]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.c
Change how complex types are created
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
64 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
65 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
66 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
67
68 /* Floatformat pairs. */
69 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72 };
73 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76 };
77 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80 };
81 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84 };
85 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88 };
89 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92 };
93 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96 };
97 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100 };
101 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104 };
105 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108 };
109 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112 };
113 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
116 };
117
118 /* Should opaque types be resolved? */
119
120 static bool opaque_type_resolution = true;
121
122 /* See gdbtypes.h. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static bool strict_type_checking = true;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch,
578 const char *space_identifier)
579 {
580 int type_flags;
581
582 /* Check for known address space delimiters. */
583 if (!strcmp (space_identifier, "code"))
584 return TYPE_INSTANCE_FLAG_CODE_SPACE;
585 else if (!strcmp (space_identifier, "data"))
586 return TYPE_INSTANCE_FLAG_DATA_SPACE;
587 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
588 && gdbarch_address_class_name_to_type_flags (gdbarch,
589 space_identifier,
590 &type_flags))
591 return type_flags;
592 else
593 error (_("Unknown address space specifier: \"%s\""), space_identifier);
594 }
595
596 /* Identify address space identifier by integer flag as defined in
597 gdbtypes.h -- return the string version of the adress space name. */
598
599 const char *
600 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
601 {
602 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
603 return "code";
604 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
605 return "data";
606 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
607 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
608 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
609 else
610 return NULL;
611 }
612
613 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
614
615 If STORAGE is non-NULL, create the new type instance there.
616 STORAGE must be in the same obstack as TYPE. */
617
618 static struct type *
619 make_qualified_type (struct type *type, int new_flags,
620 struct type *storage)
621 {
622 struct type *ntype;
623
624 ntype = type;
625 do
626 {
627 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
628 return ntype;
629 ntype = TYPE_CHAIN (ntype);
630 }
631 while (ntype != type);
632
633 /* Create a new type instance. */
634 if (storage == NULL)
635 ntype = alloc_type_instance (type);
636 else
637 {
638 /* If STORAGE was provided, it had better be in the same objfile
639 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
640 if one objfile is freed and the other kept, we'd have
641 dangling pointers. */
642 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
643
644 ntype = storage;
645 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
646 TYPE_CHAIN (ntype) = ntype;
647 }
648
649 /* Pointers or references to the original type are not relevant to
650 the new type. */
651 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
652 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
653
654 /* Chain the new qualified type to the old type. */
655 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
656 TYPE_CHAIN (type) = ntype;
657
658 /* Now set the instance flags and return the new type. */
659 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
660
661 /* Set length of new type to that of the original type. */
662 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
663
664 return ntype;
665 }
666
667 /* Make an address-space-delimited variant of a type -- a type that
668 is identical to the one supplied except that it has an address
669 space attribute attached to it (such as "code" or "data").
670
671 The space attributes "code" and "data" are for Harvard
672 architectures. The address space attributes are for architectures
673 which have alternately sized pointers or pointers with alternate
674 representations. */
675
676 struct type *
677 make_type_with_address_space (struct type *type, int space_flag)
678 {
679 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
680 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
681 | TYPE_INSTANCE_FLAG_DATA_SPACE
682 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
683 | space_flag);
684
685 return make_qualified_type (type, new_flags, NULL);
686 }
687
688 /* Make a "c-v" variant of a type -- a type that is identical to the
689 one supplied except that it may have const or volatile attributes
690 CNST is a flag for setting the const attribute
691 VOLTL is a flag for setting the volatile attribute
692 TYPE is the base type whose variant we are creating.
693
694 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
695 storage to hold the new qualified type; *TYPEPTR and TYPE must be
696 in the same objfile. Otherwise, allocate fresh memory for the new
697 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
698 new type we construct. */
699
700 struct type *
701 make_cv_type (int cnst, int voltl,
702 struct type *type,
703 struct type **typeptr)
704 {
705 struct type *ntype; /* New type */
706
707 int new_flags = (TYPE_INSTANCE_FLAGS (type)
708 & ~(TYPE_INSTANCE_FLAG_CONST
709 | TYPE_INSTANCE_FLAG_VOLATILE));
710
711 if (cnst)
712 new_flags |= TYPE_INSTANCE_FLAG_CONST;
713
714 if (voltl)
715 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
716
717 if (typeptr && *typeptr != NULL)
718 {
719 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
720 a C-V variant chain that threads across objfiles: if one
721 objfile gets freed, then the other has a broken C-V chain.
722
723 This code used to try to copy over the main type from TYPE to
724 *TYPEPTR if they were in different objfiles, but that's
725 wrong, too: TYPE may have a field list or member function
726 lists, which refer to types of their own, etc. etc. The
727 whole shebang would need to be copied over recursively; you
728 can't have inter-objfile pointers. The only thing to do is
729 to leave stub types as stub types, and look them up afresh by
730 name each time you encounter them. */
731 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
732 }
733
734 ntype = make_qualified_type (type, new_flags,
735 typeptr ? *typeptr : NULL);
736
737 if (typeptr != NULL)
738 *typeptr = ntype;
739
740 return ntype;
741 }
742
743 /* Make a 'restrict'-qualified version of TYPE. */
744
745 struct type *
746 make_restrict_type (struct type *type)
747 {
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 | TYPE_INSTANCE_FLAG_RESTRICT),
751 NULL);
752 }
753
754 /* Make a type without const, volatile, or restrict. */
755
756 struct type *
757 make_unqualified_type (struct type *type)
758 {
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 & ~(TYPE_INSTANCE_FLAG_CONST
762 | TYPE_INSTANCE_FLAG_VOLATILE
763 | TYPE_INSTANCE_FLAG_RESTRICT)),
764 NULL);
765 }
766
767 /* Make a '_Atomic'-qualified version of TYPE. */
768
769 struct type *
770 make_atomic_type (struct type *type)
771 {
772 return make_qualified_type (type,
773 (TYPE_INSTANCE_FLAGS (type)
774 | TYPE_INSTANCE_FLAG_ATOMIC),
775 NULL);
776 }
777
778 /* Replace the contents of ntype with the type *type. This changes the
779 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
780 the changes are propogated to all types in the TYPE_CHAIN.
781
782 In order to build recursive types, it's inevitable that we'll need
783 to update types in place --- but this sort of indiscriminate
784 smashing is ugly, and needs to be replaced with something more
785 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
786 clear if more steps are needed. */
787
788 void
789 replace_type (struct type *ntype, struct type *type)
790 {
791 struct type *chain;
792
793 /* These two types had better be in the same objfile. Otherwise,
794 the assignment of one type's main type structure to the other
795 will produce a type with references to objects (names; field
796 lists; etc.) allocated on an objfile other than its own. */
797 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
798
799 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
800
801 /* The type length is not a part of the main type. Update it for
802 each type on the variant chain. */
803 chain = ntype;
804 do
805 {
806 /* Assert that this element of the chain has no address-class bits
807 set in its flags. Such type variants might have type lengths
808 which are supposed to be different from the non-address-class
809 variants. This assertion shouldn't ever be triggered because
810 symbol readers which do construct address-class variants don't
811 call replace_type(). */
812 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
813
814 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
815 chain = TYPE_CHAIN (chain);
816 }
817 while (ntype != chain);
818
819 /* Assert that the two types have equivalent instance qualifiers.
820 This should be true for at least all of our debug readers. */
821 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
822 }
823
824 /* Implement direct support for MEMBER_TYPE in GNU C++.
825 May need to construct such a type if this is the first use.
826 The TYPE is the type of the member. The DOMAIN is the type
827 of the aggregate that the member belongs to. */
828
829 struct type *
830 lookup_memberptr_type (struct type *type, struct type *domain)
831 {
832 struct type *mtype;
833
834 mtype = alloc_type_copy (type);
835 smash_to_memberptr_type (mtype, domain, type);
836 return mtype;
837 }
838
839 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
840
841 struct type *
842 lookup_methodptr_type (struct type *to_type)
843 {
844 struct type *mtype;
845
846 mtype = alloc_type_copy (to_type);
847 smash_to_methodptr_type (mtype, to_type);
848 return mtype;
849 }
850
851 /* Allocate a stub method whose return type is TYPE. This apparently
852 happens for speed of symbol reading, since parsing out the
853 arguments to the method is cpu-intensive, the way we are doing it.
854 So, we will fill in arguments later. This always returns a fresh
855 type. */
856
857 struct type *
858 allocate_stub_method (struct type *type)
859 {
860 struct type *mtype;
861
862 mtype = alloc_type_copy (type);
863 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
864 TYPE_LENGTH (mtype) = 1;
865 TYPE_STUB (mtype) = 1;
866 TYPE_TARGET_TYPE (mtype) = type;
867 /* TYPE_SELF_TYPE (mtype) = unknown yet */
868 return mtype;
869 }
870
871 /* See gdbtypes.h. */
872
873 bool
874 operator== (const dynamic_prop &l, const dynamic_prop &r)
875 {
876 if (l.kind != r.kind)
877 return false;
878
879 switch (l.kind)
880 {
881 case PROP_UNDEFINED:
882 return true;
883 case PROP_CONST:
884 return l.data.const_val == r.data.const_val;
885 case PROP_ADDR_OFFSET:
886 case PROP_LOCEXPR:
887 case PROP_LOCLIST:
888 return l.data.baton == r.data.baton;
889 }
890
891 gdb_assert_not_reached ("unhandled dynamic_prop kind");
892 }
893
894 /* See gdbtypes.h. */
895
896 bool
897 operator== (const range_bounds &l, const range_bounds &r)
898 {
899 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
900
901 return (FIELD_EQ (low)
902 && FIELD_EQ (high)
903 && FIELD_EQ (flag_upper_bound_is_count)
904 && FIELD_EQ (flag_bound_evaluated)
905 && FIELD_EQ (bias));
906
907 #undef FIELD_EQ
908 }
909
910 /* Create a range type with a dynamic range from LOW_BOUND to
911 HIGH_BOUND, inclusive. See create_range_type for further details. */
912
913 struct type *
914 create_range_type (struct type *result_type, struct type *index_type,
915 const struct dynamic_prop *low_bound,
916 const struct dynamic_prop *high_bound,
917 LONGEST bias)
918 {
919 /* The INDEX_TYPE should be a type capable of holding the upper and lower
920 bounds, as such a zero sized, or void type makes no sense. */
921 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
922 gdb_assert (TYPE_LENGTH (index_type) > 0);
923
924 if (result_type == NULL)
925 result_type = alloc_type_copy (index_type);
926 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
927 TYPE_TARGET_TYPE (result_type) = index_type;
928 if (TYPE_STUB (index_type))
929 TYPE_TARGET_STUB (result_type) = 1;
930 else
931 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
932
933 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
934 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
935 TYPE_RANGE_DATA (result_type)->low = *low_bound;
936 TYPE_RANGE_DATA (result_type)->high = *high_bound;
937 TYPE_RANGE_DATA (result_type)->bias = bias;
938
939 /* Initialize the stride to be a constant, the value will already be zero
940 thanks to the use of TYPE_ZALLOC above. */
941 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
942
943 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
944 TYPE_UNSIGNED (result_type) = 1;
945
946 /* Ada allows the declaration of range types whose upper bound is
947 less than the lower bound, so checking the lower bound is not
948 enough. Make sure we do not mark a range type whose upper bound
949 is negative as unsigned. */
950 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
951 TYPE_UNSIGNED (result_type) = 0;
952
953 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
954 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
955
956 return result_type;
957 }
958
959 /* See gdbtypes.h. */
960
961 struct type *
962 create_range_type_with_stride (struct type *result_type,
963 struct type *index_type,
964 const struct dynamic_prop *low_bound,
965 const struct dynamic_prop *high_bound,
966 LONGEST bias,
967 const struct dynamic_prop *stride,
968 bool byte_stride_p)
969 {
970 result_type = create_range_type (result_type, index_type, low_bound,
971 high_bound, bias);
972
973 gdb_assert (stride != nullptr);
974 TYPE_RANGE_DATA (result_type)->stride = *stride;
975 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
976
977 return result_type;
978 }
979
980
981
982 /* Create a range type using either a blank type supplied in
983 RESULT_TYPE, or creating a new type, inheriting the objfile from
984 INDEX_TYPE.
985
986 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
987 to HIGH_BOUND, inclusive.
988
989 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
990 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
991
992 struct type *
993 create_static_range_type (struct type *result_type, struct type *index_type,
994 LONGEST low_bound, LONGEST high_bound)
995 {
996 struct dynamic_prop low, high;
997
998 low.kind = PROP_CONST;
999 low.data.const_val = low_bound;
1000
1001 high.kind = PROP_CONST;
1002 high.data.const_val = high_bound;
1003
1004 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1005
1006 return result_type;
1007 }
1008
1009 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1010 are static, otherwise returns 0. */
1011
1012 static bool
1013 has_static_range (const struct range_bounds *bounds)
1014 {
1015 /* If the range doesn't have a defined stride then its stride field will
1016 be initialized to the constant 0. */
1017 return (bounds->low.kind == PROP_CONST
1018 && bounds->high.kind == PROP_CONST
1019 && bounds->stride.kind == PROP_CONST);
1020 }
1021
1022
1023 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1024 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1025 bounds will fit in LONGEST), or -1 otherwise. */
1026
1027 int
1028 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1029 {
1030 type = check_typedef (type);
1031 switch (TYPE_CODE (type))
1032 {
1033 case TYPE_CODE_RANGE:
1034 *lowp = TYPE_LOW_BOUND (type);
1035 *highp = TYPE_HIGH_BOUND (type);
1036 return 1;
1037 case TYPE_CODE_ENUM:
1038 if (TYPE_NFIELDS (type) > 0)
1039 {
1040 /* The enums may not be sorted by value, so search all
1041 entries. */
1042 int i;
1043
1044 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1045 for (i = 0; i < TYPE_NFIELDS (type); i++)
1046 {
1047 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1048 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1049 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1050 *highp = TYPE_FIELD_ENUMVAL (type, i);
1051 }
1052
1053 /* Set unsigned indicator if warranted. */
1054 if (*lowp >= 0)
1055 {
1056 TYPE_UNSIGNED (type) = 1;
1057 }
1058 }
1059 else
1060 {
1061 *lowp = 0;
1062 *highp = -1;
1063 }
1064 return 0;
1065 case TYPE_CODE_BOOL:
1066 *lowp = 0;
1067 *highp = 1;
1068 return 0;
1069 case TYPE_CODE_INT:
1070 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1071 return -1;
1072 if (!TYPE_UNSIGNED (type))
1073 {
1074 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1075 *highp = -*lowp - 1;
1076 return 0;
1077 }
1078 /* fall through */
1079 case TYPE_CODE_CHAR:
1080 *lowp = 0;
1081 /* This round-about calculation is to avoid shifting by
1082 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1083 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1084 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1085 *highp = (*highp - 1) | *highp;
1086 return 0;
1087 default:
1088 return -1;
1089 }
1090 }
1091
1092 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1093 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1094 Save the high bound into HIGH_BOUND if not NULL.
1095
1096 Return 1 if the operation was successful. Return zero otherwise,
1097 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1098
1099 We now simply use get_discrete_bounds call to get the values
1100 of the low and high bounds.
1101 get_discrete_bounds can return three values:
1102 1, meaning that index is a range,
1103 0, meaning that index is a discrete type,
1104 or -1 for failure. */
1105
1106 int
1107 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1108 {
1109 struct type *index = TYPE_INDEX_TYPE (type);
1110 LONGEST low = 0;
1111 LONGEST high = 0;
1112 int res;
1113
1114 if (index == NULL)
1115 return 0;
1116
1117 res = get_discrete_bounds (index, &low, &high);
1118 if (res == -1)
1119 return 0;
1120
1121 /* Check if the array bounds are undefined. */
1122 if (res == 1
1123 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1124 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1125 return 0;
1126
1127 if (low_bound)
1128 *low_bound = low;
1129
1130 if (high_bound)
1131 *high_bound = high;
1132
1133 return 1;
1134 }
1135
1136 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1137 representation of a value of this type, save the corresponding
1138 position number in POS.
1139
1140 Its differs from VAL only in the case of enumeration types. In
1141 this case, the position number of the value of the first listed
1142 enumeration literal is zero; the position number of the value of
1143 each subsequent enumeration literal is one more than that of its
1144 predecessor in the list.
1145
1146 Return 1 if the operation was successful. Return zero otherwise,
1147 in which case the value of POS is unmodified.
1148 */
1149
1150 int
1151 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1152 {
1153 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1154 {
1155 int i;
1156
1157 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1158 {
1159 if (val == TYPE_FIELD_ENUMVAL (type, i))
1160 {
1161 *pos = i;
1162 return 1;
1163 }
1164 }
1165 /* Invalid enumeration value. */
1166 return 0;
1167 }
1168 else
1169 {
1170 *pos = val;
1171 return 1;
1172 }
1173 }
1174
1175 /* Create an array type using either a blank type supplied in
1176 RESULT_TYPE, or creating a new type, inheriting the objfile from
1177 RANGE_TYPE.
1178
1179 Elements will be of type ELEMENT_TYPE, the indices will be of type
1180 RANGE_TYPE.
1181
1182 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1183 This byte stride property is added to the resulting array type
1184 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1185 argument can only be used to create types that are objfile-owned
1186 (see add_dyn_prop), meaning that either this function must be called
1187 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1188
1189 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1190 If BIT_STRIDE is not zero, build a packed array type whose element
1191 size is BIT_STRIDE. Otherwise, ignore this parameter.
1192
1193 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1194 sure it is TYPE_CODE_UNDEF before we bash it into an array
1195 type? */
1196
1197 struct type *
1198 create_array_type_with_stride (struct type *result_type,
1199 struct type *element_type,
1200 struct type *range_type,
1201 struct dynamic_prop *byte_stride_prop,
1202 unsigned int bit_stride)
1203 {
1204 if (byte_stride_prop != NULL
1205 && byte_stride_prop->kind == PROP_CONST)
1206 {
1207 /* The byte stride is actually not dynamic. Pretend we were
1208 called with bit_stride set instead of byte_stride_prop.
1209 This will give us the same result type, while avoiding
1210 the need to handle this as a special case. */
1211 bit_stride = byte_stride_prop->data.const_val * 8;
1212 byte_stride_prop = NULL;
1213 }
1214
1215 if (result_type == NULL)
1216 result_type = alloc_type_copy (range_type);
1217
1218 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1219 TYPE_TARGET_TYPE (result_type) = element_type;
1220 if (byte_stride_prop == NULL
1221 && has_static_range (TYPE_RANGE_DATA (range_type))
1222 && (!type_not_associated (result_type)
1223 && !type_not_allocated (result_type)))
1224 {
1225 LONGEST low_bound, high_bound;
1226 int stride;
1227
1228 /* If the array itself doesn't provide a stride value then take
1229 whatever stride the range provides. Don't update BIT_STRIDE as
1230 we don't want to place the stride value from the range into this
1231 arrays bit size field. */
1232 stride = bit_stride;
1233 if (stride == 0)
1234 stride = TYPE_BIT_STRIDE (range_type);
1235
1236 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1237 low_bound = high_bound = 0;
1238 element_type = check_typedef (element_type);
1239 /* Be careful when setting the array length. Ada arrays can be
1240 empty arrays with the high_bound being smaller than the low_bound.
1241 In such cases, the array length should be zero. */
1242 if (high_bound < low_bound)
1243 TYPE_LENGTH (result_type) = 0;
1244 else if (stride != 0)
1245 {
1246 /* Ensure that the type length is always positive, even in the
1247 case where (for example in Fortran) we have a negative
1248 stride. It is possible to have a single element array with a
1249 negative stride in Fortran (this doesn't mean anything
1250 special, it's still just a single element array) so do
1251 consider that case when touching this code. */
1252 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1253 TYPE_LENGTH (result_type)
1254 = ((std::abs (stride) * element_count) + 7) / 8;
1255 }
1256 else
1257 TYPE_LENGTH (result_type) =
1258 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1259 }
1260 else
1261 {
1262 /* This type is dynamic and its length needs to be computed
1263 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1264 undefined by setting it to zero. Although we are not expected
1265 to trust TYPE_LENGTH in this case, setting the size to zero
1266 allows us to avoid allocating objects of random sizes in case
1267 we accidently do. */
1268 TYPE_LENGTH (result_type) = 0;
1269 }
1270
1271 TYPE_NFIELDS (result_type) = 1;
1272 TYPE_FIELDS (result_type) =
1273 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1274 TYPE_INDEX_TYPE (result_type) = range_type;
1275 if (byte_stride_prop != NULL)
1276 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1277 else if (bit_stride > 0)
1278 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1279
1280 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1281 if (TYPE_LENGTH (result_type) == 0)
1282 TYPE_TARGET_STUB (result_type) = 1;
1283
1284 return result_type;
1285 }
1286
1287 /* Same as create_array_type_with_stride but with no bit_stride
1288 (BIT_STRIDE = 0), thus building an unpacked array. */
1289
1290 struct type *
1291 create_array_type (struct type *result_type,
1292 struct type *element_type,
1293 struct type *range_type)
1294 {
1295 return create_array_type_with_stride (result_type, element_type,
1296 range_type, NULL, 0);
1297 }
1298
1299 struct type *
1300 lookup_array_range_type (struct type *element_type,
1301 LONGEST low_bound, LONGEST high_bound)
1302 {
1303 struct type *index_type;
1304 struct type *range_type;
1305
1306 if (TYPE_OBJFILE_OWNED (element_type))
1307 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1308 else
1309 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1310 range_type = create_static_range_type (NULL, index_type,
1311 low_bound, high_bound);
1312
1313 return create_array_type (NULL, element_type, range_type);
1314 }
1315
1316 /* Create a string type using either a blank type supplied in
1317 RESULT_TYPE, or creating a new type. String types are similar
1318 enough to array of char types that we can use create_array_type to
1319 build the basic type and then bash it into a string type.
1320
1321 For fixed length strings, the range type contains 0 as the lower
1322 bound and the length of the string minus one as the upper bound.
1323
1324 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1325 sure it is TYPE_CODE_UNDEF before we bash it into a string
1326 type? */
1327
1328 struct type *
1329 create_string_type (struct type *result_type,
1330 struct type *string_char_type,
1331 struct type *range_type)
1332 {
1333 result_type = create_array_type (result_type,
1334 string_char_type,
1335 range_type);
1336 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1337 return result_type;
1338 }
1339
1340 struct type *
1341 lookup_string_range_type (struct type *string_char_type,
1342 LONGEST low_bound, LONGEST high_bound)
1343 {
1344 struct type *result_type;
1345
1346 result_type = lookup_array_range_type (string_char_type,
1347 low_bound, high_bound);
1348 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1349 return result_type;
1350 }
1351
1352 struct type *
1353 create_set_type (struct type *result_type, struct type *domain_type)
1354 {
1355 if (result_type == NULL)
1356 result_type = alloc_type_copy (domain_type);
1357
1358 TYPE_CODE (result_type) = TYPE_CODE_SET;
1359 TYPE_NFIELDS (result_type) = 1;
1360 TYPE_FIELDS (result_type)
1361 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1362
1363 if (!TYPE_STUB (domain_type))
1364 {
1365 LONGEST low_bound, high_bound, bit_length;
1366
1367 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1368 low_bound = high_bound = 0;
1369 bit_length = high_bound - low_bound + 1;
1370 TYPE_LENGTH (result_type)
1371 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1372 if (low_bound >= 0)
1373 TYPE_UNSIGNED (result_type) = 1;
1374 }
1375 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1376
1377 return result_type;
1378 }
1379
1380 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1381 and any array types nested inside it. */
1382
1383 void
1384 make_vector_type (struct type *array_type)
1385 {
1386 struct type *inner_array, *elt_type;
1387 int flags;
1388
1389 /* Find the innermost array type, in case the array is
1390 multi-dimensional. */
1391 inner_array = array_type;
1392 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1393 inner_array = TYPE_TARGET_TYPE (inner_array);
1394
1395 elt_type = TYPE_TARGET_TYPE (inner_array);
1396 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1397 {
1398 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1399 elt_type = make_qualified_type (elt_type, flags, NULL);
1400 TYPE_TARGET_TYPE (inner_array) = elt_type;
1401 }
1402
1403 TYPE_VECTOR (array_type) = 1;
1404 }
1405
1406 struct type *
1407 init_vector_type (struct type *elt_type, int n)
1408 {
1409 struct type *array_type;
1410
1411 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1412 make_vector_type (array_type);
1413 return array_type;
1414 }
1415
1416 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1417 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1418 confusing. "self" is a common enough replacement for "this".
1419 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1420 TYPE_CODE_METHOD. */
1421
1422 struct type *
1423 internal_type_self_type (struct type *type)
1424 {
1425 switch (TYPE_CODE (type))
1426 {
1427 case TYPE_CODE_METHODPTR:
1428 case TYPE_CODE_MEMBERPTR:
1429 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1430 return NULL;
1431 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1432 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1433 case TYPE_CODE_METHOD:
1434 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1435 return NULL;
1436 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1437 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1438 default:
1439 gdb_assert_not_reached ("bad type");
1440 }
1441 }
1442
1443 /* Set the type of the class that TYPE belongs to.
1444 In c++ this is the class of "this".
1445 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1446 TYPE_CODE_METHOD. */
1447
1448 void
1449 set_type_self_type (struct type *type, struct type *self_type)
1450 {
1451 switch (TYPE_CODE (type))
1452 {
1453 case TYPE_CODE_METHODPTR:
1454 case TYPE_CODE_MEMBERPTR:
1455 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1456 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1457 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1458 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1459 break;
1460 case TYPE_CODE_METHOD:
1461 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1462 INIT_FUNC_SPECIFIC (type);
1463 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1464 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1465 break;
1466 default:
1467 gdb_assert_not_reached ("bad type");
1468 }
1469 }
1470
1471 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1472 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1473 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1474 TYPE doesn't include the offset (that's the value of the MEMBER
1475 itself), but does include the structure type into which it points
1476 (for some reason).
1477
1478 When "smashing" the type, we preserve the objfile that the old type
1479 pointed to, since we aren't changing where the type is actually
1480 allocated. */
1481
1482 void
1483 smash_to_memberptr_type (struct type *type, struct type *self_type,
1484 struct type *to_type)
1485 {
1486 smash_type (type);
1487 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1488 TYPE_TARGET_TYPE (type) = to_type;
1489 set_type_self_type (type, self_type);
1490 /* Assume that a data member pointer is the same size as a normal
1491 pointer. */
1492 TYPE_LENGTH (type)
1493 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1494 }
1495
1496 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1497
1498 When "smashing" the type, we preserve the objfile that the old type
1499 pointed to, since we aren't changing where the type is actually
1500 allocated. */
1501
1502 void
1503 smash_to_methodptr_type (struct type *type, struct type *to_type)
1504 {
1505 smash_type (type);
1506 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1507 TYPE_TARGET_TYPE (type) = to_type;
1508 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1509 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1510 }
1511
1512 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1513 METHOD just means `function that gets an extra "this" argument'.
1514
1515 When "smashing" the type, we preserve the objfile that the old type
1516 pointed to, since we aren't changing where the type is actually
1517 allocated. */
1518
1519 void
1520 smash_to_method_type (struct type *type, struct type *self_type,
1521 struct type *to_type, struct field *args,
1522 int nargs, int varargs)
1523 {
1524 smash_type (type);
1525 TYPE_CODE (type) = TYPE_CODE_METHOD;
1526 TYPE_TARGET_TYPE (type) = to_type;
1527 set_type_self_type (type, self_type);
1528 TYPE_FIELDS (type) = args;
1529 TYPE_NFIELDS (type) = nargs;
1530 if (varargs)
1531 TYPE_VARARGS (type) = 1;
1532 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1533 }
1534
1535 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1536 Since GCC PR debug/47510 DWARF provides associated information to detect the
1537 anonymous class linkage name from its typedef.
1538
1539 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1540 apply it itself. */
1541
1542 const char *
1543 type_name_or_error (struct type *type)
1544 {
1545 struct type *saved_type = type;
1546 const char *name;
1547 struct objfile *objfile;
1548
1549 type = check_typedef (type);
1550
1551 name = TYPE_NAME (type);
1552 if (name != NULL)
1553 return name;
1554
1555 name = TYPE_NAME (saved_type);
1556 objfile = TYPE_OBJFILE (saved_type);
1557 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1558 name ? name : "<anonymous>",
1559 objfile ? objfile_name (objfile) : "<arch>");
1560 }
1561
1562 /* Lookup a typedef or primitive type named NAME, visible in lexical
1563 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1564 suitably defined. */
1565
1566 struct type *
1567 lookup_typename (const struct language_defn *language,
1568 const char *name,
1569 const struct block *block, int noerr)
1570 {
1571 struct symbol *sym;
1572
1573 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1574 language->la_language, NULL).symbol;
1575 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1576 return SYMBOL_TYPE (sym);
1577
1578 if (noerr)
1579 return NULL;
1580 error (_("No type named %s."), name);
1581 }
1582
1583 struct type *
1584 lookup_unsigned_typename (const struct language_defn *language,
1585 const char *name)
1586 {
1587 char *uns = (char *) alloca (strlen (name) + 10);
1588
1589 strcpy (uns, "unsigned ");
1590 strcpy (uns + 9, name);
1591 return lookup_typename (language, uns, NULL, 0);
1592 }
1593
1594 struct type *
1595 lookup_signed_typename (const struct language_defn *language, const char *name)
1596 {
1597 struct type *t;
1598 char *uns = (char *) alloca (strlen (name) + 8);
1599
1600 strcpy (uns, "signed ");
1601 strcpy (uns + 7, name);
1602 t = lookup_typename (language, uns, NULL, 1);
1603 /* If we don't find "signed FOO" just try again with plain "FOO". */
1604 if (t != NULL)
1605 return t;
1606 return lookup_typename (language, name, NULL, 0);
1607 }
1608
1609 /* Lookup a structure type named "struct NAME",
1610 visible in lexical block BLOCK. */
1611
1612 struct type *
1613 lookup_struct (const char *name, const struct block *block)
1614 {
1615 struct symbol *sym;
1616
1617 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1618
1619 if (sym == NULL)
1620 {
1621 error (_("No struct type named %s."), name);
1622 }
1623 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1624 {
1625 error (_("This context has class, union or enum %s, not a struct."),
1626 name);
1627 }
1628 return (SYMBOL_TYPE (sym));
1629 }
1630
1631 /* Lookup a union type named "union NAME",
1632 visible in lexical block BLOCK. */
1633
1634 struct type *
1635 lookup_union (const char *name, const struct block *block)
1636 {
1637 struct symbol *sym;
1638 struct type *t;
1639
1640 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1641
1642 if (sym == NULL)
1643 error (_("No union type named %s."), name);
1644
1645 t = SYMBOL_TYPE (sym);
1646
1647 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1648 return t;
1649
1650 /* If we get here, it's not a union. */
1651 error (_("This context has class, struct or enum %s, not a union."),
1652 name);
1653 }
1654
1655 /* Lookup an enum type named "enum NAME",
1656 visible in lexical block BLOCK. */
1657
1658 struct type *
1659 lookup_enum (const char *name, const struct block *block)
1660 {
1661 struct symbol *sym;
1662
1663 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1664 if (sym == NULL)
1665 {
1666 error (_("No enum type named %s."), name);
1667 }
1668 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1669 {
1670 error (_("This context has class, struct or union %s, not an enum."),
1671 name);
1672 }
1673 return (SYMBOL_TYPE (sym));
1674 }
1675
1676 /* Lookup a template type named "template NAME<TYPE>",
1677 visible in lexical block BLOCK. */
1678
1679 struct type *
1680 lookup_template_type (const char *name, struct type *type,
1681 const struct block *block)
1682 {
1683 struct symbol *sym;
1684 char *nam = (char *)
1685 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1686
1687 strcpy (nam, name);
1688 strcat (nam, "<");
1689 strcat (nam, TYPE_NAME (type));
1690 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1691
1692 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1693
1694 if (sym == NULL)
1695 {
1696 error (_("No template type named %s."), name);
1697 }
1698 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1699 {
1700 error (_("This context has class, union or enum %s, not a struct."),
1701 name);
1702 }
1703 return (SYMBOL_TYPE (sym));
1704 }
1705
1706 /* See gdbtypes.h. */
1707
1708 struct_elt
1709 lookup_struct_elt (struct type *type, const char *name, int noerr)
1710 {
1711 int i;
1712
1713 for (;;)
1714 {
1715 type = check_typedef (type);
1716 if (TYPE_CODE (type) != TYPE_CODE_PTR
1717 && TYPE_CODE (type) != TYPE_CODE_REF)
1718 break;
1719 type = TYPE_TARGET_TYPE (type);
1720 }
1721
1722 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1723 && TYPE_CODE (type) != TYPE_CODE_UNION)
1724 {
1725 std::string type_name = type_to_string (type);
1726 error (_("Type %s is not a structure or union type."),
1727 type_name.c_str ());
1728 }
1729
1730 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1731 {
1732 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1733
1734 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1735 {
1736 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1737 }
1738 else if (!t_field_name || *t_field_name == '\0')
1739 {
1740 struct_elt elt
1741 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1742 if (elt.field != NULL)
1743 {
1744 elt.offset += TYPE_FIELD_BITPOS (type, i);
1745 return elt;
1746 }
1747 }
1748 }
1749
1750 /* OK, it's not in this class. Recursively check the baseclasses. */
1751 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1752 {
1753 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1754 if (elt.field != NULL)
1755 return elt;
1756 }
1757
1758 if (noerr)
1759 return {nullptr, 0};
1760
1761 std::string type_name = type_to_string (type);
1762 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1763 }
1764
1765 /* See gdbtypes.h. */
1766
1767 struct type *
1768 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1769 {
1770 struct_elt elt = lookup_struct_elt (type, name, noerr);
1771 if (elt.field != NULL)
1772 return FIELD_TYPE (*elt.field);
1773 else
1774 return NULL;
1775 }
1776
1777 /* Store in *MAX the largest number representable by unsigned integer type
1778 TYPE. */
1779
1780 void
1781 get_unsigned_type_max (struct type *type, ULONGEST *max)
1782 {
1783 unsigned int n;
1784
1785 type = check_typedef (type);
1786 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1787 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1788
1789 /* Written this way to avoid overflow. */
1790 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1791 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1792 }
1793
1794 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1795 signed integer type TYPE. */
1796
1797 void
1798 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1799 {
1800 unsigned int n;
1801
1802 type = check_typedef (type);
1803 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1804 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1805
1806 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1807 *min = -((ULONGEST) 1 << (n - 1));
1808 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1809 }
1810
1811 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1812 cplus_stuff.vptr_fieldno.
1813
1814 cplus_stuff is initialized to cplus_struct_default which does not
1815 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1816 designated initializers). We cope with that here. */
1817
1818 int
1819 internal_type_vptr_fieldno (struct type *type)
1820 {
1821 type = check_typedef (type);
1822 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1823 || TYPE_CODE (type) == TYPE_CODE_UNION);
1824 if (!HAVE_CPLUS_STRUCT (type))
1825 return -1;
1826 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1827 }
1828
1829 /* Set the value of cplus_stuff.vptr_fieldno. */
1830
1831 void
1832 set_type_vptr_fieldno (struct type *type, int fieldno)
1833 {
1834 type = check_typedef (type);
1835 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1836 || TYPE_CODE (type) == TYPE_CODE_UNION);
1837 if (!HAVE_CPLUS_STRUCT (type))
1838 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1839 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1840 }
1841
1842 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1843 cplus_stuff.vptr_basetype. */
1844
1845 struct type *
1846 internal_type_vptr_basetype (struct type *type)
1847 {
1848 type = check_typedef (type);
1849 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1850 || TYPE_CODE (type) == TYPE_CODE_UNION);
1851 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1852 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1853 }
1854
1855 /* Set the value of cplus_stuff.vptr_basetype. */
1856
1857 void
1858 set_type_vptr_basetype (struct type *type, struct type *basetype)
1859 {
1860 type = check_typedef (type);
1861 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1862 || TYPE_CODE (type) == TYPE_CODE_UNION);
1863 if (!HAVE_CPLUS_STRUCT (type))
1864 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1865 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1866 }
1867
1868 /* Lookup the vptr basetype/fieldno values for TYPE.
1869 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1870 vptr_fieldno. Also, if found and basetype is from the same objfile,
1871 cache the results.
1872 If not found, return -1 and ignore BASETYPEP.
1873 Callers should be aware that in some cases (for example,
1874 the type or one of its baseclasses is a stub type and we are
1875 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1876 this function will not be able to find the
1877 virtual function table pointer, and vptr_fieldno will remain -1 and
1878 vptr_basetype will remain NULL or incomplete. */
1879
1880 int
1881 get_vptr_fieldno (struct type *type, struct type **basetypep)
1882 {
1883 type = check_typedef (type);
1884
1885 if (TYPE_VPTR_FIELDNO (type) < 0)
1886 {
1887 int i;
1888
1889 /* We must start at zero in case the first (and only) baseclass
1890 is virtual (and hence we cannot share the table pointer). */
1891 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1892 {
1893 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1894 int fieldno;
1895 struct type *basetype;
1896
1897 fieldno = get_vptr_fieldno (baseclass, &basetype);
1898 if (fieldno >= 0)
1899 {
1900 /* If the type comes from a different objfile we can't cache
1901 it, it may have a different lifetime. PR 2384 */
1902 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1903 {
1904 set_type_vptr_fieldno (type, fieldno);
1905 set_type_vptr_basetype (type, basetype);
1906 }
1907 if (basetypep)
1908 *basetypep = basetype;
1909 return fieldno;
1910 }
1911 }
1912
1913 /* Not found. */
1914 return -1;
1915 }
1916 else
1917 {
1918 if (basetypep)
1919 *basetypep = TYPE_VPTR_BASETYPE (type);
1920 return TYPE_VPTR_FIELDNO (type);
1921 }
1922 }
1923
1924 static void
1925 stub_noname_complaint (void)
1926 {
1927 complaint (_("stub type has NULL name"));
1928 }
1929
1930 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1931 attached to it, and that property has a non-constant value. */
1932
1933 static int
1934 array_type_has_dynamic_stride (struct type *type)
1935 {
1936 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1937
1938 return (prop != NULL && prop->kind != PROP_CONST);
1939 }
1940
1941 /* Worker for is_dynamic_type. */
1942
1943 static int
1944 is_dynamic_type_internal (struct type *type, int top_level)
1945 {
1946 type = check_typedef (type);
1947
1948 /* We only want to recognize references at the outermost level. */
1949 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1950 type = check_typedef (TYPE_TARGET_TYPE (type));
1951
1952 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1953 dynamic, even if the type itself is statically defined.
1954 From a user's point of view, this may appear counter-intuitive;
1955 but it makes sense in this context, because the point is to determine
1956 whether any part of the type needs to be resolved before it can
1957 be exploited. */
1958 if (TYPE_DATA_LOCATION (type) != NULL
1959 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1960 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1961 return 1;
1962
1963 if (TYPE_ASSOCIATED_PROP (type))
1964 return 1;
1965
1966 if (TYPE_ALLOCATED_PROP (type))
1967 return 1;
1968
1969 switch (TYPE_CODE (type))
1970 {
1971 case TYPE_CODE_RANGE:
1972 {
1973 /* A range type is obviously dynamic if it has at least one
1974 dynamic bound. But also consider the range type to be
1975 dynamic when its subtype is dynamic, even if the bounds
1976 of the range type are static. It allows us to assume that
1977 the subtype of a static range type is also static. */
1978 return (!has_static_range (TYPE_RANGE_DATA (type))
1979 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1980 }
1981
1982 case TYPE_CODE_STRING:
1983 /* Strings are very much like an array of characters, and can be
1984 treated as one here. */
1985 case TYPE_CODE_ARRAY:
1986 {
1987 gdb_assert (TYPE_NFIELDS (type) == 1);
1988
1989 /* The array is dynamic if either the bounds are dynamic... */
1990 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1991 return 1;
1992 /* ... or the elements it contains have a dynamic contents... */
1993 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1994 return 1;
1995 /* ... or if it has a dynamic stride... */
1996 if (array_type_has_dynamic_stride (type))
1997 return 1;
1998 return 0;
1999 }
2000
2001 case TYPE_CODE_STRUCT:
2002 case TYPE_CODE_UNION:
2003 {
2004 int i;
2005
2006 for (i = 0; i < TYPE_NFIELDS (type); ++i)
2007 if (!field_is_static (&TYPE_FIELD (type, i))
2008 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
2009 return 1;
2010 }
2011 break;
2012 }
2013
2014 return 0;
2015 }
2016
2017 /* See gdbtypes.h. */
2018
2019 int
2020 is_dynamic_type (struct type *type)
2021 {
2022 return is_dynamic_type_internal (type, 1);
2023 }
2024
2025 static struct type *resolve_dynamic_type_internal
2026 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2027
2028 /* Given a dynamic range type (dyn_range_type) and a stack of
2029 struct property_addr_info elements, return a static version
2030 of that type. */
2031
2032 static struct type *
2033 resolve_dynamic_range (struct type *dyn_range_type,
2034 struct property_addr_info *addr_stack)
2035 {
2036 CORE_ADDR value;
2037 struct type *static_range_type, *static_target_type;
2038 const struct dynamic_prop *prop;
2039 struct dynamic_prop low_bound, high_bound, stride;
2040
2041 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2042
2043 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2044 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2045 {
2046 low_bound.kind = PROP_CONST;
2047 low_bound.data.const_val = value;
2048 }
2049 else
2050 {
2051 low_bound.kind = PROP_UNDEFINED;
2052 low_bound.data.const_val = 0;
2053 }
2054
2055 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2056 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2057 {
2058 high_bound.kind = PROP_CONST;
2059 high_bound.data.const_val = value;
2060
2061 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2062 high_bound.data.const_val
2063 = low_bound.data.const_val + high_bound.data.const_val - 1;
2064 }
2065 else
2066 {
2067 high_bound.kind = PROP_UNDEFINED;
2068 high_bound.data.const_val = 0;
2069 }
2070
2071 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2072 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2073 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2074 {
2075 stride.kind = PROP_CONST;
2076 stride.data.const_val = value;
2077
2078 /* If we have a bit stride that is not an exact number of bytes then
2079 I really don't think this is going to work with current GDB, the
2080 array indexing code in GDB seems to be pretty heavily tied to byte
2081 offsets right now. Assuming 8 bits in a byte. */
2082 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2083 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2084 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2085 error (_("bit strides that are not a multiple of the byte size "
2086 "are currently not supported"));
2087 }
2088 else
2089 {
2090 stride.kind = PROP_UNDEFINED;
2091 stride.data.const_val = 0;
2092 byte_stride_p = true;
2093 }
2094
2095 static_target_type
2096 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2097 addr_stack, 0);
2098 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2099 static_range_type = create_range_type_with_stride
2100 (copy_type (dyn_range_type), static_target_type,
2101 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2102 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2103 return static_range_type;
2104 }
2105
2106 /* Resolves dynamic bound values of an array or string type TYPE to static
2107 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2108 needed during the dynamic resolution. */
2109
2110 static struct type *
2111 resolve_dynamic_array_or_string (struct type *type,
2112 struct property_addr_info *addr_stack)
2113 {
2114 CORE_ADDR value;
2115 struct type *elt_type;
2116 struct type *range_type;
2117 struct type *ary_dim;
2118 struct dynamic_prop *prop;
2119 unsigned int bit_stride = 0;
2120
2121 /* For dynamic type resolution strings can be treated like arrays of
2122 characters. */
2123 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2124 || TYPE_CODE (type) == TYPE_CODE_STRING);
2125
2126 type = copy_type (type);
2127
2128 elt_type = type;
2129 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2130 range_type = resolve_dynamic_range (range_type, addr_stack);
2131
2132 /* Resolve allocated/associated here before creating a new array type, which
2133 will update the length of the array accordingly. */
2134 prop = TYPE_ALLOCATED_PROP (type);
2135 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2136 {
2137 TYPE_DYN_PROP_ADDR (prop) = value;
2138 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2139 }
2140 prop = TYPE_ASSOCIATED_PROP (type);
2141 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2142 {
2143 TYPE_DYN_PROP_ADDR (prop) = value;
2144 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2145 }
2146
2147 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2148
2149 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2150 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2151 else
2152 elt_type = TYPE_TARGET_TYPE (type);
2153
2154 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2155 if (prop != NULL)
2156 {
2157 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2158 {
2159 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2160 bit_stride = (unsigned int) (value * 8);
2161 }
2162 else
2163 {
2164 /* Could be a bug in our code, but it could also happen
2165 if the DWARF info is not correct. Issue a warning,
2166 and assume no byte/bit stride (leave bit_stride = 0). */
2167 warning (_("cannot determine array stride for type %s"),
2168 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2169 }
2170 }
2171 else
2172 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2173
2174 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2175 bit_stride);
2176 }
2177
2178 /* Resolve dynamic bounds of members of the union TYPE to static
2179 bounds. ADDR_STACK is a stack of struct property_addr_info
2180 to be used if needed during the dynamic resolution. */
2181
2182 static struct type *
2183 resolve_dynamic_union (struct type *type,
2184 struct property_addr_info *addr_stack)
2185 {
2186 struct type *resolved_type;
2187 int i;
2188 unsigned int max_len = 0;
2189
2190 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2191
2192 resolved_type = copy_type (type);
2193 TYPE_FIELDS (resolved_type)
2194 = (struct field *) TYPE_ALLOC (resolved_type,
2195 TYPE_NFIELDS (resolved_type)
2196 * sizeof (struct field));
2197 memcpy (TYPE_FIELDS (resolved_type),
2198 TYPE_FIELDS (type),
2199 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2200 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2201 {
2202 struct type *t;
2203
2204 if (field_is_static (&TYPE_FIELD (type, i)))
2205 continue;
2206
2207 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2208 addr_stack, 0);
2209 TYPE_FIELD_TYPE (resolved_type, i) = t;
2210 if (TYPE_LENGTH (t) > max_len)
2211 max_len = TYPE_LENGTH (t);
2212 }
2213
2214 TYPE_LENGTH (resolved_type) = max_len;
2215 return resolved_type;
2216 }
2217
2218 /* Resolve dynamic bounds of members of the struct TYPE to static
2219 bounds. ADDR_STACK is a stack of struct property_addr_info to
2220 be used if needed during the dynamic resolution. */
2221
2222 static struct type *
2223 resolve_dynamic_struct (struct type *type,
2224 struct property_addr_info *addr_stack)
2225 {
2226 struct type *resolved_type;
2227 int i;
2228 unsigned resolved_type_bit_length = 0;
2229
2230 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2231 gdb_assert (TYPE_NFIELDS (type) > 0);
2232
2233 resolved_type = copy_type (type);
2234 TYPE_FIELDS (resolved_type)
2235 = (struct field *) TYPE_ALLOC (resolved_type,
2236 TYPE_NFIELDS (resolved_type)
2237 * sizeof (struct field));
2238 memcpy (TYPE_FIELDS (resolved_type),
2239 TYPE_FIELDS (type),
2240 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2241 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2242 {
2243 unsigned new_bit_length;
2244 struct property_addr_info pinfo;
2245
2246 if (field_is_static (&TYPE_FIELD (type, i)))
2247 continue;
2248
2249 /* As we know this field is not a static field, the field's
2250 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2251 this is the case, but only trigger a simple error rather
2252 than an internal error if that fails. While failing
2253 that verification indicates a bug in our code, the error
2254 is not severe enough to suggest to the user he stops
2255 his debugging session because of it. */
2256 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2257 error (_("Cannot determine struct field location"
2258 " (invalid location kind)"));
2259
2260 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2261 pinfo.valaddr = addr_stack->valaddr;
2262 pinfo.addr
2263 = (addr_stack->addr
2264 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2265 pinfo.next = addr_stack;
2266
2267 TYPE_FIELD_TYPE (resolved_type, i)
2268 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2269 &pinfo, 0);
2270 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2271 == FIELD_LOC_KIND_BITPOS);
2272
2273 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2274 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2275 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2276 else
2277 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2278 * TARGET_CHAR_BIT);
2279
2280 /* Normally, we would use the position and size of the last field
2281 to determine the size of the enclosing structure. But GCC seems
2282 to be encoding the position of some fields incorrectly when
2283 the struct contains a dynamic field that is not placed last.
2284 So we compute the struct size based on the field that has
2285 the highest position + size - probably the best we can do. */
2286 if (new_bit_length > resolved_type_bit_length)
2287 resolved_type_bit_length = new_bit_length;
2288 }
2289
2290 /* The length of a type won't change for fortran, but it does for C and Ada.
2291 For fortran the size of dynamic fields might change over time but not the
2292 type length of the structure. If we adapt it, we run into problems
2293 when calculating the element offset for arrays of structs. */
2294 if (current_language->la_language != language_fortran)
2295 TYPE_LENGTH (resolved_type)
2296 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2297
2298 /* The Ada language uses this field as a cache for static fixed types: reset
2299 it as RESOLVED_TYPE must have its own static fixed type. */
2300 TYPE_TARGET_TYPE (resolved_type) = NULL;
2301
2302 return resolved_type;
2303 }
2304
2305 /* Worker for resolved_dynamic_type. */
2306
2307 static struct type *
2308 resolve_dynamic_type_internal (struct type *type,
2309 struct property_addr_info *addr_stack,
2310 int top_level)
2311 {
2312 struct type *real_type = check_typedef (type);
2313 struct type *resolved_type = type;
2314 struct dynamic_prop *prop;
2315 CORE_ADDR value;
2316
2317 if (!is_dynamic_type_internal (real_type, top_level))
2318 return type;
2319
2320 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2321 {
2322 resolved_type = copy_type (type);
2323 TYPE_TARGET_TYPE (resolved_type)
2324 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2325 top_level);
2326 }
2327 else
2328 {
2329 /* Before trying to resolve TYPE, make sure it is not a stub. */
2330 type = real_type;
2331
2332 switch (TYPE_CODE (type))
2333 {
2334 case TYPE_CODE_REF:
2335 {
2336 struct property_addr_info pinfo;
2337
2338 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2339 pinfo.valaddr = NULL;
2340 if (addr_stack->valaddr != NULL)
2341 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2342 else
2343 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2344 pinfo.next = addr_stack;
2345
2346 resolved_type = copy_type (type);
2347 TYPE_TARGET_TYPE (resolved_type)
2348 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2349 &pinfo, top_level);
2350 break;
2351 }
2352
2353 case TYPE_CODE_STRING:
2354 /* Strings are very much like an array of characters, and can be
2355 treated as one here. */
2356 case TYPE_CODE_ARRAY:
2357 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2358 break;
2359
2360 case TYPE_CODE_RANGE:
2361 resolved_type = resolve_dynamic_range (type, addr_stack);
2362 break;
2363
2364 case TYPE_CODE_UNION:
2365 resolved_type = resolve_dynamic_union (type, addr_stack);
2366 break;
2367
2368 case TYPE_CODE_STRUCT:
2369 resolved_type = resolve_dynamic_struct (type, addr_stack);
2370 break;
2371 }
2372 }
2373
2374 /* Resolve data_location attribute. */
2375 prop = TYPE_DATA_LOCATION (resolved_type);
2376 if (prop != NULL
2377 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2378 {
2379 TYPE_DYN_PROP_ADDR (prop) = value;
2380 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2381 }
2382
2383 return resolved_type;
2384 }
2385
2386 /* See gdbtypes.h */
2387
2388 struct type *
2389 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2390 CORE_ADDR addr)
2391 {
2392 struct property_addr_info pinfo
2393 = {check_typedef (type), valaddr, addr, NULL};
2394
2395 return resolve_dynamic_type_internal (type, &pinfo, 1);
2396 }
2397
2398 /* See gdbtypes.h */
2399
2400 struct dynamic_prop *
2401 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2402 {
2403 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2404
2405 while (node != NULL)
2406 {
2407 if (node->prop_kind == prop_kind)
2408 return &node->prop;
2409 node = node->next;
2410 }
2411 return NULL;
2412 }
2413
2414 /* See gdbtypes.h */
2415
2416 void
2417 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2418 struct type *type)
2419 {
2420 struct dynamic_prop_list *temp;
2421
2422 gdb_assert (TYPE_OBJFILE_OWNED (type));
2423
2424 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2425 struct dynamic_prop_list);
2426 temp->prop_kind = prop_kind;
2427 temp->prop = prop;
2428 temp->next = TYPE_DYN_PROP_LIST (type);
2429
2430 TYPE_DYN_PROP_LIST (type) = temp;
2431 }
2432
2433 /* Remove dynamic property from TYPE in case it exists. */
2434
2435 void
2436 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2437 struct type *type)
2438 {
2439 struct dynamic_prop_list *prev_node, *curr_node;
2440
2441 curr_node = TYPE_DYN_PROP_LIST (type);
2442 prev_node = NULL;
2443
2444 while (NULL != curr_node)
2445 {
2446 if (curr_node->prop_kind == prop_kind)
2447 {
2448 /* Update the linked list but don't free anything.
2449 The property was allocated on objstack and it is not known
2450 if we are on top of it. Nevertheless, everything is released
2451 when the complete objstack is freed. */
2452 if (NULL == prev_node)
2453 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2454 else
2455 prev_node->next = curr_node->next;
2456
2457 return;
2458 }
2459
2460 prev_node = curr_node;
2461 curr_node = curr_node->next;
2462 }
2463 }
2464
2465 /* Find the real type of TYPE. This function returns the real type,
2466 after removing all layers of typedefs, and completing opaque or stub
2467 types. Completion changes the TYPE argument, but stripping of
2468 typedefs does not.
2469
2470 Instance flags (e.g. const/volatile) are preserved as typedefs are
2471 stripped. If necessary a new qualified form of the underlying type
2472 is created.
2473
2474 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2475 not been computed and we're either in the middle of reading symbols, or
2476 there was no name for the typedef in the debug info.
2477
2478 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2479 QUITs in the symbol reading code can also throw.
2480 Thus this function can throw an exception.
2481
2482 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2483 the target type.
2484
2485 If this is a stubbed struct (i.e. declared as struct foo *), see if
2486 we can find a full definition in some other file. If so, copy this
2487 definition, so we can use it in future. There used to be a comment
2488 (but not any code) that if we don't find a full definition, we'd
2489 set a flag so we don't spend time in the future checking the same
2490 type. That would be a mistake, though--we might load in more
2491 symbols which contain a full definition for the type. */
2492
2493 struct type *
2494 check_typedef (struct type *type)
2495 {
2496 struct type *orig_type = type;
2497 /* While we're removing typedefs, we don't want to lose qualifiers.
2498 E.g., const/volatile. */
2499 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2500
2501 gdb_assert (type);
2502
2503 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2504 {
2505 if (!TYPE_TARGET_TYPE (type))
2506 {
2507 const char *name;
2508 struct symbol *sym;
2509
2510 /* It is dangerous to call lookup_symbol if we are currently
2511 reading a symtab. Infinite recursion is one danger. */
2512 if (currently_reading_symtab)
2513 return make_qualified_type (type, instance_flags, NULL);
2514
2515 name = TYPE_NAME (type);
2516 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2517 VAR_DOMAIN as appropriate? */
2518 if (name == NULL)
2519 {
2520 stub_noname_complaint ();
2521 return make_qualified_type (type, instance_flags, NULL);
2522 }
2523 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2524 if (sym)
2525 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2526 else /* TYPE_CODE_UNDEF */
2527 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2528 }
2529 type = TYPE_TARGET_TYPE (type);
2530
2531 /* Preserve the instance flags as we traverse down the typedef chain.
2532
2533 Handling address spaces/classes is nasty, what do we do if there's a
2534 conflict?
2535 E.g., what if an outer typedef marks the type as class_1 and an inner
2536 typedef marks the type as class_2?
2537 This is the wrong place to do such error checking. We leave it to
2538 the code that created the typedef in the first place to flag the
2539 error. We just pick the outer address space (akin to letting the
2540 outer cast in a chain of casting win), instead of assuming
2541 "it can't happen". */
2542 {
2543 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2544 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2545 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2546 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2547
2548 /* Treat code vs data spaces and address classes separately. */
2549 if ((instance_flags & ALL_SPACES) != 0)
2550 new_instance_flags &= ~ALL_SPACES;
2551 if ((instance_flags & ALL_CLASSES) != 0)
2552 new_instance_flags &= ~ALL_CLASSES;
2553
2554 instance_flags |= new_instance_flags;
2555 }
2556 }
2557
2558 /* If this is a struct/class/union with no fields, then check
2559 whether a full definition exists somewhere else. This is for
2560 systems where a type definition with no fields is issued for such
2561 types, instead of identifying them as stub types in the first
2562 place. */
2563
2564 if (TYPE_IS_OPAQUE (type)
2565 && opaque_type_resolution
2566 && !currently_reading_symtab)
2567 {
2568 const char *name = TYPE_NAME (type);
2569 struct type *newtype;
2570
2571 if (name == NULL)
2572 {
2573 stub_noname_complaint ();
2574 return make_qualified_type (type, instance_flags, NULL);
2575 }
2576 newtype = lookup_transparent_type (name);
2577
2578 if (newtype)
2579 {
2580 /* If the resolved type and the stub are in the same
2581 objfile, then replace the stub type with the real deal.
2582 But if they're in separate objfiles, leave the stub
2583 alone; we'll just look up the transparent type every time
2584 we call check_typedef. We can't create pointers between
2585 types allocated to different objfiles, since they may
2586 have different lifetimes. Trying to copy NEWTYPE over to
2587 TYPE's objfile is pointless, too, since you'll have to
2588 move over any other types NEWTYPE refers to, which could
2589 be an unbounded amount of stuff. */
2590 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2591 type = make_qualified_type (newtype,
2592 TYPE_INSTANCE_FLAGS (type),
2593 type);
2594 else
2595 type = newtype;
2596 }
2597 }
2598 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2599 types. */
2600 else if (TYPE_STUB (type) && !currently_reading_symtab)
2601 {
2602 const char *name = TYPE_NAME (type);
2603 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2604 as appropriate? */
2605 struct symbol *sym;
2606
2607 if (name == NULL)
2608 {
2609 stub_noname_complaint ();
2610 return make_qualified_type (type, instance_flags, NULL);
2611 }
2612 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2613 if (sym)
2614 {
2615 /* Same as above for opaque types, we can replace the stub
2616 with the complete type only if they are in the same
2617 objfile. */
2618 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2619 type = make_qualified_type (SYMBOL_TYPE (sym),
2620 TYPE_INSTANCE_FLAGS (type),
2621 type);
2622 else
2623 type = SYMBOL_TYPE (sym);
2624 }
2625 }
2626
2627 if (TYPE_TARGET_STUB (type))
2628 {
2629 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2630
2631 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2632 {
2633 /* Nothing we can do. */
2634 }
2635 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2636 {
2637 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2638 TYPE_TARGET_STUB (type) = 0;
2639 }
2640 }
2641
2642 type = make_qualified_type (type, instance_flags, NULL);
2643
2644 /* Cache TYPE_LENGTH for future use. */
2645 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2646
2647 return type;
2648 }
2649
2650 /* Parse a type expression in the string [P..P+LENGTH). If an error
2651 occurs, silently return a void type. */
2652
2653 static struct type *
2654 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2655 {
2656 struct ui_file *saved_gdb_stderr;
2657 struct type *type = NULL; /* Initialize to keep gcc happy. */
2658
2659 /* Suppress error messages. */
2660 saved_gdb_stderr = gdb_stderr;
2661 gdb_stderr = &null_stream;
2662
2663 /* Call parse_and_eval_type() without fear of longjmp()s. */
2664 try
2665 {
2666 type = parse_and_eval_type (p, length);
2667 }
2668 catch (const gdb_exception_error &except)
2669 {
2670 type = builtin_type (gdbarch)->builtin_void;
2671 }
2672
2673 /* Stop suppressing error messages. */
2674 gdb_stderr = saved_gdb_stderr;
2675
2676 return type;
2677 }
2678
2679 /* Ugly hack to convert method stubs into method types.
2680
2681 He ain't kiddin'. This demangles the name of the method into a
2682 string including argument types, parses out each argument type,
2683 generates a string casting a zero to that type, evaluates the
2684 string, and stuffs the resulting type into an argtype vector!!!
2685 Then it knows the type of the whole function (including argument
2686 types for overloading), which info used to be in the stab's but was
2687 removed to hack back the space required for them. */
2688
2689 static void
2690 check_stub_method (struct type *type, int method_id, int signature_id)
2691 {
2692 struct gdbarch *gdbarch = get_type_arch (type);
2693 struct fn_field *f;
2694 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2695 char *demangled_name = gdb_demangle (mangled_name,
2696 DMGL_PARAMS | DMGL_ANSI);
2697 char *argtypetext, *p;
2698 int depth = 0, argcount = 1;
2699 struct field *argtypes;
2700 struct type *mtype;
2701
2702 /* Make sure we got back a function string that we can use. */
2703 if (demangled_name)
2704 p = strchr (demangled_name, '(');
2705 else
2706 p = NULL;
2707
2708 if (demangled_name == NULL || p == NULL)
2709 error (_("Internal: Cannot demangle mangled name `%s'."),
2710 mangled_name);
2711
2712 /* Now, read in the parameters that define this type. */
2713 p += 1;
2714 argtypetext = p;
2715 while (*p)
2716 {
2717 if (*p == '(' || *p == '<')
2718 {
2719 depth += 1;
2720 }
2721 else if (*p == ')' || *p == '>')
2722 {
2723 depth -= 1;
2724 }
2725 else if (*p == ',' && depth == 0)
2726 {
2727 argcount += 1;
2728 }
2729
2730 p += 1;
2731 }
2732
2733 /* If we read one argument and it was ``void'', don't count it. */
2734 if (startswith (argtypetext, "(void)"))
2735 argcount -= 1;
2736
2737 /* We need one extra slot, for the THIS pointer. */
2738
2739 argtypes = (struct field *)
2740 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2741 p = argtypetext;
2742
2743 /* Add THIS pointer for non-static methods. */
2744 f = TYPE_FN_FIELDLIST1 (type, method_id);
2745 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2746 argcount = 0;
2747 else
2748 {
2749 argtypes[0].type = lookup_pointer_type (type);
2750 argcount = 1;
2751 }
2752
2753 if (*p != ')') /* () means no args, skip while. */
2754 {
2755 depth = 0;
2756 while (*p)
2757 {
2758 if (depth <= 0 && (*p == ',' || *p == ')'))
2759 {
2760 /* Avoid parsing of ellipsis, they will be handled below.
2761 Also avoid ``void'' as above. */
2762 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2763 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2764 {
2765 argtypes[argcount].type =
2766 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2767 argcount += 1;
2768 }
2769 argtypetext = p + 1;
2770 }
2771
2772 if (*p == '(' || *p == '<')
2773 {
2774 depth += 1;
2775 }
2776 else if (*p == ')' || *p == '>')
2777 {
2778 depth -= 1;
2779 }
2780
2781 p += 1;
2782 }
2783 }
2784
2785 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2786
2787 /* Now update the old "stub" type into a real type. */
2788 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2789 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2790 We want a method (TYPE_CODE_METHOD). */
2791 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2792 argtypes, argcount, p[-2] == '.');
2793 TYPE_STUB (mtype) = 0;
2794 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2795
2796 xfree (demangled_name);
2797 }
2798
2799 /* This is the external interface to check_stub_method, above. This
2800 function unstubs all of the signatures for TYPE's METHOD_ID method
2801 name. After calling this function TYPE_FN_FIELD_STUB will be
2802 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2803 correct.
2804
2805 This function unfortunately can not die until stabs do. */
2806
2807 void
2808 check_stub_method_group (struct type *type, int method_id)
2809 {
2810 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2811 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2812
2813 for (int j = 0; j < len; j++)
2814 {
2815 if (TYPE_FN_FIELD_STUB (f, j))
2816 check_stub_method (type, method_id, j);
2817 }
2818 }
2819
2820 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
2821 const struct cplus_struct_type cplus_struct_default = { };
2822
2823 void
2824 allocate_cplus_struct_type (struct type *type)
2825 {
2826 if (HAVE_CPLUS_STRUCT (type))
2827 /* Structure was already allocated. Nothing more to do. */
2828 return;
2829
2830 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2831 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2832 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2833 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2834 set_type_vptr_fieldno (type, -1);
2835 }
2836
2837 const struct gnat_aux_type gnat_aux_default =
2838 { NULL };
2839
2840 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2841 and allocate the associated gnat-specific data. The gnat-specific
2842 data is also initialized to gnat_aux_default. */
2843
2844 void
2845 allocate_gnat_aux_type (struct type *type)
2846 {
2847 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2848 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2849 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2850 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2851 }
2852
2853 /* Helper function to initialize a newly allocated type. Set type code
2854 to CODE and initialize the type-specific fields accordingly. */
2855
2856 static void
2857 set_type_code (struct type *type, enum type_code code)
2858 {
2859 TYPE_CODE (type) = code;
2860
2861 switch (code)
2862 {
2863 case TYPE_CODE_STRUCT:
2864 case TYPE_CODE_UNION:
2865 case TYPE_CODE_NAMESPACE:
2866 INIT_CPLUS_SPECIFIC (type);
2867 break;
2868 case TYPE_CODE_FLT:
2869 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2870 break;
2871 case TYPE_CODE_FUNC:
2872 INIT_FUNC_SPECIFIC (type);
2873 break;
2874 }
2875 }
2876
2877 /* Helper function to verify floating-point format and size.
2878 BIT is the type size in bits; if BIT equals -1, the size is
2879 determined by the floatformat. Returns size to be used. */
2880
2881 static int
2882 verify_floatformat (int bit, const struct floatformat *floatformat)
2883 {
2884 gdb_assert (floatformat != NULL);
2885
2886 if (bit == -1)
2887 bit = floatformat->totalsize;
2888
2889 gdb_assert (bit >= 0);
2890 gdb_assert (bit >= floatformat->totalsize);
2891
2892 return bit;
2893 }
2894
2895 /* Return the floating-point format for a floating-point variable of
2896 type TYPE. */
2897
2898 const struct floatformat *
2899 floatformat_from_type (const struct type *type)
2900 {
2901 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2902 gdb_assert (TYPE_FLOATFORMAT (type));
2903 return TYPE_FLOATFORMAT (type);
2904 }
2905
2906 /* Helper function to initialize the standard scalar types.
2907
2908 If NAME is non-NULL, then it is used to initialize the type name.
2909 Note that NAME is not copied; it is required to have a lifetime at
2910 least as long as OBJFILE. */
2911
2912 struct type *
2913 init_type (struct objfile *objfile, enum type_code code, int bit,
2914 const char *name)
2915 {
2916 struct type *type;
2917
2918 type = alloc_type (objfile);
2919 set_type_code (type, code);
2920 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2921 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2922 TYPE_NAME (type) = name;
2923
2924 return type;
2925 }
2926
2927 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2928 to use with variables that have no debug info. NAME is the type
2929 name. */
2930
2931 static struct type *
2932 init_nodebug_var_type (struct objfile *objfile, const char *name)
2933 {
2934 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2935 }
2936
2937 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2938 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2939 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2940
2941 struct type *
2942 init_integer_type (struct objfile *objfile,
2943 int bit, int unsigned_p, const char *name)
2944 {
2945 struct type *t;
2946
2947 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2948 if (unsigned_p)
2949 TYPE_UNSIGNED (t) = 1;
2950
2951 return t;
2952 }
2953
2954 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2955 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2956 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2957
2958 struct type *
2959 init_character_type (struct objfile *objfile,
2960 int bit, int unsigned_p, const char *name)
2961 {
2962 struct type *t;
2963
2964 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2965 if (unsigned_p)
2966 TYPE_UNSIGNED (t) = 1;
2967
2968 return t;
2969 }
2970
2971 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2972 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2973 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2974
2975 struct type *
2976 init_boolean_type (struct objfile *objfile,
2977 int bit, int unsigned_p, const char *name)
2978 {
2979 struct type *t;
2980
2981 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2982 if (unsigned_p)
2983 TYPE_UNSIGNED (t) = 1;
2984
2985 return t;
2986 }
2987
2988 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2989 BIT is the type size in bits; if BIT equals -1, the size is
2990 determined by the floatformat. NAME is the type name. Set the
2991 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
2992 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
2993 order of the objfile's architecture is used. */
2994
2995 struct type *
2996 init_float_type (struct objfile *objfile,
2997 int bit, const char *name,
2998 const struct floatformat **floatformats,
2999 enum bfd_endian byte_order)
3000 {
3001 if (byte_order == BFD_ENDIAN_UNKNOWN)
3002 {
3003 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3004 byte_order = gdbarch_byte_order (gdbarch);
3005 }
3006 const struct floatformat *fmt = floatformats[byte_order];
3007 struct type *t;
3008
3009 bit = verify_floatformat (bit, fmt);
3010 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3011 TYPE_FLOATFORMAT (t) = fmt;
3012
3013 return t;
3014 }
3015
3016 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3017 BIT is the type size in bits. NAME is the type name. */
3018
3019 struct type *
3020 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3021 {
3022 struct type *t;
3023
3024 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3025 return t;
3026 }
3027
3028 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3029 name. TARGET_TYPE is the component type. */
3030
3031 struct type *
3032 init_complex_type (const char *name, struct type *target_type)
3033 {
3034 struct type *t;
3035
3036 gdb_assert (TYPE_CODE (target_type) == TYPE_CODE_INT
3037 || TYPE_CODE (target_type) == TYPE_CODE_FLT);
3038
3039 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3040 {
3041 if (name == nullptr)
3042 {
3043 char *new_name
3044 = (char *) TYPE_ALLOC (target_type,
3045 strlen (TYPE_NAME (target_type))
3046 + strlen ("_Complex ") + 1);
3047 strcpy (new_name, "_Complex ");
3048 strcat (new_name, TYPE_NAME (target_type));
3049 name = new_name;
3050 }
3051
3052 t = alloc_type_copy (target_type);
3053 set_type_code (t, TYPE_CODE_COMPLEX);
3054 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3055 TYPE_NAME (t) = name;
3056
3057 TYPE_TARGET_TYPE (t) = target_type;
3058 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3059 }
3060
3061 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3062 }
3063
3064 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3065 BIT is the pointer type size in bits. NAME is the type name.
3066 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3067 TYPE_UNSIGNED flag. */
3068
3069 struct type *
3070 init_pointer_type (struct objfile *objfile,
3071 int bit, const char *name, struct type *target_type)
3072 {
3073 struct type *t;
3074
3075 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3076 TYPE_TARGET_TYPE (t) = target_type;
3077 TYPE_UNSIGNED (t) = 1;
3078 return t;
3079 }
3080
3081 /* See gdbtypes.h. */
3082
3083 unsigned
3084 type_raw_align (struct type *type)
3085 {
3086 if (type->align_log2 != 0)
3087 return 1 << (type->align_log2 - 1);
3088 return 0;
3089 }
3090
3091 /* See gdbtypes.h. */
3092
3093 unsigned
3094 type_align (struct type *type)
3095 {
3096 /* Check alignment provided in the debug information. */
3097 unsigned raw_align = type_raw_align (type);
3098 if (raw_align != 0)
3099 return raw_align;
3100
3101 /* Allow the architecture to provide an alignment. */
3102 struct gdbarch *arch = get_type_arch (type);
3103 ULONGEST align = gdbarch_type_align (arch, type);
3104 if (align != 0)
3105 return align;
3106
3107 switch (TYPE_CODE (type))
3108 {
3109 case TYPE_CODE_PTR:
3110 case TYPE_CODE_FUNC:
3111 case TYPE_CODE_FLAGS:
3112 case TYPE_CODE_INT:
3113 case TYPE_CODE_RANGE:
3114 case TYPE_CODE_FLT:
3115 case TYPE_CODE_ENUM:
3116 case TYPE_CODE_REF:
3117 case TYPE_CODE_RVALUE_REF:
3118 case TYPE_CODE_CHAR:
3119 case TYPE_CODE_BOOL:
3120 case TYPE_CODE_DECFLOAT:
3121 case TYPE_CODE_METHODPTR:
3122 case TYPE_CODE_MEMBERPTR:
3123 align = type_length_units (check_typedef (type));
3124 break;
3125
3126 case TYPE_CODE_ARRAY:
3127 case TYPE_CODE_COMPLEX:
3128 case TYPE_CODE_TYPEDEF:
3129 align = type_align (TYPE_TARGET_TYPE (type));
3130 break;
3131
3132 case TYPE_CODE_STRUCT:
3133 case TYPE_CODE_UNION:
3134 {
3135 int number_of_non_static_fields = 0;
3136 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3137 {
3138 if (!field_is_static (&TYPE_FIELD (type, i)))
3139 {
3140 number_of_non_static_fields++;
3141 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3142 if (f_align == 0)
3143 {
3144 /* Don't pretend we know something we don't. */
3145 align = 0;
3146 break;
3147 }
3148 if (f_align > align)
3149 align = f_align;
3150 }
3151 }
3152 /* A struct with no fields, or with only static fields has an
3153 alignment of 1. */
3154 if (number_of_non_static_fields == 0)
3155 align = 1;
3156 }
3157 break;
3158
3159 case TYPE_CODE_SET:
3160 case TYPE_CODE_STRING:
3161 /* Not sure what to do here, and these can't appear in C or C++
3162 anyway. */
3163 break;
3164
3165 case TYPE_CODE_VOID:
3166 align = 1;
3167 break;
3168
3169 case TYPE_CODE_ERROR:
3170 case TYPE_CODE_METHOD:
3171 default:
3172 break;
3173 }
3174
3175 if ((align & (align - 1)) != 0)
3176 {
3177 /* Not a power of 2, so pass. */
3178 align = 0;
3179 }
3180
3181 return align;
3182 }
3183
3184 /* See gdbtypes.h. */
3185
3186 bool
3187 set_type_align (struct type *type, ULONGEST align)
3188 {
3189 /* Must be a power of 2. Zero is ok. */
3190 gdb_assert ((align & (align - 1)) == 0);
3191
3192 unsigned result = 0;
3193 while (align != 0)
3194 {
3195 ++result;
3196 align >>= 1;
3197 }
3198
3199 if (result >= (1 << TYPE_ALIGN_BITS))
3200 return false;
3201
3202 type->align_log2 = result;
3203 return true;
3204 }
3205
3206 \f
3207 /* Queries on types. */
3208
3209 int
3210 can_dereference (struct type *t)
3211 {
3212 /* FIXME: Should we return true for references as well as
3213 pointers? */
3214 t = check_typedef (t);
3215 return
3216 (t != NULL
3217 && TYPE_CODE (t) == TYPE_CODE_PTR
3218 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3219 }
3220
3221 int
3222 is_integral_type (struct type *t)
3223 {
3224 t = check_typedef (t);
3225 return
3226 ((t != NULL)
3227 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3228 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3229 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3230 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3231 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3232 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3233 }
3234
3235 int
3236 is_floating_type (struct type *t)
3237 {
3238 t = check_typedef (t);
3239 return
3240 ((t != NULL)
3241 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3242 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3243 }
3244
3245 /* Return true if TYPE is scalar. */
3246
3247 int
3248 is_scalar_type (struct type *type)
3249 {
3250 type = check_typedef (type);
3251
3252 switch (TYPE_CODE (type))
3253 {
3254 case TYPE_CODE_ARRAY:
3255 case TYPE_CODE_STRUCT:
3256 case TYPE_CODE_UNION:
3257 case TYPE_CODE_SET:
3258 case TYPE_CODE_STRING:
3259 return 0;
3260 default:
3261 return 1;
3262 }
3263 }
3264
3265 /* Return true if T is scalar, or a composite type which in practice has
3266 the memory layout of a scalar type. E.g., an array or struct with only
3267 one scalar element inside it, or a union with only scalar elements. */
3268
3269 int
3270 is_scalar_type_recursive (struct type *t)
3271 {
3272 t = check_typedef (t);
3273
3274 if (is_scalar_type (t))
3275 return 1;
3276 /* Are we dealing with an array or string of known dimensions? */
3277 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3278 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3279 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3280 {
3281 LONGEST low_bound, high_bound;
3282 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3283
3284 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3285
3286 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3287 }
3288 /* Are we dealing with a struct with one element? */
3289 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3290 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3291 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3292 {
3293 int i, n = TYPE_NFIELDS (t);
3294
3295 /* If all elements of the union are scalar, then the union is scalar. */
3296 for (i = 0; i < n; i++)
3297 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3298 return 0;
3299
3300 return 1;
3301 }
3302
3303 return 0;
3304 }
3305
3306 /* Return true is T is a class or a union. False otherwise. */
3307
3308 int
3309 class_or_union_p (const struct type *t)
3310 {
3311 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3312 || TYPE_CODE (t) == TYPE_CODE_UNION);
3313 }
3314
3315 /* A helper function which returns true if types A and B represent the
3316 "same" class type. This is true if the types have the same main
3317 type, or the same name. */
3318
3319 int
3320 class_types_same_p (const struct type *a, const struct type *b)
3321 {
3322 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3323 || (TYPE_NAME (a) && TYPE_NAME (b)
3324 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3325 }
3326
3327 /* If BASE is an ancestor of DCLASS return the distance between them.
3328 otherwise return -1;
3329 eg:
3330
3331 class A {};
3332 class B: public A {};
3333 class C: public B {};
3334 class D: C {};
3335
3336 distance_to_ancestor (A, A, 0) = 0
3337 distance_to_ancestor (A, B, 0) = 1
3338 distance_to_ancestor (A, C, 0) = 2
3339 distance_to_ancestor (A, D, 0) = 3
3340
3341 If PUBLIC is 1 then only public ancestors are considered,
3342 and the function returns the distance only if BASE is a public ancestor
3343 of DCLASS.
3344 Eg:
3345
3346 distance_to_ancestor (A, D, 1) = -1. */
3347
3348 static int
3349 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3350 {
3351 int i;
3352 int d;
3353
3354 base = check_typedef (base);
3355 dclass = check_typedef (dclass);
3356
3357 if (class_types_same_p (base, dclass))
3358 return 0;
3359
3360 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3361 {
3362 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3363 continue;
3364
3365 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3366 if (d >= 0)
3367 return 1 + d;
3368 }
3369
3370 return -1;
3371 }
3372
3373 /* Check whether BASE is an ancestor or base class or DCLASS
3374 Return 1 if so, and 0 if not.
3375 Note: If BASE and DCLASS are of the same type, this function
3376 will return 1. So for some class A, is_ancestor (A, A) will
3377 return 1. */
3378
3379 int
3380 is_ancestor (struct type *base, struct type *dclass)
3381 {
3382 return distance_to_ancestor (base, dclass, 0) >= 0;
3383 }
3384
3385 /* Like is_ancestor, but only returns true when BASE is a public
3386 ancestor of DCLASS. */
3387
3388 int
3389 is_public_ancestor (struct type *base, struct type *dclass)
3390 {
3391 return distance_to_ancestor (base, dclass, 1) >= 0;
3392 }
3393
3394 /* A helper function for is_unique_ancestor. */
3395
3396 static int
3397 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3398 int *offset,
3399 const gdb_byte *valaddr, int embedded_offset,
3400 CORE_ADDR address, struct value *val)
3401 {
3402 int i, count = 0;
3403
3404 base = check_typedef (base);
3405 dclass = check_typedef (dclass);
3406
3407 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3408 {
3409 struct type *iter;
3410 int this_offset;
3411
3412 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3413
3414 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3415 address, val);
3416
3417 if (class_types_same_p (base, iter))
3418 {
3419 /* If this is the first subclass, set *OFFSET and set count
3420 to 1. Otherwise, if this is at the same offset as
3421 previous instances, do nothing. Otherwise, increment
3422 count. */
3423 if (*offset == -1)
3424 {
3425 *offset = this_offset;
3426 count = 1;
3427 }
3428 else if (this_offset == *offset)
3429 {
3430 /* Nothing. */
3431 }
3432 else
3433 ++count;
3434 }
3435 else
3436 count += is_unique_ancestor_worker (base, iter, offset,
3437 valaddr,
3438 embedded_offset + this_offset,
3439 address, val);
3440 }
3441
3442 return count;
3443 }
3444
3445 /* Like is_ancestor, but only returns true if BASE is a unique base
3446 class of the type of VAL. */
3447
3448 int
3449 is_unique_ancestor (struct type *base, struct value *val)
3450 {
3451 int offset = -1;
3452
3453 return is_unique_ancestor_worker (base, value_type (val), &offset,
3454 value_contents_for_printing (val),
3455 value_embedded_offset (val),
3456 value_address (val), val) == 1;
3457 }
3458
3459 /* See gdbtypes.h. */
3460
3461 enum bfd_endian
3462 type_byte_order (const struct type *type)
3463 {
3464 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3465 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3466 {
3467 if (byteorder == BFD_ENDIAN_BIG)
3468 return BFD_ENDIAN_LITTLE;
3469 else
3470 {
3471 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3472 return BFD_ENDIAN_BIG;
3473 }
3474 }
3475
3476 return byteorder;
3477 }
3478
3479 \f
3480 /* Overload resolution. */
3481
3482 /* Return the sum of the rank of A with the rank of B. */
3483
3484 struct rank
3485 sum_ranks (struct rank a, struct rank b)
3486 {
3487 struct rank c;
3488 c.rank = a.rank + b.rank;
3489 c.subrank = a.subrank + b.subrank;
3490 return c;
3491 }
3492
3493 /* Compare rank A and B and return:
3494 0 if a = b
3495 1 if a is better than b
3496 -1 if b is better than a. */
3497
3498 int
3499 compare_ranks (struct rank a, struct rank b)
3500 {
3501 if (a.rank == b.rank)
3502 {
3503 if (a.subrank == b.subrank)
3504 return 0;
3505 if (a.subrank < b.subrank)
3506 return 1;
3507 if (a.subrank > b.subrank)
3508 return -1;
3509 }
3510
3511 if (a.rank < b.rank)
3512 return 1;
3513
3514 /* a.rank > b.rank */
3515 return -1;
3516 }
3517
3518 /* Functions for overload resolution begin here. */
3519
3520 /* Compare two badness vectors A and B and return the result.
3521 0 => A and B are identical
3522 1 => A and B are incomparable
3523 2 => A is better than B
3524 3 => A is worse than B */
3525
3526 int
3527 compare_badness (const badness_vector &a, const badness_vector &b)
3528 {
3529 int i;
3530 int tmp;
3531 short found_pos = 0; /* any positives in c? */
3532 short found_neg = 0; /* any negatives in c? */
3533
3534 /* differing sizes => incomparable */
3535 if (a.size () != b.size ())
3536 return 1;
3537
3538 /* Subtract b from a */
3539 for (i = 0; i < a.size (); i++)
3540 {
3541 tmp = compare_ranks (b[i], a[i]);
3542 if (tmp > 0)
3543 found_pos = 1;
3544 else if (tmp < 0)
3545 found_neg = 1;
3546 }
3547
3548 if (found_pos)
3549 {
3550 if (found_neg)
3551 return 1; /* incomparable */
3552 else
3553 return 3; /* A > B */
3554 }
3555 else
3556 /* no positives */
3557 {
3558 if (found_neg)
3559 return 2; /* A < B */
3560 else
3561 return 0; /* A == B */
3562 }
3563 }
3564
3565 /* Rank a function by comparing its parameter types (PARMS), to the
3566 types of an argument list (ARGS). Return the badness vector. This
3567 has ARGS.size() + 1 entries. */
3568
3569 badness_vector
3570 rank_function (gdb::array_view<type *> parms,
3571 gdb::array_view<value *> args)
3572 {
3573 /* add 1 for the length-match rank. */
3574 badness_vector bv;
3575 bv.reserve (1 + args.size ());
3576
3577 /* First compare the lengths of the supplied lists.
3578 If there is a mismatch, set it to a high value. */
3579
3580 /* pai/1997-06-03 FIXME: when we have debug info about default
3581 arguments and ellipsis parameter lists, we should consider those
3582 and rank the length-match more finely. */
3583
3584 bv.push_back ((args.size () != parms.size ())
3585 ? LENGTH_MISMATCH_BADNESS
3586 : EXACT_MATCH_BADNESS);
3587
3588 /* Now rank all the parameters of the candidate function. */
3589 size_t min_len = std::min (parms.size (), args.size ());
3590
3591 for (size_t i = 0; i < min_len; i++)
3592 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3593 args[i]));
3594
3595 /* If more arguments than parameters, add dummy entries. */
3596 for (size_t i = min_len; i < args.size (); i++)
3597 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3598
3599 return bv;
3600 }
3601
3602 /* Compare the names of two integer types, assuming that any sign
3603 qualifiers have been checked already. We do it this way because
3604 there may be an "int" in the name of one of the types. */
3605
3606 static int
3607 integer_types_same_name_p (const char *first, const char *second)
3608 {
3609 int first_p, second_p;
3610
3611 /* If both are shorts, return 1; if neither is a short, keep
3612 checking. */
3613 first_p = (strstr (first, "short") != NULL);
3614 second_p = (strstr (second, "short") != NULL);
3615 if (first_p && second_p)
3616 return 1;
3617 if (first_p || second_p)
3618 return 0;
3619
3620 /* Likewise for long. */
3621 first_p = (strstr (first, "long") != NULL);
3622 second_p = (strstr (second, "long") != NULL);
3623 if (first_p && second_p)
3624 return 1;
3625 if (first_p || second_p)
3626 return 0;
3627
3628 /* Likewise for char. */
3629 first_p = (strstr (first, "char") != NULL);
3630 second_p = (strstr (second, "char") != NULL);
3631 if (first_p && second_p)
3632 return 1;
3633 if (first_p || second_p)
3634 return 0;
3635
3636 /* They must both be ints. */
3637 return 1;
3638 }
3639
3640 /* Compares type A to type B. Returns true if they represent the same
3641 type, false otherwise. */
3642
3643 bool
3644 types_equal (struct type *a, struct type *b)
3645 {
3646 /* Identical type pointers. */
3647 /* However, this still doesn't catch all cases of same type for b
3648 and a. The reason is that builtin types are different from
3649 the same ones constructed from the object. */
3650 if (a == b)
3651 return true;
3652
3653 /* Resolve typedefs */
3654 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3655 a = check_typedef (a);
3656 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3657 b = check_typedef (b);
3658
3659 /* If after resolving typedefs a and b are not of the same type
3660 code then they are not equal. */
3661 if (TYPE_CODE (a) != TYPE_CODE (b))
3662 return false;
3663
3664 /* If a and b are both pointers types or both reference types then
3665 they are equal of the same type iff the objects they refer to are
3666 of the same type. */
3667 if (TYPE_CODE (a) == TYPE_CODE_PTR
3668 || TYPE_CODE (a) == TYPE_CODE_REF)
3669 return types_equal (TYPE_TARGET_TYPE (a),
3670 TYPE_TARGET_TYPE (b));
3671
3672 /* Well, damnit, if the names are exactly the same, I'll say they
3673 are exactly the same. This happens when we generate method
3674 stubs. The types won't point to the same address, but they
3675 really are the same. */
3676
3677 if (TYPE_NAME (a) && TYPE_NAME (b)
3678 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3679 return true;
3680
3681 /* Check if identical after resolving typedefs. */
3682 if (a == b)
3683 return true;
3684
3685 /* Two function types are equal if their argument and return types
3686 are equal. */
3687 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3688 {
3689 int i;
3690
3691 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3692 return false;
3693
3694 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3695 return false;
3696
3697 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3698 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3699 return false;
3700
3701 return true;
3702 }
3703
3704 return false;
3705 }
3706 \f
3707 /* Deep comparison of types. */
3708
3709 /* An entry in the type-equality bcache. */
3710
3711 struct type_equality_entry
3712 {
3713 type_equality_entry (struct type *t1, struct type *t2)
3714 : type1 (t1),
3715 type2 (t2)
3716 {
3717 }
3718
3719 struct type *type1, *type2;
3720 };
3721
3722 /* A helper function to compare two strings. Returns true if they are
3723 the same, false otherwise. Handles NULLs properly. */
3724
3725 static bool
3726 compare_maybe_null_strings (const char *s, const char *t)
3727 {
3728 if (s == NULL || t == NULL)
3729 return s == t;
3730 return strcmp (s, t) == 0;
3731 }
3732
3733 /* A helper function for check_types_worklist that checks two types for
3734 "deep" equality. Returns true if the types are considered the
3735 same, false otherwise. */
3736
3737 static bool
3738 check_types_equal (struct type *type1, struct type *type2,
3739 std::vector<type_equality_entry> *worklist)
3740 {
3741 type1 = check_typedef (type1);
3742 type2 = check_typedef (type2);
3743
3744 if (type1 == type2)
3745 return true;
3746
3747 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3748 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3749 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3750 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3751 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
3752 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3753 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3754 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3755 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3756 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3757 return false;
3758
3759 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3760 return false;
3761 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3762 return false;
3763
3764 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3765 {
3766 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3767 return false;
3768 }
3769 else
3770 {
3771 int i;
3772
3773 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3774 {
3775 const struct field *field1 = &TYPE_FIELD (type1, i);
3776 const struct field *field2 = &TYPE_FIELD (type2, i);
3777
3778 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3779 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3780 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3781 return false;
3782 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3783 FIELD_NAME (*field2)))
3784 return false;
3785 switch (FIELD_LOC_KIND (*field1))
3786 {
3787 case FIELD_LOC_KIND_BITPOS:
3788 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3789 return false;
3790 break;
3791 case FIELD_LOC_KIND_ENUMVAL:
3792 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3793 return false;
3794 break;
3795 case FIELD_LOC_KIND_PHYSADDR:
3796 if (FIELD_STATIC_PHYSADDR (*field1)
3797 != FIELD_STATIC_PHYSADDR (*field2))
3798 return false;
3799 break;
3800 case FIELD_LOC_KIND_PHYSNAME:
3801 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3802 FIELD_STATIC_PHYSNAME (*field2)))
3803 return false;
3804 break;
3805 case FIELD_LOC_KIND_DWARF_BLOCK:
3806 {
3807 struct dwarf2_locexpr_baton *block1, *block2;
3808
3809 block1 = FIELD_DWARF_BLOCK (*field1);
3810 block2 = FIELD_DWARF_BLOCK (*field2);
3811 if (block1->per_cu != block2->per_cu
3812 || block1->size != block2->size
3813 || memcmp (block1->data, block2->data, block1->size) != 0)
3814 return false;
3815 }
3816 break;
3817 default:
3818 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3819 "%d by check_types_equal"),
3820 FIELD_LOC_KIND (*field1));
3821 }
3822
3823 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3824 }
3825 }
3826
3827 if (TYPE_TARGET_TYPE (type1) != NULL)
3828 {
3829 if (TYPE_TARGET_TYPE (type2) == NULL)
3830 return false;
3831
3832 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3833 TYPE_TARGET_TYPE (type2));
3834 }
3835 else if (TYPE_TARGET_TYPE (type2) != NULL)
3836 return false;
3837
3838 return true;
3839 }
3840
3841 /* Check types on a worklist for equality. Returns false if any pair
3842 is not equal, true if they are all considered equal. */
3843
3844 static bool
3845 check_types_worklist (std::vector<type_equality_entry> *worklist,
3846 gdb::bcache *cache)
3847 {
3848 while (!worklist->empty ())
3849 {
3850 int added;
3851
3852 struct type_equality_entry entry = std::move (worklist->back ());
3853 worklist->pop_back ();
3854
3855 /* If the type pair has already been visited, we know it is
3856 ok. */
3857 cache->insert (&entry, sizeof (entry), &added);
3858 if (!added)
3859 continue;
3860
3861 if (!check_types_equal (entry.type1, entry.type2, worklist))
3862 return false;
3863 }
3864
3865 return true;
3866 }
3867
3868 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3869 "deep comparison". Otherwise return false. */
3870
3871 bool
3872 types_deeply_equal (struct type *type1, struct type *type2)
3873 {
3874 std::vector<type_equality_entry> worklist;
3875
3876 gdb_assert (type1 != NULL && type2 != NULL);
3877
3878 /* Early exit for the simple case. */
3879 if (type1 == type2)
3880 return true;
3881
3882 gdb::bcache cache (nullptr, nullptr);
3883 worklist.emplace_back (type1, type2);
3884 return check_types_worklist (&worklist, &cache);
3885 }
3886
3887 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3888 Otherwise return one. */
3889
3890 int
3891 type_not_allocated (const struct type *type)
3892 {
3893 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3894
3895 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3896 && !TYPE_DYN_PROP_ADDR (prop));
3897 }
3898
3899 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3900 Otherwise return one. */
3901
3902 int
3903 type_not_associated (const struct type *type)
3904 {
3905 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3906
3907 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3908 && !TYPE_DYN_PROP_ADDR (prop));
3909 }
3910
3911 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3912
3913 static struct rank
3914 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3915 {
3916 struct rank rank = {0,0};
3917
3918 switch (TYPE_CODE (arg))
3919 {
3920 case TYPE_CODE_PTR:
3921
3922 /* Allowed pointer conversions are:
3923 (a) pointer to void-pointer conversion. */
3924 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3925 return VOID_PTR_CONVERSION_BADNESS;
3926
3927 /* (b) pointer to ancestor-pointer conversion. */
3928 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3929 TYPE_TARGET_TYPE (arg),
3930 0);
3931 if (rank.subrank >= 0)
3932 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3933
3934 return INCOMPATIBLE_TYPE_BADNESS;
3935 case TYPE_CODE_ARRAY:
3936 {
3937 struct type *t1 = TYPE_TARGET_TYPE (parm);
3938 struct type *t2 = TYPE_TARGET_TYPE (arg);
3939
3940 if (types_equal (t1, t2))
3941 {
3942 /* Make sure they are CV equal. */
3943 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3944 rank.subrank |= CV_CONVERSION_CONST;
3945 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3946 rank.subrank |= CV_CONVERSION_VOLATILE;
3947 if (rank.subrank != 0)
3948 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3949 return EXACT_MATCH_BADNESS;
3950 }
3951 return INCOMPATIBLE_TYPE_BADNESS;
3952 }
3953 case TYPE_CODE_FUNC:
3954 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3955 case TYPE_CODE_INT:
3956 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3957 {
3958 if (value_as_long (value) == 0)
3959 {
3960 /* Null pointer conversion: allow it to be cast to a pointer.
3961 [4.10.1 of C++ standard draft n3290] */
3962 return NULL_POINTER_CONVERSION_BADNESS;
3963 }
3964 else
3965 {
3966 /* If type checking is disabled, allow the conversion. */
3967 if (!strict_type_checking)
3968 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3969 }
3970 }
3971 /* fall through */
3972 case TYPE_CODE_ENUM:
3973 case TYPE_CODE_FLAGS:
3974 case TYPE_CODE_CHAR:
3975 case TYPE_CODE_RANGE:
3976 case TYPE_CODE_BOOL:
3977 default:
3978 return INCOMPATIBLE_TYPE_BADNESS;
3979 }
3980 }
3981
3982 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3983
3984 static struct rank
3985 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3986 {
3987 switch (TYPE_CODE (arg))
3988 {
3989 case TYPE_CODE_PTR:
3990 case TYPE_CODE_ARRAY:
3991 return rank_one_type (TYPE_TARGET_TYPE (parm),
3992 TYPE_TARGET_TYPE (arg), NULL);
3993 default:
3994 return INCOMPATIBLE_TYPE_BADNESS;
3995 }
3996 }
3997
3998 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3999
4000 static struct rank
4001 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4002 {
4003 switch (TYPE_CODE (arg))
4004 {
4005 case TYPE_CODE_PTR: /* funcptr -> func */
4006 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4007 default:
4008 return INCOMPATIBLE_TYPE_BADNESS;
4009 }
4010 }
4011
4012 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4013
4014 static struct rank
4015 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4016 {
4017 switch (TYPE_CODE (arg))
4018 {
4019 case TYPE_CODE_INT:
4020 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4021 {
4022 /* Deal with signed, unsigned, and plain chars and
4023 signed and unsigned ints. */
4024 if (TYPE_NOSIGN (parm))
4025 {
4026 /* This case only for character types. */
4027 if (TYPE_NOSIGN (arg))
4028 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4029 else /* signed/unsigned char -> plain char */
4030 return INTEGER_CONVERSION_BADNESS;
4031 }
4032 else if (TYPE_UNSIGNED (parm))
4033 {
4034 if (TYPE_UNSIGNED (arg))
4035 {
4036 /* unsigned int -> unsigned int, or
4037 unsigned long -> unsigned long */
4038 if (integer_types_same_name_p (TYPE_NAME (parm),
4039 TYPE_NAME (arg)))
4040 return EXACT_MATCH_BADNESS;
4041 else if (integer_types_same_name_p (TYPE_NAME (arg),
4042 "int")
4043 && integer_types_same_name_p (TYPE_NAME (parm),
4044 "long"))
4045 /* unsigned int -> unsigned long */
4046 return INTEGER_PROMOTION_BADNESS;
4047 else
4048 /* unsigned long -> unsigned int */
4049 return INTEGER_CONVERSION_BADNESS;
4050 }
4051 else
4052 {
4053 if (integer_types_same_name_p (TYPE_NAME (arg),
4054 "long")
4055 && integer_types_same_name_p (TYPE_NAME (parm),
4056 "int"))
4057 /* signed long -> unsigned int */
4058 return INTEGER_CONVERSION_BADNESS;
4059 else
4060 /* signed int/long -> unsigned int/long */
4061 return INTEGER_CONVERSION_BADNESS;
4062 }
4063 }
4064 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4065 {
4066 if (integer_types_same_name_p (TYPE_NAME (parm),
4067 TYPE_NAME (arg)))
4068 return EXACT_MATCH_BADNESS;
4069 else if (integer_types_same_name_p (TYPE_NAME (arg),
4070 "int")
4071 && integer_types_same_name_p (TYPE_NAME (parm),
4072 "long"))
4073 return INTEGER_PROMOTION_BADNESS;
4074 else
4075 return INTEGER_CONVERSION_BADNESS;
4076 }
4077 else
4078 return INTEGER_CONVERSION_BADNESS;
4079 }
4080 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4081 return INTEGER_PROMOTION_BADNESS;
4082 else
4083 return INTEGER_CONVERSION_BADNESS;
4084 case TYPE_CODE_ENUM:
4085 case TYPE_CODE_FLAGS:
4086 case TYPE_CODE_CHAR:
4087 case TYPE_CODE_RANGE:
4088 case TYPE_CODE_BOOL:
4089 if (TYPE_DECLARED_CLASS (arg))
4090 return INCOMPATIBLE_TYPE_BADNESS;
4091 return INTEGER_PROMOTION_BADNESS;
4092 case TYPE_CODE_FLT:
4093 return INT_FLOAT_CONVERSION_BADNESS;
4094 case TYPE_CODE_PTR:
4095 return NS_POINTER_CONVERSION_BADNESS;
4096 default:
4097 return INCOMPATIBLE_TYPE_BADNESS;
4098 }
4099 }
4100
4101 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4102
4103 static struct rank
4104 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4105 {
4106 switch (TYPE_CODE (arg))
4107 {
4108 case TYPE_CODE_INT:
4109 case TYPE_CODE_CHAR:
4110 case TYPE_CODE_RANGE:
4111 case TYPE_CODE_BOOL:
4112 case TYPE_CODE_ENUM:
4113 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4114 return INCOMPATIBLE_TYPE_BADNESS;
4115 return INTEGER_CONVERSION_BADNESS;
4116 case TYPE_CODE_FLT:
4117 return INT_FLOAT_CONVERSION_BADNESS;
4118 default:
4119 return INCOMPATIBLE_TYPE_BADNESS;
4120 }
4121 }
4122
4123 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4124
4125 static struct rank
4126 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4127 {
4128 switch (TYPE_CODE (arg))
4129 {
4130 case TYPE_CODE_RANGE:
4131 case TYPE_CODE_BOOL:
4132 case TYPE_CODE_ENUM:
4133 if (TYPE_DECLARED_CLASS (arg))
4134 return INCOMPATIBLE_TYPE_BADNESS;
4135 return INTEGER_CONVERSION_BADNESS;
4136 case TYPE_CODE_FLT:
4137 return INT_FLOAT_CONVERSION_BADNESS;
4138 case TYPE_CODE_INT:
4139 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4140 return INTEGER_CONVERSION_BADNESS;
4141 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4142 return INTEGER_PROMOTION_BADNESS;
4143 /* fall through */
4144 case TYPE_CODE_CHAR:
4145 /* Deal with signed, unsigned, and plain chars for C++ and
4146 with int cases falling through from previous case. */
4147 if (TYPE_NOSIGN (parm))
4148 {
4149 if (TYPE_NOSIGN (arg))
4150 return EXACT_MATCH_BADNESS;
4151 else
4152 return INTEGER_CONVERSION_BADNESS;
4153 }
4154 else if (TYPE_UNSIGNED (parm))
4155 {
4156 if (TYPE_UNSIGNED (arg))
4157 return EXACT_MATCH_BADNESS;
4158 else
4159 return INTEGER_PROMOTION_BADNESS;
4160 }
4161 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4162 return EXACT_MATCH_BADNESS;
4163 else
4164 return INTEGER_CONVERSION_BADNESS;
4165 default:
4166 return INCOMPATIBLE_TYPE_BADNESS;
4167 }
4168 }
4169
4170 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4171
4172 static struct rank
4173 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4174 {
4175 switch (TYPE_CODE (arg))
4176 {
4177 case TYPE_CODE_INT:
4178 case TYPE_CODE_CHAR:
4179 case TYPE_CODE_RANGE:
4180 case TYPE_CODE_BOOL:
4181 case TYPE_CODE_ENUM:
4182 return INTEGER_CONVERSION_BADNESS;
4183 case TYPE_CODE_FLT:
4184 return INT_FLOAT_CONVERSION_BADNESS;
4185 default:
4186 return INCOMPATIBLE_TYPE_BADNESS;
4187 }
4188 }
4189
4190 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4191
4192 static struct rank
4193 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4194 {
4195 switch (TYPE_CODE (arg))
4196 {
4197 /* n3290 draft, section 4.12.1 (conv.bool):
4198
4199 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4200 pointer to member type can be converted to a prvalue of type
4201 bool. A zero value, null pointer value, or null member pointer
4202 value is converted to false; any other value is converted to
4203 true. A prvalue of type std::nullptr_t can be converted to a
4204 prvalue of type bool; the resulting value is false." */
4205 case TYPE_CODE_INT:
4206 case TYPE_CODE_CHAR:
4207 case TYPE_CODE_ENUM:
4208 case TYPE_CODE_FLT:
4209 case TYPE_CODE_MEMBERPTR:
4210 case TYPE_CODE_PTR:
4211 return BOOL_CONVERSION_BADNESS;
4212 case TYPE_CODE_RANGE:
4213 return INCOMPATIBLE_TYPE_BADNESS;
4214 case TYPE_CODE_BOOL:
4215 return EXACT_MATCH_BADNESS;
4216 default:
4217 return INCOMPATIBLE_TYPE_BADNESS;
4218 }
4219 }
4220
4221 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4222
4223 static struct rank
4224 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4225 {
4226 switch (TYPE_CODE (arg))
4227 {
4228 case TYPE_CODE_FLT:
4229 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4230 return FLOAT_PROMOTION_BADNESS;
4231 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4232 return EXACT_MATCH_BADNESS;
4233 else
4234 return FLOAT_CONVERSION_BADNESS;
4235 case TYPE_CODE_INT:
4236 case TYPE_CODE_BOOL:
4237 case TYPE_CODE_ENUM:
4238 case TYPE_CODE_RANGE:
4239 case TYPE_CODE_CHAR:
4240 return INT_FLOAT_CONVERSION_BADNESS;
4241 default:
4242 return INCOMPATIBLE_TYPE_BADNESS;
4243 }
4244 }
4245
4246 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4247
4248 static struct rank
4249 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4250 {
4251 switch (TYPE_CODE (arg))
4252 { /* Strictly not needed for C++, but... */
4253 case TYPE_CODE_FLT:
4254 return FLOAT_PROMOTION_BADNESS;
4255 case TYPE_CODE_COMPLEX:
4256 return EXACT_MATCH_BADNESS;
4257 default:
4258 return INCOMPATIBLE_TYPE_BADNESS;
4259 }
4260 }
4261
4262 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4263
4264 static struct rank
4265 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4266 {
4267 struct rank rank = {0, 0};
4268
4269 switch (TYPE_CODE (arg))
4270 {
4271 case TYPE_CODE_STRUCT:
4272 /* Check for derivation */
4273 rank.subrank = distance_to_ancestor (parm, arg, 0);
4274 if (rank.subrank >= 0)
4275 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4276 /* fall through */
4277 default:
4278 return INCOMPATIBLE_TYPE_BADNESS;
4279 }
4280 }
4281
4282 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4283
4284 static struct rank
4285 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4286 {
4287 switch (TYPE_CODE (arg))
4288 {
4289 /* Not in C++ */
4290 case TYPE_CODE_SET:
4291 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4292 TYPE_FIELD_TYPE (arg, 0), NULL);
4293 default:
4294 return INCOMPATIBLE_TYPE_BADNESS;
4295 }
4296 }
4297
4298 /* Compare one type (PARM) for compatibility with another (ARG).
4299 * PARM is intended to be the parameter type of a function; and
4300 * ARG is the supplied argument's type. This function tests if
4301 * the latter can be converted to the former.
4302 * VALUE is the argument's value or NULL if none (or called recursively)
4303 *
4304 * Return 0 if they are identical types;
4305 * Otherwise, return an integer which corresponds to how compatible
4306 * PARM is to ARG. The higher the return value, the worse the match.
4307 * Generally the "bad" conversions are all uniformly assigned a 100. */
4308
4309 struct rank
4310 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4311 {
4312 struct rank rank = {0,0};
4313
4314 /* Resolve typedefs */
4315 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4316 parm = check_typedef (parm);
4317 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4318 arg = check_typedef (arg);
4319
4320 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4321 {
4322 if (VALUE_LVAL (value) == not_lval)
4323 {
4324 /* Rvalues should preferably bind to rvalue references or const
4325 lvalue references. */
4326 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4327 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4328 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4329 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4330 else
4331 return INCOMPATIBLE_TYPE_BADNESS;
4332 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4333 }
4334 else
4335 {
4336 /* It's illegal to pass an lvalue as an rvalue. */
4337 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4338 return INCOMPATIBLE_TYPE_BADNESS;
4339 }
4340 }
4341
4342 if (types_equal (parm, arg))
4343 {
4344 struct type *t1 = parm;
4345 struct type *t2 = arg;
4346
4347 /* For pointers and references, compare target type. */
4348 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4349 {
4350 t1 = TYPE_TARGET_TYPE (parm);
4351 t2 = TYPE_TARGET_TYPE (arg);
4352 }
4353
4354 /* Make sure they are CV equal, too. */
4355 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4356 rank.subrank |= CV_CONVERSION_CONST;
4357 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4358 rank.subrank |= CV_CONVERSION_VOLATILE;
4359 if (rank.subrank != 0)
4360 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4361 return EXACT_MATCH_BADNESS;
4362 }
4363
4364 /* See through references, since we can almost make non-references
4365 references. */
4366
4367 if (TYPE_IS_REFERENCE (arg))
4368 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4369 REFERENCE_SEE_THROUGH_BADNESS));
4370 if (TYPE_IS_REFERENCE (parm))
4371 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4372 REFERENCE_SEE_THROUGH_BADNESS));
4373 if (overload_debug)
4374 /* Debugging only. */
4375 fprintf_filtered (gdb_stderr,
4376 "------ Arg is %s [%d], parm is %s [%d]\n",
4377 TYPE_NAME (arg), TYPE_CODE (arg),
4378 TYPE_NAME (parm), TYPE_CODE (parm));
4379
4380 /* x -> y means arg of type x being supplied for parameter of type y. */
4381
4382 switch (TYPE_CODE (parm))
4383 {
4384 case TYPE_CODE_PTR:
4385 return rank_one_type_parm_ptr (parm, arg, value);
4386 case TYPE_CODE_ARRAY:
4387 return rank_one_type_parm_array (parm, arg, value);
4388 case TYPE_CODE_FUNC:
4389 return rank_one_type_parm_func (parm, arg, value);
4390 case TYPE_CODE_INT:
4391 return rank_one_type_parm_int (parm, arg, value);
4392 case TYPE_CODE_ENUM:
4393 return rank_one_type_parm_enum (parm, arg, value);
4394 case TYPE_CODE_CHAR:
4395 return rank_one_type_parm_char (parm, arg, value);
4396 case TYPE_CODE_RANGE:
4397 return rank_one_type_parm_range (parm, arg, value);
4398 case TYPE_CODE_BOOL:
4399 return rank_one_type_parm_bool (parm, arg, value);
4400 case TYPE_CODE_FLT:
4401 return rank_one_type_parm_float (parm, arg, value);
4402 case TYPE_CODE_COMPLEX:
4403 return rank_one_type_parm_complex (parm, arg, value);
4404 case TYPE_CODE_STRUCT:
4405 return rank_one_type_parm_struct (parm, arg, value);
4406 case TYPE_CODE_SET:
4407 return rank_one_type_parm_set (parm, arg, value);
4408 default:
4409 return INCOMPATIBLE_TYPE_BADNESS;
4410 } /* switch (TYPE_CODE (arg)) */
4411 }
4412
4413 /* End of functions for overload resolution. */
4414 \f
4415 /* Routines to pretty-print types. */
4416
4417 static void
4418 print_bit_vector (B_TYPE *bits, int nbits)
4419 {
4420 int bitno;
4421
4422 for (bitno = 0; bitno < nbits; bitno++)
4423 {
4424 if ((bitno % 8) == 0)
4425 {
4426 puts_filtered (" ");
4427 }
4428 if (B_TST (bits, bitno))
4429 printf_filtered (("1"));
4430 else
4431 printf_filtered (("0"));
4432 }
4433 }
4434
4435 /* Note the first arg should be the "this" pointer, we may not want to
4436 include it since we may get into a infinitely recursive
4437 situation. */
4438
4439 static void
4440 print_args (struct field *args, int nargs, int spaces)
4441 {
4442 if (args != NULL)
4443 {
4444 int i;
4445
4446 for (i = 0; i < nargs; i++)
4447 {
4448 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4449 args[i].name != NULL ? args[i].name : "<NULL>");
4450 recursive_dump_type (args[i].type, spaces + 2);
4451 }
4452 }
4453 }
4454
4455 int
4456 field_is_static (struct field *f)
4457 {
4458 /* "static" fields are the fields whose location is not relative
4459 to the address of the enclosing struct. It would be nice to
4460 have a dedicated flag that would be set for static fields when
4461 the type is being created. But in practice, checking the field
4462 loc_kind should give us an accurate answer. */
4463 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4464 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4465 }
4466
4467 static void
4468 dump_fn_fieldlists (struct type *type, int spaces)
4469 {
4470 int method_idx;
4471 int overload_idx;
4472 struct fn_field *f;
4473
4474 printfi_filtered (spaces, "fn_fieldlists ");
4475 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4476 printf_filtered ("\n");
4477 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4478 {
4479 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4480 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4481 method_idx,
4482 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4483 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4484 gdb_stdout);
4485 printf_filtered (_(") length %d\n"),
4486 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4487 for (overload_idx = 0;
4488 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4489 overload_idx++)
4490 {
4491 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4492 overload_idx,
4493 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4494 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4495 gdb_stdout);
4496 printf_filtered (")\n");
4497 printfi_filtered (spaces + 8, "type ");
4498 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4499 gdb_stdout);
4500 printf_filtered ("\n");
4501
4502 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4503 spaces + 8 + 2);
4504
4505 printfi_filtered (spaces + 8, "args ");
4506 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4507 gdb_stdout);
4508 printf_filtered ("\n");
4509 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4510 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4511 spaces + 8 + 2);
4512 printfi_filtered (spaces + 8, "fcontext ");
4513 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4514 gdb_stdout);
4515 printf_filtered ("\n");
4516
4517 printfi_filtered (spaces + 8, "is_const %d\n",
4518 TYPE_FN_FIELD_CONST (f, overload_idx));
4519 printfi_filtered (spaces + 8, "is_volatile %d\n",
4520 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4521 printfi_filtered (spaces + 8, "is_private %d\n",
4522 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4523 printfi_filtered (spaces + 8, "is_protected %d\n",
4524 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4525 printfi_filtered (spaces + 8, "is_stub %d\n",
4526 TYPE_FN_FIELD_STUB (f, overload_idx));
4527 printfi_filtered (spaces + 8, "defaulted %d\n",
4528 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4529 printfi_filtered (spaces + 8, "is_deleted %d\n",
4530 TYPE_FN_FIELD_DELETED (f, overload_idx));
4531 printfi_filtered (spaces + 8, "voffset %u\n",
4532 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4533 }
4534 }
4535 }
4536
4537 static void
4538 print_cplus_stuff (struct type *type, int spaces)
4539 {
4540 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4541 printfi_filtered (spaces, "vptr_basetype ");
4542 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4543 puts_filtered ("\n");
4544 if (TYPE_VPTR_BASETYPE (type) != NULL)
4545 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4546
4547 printfi_filtered (spaces, "n_baseclasses %d\n",
4548 TYPE_N_BASECLASSES (type));
4549 printfi_filtered (spaces, "nfn_fields %d\n",
4550 TYPE_NFN_FIELDS (type));
4551 if (TYPE_N_BASECLASSES (type) > 0)
4552 {
4553 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4554 TYPE_N_BASECLASSES (type));
4555 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4556 gdb_stdout);
4557 printf_filtered (")");
4558
4559 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4560 TYPE_N_BASECLASSES (type));
4561 puts_filtered ("\n");
4562 }
4563 if (TYPE_NFIELDS (type) > 0)
4564 {
4565 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4566 {
4567 printfi_filtered (spaces,
4568 "private_field_bits (%d bits at *",
4569 TYPE_NFIELDS (type));
4570 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4571 gdb_stdout);
4572 printf_filtered (")");
4573 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4574 TYPE_NFIELDS (type));
4575 puts_filtered ("\n");
4576 }
4577 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4578 {
4579 printfi_filtered (spaces,
4580 "protected_field_bits (%d bits at *",
4581 TYPE_NFIELDS (type));
4582 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4583 gdb_stdout);
4584 printf_filtered (")");
4585 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4586 TYPE_NFIELDS (type));
4587 puts_filtered ("\n");
4588 }
4589 }
4590 if (TYPE_NFN_FIELDS (type) > 0)
4591 {
4592 dump_fn_fieldlists (type, spaces);
4593 }
4594
4595 printfi_filtered (spaces, "calling_convention %d\n",
4596 TYPE_CPLUS_CALLING_CONVENTION (type));
4597 }
4598
4599 /* Print the contents of the TYPE's type_specific union, assuming that
4600 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4601
4602 static void
4603 print_gnat_stuff (struct type *type, int spaces)
4604 {
4605 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4606
4607 if (descriptive_type == NULL)
4608 printfi_filtered (spaces + 2, "no descriptive type\n");
4609 else
4610 {
4611 printfi_filtered (spaces + 2, "descriptive type\n");
4612 recursive_dump_type (descriptive_type, spaces + 4);
4613 }
4614 }
4615
4616 static struct obstack dont_print_type_obstack;
4617
4618 void
4619 recursive_dump_type (struct type *type, int spaces)
4620 {
4621 int idx;
4622
4623 if (spaces == 0)
4624 obstack_begin (&dont_print_type_obstack, 0);
4625
4626 if (TYPE_NFIELDS (type) > 0
4627 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4628 {
4629 struct type **first_dont_print
4630 = (struct type **) obstack_base (&dont_print_type_obstack);
4631
4632 int i = (struct type **)
4633 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4634
4635 while (--i >= 0)
4636 {
4637 if (type == first_dont_print[i])
4638 {
4639 printfi_filtered (spaces, "type node ");
4640 gdb_print_host_address (type, gdb_stdout);
4641 printf_filtered (_(" <same as already seen type>\n"));
4642 return;
4643 }
4644 }
4645
4646 obstack_ptr_grow (&dont_print_type_obstack, type);
4647 }
4648
4649 printfi_filtered (spaces, "type node ");
4650 gdb_print_host_address (type, gdb_stdout);
4651 printf_filtered ("\n");
4652 printfi_filtered (spaces, "name '%s' (",
4653 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4654 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4655 printf_filtered (")\n");
4656 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4657 switch (TYPE_CODE (type))
4658 {
4659 case TYPE_CODE_UNDEF:
4660 printf_filtered ("(TYPE_CODE_UNDEF)");
4661 break;
4662 case TYPE_CODE_PTR:
4663 printf_filtered ("(TYPE_CODE_PTR)");
4664 break;
4665 case TYPE_CODE_ARRAY:
4666 printf_filtered ("(TYPE_CODE_ARRAY)");
4667 break;
4668 case TYPE_CODE_STRUCT:
4669 printf_filtered ("(TYPE_CODE_STRUCT)");
4670 break;
4671 case TYPE_CODE_UNION:
4672 printf_filtered ("(TYPE_CODE_UNION)");
4673 break;
4674 case TYPE_CODE_ENUM:
4675 printf_filtered ("(TYPE_CODE_ENUM)");
4676 break;
4677 case TYPE_CODE_FLAGS:
4678 printf_filtered ("(TYPE_CODE_FLAGS)");
4679 break;
4680 case TYPE_CODE_FUNC:
4681 printf_filtered ("(TYPE_CODE_FUNC)");
4682 break;
4683 case TYPE_CODE_INT:
4684 printf_filtered ("(TYPE_CODE_INT)");
4685 break;
4686 case TYPE_CODE_FLT:
4687 printf_filtered ("(TYPE_CODE_FLT)");
4688 break;
4689 case TYPE_CODE_VOID:
4690 printf_filtered ("(TYPE_CODE_VOID)");
4691 break;
4692 case TYPE_CODE_SET:
4693 printf_filtered ("(TYPE_CODE_SET)");
4694 break;
4695 case TYPE_CODE_RANGE:
4696 printf_filtered ("(TYPE_CODE_RANGE)");
4697 break;
4698 case TYPE_CODE_STRING:
4699 printf_filtered ("(TYPE_CODE_STRING)");
4700 break;
4701 case TYPE_CODE_ERROR:
4702 printf_filtered ("(TYPE_CODE_ERROR)");
4703 break;
4704 case TYPE_CODE_MEMBERPTR:
4705 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4706 break;
4707 case TYPE_CODE_METHODPTR:
4708 printf_filtered ("(TYPE_CODE_METHODPTR)");
4709 break;
4710 case TYPE_CODE_METHOD:
4711 printf_filtered ("(TYPE_CODE_METHOD)");
4712 break;
4713 case TYPE_CODE_REF:
4714 printf_filtered ("(TYPE_CODE_REF)");
4715 break;
4716 case TYPE_CODE_CHAR:
4717 printf_filtered ("(TYPE_CODE_CHAR)");
4718 break;
4719 case TYPE_CODE_BOOL:
4720 printf_filtered ("(TYPE_CODE_BOOL)");
4721 break;
4722 case TYPE_CODE_COMPLEX:
4723 printf_filtered ("(TYPE_CODE_COMPLEX)");
4724 break;
4725 case TYPE_CODE_TYPEDEF:
4726 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4727 break;
4728 case TYPE_CODE_NAMESPACE:
4729 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4730 break;
4731 default:
4732 printf_filtered ("(UNKNOWN TYPE CODE)");
4733 break;
4734 }
4735 puts_filtered ("\n");
4736 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4737 if (TYPE_OBJFILE_OWNED (type))
4738 {
4739 printfi_filtered (spaces, "objfile ");
4740 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4741 }
4742 else
4743 {
4744 printfi_filtered (spaces, "gdbarch ");
4745 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4746 }
4747 printf_filtered ("\n");
4748 printfi_filtered (spaces, "target_type ");
4749 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4750 printf_filtered ("\n");
4751 if (TYPE_TARGET_TYPE (type) != NULL)
4752 {
4753 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4754 }
4755 printfi_filtered (spaces, "pointer_type ");
4756 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4757 printf_filtered ("\n");
4758 printfi_filtered (spaces, "reference_type ");
4759 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4760 printf_filtered ("\n");
4761 printfi_filtered (spaces, "type_chain ");
4762 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4763 printf_filtered ("\n");
4764 printfi_filtered (spaces, "instance_flags 0x%x",
4765 TYPE_INSTANCE_FLAGS (type));
4766 if (TYPE_CONST (type))
4767 {
4768 puts_filtered (" TYPE_CONST");
4769 }
4770 if (TYPE_VOLATILE (type))
4771 {
4772 puts_filtered (" TYPE_VOLATILE");
4773 }
4774 if (TYPE_CODE_SPACE (type))
4775 {
4776 puts_filtered (" TYPE_CODE_SPACE");
4777 }
4778 if (TYPE_DATA_SPACE (type))
4779 {
4780 puts_filtered (" TYPE_DATA_SPACE");
4781 }
4782 if (TYPE_ADDRESS_CLASS_1 (type))
4783 {
4784 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4785 }
4786 if (TYPE_ADDRESS_CLASS_2 (type))
4787 {
4788 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4789 }
4790 if (TYPE_RESTRICT (type))
4791 {
4792 puts_filtered (" TYPE_RESTRICT");
4793 }
4794 if (TYPE_ATOMIC (type))
4795 {
4796 puts_filtered (" TYPE_ATOMIC");
4797 }
4798 puts_filtered ("\n");
4799
4800 printfi_filtered (spaces, "flags");
4801 if (TYPE_UNSIGNED (type))
4802 {
4803 puts_filtered (" TYPE_UNSIGNED");
4804 }
4805 if (TYPE_NOSIGN (type))
4806 {
4807 puts_filtered (" TYPE_NOSIGN");
4808 }
4809 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
4810 {
4811 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
4812 }
4813 if (TYPE_STUB (type))
4814 {
4815 puts_filtered (" TYPE_STUB");
4816 }
4817 if (TYPE_TARGET_STUB (type))
4818 {
4819 puts_filtered (" TYPE_TARGET_STUB");
4820 }
4821 if (TYPE_PROTOTYPED (type))
4822 {
4823 puts_filtered (" TYPE_PROTOTYPED");
4824 }
4825 if (TYPE_INCOMPLETE (type))
4826 {
4827 puts_filtered (" TYPE_INCOMPLETE");
4828 }
4829 if (TYPE_VARARGS (type))
4830 {
4831 puts_filtered (" TYPE_VARARGS");
4832 }
4833 /* This is used for things like AltiVec registers on ppc. Gcc emits
4834 an attribute for the array type, which tells whether or not we
4835 have a vector, instead of a regular array. */
4836 if (TYPE_VECTOR (type))
4837 {
4838 puts_filtered (" TYPE_VECTOR");
4839 }
4840 if (TYPE_FIXED_INSTANCE (type))
4841 {
4842 puts_filtered (" TYPE_FIXED_INSTANCE");
4843 }
4844 if (TYPE_STUB_SUPPORTED (type))
4845 {
4846 puts_filtered (" TYPE_STUB_SUPPORTED");
4847 }
4848 if (TYPE_NOTTEXT (type))
4849 {
4850 puts_filtered (" TYPE_NOTTEXT");
4851 }
4852 puts_filtered ("\n");
4853 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4854 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4855 puts_filtered ("\n");
4856 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4857 {
4858 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4859 printfi_filtered (spaces + 2,
4860 "[%d] enumval %s type ",
4861 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4862 else
4863 printfi_filtered (spaces + 2,
4864 "[%d] bitpos %s bitsize %d type ",
4865 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4866 TYPE_FIELD_BITSIZE (type, idx));
4867 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4868 printf_filtered (" name '%s' (",
4869 TYPE_FIELD_NAME (type, idx) != NULL
4870 ? TYPE_FIELD_NAME (type, idx)
4871 : "<NULL>");
4872 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4873 printf_filtered (")\n");
4874 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4875 {
4876 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4877 }
4878 }
4879 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4880 {
4881 printfi_filtered (spaces, "low %s%s high %s%s\n",
4882 plongest (TYPE_LOW_BOUND (type)),
4883 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4884 plongest (TYPE_HIGH_BOUND (type)),
4885 TYPE_HIGH_BOUND_UNDEFINED (type)
4886 ? " (undefined)" : "");
4887 }
4888
4889 switch (TYPE_SPECIFIC_FIELD (type))
4890 {
4891 case TYPE_SPECIFIC_CPLUS_STUFF:
4892 printfi_filtered (spaces, "cplus_stuff ");
4893 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4894 gdb_stdout);
4895 puts_filtered ("\n");
4896 print_cplus_stuff (type, spaces);
4897 break;
4898
4899 case TYPE_SPECIFIC_GNAT_STUFF:
4900 printfi_filtered (spaces, "gnat_stuff ");
4901 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4902 puts_filtered ("\n");
4903 print_gnat_stuff (type, spaces);
4904 break;
4905
4906 case TYPE_SPECIFIC_FLOATFORMAT:
4907 printfi_filtered (spaces, "floatformat ");
4908 if (TYPE_FLOATFORMAT (type) == NULL
4909 || TYPE_FLOATFORMAT (type)->name == NULL)
4910 puts_filtered ("(null)");
4911 else
4912 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4913 puts_filtered ("\n");
4914 break;
4915
4916 case TYPE_SPECIFIC_FUNC:
4917 printfi_filtered (spaces, "calling_convention %d\n",
4918 TYPE_CALLING_CONVENTION (type));
4919 /* tail_call_list is not printed. */
4920 break;
4921
4922 case TYPE_SPECIFIC_SELF_TYPE:
4923 printfi_filtered (spaces, "self_type ");
4924 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4925 puts_filtered ("\n");
4926 break;
4927 }
4928
4929 if (spaces == 0)
4930 obstack_free (&dont_print_type_obstack, NULL);
4931 }
4932 \f
4933 /* Trivial helpers for the libiberty hash table, for mapping one
4934 type to another. */
4935
4936 struct type_pair : public allocate_on_obstack
4937 {
4938 type_pair (struct type *old_, struct type *newobj_)
4939 : old (old_), newobj (newobj_)
4940 {}
4941
4942 struct type * const old, * const newobj;
4943 };
4944
4945 static hashval_t
4946 type_pair_hash (const void *item)
4947 {
4948 const struct type_pair *pair = (const struct type_pair *) item;
4949
4950 return htab_hash_pointer (pair->old);
4951 }
4952
4953 static int
4954 type_pair_eq (const void *item_lhs, const void *item_rhs)
4955 {
4956 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4957 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4958
4959 return lhs->old == rhs->old;
4960 }
4961
4962 /* Allocate the hash table used by copy_type_recursive to walk
4963 types without duplicates. We use OBJFILE's obstack, because
4964 OBJFILE is about to be deleted. */
4965
4966 htab_t
4967 create_copied_types_hash (struct objfile *objfile)
4968 {
4969 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4970 NULL, &objfile->objfile_obstack,
4971 hashtab_obstack_allocate,
4972 dummy_obstack_deallocate);
4973 }
4974
4975 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4976
4977 static struct dynamic_prop_list *
4978 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4979 struct dynamic_prop_list *list)
4980 {
4981 struct dynamic_prop_list *copy = list;
4982 struct dynamic_prop_list **node_ptr = &copy;
4983
4984 while (*node_ptr != NULL)
4985 {
4986 struct dynamic_prop_list *node_copy;
4987
4988 node_copy = ((struct dynamic_prop_list *)
4989 obstack_copy (objfile_obstack, *node_ptr,
4990 sizeof (struct dynamic_prop_list)));
4991 node_copy->prop = (*node_ptr)->prop;
4992 *node_ptr = node_copy;
4993
4994 node_ptr = &node_copy->next;
4995 }
4996
4997 return copy;
4998 }
4999
5000 /* Recursively copy (deep copy) TYPE, if it is associated with
5001 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5002 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5003 it is not associated with OBJFILE. */
5004
5005 struct type *
5006 copy_type_recursive (struct objfile *objfile,
5007 struct type *type,
5008 htab_t copied_types)
5009 {
5010 void **slot;
5011 struct type *new_type;
5012
5013 if (! TYPE_OBJFILE_OWNED (type))
5014 return type;
5015
5016 /* This type shouldn't be pointing to any types in other objfiles;
5017 if it did, the type might disappear unexpectedly. */
5018 gdb_assert (TYPE_OBJFILE (type) == objfile);
5019
5020 struct type_pair pair (type, nullptr);
5021
5022 slot = htab_find_slot (copied_types, &pair, INSERT);
5023 if (*slot != NULL)
5024 return ((struct type_pair *) *slot)->newobj;
5025
5026 new_type = alloc_type_arch (get_type_arch (type));
5027
5028 /* We must add the new type to the hash table immediately, in case
5029 we encounter this type again during a recursive call below. */
5030 struct type_pair *stored
5031 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5032
5033 *slot = stored;
5034
5035 /* Copy the common fields of types. For the main type, we simply
5036 copy the entire thing and then update specific fields as needed. */
5037 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5038 TYPE_OBJFILE_OWNED (new_type) = 0;
5039 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5040
5041 if (TYPE_NAME (type))
5042 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
5043
5044 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5045 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5046
5047 /* Copy the fields. */
5048 if (TYPE_NFIELDS (type))
5049 {
5050 int i, nfields;
5051
5052 nfields = TYPE_NFIELDS (type);
5053 TYPE_FIELDS (new_type) = (struct field *)
5054 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
5055 for (i = 0; i < nfields; i++)
5056 {
5057 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5058 TYPE_FIELD_ARTIFICIAL (type, i);
5059 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5060 if (TYPE_FIELD_TYPE (type, i))
5061 TYPE_FIELD_TYPE (new_type, i)
5062 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5063 copied_types);
5064 if (TYPE_FIELD_NAME (type, i))
5065 TYPE_FIELD_NAME (new_type, i) =
5066 xstrdup (TYPE_FIELD_NAME (type, i));
5067 switch (TYPE_FIELD_LOC_KIND (type, i))
5068 {
5069 case FIELD_LOC_KIND_BITPOS:
5070 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5071 TYPE_FIELD_BITPOS (type, i));
5072 break;
5073 case FIELD_LOC_KIND_ENUMVAL:
5074 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5075 TYPE_FIELD_ENUMVAL (type, i));
5076 break;
5077 case FIELD_LOC_KIND_PHYSADDR:
5078 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5079 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5080 break;
5081 case FIELD_LOC_KIND_PHYSNAME:
5082 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5083 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5084 i)));
5085 break;
5086 default:
5087 internal_error (__FILE__, __LINE__,
5088 _("Unexpected type field location kind: %d"),
5089 TYPE_FIELD_LOC_KIND (type, i));
5090 }
5091 }
5092 }
5093
5094 /* For range types, copy the bounds information. */
5095 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5096 {
5097 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5098 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5099 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5100 }
5101
5102 if (TYPE_DYN_PROP_LIST (type) != NULL)
5103 TYPE_DYN_PROP_LIST (new_type)
5104 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5105 TYPE_DYN_PROP_LIST (type));
5106
5107
5108 /* Copy pointers to other types. */
5109 if (TYPE_TARGET_TYPE (type))
5110 TYPE_TARGET_TYPE (new_type) =
5111 copy_type_recursive (objfile,
5112 TYPE_TARGET_TYPE (type),
5113 copied_types);
5114
5115 /* Maybe copy the type_specific bits.
5116
5117 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5118 base classes and methods. There's no fundamental reason why we
5119 can't, but at the moment it is not needed. */
5120
5121 switch (TYPE_SPECIFIC_FIELD (type))
5122 {
5123 case TYPE_SPECIFIC_NONE:
5124 break;
5125 case TYPE_SPECIFIC_FUNC:
5126 INIT_FUNC_SPECIFIC (new_type);
5127 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5128 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5129 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5130 break;
5131 case TYPE_SPECIFIC_FLOATFORMAT:
5132 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5133 break;
5134 case TYPE_SPECIFIC_CPLUS_STUFF:
5135 INIT_CPLUS_SPECIFIC (new_type);
5136 break;
5137 case TYPE_SPECIFIC_GNAT_STUFF:
5138 INIT_GNAT_SPECIFIC (new_type);
5139 break;
5140 case TYPE_SPECIFIC_SELF_TYPE:
5141 set_type_self_type (new_type,
5142 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5143 copied_types));
5144 break;
5145 default:
5146 gdb_assert_not_reached ("bad type_specific_kind");
5147 }
5148
5149 return new_type;
5150 }
5151
5152 /* Make a copy of the given TYPE, except that the pointer & reference
5153 types are not preserved.
5154
5155 This function assumes that the given type has an associated objfile.
5156 This objfile is used to allocate the new type. */
5157
5158 struct type *
5159 copy_type (const struct type *type)
5160 {
5161 struct type *new_type;
5162
5163 gdb_assert (TYPE_OBJFILE_OWNED (type));
5164
5165 new_type = alloc_type_copy (type);
5166 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5167 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5168 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5169 sizeof (struct main_type));
5170 if (TYPE_DYN_PROP_LIST (type) != NULL)
5171 TYPE_DYN_PROP_LIST (new_type)
5172 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5173 TYPE_DYN_PROP_LIST (type));
5174
5175 return new_type;
5176 }
5177 \f
5178 /* Helper functions to initialize architecture-specific types. */
5179
5180 /* Allocate a type structure associated with GDBARCH and set its
5181 CODE, LENGTH, and NAME fields. */
5182
5183 struct type *
5184 arch_type (struct gdbarch *gdbarch,
5185 enum type_code code, int bit, const char *name)
5186 {
5187 struct type *type;
5188
5189 type = alloc_type_arch (gdbarch);
5190 set_type_code (type, code);
5191 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5192 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5193
5194 if (name)
5195 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5196
5197 return type;
5198 }
5199
5200 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5201 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5202 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5203
5204 struct type *
5205 arch_integer_type (struct gdbarch *gdbarch,
5206 int bit, int unsigned_p, const char *name)
5207 {
5208 struct type *t;
5209
5210 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5211 if (unsigned_p)
5212 TYPE_UNSIGNED (t) = 1;
5213
5214 return t;
5215 }
5216
5217 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5218 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5219 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5220
5221 struct type *
5222 arch_character_type (struct gdbarch *gdbarch,
5223 int bit, int unsigned_p, const char *name)
5224 {
5225 struct type *t;
5226
5227 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5228 if (unsigned_p)
5229 TYPE_UNSIGNED (t) = 1;
5230
5231 return t;
5232 }
5233
5234 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5235 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5236 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5237
5238 struct type *
5239 arch_boolean_type (struct gdbarch *gdbarch,
5240 int bit, int unsigned_p, const char *name)
5241 {
5242 struct type *t;
5243
5244 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5245 if (unsigned_p)
5246 TYPE_UNSIGNED (t) = 1;
5247
5248 return t;
5249 }
5250
5251 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5252 BIT is the type size in bits; if BIT equals -1, the size is
5253 determined by the floatformat. NAME is the type name. Set the
5254 TYPE_FLOATFORMAT from FLOATFORMATS. */
5255
5256 struct type *
5257 arch_float_type (struct gdbarch *gdbarch,
5258 int bit, const char *name,
5259 const struct floatformat **floatformats)
5260 {
5261 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5262 struct type *t;
5263
5264 bit = verify_floatformat (bit, fmt);
5265 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5266 TYPE_FLOATFORMAT (t) = fmt;
5267
5268 return t;
5269 }
5270
5271 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5272 BIT is the type size in bits. NAME is the type name. */
5273
5274 struct type *
5275 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5276 {
5277 struct type *t;
5278
5279 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5280 return t;
5281 }
5282
5283 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5284 BIT is the pointer type size in bits. NAME is the type name.
5285 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5286 TYPE_UNSIGNED flag. */
5287
5288 struct type *
5289 arch_pointer_type (struct gdbarch *gdbarch,
5290 int bit, const char *name, struct type *target_type)
5291 {
5292 struct type *t;
5293
5294 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5295 TYPE_TARGET_TYPE (t) = target_type;
5296 TYPE_UNSIGNED (t) = 1;
5297 return t;
5298 }
5299
5300 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5301 NAME is the type name. BIT is the size of the flag word in bits. */
5302
5303 struct type *
5304 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5305 {
5306 struct type *type;
5307
5308 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5309 TYPE_UNSIGNED (type) = 1;
5310 TYPE_NFIELDS (type) = 0;
5311 /* Pre-allocate enough space assuming every field is one bit. */
5312 TYPE_FIELDS (type)
5313 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5314
5315 return type;
5316 }
5317
5318 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5319 position BITPOS is called NAME. Pass NAME as "" for fields that
5320 should not be printed. */
5321
5322 void
5323 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5324 struct type *field_type, const char *name)
5325 {
5326 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5327 int field_nr = TYPE_NFIELDS (type);
5328
5329 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5330 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5331 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5332 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5333 gdb_assert (name != NULL);
5334
5335 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5336 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5337 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5338 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5339 ++TYPE_NFIELDS (type);
5340 }
5341
5342 /* Special version of append_flags_type_field to add a flag field.
5343 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5344 position BITPOS is called NAME. */
5345
5346 void
5347 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5348 {
5349 struct gdbarch *gdbarch = get_type_arch (type);
5350
5351 append_flags_type_field (type, bitpos, 1,
5352 builtin_type (gdbarch)->builtin_bool,
5353 name);
5354 }
5355
5356 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5357 specified by CODE) associated with GDBARCH. NAME is the type name. */
5358
5359 struct type *
5360 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5361 enum type_code code)
5362 {
5363 struct type *t;
5364
5365 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5366 t = arch_type (gdbarch, code, 0, NULL);
5367 TYPE_NAME (t) = name;
5368 INIT_CPLUS_SPECIFIC (t);
5369 return t;
5370 }
5371
5372 /* Add new field with name NAME and type FIELD to composite type T.
5373 Do not set the field's position or adjust the type's length;
5374 the caller should do so. Return the new field. */
5375
5376 struct field *
5377 append_composite_type_field_raw (struct type *t, const char *name,
5378 struct type *field)
5379 {
5380 struct field *f;
5381
5382 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5383 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5384 TYPE_NFIELDS (t));
5385 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5386 memset (f, 0, sizeof f[0]);
5387 FIELD_TYPE (f[0]) = field;
5388 FIELD_NAME (f[0]) = name;
5389 return f;
5390 }
5391
5392 /* Add new field with name NAME and type FIELD to composite type T.
5393 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5394
5395 void
5396 append_composite_type_field_aligned (struct type *t, const char *name,
5397 struct type *field, int alignment)
5398 {
5399 struct field *f = append_composite_type_field_raw (t, name, field);
5400
5401 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5402 {
5403 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5404 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5405 }
5406 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5407 {
5408 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5409 if (TYPE_NFIELDS (t) > 1)
5410 {
5411 SET_FIELD_BITPOS (f[0],
5412 (FIELD_BITPOS (f[-1])
5413 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5414 * TARGET_CHAR_BIT)));
5415
5416 if (alignment)
5417 {
5418 int left;
5419
5420 alignment *= TARGET_CHAR_BIT;
5421 left = FIELD_BITPOS (f[0]) % alignment;
5422
5423 if (left)
5424 {
5425 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5426 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5427 }
5428 }
5429 }
5430 }
5431 }
5432
5433 /* Add new field with name NAME and type FIELD to composite type T. */
5434
5435 void
5436 append_composite_type_field (struct type *t, const char *name,
5437 struct type *field)
5438 {
5439 append_composite_type_field_aligned (t, name, field, 0);
5440 }
5441
5442 static struct gdbarch_data *gdbtypes_data;
5443
5444 const struct builtin_type *
5445 builtin_type (struct gdbarch *gdbarch)
5446 {
5447 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5448 }
5449
5450 static void *
5451 gdbtypes_post_init (struct gdbarch *gdbarch)
5452 {
5453 struct builtin_type *builtin_type
5454 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5455
5456 /* Basic types. */
5457 builtin_type->builtin_void
5458 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5459 builtin_type->builtin_char
5460 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5461 !gdbarch_char_signed (gdbarch), "char");
5462 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5463 builtin_type->builtin_signed_char
5464 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5465 0, "signed char");
5466 builtin_type->builtin_unsigned_char
5467 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5468 1, "unsigned char");
5469 builtin_type->builtin_short
5470 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5471 0, "short");
5472 builtin_type->builtin_unsigned_short
5473 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5474 1, "unsigned short");
5475 builtin_type->builtin_int
5476 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5477 0, "int");
5478 builtin_type->builtin_unsigned_int
5479 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5480 1, "unsigned int");
5481 builtin_type->builtin_long
5482 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5483 0, "long");
5484 builtin_type->builtin_unsigned_long
5485 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5486 1, "unsigned long");
5487 builtin_type->builtin_long_long
5488 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5489 0, "long long");
5490 builtin_type->builtin_unsigned_long_long
5491 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5492 1, "unsigned long long");
5493 builtin_type->builtin_half
5494 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5495 "half", gdbarch_half_format (gdbarch));
5496 builtin_type->builtin_float
5497 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5498 "float", gdbarch_float_format (gdbarch));
5499 builtin_type->builtin_double
5500 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5501 "double", gdbarch_double_format (gdbarch));
5502 builtin_type->builtin_long_double
5503 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5504 "long double", gdbarch_long_double_format (gdbarch));
5505 builtin_type->builtin_complex
5506 = init_complex_type ("complex", builtin_type->builtin_float);
5507 builtin_type->builtin_double_complex
5508 = init_complex_type ("double complex", builtin_type->builtin_double);
5509 builtin_type->builtin_string
5510 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5511 builtin_type->builtin_bool
5512 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5513
5514 /* The following three are about decimal floating point types, which
5515 are 32-bits, 64-bits and 128-bits respectively. */
5516 builtin_type->builtin_decfloat
5517 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5518 builtin_type->builtin_decdouble
5519 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5520 builtin_type->builtin_declong
5521 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5522
5523 /* "True" character types. */
5524 builtin_type->builtin_true_char
5525 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5526 builtin_type->builtin_true_unsigned_char
5527 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5528
5529 /* Fixed-size integer types. */
5530 builtin_type->builtin_int0
5531 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5532 builtin_type->builtin_int8
5533 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5534 builtin_type->builtin_uint8
5535 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5536 builtin_type->builtin_int16
5537 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5538 builtin_type->builtin_uint16
5539 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5540 builtin_type->builtin_int24
5541 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5542 builtin_type->builtin_uint24
5543 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5544 builtin_type->builtin_int32
5545 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5546 builtin_type->builtin_uint32
5547 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5548 builtin_type->builtin_int64
5549 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5550 builtin_type->builtin_uint64
5551 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5552 builtin_type->builtin_int128
5553 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5554 builtin_type->builtin_uint128
5555 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5556 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5557 TYPE_INSTANCE_FLAG_NOTTEXT;
5558 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5559 TYPE_INSTANCE_FLAG_NOTTEXT;
5560
5561 /* Wide character types. */
5562 builtin_type->builtin_char16
5563 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5564 builtin_type->builtin_char32
5565 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5566 builtin_type->builtin_wchar
5567 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5568 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5569
5570 /* Default data/code pointer types. */
5571 builtin_type->builtin_data_ptr
5572 = lookup_pointer_type (builtin_type->builtin_void);
5573 builtin_type->builtin_func_ptr
5574 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5575 builtin_type->builtin_func_func
5576 = lookup_function_type (builtin_type->builtin_func_ptr);
5577
5578 /* This type represents a GDB internal function. */
5579 builtin_type->internal_fn
5580 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5581 "<internal function>");
5582
5583 /* This type represents an xmethod. */
5584 builtin_type->xmethod
5585 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5586
5587 return builtin_type;
5588 }
5589
5590 /* This set of objfile-based types is intended to be used by symbol
5591 readers as basic types. */
5592
5593 static const struct objfile_key<struct objfile_type,
5594 gdb::noop_deleter<struct objfile_type>>
5595 objfile_type_data;
5596
5597 const struct objfile_type *
5598 objfile_type (struct objfile *objfile)
5599 {
5600 struct gdbarch *gdbarch;
5601 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5602
5603 if (objfile_type)
5604 return objfile_type;
5605
5606 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5607 1, struct objfile_type);
5608
5609 /* Use the objfile architecture to determine basic type properties. */
5610 gdbarch = get_objfile_arch (objfile);
5611
5612 /* Basic types. */
5613 objfile_type->builtin_void
5614 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5615 objfile_type->builtin_char
5616 = init_integer_type (objfile, TARGET_CHAR_BIT,
5617 !gdbarch_char_signed (gdbarch), "char");
5618 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5619 objfile_type->builtin_signed_char
5620 = init_integer_type (objfile, TARGET_CHAR_BIT,
5621 0, "signed char");
5622 objfile_type->builtin_unsigned_char
5623 = init_integer_type (objfile, TARGET_CHAR_BIT,
5624 1, "unsigned char");
5625 objfile_type->builtin_short
5626 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5627 0, "short");
5628 objfile_type->builtin_unsigned_short
5629 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5630 1, "unsigned short");
5631 objfile_type->builtin_int
5632 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5633 0, "int");
5634 objfile_type->builtin_unsigned_int
5635 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5636 1, "unsigned int");
5637 objfile_type->builtin_long
5638 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5639 0, "long");
5640 objfile_type->builtin_unsigned_long
5641 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5642 1, "unsigned long");
5643 objfile_type->builtin_long_long
5644 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5645 0, "long long");
5646 objfile_type->builtin_unsigned_long_long
5647 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5648 1, "unsigned long long");
5649 objfile_type->builtin_float
5650 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5651 "float", gdbarch_float_format (gdbarch));
5652 objfile_type->builtin_double
5653 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5654 "double", gdbarch_double_format (gdbarch));
5655 objfile_type->builtin_long_double
5656 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5657 "long double", gdbarch_long_double_format (gdbarch));
5658
5659 /* This type represents a type that was unrecognized in symbol read-in. */
5660 objfile_type->builtin_error
5661 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5662
5663 /* The following set of types is used for symbols with no
5664 debug information. */
5665 objfile_type->nodebug_text_symbol
5666 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5667 "<text variable, no debug info>");
5668 objfile_type->nodebug_text_gnu_ifunc_symbol
5669 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5670 "<text gnu-indirect-function variable, no debug info>");
5671 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5672 objfile_type->nodebug_got_plt_symbol
5673 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5674 "<text from jump slot in .got.plt, no debug info>",
5675 objfile_type->nodebug_text_symbol);
5676 objfile_type->nodebug_data_symbol
5677 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5678 objfile_type->nodebug_unknown_symbol
5679 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5680 objfile_type->nodebug_tls_symbol
5681 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5682
5683 /* NOTE: on some targets, addresses and pointers are not necessarily
5684 the same.
5685
5686 The upshot is:
5687 - gdb's `struct type' always describes the target's
5688 representation.
5689 - gdb's `struct value' objects should always hold values in
5690 target form.
5691 - gdb's CORE_ADDR values are addresses in the unified virtual
5692 address space that the assembler and linker work with. Thus,
5693 since target_read_memory takes a CORE_ADDR as an argument, it
5694 can access any memory on the target, even if the processor has
5695 separate code and data address spaces.
5696
5697 In this context, objfile_type->builtin_core_addr is a bit odd:
5698 it's a target type for a value the target will never see. It's
5699 only used to hold the values of (typeless) linker symbols, which
5700 are indeed in the unified virtual address space. */
5701
5702 objfile_type->builtin_core_addr
5703 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5704 "__CORE_ADDR");
5705
5706 objfile_type_data.set (objfile, objfile_type);
5707 return objfile_type;
5708 }
5709
5710 void _initialize_gdbtypes ();
5711 void
5712 _initialize_gdbtypes ()
5713 {
5714 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5715
5716 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5717 _("Set debugging of C++ overloading."),
5718 _("Show debugging of C++ overloading."),
5719 _("When enabled, ranking of the "
5720 "functions is displayed."),
5721 NULL,
5722 show_overload_debug,
5723 &setdebuglist, &showdebuglist);
5724
5725 /* Add user knob for controlling resolution of opaque types. */
5726 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5727 &opaque_type_resolution,
5728 _("Set resolution of opaque struct/class/union"
5729 " types (if set before loading symbols)."),
5730 _("Show resolution of opaque struct/class/union"
5731 " types (if set before loading symbols)."),
5732 NULL, NULL,
5733 show_opaque_type_resolution,
5734 &setlist, &showlist);
5735
5736 /* Add an option to permit non-strict type checking. */
5737 add_setshow_boolean_cmd ("type", class_support,
5738 &strict_type_checking,
5739 _("Set strict type checking."),
5740 _("Show strict type checking."),
5741 NULL, NULL,
5742 show_strict_type_checking,
5743 &setchecklist, &showchecklist);
5744 }