) = TYPE_CODE_SET;
973 TYPE_NFIELDS (result_type) = 1;
974 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
975
976 if (!TYPE_STUB (domain_type))
977 {
978 LONGEST low_bound, high_bound, bit_length;
979
980 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
981 low_bound = high_bound = 0;
982 bit_length = high_bound - low_bound + 1;
983 TYPE_LENGTH (result_type)
984 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
985 if (low_bound >= 0)
986 TYPE_UNSIGNED (result_type) = 1;
987 }
988 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
989
990 return result_type;
991 }
992
993 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
994 and any array types nested inside it. */
995
996 void
997 make_vector_type (struct type *array_type)
998 {
999 struct type *inner_array, *elt_type;
1000 int flags;
1001
1002 /* Find the innermost array type, in case the array is
1003 multi-dimensional. */
1004 inner_array = array_type;
1005 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1006 inner_array = TYPE_TARGET_TYPE (inner_array);
1007
1008 elt_type = TYPE_TARGET_TYPE (inner_array);
1009 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1010 {
1011 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1012 elt_type = make_qualified_type (elt_type, flags, NULL);
1013 TYPE_TARGET_TYPE (inner_array) = elt_type;
1014 }
1015
1016 TYPE_VECTOR (array_type) = 1;
1017 }
1018
1019 struct type *
1020 init_vector_type (struct type *elt_type, int n)
1021 {
1022 struct type *array_type;
1023
1024 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1025 make_vector_type (array_type);
1026 return array_type;
1027 }
1028
1029 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1030 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1031 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1032 TYPE doesn't include the offset (that's the value of the MEMBER
1033 itself), but does include the structure type into which it points
1034 (for some reason).
1035
1036 When "smashing" the type, we preserve the objfile that the old type
1037 pointed to, since we aren't changing where the type is actually
1038 allocated. */
1039
1040 void
1041 smash_to_memberptr_type (struct type *type, struct type *domain,
1042 struct type *to_type)
1043 {
1044 smash_type (type);
1045 TYPE_TARGET_TYPE (type) = to_type;
1046 TYPE_DOMAIN_TYPE (type) = domain;
1047 /* Assume that a data member pointer is the same size as a normal
1048 pointer. */
1049 TYPE_LENGTH (type)
1050 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1051 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1052 }
1053
1054 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1055
1056 When "smashing" the type, we preserve the objfile that the old type
1057 pointed to, since we aren't changing where the type is actually
1058 allocated. */
1059
1060 void
1061 smash_to_methodptr_type (struct type *type, struct type *to_type)
1062 {
1063 smash_type (type);
1064 TYPE_TARGET_TYPE (type) = to_type;
1065 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1066 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1067 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1068 }
1069
1070 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1071 METHOD just means `function that gets an extra "this" argument'.
1072
1073 When "smashing" the type, we preserve the objfile that the old type
1074 pointed to, since we aren't changing where the type is actually
1075 allocated. */
1076
1077 void
1078 smash_to_method_type (struct type *type, struct type *domain,
1079 struct type *to_type, struct field *args,
1080 int nargs, int varargs)
1081 {
1082 smash_type (type);
1083 TYPE_TARGET_TYPE (type) = to_type;
1084 TYPE_DOMAIN_TYPE (type) = domain;
1085 TYPE_FIELDS (type) = args;
1086 TYPE_NFIELDS (type) = nargs;
1087 if (varargs)
1088 TYPE_VARARGS (type) = 1;
1089 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1090 TYPE_CODE (type) = TYPE_CODE_METHOD;
1091 }
1092
1093 /* Return a typename for a struct/union/enum type without "struct ",
1094 "union ", or "enum ". If the type has a NULL name, return NULL. */
1095
1096 char *
1097 type_name_no_tag (const struct type *type)
1098 {
1099 if (TYPE_TAG_NAME (type) != NULL)
1100 return TYPE_TAG_NAME (type);
1101
1102 /* Is there code which expects this to return the name if there is
1103 no tag name? My guess is that this is mainly used for C++ in
1104 cases where the two will always be the same. */
1105 return TYPE_NAME (type);
1106 }
1107
1108 /* Lookup a typedef or primitive type named NAME, visible in lexical
1109 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1110 suitably defined. */
1111
1112 struct type *
1113 lookup_typename (const struct language_defn *language,
1114 struct gdbarch *gdbarch, char *name,
1115 const struct block *block, int noerr)
1116 {
1117 struct symbol *sym;
1118 struct type *tmp;
1119
1120 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1121 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1122 {
1123 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1124 if (tmp)
1125 {
1126 return tmp;
1127 }
1128 else if (!tmp && noerr)
1129 {
1130 return NULL;
1131 }
1132 else
1133 {
1134 error (_("No type named %s."), name);
1135 }
1136 }
1137 return (SYMBOL_TYPE (sym));
1138 }
1139
1140 struct type *
1141 lookup_unsigned_typename (const struct language_defn *language,
1142 struct gdbarch *gdbarch, char *name)
1143 {
1144 char *uns = alloca (strlen (name) + 10);
1145
1146 strcpy (uns, "unsigned ");
1147 strcpy (uns + 9, name);
1148 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1149 }
1150
1151 struct type *
1152 lookup_signed_typename (const struct language_defn *language,
1153 struct gdbarch *gdbarch, char *name)
1154 {
1155 struct type *t;
1156 char *uns = alloca (strlen (name) + 8);
1157
1158 strcpy (uns, "signed ");
1159 strcpy (uns + 7, name);
1160 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1161 /* If we don't find "signed FOO" just try again with plain "FOO". */
1162 if (t != NULL)
1163 return t;
1164 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1165 }
1166
1167 /* Lookup a structure type named "struct NAME",
1168 visible in lexical block BLOCK. */
1169
1170 struct type *
1171 lookup_struct (char *name, struct block *block)
1172 {
1173 struct symbol *sym;
1174
1175 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1176
1177 if (sym == NULL)
1178 {
1179 error (_("No struct type named %s."), name);
1180 }
1181 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1182 {
1183 error (_("This context has class, union or enum %s, not a struct."),
1184 name);
1185 }
1186 return (SYMBOL_TYPE (sym));
1187 }
1188
1189 /* Lookup a union type named "union NAME",
1190 visible in lexical block BLOCK. */
1191
1192 struct type *
1193 lookup_union (char *name, struct block *block)
1194 {
1195 struct symbol *sym;
1196 struct type *t;
1197
1198 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1199
1200 if (sym == NULL)
1201 error (_("No union type named %s."), name);
1202
1203 t = SYMBOL_TYPE (sym);
1204
1205 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1206 return t;
1207
1208 /* If we get here, it's not a union. */
1209 error (_("This context has class, struct or enum %s, not a union."),
1210 name);
1211 }
1212
1213
1214 /* Lookup an enum type named "enum NAME",
1215 visible in lexical block BLOCK. */
1216
1217 struct type *
1218 lookup_enum (char *name, struct block *block)
1219 {
1220 struct symbol *sym;
1221
1222 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1223 if (sym == NULL)
1224 {
1225 error (_("No enum type named %s."), name);
1226 }
1227 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1228 {
1229 error (_("This context has class, struct or union %s, not an enum."),
1230 name);
1231 }
1232 return (SYMBOL_TYPE (sym));
1233 }
1234
1235 /* Lookup a template type named "template NAME<TYPE>",
1236 visible in lexical block BLOCK. */
1237
1238 struct type *
1239 lookup_template_type (char *name, struct type *type,
1240 struct block *block)
1241 {
1242 struct symbol *sym;
1243 char *nam = (char *)
1244 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1245
1246 strcpy (nam, name);
1247 strcat (nam, "<");
1248 strcat (nam, TYPE_NAME (type));
1249 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1250
1251 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1252
1253 if (sym == NULL)
1254 {
1255 error (_("No template type named %s."), name);
1256 }
1257 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1258 {
1259 error (_("This context has class, union or enum %s, not a struct."),
1260 name);
1261 }
1262 return (SYMBOL_TYPE (sym));
1263 }
1264
1265 /* Given a type TYPE, lookup the type of the component of type named
1266 NAME.
1267
1268 TYPE can be either a struct or union, or a pointer or reference to
1269 a struct or union. If it is a pointer or reference, its target
1270 type is automatically used. Thus '.' and '->' are interchangable,
1271 as specified for the definitions of the expression element types
1272 STRUCTOP_STRUCT and STRUCTOP_PTR.
1273
1274 If NOERR is nonzero, return zero if NAME is not suitably defined.
1275 If NAME is the name of a baseclass type, return that type. */
1276
1277 struct type *
1278 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1279 {
1280 int i;
1281 char *typename;
1282
1283 for (;;)
1284 {
1285 CHECK_TYPEDEF (type);
1286 if (TYPE_CODE (type) != TYPE_CODE_PTR
1287 && TYPE_CODE (type) != TYPE_CODE_REF)
1288 break;
1289 type = TYPE_TARGET_TYPE (type);
1290 }
1291
1292 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1293 && TYPE_CODE (type) != TYPE_CODE_UNION)
1294 {
1295 typename = type_to_string (type);
1296 make_cleanup (xfree, typename);
1297 error (_("Type %s is not a structure or union type."), typename);
1298 }
1299
1300 #if 0
1301 /* FIXME: This change put in by Michael seems incorrect for the case
1302 where the structure tag name is the same as the member name.
1303 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1304 foo; } bell;" Disabled by fnf. */
1305 {
1306 char *typename;
1307
1308 typename = type_name_no_tag (type);
1309 if (typename != NULL && strcmp (typename, name) == 0)
1310 return type;
1311 }
1312 #endif
1313
1314 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1315 {
1316 char *t_field_name = TYPE_FIELD_NAME (type, i);
1317
1318 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1319 {
1320 return TYPE_FIELD_TYPE (type, i);
1321 }
1322 else if (!t_field_name || *t_field_name == '\0')
1323 {
1324 struct type *subtype
1325 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1326
1327 if (subtype != NULL)
1328 return subtype;
1329 }
1330 }
1331
1332 /* OK, it's not in this class. Recursively check the baseclasses. */
1333 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1334 {
1335 struct type *t;
1336
1337 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1338 if (t != NULL)
1339 {
1340 return t;
1341 }
1342 }
1343
1344 if (noerr)
1345 {
1346 return NULL;
1347 }
1348
1349 typename = type_to_string (type);
1350 make_cleanup (xfree, typename);
1351 error (_("Type %s has no component named %s."), typename, name);
1352 }
1353
1354 /* Lookup the vptr basetype/fieldno values for TYPE.
1355 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1356 vptr_fieldno. Also, if found and basetype is from the same objfile,
1357 cache the results.
1358 If not found, return -1 and ignore BASETYPEP.
1359 Callers should be aware that in some cases (for example,
1360 the type or one of its baseclasses is a stub type and we are
1361 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1362 this function will not be able to find the
1363 virtual function table pointer, and vptr_fieldno will remain -1 and
1364 vptr_basetype will remain NULL or incomplete. */
1365
1366 int
1367 get_vptr_fieldno (struct type *type, struct type **basetypep)
1368 {
1369 CHECK_TYPEDEF (type);
1370
1371 if (TYPE_VPTR_FIELDNO (type) < 0)
1372 {
1373 int i;
1374
1375 /* We must start at zero in case the first (and only) baseclass
1376 is virtual (and hence we cannot share the table pointer). */
1377 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1378 {
1379 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1380 int fieldno;
1381 struct type *basetype;
1382
1383 fieldno = get_vptr_fieldno (baseclass, &basetype);
1384 if (fieldno >= 0)
1385 {
1386 /* If the type comes from a different objfile we can't cache
1387 it, it may have a different lifetime. PR 2384 */
1388 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1389 {
1390 TYPE_VPTR_FIELDNO (type) = fieldno;
1391 TYPE_VPTR_BASETYPE (type) = basetype;
1392 }
1393 if (basetypep)
1394 *basetypep = basetype;
1395 return fieldno;
1396 }
1397 }
1398
1399 /* Not found. */
1400 return -1;
1401 }
1402 else
1403 {
1404 if (basetypep)
1405 *basetypep = TYPE_VPTR_BASETYPE (type);
1406 return TYPE_VPTR_FIELDNO (type);
1407 }
1408 }
1409
1410 static void
1411 stub_noname_complaint (void)
1412 {
1413 complaint (&symfile_complaints, _("stub type has NULL name"));
1414 }
1415
1416 /* Find the real type of TYPE. This function returns the real type,
1417 after removing all layers of typedefs, and completing opaque or stub
1418 types. Completion changes the TYPE argument, but stripping of
1419 typedefs does not.
1420
1421 Instance flags (e.g. const/volatile) are preserved as typedefs are
1422 stripped. If necessary a new qualified form of the underlying type
1423 is created.
1424
1425 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1426 not been computed and we're either in the middle of reading symbols, or
1427 there was no name for the typedef in the debug info.
1428
1429 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1430 the target type.
1431
1432 If this is a stubbed struct (i.e. declared as struct foo *), see if
1433 we can find a full definition in some other file. If so, copy this
1434 definition, so we can use it in future. There used to be a comment
1435 (but not any code) that if we don't find a full definition, we'd
1436 set a flag so we don't spend time in the future checking the same
1437 type. That would be a mistake, though--we might load in more
1438 symbols which contain a full definition for the type. */
1439
1440 struct type *
1441 check_typedef (struct type *type)
1442 {
1443 struct type *orig_type = type;
1444 /* While we're removing typedefs, we don't want to lose qualifiers.
1445 E.g., const/volatile. */
1446 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1447
1448 gdb_assert (type);
1449
1450 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1451 {
1452 if (!TYPE_TARGET_TYPE (type))
1453 {
1454 char *name;
1455 struct symbol *sym;
1456
1457 /* It is dangerous to call lookup_symbol if we are currently
1458 reading a symtab. Infinite recursion is one danger. */
1459 if (currently_reading_symtab)
1460 return make_qualified_type (type, instance_flags, NULL);
1461
1462 name = type_name_no_tag (type);
1463 /* FIXME: shouldn't we separately check the TYPE_NAME and
1464 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1465 VAR_DOMAIN as appropriate? (this code was written before
1466 TYPE_NAME and TYPE_TAG_NAME were separate). */
1467 if (name == NULL)
1468 {
1469 stub_noname_complaint ();
1470 return make_qualified_type (type, instance_flags, NULL);
1471 }
1472 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1473 if (sym)
1474 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1475 else /* TYPE_CODE_UNDEF */
1476 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1477 }
1478 type = TYPE_TARGET_TYPE (type);
1479
1480 /* Preserve the instance flags as we traverse down the typedef chain.
1481
1482 Handling address spaces/classes is nasty, what do we do if there's a
1483 conflict?
1484 E.g., what if an outer typedef marks the type as class_1 and an inner
1485 typedef marks the type as class_2?
1486 This is the wrong place to do such error checking. We leave it to
1487 the code that created the typedef in the first place to flag the
1488 error. We just pick the outer address space (akin to letting the
1489 outer cast in a chain of casting win), instead of assuming
1490 "it can't happen". */
1491 {
1492 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1493 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1494 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1495 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1496
1497 /* Treat code vs data spaces and address classes separately. */
1498 if ((instance_flags & ALL_SPACES) != 0)
1499 new_instance_flags &= ~ALL_SPACES;
1500 if ((instance_flags & ALL_CLASSES) != 0)
1501 new_instance_flags &= ~ALL_CLASSES;
1502
1503 instance_flags |= new_instance_flags;
1504 }
1505 }
1506
1507 /* If this is a struct/class/union with no fields, then check
1508 whether a full definition exists somewhere else. This is for
1509 systems where a type definition with no fields is issued for such
1510 types, instead of identifying them as stub types in the first
1511 place. */
1512
1513 if (TYPE_IS_OPAQUE (type)
1514 && opaque_type_resolution
1515 && !currently_reading_symtab)
1516 {
1517 char *name = type_name_no_tag (type);
1518 struct type *newtype;
1519
1520 if (name == NULL)
1521 {
1522 stub_noname_complaint ();
1523 return make_qualified_type (type, instance_flags, NULL);
1524 }
1525 newtype = lookup_transparent_type (name);
1526
1527 if (newtype)
1528 {
1529 /* If the resolved type and the stub are in the same
1530 objfile, then replace the stub type with the real deal.
1531 But if they're in separate objfiles, leave the stub
1532 alone; we'll just look up the transparent type every time
1533 we call check_typedef. We can't create pointers between
1534 types allocated to different objfiles, since they may
1535 have different lifetimes. Trying to copy NEWTYPE over to
1536 TYPE's objfile is pointless, too, since you'll have to
1537 move over any other types NEWTYPE refers to, which could
1538 be an unbounded amount of stuff. */
1539 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1540 type = make_qualified_type (newtype,
1541 TYPE_INSTANCE_FLAGS (type),
1542 type);
1543 else
1544 type = newtype;
1545 }
1546 }
1547 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1548 types. */
1549 else if (TYPE_STUB (type) && !currently_reading_symtab)
1550 {
1551 char *name = type_name_no_tag (type);
1552 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1553 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1554 as appropriate? (this code was written before TYPE_NAME and
1555 TYPE_TAG_NAME were separate). */
1556 struct symbol *sym;
1557
1558 if (name == NULL)
1559 {
1560 stub_noname_complaint ();
1561 return make_qualified_type (type, instance_flags, NULL);
1562 }
1563 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1564 if (sym)
1565 {
1566 /* Same as above for opaque types, we can replace the stub
1567 with the complete type only if they are in the same
1568 objfile. */
1569 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1570 type = make_qualified_type (SYMBOL_TYPE (sym),
1571 TYPE_INSTANCE_FLAGS (type),
1572 type);
1573 else
1574 type = SYMBOL_TYPE (sym);
1575 }
1576 }
1577
1578 if (TYPE_TARGET_STUB (type))
1579 {
1580 struct type *range_type;
1581 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1582
1583 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1584 {
1585 /* Nothing we can do. */
1586 }
1587 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1588 && TYPE_NFIELDS (type) == 1
1589 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1590 == TYPE_CODE_RANGE))
1591 {
1592 /* Now recompute the length of the array type, based on its
1593 number of elements and the target type's length.
1594 Watch out for Ada null Ada arrays where the high bound
1595 is smaller than the low bound. */
1596 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1597 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1598 ULONGEST len;
1599
1600 if (high_bound < low_bound)
1601 len = 0;
1602 else
1603 {
1604 /* For now, we conservatively take the array length to be 0
1605 if its length exceeds UINT_MAX. The code below assumes
1606 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1607 which is technically not guaranteed by C, but is usually true
1608 (because it would be true if x were unsigned with its
1609 high-order bit on). It uses the fact that
1610 high_bound-low_bound is always representable in
1611 ULONGEST and that if high_bound-low_bound+1 overflows,
1612 it overflows to 0. We must change these tests if we
1613 decide to increase the representation of TYPE_LENGTH
1614 from unsigned int to ULONGEST. */
1615 ULONGEST ulow = low_bound, uhigh = high_bound;
1616 ULONGEST tlen = TYPE_LENGTH (target_type);
1617
1618 len = tlen * (uhigh - ulow + 1);
1619 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1620 || len > UINT_MAX)
1621 len = 0;
1622 }
1623 TYPE_LENGTH (type) = len;
1624 TYPE_TARGET_STUB (type) = 0;
1625 }
1626 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1627 {
1628 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1629 TYPE_TARGET_STUB (type) = 0;
1630 }
1631 }
1632
1633 type = make_qualified_type (type, instance_flags, NULL);
1634
1635 /* Cache TYPE_LENGTH for future use. */
1636 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1637
1638 return type;
1639 }
1640
1641 /* Parse a type expression in the string [P..P+LENGTH). If an error
1642 occurs, silently return a void type. */
1643
1644 static struct type *
1645 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1646 {
1647 struct ui_file *saved_gdb_stderr;
1648 struct type *type;
1649
1650 /* Suppress error messages. */
1651 saved_gdb_stderr = gdb_stderr;
1652 gdb_stderr = ui_file_new ();
1653
1654 /* Call parse_and_eval_type() without fear of longjmp()s. */
1655 if (!gdb_parse_and_eval_type (p, length, &type))
1656 type = builtin_type (gdbarch)->builtin_void;
1657
1658 /* Stop suppressing error messages. */
1659 ui_file_delete (gdb_stderr);
1660 gdb_stderr = saved_gdb_stderr;
1661
1662 return type;
1663 }
1664
1665 /* Ugly hack to convert method stubs into method types.
1666
1667 He ain't kiddin'. This demangles the name of the method into a
1668 string including argument types, parses out each argument type,
1669 generates a string casting a zero to that type, evaluates the
1670 string, and stuffs the resulting type into an argtype vector!!!
1671 Then it knows the type of the whole function (including argument
1672 types for overloading), which info used to be in the stab's but was
1673 removed to hack back the space required for them. */
1674
1675 static void
1676 check_stub_method (struct type *type, int method_id, int signature_id)
1677 {
1678 struct gdbarch *gdbarch = get_type_arch (type);
1679 struct fn_field *f;
1680 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1681 char *demangled_name = cplus_demangle (mangled_name,
1682 DMGL_PARAMS | DMGL_ANSI);
1683 char *argtypetext, *p;
1684 int depth = 0, argcount = 1;
1685 struct field *argtypes;
1686 struct type *mtype;
1687
1688 /* Make sure we got back a function string that we can use. */
1689 if (demangled_name)
1690 p = strchr (demangled_name, '(');
1691 else
1692 p = NULL;
1693
1694 if (demangled_name == NULL || p == NULL)
1695 error (_("Internal: Cannot demangle mangled name `%s'."),
1696 mangled_name);
1697
1698 /* Now, read in the parameters that define this type. */
1699 p += 1;
1700 argtypetext = p;
1701 while (*p)
1702 {
1703 if (*p == '(' || *p == '<')
1704 {
1705 depth += 1;
1706 }
1707 else if (*p == ')' || *p == '>')
1708 {
1709 depth -= 1;
1710 }
1711 else if (*p == ',' && depth == 0)
1712 {
1713 argcount += 1;
1714 }
1715
1716 p += 1;
1717 }
1718
1719 /* If we read one argument and it was ``void'', don't count it. */
1720 if (strncmp (argtypetext, "(void)", 6) == 0)
1721 argcount -= 1;
1722
1723 /* We need one extra slot, for the THIS pointer. */
1724
1725 argtypes = (struct field *)
1726 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1727 p = argtypetext;
1728
1729 /* Add THIS pointer for non-static methods. */
1730 f = TYPE_FN_FIELDLIST1 (type, method_id);
1731 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1732 argcount = 0;
1733 else
1734 {
1735 argtypes[0].type = lookup_pointer_type (type);
1736 argcount = 1;
1737 }
1738
1739 if (*p != ')') /* () means no args, skip while */
1740 {
1741 depth = 0;
1742 while (*p)
1743 {
1744 if (depth <= 0 && (*p == ',' || *p == ')'))
1745 {
1746 /* Avoid parsing of ellipsis, they will be handled below.
1747 Also avoid ``void'' as above. */
1748 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1749 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1750 {
1751 argtypes[argcount].type =
1752 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1753 argcount += 1;
1754 }
1755 argtypetext = p + 1;
1756 }
1757
1758 if (*p == '(' || *p == '<')
1759 {
1760 depth += 1;
1761 }
1762 else if (*p == ')' || *p == '>')
1763 {
1764 depth -= 1;
1765 }
1766
1767 p += 1;
1768 }
1769 }
1770
1771 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1772
1773 /* Now update the old "stub" type into a real type. */
1774 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1775 TYPE_DOMAIN_TYPE (mtype) = type;
1776 TYPE_FIELDS (mtype) = argtypes;
1777 TYPE_NFIELDS (mtype) = argcount;
1778 TYPE_STUB (mtype) = 0;
1779 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1780 if (p[-2] == '.')
1781 TYPE_VARARGS (mtype) = 1;
1782
1783 xfree (demangled_name);
1784 }
1785
1786 /* This is the external interface to check_stub_method, above. This
1787 function unstubs all of the signatures for TYPE's METHOD_ID method
1788 name. After calling this function TYPE_FN_FIELD_STUB will be
1789 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1790 correct.
1791
1792 This function unfortunately can not die until stabs do. */
1793
1794 void
1795 check_stub_method_group (struct type *type, int method_id)
1796 {
1797 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1798 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1799 int j, found_stub = 0;
1800
1801 for (j = 0; j < len; j++)
1802 if (TYPE_FN_FIELD_STUB (f, j))
1803 {
1804 found_stub = 1;
1805 check_stub_method (type, method_id, j);
1806 }
1807
1808 /* GNU v3 methods with incorrect names were corrected when we read
1809 in type information, because it was cheaper to do it then. The
1810 only GNU v2 methods with incorrect method names are operators and
1811 destructors; destructors were also corrected when we read in type
1812 information.
1813
1814 Therefore the only thing we need to handle here are v2 operator
1815 names. */
1816 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1817 {
1818 int ret;
1819 char dem_opname[256];
1820
1821 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1822 method_id),
1823 dem_opname, DMGL_ANSI);
1824 if (!ret)
1825 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1826 method_id),
1827 dem_opname, 0);
1828 if (ret)
1829 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1830 }
1831 }
1832
1833 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1834 const struct cplus_struct_type cplus_struct_default = { };
1835
1836 void
1837 allocate_cplus_struct_type (struct type *type)
1838 {
1839 if (HAVE_CPLUS_STRUCT (type))
1840 /* Structure was already allocated. Nothing more to do. */
1841 return;
1842
1843 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1844 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1845 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1846 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1847 }
1848
1849 const struct gnat_aux_type gnat_aux_default =
1850 { NULL };
1851
1852 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1853 and allocate the associated gnat-specific data. The gnat-specific
1854 data is also initialized to gnat_aux_default. */
1855 void
1856 allocate_gnat_aux_type (struct type *type)
1857 {
1858 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1859 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1860 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1861 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1862 }
1863
1864
1865 /* Helper function to initialize the standard scalar types.
1866
1867 If NAME is non-NULL, then we make a copy of the string pointed
1868 to by name in the objfile_obstack for that objfile, and initialize
1869 the type name to that copy. There are places (mipsread.c in particular),
1870 where init_type is called with a NULL value for NAME). */
1871
1872 struct type *
1873 init_type (enum type_code code, int length, int flags,
1874 char *name, struct objfile *objfile)
1875 {
1876 struct type *type;
1877
1878 type = alloc_type (objfile);
1879 TYPE_CODE (type) = code;
1880 TYPE_LENGTH (type) = length;
1881
1882 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1883 if (flags & TYPE_FLAG_UNSIGNED)
1884 TYPE_UNSIGNED (type) = 1;
1885 if (flags & TYPE_FLAG_NOSIGN)
1886 TYPE_NOSIGN (type) = 1;
1887 if (flags & TYPE_FLAG_STUB)
1888 TYPE_STUB (type) = 1;
1889 if (flags & TYPE_FLAG_TARGET_STUB)
1890 TYPE_TARGET_STUB (type) = 1;
1891 if (flags & TYPE_FLAG_STATIC)
1892 TYPE_STATIC (type) = 1;
1893 if (flags & TYPE_FLAG_PROTOTYPED)
1894 TYPE_PROTOTYPED (type) = 1;
1895 if (flags & TYPE_FLAG_INCOMPLETE)
1896 TYPE_INCOMPLETE (type) = 1;
1897 if (flags & TYPE_FLAG_VARARGS)
1898 TYPE_VARARGS (type) = 1;
1899 if (flags & TYPE_FLAG_VECTOR)
1900 TYPE_VECTOR (type) = 1;
1901 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1902 TYPE_STUB_SUPPORTED (type) = 1;
1903 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1904 TYPE_FIXED_INSTANCE (type) = 1;
1905
1906 if (name)
1907 TYPE_NAME (type) = obsavestring (name, strlen (name),
1908 &objfile->objfile_obstack);
1909
1910 /* C++ fancies. */
1911
1912 if (name && strcmp (name, "char") == 0)
1913 TYPE_NOSIGN (type) = 1;
1914
1915 switch (code)
1916 {
1917 case TYPE_CODE_STRUCT:
1918 case TYPE_CODE_UNION:
1919 case TYPE_CODE_NAMESPACE:
1920 INIT_CPLUS_SPECIFIC (type);
1921 break;
1922 case TYPE_CODE_FLT:
1923 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1924 break;
1925 case TYPE_CODE_FUNC:
1926 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1927 break;
1928 }
1929 return type;
1930 }
1931
1932 int
1933 can_dereference (struct type *t)
1934 {
1935 /* FIXME: Should we return true for references as well as
1936 pointers? */
1937 CHECK_TYPEDEF (t);
1938 return
1939 (t != NULL
1940 && TYPE_CODE (t) == TYPE_CODE_PTR
1941 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1942 }
1943
1944 int
1945 is_integral_type (struct type *t)
1946 {
1947 CHECK_TYPEDEF (t);
1948 return
1949 ((t != NULL)
1950 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1951 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1952 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1953 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1954 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1955 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1956 }
1957
1958 /* A helper function which returns true if types A and B represent the
1959 "same" class type. This is true if the types have the same main
1960 type, or the same name. */
1961
1962 int
1963 class_types_same_p (const struct type *a, const struct type *b)
1964 {
1965 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
1966 || (TYPE_NAME (a) && TYPE_NAME (b)
1967 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
1968 }
1969
1970 /* If BASE is an ancestor of DCLASS return the distance between them.
1971 otherwise return -1;
1972 eg:
1973
1974 class A {};
1975 class B: public A {};
1976 class C: public B {};
1977 class D: C {};
1978
1979 distance_to_ancestor (A, A, 0) = 0
1980 distance_to_ancestor (A, B, 0) = 1
1981 distance_to_ancestor (A, C, 0) = 2
1982 distance_to_ancestor (A, D, 0) = 3
1983
1984 If PUBLIC is 1 then only public ancestors are considered,
1985 and the function returns the distance only if BASE is a public ancestor
1986 of DCLASS.
1987 Eg:
1988
1989 distance_to_ancestor (A, D, 1) = -1 */
1990
1991 static int
1992 distance_to_ancestor (struct type *base, struct type *dclass, int public)
1993 {
1994 int i;
1995 int d;
1996
1997 CHECK_TYPEDEF (base);
1998 CHECK_TYPEDEF (dclass);
1999
2000 if (class_types_same_p (base, dclass))
2001 return 0;
2002
2003 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2004 {
2005 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2006 continue;
2007
2008 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2009 if (d >= 0)
2010 return 1 + d;
2011 }
2012
2013 return -1;
2014 }
2015
2016 /* Check whether BASE is an ancestor or base class or DCLASS
2017 Return 1 if so, and 0 if not.
2018 Note: If BASE and DCLASS are of the same type, this function
2019 will return 1. So for some class A, is_ancestor (A, A) will
2020 return 1. */
2021
2022 int
2023 is_ancestor (struct type *base, struct type *dclass)
2024 {
2025 return distance_to_ancestor (base, dclass, 0) >= 0;
2026 }
2027
2028 /* Like is_ancestor, but only returns true when BASE is a public
2029 ancestor of DCLASS. */
2030
2031 int
2032 is_public_ancestor (struct type *base, struct type *dclass)
2033 {
2034 return distance_to_ancestor (base, dclass, 1) >= 0;
2035 }
2036
2037 /* A helper function for is_unique_ancestor. */
2038
2039 static int
2040 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2041 int *offset,
2042 const bfd_byte *contents, CORE_ADDR address)
2043 {
2044 int i, count = 0;
2045
2046 CHECK_TYPEDEF (base);
2047 CHECK_TYPEDEF (dclass);
2048
2049 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2050 {
2051 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i));
2052 int this_offset = baseclass_offset (dclass, i, contents, address);
2053
2054 if (this_offset == -1)
2055 error (_("virtual baseclass botch"));
2056
2057 if (class_types_same_p (base, iter))
2058 {
2059 /* If this is the first subclass, set *OFFSET and set count
2060 to 1. Otherwise, if this is at the same offset as
2061 previous instances, do nothing. Otherwise, increment
2062 count. */
2063 if (*offset == -1)
2064 {
2065 *offset = this_offset;
2066 count = 1;
2067 }
2068 else if (this_offset == *offset)
2069 {
2070 /* Nothing. */
2071 }
2072 else
2073 ++count;
2074 }
2075 else
2076 count += is_unique_ancestor_worker (base, iter, offset,
2077 contents + this_offset,
2078 address + this_offset);
2079 }
2080
2081 return count;
2082 }
2083
2084 /* Like is_ancestor, but only returns true if BASE is a unique base
2085 class of the type of VAL. */
2086
2087 int
2088 is_unique_ancestor (struct type *base, struct value *val)
2089 {
2090 int offset = -1;
2091
2092 return is_unique_ancestor_worker (base, value_type (val), &offset,
2093 value_contents (val),
2094 value_address (val)) == 1;
2095 }
2096
2097 \f
2098
2099 /* Return the sum of the rank of A with the rank of B. */
2100
2101 struct rank
2102 sum_ranks (struct rank a, struct rank b)
2103 {
2104 struct rank c;
2105 c.rank = a.rank + b.rank;
2106 c.subrank = a.subrank + b.subrank;
2107 return c;
2108 }
2109
2110 /* Compare rank A and B and return:
2111 0 if a = b
2112 1 if a is better than b
2113 -1 if b is better than a. */
2114
2115 int
2116 compare_ranks (struct rank a, struct rank b)
2117 {
2118 if (a.rank == b.rank)
2119 {
2120 if (a.subrank == b.subrank)
2121 return 0;
2122 if (a.subrank < b.subrank)
2123 return 1;
2124 if (a.subrank > b.subrank)
2125 return -1;
2126 }
2127
2128 if (a.rank < b.rank)
2129 return 1;
2130
2131 /* a.rank > b.rank */
2132 return -1;
2133 }
2134
2135 /* Functions for overload resolution begin here */
2136
2137 /* Compare two badness vectors A and B and return the result.
2138 0 => A and B are identical
2139 1 => A and B are incomparable
2140 2 => A is better than B
2141 3 => A is worse than B */
2142
2143 int
2144 compare_badness (struct badness_vector *a, struct badness_vector *b)
2145 {
2146 int i;
2147 int tmp;
2148 short found_pos = 0; /* any positives in c? */
2149 short found_neg = 0; /* any negatives in c? */
2150
2151 /* differing lengths => incomparable */
2152 if (a->length != b->length)
2153 return 1;
2154
2155 /* Subtract b from a */
2156 for (i = 0; i < a->length; i++)
2157 {
2158 tmp = compare_ranks (b->rank[i], a->rank[i]);
2159 if (tmp > 0)
2160 found_pos = 1;
2161 else if (tmp < 0)
2162 found_neg = 1;
2163 }
2164
2165 if (found_pos)
2166 {
2167 if (found_neg)
2168 return 1; /* incomparable */
2169 else
2170 return 3; /* A > B */
2171 }
2172 else
2173 /* no positives */
2174 {
2175 if (found_neg)
2176 return 2; /* A < B */
2177 else
2178 return 0; /* A == B */
2179 }
2180 }
2181
2182 /* Rank a function by comparing its parameter types (PARMS, length
2183 NPARMS), to the types of an argument list (ARGS, length NARGS).
2184 Return a pointer to a badness vector. This has NARGS + 1
2185 entries. */
2186
2187 struct badness_vector *
2188 rank_function (struct type **parms, int nparms,
2189 struct type **args, int nargs)
2190 {
2191 int i;
2192 struct badness_vector *bv;
2193 int min_len = nparms < nargs ? nparms : nargs;
2194
2195 bv = xmalloc (sizeof (struct badness_vector));
2196 bv->length = nargs + 1; /* add 1 for the length-match rank */
2197 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2198
2199 /* First compare the lengths of the supplied lists.
2200 If there is a mismatch, set it to a high value. */
2201
2202 /* pai/1997-06-03 FIXME: when we have debug info about default
2203 arguments and ellipsis parameter lists, we should consider those
2204 and rank the length-match more finely. */
2205
2206 LENGTH_MATCH (bv) = (nargs != nparms)
2207 ? LENGTH_MISMATCH_BADNESS
2208 : EXACT_MATCH_BADNESS;
2209
2210 /* Now rank all the parameters of the candidate function */
2211 for (i = 1; i <= min_len; i++)
2212 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2213
2214 /* If more arguments than parameters, add dummy entries */
2215 for (i = min_len + 1; i <= nargs; i++)
2216 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2217
2218 return bv;
2219 }
2220
2221 /* Compare the names of two integer types, assuming that any sign
2222 qualifiers have been checked already. We do it this way because
2223 there may be an "int" in the name of one of the types. */
2224
2225 static int
2226 integer_types_same_name_p (const char *first, const char *second)
2227 {
2228 int first_p, second_p;
2229
2230 /* If both are shorts, return 1; if neither is a short, keep
2231 checking. */
2232 first_p = (strstr (first, "short") != NULL);
2233 second_p = (strstr (second, "short") != NULL);
2234 if (first_p && second_p)
2235 return 1;
2236 if (first_p || second_p)
2237 return 0;
2238
2239 /* Likewise for long. */
2240 first_p = (strstr (first, "long") != NULL);
2241 second_p = (strstr (second, "long") != NULL);
2242 if (first_p && second_p)
2243 return 1;
2244 if (first_p || second_p)
2245 return 0;
2246
2247 /* Likewise for char. */
2248 first_p = (strstr (first, "char") != NULL);
2249 second_p = (strstr (second, "char") != NULL);
2250 if (first_p && second_p)
2251 return 1;
2252 if (first_p || second_p)
2253 return 0;
2254
2255 /* They must both be ints. */
2256 return 1;
2257 }
2258
2259 /* Compares type A to type B returns 1 if the represent the same type
2260 0 otherwise. */
2261
2262 static int
2263 types_equal (struct type *a, struct type *b)
2264 {
2265 /* Identical type pointers. */
2266 /* However, this still doesn't catch all cases of same type for b
2267 and a. The reason is that builtin types are different from
2268 the same ones constructed from the object. */
2269 if (a == b)
2270 return 1;
2271
2272 /* Resolve typedefs */
2273 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2274 a = check_typedef (a);
2275 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2276 b = check_typedef (b);
2277
2278 /* If after resolving typedefs a and b are not of the same type
2279 code then they are not equal. */
2280 if (TYPE_CODE (a) != TYPE_CODE (b))
2281 return 0;
2282
2283 /* If a and b are both pointers types or both reference types then
2284 they are equal of the same type iff the objects they refer to are
2285 of the same type. */
2286 if (TYPE_CODE (a) == TYPE_CODE_PTR
2287 || TYPE_CODE (a) == TYPE_CODE_REF)
2288 return types_equal (TYPE_TARGET_TYPE (a),
2289 TYPE_TARGET_TYPE (b));
2290
2291 /*
2292 Well, damnit, if the names are exactly the same, I'll say they
2293 are exactly the same. This happens when we generate method
2294 stubs. The types won't point to the same address, but they
2295 really are the same.
2296 */
2297
2298 if (TYPE_NAME (a) && TYPE_NAME (b)
2299 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2300 return 1;
2301
2302 /* Check if identical after resolving typedefs. */
2303 if (a == b)
2304 return 1;
2305
2306 return 0;
2307 }
2308
2309 /* Compare one type (PARM) for compatibility with another (ARG).
2310 * PARM is intended to be the parameter type of a function; and
2311 * ARG is the supplied argument's type. This function tests if
2312 * the latter can be converted to the former.
2313 *
2314 * Return 0 if they are identical types;
2315 * Otherwise, return an integer which corresponds to how compatible
2316 * PARM is to ARG. The higher the return value, the worse the match.
2317 * Generally the "bad" conversions are all uniformly assigned a 100. */
2318
2319 struct rank
2320 rank_one_type (struct type *parm, struct type *arg)
2321 {
2322 struct rank rank = {0,0};
2323
2324 if (types_equal (parm, arg))
2325 return EXACT_MATCH_BADNESS;
2326
2327 /* Resolve typedefs */
2328 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2329 parm = check_typedef (parm);
2330 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2331 arg = check_typedef (arg);
2332
2333 /* See through references, since we can almost make non-references
2334 references. */
2335 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2336 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg)),
2337 REFERENCE_CONVERSION_BADNESS));
2338 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2339 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg),
2340 REFERENCE_CONVERSION_BADNESS));
2341 if (overload_debug)
2342 /* Debugging only. */
2343 fprintf_filtered (gdb_stderr,
2344 "------ Arg is %s [%d], parm is %s [%d]\n",
2345 TYPE_NAME (arg), TYPE_CODE (arg),
2346 TYPE_NAME (parm), TYPE_CODE (parm));
2347
2348 /* x -> y means arg of type x being supplied for parameter of type y */
2349
2350 switch (TYPE_CODE (parm))
2351 {
2352 case TYPE_CODE_PTR:
2353 switch (TYPE_CODE (arg))
2354 {
2355 case TYPE_CODE_PTR:
2356
2357 /* Allowed pointer conversions are:
2358 (a) pointer to void-pointer conversion. */
2359 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2360 return VOID_PTR_CONVERSION_BADNESS;
2361
2362 /* (b) pointer to ancestor-pointer conversion. */
2363 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2364 TYPE_TARGET_TYPE (arg),
2365 0);
2366 if (rank.subrank >= 0)
2367 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2368
2369 return INCOMPATIBLE_TYPE_BADNESS;
2370 case TYPE_CODE_ARRAY:
2371 if (types_equal (TYPE_TARGET_TYPE (parm),
2372 TYPE_TARGET_TYPE (arg)))
2373 return EXACT_MATCH_BADNESS;
2374 return INCOMPATIBLE_TYPE_BADNESS;
2375 case TYPE_CODE_FUNC:
2376 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2377 case TYPE_CODE_INT:
2378 case TYPE_CODE_ENUM:
2379 case TYPE_CODE_FLAGS:
2380 case TYPE_CODE_CHAR:
2381 case TYPE_CODE_RANGE:
2382 case TYPE_CODE_BOOL:
2383 default:
2384 return INCOMPATIBLE_TYPE_BADNESS;
2385 }
2386 case TYPE_CODE_ARRAY:
2387 switch (TYPE_CODE (arg))
2388 {
2389 case TYPE_CODE_PTR:
2390 case TYPE_CODE_ARRAY:
2391 return rank_one_type (TYPE_TARGET_TYPE (parm),
2392 TYPE_TARGET_TYPE (arg));
2393 default:
2394 return INCOMPATIBLE_TYPE_BADNESS;
2395 }
2396 case TYPE_CODE_FUNC:
2397 switch (TYPE_CODE (arg))
2398 {
2399 case TYPE_CODE_PTR: /* funcptr -> func */
2400 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2401 default:
2402 return INCOMPATIBLE_TYPE_BADNESS;
2403 }
2404 case TYPE_CODE_INT:
2405 switch (TYPE_CODE (arg))
2406 {
2407 case TYPE_CODE_INT:
2408 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2409 {
2410 /* Deal with signed, unsigned, and plain chars and
2411 signed and unsigned ints. */
2412 if (TYPE_NOSIGN (parm))
2413 {
2414 /* This case only for character types */
2415 if (TYPE_NOSIGN (arg))
2416 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2417 else /* signed/unsigned char -> plain char */
2418 return INTEGER_CONVERSION_BADNESS;
2419 }
2420 else if (TYPE_UNSIGNED (parm))
2421 {
2422 if (TYPE_UNSIGNED (arg))
2423 {
2424 /* unsigned int -> unsigned int, or
2425 unsigned long -> unsigned long */
2426 if (integer_types_same_name_p (TYPE_NAME (parm),
2427 TYPE_NAME (arg)))
2428 return EXACT_MATCH_BADNESS;
2429 else if (integer_types_same_name_p (TYPE_NAME (arg),
2430 "int")
2431 && integer_types_same_name_p (TYPE_NAME (parm),
2432 "long"))
2433 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2434 else
2435 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2436 }
2437 else
2438 {
2439 if (integer_types_same_name_p (TYPE_NAME (arg),
2440 "long")
2441 && integer_types_same_name_p (TYPE_NAME (parm),
2442 "int"))
2443 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2444 else
2445 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2446 }
2447 }
2448 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2449 {
2450 if (integer_types_same_name_p (TYPE_NAME (parm),
2451 TYPE_NAME (arg)))
2452 return EXACT_MATCH_BADNESS;
2453 else if (integer_types_same_name_p (TYPE_NAME (arg),
2454 "int")
2455 && integer_types_same_name_p (TYPE_NAME (parm),
2456 "long"))
2457 return INTEGER_PROMOTION_BADNESS;
2458 else
2459 return INTEGER_CONVERSION_BADNESS;
2460 }
2461 else
2462 return INTEGER_CONVERSION_BADNESS;
2463 }
2464 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2465 return INTEGER_PROMOTION_BADNESS;
2466 else
2467 return INTEGER_CONVERSION_BADNESS;
2468 case TYPE_CODE_ENUM:
2469 case TYPE_CODE_FLAGS:
2470 case TYPE_CODE_CHAR:
2471 case TYPE_CODE_RANGE:
2472 case TYPE_CODE_BOOL:
2473 return INTEGER_PROMOTION_BADNESS;
2474 case TYPE_CODE_FLT:
2475 return INT_FLOAT_CONVERSION_BADNESS;
2476 case TYPE_CODE_PTR:
2477 return NS_POINTER_CONVERSION_BADNESS;
2478 default:
2479 return INCOMPATIBLE_TYPE_BADNESS;
2480 }
2481 break;
2482 case TYPE_CODE_ENUM:
2483 switch (TYPE_CODE (arg))
2484 {
2485 case TYPE_CODE_INT:
2486 case TYPE_CODE_CHAR:
2487 case TYPE_CODE_RANGE:
2488 case TYPE_CODE_BOOL:
2489 case TYPE_CODE_ENUM:
2490 return INTEGER_CONVERSION_BADNESS;
2491 case TYPE_CODE_FLT:
2492 return INT_FLOAT_CONVERSION_BADNESS;
2493 default:
2494 return INCOMPATIBLE_TYPE_BADNESS;
2495 }
2496 break;
2497 case TYPE_CODE_CHAR:
2498 switch (TYPE_CODE (arg))
2499 {
2500 case TYPE_CODE_RANGE:
2501 case TYPE_CODE_BOOL:
2502 case TYPE_CODE_ENUM:
2503 return INTEGER_CONVERSION_BADNESS;
2504 case TYPE_CODE_FLT:
2505 return INT_FLOAT_CONVERSION_BADNESS;
2506 case TYPE_CODE_INT:
2507 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2508 return INTEGER_CONVERSION_BADNESS;
2509 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2510 return INTEGER_PROMOTION_BADNESS;
2511 /* >>> !! else fall through !! <<< */
2512 case TYPE_CODE_CHAR:
2513 /* Deal with signed, unsigned, and plain chars for C++ and
2514 with int cases falling through from previous case. */
2515 if (TYPE_NOSIGN (parm))
2516 {
2517 if (TYPE_NOSIGN (arg))
2518 return EXACT_MATCH_BADNESS;
2519 else
2520 return INTEGER_CONVERSION_BADNESS;
2521 }
2522 else if (TYPE_UNSIGNED (parm))
2523 {
2524 if (TYPE_UNSIGNED (arg))
2525 return EXACT_MATCH_BADNESS;
2526 else
2527 return INTEGER_PROMOTION_BADNESS;
2528 }
2529 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2530 return EXACT_MATCH_BADNESS;
2531 else
2532 return INTEGER_CONVERSION_BADNESS;
2533 default:
2534 return INCOMPATIBLE_TYPE_BADNESS;
2535 }
2536 break;
2537 case TYPE_CODE_RANGE:
2538 switch (TYPE_CODE (arg))
2539 {
2540 case TYPE_CODE_INT:
2541 case TYPE_CODE_CHAR:
2542 case TYPE_CODE_RANGE:
2543 case TYPE_CODE_BOOL:
2544 case TYPE_CODE_ENUM:
2545 return INTEGER_CONVERSION_BADNESS;
2546 case TYPE_CODE_FLT:
2547 return INT_FLOAT_CONVERSION_BADNESS;
2548 default:
2549 return INCOMPATIBLE_TYPE_BADNESS;
2550 }
2551 break;
2552 case TYPE_CODE_BOOL:
2553 switch (TYPE_CODE (arg))
2554 {
2555 case TYPE_CODE_INT:
2556 case TYPE_CODE_CHAR:
2557 case TYPE_CODE_RANGE:
2558 case TYPE_CODE_ENUM:
2559 case TYPE_CODE_FLT:
2560 return INCOMPATIBLE_TYPE_BADNESS;
2561 case TYPE_CODE_PTR:
2562 return BOOL_PTR_CONVERSION_BADNESS;
2563 case TYPE_CODE_BOOL:
2564 return EXACT_MATCH_BADNESS;
2565 default:
2566 return INCOMPATIBLE_TYPE_BADNESS;
2567 }
2568 break;
2569 case TYPE_CODE_FLT:
2570 switch (TYPE_CODE (arg))
2571 {
2572 case TYPE_CODE_FLT:
2573 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2574 return FLOAT_PROMOTION_BADNESS;
2575 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2576 return EXACT_MATCH_BADNESS;
2577 else
2578 return FLOAT_CONVERSION_BADNESS;
2579 case TYPE_CODE_INT:
2580 case TYPE_CODE_BOOL:
2581 case TYPE_CODE_ENUM:
2582 case TYPE_CODE_RANGE:
2583 case TYPE_CODE_CHAR:
2584 return INT_FLOAT_CONVERSION_BADNESS;
2585 default:
2586 return INCOMPATIBLE_TYPE_BADNESS;
2587 }
2588 break;
2589 case TYPE_CODE_COMPLEX:
2590 switch (TYPE_CODE (arg))
2591 { /* Strictly not needed for C++, but... */
2592 case TYPE_CODE_FLT:
2593 return FLOAT_PROMOTION_BADNESS;
2594 case TYPE_CODE_COMPLEX:
2595 return EXACT_MATCH_BADNESS;
2596 default:
2597 return INCOMPATIBLE_TYPE_BADNESS;
2598 }
2599 break;
2600 case TYPE_CODE_STRUCT:
2601 /* currently same as TYPE_CODE_CLASS */
2602 switch (TYPE_CODE (arg))
2603 {
2604 case TYPE_CODE_STRUCT:
2605 /* Check for derivation */
2606 rank.subrank = distance_to_ancestor (parm, arg, 0);
2607 if (rank.subrank >= 0)
2608 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2609 /* else fall through */
2610 default:
2611 return INCOMPATIBLE_TYPE_BADNESS;
2612 }
2613 break;
2614 case TYPE_CODE_UNION:
2615 switch (TYPE_CODE (arg))
2616 {
2617 case TYPE_CODE_UNION:
2618 default:
2619 return INCOMPATIBLE_TYPE_BADNESS;
2620 }
2621 break;
2622 case TYPE_CODE_MEMBERPTR:
2623 switch (TYPE_CODE (arg))
2624 {
2625 default:
2626 return INCOMPATIBLE_TYPE_BADNESS;
2627 }
2628 break;
2629 case TYPE_CODE_METHOD:
2630 switch (TYPE_CODE (arg))
2631 {
2632
2633 default:
2634 return INCOMPATIBLE_TYPE_BADNESS;
2635 }
2636 break;
2637 case TYPE_CODE_REF:
2638 switch (TYPE_CODE (arg))
2639 {
2640
2641 default:
2642 return INCOMPATIBLE_TYPE_BADNESS;
2643 }
2644
2645 break;
2646 case TYPE_CODE_SET:
2647 switch (TYPE_CODE (arg))
2648 {
2649 /* Not in C++ */
2650 case TYPE_CODE_SET:
2651 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2652 TYPE_FIELD_TYPE (arg, 0));
2653 default:
2654 return INCOMPATIBLE_TYPE_BADNESS;
2655 }
2656 break;
2657 case TYPE_CODE_VOID:
2658 default:
2659 return INCOMPATIBLE_TYPE_BADNESS;
2660 } /* switch (TYPE_CODE (arg)) */
2661 }
2662
2663
2664 /* End of functions for overload resolution */
2665
2666 static void
2667 print_bit_vector (B_TYPE *bits, int nbits)
2668 {
2669 int bitno;
2670
2671 for (bitno = 0; bitno < nbits; bitno++)
2672 {
2673 if ((bitno % 8) == 0)
2674 {
2675 puts_filtered (" ");
2676 }
2677 if (B_TST (bits, bitno))
2678 printf_filtered (("1"));
2679 else
2680 printf_filtered (("0"));
2681 }
2682 }
2683
2684 /* Note the first arg should be the "this" pointer, we may not want to
2685 include it since we may get into a infinitely recursive
2686 situation. */
2687
2688 static void
2689 print_arg_types (struct field *args, int nargs, int spaces)
2690 {
2691 if (args != NULL)
2692 {
2693 int i;
2694
2695 for (i = 0; i < nargs; i++)
2696 recursive_dump_type (args[i].type, spaces + 2);
2697 }
2698 }
2699
2700 int
2701 field_is_static (struct field *f)
2702 {
2703 /* "static" fields are the fields whose location is not relative
2704 to the address of the enclosing struct. It would be nice to
2705 have a dedicated flag that would be set for static fields when
2706 the type is being created. But in practice, checking the field
2707 loc_kind should give us an accurate answer. */
2708 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2709 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2710 }
2711
2712 static void
2713 dump_fn_fieldlists (struct type *type, int spaces)
2714 {
2715 int method_idx;
2716 int overload_idx;
2717 struct fn_field *f;
2718
2719 printfi_filtered (spaces, "fn_fieldlists ");
2720 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2721 printf_filtered ("\n");
2722 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2723 {
2724 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2725 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2726 method_idx,
2727 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2728 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2729 gdb_stdout);
2730 printf_filtered (_(") length %d\n"),
2731 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2732 for (overload_idx = 0;
2733 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2734 overload_idx++)
2735 {
2736 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2737 overload_idx,
2738 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2739 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2740 gdb_stdout);
2741 printf_filtered (")\n");
2742 printfi_filtered (spaces + 8, "type ");
2743 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2744 gdb_stdout);
2745 printf_filtered ("\n");
2746
2747 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2748 spaces + 8 + 2);
2749
2750 printfi_filtered (spaces + 8, "args ");
2751 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2752 gdb_stdout);
2753 printf_filtered ("\n");
2754
2755 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2756 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2757 overload_idx)),
2758 spaces);
2759 printfi_filtered (spaces + 8, "fcontext ");
2760 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2761 gdb_stdout);
2762 printf_filtered ("\n");
2763
2764 printfi_filtered (spaces + 8, "is_const %d\n",
2765 TYPE_FN_FIELD_CONST (f, overload_idx));
2766 printfi_filtered (spaces + 8, "is_volatile %d\n",
2767 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2768 printfi_filtered (spaces + 8, "is_private %d\n",
2769 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2770 printfi_filtered (spaces + 8, "is_protected %d\n",
2771 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2772 printfi_filtered (spaces + 8, "is_stub %d\n",
2773 TYPE_FN_FIELD_STUB (f, overload_idx));
2774 printfi_filtered (spaces + 8, "voffset %u\n",
2775 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2776 }
2777 }
2778 }
2779
2780 static void
2781 print_cplus_stuff (struct type *type, int spaces)
2782 {
2783 printfi_filtered (spaces, "n_baseclasses %d\n",
2784 TYPE_N_BASECLASSES (type));
2785 printfi_filtered (spaces, "nfn_fields %d\n",
2786 TYPE_NFN_FIELDS (type));
2787 printfi_filtered (spaces, "nfn_fields_total %d\n",
2788 TYPE_NFN_FIELDS_TOTAL (type));
2789 if (TYPE_N_BASECLASSES (type) > 0)
2790 {
2791 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2792 TYPE_N_BASECLASSES (type));
2793 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2794 gdb_stdout);
2795 printf_filtered (")");
2796
2797 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2798 TYPE_N_BASECLASSES (type));
2799 puts_filtered ("\n");
2800 }
2801 if (TYPE_NFIELDS (type) > 0)
2802 {
2803 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2804 {
2805 printfi_filtered (spaces,
2806 "private_field_bits (%d bits at *",
2807 TYPE_NFIELDS (type));
2808 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2809 gdb_stdout);
2810 printf_filtered (")");
2811 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2812 TYPE_NFIELDS (type));
2813 puts_filtered ("\n");
2814 }
2815 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2816 {
2817 printfi_filtered (spaces,
2818 "protected_field_bits (%d bits at *",
2819 TYPE_NFIELDS (type));
2820 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2821 gdb_stdout);
2822 printf_filtered (")");
2823 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2824 TYPE_NFIELDS (type));
2825 puts_filtered ("\n");
2826 }
2827 }
2828 if (TYPE_NFN_FIELDS (type) > 0)
2829 {
2830 dump_fn_fieldlists (type, spaces);
2831 }
2832 }
2833
2834 /* Print the contents of the TYPE's type_specific union, assuming that
2835 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2836
2837 static void
2838 print_gnat_stuff (struct type *type, int spaces)
2839 {
2840 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2841
2842 recursive_dump_type (descriptive_type, spaces + 2);
2843 }
2844
2845 static struct obstack dont_print_type_obstack;
2846
2847 void
2848 recursive_dump_type (struct type *type, int spaces)
2849 {
2850 int idx;
2851
2852 if (spaces == 0)
2853 obstack_begin (&dont_print_type_obstack, 0);
2854
2855 if (TYPE_NFIELDS (type) > 0
2856 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2857 {
2858 struct type **first_dont_print
2859 = (struct type **) obstack_base (&dont_print_type_obstack);
2860
2861 int i = (struct type **)
2862 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2863
2864 while (--i >= 0)
2865 {
2866 if (type == first_dont_print[i])
2867 {
2868 printfi_filtered (spaces, "type node ");
2869 gdb_print_host_address (type, gdb_stdout);
2870 printf_filtered (_(" <same as already seen type>\n"));
2871 return;
2872 }
2873 }
2874
2875 obstack_ptr_grow (&dont_print_type_obstack, type);
2876 }
2877
2878 printfi_filtered (spaces, "type node ");
2879 gdb_print_host_address (type, gdb_stdout);
2880 printf_filtered ("\n");
2881 printfi_filtered (spaces, "name '%s' (",
2882 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2883 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2884 printf_filtered (")\n");
2885 printfi_filtered (spaces, "tagname '%s' (",
2886 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2887 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2888 printf_filtered (")\n");
2889 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2890 switch (TYPE_CODE (type))
2891 {
2892 case TYPE_CODE_UNDEF:
2893 printf_filtered ("(TYPE_CODE_UNDEF)");
2894 break;
2895 case TYPE_CODE_PTR:
2896 printf_filtered ("(TYPE_CODE_PTR)");
2897 break;
2898 case TYPE_CODE_ARRAY:
2899 printf_filtered ("(TYPE_CODE_ARRAY)");
2900 break;
2901 case TYPE_CODE_STRUCT:
2902 printf_filtered ("(TYPE_CODE_STRUCT)");
2903 break;
2904 case TYPE_CODE_UNION:
2905 printf_filtered ("(TYPE_CODE_UNION)");
2906 break;
2907 case TYPE_CODE_ENUM:
2908 printf_filtered ("(TYPE_CODE_ENUM)");
2909 break;
2910 case TYPE_CODE_FLAGS:
2911 printf_filtered ("(TYPE_CODE_FLAGS)");
2912 break;
2913 case TYPE_CODE_FUNC:
2914 printf_filtered ("(TYPE_CODE_FUNC)");
2915 break;
2916 case TYPE_CODE_INT:
2917 printf_filtered ("(TYPE_CODE_INT)");
2918 break;
2919 case TYPE_CODE_FLT:
2920 printf_filtered ("(TYPE_CODE_FLT)");
2921 break;
2922 case TYPE_CODE_VOID:
2923 printf_filtered ("(TYPE_CODE_VOID)");
2924 break;
2925 case TYPE_CODE_SET:
2926 printf_filtered ("(TYPE_CODE_SET)");
2927 break;
2928 case TYPE_CODE_RANGE:
2929 printf_filtered ("(TYPE_CODE_RANGE)");
2930 break;
2931 case TYPE_CODE_STRING:
2932 printf_filtered ("(TYPE_CODE_STRING)");
2933 break;
2934 case TYPE_CODE_BITSTRING:
2935 printf_filtered ("(TYPE_CODE_BITSTRING)");
2936 break;
2937 case TYPE_CODE_ERROR:
2938 printf_filtered ("(TYPE_CODE_ERROR)");
2939 break;
2940 case TYPE_CODE_MEMBERPTR:
2941 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2942 break;
2943 case TYPE_CODE_METHODPTR:
2944 printf_filtered ("(TYPE_CODE_METHODPTR)");
2945 break;
2946 case TYPE_CODE_METHOD:
2947 printf_filtered ("(TYPE_CODE_METHOD)");
2948 break;
2949 case TYPE_CODE_REF:
2950 printf_filtered ("(TYPE_CODE_REF)");
2951 break;
2952 case TYPE_CODE_CHAR:
2953 printf_filtered ("(TYPE_CODE_CHAR)");
2954 break;
2955 case TYPE_CODE_BOOL:
2956 printf_filtered ("(TYPE_CODE_BOOL)");
2957 break;
2958 case TYPE_CODE_COMPLEX:
2959 printf_filtered ("(TYPE_CODE_COMPLEX)");
2960 break;
2961 case TYPE_CODE_TYPEDEF:
2962 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2963 break;
2964 case TYPE_CODE_NAMESPACE:
2965 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2966 break;
2967 default:
2968 printf_filtered ("(UNKNOWN TYPE CODE)");
2969 break;
2970 }
2971 puts_filtered ("\n");
2972 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2973 if (TYPE_OBJFILE_OWNED (type))
2974 {
2975 printfi_filtered (spaces, "objfile ");
2976 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2977 }
2978 else
2979 {
2980 printfi_filtered (spaces, "gdbarch ");
2981 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2982 }
2983 printf_filtered ("\n");
2984 printfi_filtered (spaces, "target_type ");
2985 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2986 printf_filtered ("\n");
2987 if (TYPE_TARGET_TYPE (type) != NULL)
2988 {
2989 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2990 }
2991 printfi_filtered (spaces, "pointer_type ");
2992 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2993 printf_filtered ("\n");
2994 printfi_filtered (spaces, "reference_type ");
2995 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2996 printf_filtered ("\n");
2997 printfi_filtered (spaces, "type_chain ");
2998 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2999 printf_filtered ("\n");
3000 printfi_filtered (spaces, "instance_flags 0x%x",
3001 TYPE_INSTANCE_FLAGS (type));
3002 if (TYPE_CONST (type))
3003 {
3004 puts_filtered (" TYPE_FLAG_CONST");
3005 }
3006 if (TYPE_VOLATILE (type))
3007 {
3008 puts_filtered (" TYPE_FLAG_VOLATILE");
3009 }
3010 if (TYPE_CODE_SPACE (type))
3011 {
3012 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3013 }
3014 if (TYPE_DATA_SPACE (type))
3015 {
3016 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3017 }
3018 if (TYPE_ADDRESS_CLASS_1 (type))
3019 {
3020 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3021 }
3022 if (TYPE_ADDRESS_CLASS_2 (type))
3023 {
3024 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3025 }
3026 puts_filtered ("\n");
3027
3028 printfi_filtered (spaces, "flags");
3029 if (TYPE_UNSIGNED (type))
3030 {
3031 puts_filtered (" TYPE_FLAG_UNSIGNED");
3032 }
3033 if (TYPE_NOSIGN (type))
3034 {
3035 puts_filtered (" TYPE_FLAG_NOSIGN");
3036 }
3037 if (TYPE_STUB (type))
3038 {
3039 puts_filtered (" TYPE_FLAG_STUB");
3040 }
3041 if (TYPE_TARGET_STUB (type))
3042 {
3043 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3044 }
3045 if (TYPE_STATIC (type))
3046 {
3047 puts_filtered (" TYPE_FLAG_STATIC");
3048 }
3049 if (TYPE_PROTOTYPED (type))
3050 {
3051 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3052 }
3053 if (TYPE_INCOMPLETE (type))
3054 {
3055 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3056 }
3057 if (TYPE_VARARGS (type))
3058 {
3059 puts_filtered (" TYPE_FLAG_VARARGS");
3060 }
3061 /* This is used for things like AltiVec registers on ppc. Gcc emits
3062 an attribute for the array type, which tells whether or not we
3063 have a vector, instead of a regular array. */
3064 if (TYPE_VECTOR (type))
3065 {
3066 puts_filtered (" TYPE_FLAG_VECTOR");
3067 }
3068 if (TYPE_FIXED_INSTANCE (type))
3069 {
3070 puts_filtered (" TYPE_FIXED_INSTANCE");
3071 }
3072 if (TYPE_STUB_SUPPORTED (type))
3073 {
3074 puts_filtered (" TYPE_STUB_SUPPORTED");
3075 }
3076 if (TYPE_NOTTEXT (type))
3077 {
3078 puts_filtered (" TYPE_NOTTEXT");
3079 }
3080 puts_filtered ("\n");
3081 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3082 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3083 puts_filtered ("\n");
3084 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3085 {
3086 printfi_filtered (spaces + 2,
3087 "[%d] bitpos %d bitsize %d type ",
3088 idx, TYPE_FIELD_BITPOS (type, idx),
3089 TYPE_FIELD_BITSIZE (type, idx));
3090 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3091 printf_filtered (" name '%s' (",
3092 TYPE_FIELD_NAME (type, idx) != NULL
3093 ? TYPE_FIELD_NAME (type, idx)
3094 : "<NULL>");
3095 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3096 printf_filtered (")\n");
3097 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3098 {
3099 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3100 }
3101 }
3102 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3103 {
3104 printfi_filtered (spaces, "low %s%s high %s%s\n",
3105 plongest (TYPE_LOW_BOUND (type)),
3106 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3107 plongest (TYPE_HIGH_BOUND (type)),
3108 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
3109 }
3110 printfi_filtered (spaces, "vptr_basetype ");
3111 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3112 puts_filtered ("\n");
3113 if (TYPE_VPTR_BASETYPE (type) != NULL)
3114 {
3115 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3116 }
3117 printfi_filtered (spaces, "vptr_fieldno %d\n",
3118 TYPE_VPTR_FIELDNO (type));
3119
3120 switch (TYPE_SPECIFIC_FIELD (type))
3121 {
3122 case TYPE_SPECIFIC_CPLUS_STUFF:
3123 printfi_filtered (spaces, "cplus_stuff ");
3124 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3125 gdb_stdout);
3126 puts_filtered ("\n");
3127 print_cplus_stuff (type, spaces);
3128 break;
3129
3130 case TYPE_SPECIFIC_GNAT_STUFF:
3131 printfi_filtered (spaces, "gnat_stuff ");
3132 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3133 puts_filtered ("\n");
3134 print_gnat_stuff (type, spaces);
3135 break;
3136
3137 case TYPE_SPECIFIC_FLOATFORMAT:
3138 printfi_filtered (spaces, "floatformat ");
3139 if (TYPE_FLOATFORMAT (type) == NULL)
3140 puts_filtered ("(null)");
3141 else
3142 {
3143 puts_filtered ("{ ");
3144 if (TYPE_FLOATFORMAT (type)[0] == NULL
3145 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3146 puts_filtered ("(null)");
3147 else
3148 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3149
3150 puts_filtered (", ");
3151 if (TYPE_FLOATFORMAT (type)[1] == NULL
3152 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3153 puts_filtered ("(null)");
3154 else
3155 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3156
3157 puts_filtered (" }");
3158 }
3159 puts_filtered ("\n");
3160 break;
3161
3162 case TYPE_SPECIFIC_CALLING_CONVENTION:
3163 printfi_filtered (spaces, "calling_convention %d\n",
3164 TYPE_CALLING_CONVENTION (type));
3165 break;
3166 }
3167
3168 if (spaces == 0)
3169 obstack_free (&dont_print_type_obstack, NULL);
3170 }
3171
3172 /* Trivial helpers for the libiberty hash table, for mapping one
3173 type to another. */
3174
3175 struct type_pair
3176 {
3177 struct type *old, *new;
3178 };
3179
3180 static hashval_t
3181 type_pair_hash (const void *item)
3182 {
3183 const struct type_pair *pair = item;
3184
3185 return htab_hash_pointer (pair->old);
3186 }
3187
3188 static int
3189 type_pair_eq (const void *item_lhs, const void *item_rhs)
3190 {
3191 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3192
3193 return lhs->old == rhs->old;
3194 }
3195
3196 /* Allocate the hash table used by copy_type_recursive to walk
3197 types without duplicates. We use OBJFILE's obstack, because
3198 OBJFILE is about to be deleted. */
3199
3200 htab_t
3201 create_copied_types_hash (struct objfile *objfile)
3202 {
3203 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3204 NULL, &objfile->objfile_obstack,
3205 hashtab_obstack_allocate,
3206 dummy_obstack_deallocate);
3207 }
3208
3209 /* Recursively copy (deep copy) TYPE, if it is associated with
3210 OBJFILE. Return a new type allocated using malloc, a saved type if
3211 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3212 not associated with OBJFILE. */
3213
3214 struct type *
3215 copy_type_recursive (struct objfile *objfile,
3216 struct type *type,
3217 htab_t copied_types)
3218 {
3219 struct type_pair *stored, pair;
3220 void **slot;
3221 struct type *new_type;
3222
3223 if (! TYPE_OBJFILE_OWNED (type))
3224 return type;
3225
3226 /* This type shouldn't be pointing to any types in other objfiles;
3227 if it did, the type might disappear unexpectedly. */
3228 gdb_assert (TYPE_OBJFILE (type) == objfile);
3229
3230 pair.old = type;
3231 slot = htab_find_slot (copied_types, &pair, INSERT);
3232 if (*slot != NULL)
3233 return ((struct type_pair *) *slot)->new;
3234
3235 new_type = alloc_type_arch (get_type_arch (type));
3236
3237 /* We must add the new type to the hash table immediately, in case
3238 we encounter this type again during a recursive call below. */
3239 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3240 stored->old = type;
3241 stored->new = new_type;
3242 *slot = stored;
3243
3244 /* Copy the common fields of types. For the main type, we simply
3245 copy the entire thing and then update specific fields as needed. */
3246 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3247 TYPE_OBJFILE_OWNED (new_type) = 0;
3248 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3249
3250 if (TYPE_NAME (type))
3251 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3252 if (TYPE_TAG_NAME (type))
3253 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3254
3255 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3256 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3257
3258 /* Copy the fields. */
3259 if (TYPE_NFIELDS (type))
3260 {
3261 int i, nfields;
3262
3263 nfields = TYPE_NFIELDS (type);
3264 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3265 for (i = 0; i < nfields; i++)
3266 {
3267 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3268 TYPE_FIELD_ARTIFICIAL (type, i);
3269 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3270 if (TYPE_FIELD_TYPE (type, i))
3271 TYPE_FIELD_TYPE (new_type, i)
3272 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3273 copied_types);
3274 if (TYPE_FIELD_NAME (type, i))
3275 TYPE_FIELD_NAME (new_type, i) =
3276 xstrdup (TYPE_FIELD_NAME (type, i));
3277 switch (TYPE_FIELD_LOC_KIND (type, i))
3278 {
3279 case FIELD_LOC_KIND_BITPOS:
3280 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3281 TYPE_FIELD_BITPOS (type, i));
3282 break;
3283 case FIELD_LOC_KIND_PHYSADDR:
3284 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3285 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3286 break;
3287 case FIELD_LOC_KIND_PHYSNAME:
3288 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3289 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3290 i)));
3291 break;
3292 default:
3293 internal_error (__FILE__, __LINE__,
3294 _("Unexpected type field location kind: %d"),
3295 TYPE_FIELD_LOC_KIND (type, i));
3296 }
3297 }
3298 }
3299
3300 /* For range types, copy the bounds information. */
3301 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3302 {
3303 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3304 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3305 }
3306
3307 /* Copy pointers to other types. */
3308 if (TYPE_TARGET_TYPE (type))
3309 TYPE_TARGET_TYPE (new_type) =
3310 copy_type_recursive (objfile,
3311 TYPE_TARGET_TYPE (type),
3312 copied_types);
3313 if (TYPE_VPTR_BASETYPE (type))
3314 TYPE_VPTR_BASETYPE (new_type) =
3315 copy_type_recursive (objfile,
3316 TYPE_VPTR_BASETYPE (type),
3317 copied_types);
3318 /* Maybe copy the type_specific bits.
3319
3320 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3321 base classes and methods. There's no fundamental reason why we
3322 can't, but at the moment it is not needed. */
3323
3324 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3325 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3326 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3327 || TYPE_CODE (type) == TYPE_CODE_UNION
3328 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3329 INIT_CPLUS_SPECIFIC (new_type);
3330
3331 return new_type;
3332 }
3333
3334 /* Make a copy of the given TYPE, except that the pointer & reference
3335 types are not preserved.
3336
3337 This function assumes that the given type has an associated objfile.
3338 This objfile is used to allocate the new type. */
3339
3340 struct type *
3341 copy_type (const struct type *type)
3342 {
3343 struct type *new_type;
3344
3345 gdb_assert (TYPE_OBJFILE_OWNED (type));
3346
3347 new_type = alloc_type_copy (type);
3348 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3349 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3350 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3351 sizeof (struct main_type));
3352
3353 return new_type;
3354 }
3355
3356
3357 /* Helper functions to initialize architecture-specific types. */
3358
3359 /* Allocate a type structure associated with GDBARCH and set its
3360 CODE, LENGTH, and NAME fields. */
3361 struct type *
3362 arch_type (struct gdbarch *gdbarch,
3363 enum type_code code, int length, char *name)
3364 {
3365 struct type *type;
3366
3367 type = alloc_type_arch (gdbarch);
3368 TYPE_CODE (type) = code;
3369 TYPE_LENGTH (type) = length;
3370
3371 if (name)
3372 TYPE_NAME (type) = xstrdup (name);
3373
3374 return type;
3375 }
3376
3377 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3378 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3379 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3380 struct type *
3381 arch_integer_type (struct gdbarch *gdbarch,
3382 int bit, int unsigned_p, char *name)
3383 {
3384 struct type *t;
3385
3386 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3387 if (unsigned_p)
3388 TYPE_UNSIGNED (t) = 1;
3389 if (name && strcmp (name, "char") == 0)
3390 TYPE_NOSIGN (t) = 1;
3391
3392 return t;
3393 }
3394
3395 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3396 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3397 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3398 struct type *
3399 arch_character_type (struct gdbarch *gdbarch,
3400 int bit, int unsigned_p, char *name)
3401 {
3402 struct type *t;
3403
3404 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3405 if (unsigned_p)
3406 TYPE_UNSIGNED (t) = 1;
3407
3408 return t;
3409 }
3410
3411 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3412 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3413 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3414 struct type *
3415 arch_boolean_type (struct gdbarch *gdbarch,
3416 int bit, int unsigned_p, char *name)
3417 {
3418 struct type *t;
3419
3420 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3421 if (unsigned_p)
3422 TYPE_UNSIGNED (t) = 1;
3423
3424 return t;
3425 }
3426
3427 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3428 BIT is the type size in bits; if BIT equals -1, the size is
3429 determined by the floatformat. NAME is the type name. Set the
3430 TYPE_FLOATFORMAT from FLOATFORMATS. */
3431 struct type *
3432 arch_float_type (struct gdbarch *gdbarch,
3433 int bit, char *name, const struct floatformat **floatformats)
3434 {
3435 struct type *t;
3436
3437 if (bit == -1)
3438 {
3439 gdb_assert (floatformats != NULL);
3440 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3441 bit = floatformats[0]->totalsize;
3442 }
3443 gdb_assert (bit >= 0);
3444
3445 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3446 TYPE_FLOATFORMAT (t) = floatformats;
3447 return t;
3448 }
3449
3450 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3451 NAME is the type name. TARGET_TYPE is the component float type. */
3452 struct type *
3453 arch_complex_type (struct gdbarch *gdbarch,
3454 char *name, struct type *target_type)
3455 {
3456 struct type *t;
3457
3458 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3459 2 * TYPE_LENGTH (target_type), name);
3460 TYPE_TARGET_TYPE (t) = target_type;
3461 return t;
3462 }
3463
3464 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3465 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3466 struct type *
3467 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3468 {
3469 int nfields = length * TARGET_CHAR_BIT;
3470 struct type *type;
3471
3472 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3473 TYPE_UNSIGNED (type) = 1;
3474 TYPE_NFIELDS (type) = nfields;
3475 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3476
3477 return type;
3478 }
3479
3480 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3481 position BITPOS is called NAME. */
3482 void
3483 append_flags_type_flag (struct type *type, int bitpos, char *name)
3484 {
3485 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3486 gdb_assert (bitpos < TYPE_NFIELDS (type));
3487 gdb_assert (bitpos >= 0);
3488
3489 if (name)
3490 {
3491 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3492 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3493 }
3494 else
3495 {
3496 /* Don't show this field to the user. */
3497 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3498 }
3499 }
3500
3501 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3502 specified by CODE) associated with GDBARCH. NAME is the type name. */
3503 struct type *
3504 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3505 {
3506 struct type *t;
3507
3508 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3509 t = arch_type (gdbarch, code, 0, NULL);
3510 TYPE_TAG_NAME (t) = name;
3511 INIT_CPLUS_SPECIFIC (t);
3512 return t;
3513 }
3514
3515 /* Add new field with name NAME and type FIELD to composite type T.
3516 Do not set the field's position or adjust the type's length;
3517 the caller should do so. Return the new field. */
3518 struct field *
3519 append_composite_type_field_raw (struct type *t, char *name,
3520 struct type *field)
3521 {
3522 struct field *f;
3523
3524 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3525 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3526 sizeof (struct field) * TYPE_NFIELDS (t));
3527 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3528 memset (f, 0, sizeof f[0]);
3529 FIELD_TYPE (f[0]) = field;
3530 FIELD_NAME (f[0]) = name;
3531 return f;
3532 }
3533
3534 /* Add new field with name NAME and type FIELD to composite type T.
3535 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3536 void
3537 append_composite_type_field_aligned (struct type *t, char *name,
3538 struct type *field, int alignment)
3539 {
3540 struct field *f = append_composite_type_field_raw (t, name, field);
3541
3542 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3543 {
3544 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3545 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3546 }
3547 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3548 {
3549 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3550 if (TYPE_NFIELDS (t) > 1)
3551 {
3552 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3553 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3554 * TARGET_CHAR_BIT));
3555
3556 if (alignment)
3557 {
3558 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3559
3560 if (left)
3561 {
3562 FIELD_BITPOS (f[0]) += left;
3563 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3564 }
3565 }
3566 }
3567 }
3568 }
3569
3570 /* Add new field with name NAME and type FIELD to composite type T. */
3571 void
3572 append_composite_type_field (struct type *t, char *name,
3573 struct type *field)
3574 {
3575 append_composite_type_field_aligned (t, name, field, 0);
3576 }
3577
3578
3579 static struct gdbarch_data *gdbtypes_data;
3580
3581 const struct builtin_type *
3582 builtin_type (struct gdbarch *gdbarch)
3583 {
3584 return gdbarch_data (gdbarch, gdbtypes_data);
3585 }
3586
3587 static void *
3588 gdbtypes_post_init (struct gdbarch *gdbarch)
3589 {
3590 struct builtin_type *builtin_type
3591 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3592
3593 /* Basic types. */
3594 builtin_type->builtin_void
3595 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3596 builtin_type->builtin_char
3597 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3598 !gdbarch_char_signed (gdbarch), "char");
3599 builtin_type->builtin_signed_char
3600 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3601 0, "signed char");
3602 builtin_type->builtin_unsigned_char
3603 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3604 1, "unsigned char");
3605 builtin_type->builtin_short
3606 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3607 0, "short");
3608 builtin_type->builtin_unsigned_short
3609 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3610 1, "unsigned short");
3611 builtin_type->builtin_int
3612 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3613 0, "int");
3614 builtin_type->builtin_unsigned_int
3615 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3616 1, "unsigned int");
3617 builtin_type->builtin_long
3618 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3619 0, "long");
3620 builtin_type->builtin_unsigned_long
3621 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3622 1, "unsigned long");
3623 builtin_type->builtin_long_long
3624 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3625 0, "long long");
3626 builtin_type->builtin_unsigned_long_long
3627 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3628 1, "unsigned long long");
3629 builtin_type->builtin_float
3630 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3631 "float", gdbarch_float_format (gdbarch));
3632 builtin_type->builtin_double
3633 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3634 "double", gdbarch_double_format (gdbarch));
3635 builtin_type->builtin_long_double
3636 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3637 "long double", gdbarch_long_double_format (gdbarch));
3638 builtin_type->builtin_complex
3639 = arch_complex_type (gdbarch, "complex",
3640 builtin_type->builtin_float);
3641 builtin_type->builtin_double_complex
3642 = arch_complex_type (gdbarch, "double complex",
3643 builtin_type->builtin_double);
3644 builtin_type->builtin_string
3645 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3646 builtin_type->builtin_bool
3647 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3648
3649 /* The following three are about decimal floating point types, which
3650 are 32-bits, 64-bits and 128-bits respectively. */
3651 builtin_type->builtin_decfloat
3652 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3653 builtin_type->builtin_decdouble
3654 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3655 builtin_type->builtin_declong
3656 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3657
3658 /* "True" character types. */
3659 builtin_type->builtin_true_char
3660 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3661 builtin_type->builtin_true_unsigned_char
3662 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3663
3664 /* Fixed-size integer types. */
3665 builtin_type->builtin_int0
3666 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3667 builtin_type->builtin_int8
3668 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3669 builtin_type->builtin_uint8
3670 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3671 builtin_type->builtin_int16
3672 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3673 builtin_type->builtin_uint16
3674 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3675 builtin_type->builtin_int32
3676 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3677 builtin_type->builtin_uint32
3678 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3679 builtin_type->builtin_int64
3680 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3681 builtin_type->builtin_uint64
3682 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3683 builtin_type->builtin_int128
3684 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3685 builtin_type->builtin_uint128
3686 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3687 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3688 TYPE_INSTANCE_FLAG_NOTTEXT;
3689 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3690 TYPE_INSTANCE_FLAG_NOTTEXT;
3691
3692 /* Wide character types. */
3693 builtin_type->builtin_char16
3694 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3695 builtin_type->builtin_char32
3696 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3697
3698
3699 /* Default data/code pointer types. */
3700 builtin_type->builtin_data_ptr
3701 = lookup_pointer_type (builtin_type->builtin_void);
3702 builtin_type->builtin_func_ptr
3703 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3704
3705 /* This type represents a GDB internal function. */
3706 builtin_type->internal_fn
3707 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3708 "<internal function>");
3709
3710 return builtin_type;
3711 }
3712
3713
3714 /* This set of objfile-based types is intended to be used by symbol
3715 readers as basic types. */
3716
3717 static const struct objfile_data *objfile_type_data;
3718
3719 const struct objfile_type *
3720 objfile_type (struct objfile *objfile)
3721 {
3722 struct gdbarch *gdbarch;
3723 struct objfile_type *objfile_type
3724 = objfile_data (objfile, objfile_type_data);
3725
3726 if (objfile_type)
3727 return objfile_type;
3728
3729 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3730 1, struct objfile_type);
3731
3732 /* Use the objfile architecture to determine basic type properties. */
3733 gdbarch = get_objfile_arch (objfile);
3734
3735 /* Basic types. */
3736 objfile_type->builtin_void
3737 = init_type (TYPE_CODE_VOID, 1,
3738 0,
3739 "void", objfile);
3740
3741 objfile_type->builtin_char
3742 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3743 (TYPE_FLAG_NOSIGN
3744 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3745 "char", objfile);
3746 objfile_type->builtin_signed_char
3747 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3748 0,
3749 "signed char", objfile);
3750 objfile_type->builtin_unsigned_char
3751 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3752 TYPE_FLAG_UNSIGNED,
3753 "unsigned char", objfile);
3754 objfile_type->builtin_short
3755 = init_type (TYPE_CODE_INT,
3756 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3757 0, "short", objfile);
3758 objfile_type->builtin_unsigned_short
3759 = init_type (TYPE_CODE_INT,
3760 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3761 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3762 objfile_type->builtin_int
3763 = init_type (TYPE_CODE_INT,
3764 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3765 0, "int", objfile);
3766 objfile_type->builtin_unsigned_int
3767 = init_type (TYPE_CODE_INT,
3768 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3769 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3770 objfile_type->builtin_long
3771 = init_type (TYPE_CODE_INT,
3772 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3773 0, "long", objfile);
3774 objfile_type->builtin_unsigned_long
3775 = init_type (TYPE_CODE_INT,
3776 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3777 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3778 objfile_type->builtin_long_long
3779 = init_type (TYPE_CODE_INT,
3780 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3781 0, "long long", objfile);
3782 objfile_type->builtin_unsigned_long_long
3783 = init_type (TYPE_CODE_INT,
3784 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3785 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3786
3787 objfile_type->builtin_float
3788 = init_type (TYPE_CODE_FLT,
3789 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3790 0, "float", objfile);
3791 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3792 = gdbarch_float_format (gdbarch);
3793 objfile_type->builtin_double
3794 = init_type (TYPE_CODE_FLT,
3795 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3796 0, "double", objfile);
3797 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3798 = gdbarch_double_format (gdbarch);
3799 objfile_type->builtin_long_double
3800 = init_type (TYPE_CODE_FLT,
3801 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3802 0, "long double", objfile);
3803 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3804 = gdbarch_long_double_format (gdbarch);
3805
3806 /* This type represents a type that was unrecognized in symbol read-in. */
3807 objfile_type->builtin_error
3808 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3809
3810 /* The following set of types is used for symbols with no
3811 debug information. */
3812 objfile_type->nodebug_text_symbol
3813 = init_type (TYPE_CODE_FUNC, 1, 0,
3814 "<text variable, no debug info>", objfile);
3815 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3816 = objfile_type->builtin_int;
3817 objfile_type->nodebug_data_symbol
3818 = init_type (TYPE_CODE_INT,
3819 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3820 "<data variable, no debug info>", objfile);
3821 objfile_type->nodebug_unknown_symbol
3822 = init_type (TYPE_CODE_INT, 1, 0,
3823 "<variable (not text or data), no debug info>", objfile);
3824 objfile_type->nodebug_tls_symbol
3825 = init_type (TYPE_CODE_INT,
3826 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3827 "<thread local variable, no debug info>", objfile);
3828
3829 /* NOTE: on some targets, addresses and pointers are not necessarily
3830 the same --- for example, on the D10V, pointers are 16 bits long,
3831 but addresses are 32 bits long. See doc/gdbint.texinfo,
3832 ``Pointers Are Not Always Addresses''.
3833
3834 The upshot is:
3835 - gdb's `struct type' always describes the target's
3836 representation.
3837 - gdb's `struct value' objects should always hold values in
3838 target form.
3839 - gdb's CORE_ADDR values are addresses in the unified virtual
3840 address space that the assembler and linker work with. Thus,
3841 since target_read_memory takes a CORE_ADDR as an argument, it
3842 can access any memory on the target, even if the processor has
3843 separate code and data address spaces.
3844
3845 So, for example:
3846 - If v is a value holding a D10V code pointer, its contents are
3847 in target form: a big-endian address left-shifted two bits.
3848 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3849 sizeof (void *) == 2 on the target.
3850
3851 In this context, objfile_type->builtin_core_addr is a bit odd:
3852 it's a target type for a value the target will never see. It's
3853 only used to hold the values of (typeless) linker symbols, which
3854 are indeed in the unified virtual address space. */
3855
3856 objfile_type->builtin_core_addr
3857 = init_type (TYPE_CODE_INT,
3858 gdbarch_addr_bit (gdbarch) / 8,
3859 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3860
3861 set_objfile_data (objfile, objfile_type_data, objfile_type);
3862 return objfile_type;
3863 }
3864
3865
3866 extern void _initialize_gdbtypes (void);
3867 void
3868 _initialize_gdbtypes (void)
3869 {
3870 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3871 objfile_type_data = register_objfile_data ();
3872
3873 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3874 Set debugging of C++ overloading."), _("\
3875 Show debugging of C++ overloading."), _("\
3876 When enabled, ranking of the functions is displayed."),
3877 NULL,
3878 show_overload_debug,
3879 &setdebuglist, &showdebuglist);
3880
3881 /* Add user knob for controlling resolution of opaque types. */
3882 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3883 &opaque_type_resolution, _("\
3884 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3885 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3886 NULL,
3887 show_opaque_type_resolution,
3888 &setlist, &showlist);
3889 }