]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.c
Use ui_file_as_string throughout more
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the obstack associated with GDBARCH. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
202 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* See gdbtypes.h. */
256
257 unsigned int
258 type_length_units (struct type *type)
259 {
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264 }
265
266 /* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270 static struct type *
271 alloc_type_instance (struct type *oldtype)
272 {
273 struct type *type;
274
275 /* Allocate the structure. */
276
277 if (! TYPE_OBJFILE_OWNED (oldtype))
278 type = XCNEW (struct type);
279 else
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
287 return type;
288 }
289
290 /* Clear all remnants of the previous type at TYPE, in preparation for
291 replacing it with something else. Preserve owner information. */
292
293 static void
294 smash_type (struct type *type)
295 {
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309 }
310
311 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316 struct type *
317 make_pointer_type (struct type *type, struct type **typeptr)
318 {
319 struct type *ntype; /* New type */
320 struct type *chain;
321
322 ntype = TYPE_POINTER_TYPE (type);
323
324 if (ntype)
325 {
326 if (typeptr == 0)
327 return ntype; /* Don't care about alloc,
328 and have new type. */
329 else if (*typeptr == 0)
330 {
331 *typeptr = ntype; /* Tracking alloc, and have new type. */
332 return ntype;
333 }
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
338 ntype = alloc_type_copy (type);
339 if (typeptr)
340 *typeptr = ntype;
341 }
342 else /* We have storage, but need to reset it. */
343 {
344 ntype = *typeptr;
345 chain = TYPE_CHAIN (ntype);
346 smash_type (ntype);
347 TYPE_CHAIN (ntype) = chain;
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
353 /* FIXME! Assumes the machine has only one representation for pointers! */
354
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
359 /* Mark pointers as unsigned. The target converts between pointers
360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
361 gdbarch_address_to_pointer. */
362 TYPE_UNSIGNED (ntype) = 1;
363
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
372 return ntype;
373 }
374
375 /* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378 struct type *
379 lookup_pointer_type (struct type *type)
380 {
381 return make_pointer_type (type, (struct type **) 0);
382 }
383
384 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
387 type we return. We allocate new memory if needed. */
388
389 struct type *
390 make_reference_type (struct type *type, struct type **typeptr)
391 {
392 struct type *ntype; /* New type */
393 struct type *chain;
394
395 ntype = TYPE_REFERENCE_TYPE (type);
396
397 if (ntype)
398 {
399 if (typeptr == 0)
400 return ntype; /* Don't care about alloc,
401 and have new type. */
402 else if (*typeptr == 0)
403 {
404 *typeptr = ntype; /* Tracking alloc, and have new type. */
405 return ntype;
406 }
407 }
408
409 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
410 {
411 ntype = alloc_type_copy (type);
412 if (typeptr)
413 *typeptr = ntype;
414 }
415 else /* We have storage, but need to reset it. */
416 {
417 ntype = *typeptr;
418 chain = TYPE_CHAIN (ntype);
419 smash_type (ntype);
420 TYPE_CHAIN (ntype) = chain;
421 }
422
423 TYPE_TARGET_TYPE (ntype) = type;
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* FIXME! Assume the machine has only one representation for
427 references, and that it matches the (only) representation for
428 pointers! */
429
430 TYPE_LENGTH (ntype) =
431 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
432 TYPE_CODE (ntype) = TYPE_CODE_REF;
433
434 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
435 TYPE_REFERENCE_TYPE (type) = ntype;
436
437 /* Update the length of all the other variants of this type. */
438 chain = TYPE_CHAIN (ntype);
439 while (chain != ntype)
440 {
441 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
442 chain = TYPE_CHAIN (chain);
443 }
444
445 return ntype;
446 }
447
448 /* Same as above, but caller doesn't care about memory allocation
449 details. */
450
451 struct type *
452 lookup_reference_type (struct type *type)
453 {
454 return make_reference_type (type, (struct type **) 0);
455 }
456
457 /* Lookup a function type that returns type TYPE. TYPEPTR, if
458 nonzero, points to a pointer to memory where the function type
459 should be stored. If *TYPEPTR is zero, update it to point to the
460 function type we return. We allocate new memory if needed. */
461
462 struct type *
463 make_function_type (struct type *type, struct type **typeptr)
464 {
465 struct type *ntype; /* New type */
466
467 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
468 {
469 ntype = alloc_type_copy (type);
470 if (typeptr)
471 *typeptr = ntype;
472 }
473 else /* We have storage, but need to reset it. */
474 {
475 ntype = *typeptr;
476 smash_type (ntype);
477 }
478
479 TYPE_TARGET_TYPE (ntype) = type;
480
481 TYPE_LENGTH (ntype) = 1;
482 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
483
484 INIT_FUNC_SPECIFIC (ntype);
485
486 return ntype;
487 }
488
489 /* Given a type TYPE, return a type of functions that return that type.
490 May need to construct such a type if this is the first use. */
491
492 struct type *
493 lookup_function_type (struct type *type)
494 {
495 return make_function_type (type, (struct type **) 0);
496 }
497
498 /* Given a type TYPE and argument types, return the appropriate
499 function type. If the final type in PARAM_TYPES is NULL, make a
500 varargs function. */
501
502 struct type *
503 lookup_function_type_with_arguments (struct type *type,
504 int nparams,
505 struct type **param_types)
506 {
507 struct type *fn = make_function_type (type, (struct type **) 0);
508 int i;
509
510 if (nparams > 0)
511 {
512 if (param_types[nparams - 1] == NULL)
513 {
514 --nparams;
515 TYPE_VARARGS (fn) = 1;
516 }
517 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
518 == TYPE_CODE_VOID)
519 {
520 --nparams;
521 /* Caller should have ensured this. */
522 gdb_assert (nparams == 0);
523 TYPE_PROTOTYPED (fn) = 1;
524 }
525 }
526
527 TYPE_NFIELDS (fn) = nparams;
528 TYPE_FIELDS (fn)
529 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
530 for (i = 0; i < nparams; ++i)
531 TYPE_FIELD_TYPE (fn, i) = param_types[i];
532
533 return fn;
534 }
535
536 /* Identify address space identifier by name --
537 return the integer flag defined in gdbtypes.h. */
538
539 int
540 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
541 {
542 int type_flags;
543
544 /* Check for known address space delimiters. */
545 if (!strcmp (space_identifier, "code"))
546 return TYPE_INSTANCE_FLAG_CODE_SPACE;
547 else if (!strcmp (space_identifier, "data"))
548 return TYPE_INSTANCE_FLAG_DATA_SPACE;
549 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
550 && gdbarch_address_class_name_to_type_flags (gdbarch,
551 space_identifier,
552 &type_flags))
553 return type_flags;
554 else
555 error (_("Unknown address space specifier: \"%s\""), space_identifier);
556 }
557
558 /* Identify address space identifier by integer flag as defined in
559 gdbtypes.h -- return the string version of the adress space name. */
560
561 const char *
562 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
563 {
564 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
565 return "code";
566 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
567 return "data";
568 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
569 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
570 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
571 else
572 return NULL;
573 }
574
575 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
576
577 If STORAGE is non-NULL, create the new type instance there.
578 STORAGE must be in the same obstack as TYPE. */
579
580 static struct type *
581 make_qualified_type (struct type *type, int new_flags,
582 struct type *storage)
583 {
584 struct type *ntype;
585
586 ntype = type;
587 do
588 {
589 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
590 return ntype;
591 ntype = TYPE_CHAIN (ntype);
592 }
593 while (ntype != type);
594
595 /* Create a new type instance. */
596 if (storage == NULL)
597 ntype = alloc_type_instance (type);
598 else
599 {
600 /* If STORAGE was provided, it had better be in the same objfile
601 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
602 if one objfile is freed and the other kept, we'd have
603 dangling pointers. */
604 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
605
606 ntype = storage;
607 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
608 TYPE_CHAIN (ntype) = ntype;
609 }
610
611 /* Pointers or references to the original type are not relevant to
612 the new type. */
613 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
614 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
615
616 /* Chain the new qualified type to the old type. */
617 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
618 TYPE_CHAIN (type) = ntype;
619
620 /* Now set the instance flags and return the new type. */
621 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
622
623 /* Set length of new type to that of the original type. */
624 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
625
626 return ntype;
627 }
628
629 /* Make an address-space-delimited variant of a type -- a type that
630 is identical to the one supplied except that it has an address
631 space attribute attached to it (such as "code" or "data").
632
633 The space attributes "code" and "data" are for Harvard
634 architectures. The address space attributes are for architectures
635 which have alternately sized pointers or pointers with alternate
636 representations. */
637
638 struct type *
639 make_type_with_address_space (struct type *type, int space_flag)
640 {
641 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
642 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
643 | TYPE_INSTANCE_FLAG_DATA_SPACE
644 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
645 | space_flag);
646
647 return make_qualified_type (type, new_flags, NULL);
648 }
649
650 /* Make a "c-v" variant of a type -- a type that is identical to the
651 one supplied except that it may have const or volatile attributes
652 CNST is a flag for setting the const attribute
653 VOLTL is a flag for setting the volatile attribute
654 TYPE is the base type whose variant we are creating.
655
656 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
657 storage to hold the new qualified type; *TYPEPTR and TYPE must be
658 in the same objfile. Otherwise, allocate fresh memory for the new
659 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
660 new type we construct. */
661
662 struct type *
663 make_cv_type (int cnst, int voltl,
664 struct type *type,
665 struct type **typeptr)
666 {
667 struct type *ntype; /* New type */
668
669 int new_flags = (TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CONST
671 | TYPE_INSTANCE_FLAG_VOLATILE));
672
673 if (cnst)
674 new_flags |= TYPE_INSTANCE_FLAG_CONST;
675
676 if (voltl)
677 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
678
679 if (typeptr && *typeptr != NULL)
680 {
681 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
682 a C-V variant chain that threads across objfiles: if one
683 objfile gets freed, then the other has a broken C-V chain.
684
685 This code used to try to copy over the main type from TYPE to
686 *TYPEPTR if they were in different objfiles, but that's
687 wrong, too: TYPE may have a field list or member function
688 lists, which refer to types of their own, etc. etc. The
689 whole shebang would need to be copied over recursively; you
690 can't have inter-objfile pointers. The only thing to do is
691 to leave stub types as stub types, and look them up afresh by
692 name each time you encounter them. */
693 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
694 }
695
696 ntype = make_qualified_type (type, new_flags,
697 typeptr ? *typeptr : NULL);
698
699 if (typeptr != NULL)
700 *typeptr = ntype;
701
702 return ntype;
703 }
704
705 /* Make a 'restrict'-qualified version of TYPE. */
706
707 struct type *
708 make_restrict_type (struct type *type)
709 {
710 return make_qualified_type (type,
711 (TYPE_INSTANCE_FLAGS (type)
712 | TYPE_INSTANCE_FLAG_RESTRICT),
713 NULL);
714 }
715
716 /* Make a type without const, volatile, or restrict. */
717
718 struct type *
719 make_unqualified_type (struct type *type)
720 {
721 return make_qualified_type (type,
722 (TYPE_INSTANCE_FLAGS (type)
723 & ~(TYPE_INSTANCE_FLAG_CONST
724 | TYPE_INSTANCE_FLAG_VOLATILE
725 | TYPE_INSTANCE_FLAG_RESTRICT)),
726 NULL);
727 }
728
729 /* Make a '_Atomic'-qualified version of TYPE. */
730
731 struct type *
732 make_atomic_type (struct type *type)
733 {
734 return make_qualified_type (type,
735 (TYPE_INSTANCE_FLAGS (type)
736 | TYPE_INSTANCE_FLAG_ATOMIC),
737 NULL);
738 }
739
740 /* Replace the contents of ntype with the type *type. This changes the
741 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
742 the changes are propogated to all types in the TYPE_CHAIN.
743
744 In order to build recursive types, it's inevitable that we'll need
745 to update types in place --- but this sort of indiscriminate
746 smashing is ugly, and needs to be replaced with something more
747 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
748 clear if more steps are needed. */
749
750 void
751 replace_type (struct type *ntype, struct type *type)
752 {
753 struct type *chain;
754
755 /* These two types had better be in the same objfile. Otherwise,
756 the assignment of one type's main type structure to the other
757 will produce a type with references to objects (names; field
758 lists; etc.) allocated on an objfile other than its own. */
759 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
760
761 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
762
763 /* The type length is not a part of the main type. Update it for
764 each type on the variant chain. */
765 chain = ntype;
766 do
767 {
768 /* Assert that this element of the chain has no address-class bits
769 set in its flags. Such type variants might have type lengths
770 which are supposed to be different from the non-address-class
771 variants. This assertion shouldn't ever be triggered because
772 symbol readers which do construct address-class variants don't
773 call replace_type(). */
774 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
775
776 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
777 chain = TYPE_CHAIN (chain);
778 }
779 while (ntype != chain);
780
781 /* Assert that the two types have equivalent instance qualifiers.
782 This should be true for at least all of our debug readers. */
783 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
784 }
785
786 /* Implement direct support for MEMBER_TYPE in GNU C++.
787 May need to construct such a type if this is the first use.
788 The TYPE is the type of the member. The DOMAIN is the type
789 of the aggregate that the member belongs to. */
790
791 struct type *
792 lookup_memberptr_type (struct type *type, struct type *domain)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (type);
797 smash_to_memberptr_type (mtype, domain, type);
798 return mtype;
799 }
800
801 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
802
803 struct type *
804 lookup_methodptr_type (struct type *to_type)
805 {
806 struct type *mtype;
807
808 mtype = alloc_type_copy (to_type);
809 smash_to_methodptr_type (mtype, to_type);
810 return mtype;
811 }
812
813 /* Allocate a stub method whose return type is TYPE. This apparently
814 happens for speed of symbol reading, since parsing out the
815 arguments to the method is cpu-intensive, the way we are doing it.
816 So, we will fill in arguments later. This always returns a fresh
817 type. */
818
819 struct type *
820 allocate_stub_method (struct type *type)
821 {
822 struct type *mtype;
823
824 mtype = alloc_type_copy (type);
825 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
826 TYPE_LENGTH (mtype) = 1;
827 TYPE_STUB (mtype) = 1;
828 TYPE_TARGET_TYPE (mtype) = type;
829 /* TYPE_SELF_TYPE (mtype) = unknown yet */
830 return mtype;
831 }
832
833 /* Create a range type with a dynamic range from LOW_BOUND to
834 HIGH_BOUND, inclusive. See create_range_type for further details. */
835
836 struct type *
837 create_range_type (struct type *result_type, struct type *index_type,
838 const struct dynamic_prop *low_bound,
839 const struct dynamic_prop *high_bound)
840 {
841 if (result_type == NULL)
842 result_type = alloc_type_copy (index_type);
843 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
844 TYPE_TARGET_TYPE (result_type) = index_type;
845 if (TYPE_STUB (index_type))
846 TYPE_TARGET_STUB (result_type) = 1;
847 else
848 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
849
850 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
851 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
852 TYPE_RANGE_DATA (result_type)->low = *low_bound;
853 TYPE_RANGE_DATA (result_type)->high = *high_bound;
854
855 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
856 TYPE_UNSIGNED (result_type) = 1;
857
858 /* Ada allows the declaration of range types whose upper bound is
859 less than the lower bound, so checking the lower bound is not
860 enough. Make sure we do not mark a range type whose upper bound
861 is negative as unsigned. */
862 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
863 TYPE_UNSIGNED (result_type) = 0;
864
865 return result_type;
866 }
867
868 /* Create a range type using either a blank type supplied in
869 RESULT_TYPE, or creating a new type, inheriting the objfile from
870 INDEX_TYPE.
871
872 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
873 to HIGH_BOUND, inclusive.
874
875 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
876 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
877
878 struct type *
879 create_static_range_type (struct type *result_type, struct type *index_type,
880 LONGEST low_bound, LONGEST high_bound)
881 {
882 struct dynamic_prop low, high;
883
884 low.kind = PROP_CONST;
885 low.data.const_val = low_bound;
886
887 high.kind = PROP_CONST;
888 high.data.const_val = high_bound;
889
890 result_type = create_range_type (result_type, index_type, &low, &high);
891
892 return result_type;
893 }
894
895 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
896 are static, otherwise returns 0. */
897
898 static int
899 has_static_range (const struct range_bounds *bounds)
900 {
901 return (bounds->low.kind == PROP_CONST
902 && bounds->high.kind == PROP_CONST);
903 }
904
905
906 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
907 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
908 bounds will fit in LONGEST), or -1 otherwise. */
909
910 int
911 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
912 {
913 type = check_typedef (type);
914 switch (TYPE_CODE (type))
915 {
916 case TYPE_CODE_RANGE:
917 *lowp = TYPE_LOW_BOUND (type);
918 *highp = TYPE_HIGH_BOUND (type);
919 return 1;
920 case TYPE_CODE_ENUM:
921 if (TYPE_NFIELDS (type) > 0)
922 {
923 /* The enums may not be sorted by value, so search all
924 entries. */
925 int i;
926
927 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
928 for (i = 0; i < TYPE_NFIELDS (type); i++)
929 {
930 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
931 *lowp = TYPE_FIELD_ENUMVAL (type, i);
932 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
933 *highp = TYPE_FIELD_ENUMVAL (type, i);
934 }
935
936 /* Set unsigned indicator if warranted. */
937 if (*lowp >= 0)
938 {
939 TYPE_UNSIGNED (type) = 1;
940 }
941 }
942 else
943 {
944 *lowp = 0;
945 *highp = -1;
946 }
947 return 0;
948 case TYPE_CODE_BOOL:
949 *lowp = 0;
950 *highp = 1;
951 return 0;
952 case TYPE_CODE_INT:
953 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
954 return -1;
955 if (!TYPE_UNSIGNED (type))
956 {
957 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
958 *highp = -*lowp - 1;
959 return 0;
960 }
961 /* ... fall through for unsigned ints ... */
962 case TYPE_CODE_CHAR:
963 *lowp = 0;
964 /* This round-about calculation is to avoid shifting by
965 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
966 if TYPE_LENGTH (type) == sizeof (LONGEST). */
967 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
968 *highp = (*highp - 1) | *highp;
969 return 0;
970 default:
971 return -1;
972 }
973 }
974
975 /* Assuming TYPE is a simple, non-empty array type, compute its upper
976 and lower bound. Save the low bound into LOW_BOUND if not NULL.
977 Save the high bound into HIGH_BOUND if not NULL.
978
979 Return 1 if the operation was successful. Return zero otherwise,
980 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
981
982 We now simply use get_discrete_bounds call to get the values
983 of the low and high bounds.
984 get_discrete_bounds can return three values:
985 1, meaning that index is a range,
986 0, meaning that index is a discrete type,
987 or -1 for failure. */
988
989 int
990 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
991 {
992 struct type *index = TYPE_INDEX_TYPE (type);
993 LONGEST low = 0;
994 LONGEST high = 0;
995 int res;
996
997 if (index == NULL)
998 return 0;
999
1000 res = get_discrete_bounds (index, &low, &high);
1001 if (res == -1)
1002 return 0;
1003
1004 /* Check if the array bounds are undefined. */
1005 if (res == 1
1006 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1007 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1008 return 0;
1009
1010 if (low_bound)
1011 *low_bound = low;
1012
1013 if (high_bound)
1014 *high_bound = high;
1015
1016 return 1;
1017 }
1018
1019 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1020 representation of a value of this type, save the corresponding
1021 position number in POS.
1022
1023 Its differs from VAL only in the case of enumeration types. In
1024 this case, the position number of the value of the first listed
1025 enumeration literal is zero; the position number of the value of
1026 each subsequent enumeration literal is one more than that of its
1027 predecessor in the list.
1028
1029 Return 1 if the operation was successful. Return zero otherwise,
1030 in which case the value of POS is unmodified.
1031 */
1032
1033 int
1034 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1035 {
1036 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1037 {
1038 int i;
1039
1040 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1041 {
1042 if (val == TYPE_FIELD_ENUMVAL (type, i))
1043 {
1044 *pos = i;
1045 return 1;
1046 }
1047 }
1048 /* Invalid enumeration value. */
1049 return 0;
1050 }
1051 else
1052 {
1053 *pos = val;
1054 return 1;
1055 }
1056 }
1057
1058 /* Create an array type using either a blank type supplied in
1059 RESULT_TYPE, or creating a new type, inheriting the objfile from
1060 RANGE_TYPE.
1061
1062 Elements will be of type ELEMENT_TYPE, the indices will be of type
1063 RANGE_TYPE.
1064
1065 If BIT_STRIDE is not zero, build a packed array type whose element
1066 size is BIT_STRIDE. Otherwise, ignore this parameter.
1067
1068 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1069 sure it is TYPE_CODE_UNDEF before we bash it into an array
1070 type? */
1071
1072 struct type *
1073 create_array_type_with_stride (struct type *result_type,
1074 struct type *element_type,
1075 struct type *range_type,
1076 unsigned int bit_stride)
1077 {
1078 if (result_type == NULL)
1079 result_type = alloc_type_copy (range_type);
1080
1081 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1082 TYPE_TARGET_TYPE (result_type) = element_type;
1083 if (has_static_range (TYPE_RANGE_DATA (range_type))
1084 && (!type_not_associated (result_type)
1085 && !type_not_allocated (result_type)))
1086 {
1087 LONGEST low_bound, high_bound;
1088
1089 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1090 low_bound = high_bound = 0;
1091 element_type = check_typedef (element_type);
1092 /* Be careful when setting the array length. Ada arrays can be
1093 empty arrays with the high_bound being smaller than the low_bound.
1094 In such cases, the array length should be zero. */
1095 if (high_bound < low_bound)
1096 TYPE_LENGTH (result_type) = 0;
1097 else if (bit_stride > 0)
1098 TYPE_LENGTH (result_type) =
1099 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1100 else
1101 TYPE_LENGTH (result_type) =
1102 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1103 }
1104 else
1105 {
1106 /* This type is dynamic and its length needs to be computed
1107 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1108 undefined by setting it to zero. Although we are not expected
1109 to trust TYPE_LENGTH in this case, setting the size to zero
1110 allows us to avoid allocating objects of random sizes in case
1111 we accidently do. */
1112 TYPE_LENGTH (result_type) = 0;
1113 }
1114
1115 TYPE_NFIELDS (result_type) = 1;
1116 TYPE_FIELDS (result_type) =
1117 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1118 TYPE_INDEX_TYPE (result_type) = range_type;
1119 if (bit_stride > 0)
1120 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1121
1122 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1123 if (TYPE_LENGTH (result_type) == 0)
1124 TYPE_TARGET_STUB (result_type) = 1;
1125
1126 return result_type;
1127 }
1128
1129 /* Same as create_array_type_with_stride but with no bit_stride
1130 (BIT_STRIDE = 0), thus building an unpacked array. */
1131
1132 struct type *
1133 create_array_type (struct type *result_type,
1134 struct type *element_type,
1135 struct type *range_type)
1136 {
1137 return create_array_type_with_stride (result_type, element_type,
1138 range_type, 0);
1139 }
1140
1141 struct type *
1142 lookup_array_range_type (struct type *element_type,
1143 LONGEST low_bound, LONGEST high_bound)
1144 {
1145 struct gdbarch *gdbarch = get_type_arch (element_type);
1146 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1147 struct type *range_type
1148 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1149
1150 return create_array_type (NULL, element_type, range_type);
1151 }
1152
1153 /* Create a string type using either a blank type supplied in
1154 RESULT_TYPE, or creating a new type. String types are similar
1155 enough to array of char types that we can use create_array_type to
1156 build the basic type and then bash it into a string type.
1157
1158 For fixed length strings, the range type contains 0 as the lower
1159 bound and the length of the string minus one as the upper bound.
1160
1161 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1162 sure it is TYPE_CODE_UNDEF before we bash it into a string
1163 type? */
1164
1165 struct type *
1166 create_string_type (struct type *result_type,
1167 struct type *string_char_type,
1168 struct type *range_type)
1169 {
1170 result_type = create_array_type (result_type,
1171 string_char_type,
1172 range_type);
1173 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1174 return result_type;
1175 }
1176
1177 struct type *
1178 lookup_string_range_type (struct type *string_char_type,
1179 LONGEST low_bound, LONGEST high_bound)
1180 {
1181 struct type *result_type;
1182
1183 result_type = lookup_array_range_type (string_char_type,
1184 low_bound, high_bound);
1185 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1186 return result_type;
1187 }
1188
1189 struct type *
1190 create_set_type (struct type *result_type, struct type *domain_type)
1191 {
1192 if (result_type == NULL)
1193 result_type = alloc_type_copy (domain_type);
1194
1195 TYPE_CODE (result_type) = TYPE_CODE_SET;
1196 TYPE_NFIELDS (result_type) = 1;
1197 TYPE_FIELDS (result_type)
1198 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1199
1200 if (!TYPE_STUB (domain_type))
1201 {
1202 LONGEST low_bound, high_bound, bit_length;
1203
1204 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1205 low_bound = high_bound = 0;
1206 bit_length = high_bound - low_bound + 1;
1207 TYPE_LENGTH (result_type)
1208 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1209 if (low_bound >= 0)
1210 TYPE_UNSIGNED (result_type) = 1;
1211 }
1212 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1213
1214 return result_type;
1215 }
1216
1217 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1218 and any array types nested inside it. */
1219
1220 void
1221 make_vector_type (struct type *array_type)
1222 {
1223 struct type *inner_array, *elt_type;
1224 int flags;
1225
1226 /* Find the innermost array type, in case the array is
1227 multi-dimensional. */
1228 inner_array = array_type;
1229 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1230 inner_array = TYPE_TARGET_TYPE (inner_array);
1231
1232 elt_type = TYPE_TARGET_TYPE (inner_array);
1233 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1234 {
1235 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1236 elt_type = make_qualified_type (elt_type, flags, NULL);
1237 TYPE_TARGET_TYPE (inner_array) = elt_type;
1238 }
1239
1240 TYPE_VECTOR (array_type) = 1;
1241 }
1242
1243 struct type *
1244 init_vector_type (struct type *elt_type, int n)
1245 {
1246 struct type *array_type;
1247
1248 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1249 make_vector_type (array_type);
1250 return array_type;
1251 }
1252
1253 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1254 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1255 confusing. "self" is a common enough replacement for "this".
1256 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1257 TYPE_CODE_METHOD. */
1258
1259 struct type *
1260 internal_type_self_type (struct type *type)
1261 {
1262 switch (TYPE_CODE (type))
1263 {
1264 case TYPE_CODE_METHODPTR:
1265 case TYPE_CODE_MEMBERPTR:
1266 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1267 return NULL;
1268 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1269 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1270 case TYPE_CODE_METHOD:
1271 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1272 return NULL;
1273 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1274 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1275 default:
1276 gdb_assert_not_reached ("bad type");
1277 }
1278 }
1279
1280 /* Set the type of the class that TYPE belongs to.
1281 In c++ this is the class of "this".
1282 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1283 TYPE_CODE_METHOD. */
1284
1285 void
1286 set_type_self_type (struct type *type, struct type *self_type)
1287 {
1288 switch (TYPE_CODE (type))
1289 {
1290 case TYPE_CODE_METHODPTR:
1291 case TYPE_CODE_MEMBERPTR:
1292 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1293 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1294 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1295 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1296 break;
1297 case TYPE_CODE_METHOD:
1298 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1299 INIT_FUNC_SPECIFIC (type);
1300 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1301 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1302 break;
1303 default:
1304 gdb_assert_not_reached ("bad type");
1305 }
1306 }
1307
1308 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1309 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1310 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1311 TYPE doesn't include the offset (that's the value of the MEMBER
1312 itself), but does include the structure type into which it points
1313 (for some reason).
1314
1315 When "smashing" the type, we preserve the objfile that the old type
1316 pointed to, since we aren't changing where the type is actually
1317 allocated. */
1318
1319 void
1320 smash_to_memberptr_type (struct type *type, struct type *self_type,
1321 struct type *to_type)
1322 {
1323 smash_type (type);
1324 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1325 TYPE_TARGET_TYPE (type) = to_type;
1326 set_type_self_type (type, self_type);
1327 /* Assume that a data member pointer is the same size as a normal
1328 pointer. */
1329 TYPE_LENGTH (type)
1330 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1331 }
1332
1333 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1334
1335 When "smashing" the type, we preserve the objfile that the old type
1336 pointed to, since we aren't changing where the type is actually
1337 allocated. */
1338
1339 void
1340 smash_to_methodptr_type (struct type *type, struct type *to_type)
1341 {
1342 smash_type (type);
1343 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1344 TYPE_TARGET_TYPE (type) = to_type;
1345 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1346 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1347 }
1348
1349 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1350 METHOD just means `function that gets an extra "this" argument'.
1351
1352 When "smashing" the type, we preserve the objfile that the old type
1353 pointed to, since we aren't changing where the type is actually
1354 allocated. */
1355
1356 void
1357 smash_to_method_type (struct type *type, struct type *self_type,
1358 struct type *to_type, struct field *args,
1359 int nargs, int varargs)
1360 {
1361 smash_type (type);
1362 TYPE_CODE (type) = TYPE_CODE_METHOD;
1363 TYPE_TARGET_TYPE (type) = to_type;
1364 set_type_self_type (type, self_type);
1365 TYPE_FIELDS (type) = args;
1366 TYPE_NFIELDS (type) = nargs;
1367 if (varargs)
1368 TYPE_VARARGS (type) = 1;
1369 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1370 }
1371
1372 /* Return a typename for a struct/union/enum type without "struct ",
1373 "union ", or "enum ". If the type has a NULL name, return NULL. */
1374
1375 const char *
1376 type_name_no_tag (const struct type *type)
1377 {
1378 if (TYPE_TAG_NAME (type) != NULL)
1379 return TYPE_TAG_NAME (type);
1380
1381 /* Is there code which expects this to return the name if there is
1382 no tag name? My guess is that this is mainly used for C++ in
1383 cases where the two will always be the same. */
1384 return TYPE_NAME (type);
1385 }
1386
1387 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1388 Since GCC PR debug/47510 DWARF provides associated information to detect the
1389 anonymous class linkage name from its typedef.
1390
1391 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1392 apply it itself. */
1393
1394 const char *
1395 type_name_no_tag_or_error (struct type *type)
1396 {
1397 struct type *saved_type = type;
1398 const char *name;
1399 struct objfile *objfile;
1400
1401 type = check_typedef (type);
1402
1403 name = type_name_no_tag (type);
1404 if (name != NULL)
1405 return name;
1406
1407 name = type_name_no_tag (saved_type);
1408 objfile = TYPE_OBJFILE (saved_type);
1409 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1410 name ? name : "<anonymous>",
1411 objfile ? objfile_name (objfile) : "<arch>");
1412 }
1413
1414 /* Lookup a typedef or primitive type named NAME, visible in lexical
1415 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1416 suitably defined. */
1417
1418 struct type *
1419 lookup_typename (const struct language_defn *language,
1420 struct gdbarch *gdbarch, const char *name,
1421 const struct block *block, int noerr)
1422 {
1423 struct symbol *sym;
1424
1425 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1426 language->la_language, NULL).symbol;
1427 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1428 return SYMBOL_TYPE (sym);
1429
1430 if (noerr)
1431 return NULL;
1432 error (_("No type named %s."), name);
1433 }
1434
1435 struct type *
1436 lookup_unsigned_typename (const struct language_defn *language,
1437 struct gdbarch *gdbarch, const char *name)
1438 {
1439 char *uns = (char *) alloca (strlen (name) + 10);
1440
1441 strcpy (uns, "unsigned ");
1442 strcpy (uns + 9, name);
1443 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1444 }
1445
1446 struct type *
1447 lookup_signed_typename (const struct language_defn *language,
1448 struct gdbarch *gdbarch, const char *name)
1449 {
1450 struct type *t;
1451 char *uns = (char *) alloca (strlen (name) + 8);
1452
1453 strcpy (uns, "signed ");
1454 strcpy (uns + 7, name);
1455 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1456 /* If we don't find "signed FOO" just try again with plain "FOO". */
1457 if (t != NULL)
1458 return t;
1459 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1460 }
1461
1462 /* Lookup a structure type named "struct NAME",
1463 visible in lexical block BLOCK. */
1464
1465 struct type *
1466 lookup_struct (const char *name, const struct block *block)
1467 {
1468 struct symbol *sym;
1469
1470 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1471
1472 if (sym == NULL)
1473 {
1474 error (_("No struct type named %s."), name);
1475 }
1476 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1477 {
1478 error (_("This context has class, union or enum %s, not a struct."),
1479 name);
1480 }
1481 return (SYMBOL_TYPE (sym));
1482 }
1483
1484 /* Lookup a union type named "union NAME",
1485 visible in lexical block BLOCK. */
1486
1487 struct type *
1488 lookup_union (const char *name, const struct block *block)
1489 {
1490 struct symbol *sym;
1491 struct type *t;
1492
1493 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1494
1495 if (sym == NULL)
1496 error (_("No union type named %s."), name);
1497
1498 t = SYMBOL_TYPE (sym);
1499
1500 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1501 return t;
1502
1503 /* If we get here, it's not a union. */
1504 error (_("This context has class, struct or enum %s, not a union."),
1505 name);
1506 }
1507
1508 /* Lookup an enum type named "enum NAME",
1509 visible in lexical block BLOCK. */
1510
1511 struct type *
1512 lookup_enum (const char *name, const struct block *block)
1513 {
1514 struct symbol *sym;
1515
1516 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1517 if (sym == NULL)
1518 {
1519 error (_("No enum type named %s."), name);
1520 }
1521 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1522 {
1523 error (_("This context has class, struct or union %s, not an enum."),
1524 name);
1525 }
1526 return (SYMBOL_TYPE (sym));
1527 }
1528
1529 /* Lookup a template type named "template NAME<TYPE>",
1530 visible in lexical block BLOCK. */
1531
1532 struct type *
1533 lookup_template_type (char *name, struct type *type,
1534 const struct block *block)
1535 {
1536 struct symbol *sym;
1537 char *nam = (char *)
1538 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1539
1540 strcpy (nam, name);
1541 strcat (nam, "<");
1542 strcat (nam, TYPE_NAME (type));
1543 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1544
1545 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1546
1547 if (sym == NULL)
1548 {
1549 error (_("No template type named %s."), name);
1550 }
1551 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1552 {
1553 error (_("This context has class, union or enum %s, not a struct."),
1554 name);
1555 }
1556 return (SYMBOL_TYPE (sym));
1557 }
1558
1559 /* Given a type TYPE, lookup the type of the component of type named
1560 NAME.
1561
1562 TYPE can be either a struct or union, or a pointer or reference to
1563 a struct or union. If it is a pointer or reference, its target
1564 type is automatically used. Thus '.' and '->' are interchangable,
1565 as specified for the definitions of the expression element types
1566 STRUCTOP_STRUCT and STRUCTOP_PTR.
1567
1568 If NOERR is nonzero, return zero if NAME is not suitably defined.
1569 If NAME is the name of a baseclass type, return that type. */
1570
1571 struct type *
1572 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1573 {
1574 int i;
1575
1576 for (;;)
1577 {
1578 type = check_typedef (type);
1579 if (TYPE_CODE (type) != TYPE_CODE_PTR
1580 && TYPE_CODE (type) != TYPE_CODE_REF)
1581 break;
1582 type = TYPE_TARGET_TYPE (type);
1583 }
1584
1585 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1586 && TYPE_CODE (type) != TYPE_CODE_UNION)
1587 {
1588 std::string type_name = type_to_string (type);
1589 error (_("Type %s is not a structure or union type."),
1590 type_name.c_str ());
1591 }
1592
1593 #if 0
1594 /* FIXME: This change put in by Michael seems incorrect for the case
1595 where the structure tag name is the same as the member name.
1596 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1597 foo; } bell;" Disabled by fnf. */
1598 {
1599 char *type_name;
1600
1601 type_name = type_name_no_tag (type);
1602 if (type_name != NULL && strcmp (type_name, name) == 0)
1603 return type;
1604 }
1605 #endif
1606
1607 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1608 {
1609 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1610
1611 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1612 {
1613 return TYPE_FIELD_TYPE (type, i);
1614 }
1615 else if (!t_field_name || *t_field_name == '\0')
1616 {
1617 struct type *subtype
1618 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1619
1620 if (subtype != NULL)
1621 return subtype;
1622 }
1623 }
1624
1625 /* OK, it's not in this class. Recursively check the baseclasses. */
1626 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1627 {
1628 struct type *t;
1629
1630 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1631 if (t != NULL)
1632 {
1633 return t;
1634 }
1635 }
1636
1637 if (noerr)
1638 {
1639 return NULL;
1640 }
1641
1642 std::string type_name = type_to_string (type);
1643 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1644 }
1645
1646 /* Store in *MAX the largest number representable by unsigned integer type
1647 TYPE. */
1648
1649 void
1650 get_unsigned_type_max (struct type *type, ULONGEST *max)
1651 {
1652 unsigned int n;
1653
1654 type = check_typedef (type);
1655 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1656 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1657
1658 /* Written this way to avoid overflow. */
1659 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1660 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1661 }
1662
1663 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1664 signed integer type TYPE. */
1665
1666 void
1667 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1668 {
1669 unsigned int n;
1670
1671 type = check_typedef (type);
1672 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1673 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1674
1675 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1676 *min = -((ULONGEST) 1 << (n - 1));
1677 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1678 }
1679
1680 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1681 cplus_stuff.vptr_fieldno.
1682
1683 cplus_stuff is initialized to cplus_struct_default which does not
1684 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1685 designated initializers). We cope with that here. */
1686
1687 int
1688 internal_type_vptr_fieldno (struct type *type)
1689 {
1690 type = check_typedef (type);
1691 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1692 || TYPE_CODE (type) == TYPE_CODE_UNION);
1693 if (!HAVE_CPLUS_STRUCT (type))
1694 return -1;
1695 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1696 }
1697
1698 /* Set the value of cplus_stuff.vptr_fieldno. */
1699
1700 void
1701 set_type_vptr_fieldno (struct type *type, int fieldno)
1702 {
1703 type = check_typedef (type);
1704 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1705 || TYPE_CODE (type) == TYPE_CODE_UNION);
1706 if (!HAVE_CPLUS_STRUCT (type))
1707 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1708 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1709 }
1710
1711 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1712 cplus_stuff.vptr_basetype. */
1713
1714 struct type *
1715 internal_type_vptr_basetype (struct type *type)
1716 {
1717 type = check_typedef (type);
1718 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1719 || TYPE_CODE (type) == TYPE_CODE_UNION);
1720 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1721 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1722 }
1723
1724 /* Set the value of cplus_stuff.vptr_basetype. */
1725
1726 void
1727 set_type_vptr_basetype (struct type *type, struct type *basetype)
1728 {
1729 type = check_typedef (type);
1730 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1731 || TYPE_CODE (type) == TYPE_CODE_UNION);
1732 if (!HAVE_CPLUS_STRUCT (type))
1733 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1734 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1735 }
1736
1737 /* Lookup the vptr basetype/fieldno values for TYPE.
1738 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1739 vptr_fieldno. Also, if found and basetype is from the same objfile,
1740 cache the results.
1741 If not found, return -1 and ignore BASETYPEP.
1742 Callers should be aware that in some cases (for example,
1743 the type or one of its baseclasses is a stub type and we are
1744 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1745 this function will not be able to find the
1746 virtual function table pointer, and vptr_fieldno will remain -1 and
1747 vptr_basetype will remain NULL or incomplete. */
1748
1749 int
1750 get_vptr_fieldno (struct type *type, struct type **basetypep)
1751 {
1752 type = check_typedef (type);
1753
1754 if (TYPE_VPTR_FIELDNO (type) < 0)
1755 {
1756 int i;
1757
1758 /* We must start at zero in case the first (and only) baseclass
1759 is virtual (and hence we cannot share the table pointer). */
1760 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1761 {
1762 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1763 int fieldno;
1764 struct type *basetype;
1765
1766 fieldno = get_vptr_fieldno (baseclass, &basetype);
1767 if (fieldno >= 0)
1768 {
1769 /* If the type comes from a different objfile we can't cache
1770 it, it may have a different lifetime. PR 2384 */
1771 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1772 {
1773 set_type_vptr_fieldno (type, fieldno);
1774 set_type_vptr_basetype (type, basetype);
1775 }
1776 if (basetypep)
1777 *basetypep = basetype;
1778 return fieldno;
1779 }
1780 }
1781
1782 /* Not found. */
1783 return -1;
1784 }
1785 else
1786 {
1787 if (basetypep)
1788 *basetypep = TYPE_VPTR_BASETYPE (type);
1789 return TYPE_VPTR_FIELDNO (type);
1790 }
1791 }
1792
1793 static void
1794 stub_noname_complaint (void)
1795 {
1796 complaint (&symfile_complaints, _("stub type has NULL name"));
1797 }
1798
1799 /* Worker for is_dynamic_type. */
1800
1801 static int
1802 is_dynamic_type_internal (struct type *type, int top_level)
1803 {
1804 type = check_typedef (type);
1805
1806 /* We only want to recognize references at the outermost level. */
1807 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1808 type = check_typedef (TYPE_TARGET_TYPE (type));
1809
1810 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1811 dynamic, even if the type itself is statically defined.
1812 From a user's point of view, this may appear counter-intuitive;
1813 but it makes sense in this context, because the point is to determine
1814 whether any part of the type needs to be resolved before it can
1815 be exploited. */
1816 if (TYPE_DATA_LOCATION (type) != NULL
1817 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1818 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1819 return 1;
1820
1821 if (TYPE_ASSOCIATED_PROP (type))
1822 return 1;
1823
1824 if (TYPE_ALLOCATED_PROP (type))
1825 return 1;
1826
1827 switch (TYPE_CODE (type))
1828 {
1829 case TYPE_CODE_RANGE:
1830 {
1831 /* A range type is obviously dynamic if it has at least one
1832 dynamic bound. But also consider the range type to be
1833 dynamic when its subtype is dynamic, even if the bounds
1834 of the range type are static. It allows us to assume that
1835 the subtype of a static range type is also static. */
1836 return (!has_static_range (TYPE_RANGE_DATA (type))
1837 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1838 }
1839
1840 case TYPE_CODE_ARRAY:
1841 {
1842 gdb_assert (TYPE_NFIELDS (type) == 1);
1843
1844 /* The array is dynamic if either the bounds are dynamic,
1845 or the elements it contains have a dynamic contents. */
1846 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1847 return 1;
1848 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1849 }
1850
1851 case TYPE_CODE_STRUCT:
1852 case TYPE_CODE_UNION:
1853 {
1854 int i;
1855
1856 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1857 if (!field_is_static (&TYPE_FIELD (type, i))
1858 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1859 return 1;
1860 }
1861 break;
1862 }
1863
1864 return 0;
1865 }
1866
1867 /* See gdbtypes.h. */
1868
1869 int
1870 is_dynamic_type (struct type *type)
1871 {
1872 return is_dynamic_type_internal (type, 1);
1873 }
1874
1875 static struct type *resolve_dynamic_type_internal
1876 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1877
1878 /* Given a dynamic range type (dyn_range_type) and a stack of
1879 struct property_addr_info elements, return a static version
1880 of that type. */
1881
1882 static struct type *
1883 resolve_dynamic_range (struct type *dyn_range_type,
1884 struct property_addr_info *addr_stack)
1885 {
1886 CORE_ADDR value;
1887 struct type *static_range_type, *static_target_type;
1888 const struct dynamic_prop *prop;
1889 struct dynamic_prop low_bound, high_bound;
1890
1891 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1892
1893 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1894 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1895 {
1896 low_bound.kind = PROP_CONST;
1897 low_bound.data.const_val = value;
1898 }
1899 else
1900 {
1901 low_bound.kind = PROP_UNDEFINED;
1902 low_bound.data.const_val = 0;
1903 }
1904
1905 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1906 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1907 {
1908 high_bound.kind = PROP_CONST;
1909 high_bound.data.const_val = value;
1910
1911 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1912 high_bound.data.const_val
1913 = low_bound.data.const_val + high_bound.data.const_val - 1;
1914 }
1915 else
1916 {
1917 high_bound.kind = PROP_UNDEFINED;
1918 high_bound.data.const_val = 0;
1919 }
1920
1921 static_target_type
1922 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1923 addr_stack, 0);
1924 static_range_type = create_range_type (copy_type (dyn_range_type),
1925 static_target_type,
1926 &low_bound, &high_bound);
1927 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1928 return static_range_type;
1929 }
1930
1931 /* Resolves dynamic bound values of an array type TYPE to static ones.
1932 ADDR_STACK is a stack of struct property_addr_info to be used
1933 if needed during the dynamic resolution. */
1934
1935 static struct type *
1936 resolve_dynamic_array (struct type *type,
1937 struct property_addr_info *addr_stack)
1938 {
1939 CORE_ADDR value;
1940 struct type *elt_type;
1941 struct type *range_type;
1942 struct type *ary_dim;
1943 struct dynamic_prop *prop;
1944
1945 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1946
1947 type = copy_type (type);
1948
1949 elt_type = type;
1950 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1951 range_type = resolve_dynamic_range (range_type, addr_stack);
1952
1953 /* Resolve allocated/associated here before creating a new array type, which
1954 will update the length of the array accordingly. */
1955 prop = TYPE_ALLOCATED_PROP (type);
1956 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1957 {
1958 TYPE_DYN_PROP_ADDR (prop) = value;
1959 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1960 }
1961 prop = TYPE_ASSOCIATED_PROP (type);
1962 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1963 {
1964 TYPE_DYN_PROP_ADDR (prop) = value;
1965 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1966 }
1967
1968 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1969
1970 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1971 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1972 else
1973 elt_type = TYPE_TARGET_TYPE (type);
1974
1975 return create_array_type_with_stride (type, elt_type, range_type,
1976 TYPE_FIELD_BITSIZE (type, 0));
1977 }
1978
1979 /* Resolve dynamic bounds of members of the union TYPE to static
1980 bounds. ADDR_STACK is a stack of struct property_addr_info
1981 to be used if needed during the dynamic resolution. */
1982
1983 static struct type *
1984 resolve_dynamic_union (struct type *type,
1985 struct property_addr_info *addr_stack)
1986 {
1987 struct type *resolved_type;
1988 int i;
1989 unsigned int max_len = 0;
1990
1991 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1992
1993 resolved_type = copy_type (type);
1994 TYPE_FIELDS (resolved_type)
1995 = (struct field *) TYPE_ALLOC (resolved_type,
1996 TYPE_NFIELDS (resolved_type)
1997 * sizeof (struct field));
1998 memcpy (TYPE_FIELDS (resolved_type),
1999 TYPE_FIELDS (type),
2000 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2001 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2002 {
2003 struct type *t;
2004
2005 if (field_is_static (&TYPE_FIELD (type, i)))
2006 continue;
2007
2008 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2009 addr_stack, 0);
2010 TYPE_FIELD_TYPE (resolved_type, i) = t;
2011 if (TYPE_LENGTH (t) > max_len)
2012 max_len = TYPE_LENGTH (t);
2013 }
2014
2015 TYPE_LENGTH (resolved_type) = max_len;
2016 return resolved_type;
2017 }
2018
2019 /* Resolve dynamic bounds of members of the struct TYPE to static
2020 bounds. ADDR_STACK is a stack of struct property_addr_info to
2021 be used if needed during the dynamic resolution. */
2022
2023 static struct type *
2024 resolve_dynamic_struct (struct type *type,
2025 struct property_addr_info *addr_stack)
2026 {
2027 struct type *resolved_type;
2028 int i;
2029 unsigned resolved_type_bit_length = 0;
2030
2031 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2032 gdb_assert (TYPE_NFIELDS (type) > 0);
2033
2034 resolved_type = copy_type (type);
2035 TYPE_FIELDS (resolved_type)
2036 = (struct field *) TYPE_ALLOC (resolved_type,
2037 TYPE_NFIELDS (resolved_type)
2038 * sizeof (struct field));
2039 memcpy (TYPE_FIELDS (resolved_type),
2040 TYPE_FIELDS (type),
2041 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2042 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2043 {
2044 unsigned new_bit_length;
2045 struct property_addr_info pinfo;
2046
2047 if (field_is_static (&TYPE_FIELD (type, i)))
2048 continue;
2049
2050 /* As we know this field is not a static field, the field's
2051 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2052 this is the case, but only trigger a simple error rather
2053 than an internal error if that fails. While failing
2054 that verification indicates a bug in our code, the error
2055 is not severe enough to suggest to the user he stops
2056 his debugging session because of it. */
2057 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2058 error (_("Cannot determine struct field location"
2059 " (invalid location kind)"));
2060
2061 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2062 pinfo.valaddr = addr_stack->valaddr;
2063 pinfo.addr
2064 = (addr_stack->addr
2065 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2066 pinfo.next = addr_stack;
2067
2068 TYPE_FIELD_TYPE (resolved_type, i)
2069 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2070 &pinfo, 0);
2071 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2072 == FIELD_LOC_KIND_BITPOS);
2073
2074 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2075 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2076 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2077 else
2078 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2079 * TARGET_CHAR_BIT);
2080
2081 /* Normally, we would use the position and size of the last field
2082 to determine the size of the enclosing structure. But GCC seems
2083 to be encoding the position of some fields incorrectly when
2084 the struct contains a dynamic field that is not placed last.
2085 So we compute the struct size based on the field that has
2086 the highest position + size - probably the best we can do. */
2087 if (new_bit_length > resolved_type_bit_length)
2088 resolved_type_bit_length = new_bit_length;
2089 }
2090
2091 /* The length of a type won't change for fortran, but it does for C and Ada.
2092 For fortran the size of dynamic fields might change over time but not the
2093 type length of the structure. If we adapt it, we run into problems
2094 when calculating the element offset for arrays of structs. */
2095 if (current_language->la_language != language_fortran)
2096 TYPE_LENGTH (resolved_type)
2097 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2098
2099 /* The Ada language uses this field as a cache for static fixed types: reset
2100 it as RESOLVED_TYPE must have its own static fixed type. */
2101 TYPE_TARGET_TYPE (resolved_type) = NULL;
2102
2103 return resolved_type;
2104 }
2105
2106 /* Worker for resolved_dynamic_type. */
2107
2108 static struct type *
2109 resolve_dynamic_type_internal (struct type *type,
2110 struct property_addr_info *addr_stack,
2111 int top_level)
2112 {
2113 struct type *real_type = check_typedef (type);
2114 struct type *resolved_type = type;
2115 struct dynamic_prop *prop;
2116 CORE_ADDR value;
2117
2118 if (!is_dynamic_type_internal (real_type, top_level))
2119 return type;
2120
2121 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2122 {
2123 resolved_type = copy_type (type);
2124 TYPE_TARGET_TYPE (resolved_type)
2125 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2126 top_level);
2127 }
2128 else
2129 {
2130 /* Before trying to resolve TYPE, make sure it is not a stub. */
2131 type = real_type;
2132
2133 switch (TYPE_CODE (type))
2134 {
2135 case TYPE_CODE_REF:
2136 {
2137 struct property_addr_info pinfo;
2138
2139 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2140 pinfo.valaddr = NULL;
2141 if (addr_stack->valaddr != NULL)
2142 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2143 else
2144 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2145 pinfo.next = addr_stack;
2146
2147 resolved_type = copy_type (type);
2148 TYPE_TARGET_TYPE (resolved_type)
2149 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2150 &pinfo, top_level);
2151 break;
2152 }
2153
2154 case TYPE_CODE_ARRAY:
2155 resolved_type = resolve_dynamic_array (type, addr_stack);
2156 break;
2157
2158 case TYPE_CODE_RANGE:
2159 resolved_type = resolve_dynamic_range (type, addr_stack);
2160 break;
2161
2162 case TYPE_CODE_UNION:
2163 resolved_type = resolve_dynamic_union (type, addr_stack);
2164 break;
2165
2166 case TYPE_CODE_STRUCT:
2167 resolved_type = resolve_dynamic_struct (type, addr_stack);
2168 break;
2169 }
2170 }
2171
2172 /* Resolve data_location attribute. */
2173 prop = TYPE_DATA_LOCATION (resolved_type);
2174 if (prop != NULL
2175 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2176 {
2177 TYPE_DYN_PROP_ADDR (prop) = value;
2178 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2179 }
2180
2181 return resolved_type;
2182 }
2183
2184 /* See gdbtypes.h */
2185
2186 struct type *
2187 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2188 CORE_ADDR addr)
2189 {
2190 struct property_addr_info pinfo
2191 = {check_typedef (type), valaddr, addr, NULL};
2192
2193 return resolve_dynamic_type_internal (type, &pinfo, 1);
2194 }
2195
2196 /* See gdbtypes.h */
2197
2198 struct dynamic_prop *
2199 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2200 {
2201 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2202
2203 while (node != NULL)
2204 {
2205 if (node->prop_kind == prop_kind)
2206 return &node->prop;
2207 node = node->next;
2208 }
2209 return NULL;
2210 }
2211
2212 /* See gdbtypes.h */
2213
2214 void
2215 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2216 struct type *type, struct objfile *objfile)
2217 {
2218 struct dynamic_prop_list *temp;
2219
2220 gdb_assert (TYPE_OBJFILE_OWNED (type));
2221
2222 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2223 temp->prop_kind = prop_kind;
2224 temp->prop = prop;
2225 temp->next = TYPE_DYN_PROP_LIST (type);
2226
2227 TYPE_DYN_PROP_LIST (type) = temp;
2228 }
2229
2230 /* Remove dynamic property from TYPE in case it exists. */
2231
2232 void
2233 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2234 struct type *type)
2235 {
2236 struct dynamic_prop_list *prev_node, *curr_node;
2237
2238 curr_node = TYPE_DYN_PROP_LIST (type);
2239 prev_node = NULL;
2240
2241 while (NULL != curr_node)
2242 {
2243 if (curr_node->prop_kind == prop_kind)
2244 {
2245 /* Update the linked list but don't free anything.
2246 The property was allocated on objstack and it is not known
2247 if we are on top of it. Nevertheless, everything is released
2248 when the complete objstack is freed. */
2249 if (NULL == prev_node)
2250 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2251 else
2252 prev_node->next = curr_node->next;
2253
2254 return;
2255 }
2256
2257 prev_node = curr_node;
2258 curr_node = curr_node->next;
2259 }
2260 }
2261
2262 /* Find the real type of TYPE. This function returns the real type,
2263 after removing all layers of typedefs, and completing opaque or stub
2264 types. Completion changes the TYPE argument, but stripping of
2265 typedefs does not.
2266
2267 Instance flags (e.g. const/volatile) are preserved as typedefs are
2268 stripped. If necessary a new qualified form of the underlying type
2269 is created.
2270
2271 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2272 not been computed and we're either in the middle of reading symbols, or
2273 there was no name for the typedef in the debug info.
2274
2275 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2276 QUITs in the symbol reading code can also throw.
2277 Thus this function can throw an exception.
2278
2279 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2280 the target type.
2281
2282 If this is a stubbed struct (i.e. declared as struct foo *), see if
2283 we can find a full definition in some other file. If so, copy this
2284 definition, so we can use it in future. There used to be a comment
2285 (but not any code) that if we don't find a full definition, we'd
2286 set a flag so we don't spend time in the future checking the same
2287 type. That would be a mistake, though--we might load in more
2288 symbols which contain a full definition for the type. */
2289
2290 struct type *
2291 check_typedef (struct type *type)
2292 {
2293 struct type *orig_type = type;
2294 /* While we're removing typedefs, we don't want to lose qualifiers.
2295 E.g., const/volatile. */
2296 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2297
2298 gdb_assert (type);
2299
2300 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2301 {
2302 if (!TYPE_TARGET_TYPE (type))
2303 {
2304 const char *name;
2305 struct symbol *sym;
2306
2307 /* It is dangerous to call lookup_symbol if we are currently
2308 reading a symtab. Infinite recursion is one danger. */
2309 if (currently_reading_symtab)
2310 return make_qualified_type (type, instance_flags, NULL);
2311
2312 name = type_name_no_tag (type);
2313 /* FIXME: shouldn't we separately check the TYPE_NAME and
2314 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2315 VAR_DOMAIN as appropriate? (this code was written before
2316 TYPE_NAME and TYPE_TAG_NAME were separate). */
2317 if (name == NULL)
2318 {
2319 stub_noname_complaint ();
2320 return make_qualified_type (type, instance_flags, NULL);
2321 }
2322 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2323 if (sym)
2324 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2325 else /* TYPE_CODE_UNDEF */
2326 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2327 }
2328 type = TYPE_TARGET_TYPE (type);
2329
2330 /* Preserve the instance flags as we traverse down the typedef chain.
2331
2332 Handling address spaces/classes is nasty, what do we do if there's a
2333 conflict?
2334 E.g., what if an outer typedef marks the type as class_1 and an inner
2335 typedef marks the type as class_2?
2336 This is the wrong place to do such error checking. We leave it to
2337 the code that created the typedef in the first place to flag the
2338 error. We just pick the outer address space (akin to letting the
2339 outer cast in a chain of casting win), instead of assuming
2340 "it can't happen". */
2341 {
2342 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2343 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2344 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2345 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2346
2347 /* Treat code vs data spaces and address classes separately. */
2348 if ((instance_flags & ALL_SPACES) != 0)
2349 new_instance_flags &= ~ALL_SPACES;
2350 if ((instance_flags & ALL_CLASSES) != 0)
2351 new_instance_flags &= ~ALL_CLASSES;
2352
2353 instance_flags |= new_instance_flags;
2354 }
2355 }
2356
2357 /* If this is a struct/class/union with no fields, then check
2358 whether a full definition exists somewhere else. This is for
2359 systems where a type definition with no fields is issued for such
2360 types, instead of identifying them as stub types in the first
2361 place. */
2362
2363 if (TYPE_IS_OPAQUE (type)
2364 && opaque_type_resolution
2365 && !currently_reading_symtab)
2366 {
2367 const char *name = type_name_no_tag (type);
2368 struct type *newtype;
2369
2370 if (name == NULL)
2371 {
2372 stub_noname_complaint ();
2373 return make_qualified_type (type, instance_flags, NULL);
2374 }
2375 newtype = lookup_transparent_type (name);
2376
2377 if (newtype)
2378 {
2379 /* If the resolved type and the stub are in the same
2380 objfile, then replace the stub type with the real deal.
2381 But if they're in separate objfiles, leave the stub
2382 alone; we'll just look up the transparent type every time
2383 we call check_typedef. We can't create pointers between
2384 types allocated to different objfiles, since they may
2385 have different lifetimes. Trying to copy NEWTYPE over to
2386 TYPE's objfile is pointless, too, since you'll have to
2387 move over any other types NEWTYPE refers to, which could
2388 be an unbounded amount of stuff. */
2389 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2390 type = make_qualified_type (newtype,
2391 TYPE_INSTANCE_FLAGS (type),
2392 type);
2393 else
2394 type = newtype;
2395 }
2396 }
2397 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2398 types. */
2399 else if (TYPE_STUB (type) && !currently_reading_symtab)
2400 {
2401 const char *name = type_name_no_tag (type);
2402 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2403 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2404 as appropriate? (this code was written before TYPE_NAME and
2405 TYPE_TAG_NAME were separate). */
2406 struct symbol *sym;
2407
2408 if (name == NULL)
2409 {
2410 stub_noname_complaint ();
2411 return make_qualified_type (type, instance_flags, NULL);
2412 }
2413 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2414 if (sym)
2415 {
2416 /* Same as above for opaque types, we can replace the stub
2417 with the complete type only if they are in the same
2418 objfile. */
2419 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2420 type = make_qualified_type (SYMBOL_TYPE (sym),
2421 TYPE_INSTANCE_FLAGS (type),
2422 type);
2423 else
2424 type = SYMBOL_TYPE (sym);
2425 }
2426 }
2427
2428 if (TYPE_TARGET_STUB (type))
2429 {
2430 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2431
2432 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2433 {
2434 /* Nothing we can do. */
2435 }
2436 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2437 {
2438 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2439 TYPE_TARGET_STUB (type) = 0;
2440 }
2441 }
2442
2443 type = make_qualified_type (type, instance_flags, NULL);
2444
2445 /* Cache TYPE_LENGTH for future use. */
2446 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2447
2448 return type;
2449 }
2450
2451 /* Parse a type expression in the string [P..P+LENGTH). If an error
2452 occurs, silently return a void type. */
2453
2454 static struct type *
2455 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2456 {
2457 struct ui_file *saved_gdb_stderr;
2458 struct type *type = NULL; /* Initialize to keep gcc happy. */
2459
2460 /* Suppress error messages. */
2461 saved_gdb_stderr = gdb_stderr;
2462 gdb_stderr = ui_file_new ();
2463
2464 /* Call parse_and_eval_type() without fear of longjmp()s. */
2465 TRY
2466 {
2467 type = parse_and_eval_type (p, length);
2468 }
2469 CATCH (except, RETURN_MASK_ERROR)
2470 {
2471 type = builtin_type (gdbarch)->builtin_void;
2472 }
2473 END_CATCH
2474
2475 /* Stop suppressing error messages. */
2476 ui_file_delete (gdb_stderr);
2477 gdb_stderr = saved_gdb_stderr;
2478
2479 return type;
2480 }
2481
2482 /* Ugly hack to convert method stubs into method types.
2483
2484 He ain't kiddin'. This demangles the name of the method into a
2485 string including argument types, parses out each argument type,
2486 generates a string casting a zero to that type, evaluates the
2487 string, and stuffs the resulting type into an argtype vector!!!
2488 Then it knows the type of the whole function (including argument
2489 types for overloading), which info used to be in the stab's but was
2490 removed to hack back the space required for them. */
2491
2492 static void
2493 check_stub_method (struct type *type, int method_id, int signature_id)
2494 {
2495 struct gdbarch *gdbarch = get_type_arch (type);
2496 struct fn_field *f;
2497 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2498 char *demangled_name = gdb_demangle (mangled_name,
2499 DMGL_PARAMS | DMGL_ANSI);
2500 char *argtypetext, *p;
2501 int depth = 0, argcount = 1;
2502 struct field *argtypes;
2503 struct type *mtype;
2504
2505 /* Make sure we got back a function string that we can use. */
2506 if (demangled_name)
2507 p = strchr (demangled_name, '(');
2508 else
2509 p = NULL;
2510
2511 if (demangled_name == NULL || p == NULL)
2512 error (_("Internal: Cannot demangle mangled name `%s'."),
2513 mangled_name);
2514
2515 /* Now, read in the parameters that define this type. */
2516 p += 1;
2517 argtypetext = p;
2518 while (*p)
2519 {
2520 if (*p == '(' || *p == '<')
2521 {
2522 depth += 1;
2523 }
2524 else if (*p == ')' || *p == '>')
2525 {
2526 depth -= 1;
2527 }
2528 else if (*p == ',' && depth == 0)
2529 {
2530 argcount += 1;
2531 }
2532
2533 p += 1;
2534 }
2535
2536 /* If we read one argument and it was ``void'', don't count it. */
2537 if (startswith (argtypetext, "(void)"))
2538 argcount -= 1;
2539
2540 /* We need one extra slot, for the THIS pointer. */
2541
2542 argtypes = (struct field *)
2543 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2544 p = argtypetext;
2545
2546 /* Add THIS pointer for non-static methods. */
2547 f = TYPE_FN_FIELDLIST1 (type, method_id);
2548 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2549 argcount = 0;
2550 else
2551 {
2552 argtypes[0].type = lookup_pointer_type (type);
2553 argcount = 1;
2554 }
2555
2556 if (*p != ')') /* () means no args, skip while. */
2557 {
2558 depth = 0;
2559 while (*p)
2560 {
2561 if (depth <= 0 && (*p == ',' || *p == ')'))
2562 {
2563 /* Avoid parsing of ellipsis, they will be handled below.
2564 Also avoid ``void'' as above. */
2565 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2566 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2567 {
2568 argtypes[argcount].type =
2569 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2570 argcount += 1;
2571 }
2572 argtypetext = p + 1;
2573 }
2574
2575 if (*p == '(' || *p == '<')
2576 {
2577 depth += 1;
2578 }
2579 else if (*p == ')' || *p == '>')
2580 {
2581 depth -= 1;
2582 }
2583
2584 p += 1;
2585 }
2586 }
2587
2588 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2589
2590 /* Now update the old "stub" type into a real type. */
2591 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2592 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2593 We want a method (TYPE_CODE_METHOD). */
2594 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2595 argtypes, argcount, p[-2] == '.');
2596 TYPE_STUB (mtype) = 0;
2597 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2598
2599 xfree (demangled_name);
2600 }
2601
2602 /* This is the external interface to check_stub_method, above. This
2603 function unstubs all of the signatures for TYPE's METHOD_ID method
2604 name. After calling this function TYPE_FN_FIELD_STUB will be
2605 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2606 correct.
2607
2608 This function unfortunately can not die until stabs do. */
2609
2610 void
2611 check_stub_method_group (struct type *type, int method_id)
2612 {
2613 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2614 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2615 int j, found_stub = 0;
2616
2617 for (j = 0; j < len; j++)
2618 if (TYPE_FN_FIELD_STUB (f, j))
2619 {
2620 found_stub = 1;
2621 check_stub_method (type, method_id, j);
2622 }
2623
2624 /* GNU v3 methods with incorrect names were corrected when we read
2625 in type information, because it was cheaper to do it then. The
2626 only GNU v2 methods with incorrect method names are operators and
2627 destructors; destructors were also corrected when we read in type
2628 information.
2629
2630 Therefore the only thing we need to handle here are v2 operator
2631 names. */
2632 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2633 {
2634 int ret;
2635 char dem_opname[256];
2636
2637 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2638 method_id),
2639 dem_opname, DMGL_ANSI);
2640 if (!ret)
2641 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2642 method_id),
2643 dem_opname, 0);
2644 if (ret)
2645 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2646 }
2647 }
2648
2649 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2650 const struct cplus_struct_type cplus_struct_default = { };
2651
2652 void
2653 allocate_cplus_struct_type (struct type *type)
2654 {
2655 if (HAVE_CPLUS_STRUCT (type))
2656 /* Structure was already allocated. Nothing more to do. */
2657 return;
2658
2659 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2660 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2661 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2662 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2663 set_type_vptr_fieldno (type, -1);
2664 }
2665
2666 const struct gnat_aux_type gnat_aux_default =
2667 { NULL };
2668
2669 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2670 and allocate the associated gnat-specific data. The gnat-specific
2671 data is also initialized to gnat_aux_default. */
2672
2673 void
2674 allocate_gnat_aux_type (struct type *type)
2675 {
2676 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2677 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2678 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2679 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2680 }
2681
2682 /* Helper function to initialize a newly allocated type. Set type code
2683 to CODE and initialize the type-specific fields accordingly. */
2684
2685 static void
2686 set_type_code (struct type *type, enum type_code code)
2687 {
2688 TYPE_CODE (type) = code;
2689
2690 switch (code)
2691 {
2692 case TYPE_CODE_STRUCT:
2693 case TYPE_CODE_UNION:
2694 case TYPE_CODE_NAMESPACE:
2695 INIT_CPLUS_SPECIFIC (type);
2696 break;
2697 case TYPE_CODE_FLT:
2698 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2699 break;
2700 case TYPE_CODE_FUNC:
2701 INIT_FUNC_SPECIFIC (type);
2702 break;
2703 }
2704 }
2705
2706 /* Helper function to verify floating-point format and size.
2707 BIT is the type size in bits; if BIT equals -1, the size is
2708 determined by the floatformat. Returns size to be used. */
2709
2710 static int
2711 verify_floatformat (int bit, const struct floatformat **floatformats)
2712 {
2713 gdb_assert (floatformats != NULL);
2714 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
2715
2716 if (bit == -1)
2717 bit = floatformats[0]->totalsize;
2718 gdb_assert (bit >= 0);
2719
2720 size_t len = bit / TARGET_CHAR_BIT;
2721 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
2722 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
2723
2724 return bit;
2725 }
2726
2727 /* Helper function to initialize the standard scalar types.
2728
2729 If NAME is non-NULL, then it is used to initialize the type name.
2730 Note that NAME is not copied; it is required to have a lifetime at
2731 least as long as OBJFILE. */
2732
2733 struct type *
2734 init_type (struct objfile *objfile, enum type_code code, int length,
2735 const char *name)
2736 {
2737 struct type *type;
2738
2739 type = alloc_type (objfile);
2740 set_type_code (type, code);
2741 TYPE_LENGTH (type) = length;
2742 TYPE_NAME (type) = name;
2743
2744 return type;
2745 }
2746
2747 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2748 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2749 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2750
2751 struct type *
2752 init_integer_type (struct objfile *objfile,
2753 int bit, int unsigned_p, const char *name)
2754 {
2755 struct type *t;
2756
2757 t = init_type (objfile, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
2758 if (unsigned_p)
2759 TYPE_UNSIGNED (t) = 1;
2760
2761 return t;
2762 }
2763
2764 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2765 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2766 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2767
2768 struct type *
2769 init_character_type (struct objfile *objfile,
2770 int bit, int unsigned_p, const char *name)
2771 {
2772 struct type *t;
2773
2774 t = init_type (objfile, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
2775 if (unsigned_p)
2776 TYPE_UNSIGNED (t) = 1;
2777
2778 return t;
2779 }
2780
2781 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2782 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2783 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2784
2785 struct type *
2786 init_boolean_type (struct objfile *objfile,
2787 int bit, int unsigned_p, const char *name)
2788 {
2789 struct type *t;
2790
2791 t = init_type (objfile, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
2792 if (unsigned_p)
2793 TYPE_UNSIGNED (t) = 1;
2794
2795 return t;
2796 }
2797
2798 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2799 BIT is the type size in bits; if BIT equals -1, the size is
2800 determined by the floatformat. NAME is the type name. Set the
2801 TYPE_FLOATFORMAT from FLOATFORMATS. */
2802
2803 struct type *
2804 init_float_type (struct objfile *objfile,
2805 int bit, const char *name,
2806 const struct floatformat **floatformats)
2807 {
2808 struct type *t;
2809
2810 bit = verify_floatformat (bit, floatformats);
2811 t = init_type (objfile, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
2812 TYPE_FLOATFORMAT (t) = floatformats;
2813
2814 return t;
2815 }
2816
2817 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2818 BIT is the type size in bits. NAME is the type name. */
2819
2820 struct type *
2821 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2822 {
2823 struct type *t;
2824
2825 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
2826 return t;
2827 }
2828
2829 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2830 NAME is the type name. TARGET_TYPE is the component float type. */
2831
2832 struct type *
2833 init_complex_type (struct objfile *objfile,
2834 const char *name, struct type *target_type)
2835 {
2836 struct type *t;
2837
2838 t = init_type (objfile, TYPE_CODE_COMPLEX,
2839 2 * TYPE_LENGTH (target_type), name);
2840 TYPE_TARGET_TYPE (t) = target_type;
2841 return t;
2842 }
2843
2844 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2845 BIT is the pointer type size in bits. NAME is the type name.
2846 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2847 TYPE_UNSIGNED flag. */
2848
2849 struct type *
2850 init_pointer_type (struct objfile *objfile,
2851 int bit, const char *name, struct type *target_type)
2852 {
2853 struct type *t;
2854
2855 t = init_type (objfile, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
2856 TYPE_TARGET_TYPE (t) = target_type;
2857 TYPE_UNSIGNED (t) = 1;
2858 return t;
2859 }
2860
2861 \f
2862 /* Queries on types. */
2863
2864 int
2865 can_dereference (struct type *t)
2866 {
2867 /* FIXME: Should we return true for references as well as
2868 pointers? */
2869 t = check_typedef (t);
2870 return
2871 (t != NULL
2872 && TYPE_CODE (t) == TYPE_CODE_PTR
2873 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2874 }
2875
2876 int
2877 is_integral_type (struct type *t)
2878 {
2879 t = check_typedef (t);
2880 return
2881 ((t != NULL)
2882 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2883 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2884 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2885 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2886 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2887 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2888 }
2889
2890 /* Return true if TYPE is scalar. */
2891
2892 int
2893 is_scalar_type (struct type *type)
2894 {
2895 type = check_typedef (type);
2896
2897 switch (TYPE_CODE (type))
2898 {
2899 case TYPE_CODE_ARRAY:
2900 case TYPE_CODE_STRUCT:
2901 case TYPE_CODE_UNION:
2902 case TYPE_CODE_SET:
2903 case TYPE_CODE_STRING:
2904 return 0;
2905 default:
2906 return 1;
2907 }
2908 }
2909
2910 /* Return true if T is scalar, or a composite type which in practice has
2911 the memory layout of a scalar type. E.g., an array or struct with only
2912 one scalar element inside it, or a union with only scalar elements. */
2913
2914 int
2915 is_scalar_type_recursive (struct type *t)
2916 {
2917 t = check_typedef (t);
2918
2919 if (is_scalar_type (t))
2920 return 1;
2921 /* Are we dealing with an array or string of known dimensions? */
2922 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2923 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2924 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2925 {
2926 LONGEST low_bound, high_bound;
2927 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2928
2929 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2930
2931 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2932 }
2933 /* Are we dealing with a struct with one element? */
2934 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2935 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2936 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2937 {
2938 int i, n = TYPE_NFIELDS (t);
2939
2940 /* If all elements of the union are scalar, then the union is scalar. */
2941 for (i = 0; i < n; i++)
2942 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2943 return 0;
2944
2945 return 1;
2946 }
2947
2948 return 0;
2949 }
2950
2951 /* Return true is T is a class or a union. False otherwise. */
2952
2953 int
2954 class_or_union_p (const struct type *t)
2955 {
2956 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2957 || TYPE_CODE (t) == TYPE_CODE_UNION);
2958 }
2959
2960 /* A helper function which returns true if types A and B represent the
2961 "same" class type. This is true if the types have the same main
2962 type, or the same name. */
2963
2964 int
2965 class_types_same_p (const struct type *a, const struct type *b)
2966 {
2967 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2968 || (TYPE_NAME (a) && TYPE_NAME (b)
2969 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2970 }
2971
2972 /* If BASE is an ancestor of DCLASS return the distance between them.
2973 otherwise return -1;
2974 eg:
2975
2976 class A {};
2977 class B: public A {};
2978 class C: public B {};
2979 class D: C {};
2980
2981 distance_to_ancestor (A, A, 0) = 0
2982 distance_to_ancestor (A, B, 0) = 1
2983 distance_to_ancestor (A, C, 0) = 2
2984 distance_to_ancestor (A, D, 0) = 3
2985
2986 If PUBLIC is 1 then only public ancestors are considered,
2987 and the function returns the distance only if BASE is a public ancestor
2988 of DCLASS.
2989 Eg:
2990
2991 distance_to_ancestor (A, D, 1) = -1. */
2992
2993 static int
2994 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2995 {
2996 int i;
2997 int d;
2998
2999 base = check_typedef (base);
3000 dclass = check_typedef (dclass);
3001
3002 if (class_types_same_p (base, dclass))
3003 return 0;
3004
3005 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3006 {
3007 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3008 continue;
3009
3010 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3011 if (d >= 0)
3012 return 1 + d;
3013 }
3014
3015 return -1;
3016 }
3017
3018 /* Check whether BASE is an ancestor or base class or DCLASS
3019 Return 1 if so, and 0 if not.
3020 Note: If BASE and DCLASS are of the same type, this function
3021 will return 1. So for some class A, is_ancestor (A, A) will
3022 return 1. */
3023
3024 int
3025 is_ancestor (struct type *base, struct type *dclass)
3026 {
3027 return distance_to_ancestor (base, dclass, 0) >= 0;
3028 }
3029
3030 /* Like is_ancestor, but only returns true when BASE is a public
3031 ancestor of DCLASS. */
3032
3033 int
3034 is_public_ancestor (struct type *base, struct type *dclass)
3035 {
3036 return distance_to_ancestor (base, dclass, 1) >= 0;
3037 }
3038
3039 /* A helper function for is_unique_ancestor. */
3040
3041 static int
3042 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3043 int *offset,
3044 const gdb_byte *valaddr, int embedded_offset,
3045 CORE_ADDR address, struct value *val)
3046 {
3047 int i, count = 0;
3048
3049 base = check_typedef (base);
3050 dclass = check_typedef (dclass);
3051
3052 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3053 {
3054 struct type *iter;
3055 int this_offset;
3056
3057 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3058
3059 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3060 address, val);
3061
3062 if (class_types_same_p (base, iter))
3063 {
3064 /* If this is the first subclass, set *OFFSET and set count
3065 to 1. Otherwise, if this is at the same offset as
3066 previous instances, do nothing. Otherwise, increment
3067 count. */
3068 if (*offset == -1)
3069 {
3070 *offset = this_offset;
3071 count = 1;
3072 }
3073 else if (this_offset == *offset)
3074 {
3075 /* Nothing. */
3076 }
3077 else
3078 ++count;
3079 }
3080 else
3081 count += is_unique_ancestor_worker (base, iter, offset,
3082 valaddr,
3083 embedded_offset + this_offset,
3084 address, val);
3085 }
3086
3087 return count;
3088 }
3089
3090 /* Like is_ancestor, but only returns true if BASE is a unique base
3091 class of the type of VAL. */
3092
3093 int
3094 is_unique_ancestor (struct type *base, struct value *val)
3095 {
3096 int offset = -1;
3097
3098 return is_unique_ancestor_worker (base, value_type (val), &offset,
3099 value_contents_for_printing (val),
3100 value_embedded_offset (val),
3101 value_address (val), val) == 1;
3102 }
3103
3104 \f
3105 /* Overload resolution. */
3106
3107 /* Return the sum of the rank of A with the rank of B. */
3108
3109 struct rank
3110 sum_ranks (struct rank a, struct rank b)
3111 {
3112 struct rank c;
3113 c.rank = a.rank + b.rank;
3114 c.subrank = a.subrank + b.subrank;
3115 return c;
3116 }
3117
3118 /* Compare rank A and B and return:
3119 0 if a = b
3120 1 if a is better than b
3121 -1 if b is better than a. */
3122
3123 int
3124 compare_ranks (struct rank a, struct rank b)
3125 {
3126 if (a.rank == b.rank)
3127 {
3128 if (a.subrank == b.subrank)
3129 return 0;
3130 if (a.subrank < b.subrank)
3131 return 1;
3132 if (a.subrank > b.subrank)
3133 return -1;
3134 }
3135
3136 if (a.rank < b.rank)
3137 return 1;
3138
3139 /* a.rank > b.rank */
3140 return -1;
3141 }
3142
3143 /* Functions for overload resolution begin here. */
3144
3145 /* Compare two badness vectors A and B and return the result.
3146 0 => A and B are identical
3147 1 => A and B are incomparable
3148 2 => A is better than B
3149 3 => A is worse than B */
3150
3151 int
3152 compare_badness (struct badness_vector *a, struct badness_vector *b)
3153 {
3154 int i;
3155 int tmp;
3156 short found_pos = 0; /* any positives in c? */
3157 short found_neg = 0; /* any negatives in c? */
3158
3159 /* differing lengths => incomparable */
3160 if (a->length != b->length)
3161 return 1;
3162
3163 /* Subtract b from a */
3164 for (i = 0; i < a->length; i++)
3165 {
3166 tmp = compare_ranks (b->rank[i], a->rank[i]);
3167 if (tmp > 0)
3168 found_pos = 1;
3169 else if (tmp < 0)
3170 found_neg = 1;
3171 }
3172
3173 if (found_pos)
3174 {
3175 if (found_neg)
3176 return 1; /* incomparable */
3177 else
3178 return 3; /* A > B */
3179 }
3180 else
3181 /* no positives */
3182 {
3183 if (found_neg)
3184 return 2; /* A < B */
3185 else
3186 return 0; /* A == B */
3187 }
3188 }
3189
3190 /* Rank a function by comparing its parameter types (PARMS, length
3191 NPARMS), to the types of an argument list (ARGS, length NARGS).
3192 Return a pointer to a badness vector. This has NARGS + 1
3193 entries. */
3194
3195 struct badness_vector *
3196 rank_function (struct type **parms, int nparms,
3197 struct value **args, int nargs)
3198 {
3199 int i;
3200 struct badness_vector *bv = XNEW (struct badness_vector);
3201 int min_len = nparms < nargs ? nparms : nargs;
3202
3203 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3204 bv->rank = XNEWVEC (struct rank, nargs + 1);
3205
3206 /* First compare the lengths of the supplied lists.
3207 If there is a mismatch, set it to a high value. */
3208
3209 /* pai/1997-06-03 FIXME: when we have debug info about default
3210 arguments and ellipsis parameter lists, we should consider those
3211 and rank the length-match more finely. */
3212
3213 LENGTH_MATCH (bv) = (nargs != nparms)
3214 ? LENGTH_MISMATCH_BADNESS
3215 : EXACT_MATCH_BADNESS;
3216
3217 /* Now rank all the parameters of the candidate function. */
3218 for (i = 1; i <= min_len; i++)
3219 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3220 args[i - 1]);
3221
3222 /* If more arguments than parameters, add dummy entries. */
3223 for (i = min_len + 1; i <= nargs; i++)
3224 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3225
3226 return bv;
3227 }
3228
3229 /* Compare the names of two integer types, assuming that any sign
3230 qualifiers have been checked already. We do it this way because
3231 there may be an "int" in the name of one of the types. */
3232
3233 static int
3234 integer_types_same_name_p (const char *first, const char *second)
3235 {
3236 int first_p, second_p;
3237
3238 /* If both are shorts, return 1; if neither is a short, keep
3239 checking. */
3240 first_p = (strstr (first, "short") != NULL);
3241 second_p = (strstr (second, "short") != NULL);
3242 if (first_p && second_p)
3243 return 1;
3244 if (first_p || second_p)
3245 return 0;
3246
3247 /* Likewise for long. */
3248 first_p = (strstr (first, "long") != NULL);
3249 second_p = (strstr (second, "long") != NULL);
3250 if (first_p && second_p)
3251 return 1;
3252 if (first_p || second_p)
3253 return 0;
3254
3255 /* Likewise for char. */
3256 first_p = (strstr (first, "char") != NULL);
3257 second_p = (strstr (second, "char") != NULL);
3258 if (first_p && second_p)
3259 return 1;
3260 if (first_p || second_p)
3261 return 0;
3262
3263 /* They must both be ints. */
3264 return 1;
3265 }
3266
3267 /* Compares type A to type B returns 1 if the represent the same type
3268 0 otherwise. */
3269
3270 int
3271 types_equal (struct type *a, struct type *b)
3272 {
3273 /* Identical type pointers. */
3274 /* However, this still doesn't catch all cases of same type for b
3275 and a. The reason is that builtin types are different from
3276 the same ones constructed from the object. */
3277 if (a == b)
3278 return 1;
3279
3280 /* Resolve typedefs */
3281 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3282 a = check_typedef (a);
3283 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3284 b = check_typedef (b);
3285
3286 /* If after resolving typedefs a and b are not of the same type
3287 code then they are not equal. */
3288 if (TYPE_CODE (a) != TYPE_CODE (b))
3289 return 0;
3290
3291 /* If a and b are both pointers types or both reference types then
3292 they are equal of the same type iff the objects they refer to are
3293 of the same type. */
3294 if (TYPE_CODE (a) == TYPE_CODE_PTR
3295 || TYPE_CODE (a) == TYPE_CODE_REF)
3296 return types_equal (TYPE_TARGET_TYPE (a),
3297 TYPE_TARGET_TYPE (b));
3298
3299 /* Well, damnit, if the names are exactly the same, I'll say they
3300 are exactly the same. This happens when we generate method
3301 stubs. The types won't point to the same address, but they
3302 really are the same. */
3303
3304 if (TYPE_NAME (a) && TYPE_NAME (b)
3305 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3306 return 1;
3307
3308 /* Check if identical after resolving typedefs. */
3309 if (a == b)
3310 return 1;
3311
3312 /* Two function types are equal if their argument and return types
3313 are equal. */
3314 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3315 {
3316 int i;
3317
3318 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3319 return 0;
3320
3321 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3322 return 0;
3323
3324 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3325 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3326 return 0;
3327
3328 return 1;
3329 }
3330
3331 return 0;
3332 }
3333 \f
3334 /* Deep comparison of types. */
3335
3336 /* An entry in the type-equality bcache. */
3337
3338 typedef struct type_equality_entry
3339 {
3340 struct type *type1, *type2;
3341 } type_equality_entry_d;
3342
3343 DEF_VEC_O (type_equality_entry_d);
3344
3345 /* A helper function to compare two strings. Returns 1 if they are
3346 the same, 0 otherwise. Handles NULLs properly. */
3347
3348 static int
3349 compare_maybe_null_strings (const char *s, const char *t)
3350 {
3351 if (s == NULL && t != NULL)
3352 return 0;
3353 else if (s != NULL && t == NULL)
3354 return 0;
3355 else if (s == NULL && t== NULL)
3356 return 1;
3357 return strcmp (s, t) == 0;
3358 }
3359
3360 /* A helper function for check_types_worklist that checks two types for
3361 "deep" equality. Returns non-zero if the types are considered the
3362 same, zero otherwise. */
3363
3364 static int
3365 check_types_equal (struct type *type1, struct type *type2,
3366 VEC (type_equality_entry_d) **worklist)
3367 {
3368 type1 = check_typedef (type1);
3369 type2 = check_typedef (type2);
3370
3371 if (type1 == type2)
3372 return 1;
3373
3374 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3375 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3376 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3377 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3378 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3379 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3380 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3381 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3382 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3383 return 0;
3384
3385 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3386 TYPE_TAG_NAME (type2)))
3387 return 0;
3388 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3389 return 0;
3390
3391 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3392 {
3393 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3394 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3395 return 0;
3396 }
3397 else
3398 {
3399 int i;
3400
3401 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3402 {
3403 const struct field *field1 = &TYPE_FIELD (type1, i);
3404 const struct field *field2 = &TYPE_FIELD (type2, i);
3405 struct type_equality_entry entry;
3406
3407 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3408 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3409 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3410 return 0;
3411 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3412 FIELD_NAME (*field2)))
3413 return 0;
3414 switch (FIELD_LOC_KIND (*field1))
3415 {
3416 case FIELD_LOC_KIND_BITPOS:
3417 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3418 return 0;
3419 break;
3420 case FIELD_LOC_KIND_ENUMVAL:
3421 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3422 return 0;
3423 break;
3424 case FIELD_LOC_KIND_PHYSADDR:
3425 if (FIELD_STATIC_PHYSADDR (*field1)
3426 != FIELD_STATIC_PHYSADDR (*field2))
3427 return 0;
3428 break;
3429 case FIELD_LOC_KIND_PHYSNAME:
3430 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3431 FIELD_STATIC_PHYSNAME (*field2)))
3432 return 0;
3433 break;
3434 case FIELD_LOC_KIND_DWARF_BLOCK:
3435 {
3436 struct dwarf2_locexpr_baton *block1, *block2;
3437
3438 block1 = FIELD_DWARF_BLOCK (*field1);
3439 block2 = FIELD_DWARF_BLOCK (*field2);
3440 if (block1->per_cu != block2->per_cu
3441 || block1->size != block2->size
3442 || memcmp (block1->data, block2->data, block1->size) != 0)
3443 return 0;
3444 }
3445 break;
3446 default:
3447 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3448 "%d by check_types_equal"),
3449 FIELD_LOC_KIND (*field1));
3450 }
3451
3452 entry.type1 = FIELD_TYPE (*field1);
3453 entry.type2 = FIELD_TYPE (*field2);
3454 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3455 }
3456 }
3457
3458 if (TYPE_TARGET_TYPE (type1) != NULL)
3459 {
3460 struct type_equality_entry entry;
3461
3462 if (TYPE_TARGET_TYPE (type2) == NULL)
3463 return 0;
3464
3465 entry.type1 = TYPE_TARGET_TYPE (type1);
3466 entry.type2 = TYPE_TARGET_TYPE (type2);
3467 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3468 }
3469 else if (TYPE_TARGET_TYPE (type2) != NULL)
3470 return 0;
3471
3472 return 1;
3473 }
3474
3475 /* Check types on a worklist for equality. Returns zero if any pair
3476 is not equal, non-zero if they are all considered equal. */
3477
3478 static int
3479 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3480 struct bcache *cache)
3481 {
3482 while (!VEC_empty (type_equality_entry_d, *worklist))
3483 {
3484 struct type_equality_entry entry;
3485 int added;
3486
3487 entry = *VEC_last (type_equality_entry_d, *worklist);
3488 VEC_pop (type_equality_entry_d, *worklist);
3489
3490 /* If the type pair has already been visited, we know it is
3491 ok. */
3492 bcache_full (&entry, sizeof (entry), cache, &added);
3493 if (!added)
3494 continue;
3495
3496 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3497 return 0;
3498 }
3499
3500 return 1;
3501 }
3502
3503 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3504 "deep comparison". Otherwise return zero. */
3505
3506 int
3507 types_deeply_equal (struct type *type1, struct type *type2)
3508 {
3509 struct gdb_exception except = exception_none;
3510 int result = 0;
3511 struct bcache *cache;
3512 VEC (type_equality_entry_d) *worklist = NULL;
3513 struct type_equality_entry entry;
3514
3515 gdb_assert (type1 != NULL && type2 != NULL);
3516
3517 /* Early exit for the simple case. */
3518 if (type1 == type2)
3519 return 1;
3520
3521 cache = bcache_xmalloc (NULL, NULL);
3522
3523 entry.type1 = type1;
3524 entry.type2 = type2;
3525 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3526
3527 /* check_types_worklist calls several nested helper functions, some
3528 of which can raise a GDB exception, so we just check and rethrow
3529 here. If there is a GDB exception, a comparison is not capable
3530 (or trusted), so exit. */
3531 TRY
3532 {
3533 result = check_types_worklist (&worklist, cache);
3534 }
3535 CATCH (ex, RETURN_MASK_ALL)
3536 {
3537 except = ex;
3538 }
3539 END_CATCH
3540
3541 bcache_xfree (cache);
3542 VEC_free (type_equality_entry_d, worklist);
3543
3544 /* Rethrow if there was a problem. */
3545 if (except.reason < 0)
3546 throw_exception (except);
3547
3548 return result;
3549 }
3550
3551 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3552 Otherwise return one. */
3553
3554 int
3555 type_not_allocated (const struct type *type)
3556 {
3557 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3558
3559 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3560 && !TYPE_DYN_PROP_ADDR (prop));
3561 }
3562
3563 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3564 Otherwise return one. */
3565
3566 int
3567 type_not_associated (const struct type *type)
3568 {
3569 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3570
3571 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3572 && !TYPE_DYN_PROP_ADDR (prop));
3573 }
3574 \f
3575 /* Compare one type (PARM) for compatibility with another (ARG).
3576 * PARM is intended to be the parameter type of a function; and
3577 * ARG is the supplied argument's type. This function tests if
3578 * the latter can be converted to the former.
3579 * VALUE is the argument's value or NULL if none (or called recursively)
3580 *
3581 * Return 0 if they are identical types;
3582 * Otherwise, return an integer which corresponds to how compatible
3583 * PARM is to ARG. The higher the return value, the worse the match.
3584 * Generally the "bad" conversions are all uniformly assigned a 100. */
3585
3586 struct rank
3587 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3588 {
3589 struct rank rank = {0,0};
3590
3591 if (types_equal (parm, arg))
3592 return EXACT_MATCH_BADNESS;
3593
3594 /* Resolve typedefs */
3595 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3596 parm = check_typedef (parm);
3597 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3598 arg = check_typedef (arg);
3599
3600 /* See through references, since we can almost make non-references
3601 references. */
3602 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3603 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3604 REFERENCE_CONVERSION_BADNESS));
3605 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3606 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3607 REFERENCE_CONVERSION_BADNESS));
3608 if (overload_debug)
3609 /* Debugging only. */
3610 fprintf_filtered (gdb_stderr,
3611 "------ Arg is %s [%d], parm is %s [%d]\n",
3612 TYPE_NAME (arg), TYPE_CODE (arg),
3613 TYPE_NAME (parm), TYPE_CODE (parm));
3614
3615 /* x -> y means arg of type x being supplied for parameter of type y. */
3616
3617 switch (TYPE_CODE (parm))
3618 {
3619 case TYPE_CODE_PTR:
3620 switch (TYPE_CODE (arg))
3621 {
3622 case TYPE_CODE_PTR:
3623
3624 /* Allowed pointer conversions are:
3625 (a) pointer to void-pointer conversion. */
3626 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3627 return VOID_PTR_CONVERSION_BADNESS;
3628
3629 /* (b) pointer to ancestor-pointer conversion. */
3630 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3631 TYPE_TARGET_TYPE (arg),
3632 0);
3633 if (rank.subrank >= 0)
3634 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3635
3636 return INCOMPATIBLE_TYPE_BADNESS;
3637 case TYPE_CODE_ARRAY:
3638 if (types_equal (TYPE_TARGET_TYPE (parm),
3639 TYPE_TARGET_TYPE (arg)))
3640 return EXACT_MATCH_BADNESS;
3641 return INCOMPATIBLE_TYPE_BADNESS;
3642 case TYPE_CODE_FUNC:
3643 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3644 case TYPE_CODE_INT:
3645 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3646 {
3647 if (value_as_long (value) == 0)
3648 {
3649 /* Null pointer conversion: allow it to be cast to a pointer.
3650 [4.10.1 of C++ standard draft n3290] */
3651 return NULL_POINTER_CONVERSION_BADNESS;
3652 }
3653 else
3654 {
3655 /* If type checking is disabled, allow the conversion. */
3656 if (!strict_type_checking)
3657 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3658 }
3659 }
3660 /* fall through */
3661 case TYPE_CODE_ENUM:
3662 case TYPE_CODE_FLAGS:
3663 case TYPE_CODE_CHAR:
3664 case TYPE_CODE_RANGE:
3665 case TYPE_CODE_BOOL:
3666 default:
3667 return INCOMPATIBLE_TYPE_BADNESS;
3668 }
3669 case TYPE_CODE_ARRAY:
3670 switch (TYPE_CODE (arg))
3671 {
3672 case TYPE_CODE_PTR:
3673 case TYPE_CODE_ARRAY:
3674 return rank_one_type (TYPE_TARGET_TYPE (parm),
3675 TYPE_TARGET_TYPE (arg), NULL);
3676 default:
3677 return INCOMPATIBLE_TYPE_BADNESS;
3678 }
3679 case TYPE_CODE_FUNC:
3680 switch (TYPE_CODE (arg))
3681 {
3682 case TYPE_CODE_PTR: /* funcptr -> func */
3683 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3684 default:
3685 return INCOMPATIBLE_TYPE_BADNESS;
3686 }
3687 case TYPE_CODE_INT:
3688 switch (TYPE_CODE (arg))
3689 {
3690 case TYPE_CODE_INT:
3691 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3692 {
3693 /* Deal with signed, unsigned, and plain chars and
3694 signed and unsigned ints. */
3695 if (TYPE_NOSIGN (parm))
3696 {
3697 /* This case only for character types. */
3698 if (TYPE_NOSIGN (arg))
3699 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3700 else /* signed/unsigned char -> plain char */
3701 return INTEGER_CONVERSION_BADNESS;
3702 }
3703 else if (TYPE_UNSIGNED (parm))
3704 {
3705 if (TYPE_UNSIGNED (arg))
3706 {
3707 /* unsigned int -> unsigned int, or
3708 unsigned long -> unsigned long */
3709 if (integer_types_same_name_p (TYPE_NAME (parm),
3710 TYPE_NAME (arg)))
3711 return EXACT_MATCH_BADNESS;
3712 else if (integer_types_same_name_p (TYPE_NAME (arg),
3713 "int")
3714 && integer_types_same_name_p (TYPE_NAME (parm),
3715 "long"))
3716 /* unsigned int -> unsigned long */
3717 return INTEGER_PROMOTION_BADNESS;
3718 else
3719 /* unsigned long -> unsigned int */
3720 return INTEGER_CONVERSION_BADNESS;
3721 }
3722 else
3723 {
3724 if (integer_types_same_name_p (TYPE_NAME (arg),
3725 "long")
3726 && integer_types_same_name_p (TYPE_NAME (parm),
3727 "int"))
3728 /* signed long -> unsigned int */
3729 return INTEGER_CONVERSION_BADNESS;
3730 else
3731 /* signed int/long -> unsigned int/long */
3732 return INTEGER_CONVERSION_BADNESS;
3733 }
3734 }
3735 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3736 {
3737 if (integer_types_same_name_p (TYPE_NAME (parm),
3738 TYPE_NAME (arg)))
3739 return EXACT_MATCH_BADNESS;
3740 else if (integer_types_same_name_p (TYPE_NAME (arg),
3741 "int")
3742 && integer_types_same_name_p (TYPE_NAME (parm),
3743 "long"))
3744 return INTEGER_PROMOTION_BADNESS;
3745 else
3746 return INTEGER_CONVERSION_BADNESS;
3747 }
3748 else
3749 return INTEGER_CONVERSION_BADNESS;
3750 }
3751 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3752 return INTEGER_PROMOTION_BADNESS;
3753 else
3754 return INTEGER_CONVERSION_BADNESS;
3755 case TYPE_CODE_ENUM:
3756 case TYPE_CODE_FLAGS:
3757 case TYPE_CODE_CHAR:
3758 case TYPE_CODE_RANGE:
3759 case TYPE_CODE_BOOL:
3760 if (TYPE_DECLARED_CLASS (arg))
3761 return INCOMPATIBLE_TYPE_BADNESS;
3762 return INTEGER_PROMOTION_BADNESS;
3763 case TYPE_CODE_FLT:
3764 return INT_FLOAT_CONVERSION_BADNESS;
3765 case TYPE_CODE_PTR:
3766 return NS_POINTER_CONVERSION_BADNESS;
3767 default:
3768 return INCOMPATIBLE_TYPE_BADNESS;
3769 }
3770 break;
3771 case TYPE_CODE_ENUM:
3772 switch (TYPE_CODE (arg))
3773 {
3774 case TYPE_CODE_INT:
3775 case TYPE_CODE_CHAR:
3776 case TYPE_CODE_RANGE:
3777 case TYPE_CODE_BOOL:
3778 case TYPE_CODE_ENUM:
3779 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3780 return INCOMPATIBLE_TYPE_BADNESS;
3781 return INTEGER_CONVERSION_BADNESS;
3782 case TYPE_CODE_FLT:
3783 return INT_FLOAT_CONVERSION_BADNESS;
3784 default:
3785 return INCOMPATIBLE_TYPE_BADNESS;
3786 }
3787 break;
3788 case TYPE_CODE_CHAR:
3789 switch (TYPE_CODE (arg))
3790 {
3791 case TYPE_CODE_RANGE:
3792 case TYPE_CODE_BOOL:
3793 case TYPE_CODE_ENUM:
3794 if (TYPE_DECLARED_CLASS (arg))
3795 return INCOMPATIBLE_TYPE_BADNESS;
3796 return INTEGER_CONVERSION_BADNESS;
3797 case TYPE_CODE_FLT:
3798 return INT_FLOAT_CONVERSION_BADNESS;
3799 case TYPE_CODE_INT:
3800 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3801 return INTEGER_CONVERSION_BADNESS;
3802 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3803 return INTEGER_PROMOTION_BADNESS;
3804 /* >>> !! else fall through !! <<< */
3805 case TYPE_CODE_CHAR:
3806 /* Deal with signed, unsigned, and plain chars for C++ and
3807 with int cases falling through from previous case. */
3808 if (TYPE_NOSIGN (parm))
3809 {
3810 if (TYPE_NOSIGN (arg))
3811 return EXACT_MATCH_BADNESS;
3812 else
3813 return INTEGER_CONVERSION_BADNESS;
3814 }
3815 else if (TYPE_UNSIGNED (parm))
3816 {
3817 if (TYPE_UNSIGNED (arg))
3818 return EXACT_MATCH_BADNESS;
3819 else
3820 return INTEGER_PROMOTION_BADNESS;
3821 }
3822 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3823 return EXACT_MATCH_BADNESS;
3824 else
3825 return INTEGER_CONVERSION_BADNESS;
3826 default:
3827 return INCOMPATIBLE_TYPE_BADNESS;
3828 }
3829 break;
3830 case TYPE_CODE_RANGE:
3831 switch (TYPE_CODE (arg))
3832 {
3833 case TYPE_CODE_INT:
3834 case TYPE_CODE_CHAR:
3835 case TYPE_CODE_RANGE:
3836 case TYPE_CODE_BOOL:
3837 case TYPE_CODE_ENUM:
3838 return INTEGER_CONVERSION_BADNESS;
3839 case TYPE_CODE_FLT:
3840 return INT_FLOAT_CONVERSION_BADNESS;
3841 default:
3842 return INCOMPATIBLE_TYPE_BADNESS;
3843 }
3844 break;
3845 case TYPE_CODE_BOOL:
3846 switch (TYPE_CODE (arg))
3847 {
3848 /* n3290 draft, section 4.12.1 (conv.bool):
3849
3850 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3851 pointer to member type can be converted to a prvalue of type
3852 bool. A zero value, null pointer value, or null member pointer
3853 value is converted to false; any other value is converted to
3854 true. A prvalue of type std::nullptr_t can be converted to a
3855 prvalue of type bool; the resulting value is false." */
3856 case TYPE_CODE_INT:
3857 case TYPE_CODE_CHAR:
3858 case TYPE_CODE_ENUM:
3859 case TYPE_CODE_FLT:
3860 case TYPE_CODE_MEMBERPTR:
3861 case TYPE_CODE_PTR:
3862 return BOOL_CONVERSION_BADNESS;
3863 case TYPE_CODE_RANGE:
3864 return INCOMPATIBLE_TYPE_BADNESS;
3865 case TYPE_CODE_BOOL:
3866 return EXACT_MATCH_BADNESS;
3867 default:
3868 return INCOMPATIBLE_TYPE_BADNESS;
3869 }
3870 break;
3871 case TYPE_CODE_FLT:
3872 switch (TYPE_CODE (arg))
3873 {
3874 case TYPE_CODE_FLT:
3875 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3876 return FLOAT_PROMOTION_BADNESS;
3877 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3878 return EXACT_MATCH_BADNESS;
3879 else
3880 return FLOAT_CONVERSION_BADNESS;
3881 case TYPE_CODE_INT:
3882 case TYPE_CODE_BOOL:
3883 case TYPE_CODE_ENUM:
3884 case TYPE_CODE_RANGE:
3885 case TYPE_CODE_CHAR:
3886 return INT_FLOAT_CONVERSION_BADNESS;
3887 default:
3888 return INCOMPATIBLE_TYPE_BADNESS;
3889 }
3890 break;
3891 case TYPE_CODE_COMPLEX:
3892 switch (TYPE_CODE (arg))
3893 { /* Strictly not needed for C++, but... */
3894 case TYPE_CODE_FLT:
3895 return FLOAT_PROMOTION_BADNESS;
3896 case TYPE_CODE_COMPLEX:
3897 return EXACT_MATCH_BADNESS;
3898 default:
3899 return INCOMPATIBLE_TYPE_BADNESS;
3900 }
3901 break;
3902 case TYPE_CODE_STRUCT:
3903 switch (TYPE_CODE (arg))
3904 {
3905 case TYPE_CODE_STRUCT:
3906 /* Check for derivation */
3907 rank.subrank = distance_to_ancestor (parm, arg, 0);
3908 if (rank.subrank >= 0)
3909 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3910 /* else fall through */
3911 default:
3912 return INCOMPATIBLE_TYPE_BADNESS;
3913 }
3914 break;
3915 case TYPE_CODE_UNION:
3916 switch (TYPE_CODE (arg))
3917 {
3918 case TYPE_CODE_UNION:
3919 default:
3920 return INCOMPATIBLE_TYPE_BADNESS;
3921 }
3922 break;
3923 case TYPE_CODE_MEMBERPTR:
3924 switch (TYPE_CODE (arg))
3925 {
3926 default:
3927 return INCOMPATIBLE_TYPE_BADNESS;
3928 }
3929 break;
3930 case TYPE_CODE_METHOD:
3931 switch (TYPE_CODE (arg))
3932 {
3933
3934 default:
3935 return INCOMPATIBLE_TYPE_BADNESS;
3936 }
3937 break;
3938 case TYPE_CODE_REF:
3939 switch (TYPE_CODE (arg))
3940 {
3941
3942 default:
3943 return INCOMPATIBLE_TYPE_BADNESS;
3944 }
3945
3946 break;
3947 case TYPE_CODE_SET:
3948 switch (TYPE_CODE (arg))
3949 {
3950 /* Not in C++ */
3951 case TYPE_CODE_SET:
3952 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3953 TYPE_FIELD_TYPE (arg, 0), NULL);
3954 default:
3955 return INCOMPATIBLE_TYPE_BADNESS;
3956 }
3957 break;
3958 case TYPE_CODE_VOID:
3959 default:
3960 return INCOMPATIBLE_TYPE_BADNESS;
3961 } /* switch (TYPE_CODE (arg)) */
3962 }
3963
3964 /* End of functions for overload resolution. */
3965 \f
3966 /* Routines to pretty-print types. */
3967
3968 static void
3969 print_bit_vector (B_TYPE *bits, int nbits)
3970 {
3971 int bitno;
3972
3973 for (bitno = 0; bitno < nbits; bitno++)
3974 {
3975 if ((bitno % 8) == 0)
3976 {
3977 puts_filtered (" ");
3978 }
3979 if (B_TST (bits, bitno))
3980 printf_filtered (("1"));
3981 else
3982 printf_filtered (("0"));
3983 }
3984 }
3985
3986 /* Note the first arg should be the "this" pointer, we may not want to
3987 include it since we may get into a infinitely recursive
3988 situation. */
3989
3990 static void
3991 print_args (struct field *args, int nargs, int spaces)
3992 {
3993 if (args != NULL)
3994 {
3995 int i;
3996
3997 for (i = 0; i < nargs; i++)
3998 {
3999 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4000 args[i].name != NULL ? args[i].name : "<NULL>");
4001 recursive_dump_type (args[i].type, spaces + 2);
4002 }
4003 }
4004 }
4005
4006 int
4007 field_is_static (struct field *f)
4008 {
4009 /* "static" fields are the fields whose location is not relative
4010 to the address of the enclosing struct. It would be nice to
4011 have a dedicated flag that would be set for static fields when
4012 the type is being created. But in practice, checking the field
4013 loc_kind should give us an accurate answer. */
4014 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4015 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4016 }
4017
4018 static void
4019 dump_fn_fieldlists (struct type *type, int spaces)
4020 {
4021 int method_idx;
4022 int overload_idx;
4023 struct fn_field *f;
4024
4025 printfi_filtered (spaces, "fn_fieldlists ");
4026 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4027 printf_filtered ("\n");
4028 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4029 {
4030 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4031 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4032 method_idx,
4033 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4034 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4035 gdb_stdout);
4036 printf_filtered (_(") length %d\n"),
4037 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4038 for (overload_idx = 0;
4039 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4040 overload_idx++)
4041 {
4042 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4043 overload_idx,
4044 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4045 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4046 gdb_stdout);
4047 printf_filtered (")\n");
4048 printfi_filtered (spaces + 8, "type ");
4049 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4050 gdb_stdout);
4051 printf_filtered ("\n");
4052
4053 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4054 spaces + 8 + 2);
4055
4056 printfi_filtered (spaces + 8, "args ");
4057 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4058 gdb_stdout);
4059 printf_filtered ("\n");
4060 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4061 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4062 spaces + 8 + 2);
4063 printfi_filtered (spaces + 8, "fcontext ");
4064 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4065 gdb_stdout);
4066 printf_filtered ("\n");
4067
4068 printfi_filtered (spaces + 8, "is_const %d\n",
4069 TYPE_FN_FIELD_CONST (f, overload_idx));
4070 printfi_filtered (spaces + 8, "is_volatile %d\n",
4071 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4072 printfi_filtered (spaces + 8, "is_private %d\n",
4073 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4074 printfi_filtered (spaces + 8, "is_protected %d\n",
4075 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4076 printfi_filtered (spaces + 8, "is_stub %d\n",
4077 TYPE_FN_FIELD_STUB (f, overload_idx));
4078 printfi_filtered (spaces + 8, "voffset %u\n",
4079 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4080 }
4081 }
4082 }
4083
4084 static void
4085 print_cplus_stuff (struct type *type, int spaces)
4086 {
4087 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4088 printfi_filtered (spaces, "vptr_basetype ");
4089 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4090 puts_filtered ("\n");
4091 if (TYPE_VPTR_BASETYPE (type) != NULL)
4092 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4093
4094 printfi_filtered (spaces, "n_baseclasses %d\n",
4095 TYPE_N_BASECLASSES (type));
4096 printfi_filtered (spaces, "nfn_fields %d\n",
4097 TYPE_NFN_FIELDS (type));
4098 if (TYPE_N_BASECLASSES (type) > 0)
4099 {
4100 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4101 TYPE_N_BASECLASSES (type));
4102 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4103 gdb_stdout);
4104 printf_filtered (")");
4105
4106 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4107 TYPE_N_BASECLASSES (type));
4108 puts_filtered ("\n");
4109 }
4110 if (TYPE_NFIELDS (type) > 0)
4111 {
4112 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4113 {
4114 printfi_filtered (spaces,
4115 "private_field_bits (%d bits at *",
4116 TYPE_NFIELDS (type));
4117 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4118 gdb_stdout);
4119 printf_filtered (")");
4120 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4121 TYPE_NFIELDS (type));
4122 puts_filtered ("\n");
4123 }
4124 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4125 {
4126 printfi_filtered (spaces,
4127 "protected_field_bits (%d bits at *",
4128 TYPE_NFIELDS (type));
4129 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4130 gdb_stdout);
4131 printf_filtered (")");
4132 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4133 TYPE_NFIELDS (type));
4134 puts_filtered ("\n");
4135 }
4136 }
4137 if (TYPE_NFN_FIELDS (type) > 0)
4138 {
4139 dump_fn_fieldlists (type, spaces);
4140 }
4141 }
4142
4143 /* Print the contents of the TYPE's type_specific union, assuming that
4144 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4145
4146 static void
4147 print_gnat_stuff (struct type *type, int spaces)
4148 {
4149 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4150
4151 if (descriptive_type == NULL)
4152 printfi_filtered (spaces + 2, "no descriptive type\n");
4153 else
4154 {
4155 printfi_filtered (spaces + 2, "descriptive type\n");
4156 recursive_dump_type (descriptive_type, spaces + 4);
4157 }
4158 }
4159
4160 static struct obstack dont_print_type_obstack;
4161
4162 void
4163 recursive_dump_type (struct type *type, int spaces)
4164 {
4165 int idx;
4166
4167 if (spaces == 0)
4168 obstack_begin (&dont_print_type_obstack, 0);
4169
4170 if (TYPE_NFIELDS (type) > 0
4171 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4172 {
4173 struct type **first_dont_print
4174 = (struct type **) obstack_base (&dont_print_type_obstack);
4175
4176 int i = (struct type **)
4177 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4178
4179 while (--i >= 0)
4180 {
4181 if (type == first_dont_print[i])
4182 {
4183 printfi_filtered (spaces, "type node ");
4184 gdb_print_host_address (type, gdb_stdout);
4185 printf_filtered (_(" <same as already seen type>\n"));
4186 return;
4187 }
4188 }
4189
4190 obstack_ptr_grow (&dont_print_type_obstack, type);
4191 }
4192
4193 printfi_filtered (spaces, "type node ");
4194 gdb_print_host_address (type, gdb_stdout);
4195 printf_filtered ("\n");
4196 printfi_filtered (spaces, "name '%s' (",
4197 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4198 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4199 printf_filtered (")\n");
4200 printfi_filtered (spaces, "tagname '%s' (",
4201 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4202 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4203 printf_filtered (")\n");
4204 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4205 switch (TYPE_CODE (type))
4206 {
4207 case TYPE_CODE_UNDEF:
4208 printf_filtered ("(TYPE_CODE_UNDEF)");
4209 break;
4210 case TYPE_CODE_PTR:
4211 printf_filtered ("(TYPE_CODE_PTR)");
4212 break;
4213 case TYPE_CODE_ARRAY:
4214 printf_filtered ("(TYPE_CODE_ARRAY)");
4215 break;
4216 case TYPE_CODE_STRUCT:
4217 printf_filtered ("(TYPE_CODE_STRUCT)");
4218 break;
4219 case TYPE_CODE_UNION:
4220 printf_filtered ("(TYPE_CODE_UNION)");
4221 break;
4222 case TYPE_CODE_ENUM:
4223 printf_filtered ("(TYPE_CODE_ENUM)");
4224 break;
4225 case TYPE_CODE_FLAGS:
4226 printf_filtered ("(TYPE_CODE_FLAGS)");
4227 break;
4228 case TYPE_CODE_FUNC:
4229 printf_filtered ("(TYPE_CODE_FUNC)");
4230 break;
4231 case TYPE_CODE_INT:
4232 printf_filtered ("(TYPE_CODE_INT)");
4233 break;
4234 case TYPE_CODE_FLT:
4235 printf_filtered ("(TYPE_CODE_FLT)");
4236 break;
4237 case TYPE_CODE_VOID:
4238 printf_filtered ("(TYPE_CODE_VOID)");
4239 break;
4240 case TYPE_CODE_SET:
4241 printf_filtered ("(TYPE_CODE_SET)");
4242 break;
4243 case TYPE_CODE_RANGE:
4244 printf_filtered ("(TYPE_CODE_RANGE)");
4245 break;
4246 case TYPE_CODE_STRING:
4247 printf_filtered ("(TYPE_CODE_STRING)");
4248 break;
4249 case TYPE_CODE_ERROR:
4250 printf_filtered ("(TYPE_CODE_ERROR)");
4251 break;
4252 case TYPE_CODE_MEMBERPTR:
4253 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4254 break;
4255 case TYPE_CODE_METHODPTR:
4256 printf_filtered ("(TYPE_CODE_METHODPTR)");
4257 break;
4258 case TYPE_CODE_METHOD:
4259 printf_filtered ("(TYPE_CODE_METHOD)");
4260 break;
4261 case TYPE_CODE_REF:
4262 printf_filtered ("(TYPE_CODE_REF)");
4263 break;
4264 case TYPE_CODE_CHAR:
4265 printf_filtered ("(TYPE_CODE_CHAR)");
4266 break;
4267 case TYPE_CODE_BOOL:
4268 printf_filtered ("(TYPE_CODE_BOOL)");
4269 break;
4270 case TYPE_CODE_COMPLEX:
4271 printf_filtered ("(TYPE_CODE_COMPLEX)");
4272 break;
4273 case TYPE_CODE_TYPEDEF:
4274 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4275 break;
4276 case TYPE_CODE_NAMESPACE:
4277 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4278 break;
4279 default:
4280 printf_filtered ("(UNKNOWN TYPE CODE)");
4281 break;
4282 }
4283 puts_filtered ("\n");
4284 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4285 if (TYPE_OBJFILE_OWNED (type))
4286 {
4287 printfi_filtered (spaces, "objfile ");
4288 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4289 }
4290 else
4291 {
4292 printfi_filtered (spaces, "gdbarch ");
4293 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4294 }
4295 printf_filtered ("\n");
4296 printfi_filtered (spaces, "target_type ");
4297 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4298 printf_filtered ("\n");
4299 if (TYPE_TARGET_TYPE (type) != NULL)
4300 {
4301 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4302 }
4303 printfi_filtered (spaces, "pointer_type ");
4304 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4305 printf_filtered ("\n");
4306 printfi_filtered (spaces, "reference_type ");
4307 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4308 printf_filtered ("\n");
4309 printfi_filtered (spaces, "type_chain ");
4310 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4311 printf_filtered ("\n");
4312 printfi_filtered (spaces, "instance_flags 0x%x",
4313 TYPE_INSTANCE_FLAGS (type));
4314 if (TYPE_CONST (type))
4315 {
4316 puts_filtered (" TYPE_CONST");
4317 }
4318 if (TYPE_VOLATILE (type))
4319 {
4320 puts_filtered (" TYPE_VOLATILE");
4321 }
4322 if (TYPE_CODE_SPACE (type))
4323 {
4324 puts_filtered (" TYPE_CODE_SPACE");
4325 }
4326 if (TYPE_DATA_SPACE (type))
4327 {
4328 puts_filtered (" TYPE_DATA_SPACE");
4329 }
4330 if (TYPE_ADDRESS_CLASS_1 (type))
4331 {
4332 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4333 }
4334 if (TYPE_ADDRESS_CLASS_2 (type))
4335 {
4336 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4337 }
4338 if (TYPE_RESTRICT (type))
4339 {
4340 puts_filtered (" TYPE_RESTRICT");
4341 }
4342 if (TYPE_ATOMIC (type))
4343 {
4344 puts_filtered (" TYPE_ATOMIC");
4345 }
4346 puts_filtered ("\n");
4347
4348 printfi_filtered (spaces, "flags");
4349 if (TYPE_UNSIGNED (type))
4350 {
4351 puts_filtered (" TYPE_UNSIGNED");
4352 }
4353 if (TYPE_NOSIGN (type))
4354 {
4355 puts_filtered (" TYPE_NOSIGN");
4356 }
4357 if (TYPE_STUB (type))
4358 {
4359 puts_filtered (" TYPE_STUB");
4360 }
4361 if (TYPE_TARGET_STUB (type))
4362 {
4363 puts_filtered (" TYPE_TARGET_STUB");
4364 }
4365 if (TYPE_STATIC (type))
4366 {
4367 puts_filtered (" TYPE_STATIC");
4368 }
4369 if (TYPE_PROTOTYPED (type))
4370 {
4371 puts_filtered (" TYPE_PROTOTYPED");
4372 }
4373 if (TYPE_INCOMPLETE (type))
4374 {
4375 puts_filtered (" TYPE_INCOMPLETE");
4376 }
4377 if (TYPE_VARARGS (type))
4378 {
4379 puts_filtered (" TYPE_VARARGS");
4380 }
4381 /* This is used for things like AltiVec registers on ppc. Gcc emits
4382 an attribute for the array type, which tells whether or not we
4383 have a vector, instead of a regular array. */
4384 if (TYPE_VECTOR (type))
4385 {
4386 puts_filtered (" TYPE_VECTOR");
4387 }
4388 if (TYPE_FIXED_INSTANCE (type))
4389 {
4390 puts_filtered (" TYPE_FIXED_INSTANCE");
4391 }
4392 if (TYPE_STUB_SUPPORTED (type))
4393 {
4394 puts_filtered (" TYPE_STUB_SUPPORTED");
4395 }
4396 if (TYPE_NOTTEXT (type))
4397 {
4398 puts_filtered (" TYPE_NOTTEXT");
4399 }
4400 puts_filtered ("\n");
4401 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4402 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4403 puts_filtered ("\n");
4404 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4405 {
4406 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4407 printfi_filtered (spaces + 2,
4408 "[%d] enumval %s type ",
4409 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4410 else
4411 printfi_filtered (spaces + 2,
4412 "[%d] bitpos %s bitsize %d type ",
4413 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4414 TYPE_FIELD_BITSIZE (type, idx));
4415 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4416 printf_filtered (" name '%s' (",
4417 TYPE_FIELD_NAME (type, idx) != NULL
4418 ? TYPE_FIELD_NAME (type, idx)
4419 : "<NULL>");
4420 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4421 printf_filtered (")\n");
4422 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4423 {
4424 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4425 }
4426 }
4427 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4428 {
4429 printfi_filtered (spaces, "low %s%s high %s%s\n",
4430 plongest (TYPE_LOW_BOUND (type)),
4431 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4432 plongest (TYPE_HIGH_BOUND (type)),
4433 TYPE_HIGH_BOUND_UNDEFINED (type)
4434 ? " (undefined)" : "");
4435 }
4436
4437 switch (TYPE_SPECIFIC_FIELD (type))
4438 {
4439 case TYPE_SPECIFIC_CPLUS_STUFF:
4440 printfi_filtered (spaces, "cplus_stuff ");
4441 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4442 gdb_stdout);
4443 puts_filtered ("\n");
4444 print_cplus_stuff (type, spaces);
4445 break;
4446
4447 case TYPE_SPECIFIC_GNAT_STUFF:
4448 printfi_filtered (spaces, "gnat_stuff ");
4449 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4450 puts_filtered ("\n");
4451 print_gnat_stuff (type, spaces);
4452 break;
4453
4454 case TYPE_SPECIFIC_FLOATFORMAT:
4455 printfi_filtered (spaces, "floatformat ");
4456 if (TYPE_FLOATFORMAT (type) == NULL)
4457 puts_filtered ("(null)");
4458 else
4459 {
4460 puts_filtered ("{ ");
4461 if (TYPE_FLOATFORMAT (type)[0] == NULL
4462 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4463 puts_filtered ("(null)");
4464 else
4465 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4466
4467 puts_filtered (", ");
4468 if (TYPE_FLOATFORMAT (type)[1] == NULL
4469 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4470 puts_filtered ("(null)");
4471 else
4472 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4473
4474 puts_filtered (" }");
4475 }
4476 puts_filtered ("\n");
4477 break;
4478
4479 case TYPE_SPECIFIC_FUNC:
4480 printfi_filtered (spaces, "calling_convention %d\n",
4481 TYPE_CALLING_CONVENTION (type));
4482 /* tail_call_list is not printed. */
4483 break;
4484
4485 case TYPE_SPECIFIC_SELF_TYPE:
4486 printfi_filtered (spaces, "self_type ");
4487 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4488 puts_filtered ("\n");
4489 break;
4490 }
4491
4492 if (spaces == 0)
4493 obstack_free (&dont_print_type_obstack, NULL);
4494 }
4495 \f
4496 /* Trivial helpers for the libiberty hash table, for mapping one
4497 type to another. */
4498
4499 struct type_pair
4500 {
4501 struct type *old, *newobj;
4502 };
4503
4504 static hashval_t
4505 type_pair_hash (const void *item)
4506 {
4507 const struct type_pair *pair = (const struct type_pair *) item;
4508
4509 return htab_hash_pointer (pair->old);
4510 }
4511
4512 static int
4513 type_pair_eq (const void *item_lhs, const void *item_rhs)
4514 {
4515 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4516 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4517
4518 return lhs->old == rhs->old;
4519 }
4520
4521 /* Allocate the hash table used by copy_type_recursive to walk
4522 types without duplicates. We use OBJFILE's obstack, because
4523 OBJFILE is about to be deleted. */
4524
4525 htab_t
4526 create_copied_types_hash (struct objfile *objfile)
4527 {
4528 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4529 NULL, &objfile->objfile_obstack,
4530 hashtab_obstack_allocate,
4531 dummy_obstack_deallocate);
4532 }
4533
4534 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4535
4536 static struct dynamic_prop_list *
4537 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4538 struct dynamic_prop_list *list)
4539 {
4540 struct dynamic_prop_list *copy = list;
4541 struct dynamic_prop_list **node_ptr = &copy;
4542
4543 while (*node_ptr != NULL)
4544 {
4545 struct dynamic_prop_list *node_copy;
4546
4547 node_copy = ((struct dynamic_prop_list *)
4548 obstack_copy (objfile_obstack, *node_ptr,
4549 sizeof (struct dynamic_prop_list)));
4550 node_copy->prop = (*node_ptr)->prop;
4551 *node_ptr = node_copy;
4552
4553 node_ptr = &node_copy->next;
4554 }
4555
4556 return copy;
4557 }
4558
4559 /* Recursively copy (deep copy) TYPE, if it is associated with
4560 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4561 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4562 it is not associated with OBJFILE. */
4563
4564 struct type *
4565 copy_type_recursive (struct objfile *objfile,
4566 struct type *type,
4567 htab_t copied_types)
4568 {
4569 struct type_pair *stored, pair;
4570 void **slot;
4571 struct type *new_type;
4572
4573 if (! TYPE_OBJFILE_OWNED (type))
4574 return type;
4575
4576 /* This type shouldn't be pointing to any types in other objfiles;
4577 if it did, the type might disappear unexpectedly. */
4578 gdb_assert (TYPE_OBJFILE (type) == objfile);
4579
4580 pair.old = type;
4581 slot = htab_find_slot (copied_types, &pair, INSERT);
4582 if (*slot != NULL)
4583 return ((struct type_pair *) *slot)->newobj;
4584
4585 new_type = alloc_type_arch (get_type_arch (type));
4586
4587 /* We must add the new type to the hash table immediately, in case
4588 we encounter this type again during a recursive call below. */
4589 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4590 stored->old = type;
4591 stored->newobj = new_type;
4592 *slot = stored;
4593
4594 /* Copy the common fields of types. For the main type, we simply
4595 copy the entire thing and then update specific fields as needed. */
4596 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4597 TYPE_OBJFILE_OWNED (new_type) = 0;
4598 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4599
4600 if (TYPE_NAME (type))
4601 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4602 if (TYPE_TAG_NAME (type))
4603 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4604
4605 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4606 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4607
4608 /* Copy the fields. */
4609 if (TYPE_NFIELDS (type))
4610 {
4611 int i, nfields;
4612
4613 nfields = TYPE_NFIELDS (type);
4614 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4615 for (i = 0; i < nfields; i++)
4616 {
4617 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4618 TYPE_FIELD_ARTIFICIAL (type, i);
4619 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4620 if (TYPE_FIELD_TYPE (type, i))
4621 TYPE_FIELD_TYPE (new_type, i)
4622 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4623 copied_types);
4624 if (TYPE_FIELD_NAME (type, i))
4625 TYPE_FIELD_NAME (new_type, i) =
4626 xstrdup (TYPE_FIELD_NAME (type, i));
4627 switch (TYPE_FIELD_LOC_KIND (type, i))
4628 {
4629 case FIELD_LOC_KIND_BITPOS:
4630 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4631 TYPE_FIELD_BITPOS (type, i));
4632 break;
4633 case FIELD_LOC_KIND_ENUMVAL:
4634 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4635 TYPE_FIELD_ENUMVAL (type, i));
4636 break;
4637 case FIELD_LOC_KIND_PHYSADDR:
4638 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4639 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4640 break;
4641 case FIELD_LOC_KIND_PHYSNAME:
4642 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4643 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4644 i)));
4645 break;
4646 default:
4647 internal_error (__FILE__, __LINE__,
4648 _("Unexpected type field location kind: %d"),
4649 TYPE_FIELD_LOC_KIND (type, i));
4650 }
4651 }
4652 }
4653
4654 /* For range types, copy the bounds information. */
4655 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4656 {
4657 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4658 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4659 }
4660
4661 if (TYPE_DYN_PROP_LIST (type) != NULL)
4662 TYPE_DYN_PROP_LIST (new_type)
4663 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4664 TYPE_DYN_PROP_LIST (type));
4665
4666
4667 /* Copy pointers to other types. */
4668 if (TYPE_TARGET_TYPE (type))
4669 TYPE_TARGET_TYPE (new_type) =
4670 copy_type_recursive (objfile,
4671 TYPE_TARGET_TYPE (type),
4672 copied_types);
4673
4674 /* Maybe copy the type_specific bits.
4675
4676 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4677 base classes and methods. There's no fundamental reason why we
4678 can't, but at the moment it is not needed. */
4679
4680 switch (TYPE_SPECIFIC_FIELD (type))
4681 {
4682 case TYPE_SPECIFIC_NONE:
4683 break;
4684 case TYPE_SPECIFIC_FUNC:
4685 INIT_FUNC_SPECIFIC (new_type);
4686 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4687 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4688 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4689 break;
4690 case TYPE_SPECIFIC_FLOATFORMAT:
4691 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4692 break;
4693 case TYPE_SPECIFIC_CPLUS_STUFF:
4694 INIT_CPLUS_SPECIFIC (new_type);
4695 break;
4696 case TYPE_SPECIFIC_GNAT_STUFF:
4697 INIT_GNAT_SPECIFIC (new_type);
4698 break;
4699 case TYPE_SPECIFIC_SELF_TYPE:
4700 set_type_self_type (new_type,
4701 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4702 copied_types));
4703 break;
4704 default:
4705 gdb_assert_not_reached ("bad type_specific_kind");
4706 }
4707
4708 return new_type;
4709 }
4710
4711 /* Make a copy of the given TYPE, except that the pointer & reference
4712 types are not preserved.
4713
4714 This function assumes that the given type has an associated objfile.
4715 This objfile is used to allocate the new type. */
4716
4717 struct type *
4718 copy_type (const struct type *type)
4719 {
4720 struct type *new_type;
4721
4722 gdb_assert (TYPE_OBJFILE_OWNED (type));
4723
4724 new_type = alloc_type_copy (type);
4725 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4726 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4727 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4728 sizeof (struct main_type));
4729 if (TYPE_DYN_PROP_LIST (type) != NULL)
4730 TYPE_DYN_PROP_LIST (new_type)
4731 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4732 TYPE_DYN_PROP_LIST (type));
4733
4734 return new_type;
4735 }
4736 \f
4737 /* Helper functions to initialize architecture-specific types. */
4738
4739 /* Allocate a type structure associated with GDBARCH and set its
4740 CODE, LENGTH, and NAME fields. */
4741
4742 struct type *
4743 arch_type (struct gdbarch *gdbarch,
4744 enum type_code code, int length, const char *name)
4745 {
4746 struct type *type;
4747
4748 type = alloc_type_arch (gdbarch);
4749 set_type_code (type, code);
4750 TYPE_LENGTH (type) = length;
4751
4752 if (name)
4753 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4754
4755 return type;
4756 }
4757
4758 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4759 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4760 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4761
4762 struct type *
4763 arch_integer_type (struct gdbarch *gdbarch,
4764 int bit, int unsigned_p, const char *name)
4765 {
4766 struct type *t;
4767
4768 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4769 if (unsigned_p)
4770 TYPE_UNSIGNED (t) = 1;
4771
4772 return t;
4773 }
4774
4775 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4776 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4777 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4778
4779 struct type *
4780 arch_character_type (struct gdbarch *gdbarch,
4781 int bit, int unsigned_p, const char *name)
4782 {
4783 struct type *t;
4784
4785 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4786 if (unsigned_p)
4787 TYPE_UNSIGNED (t) = 1;
4788
4789 return t;
4790 }
4791
4792 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4793 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4794 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4795
4796 struct type *
4797 arch_boolean_type (struct gdbarch *gdbarch,
4798 int bit, int unsigned_p, const char *name)
4799 {
4800 struct type *t;
4801
4802 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4803 if (unsigned_p)
4804 TYPE_UNSIGNED (t) = 1;
4805
4806 return t;
4807 }
4808
4809 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4810 BIT is the type size in bits; if BIT equals -1, the size is
4811 determined by the floatformat. NAME is the type name. Set the
4812 TYPE_FLOATFORMAT from FLOATFORMATS. */
4813
4814 struct type *
4815 arch_float_type (struct gdbarch *gdbarch,
4816 int bit, const char *name,
4817 const struct floatformat **floatformats)
4818 {
4819 struct type *t;
4820
4821 bit = verify_floatformat (bit, floatformats);
4822 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4823 TYPE_FLOATFORMAT (t) = floatformats;
4824
4825 return t;
4826 }
4827
4828 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4829 BIT is the type size in bits. NAME is the type name. */
4830
4831 struct type *
4832 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4833 {
4834 struct type *t;
4835
4836 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4837 return t;
4838 }
4839
4840 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4841 NAME is the type name. TARGET_TYPE is the component float type. */
4842
4843 struct type *
4844 arch_complex_type (struct gdbarch *gdbarch,
4845 const char *name, struct type *target_type)
4846 {
4847 struct type *t;
4848
4849 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4850 2 * TYPE_LENGTH (target_type), name);
4851 TYPE_TARGET_TYPE (t) = target_type;
4852 return t;
4853 }
4854
4855 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4856 BIT is the pointer type size in bits. NAME is the type name.
4857 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4858 TYPE_UNSIGNED flag. */
4859
4860 struct type *
4861 arch_pointer_type (struct gdbarch *gdbarch,
4862 int bit, const char *name, struct type *target_type)
4863 {
4864 struct type *t;
4865
4866 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4867 TYPE_TARGET_TYPE (t) = target_type;
4868 TYPE_UNSIGNED (t) = 1;
4869 return t;
4870 }
4871
4872 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4873 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4874
4875 struct type *
4876 arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
4877 {
4878 int max_nfields = length * TARGET_CHAR_BIT;
4879 struct type *type;
4880
4881 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4882 TYPE_UNSIGNED (type) = 1;
4883 TYPE_NFIELDS (type) = 0;
4884 /* Pre-allocate enough space assuming every field is one bit. */
4885 TYPE_FIELDS (type)
4886 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
4887
4888 return type;
4889 }
4890
4891 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4892 position BITPOS is called NAME. Pass NAME as "" for fields that
4893 should not be printed. */
4894
4895 void
4896 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
4897 struct type *field_type, const char *name)
4898 {
4899 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4900 int field_nr = TYPE_NFIELDS (type);
4901
4902 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4903 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4904 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4905 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4906 gdb_assert (name != NULL);
4907
4908 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4909 TYPE_FIELD_TYPE (type, field_nr) = field_type;
4910 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
4911 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
4912 ++TYPE_NFIELDS (type);
4913 }
4914
4915 /* Special version of append_flags_type_field to add a flag field.
4916 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4917 position BITPOS is called NAME. */
4918
4919 void
4920 append_flags_type_flag (struct type *type, int bitpos, const char *name)
4921 {
4922 struct gdbarch *gdbarch = get_type_arch (type);
4923
4924 append_flags_type_field (type, bitpos, 1,
4925 builtin_type (gdbarch)->builtin_bool,
4926 name);
4927 }
4928
4929 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4930 specified by CODE) associated with GDBARCH. NAME is the type name. */
4931
4932 struct type *
4933 arch_composite_type (struct gdbarch *gdbarch, const char *name,
4934 enum type_code code)
4935 {
4936 struct type *t;
4937
4938 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4939 t = arch_type (gdbarch, code, 0, NULL);
4940 TYPE_TAG_NAME (t) = name;
4941 INIT_CPLUS_SPECIFIC (t);
4942 return t;
4943 }
4944
4945 /* Add new field with name NAME and type FIELD to composite type T.
4946 Do not set the field's position or adjust the type's length;
4947 the caller should do so. Return the new field. */
4948
4949 struct field *
4950 append_composite_type_field_raw (struct type *t, const char *name,
4951 struct type *field)
4952 {
4953 struct field *f;
4954
4955 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4956 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
4957 TYPE_NFIELDS (t));
4958 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4959 memset (f, 0, sizeof f[0]);
4960 FIELD_TYPE (f[0]) = field;
4961 FIELD_NAME (f[0]) = name;
4962 return f;
4963 }
4964
4965 /* Add new field with name NAME and type FIELD to composite type T.
4966 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4967
4968 void
4969 append_composite_type_field_aligned (struct type *t, const char *name,
4970 struct type *field, int alignment)
4971 {
4972 struct field *f = append_composite_type_field_raw (t, name, field);
4973
4974 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4975 {
4976 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4977 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4978 }
4979 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4980 {
4981 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4982 if (TYPE_NFIELDS (t) > 1)
4983 {
4984 SET_FIELD_BITPOS (f[0],
4985 (FIELD_BITPOS (f[-1])
4986 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4987 * TARGET_CHAR_BIT)));
4988
4989 if (alignment)
4990 {
4991 int left;
4992
4993 alignment *= TARGET_CHAR_BIT;
4994 left = FIELD_BITPOS (f[0]) % alignment;
4995
4996 if (left)
4997 {
4998 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4999 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5000 }
5001 }
5002 }
5003 }
5004 }
5005
5006 /* Add new field with name NAME and type FIELD to composite type T. */
5007
5008 void
5009 append_composite_type_field (struct type *t, const char *name,
5010 struct type *field)
5011 {
5012 append_composite_type_field_aligned (t, name, field, 0);
5013 }
5014
5015 static struct gdbarch_data *gdbtypes_data;
5016
5017 const struct builtin_type *
5018 builtin_type (struct gdbarch *gdbarch)
5019 {
5020 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5021 }
5022
5023 static void *
5024 gdbtypes_post_init (struct gdbarch *gdbarch)
5025 {
5026 struct builtin_type *builtin_type
5027 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5028
5029 /* Basic types. */
5030 builtin_type->builtin_void
5031 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
5032 builtin_type->builtin_char
5033 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5034 !gdbarch_char_signed (gdbarch), "char");
5035 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5036 builtin_type->builtin_signed_char
5037 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5038 0, "signed char");
5039 builtin_type->builtin_unsigned_char
5040 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5041 1, "unsigned char");
5042 builtin_type->builtin_short
5043 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5044 0, "short");
5045 builtin_type->builtin_unsigned_short
5046 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5047 1, "unsigned short");
5048 builtin_type->builtin_int
5049 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5050 0, "int");
5051 builtin_type->builtin_unsigned_int
5052 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5053 1, "unsigned int");
5054 builtin_type->builtin_long
5055 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5056 0, "long");
5057 builtin_type->builtin_unsigned_long
5058 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5059 1, "unsigned long");
5060 builtin_type->builtin_long_long
5061 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5062 0, "long long");
5063 builtin_type->builtin_unsigned_long_long
5064 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5065 1, "unsigned long long");
5066 builtin_type->builtin_float
5067 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5068 "float", gdbarch_float_format (gdbarch));
5069 builtin_type->builtin_double
5070 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5071 "double", gdbarch_double_format (gdbarch));
5072 builtin_type->builtin_long_double
5073 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5074 "long double", gdbarch_long_double_format (gdbarch));
5075 builtin_type->builtin_complex
5076 = arch_complex_type (gdbarch, "complex",
5077 builtin_type->builtin_float);
5078 builtin_type->builtin_double_complex
5079 = arch_complex_type (gdbarch, "double complex",
5080 builtin_type->builtin_double);
5081 builtin_type->builtin_string
5082 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
5083 builtin_type->builtin_bool
5084 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
5085
5086 /* The following three are about decimal floating point types, which
5087 are 32-bits, 64-bits and 128-bits respectively. */
5088 builtin_type->builtin_decfloat
5089 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5090 builtin_type->builtin_decdouble
5091 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5092 builtin_type->builtin_declong
5093 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5094
5095 /* "True" character types. */
5096 builtin_type->builtin_true_char
5097 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5098 builtin_type->builtin_true_unsigned_char
5099 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5100
5101 /* Fixed-size integer types. */
5102 builtin_type->builtin_int0
5103 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5104 builtin_type->builtin_int8
5105 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5106 builtin_type->builtin_uint8
5107 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5108 builtin_type->builtin_int16
5109 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5110 builtin_type->builtin_uint16
5111 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5112 builtin_type->builtin_int32
5113 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5114 builtin_type->builtin_uint32
5115 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5116 builtin_type->builtin_int64
5117 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5118 builtin_type->builtin_uint64
5119 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5120 builtin_type->builtin_int128
5121 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5122 builtin_type->builtin_uint128
5123 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5124 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5125 TYPE_INSTANCE_FLAG_NOTTEXT;
5126 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5127 TYPE_INSTANCE_FLAG_NOTTEXT;
5128
5129 /* Wide character types. */
5130 builtin_type->builtin_char16
5131 = arch_integer_type (gdbarch, 16, 0, "char16_t");
5132 builtin_type->builtin_char32
5133 = arch_integer_type (gdbarch, 32, 0, "char32_t");
5134
5135
5136 /* Default data/code pointer types. */
5137 builtin_type->builtin_data_ptr
5138 = lookup_pointer_type (builtin_type->builtin_void);
5139 builtin_type->builtin_func_ptr
5140 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5141 builtin_type->builtin_func_func
5142 = lookup_function_type (builtin_type->builtin_func_ptr);
5143
5144 /* This type represents a GDB internal function. */
5145 builtin_type->internal_fn
5146 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5147 "<internal function>");
5148
5149 /* This type represents an xmethod. */
5150 builtin_type->xmethod
5151 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5152
5153 return builtin_type;
5154 }
5155
5156 /* This set of objfile-based types is intended to be used by symbol
5157 readers as basic types. */
5158
5159 static const struct objfile_data *objfile_type_data;
5160
5161 const struct objfile_type *
5162 objfile_type (struct objfile *objfile)
5163 {
5164 struct gdbarch *gdbarch;
5165 struct objfile_type *objfile_type
5166 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5167
5168 if (objfile_type)
5169 return objfile_type;
5170
5171 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5172 1, struct objfile_type);
5173
5174 /* Use the objfile architecture to determine basic type properties. */
5175 gdbarch = get_objfile_arch (objfile);
5176
5177 /* Basic types. */
5178 objfile_type->builtin_void
5179 = init_type (objfile, TYPE_CODE_VOID, 1, "void");
5180 objfile_type->builtin_char
5181 = init_integer_type (objfile, TARGET_CHAR_BIT,
5182 !gdbarch_char_signed (gdbarch), "char");
5183 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5184 objfile_type->builtin_signed_char
5185 = init_integer_type (objfile, TARGET_CHAR_BIT,
5186 0, "signed char");
5187 objfile_type->builtin_unsigned_char
5188 = init_integer_type (objfile, TARGET_CHAR_BIT,
5189 1, "unsigned char");
5190 objfile_type->builtin_short
5191 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5192 0, "short");
5193 objfile_type->builtin_unsigned_short
5194 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5195 1, "unsigned short");
5196 objfile_type->builtin_int
5197 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5198 0, "int");
5199 objfile_type->builtin_unsigned_int
5200 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5201 1, "unsigned int");
5202 objfile_type->builtin_long
5203 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5204 0, "long");
5205 objfile_type->builtin_unsigned_long
5206 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5207 1, "unsigned long");
5208 objfile_type->builtin_long_long
5209 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5210 0, "long long");
5211 objfile_type->builtin_unsigned_long_long
5212 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5213 1, "unsigned long long");
5214 objfile_type->builtin_float
5215 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5216 "float", gdbarch_float_format (gdbarch));
5217 objfile_type->builtin_double
5218 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5219 "double", gdbarch_double_format (gdbarch));
5220 objfile_type->builtin_long_double
5221 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5222 "long double", gdbarch_long_double_format (gdbarch));
5223
5224 /* This type represents a type that was unrecognized in symbol read-in. */
5225 objfile_type->builtin_error
5226 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5227
5228 /* The following set of types is used for symbols with no
5229 debug information. */
5230 objfile_type->nodebug_text_symbol
5231 = init_type (objfile, TYPE_CODE_FUNC, 1,
5232 "<text variable, no debug info>");
5233 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5234 = objfile_type->builtin_int;
5235 objfile_type->nodebug_text_gnu_ifunc_symbol
5236 = init_type (objfile, TYPE_CODE_FUNC, 1,
5237 "<text gnu-indirect-function variable, no debug info>");
5238 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5239 = objfile_type->nodebug_text_symbol;
5240 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5241 objfile_type->nodebug_got_plt_symbol
5242 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5243 "<text from jump slot in .got.plt, no debug info>",
5244 objfile_type->nodebug_text_symbol);
5245 objfile_type->nodebug_data_symbol
5246 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5247 "<data variable, no debug info>");
5248 objfile_type->nodebug_unknown_symbol
5249 = init_integer_type (objfile, TARGET_CHAR_BIT, 0,
5250 "<variable (not text or data), no debug info>");
5251 objfile_type->nodebug_tls_symbol
5252 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5253 "<thread local variable, no debug info>");
5254
5255 /* NOTE: on some targets, addresses and pointers are not necessarily
5256 the same.
5257
5258 The upshot is:
5259 - gdb's `struct type' always describes the target's
5260 representation.
5261 - gdb's `struct value' objects should always hold values in
5262 target form.
5263 - gdb's CORE_ADDR values are addresses in the unified virtual
5264 address space that the assembler and linker work with. Thus,
5265 since target_read_memory takes a CORE_ADDR as an argument, it
5266 can access any memory on the target, even if the processor has
5267 separate code and data address spaces.
5268
5269 In this context, objfile_type->builtin_core_addr is a bit odd:
5270 it's a target type for a value the target will never see. It's
5271 only used to hold the values of (typeless) linker symbols, which
5272 are indeed in the unified virtual address space. */
5273
5274 objfile_type->builtin_core_addr
5275 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5276 "__CORE_ADDR");
5277
5278 set_objfile_data (objfile, objfile_type_data, objfile_type);
5279 return objfile_type;
5280 }
5281
5282 extern initialize_file_ftype _initialize_gdbtypes;
5283
5284 void
5285 _initialize_gdbtypes (void)
5286 {
5287 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5288 objfile_type_data = register_objfile_data ();
5289
5290 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5291 _("Set debugging of C++ overloading."),
5292 _("Show debugging of C++ overloading."),
5293 _("When enabled, ranking of the "
5294 "functions is displayed."),
5295 NULL,
5296 show_overload_debug,
5297 &setdebuglist, &showdebuglist);
5298
5299 /* Add user knob for controlling resolution of opaque types. */
5300 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5301 &opaque_type_resolution,
5302 _("Set resolution of opaque struct/class/union"
5303 " types (if set before loading symbols)."),
5304 _("Show resolution of opaque struct/class/union"
5305 " types (if set before loading symbols)."),
5306 NULL, NULL,
5307 show_opaque_type_resolution,
5308 &setlist, &showlist);
5309
5310 /* Add an option to permit non-strict type checking. */
5311 add_setshow_boolean_cmd ("type", class_support,
5312 &strict_type_checking,
5313 _("Set strict type checking."),
5314 _("Show strict type checking."),
5315 NULL, NULL,
5316 show_strict_type_checking,
5317 &setchecklist, &showchecklist);
5318 }