]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.c
Add initial type alignment support
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* See gdbtypes.h. */
243
244 struct type *
245 get_target_type (struct type *type)
246 {
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255 }
256
257 /* See gdbtypes.h. */
258
259 unsigned int
260 type_length_units (struct type *type)
261 {
262 struct gdbarch *arch = get_type_arch (type);
263 int unit_size = gdbarch_addressable_memory_unit_size (arch);
264
265 return TYPE_LENGTH (type) / unit_size;
266 }
267
268 /* Alloc a new type instance structure, fill it with some defaults,
269 and point it at OLDTYPE. Allocate the new type instance from the
270 same place as OLDTYPE. */
271
272 static struct type *
273 alloc_type_instance (struct type *oldtype)
274 {
275 struct type *type;
276
277 /* Allocate the structure. */
278
279 if (! TYPE_OBJFILE_OWNED (oldtype))
280 type = XCNEW (struct type);
281 else
282 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
283 struct type);
284
285 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
286
287 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
288
289 return type;
290 }
291
292 /* Clear all remnants of the previous type at TYPE, in preparation for
293 replacing it with something else. Preserve owner information. */
294
295 static void
296 smash_type (struct type *type)
297 {
298 int objfile_owned = TYPE_OBJFILE_OWNED (type);
299 union type_owner owner = TYPE_OWNER (type);
300
301 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
302
303 /* Restore owner information. */
304 TYPE_OBJFILE_OWNED (type) = objfile_owned;
305 TYPE_OWNER (type) = owner;
306
307 /* For now, delete the rings. */
308 TYPE_CHAIN (type) = type;
309
310 /* For now, leave the pointer/reference types alone. */
311 }
312
313 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
314 to a pointer to memory where the pointer type should be stored.
315 If *TYPEPTR is zero, update it to point to the pointer type we return.
316 We allocate new memory if needed. */
317
318 struct type *
319 make_pointer_type (struct type *type, struct type **typeptr)
320 {
321 struct type *ntype; /* New type */
322 struct type *chain;
323
324 ntype = TYPE_POINTER_TYPE (type);
325
326 if (ntype)
327 {
328 if (typeptr == 0)
329 return ntype; /* Don't care about alloc,
330 and have new type. */
331 else if (*typeptr == 0)
332 {
333 *typeptr = ntype; /* Tracking alloc, and have new type. */
334 return ntype;
335 }
336 }
337
338 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
339 {
340 ntype = alloc_type_copy (type);
341 if (typeptr)
342 *typeptr = ntype;
343 }
344 else /* We have storage, but need to reset it. */
345 {
346 ntype = *typeptr;
347 chain = TYPE_CHAIN (ntype);
348 smash_type (ntype);
349 TYPE_CHAIN (ntype) = chain;
350 }
351
352 TYPE_TARGET_TYPE (ntype) = type;
353 TYPE_POINTER_TYPE (type) = ntype;
354
355 /* FIXME! Assumes the machine has only one representation for pointers! */
356
357 TYPE_LENGTH (ntype)
358 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
359 TYPE_CODE (ntype) = TYPE_CODE_PTR;
360
361 /* Mark pointers as unsigned. The target converts between pointers
362 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
363 gdbarch_address_to_pointer. */
364 TYPE_UNSIGNED (ntype) = 1;
365
366 /* Update the length of all the other variants of this type. */
367 chain = TYPE_CHAIN (ntype);
368 while (chain != ntype)
369 {
370 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
371 chain = TYPE_CHAIN (chain);
372 }
373
374 return ntype;
375 }
376
377 /* Given a type TYPE, return a type of pointers to that type.
378 May need to construct such a type if this is the first use. */
379
380 struct type *
381 lookup_pointer_type (struct type *type)
382 {
383 return make_pointer_type (type, (struct type **) 0);
384 }
385
386 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
387 points to a pointer to memory where the reference type should be
388 stored. If *TYPEPTR is zero, update it to point to the reference
389 type we return. We allocate new memory if needed. REFCODE denotes
390 the kind of reference type to lookup (lvalue or rvalue reference). */
391
392 struct type *
393 make_reference_type (struct type *type, struct type **typeptr,
394 enum type_code refcode)
395 {
396 struct type *ntype; /* New type */
397 struct type **reftype;
398 struct type *chain;
399
400 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
401
402 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
403 : TYPE_RVALUE_REFERENCE_TYPE (type));
404
405 if (ntype)
406 {
407 if (typeptr == 0)
408 return ntype; /* Don't care about alloc,
409 and have new type. */
410 else if (*typeptr == 0)
411 {
412 *typeptr = ntype; /* Tracking alloc, and have new type. */
413 return ntype;
414 }
415 }
416
417 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
418 {
419 ntype = alloc_type_copy (type);
420 if (typeptr)
421 *typeptr = ntype;
422 }
423 else /* We have storage, but need to reset it. */
424 {
425 ntype = *typeptr;
426 chain = TYPE_CHAIN (ntype);
427 smash_type (ntype);
428 TYPE_CHAIN (ntype) = chain;
429 }
430
431 TYPE_TARGET_TYPE (ntype) = type;
432 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
433 : &TYPE_RVALUE_REFERENCE_TYPE (type));
434
435 *reftype = ntype;
436
437 /* FIXME! Assume the machine has only one representation for
438 references, and that it matches the (only) representation for
439 pointers! */
440
441 TYPE_LENGTH (ntype) =
442 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
443 TYPE_CODE (ntype) = refcode;
444
445 *reftype = ntype;
446
447 /* Update the length of all the other variants of this type. */
448 chain = TYPE_CHAIN (ntype);
449 while (chain != ntype)
450 {
451 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
452 chain = TYPE_CHAIN (chain);
453 }
454
455 return ntype;
456 }
457
458 /* Same as above, but caller doesn't care about memory allocation
459 details. */
460
461 struct type *
462 lookup_reference_type (struct type *type, enum type_code refcode)
463 {
464 return make_reference_type (type, (struct type **) 0, refcode);
465 }
466
467 /* Lookup the lvalue reference type for the type TYPE. */
468
469 struct type *
470 lookup_lvalue_reference_type (struct type *type)
471 {
472 return lookup_reference_type (type, TYPE_CODE_REF);
473 }
474
475 /* Lookup the rvalue reference type for the type TYPE. */
476
477 struct type *
478 lookup_rvalue_reference_type (struct type *type)
479 {
480 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
481 }
482
483 /* Lookup a function type that returns type TYPE. TYPEPTR, if
484 nonzero, points to a pointer to memory where the function type
485 should be stored. If *TYPEPTR is zero, update it to point to the
486 function type we return. We allocate new memory if needed. */
487
488 struct type *
489 make_function_type (struct type *type, struct type **typeptr)
490 {
491 struct type *ntype; /* New type */
492
493 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
494 {
495 ntype = alloc_type_copy (type);
496 if (typeptr)
497 *typeptr = ntype;
498 }
499 else /* We have storage, but need to reset it. */
500 {
501 ntype = *typeptr;
502 smash_type (ntype);
503 }
504
505 TYPE_TARGET_TYPE (ntype) = type;
506
507 TYPE_LENGTH (ntype) = 1;
508 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
509
510 INIT_FUNC_SPECIFIC (ntype);
511
512 return ntype;
513 }
514
515 /* Given a type TYPE, return a type of functions that return that type.
516 May need to construct such a type if this is the first use. */
517
518 struct type *
519 lookup_function_type (struct type *type)
520 {
521 return make_function_type (type, (struct type **) 0);
522 }
523
524 /* Given a type TYPE and argument types, return the appropriate
525 function type. If the final type in PARAM_TYPES is NULL, make a
526 varargs function. */
527
528 struct type *
529 lookup_function_type_with_arguments (struct type *type,
530 int nparams,
531 struct type **param_types)
532 {
533 struct type *fn = make_function_type (type, (struct type **) 0);
534 int i;
535
536 if (nparams > 0)
537 {
538 if (param_types[nparams - 1] == NULL)
539 {
540 --nparams;
541 TYPE_VARARGS (fn) = 1;
542 }
543 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
544 == TYPE_CODE_VOID)
545 {
546 --nparams;
547 /* Caller should have ensured this. */
548 gdb_assert (nparams == 0);
549 TYPE_PROTOTYPED (fn) = 1;
550 }
551 else
552 TYPE_PROTOTYPED (fn) = 1;
553 }
554
555 TYPE_NFIELDS (fn) = nparams;
556 TYPE_FIELDS (fn)
557 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
558 for (i = 0; i < nparams; ++i)
559 TYPE_FIELD_TYPE (fn, i) = param_types[i];
560
561 return fn;
562 }
563
564 /* Identify address space identifier by name --
565 return the integer flag defined in gdbtypes.h. */
566
567 int
568 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
569 {
570 int type_flags;
571
572 /* Check for known address space delimiters. */
573 if (!strcmp (space_identifier, "code"))
574 return TYPE_INSTANCE_FLAG_CODE_SPACE;
575 else if (!strcmp (space_identifier, "data"))
576 return TYPE_INSTANCE_FLAG_DATA_SPACE;
577 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
578 && gdbarch_address_class_name_to_type_flags (gdbarch,
579 space_identifier,
580 &type_flags))
581 return type_flags;
582 else
583 error (_("Unknown address space specifier: \"%s\""), space_identifier);
584 }
585
586 /* Identify address space identifier by integer flag as defined in
587 gdbtypes.h -- return the string version of the adress space name. */
588
589 const char *
590 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
591 {
592 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
593 return "code";
594 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
595 return "data";
596 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
597 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
598 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
599 else
600 return NULL;
601 }
602
603 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
604
605 If STORAGE is non-NULL, create the new type instance there.
606 STORAGE must be in the same obstack as TYPE. */
607
608 static struct type *
609 make_qualified_type (struct type *type, int new_flags,
610 struct type *storage)
611 {
612 struct type *ntype;
613
614 ntype = type;
615 do
616 {
617 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
618 return ntype;
619 ntype = TYPE_CHAIN (ntype);
620 }
621 while (ntype != type);
622
623 /* Create a new type instance. */
624 if (storage == NULL)
625 ntype = alloc_type_instance (type);
626 else
627 {
628 /* If STORAGE was provided, it had better be in the same objfile
629 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
630 if one objfile is freed and the other kept, we'd have
631 dangling pointers. */
632 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
633
634 ntype = storage;
635 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
636 TYPE_CHAIN (ntype) = ntype;
637 }
638
639 /* Pointers or references to the original type are not relevant to
640 the new type. */
641 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
642 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
643
644 /* Chain the new qualified type to the old type. */
645 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
646 TYPE_CHAIN (type) = ntype;
647
648 /* Now set the instance flags and return the new type. */
649 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
650
651 /* Set length of new type to that of the original type. */
652 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
653
654 return ntype;
655 }
656
657 /* Make an address-space-delimited variant of a type -- a type that
658 is identical to the one supplied except that it has an address
659 space attribute attached to it (such as "code" or "data").
660
661 The space attributes "code" and "data" are for Harvard
662 architectures. The address space attributes are for architectures
663 which have alternately sized pointers or pointers with alternate
664 representations. */
665
666 struct type *
667 make_type_with_address_space (struct type *type, int space_flag)
668 {
669 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
671 | TYPE_INSTANCE_FLAG_DATA_SPACE
672 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
673 | space_flag);
674
675 return make_qualified_type (type, new_flags, NULL);
676 }
677
678 /* Make a "c-v" variant of a type -- a type that is identical to the
679 one supplied except that it may have const or volatile attributes
680 CNST is a flag for setting the const attribute
681 VOLTL is a flag for setting the volatile attribute
682 TYPE is the base type whose variant we are creating.
683
684 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
685 storage to hold the new qualified type; *TYPEPTR and TYPE must be
686 in the same objfile. Otherwise, allocate fresh memory for the new
687 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
688 new type we construct. */
689
690 struct type *
691 make_cv_type (int cnst, int voltl,
692 struct type *type,
693 struct type **typeptr)
694 {
695 struct type *ntype; /* New type */
696
697 int new_flags = (TYPE_INSTANCE_FLAGS (type)
698 & ~(TYPE_INSTANCE_FLAG_CONST
699 | TYPE_INSTANCE_FLAG_VOLATILE));
700
701 if (cnst)
702 new_flags |= TYPE_INSTANCE_FLAG_CONST;
703
704 if (voltl)
705 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
706
707 if (typeptr && *typeptr != NULL)
708 {
709 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
710 a C-V variant chain that threads across objfiles: if one
711 objfile gets freed, then the other has a broken C-V chain.
712
713 This code used to try to copy over the main type from TYPE to
714 *TYPEPTR if they were in different objfiles, but that's
715 wrong, too: TYPE may have a field list or member function
716 lists, which refer to types of their own, etc. etc. The
717 whole shebang would need to be copied over recursively; you
718 can't have inter-objfile pointers. The only thing to do is
719 to leave stub types as stub types, and look them up afresh by
720 name each time you encounter them. */
721 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
722 }
723
724 ntype = make_qualified_type (type, new_flags,
725 typeptr ? *typeptr : NULL);
726
727 if (typeptr != NULL)
728 *typeptr = ntype;
729
730 return ntype;
731 }
732
733 /* Make a 'restrict'-qualified version of TYPE. */
734
735 struct type *
736 make_restrict_type (struct type *type)
737 {
738 return make_qualified_type (type,
739 (TYPE_INSTANCE_FLAGS (type)
740 | TYPE_INSTANCE_FLAG_RESTRICT),
741 NULL);
742 }
743
744 /* Make a type without const, volatile, or restrict. */
745
746 struct type *
747 make_unqualified_type (struct type *type)
748 {
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 & ~(TYPE_INSTANCE_FLAG_CONST
752 | TYPE_INSTANCE_FLAG_VOLATILE
753 | TYPE_INSTANCE_FLAG_RESTRICT)),
754 NULL);
755 }
756
757 /* Make a '_Atomic'-qualified version of TYPE. */
758
759 struct type *
760 make_atomic_type (struct type *type)
761 {
762 return make_qualified_type (type,
763 (TYPE_INSTANCE_FLAGS (type)
764 | TYPE_INSTANCE_FLAG_ATOMIC),
765 NULL);
766 }
767
768 /* Replace the contents of ntype with the type *type. This changes the
769 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
770 the changes are propogated to all types in the TYPE_CHAIN.
771
772 In order to build recursive types, it's inevitable that we'll need
773 to update types in place --- but this sort of indiscriminate
774 smashing is ugly, and needs to be replaced with something more
775 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
776 clear if more steps are needed. */
777
778 void
779 replace_type (struct type *ntype, struct type *type)
780 {
781 struct type *chain;
782
783 /* These two types had better be in the same objfile. Otherwise,
784 the assignment of one type's main type structure to the other
785 will produce a type with references to objects (names; field
786 lists; etc.) allocated on an objfile other than its own. */
787 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
788
789 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
790
791 /* The type length is not a part of the main type. Update it for
792 each type on the variant chain. */
793 chain = ntype;
794 do
795 {
796 /* Assert that this element of the chain has no address-class bits
797 set in its flags. Such type variants might have type lengths
798 which are supposed to be different from the non-address-class
799 variants. This assertion shouldn't ever be triggered because
800 symbol readers which do construct address-class variants don't
801 call replace_type(). */
802 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
803
804 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
805 chain = TYPE_CHAIN (chain);
806 }
807 while (ntype != chain);
808
809 /* Assert that the two types have equivalent instance qualifiers.
810 This should be true for at least all of our debug readers. */
811 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
812 }
813
814 /* Implement direct support for MEMBER_TYPE in GNU C++.
815 May need to construct such a type if this is the first use.
816 The TYPE is the type of the member. The DOMAIN is the type
817 of the aggregate that the member belongs to. */
818
819 struct type *
820 lookup_memberptr_type (struct type *type, struct type *domain)
821 {
822 struct type *mtype;
823
824 mtype = alloc_type_copy (type);
825 smash_to_memberptr_type (mtype, domain, type);
826 return mtype;
827 }
828
829 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
830
831 struct type *
832 lookup_methodptr_type (struct type *to_type)
833 {
834 struct type *mtype;
835
836 mtype = alloc_type_copy (to_type);
837 smash_to_methodptr_type (mtype, to_type);
838 return mtype;
839 }
840
841 /* Allocate a stub method whose return type is TYPE. This apparently
842 happens for speed of symbol reading, since parsing out the
843 arguments to the method is cpu-intensive, the way we are doing it.
844 So, we will fill in arguments later. This always returns a fresh
845 type. */
846
847 struct type *
848 allocate_stub_method (struct type *type)
849 {
850 struct type *mtype;
851
852 mtype = alloc_type_copy (type);
853 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
854 TYPE_LENGTH (mtype) = 1;
855 TYPE_STUB (mtype) = 1;
856 TYPE_TARGET_TYPE (mtype) = type;
857 /* TYPE_SELF_TYPE (mtype) = unknown yet */
858 return mtype;
859 }
860
861 /* See gdbtypes.h. */
862
863 bool
864 operator== (const dynamic_prop &l, const dynamic_prop &r)
865 {
866 if (l.kind != r.kind)
867 return false;
868
869 switch (l.kind)
870 {
871 case PROP_UNDEFINED:
872 return true;
873 case PROP_CONST:
874 return l.data.const_val == r.data.const_val;
875 case PROP_ADDR_OFFSET:
876 case PROP_LOCEXPR:
877 case PROP_LOCLIST:
878 return l.data.baton == r.data.baton;
879 }
880
881 gdb_assert_not_reached ("unhandled dynamic_prop kind");
882 }
883
884 /* See gdbtypes.h. */
885
886 bool
887 operator== (const range_bounds &l, const range_bounds &r)
888 {
889 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
890
891 return (FIELD_EQ (low)
892 && FIELD_EQ (high)
893 && FIELD_EQ (flag_upper_bound_is_count)
894 && FIELD_EQ (flag_bound_evaluated));
895
896 #undef FIELD_EQ
897 }
898
899 /* Create a range type with a dynamic range from LOW_BOUND to
900 HIGH_BOUND, inclusive. See create_range_type for further details. */
901
902 struct type *
903 create_range_type (struct type *result_type, struct type *index_type,
904 const struct dynamic_prop *low_bound,
905 const struct dynamic_prop *high_bound)
906 {
907 if (result_type == NULL)
908 result_type = alloc_type_copy (index_type);
909 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
910 TYPE_TARGET_TYPE (result_type) = index_type;
911 if (TYPE_STUB (index_type))
912 TYPE_TARGET_STUB (result_type) = 1;
913 else
914 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
915
916 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
917 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
918 TYPE_RANGE_DATA (result_type)->low = *low_bound;
919 TYPE_RANGE_DATA (result_type)->high = *high_bound;
920
921 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
922 TYPE_UNSIGNED (result_type) = 1;
923
924 /* Ada allows the declaration of range types whose upper bound is
925 less than the lower bound, so checking the lower bound is not
926 enough. Make sure we do not mark a range type whose upper bound
927 is negative as unsigned. */
928 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
929 TYPE_UNSIGNED (result_type) = 0;
930
931 return result_type;
932 }
933
934 /* Create a range type using either a blank type supplied in
935 RESULT_TYPE, or creating a new type, inheriting the objfile from
936 INDEX_TYPE.
937
938 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
939 to HIGH_BOUND, inclusive.
940
941 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
942 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
943
944 struct type *
945 create_static_range_type (struct type *result_type, struct type *index_type,
946 LONGEST low_bound, LONGEST high_bound)
947 {
948 struct dynamic_prop low, high;
949
950 low.kind = PROP_CONST;
951 low.data.const_val = low_bound;
952
953 high.kind = PROP_CONST;
954 high.data.const_val = high_bound;
955
956 result_type = create_range_type (result_type, index_type, &low, &high);
957
958 return result_type;
959 }
960
961 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
962 are static, otherwise returns 0. */
963
964 static int
965 has_static_range (const struct range_bounds *bounds)
966 {
967 return (bounds->low.kind == PROP_CONST
968 && bounds->high.kind == PROP_CONST);
969 }
970
971
972 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
973 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
974 bounds will fit in LONGEST), or -1 otherwise. */
975
976 int
977 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
978 {
979 type = check_typedef (type);
980 switch (TYPE_CODE (type))
981 {
982 case TYPE_CODE_RANGE:
983 *lowp = TYPE_LOW_BOUND (type);
984 *highp = TYPE_HIGH_BOUND (type);
985 return 1;
986 case TYPE_CODE_ENUM:
987 if (TYPE_NFIELDS (type) > 0)
988 {
989 /* The enums may not be sorted by value, so search all
990 entries. */
991 int i;
992
993 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
994 for (i = 0; i < TYPE_NFIELDS (type); i++)
995 {
996 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
997 *lowp = TYPE_FIELD_ENUMVAL (type, i);
998 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
999 *highp = TYPE_FIELD_ENUMVAL (type, i);
1000 }
1001
1002 /* Set unsigned indicator if warranted. */
1003 if (*lowp >= 0)
1004 {
1005 TYPE_UNSIGNED (type) = 1;
1006 }
1007 }
1008 else
1009 {
1010 *lowp = 0;
1011 *highp = -1;
1012 }
1013 return 0;
1014 case TYPE_CODE_BOOL:
1015 *lowp = 0;
1016 *highp = 1;
1017 return 0;
1018 case TYPE_CODE_INT:
1019 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1020 return -1;
1021 if (!TYPE_UNSIGNED (type))
1022 {
1023 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1024 *highp = -*lowp - 1;
1025 return 0;
1026 }
1027 /* ... fall through for unsigned ints ... */
1028 case TYPE_CODE_CHAR:
1029 *lowp = 0;
1030 /* This round-about calculation is to avoid shifting by
1031 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1032 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1033 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1034 *highp = (*highp - 1) | *highp;
1035 return 0;
1036 default:
1037 return -1;
1038 }
1039 }
1040
1041 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1042 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1043 Save the high bound into HIGH_BOUND if not NULL.
1044
1045 Return 1 if the operation was successful. Return zero otherwise,
1046 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1047
1048 We now simply use get_discrete_bounds call to get the values
1049 of the low and high bounds.
1050 get_discrete_bounds can return three values:
1051 1, meaning that index is a range,
1052 0, meaning that index is a discrete type,
1053 or -1 for failure. */
1054
1055 int
1056 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1057 {
1058 struct type *index = TYPE_INDEX_TYPE (type);
1059 LONGEST low = 0;
1060 LONGEST high = 0;
1061 int res;
1062
1063 if (index == NULL)
1064 return 0;
1065
1066 res = get_discrete_bounds (index, &low, &high);
1067 if (res == -1)
1068 return 0;
1069
1070 /* Check if the array bounds are undefined. */
1071 if (res == 1
1072 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1073 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1074 return 0;
1075
1076 if (low_bound)
1077 *low_bound = low;
1078
1079 if (high_bound)
1080 *high_bound = high;
1081
1082 return 1;
1083 }
1084
1085 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1086 representation of a value of this type, save the corresponding
1087 position number in POS.
1088
1089 Its differs from VAL only in the case of enumeration types. In
1090 this case, the position number of the value of the first listed
1091 enumeration literal is zero; the position number of the value of
1092 each subsequent enumeration literal is one more than that of its
1093 predecessor in the list.
1094
1095 Return 1 if the operation was successful. Return zero otherwise,
1096 in which case the value of POS is unmodified.
1097 */
1098
1099 int
1100 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1101 {
1102 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1103 {
1104 int i;
1105
1106 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1107 {
1108 if (val == TYPE_FIELD_ENUMVAL (type, i))
1109 {
1110 *pos = i;
1111 return 1;
1112 }
1113 }
1114 /* Invalid enumeration value. */
1115 return 0;
1116 }
1117 else
1118 {
1119 *pos = val;
1120 return 1;
1121 }
1122 }
1123
1124 /* Create an array type using either a blank type supplied in
1125 RESULT_TYPE, or creating a new type, inheriting the objfile from
1126 RANGE_TYPE.
1127
1128 Elements will be of type ELEMENT_TYPE, the indices will be of type
1129 RANGE_TYPE.
1130
1131 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1132 This byte stride property is added to the resulting array type
1133 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1134 argument can only be used to create types that are objfile-owned
1135 (see add_dyn_prop), meaning that either this function must be called
1136 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1137
1138 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1139 If BIT_STRIDE is not zero, build a packed array type whose element
1140 size is BIT_STRIDE. Otherwise, ignore this parameter.
1141
1142 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1143 sure it is TYPE_CODE_UNDEF before we bash it into an array
1144 type? */
1145
1146 struct type *
1147 create_array_type_with_stride (struct type *result_type,
1148 struct type *element_type,
1149 struct type *range_type,
1150 struct dynamic_prop *byte_stride_prop,
1151 unsigned int bit_stride)
1152 {
1153 if (byte_stride_prop != NULL
1154 && byte_stride_prop->kind == PROP_CONST)
1155 {
1156 /* The byte stride is actually not dynamic. Pretend we were
1157 called with bit_stride set instead of byte_stride_prop.
1158 This will give us the same result type, while avoiding
1159 the need to handle this as a special case. */
1160 bit_stride = byte_stride_prop->data.const_val * 8;
1161 byte_stride_prop = NULL;
1162 }
1163
1164 if (result_type == NULL)
1165 result_type = alloc_type_copy (range_type);
1166
1167 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1168 TYPE_TARGET_TYPE (result_type) = element_type;
1169 if (byte_stride_prop == NULL
1170 && has_static_range (TYPE_RANGE_DATA (range_type))
1171 && (!type_not_associated (result_type)
1172 && !type_not_allocated (result_type)))
1173 {
1174 LONGEST low_bound, high_bound;
1175
1176 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1177 low_bound = high_bound = 0;
1178 element_type = check_typedef (element_type);
1179 /* Be careful when setting the array length. Ada arrays can be
1180 empty arrays with the high_bound being smaller than the low_bound.
1181 In such cases, the array length should be zero. */
1182 if (high_bound < low_bound)
1183 TYPE_LENGTH (result_type) = 0;
1184 else if (bit_stride > 0)
1185 TYPE_LENGTH (result_type) =
1186 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1187 else
1188 TYPE_LENGTH (result_type) =
1189 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1190 }
1191 else
1192 {
1193 /* This type is dynamic and its length needs to be computed
1194 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1195 undefined by setting it to zero. Although we are not expected
1196 to trust TYPE_LENGTH in this case, setting the size to zero
1197 allows us to avoid allocating objects of random sizes in case
1198 we accidently do. */
1199 TYPE_LENGTH (result_type) = 0;
1200 }
1201
1202 TYPE_NFIELDS (result_type) = 1;
1203 TYPE_FIELDS (result_type) =
1204 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1205 TYPE_INDEX_TYPE (result_type) = range_type;
1206 if (byte_stride_prop != NULL)
1207 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1208 else if (bit_stride > 0)
1209 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1210
1211 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1212 if (TYPE_LENGTH (result_type) == 0)
1213 TYPE_TARGET_STUB (result_type) = 1;
1214
1215 return result_type;
1216 }
1217
1218 /* Same as create_array_type_with_stride but with no bit_stride
1219 (BIT_STRIDE = 0), thus building an unpacked array. */
1220
1221 struct type *
1222 create_array_type (struct type *result_type,
1223 struct type *element_type,
1224 struct type *range_type)
1225 {
1226 return create_array_type_with_stride (result_type, element_type,
1227 range_type, NULL, 0);
1228 }
1229
1230 struct type *
1231 lookup_array_range_type (struct type *element_type,
1232 LONGEST low_bound, LONGEST high_bound)
1233 {
1234 struct type *index_type;
1235 struct type *range_type;
1236
1237 if (TYPE_OBJFILE_OWNED (element_type))
1238 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1239 else
1240 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1241 range_type = create_static_range_type (NULL, index_type,
1242 low_bound, high_bound);
1243
1244 return create_array_type (NULL, element_type, range_type);
1245 }
1246
1247 /* Create a string type using either a blank type supplied in
1248 RESULT_TYPE, or creating a new type. String types are similar
1249 enough to array of char types that we can use create_array_type to
1250 build the basic type and then bash it into a string type.
1251
1252 For fixed length strings, the range type contains 0 as the lower
1253 bound and the length of the string minus one as the upper bound.
1254
1255 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1256 sure it is TYPE_CODE_UNDEF before we bash it into a string
1257 type? */
1258
1259 struct type *
1260 create_string_type (struct type *result_type,
1261 struct type *string_char_type,
1262 struct type *range_type)
1263 {
1264 result_type = create_array_type (result_type,
1265 string_char_type,
1266 range_type);
1267 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1268 return result_type;
1269 }
1270
1271 struct type *
1272 lookup_string_range_type (struct type *string_char_type,
1273 LONGEST low_bound, LONGEST high_bound)
1274 {
1275 struct type *result_type;
1276
1277 result_type = lookup_array_range_type (string_char_type,
1278 low_bound, high_bound);
1279 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1280 return result_type;
1281 }
1282
1283 struct type *
1284 create_set_type (struct type *result_type, struct type *domain_type)
1285 {
1286 if (result_type == NULL)
1287 result_type = alloc_type_copy (domain_type);
1288
1289 TYPE_CODE (result_type) = TYPE_CODE_SET;
1290 TYPE_NFIELDS (result_type) = 1;
1291 TYPE_FIELDS (result_type)
1292 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1293
1294 if (!TYPE_STUB (domain_type))
1295 {
1296 LONGEST low_bound, high_bound, bit_length;
1297
1298 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1299 low_bound = high_bound = 0;
1300 bit_length = high_bound - low_bound + 1;
1301 TYPE_LENGTH (result_type)
1302 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1303 if (low_bound >= 0)
1304 TYPE_UNSIGNED (result_type) = 1;
1305 }
1306 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1307
1308 return result_type;
1309 }
1310
1311 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1312 and any array types nested inside it. */
1313
1314 void
1315 make_vector_type (struct type *array_type)
1316 {
1317 struct type *inner_array, *elt_type;
1318 int flags;
1319
1320 /* Find the innermost array type, in case the array is
1321 multi-dimensional. */
1322 inner_array = array_type;
1323 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1324 inner_array = TYPE_TARGET_TYPE (inner_array);
1325
1326 elt_type = TYPE_TARGET_TYPE (inner_array);
1327 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1328 {
1329 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1330 elt_type = make_qualified_type (elt_type, flags, NULL);
1331 TYPE_TARGET_TYPE (inner_array) = elt_type;
1332 }
1333
1334 TYPE_VECTOR (array_type) = 1;
1335 }
1336
1337 struct type *
1338 init_vector_type (struct type *elt_type, int n)
1339 {
1340 struct type *array_type;
1341
1342 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1343 make_vector_type (array_type);
1344 return array_type;
1345 }
1346
1347 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1348 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1349 confusing. "self" is a common enough replacement for "this".
1350 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1351 TYPE_CODE_METHOD. */
1352
1353 struct type *
1354 internal_type_self_type (struct type *type)
1355 {
1356 switch (TYPE_CODE (type))
1357 {
1358 case TYPE_CODE_METHODPTR:
1359 case TYPE_CODE_MEMBERPTR:
1360 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1361 return NULL;
1362 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1363 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1364 case TYPE_CODE_METHOD:
1365 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1366 return NULL;
1367 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1368 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1369 default:
1370 gdb_assert_not_reached ("bad type");
1371 }
1372 }
1373
1374 /* Set the type of the class that TYPE belongs to.
1375 In c++ this is the class of "this".
1376 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1377 TYPE_CODE_METHOD. */
1378
1379 void
1380 set_type_self_type (struct type *type, struct type *self_type)
1381 {
1382 switch (TYPE_CODE (type))
1383 {
1384 case TYPE_CODE_METHODPTR:
1385 case TYPE_CODE_MEMBERPTR:
1386 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1387 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1388 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1389 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1390 break;
1391 case TYPE_CODE_METHOD:
1392 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1393 INIT_FUNC_SPECIFIC (type);
1394 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1395 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1396 break;
1397 default:
1398 gdb_assert_not_reached ("bad type");
1399 }
1400 }
1401
1402 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1403 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1404 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1405 TYPE doesn't include the offset (that's the value of the MEMBER
1406 itself), but does include the structure type into which it points
1407 (for some reason).
1408
1409 When "smashing" the type, we preserve the objfile that the old type
1410 pointed to, since we aren't changing where the type is actually
1411 allocated. */
1412
1413 void
1414 smash_to_memberptr_type (struct type *type, struct type *self_type,
1415 struct type *to_type)
1416 {
1417 smash_type (type);
1418 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1419 TYPE_TARGET_TYPE (type) = to_type;
1420 set_type_self_type (type, self_type);
1421 /* Assume that a data member pointer is the same size as a normal
1422 pointer. */
1423 TYPE_LENGTH (type)
1424 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1425 }
1426
1427 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1428
1429 When "smashing" the type, we preserve the objfile that the old type
1430 pointed to, since we aren't changing where the type is actually
1431 allocated. */
1432
1433 void
1434 smash_to_methodptr_type (struct type *type, struct type *to_type)
1435 {
1436 smash_type (type);
1437 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1438 TYPE_TARGET_TYPE (type) = to_type;
1439 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1440 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1441 }
1442
1443 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1444 METHOD just means `function that gets an extra "this" argument'.
1445
1446 When "smashing" the type, we preserve the objfile that the old type
1447 pointed to, since we aren't changing where the type is actually
1448 allocated. */
1449
1450 void
1451 smash_to_method_type (struct type *type, struct type *self_type,
1452 struct type *to_type, struct field *args,
1453 int nargs, int varargs)
1454 {
1455 smash_type (type);
1456 TYPE_CODE (type) = TYPE_CODE_METHOD;
1457 TYPE_TARGET_TYPE (type) = to_type;
1458 set_type_self_type (type, self_type);
1459 TYPE_FIELDS (type) = args;
1460 TYPE_NFIELDS (type) = nargs;
1461 if (varargs)
1462 TYPE_VARARGS (type) = 1;
1463 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1464 }
1465
1466 /* Return a typename for a struct/union/enum type without "struct ",
1467 "union ", or "enum ". If the type has a NULL name, return NULL. */
1468
1469 const char *
1470 type_name_no_tag (const struct type *type)
1471 {
1472 if (TYPE_TAG_NAME (type) != NULL)
1473 return TYPE_TAG_NAME (type);
1474
1475 /* Is there code which expects this to return the name if there is
1476 no tag name? My guess is that this is mainly used for C++ in
1477 cases where the two will always be the same. */
1478 return TYPE_NAME (type);
1479 }
1480
1481 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1482 Since GCC PR debug/47510 DWARF provides associated information to detect the
1483 anonymous class linkage name from its typedef.
1484
1485 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1486 apply it itself. */
1487
1488 const char *
1489 type_name_no_tag_or_error (struct type *type)
1490 {
1491 struct type *saved_type = type;
1492 const char *name;
1493 struct objfile *objfile;
1494
1495 type = check_typedef (type);
1496
1497 name = type_name_no_tag (type);
1498 if (name != NULL)
1499 return name;
1500
1501 name = type_name_no_tag (saved_type);
1502 objfile = TYPE_OBJFILE (saved_type);
1503 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1504 name ? name : "<anonymous>",
1505 objfile ? objfile_name (objfile) : "<arch>");
1506 }
1507
1508 /* Lookup a typedef or primitive type named NAME, visible in lexical
1509 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1510 suitably defined. */
1511
1512 struct type *
1513 lookup_typename (const struct language_defn *language,
1514 struct gdbarch *gdbarch, const char *name,
1515 const struct block *block, int noerr)
1516 {
1517 struct symbol *sym;
1518
1519 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1520 language->la_language, NULL).symbol;
1521 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1522 return SYMBOL_TYPE (sym);
1523
1524 if (noerr)
1525 return NULL;
1526 error (_("No type named %s."), name);
1527 }
1528
1529 struct type *
1530 lookup_unsigned_typename (const struct language_defn *language,
1531 struct gdbarch *gdbarch, const char *name)
1532 {
1533 char *uns = (char *) alloca (strlen (name) + 10);
1534
1535 strcpy (uns, "unsigned ");
1536 strcpy (uns + 9, name);
1537 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1538 }
1539
1540 struct type *
1541 lookup_signed_typename (const struct language_defn *language,
1542 struct gdbarch *gdbarch, const char *name)
1543 {
1544 struct type *t;
1545 char *uns = (char *) alloca (strlen (name) + 8);
1546
1547 strcpy (uns, "signed ");
1548 strcpy (uns + 7, name);
1549 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1550 /* If we don't find "signed FOO" just try again with plain "FOO". */
1551 if (t != NULL)
1552 return t;
1553 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1554 }
1555
1556 /* Lookup a structure type named "struct NAME",
1557 visible in lexical block BLOCK. */
1558
1559 struct type *
1560 lookup_struct (const char *name, const struct block *block)
1561 {
1562 struct symbol *sym;
1563
1564 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1565
1566 if (sym == NULL)
1567 {
1568 error (_("No struct type named %s."), name);
1569 }
1570 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1571 {
1572 error (_("This context has class, union or enum %s, not a struct."),
1573 name);
1574 }
1575 return (SYMBOL_TYPE (sym));
1576 }
1577
1578 /* Lookup a union type named "union NAME",
1579 visible in lexical block BLOCK. */
1580
1581 struct type *
1582 lookup_union (const char *name, const struct block *block)
1583 {
1584 struct symbol *sym;
1585 struct type *t;
1586
1587 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1588
1589 if (sym == NULL)
1590 error (_("No union type named %s."), name);
1591
1592 t = SYMBOL_TYPE (sym);
1593
1594 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1595 return t;
1596
1597 /* If we get here, it's not a union. */
1598 error (_("This context has class, struct or enum %s, not a union."),
1599 name);
1600 }
1601
1602 /* Lookup an enum type named "enum NAME",
1603 visible in lexical block BLOCK. */
1604
1605 struct type *
1606 lookup_enum (const char *name, const struct block *block)
1607 {
1608 struct symbol *sym;
1609
1610 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1611 if (sym == NULL)
1612 {
1613 error (_("No enum type named %s."), name);
1614 }
1615 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1616 {
1617 error (_("This context has class, struct or union %s, not an enum."),
1618 name);
1619 }
1620 return (SYMBOL_TYPE (sym));
1621 }
1622
1623 /* Lookup a template type named "template NAME<TYPE>",
1624 visible in lexical block BLOCK. */
1625
1626 struct type *
1627 lookup_template_type (char *name, struct type *type,
1628 const struct block *block)
1629 {
1630 struct symbol *sym;
1631 char *nam = (char *)
1632 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1633
1634 strcpy (nam, name);
1635 strcat (nam, "<");
1636 strcat (nam, TYPE_NAME (type));
1637 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1638
1639 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1640
1641 if (sym == NULL)
1642 {
1643 error (_("No template type named %s."), name);
1644 }
1645 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1646 {
1647 error (_("This context has class, union or enum %s, not a struct."),
1648 name);
1649 }
1650 return (SYMBOL_TYPE (sym));
1651 }
1652
1653 /* Given a type TYPE, lookup the type of the component of type named
1654 NAME.
1655
1656 TYPE can be either a struct or union, or a pointer or reference to
1657 a struct or union. If it is a pointer or reference, its target
1658 type is automatically used. Thus '.' and '->' are interchangable,
1659 as specified for the definitions of the expression element types
1660 STRUCTOP_STRUCT and STRUCTOP_PTR.
1661
1662 If NOERR is nonzero, return zero if NAME is not suitably defined.
1663 If NAME is the name of a baseclass type, return that type. */
1664
1665 struct type *
1666 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1667 {
1668 int i;
1669
1670 for (;;)
1671 {
1672 type = check_typedef (type);
1673 if (TYPE_CODE (type) != TYPE_CODE_PTR
1674 && TYPE_CODE (type) != TYPE_CODE_REF)
1675 break;
1676 type = TYPE_TARGET_TYPE (type);
1677 }
1678
1679 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1680 && TYPE_CODE (type) != TYPE_CODE_UNION)
1681 {
1682 std::string type_name = type_to_string (type);
1683 error (_("Type %s is not a structure or union type."),
1684 type_name.c_str ());
1685 }
1686
1687 #if 0
1688 /* FIXME: This change put in by Michael seems incorrect for the case
1689 where the structure tag name is the same as the member name.
1690 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1691 foo; } bell;" Disabled by fnf. */
1692 {
1693 char *type_name;
1694
1695 type_name = type_name_no_tag (type);
1696 if (type_name != NULL && strcmp (type_name, name) == 0)
1697 return type;
1698 }
1699 #endif
1700
1701 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1702 {
1703 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1704
1705 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1706 {
1707 return TYPE_FIELD_TYPE (type, i);
1708 }
1709 else if (!t_field_name || *t_field_name == '\0')
1710 {
1711 struct type *subtype
1712 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1713
1714 if (subtype != NULL)
1715 return subtype;
1716 }
1717 }
1718
1719 /* OK, it's not in this class. Recursively check the baseclasses. */
1720 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1721 {
1722 struct type *t;
1723
1724 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1725 if (t != NULL)
1726 {
1727 return t;
1728 }
1729 }
1730
1731 if (noerr)
1732 {
1733 return NULL;
1734 }
1735
1736 std::string type_name = type_to_string (type);
1737 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1738 }
1739
1740 /* Store in *MAX the largest number representable by unsigned integer type
1741 TYPE. */
1742
1743 void
1744 get_unsigned_type_max (struct type *type, ULONGEST *max)
1745 {
1746 unsigned int n;
1747
1748 type = check_typedef (type);
1749 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1750 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1751
1752 /* Written this way to avoid overflow. */
1753 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1754 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1755 }
1756
1757 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1758 signed integer type TYPE. */
1759
1760 void
1761 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1762 {
1763 unsigned int n;
1764
1765 type = check_typedef (type);
1766 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1767 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1768
1769 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1770 *min = -((ULONGEST) 1 << (n - 1));
1771 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1772 }
1773
1774 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1775 cplus_stuff.vptr_fieldno.
1776
1777 cplus_stuff is initialized to cplus_struct_default which does not
1778 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1779 designated initializers). We cope with that here. */
1780
1781 int
1782 internal_type_vptr_fieldno (struct type *type)
1783 {
1784 type = check_typedef (type);
1785 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1786 || TYPE_CODE (type) == TYPE_CODE_UNION);
1787 if (!HAVE_CPLUS_STRUCT (type))
1788 return -1;
1789 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1790 }
1791
1792 /* Set the value of cplus_stuff.vptr_fieldno. */
1793
1794 void
1795 set_type_vptr_fieldno (struct type *type, int fieldno)
1796 {
1797 type = check_typedef (type);
1798 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1799 || TYPE_CODE (type) == TYPE_CODE_UNION);
1800 if (!HAVE_CPLUS_STRUCT (type))
1801 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1802 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1803 }
1804
1805 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1806 cplus_stuff.vptr_basetype. */
1807
1808 struct type *
1809 internal_type_vptr_basetype (struct type *type)
1810 {
1811 type = check_typedef (type);
1812 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1813 || TYPE_CODE (type) == TYPE_CODE_UNION);
1814 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1815 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1816 }
1817
1818 /* Set the value of cplus_stuff.vptr_basetype. */
1819
1820 void
1821 set_type_vptr_basetype (struct type *type, struct type *basetype)
1822 {
1823 type = check_typedef (type);
1824 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1825 || TYPE_CODE (type) == TYPE_CODE_UNION);
1826 if (!HAVE_CPLUS_STRUCT (type))
1827 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1828 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1829 }
1830
1831 /* Lookup the vptr basetype/fieldno values for TYPE.
1832 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1833 vptr_fieldno. Also, if found and basetype is from the same objfile,
1834 cache the results.
1835 If not found, return -1 and ignore BASETYPEP.
1836 Callers should be aware that in some cases (for example,
1837 the type or one of its baseclasses is a stub type and we are
1838 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1839 this function will not be able to find the
1840 virtual function table pointer, and vptr_fieldno will remain -1 and
1841 vptr_basetype will remain NULL or incomplete. */
1842
1843 int
1844 get_vptr_fieldno (struct type *type, struct type **basetypep)
1845 {
1846 type = check_typedef (type);
1847
1848 if (TYPE_VPTR_FIELDNO (type) < 0)
1849 {
1850 int i;
1851
1852 /* We must start at zero in case the first (and only) baseclass
1853 is virtual (and hence we cannot share the table pointer). */
1854 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1855 {
1856 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1857 int fieldno;
1858 struct type *basetype;
1859
1860 fieldno = get_vptr_fieldno (baseclass, &basetype);
1861 if (fieldno >= 0)
1862 {
1863 /* If the type comes from a different objfile we can't cache
1864 it, it may have a different lifetime. PR 2384 */
1865 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1866 {
1867 set_type_vptr_fieldno (type, fieldno);
1868 set_type_vptr_basetype (type, basetype);
1869 }
1870 if (basetypep)
1871 *basetypep = basetype;
1872 return fieldno;
1873 }
1874 }
1875
1876 /* Not found. */
1877 return -1;
1878 }
1879 else
1880 {
1881 if (basetypep)
1882 *basetypep = TYPE_VPTR_BASETYPE (type);
1883 return TYPE_VPTR_FIELDNO (type);
1884 }
1885 }
1886
1887 static void
1888 stub_noname_complaint (void)
1889 {
1890 complaint (&symfile_complaints, _("stub type has NULL name"));
1891 }
1892
1893 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1894 attached to it, and that property has a non-constant value. */
1895
1896 static int
1897 array_type_has_dynamic_stride (struct type *type)
1898 {
1899 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1900
1901 return (prop != NULL && prop->kind != PROP_CONST);
1902 }
1903
1904 /* Worker for is_dynamic_type. */
1905
1906 static int
1907 is_dynamic_type_internal (struct type *type, int top_level)
1908 {
1909 type = check_typedef (type);
1910
1911 /* We only want to recognize references at the outermost level. */
1912 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1913 type = check_typedef (TYPE_TARGET_TYPE (type));
1914
1915 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1916 dynamic, even if the type itself is statically defined.
1917 From a user's point of view, this may appear counter-intuitive;
1918 but it makes sense in this context, because the point is to determine
1919 whether any part of the type needs to be resolved before it can
1920 be exploited. */
1921 if (TYPE_DATA_LOCATION (type) != NULL
1922 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1923 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1924 return 1;
1925
1926 if (TYPE_ASSOCIATED_PROP (type))
1927 return 1;
1928
1929 if (TYPE_ALLOCATED_PROP (type))
1930 return 1;
1931
1932 switch (TYPE_CODE (type))
1933 {
1934 case TYPE_CODE_RANGE:
1935 {
1936 /* A range type is obviously dynamic if it has at least one
1937 dynamic bound. But also consider the range type to be
1938 dynamic when its subtype is dynamic, even if the bounds
1939 of the range type are static. It allows us to assume that
1940 the subtype of a static range type is also static. */
1941 return (!has_static_range (TYPE_RANGE_DATA (type))
1942 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1943 }
1944
1945 case TYPE_CODE_ARRAY:
1946 {
1947 gdb_assert (TYPE_NFIELDS (type) == 1);
1948
1949 /* The array is dynamic if either the bounds are dynamic... */
1950 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1951 return 1;
1952 /* ... or the elements it contains have a dynamic contents... */
1953 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1954 return 1;
1955 /* ... or if it has a dynamic stride... */
1956 if (array_type_has_dynamic_stride (type))
1957 return 1;
1958 return 0;
1959 }
1960
1961 case TYPE_CODE_STRUCT:
1962 case TYPE_CODE_UNION:
1963 {
1964 int i;
1965
1966 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1967 if (!field_is_static (&TYPE_FIELD (type, i))
1968 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1969 return 1;
1970 }
1971 break;
1972 }
1973
1974 return 0;
1975 }
1976
1977 /* See gdbtypes.h. */
1978
1979 int
1980 is_dynamic_type (struct type *type)
1981 {
1982 return is_dynamic_type_internal (type, 1);
1983 }
1984
1985 static struct type *resolve_dynamic_type_internal
1986 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1987
1988 /* Given a dynamic range type (dyn_range_type) and a stack of
1989 struct property_addr_info elements, return a static version
1990 of that type. */
1991
1992 static struct type *
1993 resolve_dynamic_range (struct type *dyn_range_type,
1994 struct property_addr_info *addr_stack)
1995 {
1996 CORE_ADDR value;
1997 struct type *static_range_type, *static_target_type;
1998 const struct dynamic_prop *prop;
1999 struct dynamic_prop low_bound, high_bound;
2000
2001 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2002
2003 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2004 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2005 {
2006 low_bound.kind = PROP_CONST;
2007 low_bound.data.const_val = value;
2008 }
2009 else
2010 {
2011 low_bound.kind = PROP_UNDEFINED;
2012 low_bound.data.const_val = 0;
2013 }
2014
2015 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2016 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2017 {
2018 high_bound.kind = PROP_CONST;
2019 high_bound.data.const_val = value;
2020
2021 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2022 high_bound.data.const_val
2023 = low_bound.data.const_val + high_bound.data.const_val - 1;
2024 }
2025 else
2026 {
2027 high_bound.kind = PROP_UNDEFINED;
2028 high_bound.data.const_val = 0;
2029 }
2030
2031 static_target_type
2032 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2033 addr_stack, 0);
2034 static_range_type = create_range_type (copy_type (dyn_range_type),
2035 static_target_type,
2036 &low_bound, &high_bound);
2037 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2038 return static_range_type;
2039 }
2040
2041 /* Resolves dynamic bound values of an array type TYPE to static ones.
2042 ADDR_STACK is a stack of struct property_addr_info to be used
2043 if needed during the dynamic resolution. */
2044
2045 static struct type *
2046 resolve_dynamic_array (struct type *type,
2047 struct property_addr_info *addr_stack)
2048 {
2049 CORE_ADDR value;
2050 struct type *elt_type;
2051 struct type *range_type;
2052 struct type *ary_dim;
2053 struct dynamic_prop *prop;
2054 unsigned int bit_stride = 0;
2055
2056 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2057
2058 type = copy_type (type);
2059
2060 elt_type = type;
2061 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2062 range_type = resolve_dynamic_range (range_type, addr_stack);
2063
2064 /* Resolve allocated/associated here before creating a new array type, which
2065 will update the length of the array accordingly. */
2066 prop = TYPE_ALLOCATED_PROP (type);
2067 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2068 {
2069 TYPE_DYN_PROP_ADDR (prop) = value;
2070 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2071 }
2072 prop = TYPE_ASSOCIATED_PROP (type);
2073 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2074 {
2075 TYPE_DYN_PROP_ADDR (prop) = value;
2076 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2077 }
2078
2079 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2080
2081 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2082 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2083 else
2084 elt_type = TYPE_TARGET_TYPE (type);
2085
2086 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2087 if (prop != NULL)
2088 {
2089 int prop_eval_ok
2090 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2091
2092 if (prop_eval_ok)
2093 {
2094 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2095 bit_stride = (unsigned int) (value * 8);
2096 }
2097 else
2098 {
2099 /* Could be a bug in our code, but it could also happen
2100 if the DWARF info is not correct. Issue a warning,
2101 and assume no byte/bit stride (leave bit_stride = 0). */
2102 warning (_("cannot determine array stride for type %s"),
2103 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2104 }
2105 }
2106 else
2107 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2108
2109 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2110 bit_stride);
2111 }
2112
2113 /* Resolve dynamic bounds of members of the union TYPE to static
2114 bounds. ADDR_STACK is a stack of struct property_addr_info
2115 to be used if needed during the dynamic resolution. */
2116
2117 static struct type *
2118 resolve_dynamic_union (struct type *type,
2119 struct property_addr_info *addr_stack)
2120 {
2121 struct type *resolved_type;
2122 int i;
2123 unsigned int max_len = 0;
2124
2125 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2126
2127 resolved_type = copy_type (type);
2128 TYPE_FIELDS (resolved_type)
2129 = (struct field *) TYPE_ALLOC (resolved_type,
2130 TYPE_NFIELDS (resolved_type)
2131 * sizeof (struct field));
2132 memcpy (TYPE_FIELDS (resolved_type),
2133 TYPE_FIELDS (type),
2134 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2135 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2136 {
2137 struct type *t;
2138
2139 if (field_is_static (&TYPE_FIELD (type, i)))
2140 continue;
2141
2142 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2143 addr_stack, 0);
2144 TYPE_FIELD_TYPE (resolved_type, i) = t;
2145 if (TYPE_LENGTH (t) > max_len)
2146 max_len = TYPE_LENGTH (t);
2147 }
2148
2149 TYPE_LENGTH (resolved_type) = max_len;
2150 return resolved_type;
2151 }
2152
2153 /* Resolve dynamic bounds of members of the struct TYPE to static
2154 bounds. ADDR_STACK is a stack of struct property_addr_info to
2155 be used if needed during the dynamic resolution. */
2156
2157 static struct type *
2158 resolve_dynamic_struct (struct type *type,
2159 struct property_addr_info *addr_stack)
2160 {
2161 struct type *resolved_type;
2162 int i;
2163 unsigned resolved_type_bit_length = 0;
2164
2165 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2166 gdb_assert (TYPE_NFIELDS (type) > 0);
2167
2168 resolved_type = copy_type (type);
2169 TYPE_FIELDS (resolved_type)
2170 = (struct field *) TYPE_ALLOC (resolved_type,
2171 TYPE_NFIELDS (resolved_type)
2172 * sizeof (struct field));
2173 memcpy (TYPE_FIELDS (resolved_type),
2174 TYPE_FIELDS (type),
2175 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2176 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2177 {
2178 unsigned new_bit_length;
2179 struct property_addr_info pinfo;
2180
2181 if (field_is_static (&TYPE_FIELD (type, i)))
2182 continue;
2183
2184 /* As we know this field is not a static field, the field's
2185 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2186 this is the case, but only trigger a simple error rather
2187 than an internal error if that fails. While failing
2188 that verification indicates a bug in our code, the error
2189 is not severe enough to suggest to the user he stops
2190 his debugging session because of it. */
2191 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2192 error (_("Cannot determine struct field location"
2193 " (invalid location kind)"));
2194
2195 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2196 pinfo.valaddr = addr_stack->valaddr;
2197 pinfo.addr
2198 = (addr_stack->addr
2199 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2200 pinfo.next = addr_stack;
2201
2202 TYPE_FIELD_TYPE (resolved_type, i)
2203 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2204 &pinfo, 0);
2205 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2206 == FIELD_LOC_KIND_BITPOS);
2207
2208 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2209 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2210 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2211 else
2212 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2213 * TARGET_CHAR_BIT);
2214
2215 /* Normally, we would use the position and size of the last field
2216 to determine the size of the enclosing structure. But GCC seems
2217 to be encoding the position of some fields incorrectly when
2218 the struct contains a dynamic field that is not placed last.
2219 So we compute the struct size based on the field that has
2220 the highest position + size - probably the best we can do. */
2221 if (new_bit_length > resolved_type_bit_length)
2222 resolved_type_bit_length = new_bit_length;
2223 }
2224
2225 /* The length of a type won't change for fortran, but it does for C and Ada.
2226 For fortran the size of dynamic fields might change over time but not the
2227 type length of the structure. If we adapt it, we run into problems
2228 when calculating the element offset for arrays of structs. */
2229 if (current_language->la_language != language_fortran)
2230 TYPE_LENGTH (resolved_type)
2231 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2232
2233 /* The Ada language uses this field as a cache for static fixed types: reset
2234 it as RESOLVED_TYPE must have its own static fixed type. */
2235 TYPE_TARGET_TYPE (resolved_type) = NULL;
2236
2237 return resolved_type;
2238 }
2239
2240 /* Worker for resolved_dynamic_type. */
2241
2242 static struct type *
2243 resolve_dynamic_type_internal (struct type *type,
2244 struct property_addr_info *addr_stack,
2245 int top_level)
2246 {
2247 struct type *real_type = check_typedef (type);
2248 struct type *resolved_type = type;
2249 struct dynamic_prop *prop;
2250 CORE_ADDR value;
2251
2252 if (!is_dynamic_type_internal (real_type, top_level))
2253 return type;
2254
2255 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2256 {
2257 resolved_type = copy_type (type);
2258 TYPE_TARGET_TYPE (resolved_type)
2259 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2260 top_level);
2261 }
2262 else
2263 {
2264 /* Before trying to resolve TYPE, make sure it is not a stub. */
2265 type = real_type;
2266
2267 switch (TYPE_CODE (type))
2268 {
2269 case TYPE_CODE_REF:
2270 {
2271 struct property_addr_info pinfo;
2272
2273 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2274 pinfo.valaddr = NULL;
2275 if (addr_stack->valaddr != NULL)
2276 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2277 else
2278 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2279 pinfo.next = addr_stack;
2280
2281 resolved_type = copy_type (type);
2282 TYPE_TARGET_TYPE (resolved_type)
2283 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2284 &pinfo, top_level);
2285 break;
2286 }
2287
2288 case TYPE_CODE_ARRAY:
2289 resolved_type = resolve_dynamic_array (type, addr_stack);
2290 break;
2291
2292 case TYPE_CODE_RANGE:
2293 resolved_type = resolve_dynamic_range (type, addr_stack);
2294 break;
2295
2296 case TYPE_CODE_UNION:
2297 resolved_type = resolve_dynamic_union (type, addr_stack);
2298 break;
2299
2300 case TYPE_CODE_STRUCT:
2301 resolved_type = resolve_dynamic_struct (type, addr_stack);
2302 break;
2303 }
2304 }
2305
2306 /* Resolve data_location attribute. */
2307 prop = TYPE_DATA_LOCATION (resolved_type);
2308 if (prop != NULL
2309 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2310 {
2311 TYPE_DYN_PROP_ADDR (prop) = value;
2312 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2313 }
2314
2315 return resolved_type;
2316 }
2317
2318 /* See gdbtypes.h */
2319
2320 struct type *
2321 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2322 CORE_ADDR addr)
2323 {
2324 struct property_addr_info pinfo
2325 = {check_typedef (type), valaddr, addr, NULL};
2326
2327 return resolve_dynamic_type_internal (type, &pinfo, 1);
2328 }
2329
2330 /* See gdbtypes.h */
2331
2332 struct dynamic_prop *
2333 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2334 {
2335 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2336
2337 while (node != NULL)
2338 {
2339 if (node->prop_kind == prop_kind)
2340 return &node->prop;
2341 node = node->next;
2342 }
2343 return NULL;
2344 }
2345
2346 /* See gdbtypes.h */
2347
2348 void
2349 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2350 struct type *type)
2351 {
2352 struct dynamic_prop_list *temp;
2353
2354 gdb_assert (TYPE_OBJFILE_OWNED (type));
2355
2356 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2357 struct dynamic_prop_list);
2358 temp->prop_kind = prop_kind;
2359 temp->prop = prop;
2360 temp->next = TYPE_DYN_PROP_LIST (type);
2361
2362 TYPE_DYN_PROP_LIST (type) = temp;
2363 }
2364
2365 /* Remove dynamic property from TYPE in case it exists. */
2366
2367 void
2368 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2369 struct type *type)
2370 {
2371 struct dynamic_prop_list *prev_node, *curr_node;
2372
2373 curr_node = TYPE_DYN_PROP_LIST (type);
2374 prev_node = NULL;
2375
2376 while (NULL != curr_node)
2377 {
2378 if (curr_node->prop_kind == prop_kind)
2379 {
2380 /* Update the linked list but don't free anything.
2381 The property was allocated on objstack and it is not known
2382 if we are on top of it. Nevertheless, everything is released
2383 when the complete objstack is freed. */
2384 if (NULL == prev_node)
2385 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2386 else
2387 prev_node->next = curr_node->next;
2388
2389 return;
2390 }
2391
2392 prev_node = curr_node;
2393 curr_node = curr_node->next;
2394 }
2395 }
2396
2397 /* Find the real type of TYPE. This function returns the real type,
2398 after removing all layers of typedefs, and completing opaque or stub
2399 types. Completion changes the TYPE argument, but stripping of
2400 typedefs does not.
2401
2402 Instance flags (e.g. const/volatile) are preserved as typedefs are
2403 stripped. If necessary a new qualified form of the underlying type
2404 is created.
2405
2406 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2407 not been computed and we're either in the middle of reading symbols, or
2408 there was no name for the typedef in the debug info.
2409
2410 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2411 QUITs in the symbol reading code can also throw.
2412 Thus this function can throw an exception.
2413
2414 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2415 the target type.
2416
2417 If this is a stubbed struct (i.e. declared as struct foo *), see if
2418 we can find a full definition in some other file. If so, copy this
2419 definition, so we can use it in future. There used to be a comment
2420 (but not any code) that if we don't find a full definition, we'd
2421 set a flag so we don't spend time in the future checking the same
2422 type. That would be a mistake, though--we might load in more
2423 symbols which contain a full definition for the type. */
2424
2425 struct type *
2426 check_typedef (struct type *type)
2427 {
2428 struct type *orig_type = type;
2429 /* While we're removing typedefs, we don't want to lose qualifiers.
2430 E.g., const/volatile. */
2431 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2432
2433 gdb_assert (type);
2434
2435 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2436 {
2437 if (!TYPE_TARGET_TYPE (type))
2438 {
2439 const char *name;
2440 struct symbol *sym;
2441
2442 /* It is dangerous to call lookup_symbol if we are currently
2443 reading a symtab. Infinite recursion is one danger. */
2444 if (currently_reading_symtab)
2445 return make_qualified_type (type, instance_flags, NULL);
2446
2447 name = type_name_no_tag (type);
2448 /* FIXME: shouldn't we separately check the TYPE_NAME and
2449 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2450 VAR_DOMAIN as appropriate? (this code was written before
2451 TYPE_NAME and TYPE_TAG_NAME were separate). */
2452 if (name == NULL)
2453 {
2454 stub_noname_complaint ();
2455 return make_qualified_type (type, instance_flags, NULL);
2456 }
2457 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2458 if (sym)
2459 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2460 else /* TYPE_CODE_UNDEF */
2461 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2462 }
2463 type = TYPE_TARGET_TYPE (type);
2464
2465 /* Preserve the instance flags as we traverse down the typedef chain.
2466
2467 Handling address spaces/classes is nasty, what do we do if there's a
2468 conflict?
2469 E.g., what if an outer typedef marks the type as class_1 and an inner
2470 typedef marks the type as class_2?
2471 This is the wrong place to do such error checking. We leave it to
2472 the code that created the typedef in the first place to flag the
2473 error. We just pick the outer address space (akin to letting the
2474 outer cast in a chain of casting win), instead of assuming
2475 "it can't happen". */
2476 {
2477 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2478 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2479 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2480 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2481
2482 /* Treat code vs data spaces and address classes separately. */
2483 if ((instance_flags & ALL_SPACES) != 0)
2484 new_instance_flags &= ~ALL_SPACES;
2485 if ((instance_flags & ALL_CLASSES) != 0)
2486 new_instance_flags &= ~ALL_CLASSES;
2487
2488 instance_flags |= new_instance_flags;
2489 }
2490 }
2491
2492 /* If this is a struct/class/union with no fields, then check
2493 whether a full definition exists somewhere else. This is for
2494 systems where a type definition with no fields is issued for such
2495 types, instead of identifying them as stub types in the first
2496 place. */
2497
2498 if (TYPE_IS_OPAQUE (type)
2499 && opaque_type_resolution
2500 && !currently_reading_symtab)
2501 {
2502 const char *name = type_name_no_tag (type);
2503 struct type *newtype;
2504
2505 if (name == NULL)
2506 {
2507 stub_noname_complaint ();
2508 return make_qualified_type (type, instance_flags, NULL);
2509 }
2510 newtype = lookup_transparent_type (name);
2511
2512 if (newtype)
2513 {
2514 /* If the resolved type and the stub are in the same
2515 objfile, then replace the stub type with the real deal.
2516 But if they're in separate objfiles, leave the stub
2517 alone; we'll just look up the transparent type every time
2518 we call check_typedef. We can't create pointers between
2519 types allocated to different objfiles, since they may
2520 have different lifetimes. Trying to copy NEWTYPE over to
2521 TYPE's objfile is pointless, too, since you'll have to
2522 move over any other types NEWTYPE refers to, which could
2523 be an unbounded amount of stuff. */
2524 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2525 type = make_qualified_type (newtype,
2526 TYPE_INSTANCE_FLAGS (type),
2527 type);
2528 else
2529 type = newtype;
2530 }
2531 }
2532 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2533 types. */
2534 else if (TYPE_STUB (type) && !currently_reading_symtab)
2535 {
2536 const char *name = type_name_no_tag (type);
2537 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2538 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2539 as appropriate? (this code was written before TYPE_NAME and
2540 TYPE_TAG_NAME were separate). */
2541 struct symbol *sym;
2542
2543 if (name == NULL)
2544 {
2545 stub_noname_complaint ();
2546 return make_qualified_type (type, instance_flags, NULL);
2547 }
2548 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2549 if (sym)
2550 {
2551 /* Same as above for opaque types, we can replace the stub
2552 with the complete type only if they are in the same
2553 objfile. */
2554 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2555 type = make_qualified_type (SYMBOL_TYPE (sym),
2556 TYPE_INSTANCE_FLAGS (type),
2557 type);
2558 else
2559 type = SYMBOL_TYPE (sym);
2560 }
2561 }
2562
2563 if (TYPE_TARGET_STUB (type))
2564 {
2565 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2566
2567 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2568 {
2569 /* Nothing we can do. */
2570 }
2571 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2572 {
2573 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2574 TYPE_TARGET_STUB (type) = 0;
2575 }
2576 }
2577
2578 type = make_qualified_type (type, instance_flags, NULL);
2579
2580 /* Cache TYPE_LENGTH for future use. */
2581 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2582
2583 return type;
2584 }
2585
2586 /* Parse a type expression in the string [P..P+LENGTH). If an error
2587 occurs, silently return a void type. */
2588
2589 static struct type *
2590 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2591 {
2592 struct ui_file *saved_gdb_stderr;
2593 struct type *type = NULL; /* Initialize to keep gcc happy. */
2594
2595 /* Suppress error messages. */
2596 saved_gdb_stderr = gdb_stderr;
2597 gdb_stderr = &null_stream;
2598
2599 /* Call parse_and_eval_type() without fear of longjmp()s. */
2600 TRY
2601 {
2602 type = parse_and_eval_type (p, length);
2603 }
2604 CATCH (except, RETURN_MASK_ERROR)
2605 {
2606 type = builtin_type (gdbarch)->builtin_void;
2607 }
2608 END_CATCH
2609
2610 /* Stop suppressing error messages. */
2611 gdb_stderr = saved_gdb_stderr;
2612
2613 return type;
2614 }
2615
2616 /* Ugly hack to convert method stubs into method types.
2617
2618 He ain't kiddin'. This demangles the name of the method into a
2619 string including argument types, parses out each argument type,
2620 generates a string casting a zero to that type, evaluates the
2621 string, and stuffs the resulting type into an argtype vector!!!
2622 Then it knows the type of the whole function (including argument
2623 types for overloading), which info used to be in the stab's but was
2624 removed to hack back the space required for them. */
2625
2626 static void
2627 check_stub_method (struct type *type, int method_id, int signature_id)
2628 {
2629 struct gdbarch *gdbarch = get_type_arch (type);
2630 struct fn_field *f;
2631 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2632 char *demangled_name = gdb_demangle (mangled_name,
2633 DMGL_PARAMS | DMGL_ANSI);
2634 char *argtypetext, *p;
2635 int depth = 0, argcount = 1;
2636 struct field *argtypes;
2637 struct type *mtype;
2638
2639 /* Make sure we got back a function string that we can use. */
2640 if (demangled_name)
2641 p = strchr (demangled_name, '(');
2642 else
2643 p = NULL;
2644
2645 if (demangled_name == NULL || p == NULL)
2646 error (_("Internal: Cannot demangle mangled name `%s'."),
2647 mangled_name);
2648
2649 /* Now, read in the parameters that define this type. */
2650 p += 1;
2651 argtypetext = p;
2652 while (*p)
2653 {
2654 if (*p == '(' || *p == '<')
2655 {
2656 depth += 1;
2657 }
2658 else if (*p == ')' || *p == '>')
2659 {
2660 depth -= 1;
2661 }
2662 else if (*p == ',' && depth == 0)
2663 {
2664 argcount += 1;
2665 }
2666
2667 p += 1;
2668 }
2669
2670 /* If we read one argument and it was ``void'', don't count it. */
2671 if (startswith (argtypetext, "(void)"))
2672 argcount -= 1;
2673
2674 /* We need one extra slot, for the THIS pointer. */
2675
2676 argtypes = (struct field *)
2677 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2678 p = argtypetext;
2679
2680 /* Add THIS pointer for non-static methods. */
2681 f = TYPE_FN_FIELDLIST1 (type, method_id);
2682 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2683 argcount = 0;
2684 else
2685 {
2686 argtypes[0].type = lookup_pointer_type (type);
2687 argcount = 1;
2688 }
2689
2690 if (*p != ')') /* () means no args, skip while. */
2691 {
2692 depth = 0;
2693 while (*p)
2694 {
2695 if (depth <= 0 && (*p == ',' || *p == ')'))
2696 {
2697 /* Avoid parsing of ellipsis, they will be handled below.
2698 Also avoid ``void'' as above. */
2699 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2700 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2701 {
2702 argtypes[argcount].type =
2703 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2704 argcount += 1;
2705 }
2706 argtypetext = p + 1;
2707 }
2708
2709 if (*p == '(' || *p == '<')
2710 {
2711 depth += 1;
2712 }
2713 else if (*p == ')' || *p == '>')
2714 {
2715 depth -= 1;
2716 }
2717
2718 p += 1;
2719 }
2720 }
2721
2722 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2723
2724 /* Now update the old "stub" type into a real type. */
2725 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2726 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2727 We want a method (TYPE_CODE_METHOD). */
2728 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2729 argtypes, argcount, p[-2] == '.');
2730 TYPE_STUB (mtype) = 0;
2731 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2732
2733 xfree (demangled_name);
2734 }
2735
2736 /* This is the external interface to check_stub_method, above. This
2737 function unstubs all of the signatures for TYPE's METHOD_ID method
2738 name. After calling this function TYPE_FN_FIELD_STUB will be
2739 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2740 correct.
2741
2742 This function unfortunately can not die until stabs do. */
2743
2744 void
2745 check_stub_method_group (struct type *type, int method_id)
2746 {
2747 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2748 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2749 int j, found_stub = 0;
2750
2751 for (j = 0; j < len; j++)
2752 if (TYPE_FN_FIELD_STUB (f, j))
2753 {
2754 found_stub = 1;
2755 check_stub_method (type, method_id, j);
2756 }
2757
2758 /* GNU v3 methods with incorrect names were corrected when we read
2759 in type information, because it was cheaper to do it then. The
2760 only GNU v2 methods with incorrect method names are operators and
2761 destructors; destructors were also corrected when we read in type
2762 information.
2763
2764 Therefore the only thing we need to handle here are v2 operator
2765 names. */
2766 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2767 {
2768 int ret;
2769 char dem_opname[256];
2770
2771 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2772 method_id),
2773 dem_opname, DMGL_ANSI);
2774 if (!ret)
2775 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2776 method_id),
2777 dem_opname, 0);
2778 if (ret)
2779 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2780 }
2781 }
2782
2783 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2784 const struct cplus_struct_type cplus_struct_default = { };
2785
2786 void
2787 allocate_cplus_struct_type (struct type *type)
2788 {
2789 if (HAVE_CPLUS_STRUCT (type))
2790 /* Structure was already allocated. Nothing more to do. */
2791 return;
2792
2793 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2794 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2795 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2796 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2797 set_type_vptr_fieldno (type, -1);
2798 }
2799
2800 const struct gnat_aux_type gnat_aux_default =
2801 { NULL };
2802
2803 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2804 and allocate the associated gnat-specific data. The gnat-specific
2805 data is also initialized to gnat_aux_default. */
2806
2807 void
2808 allocate_gnat_aux_type (struct type *type)
2809 {
2810 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2811 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2812 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2813 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2814 }
2815
2816 /* Helper function to initialize a newly allocated type. Set type code
2817 to CODE and initialize the type-specific fields accordingly. */
2818
2819 static void
2820 set_type_code (struct type *type, enum type_code code)
2821 {
2822 TYPE_CODE (type) = code;
2823
2824 switch (code)
2825 {
2826 case TYPE_CODE_STRUCT:
2827 case TYPE_CODE_UNION:
2828 case TYPE_CODE_NAMESPACE:
2829 INIT_CPLUS_SPECIFIC (type);
2830 break;
2831 case TYPE_CODE_FLT:
2832 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2833 break;
2834 case TYPE_CODE_FUNC:
2835 INIT_FUNC_SPECIFIC (type);
2836 break;
2837 }
2838 }
2839
2840 /* Helper function to verify floating-point format and size.
2841 BIT is the type size in bits; if BIT equals -1, the size is
2842 determined by the floatformat. Returns size to be used. */
2843
2844 static int
2845 verify_floatformat (int bit, const struct floatformat *floatformat)
2846 {
2847 gdb_assert (floatformat != NULL);
2848
2849 if (bit == -1)
2850 bit = floatformat->totalsize;
2851
2852 gdb_assert (bit >= 0);
2853 gdb_assert (bit >= floatformat->totalsize);
2854
2855 return bit;
2856 }
2857
2858 /* Return the floating-point format for a floating-point variable of
2859 type TYPE. */
2860
2861 const struct floatformat *
2862 floatformat_from_type (const struct type *type)
2863 {
2864 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2865 gdb_assert (TYPE_FLOATFORMAT (type));
2866 return TYPE_FLOATFORMAT (type);
2867 }
2868
2869 /* Helper function to initialize the standard scalar types.
2870
2871 If NAME is non-NULL, then it is used to initialize the type name.
2872 Note that NAME is not copied; it is required to have a lifetime at
2873 least as long as OBJFILE. */
2874
2875 struct type *
2876 init_type (struct objfile *objfile, enum type_code code, int bit,
2877 const char *name)
2878 {
2879 struct type *type;
2880
2881 type = alloc_type (objfile);
2882 set_type_code (type, code);
2883 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2884 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2885 TYPE_NAME (type) = name;
2886
2887 return type;
2888 }
2889
2890 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2891 to use with variables that have no debug info. NAME is the type
2892 name. */
2893
2894 static struct type *
2895 init_nodebug_var_type (struct objfile *objfile, const char *name)
2896 {
2897 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2898 }
2899
2900 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2901 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2902 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2903
2904 struct type *
2905 init_integer_type (struct objfile *objfile,
2906 int bit, int unsigned_p, const char *name)
2907 {
2908 struct type *t;
2909
2910 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2911 if (unsigned_p)
2912 TYPE_UNSIGNED (t) = 1;
2913
2914 return t;
2915 }
2916
2917 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2918 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2919 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2920
2921 struct type *
2922 init_character_type (struct objfile *objfile,
2923 int bit, int unsigned_p, const char *name)
2924 {
2925 struct type *t;
2926
2927 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2928 if (unsigned_p)
2929 TYPE_UNSIGNED (t) = 1;
2930
2931 return t;
2932 }
2933
2934 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2935 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2936 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2937
2938 struct type *
2939 init_boolean_type (struct objfile *objfile,
2940 int bit, int unsigned_p, const char *name)
2941 {
2942 struct type *t;
2943
2944 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2945 if (unsigned_p)
2946 TYPE_UNSIGNED (t) = 1;
2947
2948 return t;
2949 }
2950
2951 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2952 BIT is the type size in bits; if BIT equals -1, the size is
2953 determined by the floatformat. NAME is the type name. Set the
2954 TYPE_FLOATFORMAT from FLOATFORMATS. */
2955
2956 struct type *
2957 init_float_type (struct objfile *objfile,
2958 int bit, const char *name,
2959 const struct floatformat **floatformats)
2960 {
2961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2962 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2963 struct type *t;
2964
2965 bit = verify_floatformat (bit, fmt);
2966 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2967 TYPE_FLOATFORMAT (t) = fmt;
2968
2969 return t;
2970 }
2971
2972 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2973 BIT is the type size in bits. NAME is the type name. */
2974
2975 struct type *
2976 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2977 {
2978 struct type *t;
2979
2980 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2981 return t;
2982 }
2983
2984 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2985 NAME is the type name. TARGET_TYPE is the component float type. */
2986
2987 struct type *
2988 init_complex_type (struct objfile *objfile,
2989 const char *name, struct type *target_type)
2990 {
2991 struct type *t;
2992
2993 t = init_type (objfile, TYPE_CODE_COMPLEX,
2994 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2995 TYPE_TARGET_TYPE (t) = target_type;
2996 return t;
2997 }
2998
2999 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3000 BIT is the pointer type size in bits. NAME is the type name.
3001 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3002 TYPE_UNSIGNED flag. */
3003
3004 struct type *
3005 init_pointer_type (struct objfile *objfile,
3006 int bit, const char *name, struct type *target_type)
3007 {
3008 struct type *t;
3009
3010 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3011 TYPE_TARGET_TYPE (t) = target_type;
3012 TYPE_UNSIGNED (t) = 1;
3013 return t;
3014 }
3015
3016 /* See gdbtypes.h. */
3017
3018 unsigned
3019 type_raw_align (struct type *type)
3020 {
3021 if (type->align_log2 != 0)
3022 return 1 << (type->align_log2 - 1);
3023 return 0;
3024 }
3025
3026 /* See gdbtypes.h. */
3027
3028 unsigned
3029 type_align (struct type *type)
3030 {
3031 unsigned raw_align = type_raw_align (type);
3032 if (raw_align != 0)
3033 return raw_align;
3034
3035 ULONGEST align = 0;
3036 switch (TYPE_CODE (type))
3037 {
3038 case TYPE_CODE_PTR:
3039 case TYPE_CODE_FUNC:
3040 case TYPE_CODE_FLAGS:
3041 case TYPE_CODE_INT:
3042 case TYPE_CODE_FLT:
3043 case TYPE_CODE_ENUM:
3044 case TYPE_CODE_REF:
3045 case TYPE_CODE_RVALUE_REF:
3046 case TYPE_CODE_CHAR:
3047 case TYPE_CODE_BOOL:
3048 case TYPE_CODE_DECFLOAT:
3049 {
3050 struct gdbarch *arch = get_type_arch (type);
3051 align = gdbarch_type_align (arch, type);
3052 }
3053 break;
3054
3055 case TYPE_CODE_ARRAY:
3056 case TYPE_CODE_COMPLEX:
3057 case TYPE_CODE_TYPEDEF:
3058 align = type_align (TYPE_TARGET_TYPE (type));
3059 break;
3060
3061 case TYPE_CODE_STRUCT:
3062 case TYPE_CODE_UNION:
3063 {
3064 if (TYPE_NFIELDS (type) == 0)
3065 {
3066 /* An empty struct has alignment 1. */
3067 align = 1;
3068 break;
3069 }
3070 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3071 {
3072 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3073 if (f_align == 0)
3074 {
3075 /* Don't pretend we know something we don't. */
3076 align = 0;
3077 break;
3078 }
3079 if (f_align > align)
3080 align = f_align;
3081 }
3082 }
3083 break;
3084
3085 case TYPE_CODE_SET:
3086 case TYPE_CODE_RANGE:
3087 case TYPE_CODE_STRING:
3088 /* Not sure what to do here, and these can't appear in C or C++
3089 anyway. */
3090 break;
3091
3092 case TYPE_CODE_METHODPTR:
3093 case TYPE_CODE_MEMBERPTR:
3094 align = TYPE_LENGTH (type);
3095 break;
3096
3097 case TYPE_CODE_VOID:
3098 align = 1;
3099 break;
3100
3101 case TYPE_CODE_ERROR:
3102 case TYPE_CODE_METHOD:
3103 default:
3104 break;
3105 }
3106
3107 if ((align & (align - 1)) != 0)
3108 {
3109 /* Not a power of 2, so pass. */
3110 align = 0;
3111 }
3112
3113 return align;
3114 }
3115
3116 /* See gdbtypes.h. */
3117
3118 bool
3119 set_type_align (struct type *type, ULONGEST align)
3120 {
3121 /* Must be a power of 2. Zero is ok. */
3122 gdb_assert ((align & (align - 1)) == 0);
3123
3124 unsigned result = 0;
3125 while (align != 0)
3126 {
3127 ++result;
3128 align >>= 1;
3129 }
3130
3131 if (result >= (1 << TYPE_ALIGN_BITS))
3132 return false;
3133
3134 type->align_log2 = result;
3135 return true;
3136 }
3137
3138 \f
3139 /* Queries on types. */
3140
3141 int
3142 can_dereference (struct type *t)
3143 {
3144 /* FIXME: Should we return true for references as well as
3145 pointers? */
3146 t = check_typedef (t);
3147 return
3148 (t != NULL
3149 && TYPE_CODE (t) == TYPE_CODE_PTR
3150 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3151 }
3152
3153 int
3154 is_integral_type (struct type *t)
3155 {
3156 t = check_typedef (t);
3157 return
3158 ((t != NULL)
3159 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3160 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3161 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3162 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3163 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3164 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3165 }
3166
3167 int
3168 is_floating_type (struct type *t)
3169 {
3170 t = check_typedef (t);
3171 return
3172 ((t != NULL)
3173 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3174 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3175 }
3176
3177 /* Return true if TYPE is scalar. */
3178
3179 int
3180 is_scalar_type (struct type *type)
3181 {
3182 type = check_typedef (type);
3183
3184 switch (TYPE_CODE (type))
3185 {
3186 case TYPE_CODE_ARRAY:
3187 case TYPE_CODE_STRUCT:
3188 case TYPE_CODE_UNION:
3189 case TYPE_CODE_SET:
3190 case TYPE_CODE_STRING:
3191 return 0;
3192 default:
3193 return 1;
3194 }
3195 }
3196
3197 /* Return true if T is scalar, or a composite type which in practice has
3198 the memory layout of a scalar type. E.g., an array or struct with only
3199 one scalar element inside it, or a union with only scalar elements. */
3200
3201 int
3202 is_scalar_type_recursive (struct type *t)
3203 {
3204 t = check_typedef (t);
3205
3206 if (is_scalar_type (t))
3207 return 1;
3208 /* Are we dealing with an array or string of known dimensions? */
3209 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3210 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3211 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3212 {
3213 LONGEST low_bound, high_bound;
3214 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3215
3216 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3217
3218 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3219 }
3220 /* Are we dealing with a struct with one element? */
3221 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3222 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3223 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3224 {
3225 int i, n = TYPE_NFIELDS (t);
3226
3227 /* If all elements of the union are scalar, then the union is scalar. */
3228 for (i = 0; i < n; i++)
3229 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3230 return 0;
3231
3232 return 1;
3233 }
3234
3235 return 0;
3236 }
3237
3238 /* Return true is T is a class or a union. False otherwise. */
3239
3240 int
3241 class_or_union_p (const struct type *t)
3242 {
3243 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3244 || TYPE_CODE (t) == TYPE_CODE_UNION);
3245 }
3246
3247 /* A helper function which returns true if types A and B represent the
3248 "same" class type. This is true if the types have the same main
3249 type, or the same name. */
3250
3251 int
3252 class_types_same_p (const struct type *a, const struct type *b)
3253 {
3254 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3255 || (TYPE_NAME (a) && TYPE_NAME (b)
3256 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3257 }
3258
3259 /* If BASE is an ancestor of DCLASS return the distance between them.
3260 otherwise return -1;
3261 eg:
3262
3263 class A {};
3264 class B: public A {};
3265 class C: public B {};
3266 class D: C {};
3267
3268 distance_to_ancestor (A, A, 0) = 0
3269 distance_to_ancestor (A, B, 0) = 1
3270 distance_to_ancestor (A, C, 0) = 2
3271 distance_to_ancestor (A, D, 0) = 3
3272
3273 If PUBLIC is 1 then only public ancestors are considered,
3274 and the function returns the distance only if BASE is a public ancestor
3275 of DCLASS.
3276 Eg:
3277
3278 distance_to_ancestor (A, D, 1) = -1. */
3279
3280 static int
3281 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3282 {
3283 int i;
3284 int d;
3285
3286 base = check_typedef (base);
3287 dclass = check_typedef (dclass);
3288
3289 if (class_types_same_p (base, dclass))
3290 return 0;
3291
3292 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3293 {
3294 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3295 continue;
3296
3297 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3298 if (d >= 0)
3299 return 1 + d;
3300 }
3301
3302 return -1;
3303 }
3304
3305 /* Check whether BASE is an ancestor or base class or DCLASS
3306 Return 1 if so, and 0 if not.
3307 Note: If BASE and DCLASS are of the same type, this function
3308 will return 1. So for some class A, is_ancestor (A, A) will
3309 return 1. */
3310
3311 int
3312 is_ancestor (struct type *base, struct type *dclass)
3313 {
3314 return distance_to_ancestor (base, dclass, 0) >= 0;
3315 }
3316
3317 /* Like is_ancestor, but only returns true when BASE is a public
3318 ancestor of DCLASS. */
3319
3320 int
3321 is_public_ancestor (struct type *base, struct type *dclass)
3322 {
3323 return distance_to_ancestor (base, dclass, 1) >= 0;
3324 }
3325
3326 /* A helper function for is_unique_ancestor. */
3327
3328 static int
3329 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3330 int *offset,
3331 const gdb_byte *valaddr, int embedded_offset,
3332 CORE_ADDR address, struct value *val)
3333 {
3334 int i, count = 0;
3335
3336 base = check_typedef (base);
3337 dclass = check_typedef (dclass);
3338
3339 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3340 {
3341 struct type *iter;
3342 int this_offset;
3343
3344 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3345
3346 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3347 address, val);
3348
3349 if (class_types_same_p (base, iter))
3350 {
3351 /* If this is the first subclass, set *OFFSET and set count
3352 to 1. Otherwise, if this is at the same offset as
3353 previous instances, do nothing. Otherwise, increment
3354 count. */
3355 if (*offset == -1)
3356 {
3357 *offset = this_offset;
3358 count = 1;
3359 }
3360 else if (this_offset == *offset)
3361 {
3362 /* Nothing. */
3363 }
3364 else
3365 ++count;
3366 }
3367 else
3368 count += is_unique_ancestor_worker (base, iter, offset,
3369 valaddr,
3370 embedded_offset + this_offset,
3371 address, val);
3372 }
3373
3374 return count;
3375 }
3376
3377 /* Like is_ancestor, but only returns true if BASE is a unique base
3378 class of the type of VAL. */
3379
3380 int
3381 is_unique_ancestor (struct type *base, struct value *val)
3382 {
3383 int offset = -1;
3384
3385 return is_unique_ancestor_worker (base, value_type (val), &offset,
3386 value_contents_for_printing (val),
3387 value_embedded_offset (val),
3388 value_address (val), val) == 1;
3389 }
3390
3391 \f
3392 /* Overload resolution. */
3393
3394 /* Return the sum of the rank of A with the rank of B. */
3395
3396 struct rank
3397 sum_ranks (struct rank a, struct rank b)
3398 {
3399 struct rank c;
3400 c.rank = a.rank + b.rank;
3401 c.subrank = a.subrank + b.subrank;
3402 return c;
3403 }
3404
3405 /* Compare rank A and B and return:
3406 0 if a = b
3407 1 if a is better than b
3408 -1 if b is better than a. */
3409
3410 int
3411 compare_ranks (struct rank a, struct rank b)
3412 {
3413 if (a.rank == b.rank)
3414 {
3415 if (a.subrank == b.subrank)
3416 return 0;
3417 if (a.subrank < b.subrank)
3418 return 1;
3419 if (a.subrank > b.subrank)
3420 return -1;
3421 }
3422
3423 if (a.rank < b.rank)
3424 return 1;
3425
3426 /* a.rank > b.rank */
3427 return -1;
3428 }
3429
3430 /* Functions for overload resolution begin here. */
3431
3432 /* Compare two badness vectors A and B and return the result.
3433 0 => A and B are identical
3434 1 => A and B are incomparable
3435 2 => A is better than B
3436 3 => A is worse than B */
3437
3438 int
3439 compare_badness (struct badness_vector *a, struct badness_vector *b)
3440 {
3441 int i;
3442 int tmp;
3443 short found_pos = 0; /* any positives in c? */
3444 short found_neg = 0; /* any negatives in c? */
3445
3446 /* differing lengths => incomparable */
3447 if (a->length != b->length)
3448 return 1;
3449
3450 /* Subtract b from a */
3451 for (i = 0; i < a->length; i++)
3452 {
3453 tmp = compare_ranks (b->rank[i], a->rank[i]);
3454 if (tmp > 0)
3455 found_pos = 1;
3456 else if (tmp < 0)
3457 found_neg = 1;
3458 }
3459
3460 if (found_pos)
3461 {
3462 if (found_neg)
3463 return 1; /* incomparable */
3464 else
3465 return 3; /* A > B */
3466 }
3467 else
3468 /* no positives */
3469 {
3470 if (found_neg)
3471 return 2; /* A < B */
3472 else
3473 return 0; /* A == B */
3474 }
3475 }
3476
3477 /* Rank a function by comparing its parameter types (PARMS, length
3478 NPARMS), to the types of an argument list (ARGS, length NARGS).
3479 Return a pointer to a badness vector. This has NARGS + 1
3480 entries. */
3481
3482 struct badness_vector *
3483 rank_function (struct type **parms, int nparms,
3484 struct value **args, int nargs)
3485 {
3486 int i;
3487 struct badness_vector *bv = XNEW (struct badness_vector);
3488 int min_len = nparms < nargs ? nparms : nargs;
3489
3490 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3491 bv->rank = XNEWVEC (struct rank, nargs + 1);
3492
3493 /* First compare the lengths of the supplied lists.
3494 If there is a mismatch, set it to a high value. */
3495
3496 /* pai/1997-06-03 FIXME: when we have debug info about default
3497 arguments and ellipsis parameter lists, we should consider those
3498 and rank the length-match more finely. */
3499
3500 LENGTH_MATCH (bv) = (nargs != nparms)
3501 ? LENGTH_MISMATCH_BADNESS
3502 : EXACT_MATCH_BADNESS;
3503
3504 /* Now rank all the parameters of the candidate function. */
3505 for (i = 1; i <= min_len; i++)
3506 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3507 args[i - 1]);
3508
3509 /* If more arguments than parameters, add dummy entries. */
3510 for (i = min_len + 1; i <= nargs; i++)
3511 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3512
3513 return bv;
3514 }
3515
3516 /* Compare the names of two integer types, assuming that any sign
3517 qualifiers have been checked already. We do it this way because
3518 there may be an "int" in the name of one of the types. */
3519
3520 static int
3521 integer_types_same_name_p (const char *first, const char *second)
3522 {
3523 int first_p, second_p;
3524
3525 /* If both are shorts, return 1; if neither is a short, keep
3526 checking. */
3527 first_p = (strstr (first, "short") != NULL);
3528 second_p = (strstr (second, "short") != NULL);
3529 if (first_p && second_p)
3530 return 1;
3531 if (first_p || second_p)
3532 return 0;
3533
3534 /* Likewise for long. */
3535 first_p = (strstr (first, "long") != NULL);
3536 second_p = (strstr (second, "long") != NULL);
3537 if (first_p && second_p)
3538 return 1;
3539 if (first_p || second_p)
3540 return 0;
3541
3542 /* Likewise for char. */
3543 first_p = (strstr (first, "char") != NULL);
3544 second_p = (strstr (second, "char") != NULL);
3545 if (first_p && second_p)
3546 return 1;
3547 if (first_p || second_p)
3548 return 0;
3549
3550 /* They must both be ints. */
3551 return 1;
3552 }
3553
3554 /* Compares type A to type B returns 1 if the represent the same type
3555 0 otherwise. */
3556
3557 int
3558 types_equal (struct type *a, struct type *b)
3559 {
3560 /* Identical type pointers. */
3561 /* However, this still doesn't catch all cases of same type for b
3562 and a. The reason is that builtin types are different from
3563 the same ones constructed from the object. */
3564 if (a == b)
3565 return 1;
3566
3567 /* Resolve typedefs */
3568 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3569 a = check_typedef (a);
3570 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3571 b = check_typedef (b);
3572
3573 /* If after resolving typedefs a and b are not of the same type
3574 code then they are not equal. */
3575 if (TYPE_CODE (a) != TYPE_CODE (b))
3576 return 0;
3577
3578 /* If a and b are both pointers types or both reference types then
3579 they are equal of the same type iff the objects they refer to are
3580 of the same type. */
3581 if (TYPE_CODE (a) == TYPE_CODE_PTR
3582 || TYPE_CODE (a) == TYPE_CODE_REF)
3583 return types_equal (TYPE_TARGET_TYPE (a),
3584 TYPE_TARGET_TYPE (b));
3585
3586 /* Well, damnit, if the names are exactly the same, I'll say they
3587 are exactly the same. This happens when we generate method
3588 stubs. The types won't point to the same address, but they
3589 really are the same. */
3590
3591 if (TYPE_NAME (a) && TYPE_NAME (b)
3592 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3593 return 1;
3594
3595 /* Check if identical after resolving typedefs. */
3596 if (a == b)
3597 return 1;
3598
3599 /* Two function types are equal if their argument and return types
3600 are equal. */
3601 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3602 {
3603 int i;
3604
3605 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3606 return 0;
3607
3608 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3609 return 0;
3610
3611 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3612 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3613 return 0;
3614
3615 return 1;
3616 }
3617
3618 return 0;
3619 }
3620 \f
3621 /* Deep comparison of types. */
3622
3623 /* An entry in the type-equality bcache. */
3624
3625 typedef struct type_equality_entry
3626 {
3627 struct type *type1, *type2;
3628 } type_equality_entry_d;
3629
3630 DEF_VEC_O (type_equality_entry_d);
3631
3632 /* A helper function to compare two strings. Returns 1 if they are
3633 the same, 0 otherwise. Handles NULLs properly. */
3634
3635 static int
3636 compare_maybe_null_strings (const char *s, const char *t)
3637 {
3638 if (s == NULL && t != NULL)
3639 return 0;
3640 else if (s != NULL && t == NULL)
3641 return 0;
3642 else if (s == NULL && t== NULL)
3643 return 1;
3644 return strcmp (s, t) == 0;
3645 }
3646
3647 /* A helper function for check_types_worklist that checks two types for
3648 "deep" equality. Returns non-zero if the types are considered the
3649 same, zero otherwise. */
3650
3651 static int
3652 check_types_equal (struct type *type1, struct type *type2,
3653 VEC (type_equality_entry_d) **worklist)
3654 {
3655 type1 = check_typedef (type1);
3656 type2 = check_typedef (type2);
3657
3658 if (type1 == type2)
3659 return 1;
3660
3661 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3662 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3663 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3664 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3665 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3666 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3667 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3668 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3669 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3670 return 0;
3671
3672 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3673 TYPE_TAG_NAME (type2)))
3674 return 0;
3675 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3676 return 0;
3677
3678 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3679 {
3680 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3681 return 0;
3682 }
3683 else
3684 {
3685 int i;
3686
3687 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3688 {
3689 const struct field *field1 = &TYPE_FIELD (type1, i);
3690 const struct field *field2 = &TYPE_FIELD (type2, i);
3691 struct type_equality_entry entry;
3692
3693 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3694 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3695 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3696 return 0;
3697 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3698 FIELD_NAME (*field2)))
3699 return 0;
3700 switch (FIELD_LOC_KIND (*field1))
3701 {
3702 case FIELD_LOC_KIND_BITPOS:
3703 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3704 return 0;
3705 break;
3706 case FIELD_LOC_KIND_ENUMVAL:
3707 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3708 return 0;
3709 break;
3710 case FIELD_LOC_KIND_PHYSADDR:
3711 if (FIELD_STATIC_PHYSADDR (*field1)
3712 != FIELD_STATIC_PHYSADDR (*field2))
3713 return 0;
3714 break;
3715 case FIELD_LOC_KIND_PHYSNAME:
3716 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3717 FIELD_STATIC_PHYSNAME (*field2)))
3718 return 0;
3719 break;
3720 case FIELD_LOC_KIND_DWARF_BLOCK:
3721 {
3722 struct dwarf2_locexpr_baton *block1, *block2;
3723
3724 block1 = FIELD_DWARF_BLOCK (*field1);
3725 block2 = FIELD_DWARF_BLOCK (*field2);
3726 if (block1->per_cu != block2->per_cu
3727 || block1->size != block2->size
3728 || memcmp (block1->data, block2->data, block1->size) != 0)
3729 return 0;
3730 }
3731 break;
3732 default:
3733 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3734 "%d by check_types_equal"),
3735 FIELD_LOC_KIND (*field1));
3736 }
3737
3738 entry.type1 = FIELD_TYPE (*field1);
3739 entry.type2 = FIELD_TYPE (*field2);
3740 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3741 }
3742 }
3743
3744 if (TYPE_TARGET_TYPE (type1) != NULL)
3745 {
3746 struct type_equality_entry entry;
3747
3748 if (TYPE_TARGET_TYPE (type2) == NULL)
3749 return 0;
3750
3751 entry.type1 = TYPE_TARGET_TYPE (type1);
3752 entry.type2 = TYPE_TARGET_TYPE (type2);
3753 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3754 }
3755 else if (TYPE_TARGET_TYPE (type2) != NULL)
3756 return 0;
3757
3758 return 1;
3759 }
3760
3761 /* Check types on a worklist for equality. Returns zero if any pair
3762 is not equal, non-zero if they are all considered equal. */
3763
3764 static int
3765 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3766 struct bcache *cache)
3767 {
3768 while (!VEC_empty (type_equality_entry_d, *worklist))
3769 {
3770 struct type_equality_entry entry;
3771 int added;
3772
3773 entry = *VEC_last (type_equality_entry_d, *worklist);
3774 VEC_pop (type_equality_entry_d, *worklist);
3775
3776 /* If the type pair has already been visited, we know it is
3777 ok. */
3778 bcache_full (&entry, sizeof (entry), cache, &added);
3779 if (!added)
3780 continue;
3781
3782 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3783 return 0;
3784 }
3785
3786 return 1;
3787 }
3788
3789 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3790 "deep comparison". Otherwise return zero. */
3791
3792 int
3793 types_deeply_equal (struct type *type1, struct type *type2)
3794 {
3795 struct gdb_exception except = exception_none;
3796 int result = 0;
3797 struct bcache *cache;
3798 VEC (type_equality_entry_d) *worklist = NULL;
3799 struct type_equality_entry entry;
3800
3801 gdb_assert (type1 != NULL && type2 != NULL);
3802
3803 /* Early exit for the simple case. */
3804 if (type1 == type2)
3805 return 1;
3806
3807 cache = bcache_xmalloc (NULL, NULL);
3808
3809 entry.type1 = type1;
3810 entry.type2 = type2;
3811 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3812
3813 /* check_types_worklist calls several nested helper functions, some
3814 of which can raise a GDB exception, so we just check and rethrow
3815 here. If there is a GDB exception, a comparison is not capable
3816 (or trusted), so exit. */
3817 TRY
3818 {
3819 result = check_types_worklist (&worklist, cache);
3820 }
3821 CATCH (ex, RETURN_MASK_ALL)
3822 {
3823 except = ex;
3824 }
3825 END_CATCH
3826
3827 bcache_xfree (cache);
3828 VEC_free (type_equality_entry_d, worklist);
3829
3830 /* Rethrow if there was a problem. */
3831 if (except.reason < 0)
3832 throw_exception (except);
3833
3834 return result;
3835 }
3836
3837 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3838 Otherwise return one. */
3839
3840 int
3841 type_not_allocated (const struct type *type)
3842 {
3843 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3844
3845 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3846 && !TYPE_DYN_PROP_ADDR (prop));
3847 }
3848
3849 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3850 Otherwise return one. */
3851
3852 int
3853 type_not_associated (const struct type *type)
3854 {
3855 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3856
3857 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3858 && !TYPE_DYN_PROP_ADDR (prop));
3859 }
3860 \f
3861 /* Compare one type (PARM) for compatibility with another (ARG).
3862 * PARM is intended to be the parameter type of a function; and
3863 * ARG is the supplied argument's type. This function tests if
3864 * the latter can be converted to the former.
3865 * VALUE is the argument's value or NULL if none (or called recursively)
3866 *
3867 * Return 0 if they are identical types;
3868 * Otherwise, return an integer which corresponds to how compatible
3869 * PARM is to ARG. The higher the return value, the worse the match.
3870 * Generally the "bad" conversions are all uniformly assigned a 100. */
3871
3872 struct rank
3873 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3874 {
3875 struct rank rank = {0,0};
3876
3877 /* Resolve typedefs */
3878 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3879 parm = check_typedef (parm);
3880 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3881 arg = check_typedef (arg);
3882
3883 if (TYPE_IS_REFERENCE (parm) && value != NULL)
3884 {
3885 if (VALUE_LVAL (value) == not_lval)
3886 {
3887 /* Rvalues should preferably bind to rvalue references or const
3888 lvalue references. */
3889 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3890 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3891 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3892 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3893 else
3894 return INCOMPATIBLE_TYPE_BADNESS;
3895 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3896 }
3897 else
3898 {
3899 /* Lvalues should prefer lvalue overloads. */
3900 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3901 {
3902 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3903 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3904 }
3905 }
3906 }
3907
3908 if (types_equal (parm, arg))
3909 {
3910 struct type *t1 = parm;
3911 struct type *t2 = arg;
3912
3913 /* For pointers and references, compare target type. */
3914 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3915 {
3916 t1 = TYPE_TARGET_TYPE (parm);
3917 t2 = TYPE_TARGET_TYPE (arg);
3918 }
3919
3920 /* Make sure they are CV equal, too. */
3921 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3922 rank.subrank |= CV_CONVERSION_CONST;
3923 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3924 rank.subrank |= CV_CONVERSION_VOLATILE;
3925 if (rank.subrank != 0)
3926 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3927 return EXACT_MATCH_BADNESS;
3928 }
3929
3930 /* See through references, since we can almost make non-references
3931 references. */
3932
3933 if (TYPE_IS_REFERENCE (arg))
3934 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3935 REFERENCE_CONVERSION_BADNESS));
3936 if (TYPE_IS_REFERENCE (parm))
3937 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3938 REFERENCE_CONVERSION_BADNESS));
3939 if (overload_debug)
3940 /* Debugging only. */
3941 fprintf_filtered (gdb_stderr,
3942 "------ Arg is %s [%d], parm is %s [%d]\n",
3943 TYPE_NAME (arg), TYPE_CODE (arg),
3944 TYPE_NAME (parm), TYPE_CODE (parm));
3945
3946 /* x -> y means arg of type x being supplied for parameter of type y. */
3947
3948 switch (TYPE_CODE (parm))
3949 {
3950 case TYPE_CODE_PTR:
3951 switch (TYPE_CODE (arg))
3952 {
3953 case TYPE_CODE_PTR:
3954
3955 /* Allowed pointer conversions are:
3956 (a) pointer to void-pointer conversion. */
3957 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3958 return VOID_PTR_CONVERSION_BADNESS;
3959
3960 /* (b) pointer to ancestor-pointer conversion. */
3961 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3962 TYPE_TARGET_TYPE (arg),
3963 0);
3964 if (rank.subrank >= 0)
3965 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3966
3967 return INCOMPATIBLE_TYPE_BADNESS;
3968 case TYPE_CODE_ARRAY:
3969 {
3970 struct type *t1 = TYPE_TARGET_TYPE (parm);
3971 struct type *t2 = TYPE_TARGET_TYPE (arg);
3972
3973 if (types_equal (t1, t2))
3974 {
3975 /* Make sure they are CV equal. */
3976 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3977 rank.subrank |= CV_CONVERSION_CONST;
3978 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3979 rank.subrank |= CV_CONVERSION_VOLATILE;
3980 if (rank.subrank != 0)
3981 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3982 return EXACT_MATCH_BADNESS;
3983 }
3984 return INCOMPATIBLE_TYPE_BADNESS;
3985 }
3986 case TYPE_CODE_FUNC:
3987 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3988 case TYPE_CODE_INT:
3989 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3990 {
3991 if (value_as_long (value) == 0)
3992 {
3993 /* Null pointer conversion: allow it to be cast to a pointer.
3994 [4.10.1 of C++ standard draft n3290] */
3995 return NULL_POINTER_CONVERSION_BADNESS;
3996 }
3997 else
3998 {
3999 /* If type checking is disabled, allow the conversion. */
4000 if (!strict_type_checking)
4001 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4002 }
4003 }
4004 /* fall through */
4005 case TYPE_CODE_ENUM:
4006 case TYPE_CODE_FLAGS:
4007 case TYPE_CODE_CHAR:
4008 case TYPE_CODE_RANGE:
4009 case TYPE_CODE_BOOL:
4010 default:
4011 return INCOMPATIBLE_TYPE_BADNESS;
4012 }
4013 case TYPE_CODE_ARRAY:
4014 switch (TYPE_CODE (arg))
4015 {
4016 case TYPE_CODE_PTR:
4017 case TYPE_CODE_ARRAY:
4018 return rank_one_type (TYPE_TARGET_TYPE (parm),
4019 TYPE_TARGET_TYPE (arg), NULL);
4020 default:
4021 return INCOMPATIBLE_TYPE_BADNESS;
4022 }
4023 case TYPE_CODE_FUNC:
4024 switch (TYPE_CODE (arg))
4025 {
4026 case TYPE_CODE_PTR: /* funcptr -> func */
4027 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4028 default:
4029 return INCOMPATIBLE_TYPE_BADNESS;
4030 }
4031 case TYPE_CODE_INT:
4032 switch (TYPE_CODE (arg))
4033 {
4034 case TYPE_CODE_INT:
4035 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4036 {
4037 /* Deal with signed, unsigned, and plain chars and
4038 signed and unsigned ints. */
4039 if (TYPE_NOSIGN (parm))
4040 {
4041 /* This case only for character types. */
4042 if (TYPE_NOSIGN (arg))
4043 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4044 else /* signed/unsigned char -> plain char */
4045 return INTEGER_CONVERSION_BADNESS;
4046 }
4047 else if (TYPE_UNSIGNED (parm))
4048 {
4049 if (TYPE_UNSIGNED (arg))
4050 {
4051 /* unsigned int -> unsigned int, or
4052 unsigned long -> unsigned long */
4053 if (integer_types_same_name_p (TYPE_NAME (parm),
4054 TYPE_NAME (arg)))
4055 return EXACT_MATCH_BADNESS;
4056 else if (integer_types_same_name_p (TYPE_NAME (arg),
4057 "int")
4058 && integer_types_same_name_p (TYPE_NAME (parm),
4059 "long"))
4060 /* unsigned int -> unsigned long */
4061 return INTEGER_PROMOTION_BADNESS;
4062 else
4063 /* unsigned long -> unsigned int */
4064 return INTEGER_CONVERSION_BADNESS;
4065 }
4066 else
4067 {
4068 if (integer_types_same_name_p (TYPE_NAME (arg),
4069 "long")
4070 && integer_types_same_name_p (TYPE_NAME (parm),
4071 "int"))
4072 /* signed long -> unsigned int */
4073 return INTEGER_CONVERSION_BADNESS;
4074 else
4075 /* signed int/long -> unsigned int/long */
4076 return INTEGER_CONVERSION_BADNESS;
4077 }
4078 }
4079 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4080 {
4081 if (integer_types_same_name_p (TYPE_NAME (parm),
4082 TYPE_NAME (arg)))
4083 return EXACT_MATCH_BADNESS;
4084 else if (integer_types_same_name_p (TYPE_NAME (arg),
4085 "int")
4086 && integer_types_same_name_p (TYPE_NAME (parm),
4087 "long"))
4088 return INTEGER_PROMOTION_BADNESS;
4089 else
4090 return INTEGER_CONVERSION_BADNESS;
4091 }
4092 else
4093 return INTEGER_CONVERSION_BADNESS;
4094 }
4095 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4096 return INTEGER_PROMOTION_BADNESS;
4097 else
4098 return INTEGER_CONVERSION_BADNESS;
4099 case TYPE_CODE_ENUM:
4100 case TYPE_CODE_FLAGS:
4101 case TYPE_CODE_CHAR:
4102 case TYPE_CODE_RANGE:
4103 case TYPE_CODE_BOOL:
4104 if (TYPE_DECLARED_CLASS (arg))
4105 return INCOMPATIBLE_TYPE_BADNESS;
4106 return INTEGER_PROMOTION_BADNESS;
4107 case TYPE_CODE_FLT:
4108 return INT_FLOAT_CONVERSION_BADNESS;
4109 case TYPE_CODE_PTR:
4110 return NS_POINTER_CONVERSION_BADNESS;
4111 default:
4112 return INCOMPATIBLE_TYPE_BADNESS;
4113 }
4114 break;
4115 case TYPE_CODE_ENUM:
4116 switch (TYPE_CODE (arg))
4117 {
4118 case TYPE_CODE_INT:
4119 case TYPE_CODE_CHAR:
4120 case TYPE_CODE_RANGE:
4121 case TYPE_CODE_BOOL:
4122 case TYPE_CODE_ENUM:
4123 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4124 return INCOMPATIBLE_TYPE_BADNESS;
4125 return INTEGER_CONVERSION_BADNESS;
4126 case TYPE_CODE_FLT:
4127 return INT_FLOAT_CONVERSION_BADNESS;
4128 default:
4129 return INCOMPATIBLE_TYPE_BADNESS;
4130 }
4131 break;
4132 case TYPE_CODE_CHAR:
4133 switch (TYPE_CODE (arg))
4134 {
4135 case TYPE_CODE_RANGE:
4136 case TYPE_CODE_BOOL:
4137 case TYPE_CODE_ENUM:
4138 if (TYPE_DECLARED_CLASS (arg))
4139 return INCOMPATIBLE_TYPE_BADNESS;
4140 return INTEGER_CONVERSION_BADNESS;
4141 case TYPE_CODE_FLT:
4142 return INT_FLOAT_CONVERSION_BADNESS;
4143 case TYPE_CODE_INT:
4144 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4145 return INTEGER_CONVERSION_BADNESS;
4146 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4147 return INTEGER_PROMOTION_BADNESS;
4148 /* >>> !! else fall through !! <<< */
4149 case TYPE_CODE_CHAR:
4150 /* Deal with signed, unsigned, and plain chars for C++ and
4151 with int cases falling through from previous case. */
4152 if (TYPE_NOSIGN (parm))
4153 {
4154 if (TYPE_NOSIGN (arg))
4155 return EXACT_MATCH_BADNESS;
4156 else
4157 return INTEGER_CONVERSION_BADNESS;
4158 }
4159 else if (TYPE_UNSIGNED (parm))
4160 {
4161 if (TYPE_UNSIGNED (arg))
4162 return EXACT_MATCH_BADNESS;
4163 else
4164 return INTEGER_PROMOTION_BADNESS;
4165 }
4166 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4167 return EXACT_MATCH_BADNESS;
4168 else
4169 return INTEGER_CONVERSION_BADNESS;
4170 default:
4171 return INCOMPATIBLE_TYPE_BADNESS;
4172 }
4173 break;
4174 case TYPE_CODE_RANGE:
4175 switch (TYPE_CODE (arg))
4176 {
4177 case TYPE_CODE_INT:
4178 case TYPE_CODE_CHAR:
4179 case TYPE_CODE_RANGE:
4180 case TYPE_CODE_BOOL:
4181 case TYPE_CODE_ENUM:
4182 return INTEGER_CONVERSION_BADNESS;
4183 case TYPE_CODE_FLT:
4184 return INT_FLOAT_CONVERSION_BADNESS;
4185 default:
4186 return INCOMPATIBLE_TYPE_BADNESS;
4187 }
4188 break;
4189 case TYPE_CODE_BOOL:
4190 switch (TYPE_CODE (arg))
4191 {
4192 /* n3290 draft, section 4.12.1 (conv.bool):
4193
4194 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4195 pointer to member type can be converted to a prvalue of type
4196 bool. A zero value, null pointer value, or null member pointer
4197 value is converted to false; any other value is converted to
4198 true. A prvalue of type std::nullptr_t can be converted to a
4199 prvalue of type bool; the resulting value is false." */
4200 case TYPE_CODE_INT:
4201 case TYPE_CODE_CHAR:
4202 case TYPE_CODE_ENUM:
4203 case TYPE_CODE_FLT:
4204 case TYPE_CODE_MEMBERPTR:
4205 case TYPE_CODE_PTR:
4206 return BOOL_CONVERSION_BADNESS;
4207 case TYPE_CODE_RANGE:
4208 return INCOMPATIBLE_TYPE_BADNESS;
4209 case TYPE_CODE_BOOL:
4210 return EXACT_MATCH_BADNESS;
4211 default:
4212 return INCOMPATIBLE_TYPE_BADNESS;
4213 }
4214 break;
4215 case TYPE_CODE_FLT:
4216 switch (TYPE_CODE (arg))
4217 {
4218 case TYPE_CODE_FLT:
4219 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4220 return FLOAT_PROMOTION_BADNESS;
4221 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4222 return EXACT_MATCH_BADNESS;
4223 else
4224 return FLOAT_CONVERSION_BADNESS;
4225 case TYPE_CODE_INT:
4226 case TYPE_CODE_BOOL:
4227 case TYPE_CODE_ENUM:
4228 case TYPE_CODE_RANGE:
4229 case TYPE_CODE_CHAR:
4230 return INT_FLOAT_CONVERSION_BADNESS;
4231 default:
4232 return INCOMPATIBLE_TYPE_BADNESS;
4233 }
4234 break;
4235 case TYPE_CODE_COMPLEX:
4236 switch (TYPE_CODE (arg))
4237 { /* Strictly not needed for C++, but... */
4238 case TYPE_CODE_FLT:
4239 return FLOAT_PROMOTION_BADNESS;
4240 case TYPE_CODE_COMPLEX:
4241 return EXACT_MATCH_BADNESS;
4242 default:
4243 return INCOMPATIBLE_TYPE_BADNESS;
4244 }
4245 break;
4246 case TYPE_CODE_STRUCT:
4247 switch (TYPE_CODE (arg))
4248 {
4249 case TYPE_CODE_STRUCT:
4250 /* Check for derivation */
4251 rank.subrank = distance_to_ancestor (parm, arg, 0);
4252 if (rank.subrank >= 0)
4253 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4254 /* else fall through */
4255 default:
4256 return INCOMPATIBLE_TYPE_BADNESS;
4257 }
4258 break;
4259 case TYPE_CODE_UNION:
4260 switch (TYPE_CODE (arg))
4261 {
4262 case TYPE_CODE_UNION:
4263 default:
4264 return INCOMPATIBLE_TYPE_BADNESS;
4265 }
4266 break;
4267 case TYPE_CODE_MEMBERPTR:
4268 switch (TYPE_CODE (arg))
4269 {
4270 default:
4271 return INCOMPATIBLE_TYPE_BADNESS;
4272 }
4273 break;
4274 case TYPE_CODE_METHOD:
4275 switch (TYPE_CODE (arg))
4276 {
4277
4278 default:
4279 return INCOMPATIBLE_TYPE_BADNESS;
4280 }
4281 break;
4282 case TYPE_CODE_REF:
4283 switch (TYPE_CODE (arg))
4284 {
4285
4286 default:
4287 return INCOMPATIBLE_TYPE_BADNESS;
4288 }
4289
4290 break;
4291 case TYPE_CODE_SET:
4292 switch (TYPE_CODE (arg))
4293 {
4294 /* Not in C++ */
4295 case TYPE_CODE_SET:
4296 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4297 TYPE_FIELD_TYPE (arg, 0), NULL);
4298 default:
4299 return INCOMPATIBLE_TYPE_BADNESS;
4300 }
4301 break;
4302 case TYPE_CODE_VOID:
4303 default:
4304 return INCOMPATIBLE_TYPE_BADNESS;
4305 } /* switch (TYPE_CODE (arg)) */
4306 }
4307
4308 /* End of functions for overload resolution. */
4309 \f
4310 /* Routines to pretty-print types. */
4311
4312 static void
4313 print_bit_vector (B_TYPE *bits, int nbits)
4314 {
4315 int bitno;
4316
4317 for (bitno = 0; bitno < nbits; bitno++)
4318 {
4319 if ((bitno % 8) == 0)
4320 {
4321 puts_filtered (" ");
4322 }
4323 if (B_TST (bits, bitno))
4324 printf_filtered (("1"));
4325 else
4326 printf_filtered (("0"));
4327 }
4328 }
4329
4330 /* Note the first arg should be the "this" pointer, we may not want to
4331 include it since we may get into a infinitely recursive
4332 situation. */
4333
4334 static void
4335 print_args (struct field *args, int nargs, int spaces)
4336 {
4337 if (args != NULL)
4338 {
4339 int i;
4340
4341 for (i = 0; i < nargs; i++)
4342 {
4343 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4344 args[i].name != NULL ? args[i].name : "<NULL>");
4345 recursive_dump_type (args[i].type, spaces + 2);
4346 }
4347 }
4348 }
4349
4350 int
4351 field_is_static (struct field *f)
4352 {
4353 /* "static" fields are the fields whose location is not relative
4354 to the address of the enclosing struct. It would be nice to
4355 have a dedicated flag that would be set for static fields when
4356 the type is being created. But in practice, checking the field
4357 loc_kind should give us an accurate answer. */
4358 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4359 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4360 }
4361
4362 static void
4363 dump_fn_fieldlists (struct type *type, int spaces)
4364 {
4365 int method_idx;
4366 int overload_idx;
4367 struct fn_field *f;
4368
4369 printfi_filtered (spaces, "fn_fieldlists ");
4370 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4371 printf_filtered ("\n");
4372 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4373 {
4374 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4375 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4376 method_idx,
4377 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4378 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4379 gdb_stdout);
4380 printf_filtered (_(") length %d\n"),
4381 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4382 for (overload_idx = 0;
4383 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4384 overload_idx++)
4385 {
4386 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4387 overload_idx,
4388 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4389 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4390 gdb_stdout);
4391 printf_filtered (")\n");
4392 printfi_filtered (spaces + 8, "type ");
4393 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4394 gdb_stdout);
4395 printf_filtered ("\n");
4396
4397 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4398 spaces + 8 + 2);
4399
4400 printfi_filtered (spaces + 8, "args ");
4401 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4402 gdb_stdout);
4403 printf_filtered ("\n");
4404 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4405 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4406 spaces + 8 + 2);
4407 printfi_filtered (spaces + 8, "fcontext ");
4408 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4409 gdb_stdout);
4410 printf_filtered ("\n");
4411
4412 printfi_filtered (spaces + 8, "is_const %d\n",
4413 TYPE_FN_FIELD_CONST (f, overload_idx));
4414 printfi_filtered (spaces + 8, "is_volatile %d\n",
4415 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4416 printfi_filtered (spaces + 8, "is_private %d\n",
4417 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4418 printfi_filtered (spaces + 8, "is_protected %d\n",
4419 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4420 printfi_filtered (spaces + 8, "is_stub %d\n",
4421 TYPE_FN_FIELD_STUB (f, overload_idx));
4422 printfi_filtered (spaces + 8, "voffset %u\n",
4423 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4424 }
4425 }
4426 }
4427
4428 static void
4429 print_cplus_stuff (struct type *type, int spaces)
4430 {
4431 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4432 printfi_filtered (spaces, "vptr_basetype ");
4433 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4434 puts_filtered ("\n");
4435 if (TYPE_VPTR_BASETYPE (type) != NULL)
4436 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4437
4438 printfi_filtered (spaces, "n_baseclasses %d\n",
4439 TYPE_N_BASECLASSES (type));
4440 printfi_filtered (spaces, "nfn_fields %d\n",
4441 TYPE_NFN_FIELDS (type));
4442 if (TYPE_N_BASECLASSES (type) > 0)
4443 {
4444 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4445 TYPE_N_BASECLASSES (type));
4446 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4447 gdb_stdout);
4448 printf_filtered (")");
4449
4450 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4451 TYPE_N_BASECLASSES (type));
4452 puts_filtered ("\n");
4453 }
4454 if (TYPE_NFIELDS (type) > 0)
4455 {
4456 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4457 {
4458 printfi_filtered (spaces,
4459 "private_field_bits (%d bits at *",
4460 TYPE_NFIELDS (type));
4461 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4462 gdb_stdout);
4463 printf_filtered (")");
4464 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4465 TYPE_NFIELDS (type));
4466 puts_filtered ("\n");
4467 }
4468 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4469 {
4470 printfi_filtered (spaces,
4471 "protected_field_bits (%d bits at *",
4472 TYPE_NFIELDS (type));
4473 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4474 gdb_stdout);
4475 printf_filtered (")");
4476 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4477 TYPE_NFIELDS (type));
4478 puts_filtered ("\n");
4479 }
4480 }
4481 if (TYPE_NFN_FIELDS (type) > 0)
4482 {
4483 dump_fn_fieldlists (type, spaces);
4484 }
4485 }
4486
4487 /* Print the contents of the TYPE's type_specific union, assuming that
4488 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4489
4490 static void
4491 print_gnat_stuff (struct type *type, int spaces)
4492 {
4493 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4494
4495 if (descriptive_type == NULL)
4496 printfi_filtered (spaces + 2, "no descriptive type\n");
4497 else
4498 {
4499 printfi_filtered (spaces + 2, "descriptive type\n");
4500 recursive_dump_type (descriptive_type, spaces + 4);
4501 }
4502 }
4503
4504 static struct obstack dont_print_type_obstack;
4505
4506 void
4507 recursive_dump_type (struct type *type, int spaces)
4508 {
4509 int idx;
4510
4511 if (spaces == 0)
4512 obstack_begin (&dont_print_type_obstack, 0);
4513
4514 if (TYPE_NFIELDS (type) > 0
4515 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4516 {
4517 struct type **first_dont_print
4518 = (struct type **) obstack_base (&dont_print_type_obstack);
4519
4520 int i = (struct type **)
4521 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4522
4523 while (--i >= 0)
4524 {
4525 if (type == first_dont_print[i])
4526 {
4527 printfi_filtered (spaces, "type node ");
4528 gdb_print_host_address (type, gdb_stdout);
4529 printf_filtered (_(" <same as already seen type>\n"));
4530 return;
4531 }
4532 }
4533
4534 obstack_ptr_grow (&dont_print_type_obstack, type);
4535 }
4536
4537 printfi_filtered (spaces, "type node ");
4538 gdb_print_host_address (type, gdb_stdout);
4539 printf_filtered ("\n");
4540 printfi_filtered (spaces, "name '%s' (",
4541 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4542 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4543 printf_filtered (")\n");
4544 printfi_filtered (spaces, "tagname '%s' (",
4545 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4546 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4547 printf_filtered (")\n");
4548 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4549 switch (TYPE_CODE (type))
4550 {
4551 case TYPE_CODE_UNDEF:
4552 printf_filtered ("(TYPE_CODE_UNDEF)");
4553 break;
4554 case TYPE_CODE_PTR:
4555 printf_filtered ("(TYPE_CODE_PTR)");
4556 break;
4557 case TYPE_CODE_ARRAY:
4558 printf_filtered ("(TYPE_CODE_ARRAY)");
4559 break;
4560 case TYPE_CODE_STRUCT:
4561 printf_filtered ("(TYPE_CODE_STRUCT)");
4562 break;
4563 case TYPE_CODE_UNION:
4564 printf_filtered ("(TYPE_CODE_UNION)");
4565 break;
4566 case TYPE_CODE_ENUM:
4567 printf_filtered ("(TYPE_CODE_ENUM)");
4568 break;
4569 case TYPE_CODE_FLAGS:
4570 printf_filtered ("(TYPE_CODE_FLAGS)");
4571 break;
4572 case TYPE_CODE_FUNC:
4573 printf_filtered ("(TYPE_CODE_FUNC)");
4574 break;
4575 case TYPE_CODE_INT:
4576 printf_filtered ("(TYPE_CODE_INT)");
4577 break;
4578 case TYPE_CODE_FLT:
4579 printf_filtered ("(TYPE_CODE_FLT)");
4580 break;
4581 case TYPE_CODE_VOID:
4582 printf_filtered ("(TYPE_CODE_VOID)");
4583 break;
4584 case TYPE_CODE_SET:
4585 printf_filtered ("(TYPE_CODE_SET)");
4586 break;
4587 case TYPE_CODE_RANGE:
4588 printf_filtered ("(TYPE_CODE_RANGE)");
4589 break;
4590 case TYPE_CODE_STRING:
4591 printf_filtered ("(TYPE_CODE_STRING)");
4592 break;
4593 case TYPE_CODE_ERROR:
4594 printf_filtered ("(TYPE_CODE_ERROR)");
4595 break;
4596 case TYPE_CODE_MEMBERPTR:
4597 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4598 break;
4599 case TYPE_CODE_METHODPTR:
4600 printf_filtered ("(TYPE_CODE_METHODPTR)");
4601 break;
4602 case TYPE_CODE_METHOD:
4603 printf_filtered ("(TYPE_CODE_METHOD)");
4604 break;
4605 case TYPE_CODE_REF:
4606 printf_filtered ("(TYPE_CODE_REF)");
4607 break;
4608 case TYPE_CODE_CHAR:
4609 printf_filtered ("(TYPE_CODE_CHAR)");
4610 break;
4611 case TYPE_CODE_BOOL:
4612 printf_filtered ("(TYPE_CODE_BOOL)");
4613 break;
4614 case TYPE_CODE_COMPLEX:
4615 printf_filtered ("(TYPE_CODE_COMPLEX)");
4616 break;
4617 case TYPE_CODE_TYPEDEF:
4618 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4619 break;
4620 case TYPE_CODE_NAMESPACE:
4621 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4622 break;
4623 default:
4624 printf_filtered ("(UNKNOWN TYPE CODE)");
4625 break;
4626 }
4627 puts_filtered ("\n");
4628 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4629 if (TYPE_OBJFILE_OWNED (type))
4630 {
4631 printfi_filtered (spaces, "objfile ");
4632 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4633 }
4634 else
4635 {
4636 printfi_filtered (spaces, "gdbarch ");
4637 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4638 }
4639 printf_filtered ("\n");
4640 printfi_filtered (spaces, "target_type ");
4641 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4642 printf_filtered ("\n");
4643 if (TYPE_TARGET_TYPE (type) != NULL)
4644 {
4645 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4646 }
4647 printfi_filtered (spaces, "pointer_type ");
4648 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4649 printf_filtered ("\n");
4650 printfi_filtered (spaces, "reference_type ");
4651 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4652 printf_filtered ("\n");
4653 printfi_filtered (spaces, "type_chain ");
4654 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4655 printf_filtered ("\n");
4656 printfi_filtered (spaces, "instance_flags 0x%x",
4657 TYPE_INSTANCE_FLAGS (type));
4658 if (TYPE_CONST (type))
4659 {
4660 puts_filtered (" TYPE_CONST");
4661 }
4662 if (TYPE_VOLATILE (type))
4663 {
4664 puts_filtered (" TYPE_VOLATILE");
4665 }
4666 if (TYPE_CODE_SPACE (type))
4667 {
4668 puts_filtered (" TYPE_CODE_SPACE");
4669 }
4670 if (TYPE_DATA_SPACE (type))
4671 {
4672 puts_filtered (" TYPE_DATA_SPACE");
4673 }
4674 if (TYPE_ADDRESS_CLASS_1 (type))
4675 {
4676 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4677 }
4678 if (TYPE_ADDRESS_CLASS_2 (type))
4679 {
4680 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4681 }
4682 if (TYPE_RESTRICT (type))
4683 {
4684 puts_filtered (" TYPE_RESTRICT");
4685 }
4686 if (TYPE_ATOMIC (type))
4687 {
4688 puts_filtered (" TYPE_ATOMIC");
4689 }
4690 puts_filtered ("\n");
4691
4692 printfi_filtered (spaces, "flags");
4693 if (TYPE_UNSIGNED (type))
4694 {
4695 puts_filtered (" TYPE_UNSIGNED");
4696 }
4697 if (TYPE_NOSIGN (type))
4698 {
4699 puts_filtered (" TYPE_NOSIGN");
4700 }
4701 if (TYPE_STUB (type))
4702 {
4703 puts_filtered (" TYPE_STUB");
4704 }
4705 if (TYPE_TARGET_STUB (type))
4706 {
4707 puts_filtered (" TYPE_TARGET_STUB");
4708 }
4709 if (TYPE_PROTOTYPED (type))
4710 {
4711 puts_filtered (" TYPE_PROTOTYPED");
4712 }
4713 if (TYPE_INCOMPLETE (type))
4714 {
4715 puts_filtered (" TYPE_INCOMPLETE");
4716 }
4717 if (TYPE_VARARGS (type))
4718 {
4719 puts_filtered (" TYPE_VARARGS");
4720 }
4721 /* This is used for things like AltiVec registers on ppc. Gcc emits
4722 an attribute for the array type, which tells whether or not we
4723 have a vector, instead of a regular array. */
4724 if (TYPE_VECTOR (type))
4725 {
4726 puts_filtered (" TYPE_VECTOR");
4727 }
4728 if (TYPE_FIXED_INSTANCE (type))
4729 {
4730 puts_filtered (" TYPE_FIXED_INSTANCE");
4731 }
4732 if (TYPE_STUB_SUPPORTED (type))
4733 {
4734 puts_filtered (" TYPE_STUB_SUPPORTED");
4735 }
4736 if (TYPE_NOTTEXT (type))
4737 {
4738 puts_filtered (" TYPE_NOTTEXT");
4739 }
4740 puts_filtered ("\n");
4741 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4742 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4743 puts_filtered ("\n");
4744 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4745 {
4746 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4747 printfi_filtered (spaces + 2,
4748 "[%d] enumval %s type ",
4749 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4750 else
4751 printfi_filtered (spaces + 2,
4752 "[%d] bitpos %s bitsize %d type ",
4753 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4754 TYPE_FIELD_BITSIZE (type, idx));
4755 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4756 printf_filtered (" name '%s' (",
4757 TYPE_FIELD_NAME (type, idx) != NULL
4758 ? TYPE_FIELD_NAME (type, idx)
4759 : "<NULL>");
4760 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4761 printf_filtered (")\n");
4762 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4763 {
4764 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4765 }
4766 }
4767 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4768 {
4769 printfi_filtered (spaces, "low %s%s high %s%s\n",
4770 plongest (TYPE_LOW_BOUND (type)),
4771 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4772 plongest (TYPE_HIGH_BOUND (type)),
4773 TYPE_HIGH_BOUND_UNDEFINED (type)
4774 ? " (undefined)" : "");
4775 }
4776
4777 switch (TYPE_SPECIFIC_FIELD (type))
4778 {
4779 case TYPE_SPECIFIC_CPLUS_STUFF:
4780 printfi_filtered (spaces, "cplus_stuff ");
4781 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4782 gdb_stdout);
4783 puts_filtered ("\n");
4784 print_cplus_stuff (type, spaces);
4785 break;
4786
4787 case TYPE_SPECIFIC_GNAT_STUFF:
4788 printfi_filtered (spaces, "gnat_stuff ");
4789 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4790 puts_filtered ("\n");
4791 print_gnat_stuff (type, spaces);
4792 break;
4793
4794 case TYPE_SPECIFIC_FLOATFORMAT:
4795 printfi_filtered (spaces, "floatformat ");
4796 if (TYPE_FLOATFORMAT (type) == NULL
4797 || TYPE_FLOATFORMAT (type)->name == NULL)
4798 puts_filtered ("(null)");
4799 else
4800 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4801 puts_filtered ("\n");
4802 break;
4803
4804 case TYPE_SPECIFIC_FUNC:
4805 printfi_filtered (spaces, "calling_convention %d\n",
4806 TYPE_CALLING_CONVENTION (type));
4807 /* tail_call_list is not printed. */
4808 break;
4809
4810 case TYPE_SPECIFIC_SELF_TYPE:
4811 printfi_filtered (spaces, "self_type ");
4812 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4813 puts_filtered ("\n");
4814 break;
4815 }
4816
4817 if (spaces == 0)
4818 obstack_free (&dont_print_type_obstack, NULL);
4819 }
4820 \f
4821 /* Trivial helpers for the libiberty hash table, for mapping one
4822 type to another. */
4823
4824 struct type_pair : public allocate_on_obstack
4825 {
4826 type_pair (struct type *old_, struct type *newobj_)
4827 : old (old_), newobj (newobj_)
4828 {}
4829
4830 struct type * const old, * const newobj;
4831 };
4832
4833 static hashval_t
4834 type_pair_hash (const void *item)
4835 {
4836 const struct type_pair *pair = (const struct type_pair *) item;
4837
4838 return htab_hash_pointer (pair->old);
4839 }
4840
4841 static int
4842 type_pair_eq (const void *item_lhs, const void *item_rhs)
4843 {
4844 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4845 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4846
4847 return lhs->old == rhs->old;
4848 }
4849
4850 /* Allocate the hash table used by copy_type_recursive to walk
4851 types without duplicates. We use OBJFILE's obstack, because
4852 OBJFILE is about to be deleted. */
4853
4854 htab_t
4855 create_copied_types_hash (struct objfile *objfile)
4856 {
4857 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4858 NULL, &objfile->objfile_obstack,
4859 hashtab_obstack_allocate,
4860 dummy_obstack_deallocate);
4861 }
4862
4863 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4864
4865 static struct dynamic_prop_list *
4866 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4867 struct dynamic_prop_list *list)
4868 {
4869 struct dynamic_prop_list *copy = list;
4870 struct dynamic_prop_list **node_ptr = &copy;
4871
4872 while (*node_ptr != NULL)
4873 {
4874 struct dynamic_prop_list *node_copy;
4875
4876 node_copy = ((struct dynamic_prop_list *)
4877 obstack_copy (objfile_obstack, *node_ptr,
4878 sizeof (struct dynamic_prop_list)));
4879 node_copy->prop = (*node_ptr)->prop;
4880 *node_ptr = node_copy;
4881
4882 node_ptr = &node_copy->next;
4883 }
4884
4885 return copy;
4886 }
4887
4888 /* Recursively copy (deep copy) TYPE, if it is associated with
4889 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4890 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4891 it is not associated with OBJFILE. */
4892
4893 struct type *
4894 copy_type_recursive (struct objfile *objfile,
4895 struct type *type,
4896 htab_t copied_types)
4897 {
4898 void **slot;
4899 struct type *new_type;
4900
4901 if (! TYPE_OBJFILE_OWNED (type))
4902 return type;
4903
4904 /* This type shouldn't be pointing to any types in other objfiles;
4905 if it did, the type might disappear unexpectedly. */
4906 gdb_assert (TYPE_OBJFILE (type) == objfile);
4907
4908 struct type_pair pair (type, nullptr);
4909
4910 slot = htab_find_slot (copied_types, &pair, INSERT);
4911 if (*slot != NULL)
4912 return ((struct type_pair *) *slot)->newobj;
4913
4914 new_type = alloc_type_arch (get_type_arch (type));
4915
4916 /* We must add the new type to the hash table immediately, in case
4917 we encounter this type again during a recursive call below. */
4918 struct type_pair *stored
4919 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4920
4921 *slot = stored;
4922
4923 /* Copy the common fields of types. For the main type, we simply
4924 copy the entire thing and then update specific fields as needed. */
4925 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4926 TYPE_OBJFILE_OWNED (new_type) = 0;
4927 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4928
4929 if (TYPE_NAME (type))
4930 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4931 if (TYPE_TAG_NAME (type))
4932 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4933
4934 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4935 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4936
4937 /* Copy the fields. */
4938 if (TYPE_NFIELDS (type))
4939 {
4940 int i, nfields;
4941
4942 nfields = TYPE_NFIELDS (type);
4943 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4944 for (i = 0; i < nfields; i++)
4945 {
4946 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4947 TYPE_FIELD_ARTIFICIAL (type, i);
4948 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4949 if (TYPE_FIELD_TYPE (type, i))
4950 TYPE_FIELD_TYPE (new_type, i)
4951 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4952 copied_types);
4953 if (TYPE_FIELD_NAME (type, i))
4954 TYPE_FIELD_NAME (new_type, i) =
4955 xstrdup (TYPE_FIELD_NAME (type, i));
4956 switch (TYPE_FIELD_LOC_KIND (type, i))
4957 {
4958 case FIELD_LOC_KIND_BITPOS:
4959 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4960 TYPE_FIELD_BITPOS (type, i));
4961 break;
4962 case FIELD_LOC_KIND_ENUMVAL:
4963 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4964 TYPE_FIELD_ENUMVAL (type, i));
4965 break;
4966 case FIELD_LOC_KIND_PHYSADDR:
4967 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4968 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4969 break;
4970 case FIELD_LOC_KIND_PHYSNAME:
4971 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4972 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4973 i)));
4974 break;
4975 default:
4976 internal_error (__FILE__, __LINE__,
4977 _("Unexpected type field location kind: %d"),
4978 TYPE_FIELD_LOC_KIND (type, i));
4979 }
4980 }
4981 }
4982
4983 /* For range types, copy the bounds information. */
4984 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4985 {
4986 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4987 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4988 }
4989
4990 if (TYPE_DYN_PROP_LIST (type) != NULL)
4991 TYPE_DYN_PROP_LIST (new_type)
4992 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4993 TYPE_DYN_PROP_LIST (type));
4994
4995
4996 /* Copy pointers to other types. */
4997 if (TYPE_TARGET_TYPE (type))
4998 TYPE_TARGET_TYPE (new_type) =
4999 copy_type_recursive (objfile,
5000 TYPE_TARGET_TYPE (type),
5001 copied_types);
5002
5003 /* Maybe copy the type_specific bits.
5004
5005 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5006 base classes and methods. There's no fundamental reason why we
5007 can't, but at the moment it is not needed. */
5008
5009 switch (TYPE_SPECIFIC_FIELD (type))
5010 {
5011 case TYPE_SPECIFIC_NONE:
5012 break;
5013 case TYPE_SPECIFIC_FUNC:
5014 INIT_FUNC_SPECIFIC (new_type);
5015 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5016 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5017 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5018 break;
5019 case TYPE_SPECIFIC_FLOATFORMAT:
5020 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5021 break;
5022 case TYPE_SPECIFIC_CPLUS_STUFF:
5023 INIT_CPLUS_SPECIFIC (new_type);
5024 break;
5025 case TYPE_SPECIFIC_GNAT_STUFF:
5026 INIT_GNAT_SPECIFIC (new_type);
5027 break;
5028 case TYPE_SPECIFIC_SELF_TYPE:
5029 set_type_self_type (new_type,
5030 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5031 copied_types));
5032 break;
5033 default:
5034 gdb_assert_not_reached ("bad type_specific_kind");
5035 }
5036
5037 return new_type;
5038 }
5039
5040 /* Make a copy of the given TYPE, except that the pointer & reference
5041 types are not preserved.
5042
5043 This function assumes that the given type has an associated objfile.
5044 This objfile is used to allocate the new type. */
5045
5046 struct type *
5047 copy_type (const struct type *type)
5048 {
5049 struct type *new_type;
5050
5051 gdb_assert (TYPE_OBJFILE_OWNED (type));
5052
5053 new_type = alloc_type_copy (type);
5054 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5055 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5056 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5057 sizeof (struct main_type));
5058 if (TYPE_DYN_PROP_LIST (type) != NULL)
5059 TYPE_DYN_PROP_LIST (new_type)
5060 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5061 TYPE_DYN_PROP_LIST (type));
5062
5063 return new_type;
5064 }
5065 \f
5066 /* Helper functions to initialize architecture-specific types. */
5067
5068 /* Allocate a type structure associated with GDBARCH and set its
5069 CODE, LENGTH, and NAME fields. */
5070
5071 struct type *
5072 arch_type (struct gdbarch *gdbarch,
5073 enum type_code code, int bit, const char *name)
5074 {
5075 struct type *type;
5076
5077 type = alloc_type_arch (gdbarch);
5078 set_type_code (type, code);
5079 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5080 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5081
5082 if (name)
5083 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5084
5085 return type;
5086 }
5087
5088 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5089 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5090 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5091
5092 struct type *
5093 arch_integer_type (struct gdbarch *gdbarch,
5094 int bit, int unsigned_p, const char *name)
5095 {
5096 struct type *t;
5097
5098 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5099 if (unsigned_p)
5100 TYPE_UNSIGNED (t) = 1;
5101
5102 return t;
5103 }
5104
5105 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5106 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5107 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5108
5109 struct type *
5110 arch_character_type (struct gdbarch *gdbarch,
5111 int bit, int unsigned_p, const char *name)
5112 {
5113 struct type *t;
5114
5115 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5116 if (unsigned_p)
5117 TYPE_UNSIGNED (t) = 1;
5118
5119 return t;
5120 }
5121
5122 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5123 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5124 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5125
5126 struct type *
5127 arch_boolean_type (struct gdbarch *gdbarch,
5128 int bit, int unsigned_p, const char *name)
5129 {
5130 struct type *t;
5131
5132 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5133 if (unsigned_p)
5134 TYPE_UNSIGNED (t) = 1;
5135
5136 return t;
5137 }
5138
5139 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5140 BIT is the type size in bits; if BIT equals -1, the size is
5141 determined by the floatformat. NAME is the type name. Set the
5142 TYPE_FLOATFORMAT from FLOATFORMATS. */
5143
5144 struct type *
5145 arch_float_type (struct gdbarch *gdbarch,
5146 int bit, const char *name,
5147 const struct floatformat **floatformats)
5148 {
5149 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5150 struct type *t;
5151
5152 bit = verify_floatformat (bit, fmt);
5153 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5154 TYPE_FLOATFORMAT (t) = fmt;
5155
5156 return t;
5157 }
5158
5159 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5160 BIT is the type size in bits. NAME is the type name. */
5161
5162 struct type *
5163 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5164 {
5165 struct type *t;
5166
5167 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5168 return t;
5169 }
5170
5171 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5172 NAME is the type name. TARGET_TYPE is the component float type. */
5173
5174 struct type *
5175 arch_complex_type (struct gdbarch *gdbarch,
5176 const char *name, struct type *target_type)
5177 {
5178 struct type *t;
5179
5180 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5181 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5182 TYPE_TARGET_TYPE (t) = target_type;
5183 return t;
5184 }
5185
5186 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5187 BIT is the pointer type size in bits. NAME is the type name.
5188 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5189 TYPE_UNSIGNED flag. */
5190
5191 struct type *
5192 arch_pointer_type (struct gdbarch *gdbarch,
5193 int bit, const char *name, struct type *target_type)
5194 {
5195 struct type *t;
5196
5197 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5198 TYPE_TARGET_TYPE (t) = target_type;
5199 TYPE_UNSIGNED (t) = 1;
5200 return t;
5201 }
5202
5203 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5204 NAME is the type name. BIT is the size of the flag word in bits. */
5205
5206 struct type *
5207 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5208 {
5209 struct type *type;
5210
5211 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5212 TYPE_UNSIGNED (type) = 1;
5213 TYPE_NFIELDS (type) = 0;
5214 /* Pre-allocate enough space assuming every field is one bit. */
5215 TYPE_FIELDS (type)
5216 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5217
5218 return type;
5219 }
5220
5221 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5222 position BITPOS is called NAME. Pass NAME as "" for fields that
5223 should not be printed. */
5224
5225 void
5226 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5227 struct type *field_type, const char *name)
5228 {
5229 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5230 int field_nr = TYPE_NFIELDS (type);
5231
5232 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5233 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5234 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5235 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5236 gdb_assert (name != NULL);
5237
5238 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5239 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5240 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5241 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5242 ++TYPE_NFIELDS (type);
5243 }
5244
5245 /* Special version of append_flags_type_field to add a flag field.
5246 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5247 position BITPOS is called NAME. */
5248
5249 void
5250 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5251 {
5252 struct gdbarch *gdbarch = get_type_arch (type);
5253
5254 append_flags_type_field (type, bitpos, 1,
5255 builtin_type (gdbarch)->builtin_bool,
5256 name);
5257 }
5258
5259 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5260 specified by CODE) associated with GDBARCH. NAME is the type name. */
5261
5262 struct type *
5263 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5264 enum type_code code)
5265 {
5266 struct type *t;
5267
5268 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5269 t = arch_type (gdbarch, code, 0, NULL);
5270 TYPE_TAG_NAME (t) = name;
5271 INIT_CPLUS_SPECIFIC (t);
5272 return t;
5273 }
5274
5275 /* Add new field with name NAME and type FIELD to composite type T.
5276 Do not set the field's position or adjust the type's length;
5277 the caller should do so. Return the new field. */
5278
5279 struct field *
5280 append_composite_type_field_raw (struct type *t, const char *name,
5281 struct type *field)
5282 {
5283 struct field *f;
5284
5285 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5286 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5287 TYPE_NFIELDS (t));
5288 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5289 memset (f, 0, sizeof f[0]);
5290 FIELD_TYPE (f[0]) = field;
5291 FIELD_NAME (f[0]) = name;
5292 return f;
5293 }
5294
5295 /* Add new field with name NAME and type FIELD to composite type T.
5296 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5297
5298 void
5299 append_composite_type_field_aligned (struct type *t, const char *name,
5300 struct type *field, int alignment)
5301 {
5302 struct field *f = append_composite_type_field_raw (t, name, field);
5303
5304 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5305 {
5306 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5307 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5308 }
5309 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5310 {
5311 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5312 if (TYPE_NFIELDS (t) > 1)
5313 {
5314 SET_FIELD_BITPOS (f[0],
5315 (FIELD_BITPOS (f[-1])
5316 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5317 * TARGET_CHAR_BIT)));
5318
5319 if (alignment)
5320 {
5321 int left;
5322
5323 alignment *= TARGET_CHAR_BIT;
5324 left = FIELD_BITPOS (f[0]) % alignment;
5325
5326 if (left)
5327 {
5328 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5329 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5330 }
5331 }
5332 }
5333 }
5334 }
5335
5336 /* Add new field with name NAME and type FIELD to composite type T. */
5337
5338 void
5339 append_composite_type_field (struct type *t, const char *name,
5340 struct type *field)
5341 {
5342 append_composite_type_field_aligned (t, name, field, 0);
5343 }
5344
5345 static struct gdbarch_data *gdbtypes_data;
5346
5347 const struct builtin_type *
5348 builtin_type (struct gdbarch *gdbarch)
5349 {
5350 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5351 }
5352
5353 static void *
5354 gdbtypes_post_init (struct gdbarch *gdbarch)
5355 {
5356 struct builtin_type *builtin_type
5357 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5358
5359 /* Basic types. */
5360 builtin_type->builtin_void
5361 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5362 builtin_type->builtin_char
5363 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5364 !gdbarch_char_signed (gdbarch), "char");
5365 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5366 builtin_type->builtin_signed_char
5367 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5368 0, "signed char");
5369 builtin_type->builtin_unsigned_char
5370 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5371 1, "unsigned char");
5372 builtin_type->builtin_short
5373 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5374 0, "short");
5375 builtin_type->builtin_unsigned_short
5376 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5377 1, "unsigned short");
5378 builtin_type->builtin_int
5379 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5380 0, "int");
5381 builtin_type->builtin_unsigned_int
5382 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5383 1, "unsigned int");
5384 builtin_type->builtin_long
5385 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5386 0, "long");
5387 builtin_type->builtin_unsigned_long
5388 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5389 1, "unsigned long");
5390 builtin_type->builtin_long_long
5391 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5392 0, "long long");
5393 builtin_type->builtin_unsigned_long_long
5394 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5395 1, "unsigned long long");
5396 builtin_type->builtin_float
5397 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5398 "float", gdbarch_float_format (gdbarch));
5399 builtin_type->builtin_double
5400 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5401 "double", gdbarch_double_format (gdbarch));
5402 builtin_type->builtin_long_double
5403 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5404 "long double", gdbarch_long_double_format (gdbarch));
5405 builtin_type->builtin_complex
5406 = arch_complex_type (gdbarch, "complex",
5407 builtin_type->builtin_float);
5408 builtin_type->builtin_double_complex
5409 = arch_complex_type (gdbarch, "double complex",
5410 builtin_type->builtin_double);
5411 builtin_type->builtin_string
5412 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5413 builtin_type->builtin_bool
5414 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5415
5416 /* The following three are about decimal floating point types, which
5417 are 32-bits, 64-bits and 128-bits respectively. */
5418 builtin_type->builtin_decfloat
5419 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5420 builtin_type->builtin_decdouble
5421 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5422 builtin_type->builtin_declong
5423 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5424
5425 /* "True" character types. */
5426 builtin_type->builtin_true_char
5427 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5428 builtin_type->builtin_true_unsigned_char
5429 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5430
5431 /* Fixed-size integer types. */
5432 builtin_type->builtin_int0
5433 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5434 builtin_type->builtin_int8
5435 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5436 builtin_type->builtin_uint8
5437 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5438 builtin_type->builtin_int16
5439 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5440 builtin_type->builtin_uint16
5441 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5442 builtin_type->builtin_int32
5443 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5444 builtin_type->builtin_uint32
5445 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5446 builtin_type->builtin_int64
5447 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5448 builtin_type->builtin_uint64
5449 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5450 builtin_type->builtin_int128
5451 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5452 builtin_type->builtin_uint128
5453 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5454 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5455 TYPE_INSTANCE_FLAG_NOTTEXT;
5456 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5457 TYPE_INSTANCE_FLAG_NOTTEXT;
5458
5459 /* Wide character types. */
5460 builtin_type->builtin_char16
5461 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5462 builtin_type->builtin_char32
5463 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5464 builtin_type->builtin_wchar
5465 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5466 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5467
5468 /* Default data/code pointer types. */
5469 builtin_type->builtin_data_ptr
5470 = lookup_pointer_type (builtin_type->builtin_void);
5471 builtin_type->builtin_func_ptr
5472 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5473 builtin_type->builtin_func_func
5474 = lookup_function_type (builtin_type->builtin_func_ptr);
5475
5476 /* This type represents a GDB internal function. */
5477 builtin_type->internal_fn
5478 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5479 "<internal function>");
5480
5481 /* This type represents an xmethod. */
5482 builtin_type->xmethod
5483 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5484
5485 return builtin_type;
5486 }
5487
5488 /* This set of objfile-based types is intended to be used by symbol
5489 readers as basic types. */
5490
5491 static const struct objfile_data *objfile_type_data;
5492
5493 const struct objfile_type *
5494 objfile_type (struct objfile *objfile)
5495 {
5496 struct gdbarch *gdbarch;
5497 struct objfile_type *objfile_type
5498 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5499
5500 if (objfile_type)
5501 return objfile_type;
5502
5503 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5504 1, struct objfile_type);
5505
5506 /* Use the objfile architecture to determine basic type properties. */
5507 gdbarch = get_objfile_arch (objfile);
5508
5509 /* Basic types. */
5510 objfile_type->builtin_void
5511 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5512 objfile_type->builtin_char
5513 = init_integer_type (objfile, TARGET_CHAR_BIT,
5514 !gdbarch_char_signed (gdbarch), "char");
5515 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5516 objfile_type->builtin_signed_char
5517 = init_integer_type (objfile, TARGET_CHAR_BIT,
5518 0, "signed char");
5519 objfile_type->builtin_unsigned_char
5520 = init_integer_type (objfile, TARGET_CHAR_BIT,
5521 1, "unsigned char");
5522 objfile_type->builtin_short
5523 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5524 0, "short");
5525 objfile_type->builtin_unsigned_short
5526 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5527 1, "unsigned short");
5528 objfile_type->builtin_int
5529 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5530 0, "int");
5531 objfile_type->builtin_unsigned_int
5532 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5533 1, "unsigned int");
5534 objfile_type->builtin_long
5535 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5536 0, "long");
5537 objfile_type->builtin_unsigned_long
5538 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5539 1, "unsigned long");
5540 objfile_type->builtin_long_long
5541 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5542 0, "long long");
5543 objfile_type->builtin_unsigned_long_long
5544 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5545 1, "unsigned long long");
5546 objfile_type->builtin_float
5547 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5548 "float", gdbarch_float_format (gdbarch));
5549 objfile_type->builtin_double
5550 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5551 "double", gdbarch_double_format (gdbarch));
5552 objfile_type->builtin_long_double
5553 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5554 "long double", gdbarch_long_double_format (gdbarch));
5555
5556 /* This type represents a type that was unrecognized in symbol read-in. */
5557 objfile_type->builtin_error
5558 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5559
5560 /* The following set of types is used for symbols with no
5561 debug information. */
5562 objfile_type->nodebug_text_symbol
5563 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5564 "<text variable, no debug info>");
5565 objfile_type->nodebug_text_gnu_ifunc_symbol
5566 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5567 "<text gnu-indirect-function variable, no debug info>");
5568 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5569 objfile_type->nodebug_got_plt_symbol
5570 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5571 "<text from jump slot in .got.plt, no debug info>",
5572 objfile_type->nodebug_text_symbol);
5573 objfile_type->nodebug_data_symbol
5574 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5575 objfile_type->nodebug_unknown_symbol
5576 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5577 objfile_type->nodebug_tls_symbol
5578 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5579
5580 /* NOTE: on some targets, addresses and pointers are not necessarily
5581 the same.
5582
5583 The upshot is:
5584 - gdb's `struct type' always describes the target's
5585 representation.
5586 - gdb's `struct value' objects should always hold values in
5587 target form.
5588 - gdb's CORE_ADDR values are addresses in the unified virtual
5589 address space that the assembler and linker work with. Thus,
5590 since target_read_memory takes a CORE_ADDR as an argument, it
5591 can access any memory on the target, even if the processor has
5592 separate code and data address spaces.
5593
5594 In this context, objfile_type->builtin_core_addr is a bit odd:
5595 it's a target type for a value the target will never see. It's
5596 only used to hold the values of (typeless) linker symbols, which
5597 are indeed in the unified virtual address space. */
5598
5599 objfile_type->builtin_core_addr
5600 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5601 "__CORE_ADDR");
5602
5603 set_objfile_data (objfile, objfile_type_data, objfile_type);
5604 return objfile_type;
5605 }
5606
5607 void
5608 _initialize_gdbtypes (void)
5609 {
5610 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5611 objfile_type_data = register_objfile_data ();
5612
5613 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5614 _("Set debugging of C++ overloading."),
5615 _("Show debugging of C++ overloading."),
5616 _("When enabled, ranking of the "
5617 "functions is displayed."),
5618 NULL,
5619 show_overload_debug,
5620 &setdebuglist, &showdebuglist);
5621
5622 /* Add user knob for controlling resolution of opaque types. */
5623 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5624 &opaque_type_resolution,
5625 _("Set resolution of opaque struct/class/union"
5626 " types (if set before loading symbols)."),
5627 _("Show resolution of opaque struct/class/union"
5628 " types (if set before loading symbols)."),
5629 NULL, NULL,
5630 show_opaque_type_resolution,
5631 &setlist, &showlist);
5632
5633 /* Add an option to permit non-strict type checking. */
5634 add_setshow_boolean_cmd ("type", class_support,
5635 &strict_type_checking,
5636 _("Set strict type checking."),
5637 _("Show strict type checking."),
5638 NULL, NULL,
5639 show_strict_type_checking,
5640 &setchecklist, &showchecklist);
5641 }