]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.c
gdb: remove TYPE_FIELD macro
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include <algorithm>
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank CV_CONVERSION_BADNESS = {1, 0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68
69 /* Floatformat pairs. */
70 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73 };
74 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77 };
78 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81 };
82 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85 };
86 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89 };
90 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93 };
94 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97 };
98 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101 };
102 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105 };
106 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109 };
110 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113 };
114 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
117 };
118
119 /* Should opaque types be resolved? */
120
121 static bool opaque_type_resolution = true;
122
123 /* See gdbtypes.h. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static bool strict_type_checking = true;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 type->set_code (TYPE_CODE_UNDEF);
186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
187
188 return type;
189 }
190
191 /* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
193 on the obstack associated with GDBARCH. */
194
195 struct type *
196 alloc_type_arch (struct gdbarch *gdbarch)
197 {
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
204 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
205 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 type->set_code (TYPE_CODE_UNDEF);
213 TYPE_CHAIN (type) = type; /* Chain back to itself. */
214
215 return type;
216 }
217
218 /* If TYPE is objfile-associated, allocate a new type structure
219 associated with the same objfile. If TYPE is gdbarch-associated,
220 allocate a new type structure associated with the same gdbarch. */
221
222 struct type *
223 alloc_type_copy (const struct type *type)
224 {
225 if (TYPE_OBJFILE_OWNED (type))
226 return alloc_type (TYPE_OWNER (type).objfile);
227 else
228 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229 }
230
231 /* If TYPE is gdbarch-associated, return that architecture.
232 If TYPE is objfile-associated, return that objfile's architecture. */
233
234 struct gdbarch *
235 get_type_arch (const struct type *type)
236 {
237 struct gdbarch *arch;
238
239 if (TYPE_OBJFILE_OWNED (type))
240 arch = TYPE_OWNER (type).objfile->arch ();
241 else
242 arch = TYPE_OWNER (type).gdbarch;
243
244 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
245 a gdbarch, however, this is very rare, and even then, in most cases
246 that get_type_arch is called, we assume that a non-NULL value is
247 returned. */
248 gdb_assert (arch != NULL);
249 return arch;
250 }
251
252 /* See gdbtypes.h. */
253
254 struct type *
255 get_target_type (struct type *type)
256 {
257 if (type != NULL)
258 {
259 type = TYPE_TARGET_TYPE (type);
260 if (type != NULL)
261 type = check_typedef (type);
262 }
263
264 return type;
265 }
266
267 /* See gdbtypes.h. */
268
269 unsigned int
270 type_length_units (struct type *type)
271 {
272 struct gdbarch *arch = get_type_arch (type);
273 int unit_size = gdbarch_addressable_memory_unit_size (arch);
274
275 return TYPE_LENGTH (type) / unit_size;
276 }
277
278 /* Alloc a new type instance structure, fill it with some defaults,
279 and point it at OLDTYPE. Allocate the new type instance from the
280 same place as OLDTYPE. */
281
282 static struct type *
283 alloc_type_instance (struct type *oldtype)
284 {
285 struct type *type;
286
287 /* Allocate the structure. */
288
289 if (! TYPE_OBJFILE_OWNED (oldtype))
290 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
291 else
292 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
293 struct type);
294
295 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
296
297 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
298
299 return type;
300 }
301
302 /* Clear all remnants of the previous type at TYPE, in preparation for
303 replacing it with something else. Preserve owner information. */
304
305 static void
306 smash_type (struct type *type)
307 {
308 int objfile_owned = TYPE_OBJFILE_OWNED (type);
309 union type_owner owner = TYPE_OWNER (type);
310
311 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
312
313 /* Restore owner information. */
314 TYPE_OBJFILE_OWNED (type) = objfile_owned;
315 TYPE_OWNER (type) = owner;
316
317 /* For now, delete the rings. */
318 TYPE_CHAIN (type) = type;
319
320 /* For now, leave the pointer/reference types alone. */
321 }
322
323 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
324 to a pointer to memory where the pointer type should be stored.
325 If *TYPEPTR is zero, update it to point to the pointer type we return.
326 We allocate new memory if needed. */
327
328 struct type *
329 make_pointer_type (struct type *type, struct type **typeptr)
330 {
331 struct type *ntype; /* New type */
332 struct type *chain;
333
334 ntype = TYPE_POINTER_TYPE (type);
335
336 if (ntype)
337 {
338 if (typeptr == 0)
339 return ntype; /* Don't care about alloc,
340 and have new type. */
341 else if (*typeptr == 0)
342 {
343 *typeptr = ntype; /* Tracking alloc, and have new type. */
344 return ntype;
345 }
346 }
347
348 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
349 {
350 ntype = alloc_type_copy (type);
351 if (typeptr)
352 *typeptr = ntype;
353 }
354 else /* We have storage, but need to reset it. */
355 {
356 ntype = *typeptr;
357 chain = TYPE_CHAIN (ntype);
358 smash_type (ntype);
359 TYPE_CHAIN (ntype) = chain;
360 }
361
362 TYPE_TARGET_TYPE (ntype) = type;
363 TYPE_POINTER_TYPE (type) = ntype;
364
365 /* FIXME! Assumes the machine has only one representation for pointers! */
366
367 TYPE_LENGTH (ntype)
368 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
369 ntype->set_code (TYPE_CODE_PTR);
370
371 /* Mark pointers as unsigned. The target converts between pointers
372 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
373 gdbarch_address_to_pointer. */
374 TYPE_UNSIGNED (ntype) = 1;
375
376 /* Update the length of all the other variants of this type. */
377 chain = TYPE_CHAIN (ntype);
378 while (chain != ntype)
379 {
380 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
381 chain = TYPE_CHAIN (chain);
382 }
383
384 return ntype;
385 }
386
387 /* Given a type TYPE, return a type of pointers to that type.
388 May need to construct such a type if this is the first use. */
389
390 struct type *
391 lookup_pointer_type (struct type *type)
392 {
393 return make_pointer_type (type, (struct type **) 0);
394 }
395
396 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
397 points to a pointer to memory where the reference type should be
398 stored. If *TYPEPTR is zero, update it to point to the reference
399 type we return. We allocate new memory if needed. REFCODE denotes
400 the kind of reference type to lookup (lvalue or rvalue reference). */
401
402 struct type *
403 make_reference_type (struct type *type, struct type **typeptr,
404 enum type_code refcode)
405 {
406 struct type *ntype; /* New type */
407 struct type **reftype;
408 struct type *chain;
409
410 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
411
412 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
413 : TYPE_RVALUE_REFERENCE_TYPE (type));
414
415 if (ntype)
416 {
417 if (typeptr == 0)
418 return ntype; /* Don't care about alloc,
419 and have new type. */
420 else if (*typeptr == 0)
421 {
422 *typeptr = ntype; /* Tracking alloc, and have new type. */
423 return ntype;
424 }
425 }
426
427 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
428 {
429 ntype = alloc_type_copy (type);
430 if (typeptr)
431 *typeptr = ntype;
432 }
433 else /* We have storage, but need to reset it. */
434 {
435 ntype = *typeptr;
436 chain = TYPE_CHAIN (ntype);
437 smash_type (ntype);
438 TYPE_CHAIN (ntype) = chain;
439 }
440
441 TYPE_TARGET_TYPE (ntype) = type;
442 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
443 : &TYPE_RVALUE_REFERENCE_TYPE (type));
444
445 *reftype = ntype;
446
447 /* FIXME! Assume the machine has only one representation for
448 references, and that it matches the (only) representation for
449 pointers! */
450
451 TYPE_LENGTH (ntype) =
452 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
453 ntype->set_code (refcode);
454
455 *reftype = ntype;
456
457 /* Update the length of all the other variants of this type. */
458 chain = TYPE_CHAIN (ntype);
459 while (chain != ntype)
460 {
461 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
462 chain = TYPE_CHAIN (chain);
463 }
464
465 return ntype;
466 }
467
468 /* Same as above, but caller doesn't care about memory allocation
469 details. */
470
471 struct type *
472 lookup_reference_type (struct type *type, enum type_code refcode)
473 {
474 return make_reference_type (type, (struct type **) 0, refcode);
475 }
476
477 /* Lookup the lvalue reference type for the type TYPE. */
478
479 struct type *
480 lookup_lvalue_reference_type (struct type *type)
481 {
482 return lookup_reference_type (type, TYPE_CODE_REF);
483 }
484
485 /* Lookup the rvalue reference type for the type TYPE. */
486
487 struct type *
488 lookup_rvalue_reference_type (struct type *type)
489 {
490 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
491 }
492
493 /* Lookup a function type that returns type TYPE. TYPEPTR, if
494 nonzero, points to a pointer to memory where the function type
495 should be stored. If *TYPEPTR is zero, update it to point to the
496 function type we return. We allocate new memory if needed. */
497
498 struct type *
499 make_function_type (struct type *type, struct type **typeptr)
500 {
501 struct type *ntype; /* New type */
502
503 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
504 {
505 ntype = alloc_type_copy (type);
506 if (typeptr)
507 *typeptr = ntype;
508 }
509 else /* We have storage, but need to reset it. */
510 {
511 ntype = *typeptr;
512 smash_type (ntype);
513 }
514
515 TYPE_TARGET_TYPE (ntype) = type;
516
517 TYPE_LENGTH (ntype) = 1;
518 ntype->set_code (TYPE_CODE_FUNC);
519
520 INIT_FUNC_SPECIFIC (ntype);
521
522 return ntype;
523 }
524
525 /* Given a type TYPE, return a type of functions that return that type.
526 May need to construct such a type if this is the first use. */
527
528 struct type *
529 lookup_function_type (struct type *type)
530 {
531 return make_function_type (type, (struct type **) 0);
532 }
533
534 /* Given a type TYPE and argument types, return the appropriate
535 function type. If the final type in PARAM_TYPES is NULL, make a
536 varargs function. */
537
538 struct type *
539 lookup_function_type_with_arguments (struct type *type,
540 int nparams,
541 struct type **param_types)
542 {
543 struct type *fn = make_function_type (type, (struct type **) 0);
544 int i;
545
546 if (nparams > 0)
547 {
548 if (param_types[nparams - 1] == NULL)
549 {
550 --nparams;
551 TYPE_VARARGS (fn) = 1;
552 }
553 else if (check_typedef (param_types[nparams - 1])->code ()
554 == TYPE_CODE_VOID)
555 {
556 --nparams;
557 /* Caller should have ensured this. */
558 gdb_assert (nparams == 0);
559 TYPE_PROTOTYPED (fn) = 1;
560 }
561 else
562 TYPE_PROTOTYPED (fn) = 1;
563 }
564
565 fn->set_num_fields (nparams);
566 fn->set_fields
567 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
568 for (i = 0; i < nparams; ++i)
569 TYPE_FIELD_TYPE (fn, i) = param_types[i];
570
571 return fn;
572 }
573
574 /* Identify address space identifier by name --
575 return the integer flag defined in gdbtypes.h. */
576
577 int
578 address_space_name_to_int (struct gdbarch *gdbarch,
579 const char *space_identifier)
580 {
581 int type_flags;
582
583 /* Check for known address space delimiters. */
584 if (!strcmp (space_identifier, "code"))
585 return TYPE_INSTANCE_FLAG_CODE_SPACE;
586 else if (!strcmp (space_identifier, "data"))
587 return TYPE_INSTANCE_FLAG_DATA_SPACE;
588 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
589 && gdbarch_address_class_name_to_type_flags (gdbarch,
590 space_identifier,
591 &type_flags))
592 return type_flags;
593 else
594 error (_("Unknown address space specifier: \"%s\""), space_identifier);
595 }
596
597 /* Identify address space identifier by integer flag as defined in
598 gdbtypes.h -- return the string version of the adress space name. */
599
600 const char *
601 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
602 {
603 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
604 return "code";
605 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
606 return "data";
607 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
608 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
609 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
610 else
611 return NULL;
612 }
613
614 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
615
616 If STORAGE is non-NULL, create the new type instance there.
617 STORAGE must be in the same obstack as TYPE. */
618
619 static struct type *
620 make_qualified_type (struct type *type, int new_flags,
621 struct type *storage)
622 {
623 struct type *ntype;
624
625 ntype = type;
626 do
627 {
628 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
629 return ntype;
630 ntype = TYPE_CHAIN (ntype);
631 }
632 while (ntype != type);
633
634 /* Create a new type instance. */
635 if (storage == NULL)
636 ntype = alloc_type_instance (type);
637 else
638 {
639 /* If STORAGE was provided, it had better be in the same objfile
640 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
641 if one objfile is freed and the other kept, we'd have
642 dangling pointers. */
643 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
644
645 ntype = storage;
646 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
647 TYPE_CHAIN (ntype) = ntype;
648 }
649
650 /* Pointers or references to the original type are not relevant to
651 the new type. */
652 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
653 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
654
655 /* Chain the new qualified type to the old type. */
656 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
657 TYPE_CHAIN (type) = ntype;
658
659 /* Now set the instance flags and return the new type. */
660 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
661
662 /* Set length of new type to that of the original type. */
663 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
664
665 return ntype;
666 }
667
668 /* Make an address-space-delimited variant of a type -- a type that
669 is identical to the one supplied except that it has an address
670 space attribute attached to it (such as "code" or "data").
671
672 The space attributes "code" and "data" are for Harvard
673 architectures. The address space attributes are for architectures
674 which have alternately sized pointers or pointers with alternate
675 representations. */
676
677 struct type *
678 make_type_with_address_space (struct type *type, int space_flag)
679 {
680 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
681 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
682 | TYPE_INSTANCE_FLAG_DATA_SPACE
683 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
684 | space_flag);
685
686 return make_qualified_type (type, new_flags, NULL);
687 }
688
689 /* Make a "c-v" variant of a type -- a type that is identical to the
690 one supplied except that it may have const or volatile attributes
691 CNST is a flag for setting the const attribute
692 VOLTL is a flag for setting the volatile attribute
693 TYPE is the base type whose variant we are creating.
694
695 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
696 storage to hold the new qualified type; *TYPEPTR and TYPE must be
697 in the same objfile. Otherwise, allocate fresh memory for the new
698 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
699 new type we construct. */
700
701 struct type *
702 make_cv_type (int cnst, int voltl,
703 struct type *type,
704 struct type **typeptr)
705 {
706 struct type *ntype; /* New type */
707
708 int new_flags = (TYPE_INSTANCE_FLAGS (type)
709 & ~(TYPE_INSTANCE_FLAG_CONST
710 | TYPE_INSTANCE_FLAG_VOLATILE));
711
712 if (cnst)
713 new_flags |= TYPE_INSTANCE_FLAG_CONST;
714
715 if (voltl)
716 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
717
718 if (typeptr && *typeptr != NULL)
719 {
720 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
721 a C-V variant chain that threads across objfiles: if one
722 objfile gets freed, then the other has a broken C-V chain.
723
724 This code used to try to copy over the main type from TYPE to
725 *TYPEPTR if they were in different objfiles, but that's
726 wrong, too: TYPE may have a field list or member function
727 lists, which refer to types of their own, etc. etc. The
728 whole shebang would need to be copied over recursively; you
729 can't have inter-objfile pointers. The only thing to do is
730 to leave stub types as stub types, and look them up afresh by
731 name each time you encounter them. */
732 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
733 }
734
735 ntype = make_qualified_type (type, new_flags,
736 typeptr ? *typeptr : NULL);
737
738 if (typeptr != NULL)
739 *typeptr = ntype;
740
741 return ntype;
742 }
743
744 /* Make a 'restrict'-qualified version of TYPE. */
745
746 struct type *
747 make_restrict_type (struct type *type)
748 {
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 | TYPE_INSTANCE_FLAG_RESTRICT),
752 NULL);
753 }
754
755 /* Make a type without const, volatile, or restrict. */
756
757 struct type *
758 make_unqualified_type (struct type *type)
759 {
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 & ~(TYPE_INSTANCE_FLAG_CONST
763 | TYPE_INSTANCE_FLAG_VOLATILE
764 | TYPE_INSTANCE_FLAG_RESTRICT)),
765 NULL);
766 }
767
768 /* Make a '_Atomic'-qualified version of TYPE. */
769
770 struct type *
771 make_atomic_type (struct type *type)
772 {
773 return make_qualified_type (type,
774 (TYPE_INSTANCE_FLAGS (type)
775 | TYPE_INSTANCE_FLAG_ATOMIC),
776 NULL);
777 }
778
779 /* Replace the contents of ntype with the type *type. This changes the
780 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
781 the changes are propogated to all types in the TYPE_CHAIN.
782
783 In order to build recursive types, it's inevitable that we'll need
784 to update types in place --- but this sort of indiscriminate
785 smashing is ugly, and needs to be replaced with something more
786 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
787 clear if more steps are needed. */
788
789 void
790 replace_type (struct type *ntype, struct type *type)
791 {
792 struct type *chain;
793
794 /* These two types had better be in the same objfile. Otherwise,
795 the assignment of one type's main type structure to the other
796 will produce a type with references to objects (names; field
797 lists; etc.) allocated on an objfile other than its own. */
798 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
799
800 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
801
802 /* The type length is not a part of the main type. Update it for
803 each type on the variant chain. */
804 chain = ntype;
805 do
806 {
807 /* Assert that this element of the chain has no address-class bits
808 set in its flags. Such type variants might have type lengths
809 which are supposed to be different from the non-address-class
810 variants. This assertion shouldn't ever be triggered because
811 symbol readers which do construct address-class variants don't
812 call replace_type(). */
813 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
814
815 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
816 chain = TYPE_CHAIN (chain);
817 }
818 while (ntype != chain);
819
820 /* Assert that the two types have equivalent instance qualifiers.
821 This should be true for at least all of our debug readers. */
822 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
823 }
824
825 /* Implement direct support for MEMBER_TYPE in GNU C++.
826 May need to construct such a type if this is the first use.
827 The TYPE is the type of the member. The DOMAIN is the type
828 of the aggregate that the member belongs to. */
829
830 struct type *
831 lookup_memberptr_type (struct type *type, struct type *domain)
832 {
833 struct type *mtype;
834
835 mtype = alloc_type_copy (type);
836 smash_to_memberptr_type (mtype, domain, type);
837 return mtype;
838 }
839
840 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
841
842 struct type *
843 lookup_methodptr_type (struct type *to_type)
844 {
845 struct type *mtype;
846
847 mtype = alloc_type_copy (to_type);
848 smash_to_methodptr_type (mtype, to_type);
849 return mtype;
850 }
851
852 /* Allocate a stub method whose return type is TYPE. This apparently
853 happens for speed of symbol reading, since parsing out the
854 arguments to the method is cpu-intensive, the way we are doing it.
855 So, we will fill in arguments later. This always returns a fresh
856 type. */
857
858 struct type *
859 allocate_stub_method (struct type *type)
860 {
861 struct type *mtype;
862
863 mtype = alloc_type_copy (type);
864 mtype->set_code (TYPE_CODE_METHOD);
865 TYPE_LENGTH (mtype) = 1;
866 TYPE_STUB (mtype) = 1;
867 TYPE_TARGET_TYPE (mtype) = type;
868 /* TYPE_SELF_TYPE (mtype) = unknown yet */
869 return mtype;
870 }
871
872 /* See gdbtypes.h. */
873
874 bool
875 operator== (const dynamic_prop &l, const dynamic_prop &r)
876 {
877 if (l.kind != r.kind)
878 return false;
879
880 switch (l.kind)
881 {
882 case PROP_UNDEFINED:
883 return true;
884 case PROP_CONST:
885 return l.data.const_val == r.data.const_val;
886 case PROP_ADDR_OFFSET:
887 case PROP_LOCEXPR:
888 case PROP_LOCLIST:
889 return l.data.baton == r.data.baton;
890 case PROP_VARIANT_PARTS:
891 return l.data.variant_parts == r.data.variant_parts;
892 case PROP_TYPE:
893 return l.data.original_type == r.data.original_type;
894 }
895
896 gdb_assert_not_reached ("unhandled dynamic_prop kind");
897 }
898
899 /* See gdbtypes.h. */
900
901 bool
902 operator== (const range_bounds &l, const range_bounds &r)
903 {
904 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
905
906 return (FIELD_EQ (low)
907 && FIELD_EQ (high)
908 && FIELD_EQ (flag_upper_bound_is_count)
909 && FIELD_EQ (flag_bound_evaluated)
910 && FIELD_EQ (bias));
911
912 #undef FIELD_EQ
913 }
914
915 /* Create a range type with a dynamic range from LOW_BOUND to
916 HIGH_BOUND, inclusive. See create_range_type for further details. */
917
918 struct type *
919 create_range_type (struct type *result_type, struct type *index_type,
920 const struct dynamic_prop *low_bound,
921 const struct dynamic_prop *high_bound,
922 LONGEST bias)
923 {
924 /* The INDEX_TYPE should be a type capable of holding the upper and lower
925 bounds, as such a zero sized, or void type makes no sense. */
926 gdb_assert (index_type->code () != TYPE_CODE_VOID);
927 gdb_assert (TYPE_LENGTH (index_type) > 0);
928
929 if (result_type == NULL)
930 result_type = alloc_type_copy (index_type);
931 result_type->set_code (TYPE_CODE_RANGE);
932 TYPE_TARGET_TYPE (result_type) = index_type;
933 if (TYPE_STUB (index_type))
934 TYPE_TARGET_STUB (result_type) = 1;
935 else
936 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
937
938 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
939 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
940 TYPE_RANGE_DATA (result_type)->low = *low_bound;
941 TYPE_RANGE_DATA (result_type)->high = *high_bound;
942 TYPE_RANGE_DATA (result_type)->bias = bias;
943
944 /* Initialize the stride to be a constant, the value will already be zero
945 thanks to the use of TYPE_ZALLOC above. */
946 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
947
948 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
949 TYPE_UNSIGNED (result_type) = 1;
950
951 /* Ada allows the declaration of range types whose upper bound is
952 less than the lower bound, so checking the lower bound is not
953 enough. Make sure we do not mark a range type whose upper bound
954 is negative as unsigned. */
955 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
956 TYPE_UNSIGNED (result_type) = 0;
957
958 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
959 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
960
961 return result_type;
962 }
963
964 /* See gdbtypes.h. */
965
966 struct type *
967 create_range_type_with_stride (struct type *result_type,
968 struct type *index_type,
969 const struct dynamic_prop *low_bound,
970 const struct dynamic_prop *high_bound,
971 LONGEST bias,
972 const struct dynamic_prop *stride,
973 bool byte_stride_p)
974 {
975 result_type = create_range_type (result_type, index_type, low_bound,
976 high_bound, bias);
977
978 gdb_assert (stride != nullptr);
979 TYPE_RANGE_DATA (result_type)->stride = *stride;
980 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
981
982 return result_type;
983 }
984
985
986
987 /* Create a range type using either a blank type supplied in
988 RESULT_TYPE, or creating a new type, inheriting the objfile from
989 INDEX_TYPE.
990
991 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
992 to HIGH_BOUND, inclusive.
993
994 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
995 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
996
997 struct type *
998 create_static_range_type (struct type *result_type, struct type *index_type,
999 LONGEST low_bound, LONGEST high_bound)
1000 {
1001 struct dynamic_prop low, high;
1002
1003 low.kind = PROP_CONST;
1004 low.data.const_val = low_bound;
1005
1006 high.kind = PROP_CONST;
1007 high.data.const_val = high_bound;
1008
1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1010
1011 return result_type;
1012 }
1013
1014 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1016
1017 static bool
1018 has_static_range (const struct range_bounds *bounds)
1019 {
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
1022 return (bounds->low.kind == PROP_CONST
1023 && bounds->high.kind == PROP_CONST
1024 && bounds->stride.kind == PROP_CONST);
1025 }
1026
1027
1028 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1029 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1030 bounds will fit in LONGEST), or -1 otherwise. */
1031
1032 int
1033 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1034 {
1035 type = check_typedef (type);
1036 switch (type->code ())
1037 {
1038 case TYPE_CODE_RANGE:
1039 *lowp = TYPE_LOW_BOUND (type);
1040 *highp = TYPE_HIGH_BOUND (type);
1041 return 1;
1042 case TYPE_CODE_ENUM:
1043 if (type->num_fields () > 0)
1044 {
1045 /* The enums may not be sorted by value, so search all
1046 entries. */
1047 int i;
1048
1049 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1050 for (i = 0; i < type->num_fields (); i++)
1051 {
1052 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1053 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1054 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1055 *highp = TYPE_FIELD_ENUMVAL (type, i);
1056 }
1057
1058 /* Set unsigned indicator if warranted. */
1059 if (*lowp >= 0)
1060 {
1061 TYPE_UNSIGNED (type) = 1;
1062 }
1063 }
1064 else
1065 {
1066 *lowp = 0;
1067 *highp = -1;
1068 }
1069 return 0;
1070 case TYPE_CODE_BOOL:
1071 *lowp = 0;
1072 *highp = 1;
1073 return 0;
1074 case TYPE_CODE_INT:
1075 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1076 return -1;
1077 if (!TYPE_UNSIGNED (type))
1078 {
1079 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1080 *highp = -*lowp - 1;
1081 return 0;
1082 }
1083 /* fall through */
1084 case TYPE_CODE_CHAR:
1085 *lowp = 0;
1086 /* This round-about calculation is to avoid shifting by
1087 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1088 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1089 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1090 *highp = (*highp - 1) | *highp;
1091 return 0;
1092 default:
1093 return -1;
1094 }
1095 }
1096
1097 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1098 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1099 Save the high bound into HIGH_BOUND if not NULL.
1100
1101 Return 1 if the operation was successful. Return zero otherwise,
1102 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1103
1104 We now simply use get_discrete_bounds call to get the values
1105 of the low and high bounds.
1106 get_discrete_bounds can return three values:
1107 1, meaning that index is a range,
1108 0, meaning that index is a discrete type,
1109 or -1 for failure. */
1110
1111 int
1112 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1113 {
1114 struct type *index = TYPE_INDEX_TYPE (type);
1115 LONGEST low = 0;
1116 LONGEST high = 0;
1117 int res;
1118
1119 if (index == NULL)
1120 return 0;
1121
1122 res = get_discrete_bounds (index, &low, &high);
1123 if (res == -1)
1124 return 0;
1125
1126 /* Check if the array bounds are undefined. */
1127 if (res == 1
1128 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1129 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1130 return 0;
1131
1132 if (low_bound)
1133 *low_bound = low;
1134
1135 if (high_bound)
1136 *high_bound = high;
1137
1138 return 1;
1139 }
1140
1141 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1142 representation of a value of this type, save the corresponding
1143 position number in POS.
1144
1145 Its differs from VAL only in the case of enumeration types. In
1146 this case, the position number of the value of the first listed
1147 enumeration literal is zero; the position number of the value of
1148 each subsequent enumeration literal is one more than that of its
1149 predecessor in the list.
1150
1151 Return 1 if the operation was successful. Return zero otherwise,
1152 in which case the value of POS is unmodified.
1153 */
1154
1155 int
1156 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1157 {
1158 if (type->code () == TYPE_CODE_ENUM)
1159 {
1160 int i;
1161
1162 for (i = 0; i < type->num_fields (); i += 1)
1163 {
1164 if (val == TYPE_FIELD_ENUMVAL (type, i))
1165 {
1166 *pos = i;
1167 return 1;
1168 }
1169 }
1170 /* Invalid enumeration value. */
1171 return 0;
1172 }
1173 else
1174 {
1175 *pos = val;
1176 return 1;
1177 }
1178 }
1179
1180 /* If the array TYPE has static bounds calculate and update its
1181 size, then return true. Otherwise return false and leave TYPE
1182 unchanged. */
1183
1184 static bool
1185 update_static_array_size (struct type *type)
1186 {
1187 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1188
1189 struct type *range_type = TYPE_INDEX_TYPE (type);
1190
1191 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1192 && has_static_range (TYPE_RANGE_DATA (range_type))
1193 && (!type_not_associated (type)
1194 && !type_not_allocated (type)))
1195 {
1196 LONGEST low_bound, high_bound;
1197 int stride;
1198 struct type *element_type;
1199
1200 /* If the array itself doesn't provide a stride value then take
1201 whatever stride the range provides. Don't update BIT_STRIDE as
1202 we don't want to place the stride value from the range into this
1203 arrays bit size field. */
1204 stride = TYPE_FIELD_BITSIZE (type, 0);
1205 if (stride == 0)
1206 stride = TYPE_BIT_STRIDE (range_type);
1207
1208 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1209 low_bound = high_bound = 0;
1210 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1211 /* Be careful when setting the array length. Ada arrays can be
1212 empty arrays with the high_bound being smaller than the low_bound.
1213 In such cases, the array length should be zero. */
1214 if (high_bound < low_bound)
1215 TYPE_LENGTH (type) = 0;
1216 else if (stride != 0)
1217 {
1218 /* Ensure that the type length is always positive, even in the
1219 case where (for example in Fortran) we have a negative
1220 stride. It is possible to have a single element array with a
1221 negative stride in Fortran (this doesn't mean anything
1222 special, it's still just a single element array) so do
1223 consider that case when touching this code. */
1224 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1225 TYPE_LENGTH (type)
1226 = ((std::abs (stride) * element_count) + 7) / 8;
1227 }
1228 else
1229 TYPE_LENGTH (type) =
1230 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1231
1232 return true;
1233 }
1234
1235 return false;
1236 }
1237
1238 /* Create an array type using either a blank type supplied in
1239 RESULT_TYPE, or creating a new type, inheriting the objfile from
1240 RANGE_TYPE.
1241
1242 Elements will be of type ELEMENT_TYPE, the indices will be of type
1243 RANGE_TYPE.
1244
1245 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1246 This byte stride property is added to the resulting array type
1247 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1248 argument can only be used to create types that are objfile-owned
1249 (see add_dyn_prop), meaning that either this function must be called
1250 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1251
1252 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1253 If BIT_STRIDE is not zero, build a packed array type whose element
1254 size is BIT_STRIDE. Otherwise, ignore this parameter.
1255
1256 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1257 sure it is TYPE_CODE_UNDEF before we bash it into an array
1258 type? */
1259
1260 struct type *
1261 create_array_type_with_stride (struct type *result_type,
1262 struct type *element_type,
1263 struct type *range_type,
1264 struct dynamic_prop *byte_stride_prop,
1265 unsigned int bit_stride)
1266 {
1267 if (byte_stride_prop != NULL
1268 && byte_stride_prop->kind == PROP_CONST)
1269 {
1270 /* The byte stride is actually not dynamic. Pretend we were
1271 called with bit_stride set instead of byte_stride_prop.
1272 This will give us the same result type, while avoiding
1273 the need to handle this as a special case. */
1274 bit_stride = byte_stride_prop->data.const_val * 8;
1275 byte_stride_prop = NULL;
1276 }
1277
1278 if (result_type == NULL)
1279 result_type = alloc_type_copy (range_type);
1280
1281 result_type->set_code (TYPE_CODE_ARRAY);
1282 TYPE_TARGET_TYPE (result_type) = element_type;
1283
1284 result_type->set_num_fields (1);
1285 result_type->set_fields
1286 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1287 TYPE_INDEX_TYPE (result_type) = range_type;
1288 if (byte_stride_prop != NULL)
1289 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1290 else if (bit_stride > 0)
1291 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1292
1293 if (!update_static_array_size (result_type))
1294 {
1295 /* This type is dynamic and its length needs to be computed
1296 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1297 undefined by setting it to zero. Although we are not expected
1298 to trust TYPE_LENGTH in this case, setting the size to zero
1299 allows us to avoid allocating objects of random sizes in case
1300 we accidently do. */
1301 TYPE_LENGTH (result_type) = 0;
1302 }
1303
1304 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1305 if (TYPE_LENGTH (result_type) == 0)
1306 TYPE_TARGET_STUB (result_type) = 1;
1307
1308 return result_type;
1309 }
1310
1311 /* Same as create_array_type_with_stride but with no bit_stride
1312 (BIT_STRIDE = 0), thus building an unpacked array. */
1313
1314 struct type *
1315 create_array_type (struct type *result_type,
1316 struct type *element_type,
1317 struct type *range_type)
1318 {
1319 return create_array_type_with_stride (result_type, element_type,
1320 range_type, NULL, 0);
1321 }
1322
1323 struct type *
1324 lookup_array_range_type (struct type *element_type,
1325 LONGEST low_bound, LONGEST high_bound)
1326 {
1327 struct type *index_type;
1328 struct type *range_type;
1329
1330 if (TYPE_OBJFILE_OWNED (element_type))
1331 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1332 else
1333 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1334 range_type = create_static_range_type (NULL, index_type,
1335 low_bound, high_bound);
1336
1337 return create_array_type (NULL, element_type, range_type);
1338 }
1339
1340 /* Create a string type using either a blank type supplied in
1341 RESULT_TYPE, or creating a new type. String types are similar
1342 enough to array of char types that we can use create_array_type to
1343 build the basic type and then bash it into a string type.
1344
1345 For fixed length strings, the range type contains 0 as the lower
1346 bound and the length of the string minus one as the upper bound.
1347
1348 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1349 sure it is TYPE_CODE_UNDEF before we bash it into a string
1350 type? */
1351
1352 struct type *
1353 create_string_type (struct type *result_type,
1354 struct type *string_char_type,
1355 struct type *range_type)
1356 {
1357 result_type = create_array_type (result_type,
1358 string_char_type,
1359 range_type);
1360 result_type->set_code (TYPE_CODE_STRING);
1361 return result_type;
1362 }
1363
1364 struct type *
1365 lookup_string_range_type (struct type *string_char_type,
1366 LONGEST low_bound, LONGEST high_bound)
1367 {
1368 struct type *result_type;
1369
1370 result_type = lookup_array_range_type (string_char_type,
1371 low_bound, high_bound);
1372 result_type->set_code (TYPE_CODE_STRING);
1373 return result_type;
1374 }
1375
1376 struct type *
1377 create_set_type (struct type *result_type, struct type *domain_type)
1378 {
1379 if (result_type == NULL)
1380 result_type = alloc_type_copy (domain_type);
1381
1382 result_type->set_code (TYPE_CODE_SET);
1383 result_type->set_num_fields (1);
1384 result_type->set_fields
1385 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1386
1387 if (!TYPE_STUB (domain_type))
1388 {
1389 LONGEST low_bound, high_bound, bit_length;
1390
1391 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1392 low_bound = high_bound = 0;
1393 bit_length = high_bound - low_bound + 1;
1394 TYPE_LENGTH (result_type)
1395 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1396 if (low_bound >= 0)
1397 TYPE_UNSIGNED (result_type) = 1;
1398 }
1399 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1400
1401 return result_type;
1402 }
1403
1404 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1405 and any array types nested inside it. */
1406
1407 void
1408 make_vector_type (struct type *array_type)
1409 {
1410 struct type *inner_array, *elt_type;
1411 int flags;
1412
1413 /* Find the innermost array type, in case the array is
1414 multi-dimensional. */
1415 inner_array = array_type;
1416 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1417 inner_array = TYPE_TARGET_TYPE (inner_array);
1418
1419 elt_type = TYPE_TARGET_TYPE (inner_array);
1420 if (elt_type->code () == TYPE_CODE_INT)
1421 {
1422 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1423 elt_type = make_qualified_type (elt_type, flags, NULL);
1424 TYPE_TARGET_TYPE (inner_array) = elt_type;
1425 }
1426
1427 TYPE_VECTOR (array_type) = 1;
1428 }
1429
1430 struct type *
1431 init_vector_type (struct type *elt_type, int n)
1432 {
1433 struct type *array_type;
1434
1435 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1436 make_vector_type (array_type);
1437 return array_type;
1438 }
1439
1440 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1441 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1442 confusing. "self" is a common enough replacement for "this".
1443 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1444 TYPE_CODE_METHOD. */
1445
1446 struct type *
1447 internal_type_self_type (struct type *type)
1448 {
1449 switch (type->code ())
1450 {
1451 case TYPE_CODE_METHODPTR:
1452 case TYPE_CODE_MEMBERPTR:
1453 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1454 return NULL;
1455 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1456 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1457 case TYPE_CODE_METHOD:
1458 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1459 return NULL;
1460 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1461 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1462 default:
1463 gdb_assert_not_reached ("bad type");
1464 }
1465 }
1466
1467 /* Set the type of the class that TYPE belongs to.
1468 In c++ this is the class of "this".
1469 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1470 TYPE_CODE_METHOD. */
1471
1472 void
1473 set_type_self_type (struct type *type, struct type *self_type)
1474 {
1475 switch (type->code ())
1476 {
1477 case TYPE_CODE_METHODPTR:
1478 case TYPE_CODE_MEMBERPTR:
1479 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1480 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1481 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1482 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1483 break;
1484 case TYPE_CODE_METHOD:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 INIT_FUNC_SPECIFIC (type);
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1488 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1489 break;
1490 default:
1491 gdb_assert_not_reached ("bad type");
1492 }
1493 }
1494
1495 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1496 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1497 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1498 TYPE doesn't include the offset (that's the value of the MEMBER
1499 itself), but does include the structure type into which it points
1500 (for some reason).
1501
1502 When "smashing" the type, we preserve the objfile that the old type
1503 pointed to, since we aren't changing where the type is actually
1504 allocated. */
1505
1506 void
1507 smash_to_memberptr_type (struct type *type, struct type *self_type,
1508 struct type *to_type)
1509 {
1510 smash_type (type);
1511 type->set_code (TYPE_CODE_MEMBERPTR);
1512 TYPE_TARGET_TYPE (type) = to_type;
1513 set_type_self_type (type, self_type);
1514 /* Assume that a data member pointer is the same size as a normal
1515 pointer. */
1516 TYPE_LENGTH (type)
1517 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1518 }
1519
1520 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1521
1522 When "smashing" the type, we preserve the objfile that the old type
1523 pointed to, since we aren't changing where the type is actually
1524 allocated. */
1525
1526 void
1527 smash_to_methodptr_type (struct type *type, struct type *to_type)
1528 {
1529 smash_type (type);
1530 type->set_code (TYPE_CODE_METHODPTR);
1531 TYPE_TARGET_TYPE (type) = to_type;
1532 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1533 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1534 }
1535
1536 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1537 METHOD just means `function that gets an extra "this" argument'.
1538
1539 When "smashing" the type, we preserve the objfile that the old type
1540 pointed to, since we aren't changing where the type is actually
1541 allocated. */
1542
1543 void
1544 smash_to_method_type (struct type *type, struct type *self_type,
1545 struct type *to_type, struct field *args,
1546 int nargs, int varargs)
1547 {
1548 smash_type (type);
1549 type->set_code (TYPE_CODE_METHOD);
1550 TYPE_TARGET_TYPE (type) = to_type;
1551 set_type_self_type (type, self_type);
1552 type->set_fields (args);
1553 type->set_num_fields (nargs);
1554 if (varargs)
1555 TYPE_VARARGS (type) = 1;
1556 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1557 }
1558
1559 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1560 Since GCC PR debug/47510 DWARF provides associated information to detect the
1561 anonymous class linkage name from its typedef.
1562
1563 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1564 apply it itself. */
1565
1566 const char *
1567 type_name_or_error (struct type *type)
1568 {
1569 struct type *saved_type = type;
1570 const char *name;
1571 struct objfile *objfile;
1572
1573 type = check_typedef (type);
1574
1575 name = type->name ();
1576 if (name != NULL)
1577 return name;
1578
1579 name = saved_type->name ();
1580 objfile = TYPE_OBJFILE (saved_type);
1581 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1582 name ? name : "<anonymous>",
1583 objfile ? objfile_name (objfile) : "<arch>");
1584 }
1585
1586 /* Lookup a typedef or primitive type named NAME, visible in lexical
1587 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1588 suitably defined. */
1589
1590 struct type *
1591 lookup_typename (const struct language_defn *language,
1592 const char *name,
1593 const struct block *block, int noerr)
1594 {
1595 struct symbol *sym;
1596
1597 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1598 language->la_language, NULL).symbol;
1599 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1600 return SYMBOL_TYPE (sym);
1601
1602 if (noerr)
1603 return NULL;
1604 error (_("No type named %s."), name);
1605 }
1606
1607 struct type *
1608 lookup_unsigned_typename (const struct language_defn *language,
1609 const char *name)
1610 {
1611 char *uns = (char *) alloca (strlen (name) + 10);
1612
1613 strcpy (uns, "unsigned ");
1614 strcpy (uns + 9, name);
1615 return lookup_typename (language, uns, NULL, 0);
1616 }
1617
1618 struct type *
1619 lookup_signed_typename (const struct language_defn *language, const char *name)
1620 {
1621 struct type *t;
1622 char *uns = (char *) alloca (strlen (name) + 8);
1623
1624 strcpy (uns, "signed ");
1625 strcpy (uns + 7, name);
1626 t = lookup_typename (language, uns, NULL, 1);
1627 /* If we don't find "signed FOO" just try again with plain "FOO". */
1628 if (t != NULL)
1629 return t;
1630 return lookup_typename (language, name, NULL, 0);
1631 }
1632
1633 /* Lookup a structure type named "struct NAME",
1634 visible in lexical block BLOCK. */
1635
1636 struct type *
1637 lookup_struct (const char *name, const struct block *block)
1638 {
1639 struct symbol *sym;
1640
1641 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1642
1643 if (sym == NULL)
1644 {
1645 error (_("No struct type named %s."), name);
1646 }
1647 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1648 {
1649 error (_("This context has class, union or enum %s, not a struct."),
1650 name);
1651 }
1652 return (SYMBOL_TYPE (sym));
1653 }
1654
1655 /* Lookup a union type named "union NAME",
1656 visible in lexical block BLOCK. */
1657
1658 struct type *
1659 lookup_union (const char *name, const struct block *block)
1660 {
1661 struct symbol *sym;
1662 struct type *t;
1663
1664 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1665
1666 if (sym == NULL)
1667 error (_("No union type named %s."), name);
1668
1669 t = SYMBOL_TYPE (sym);
1670
1671 if (t->code () == TYPE_CODE_UNION)
1672 return t;
1673
1674 /* If we get here, it's not a union. */
1675 error (_("This context has class, struct or enum %s, not a union."),
1676 name);
1677 }
1678
1679 /* Lookup an enum type named "enum NAME",
1680 visible in lexical block BLOCK. */
1681
1682 struct type *
1683 lookup_enum (const char *name, const struct block *block)
1684 {
1685 struct symbol *sym;
1686
1687 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1688 if (sym == NULL)
1689 {
1690 error (_("No enum type named %s."), name);
1691 }
1692 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1693 {
1694 error (_("This context has class, struct or union %s, not an enum."),
1695 name);
1696 }
1697 return (SYMBOL_TYPE (sym));
1698 }
1699
1700 /* Lookup a template type named "template NAME<TYPE>",
1701 visible in lexical block BLOCK. */
1702
1703 struct type *
1704 lookup_template_type (const char *name, struct type *type,
1705 const struct block *block)
1706 {
1707 struct symbol *sym;
1708 char *nam = (char *)
1709 alloca (strlen (name) + strlen (type->name ()) + 4);
1710
1711 strcpy (nam, name);
1712 strcat (nam, "<");
1713 strcat (nam, type->name ());
1714 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1715
1716 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1717
1718 if (sym == NULL)
1719 {
1720 error (_("No template type named %s."), name);
1721 }
1722 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1723 {
1724 error (_("This context has class, union or enum %s, not a struct."),
1725 name);
1726 }
1727 return (SYMBOL_TYPE (sym));
1728 }
1729
1730 /* See gdbtypes.h. */
1731
1732 struct_elt
1733 lookup_struct_elt (struct type *type, const char *name, int noerr)
1734 {
1735 int i;
1736
1737 for (;;)
1738 {
1739 type = check_typedef (type);
1740 if (type->code () != TYPE_CODE_PTR
1741 && type->code () != TYPE_CODE_REF)
1742 break;
1743 type = TYPE_TARGET_TYPE (type);
1744 }
1745
1746 if (type->code () != TYPE_CODE_STRUCT
1747 && type->code () != TYPE_CODE_UNION)
1748 {
1749 std::string type_name = type_to_string (type);
1750 error (_("Type %s is not a structure or union type."),
1751 type_name.c_str ());
1752 }
1753
1754 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1755 {
1756 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1757
1758 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1759 {
1760 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1761 }
1762 else if (!t_field_name || *t_field_name == '\0')
1763 {
1764 struct_elt elt
1765 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1766 if (elt.field != NULL)
1767 {
1768 elt.offset += TYPE_FIELD_BITPOS (type, i);
1769 return elt;
1770 }
1771 }
1772 }
1773
1774 /* OK, it's not in this class. Recursively check the baseclasses. */
1775 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1776 {
1777 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1778 if (elt.field != NULL)
1779 return elt;
1780 }
1781
1782 if (noerr)
1783 return {nullptr, 0};
1784
1785 std::string type_name = type_to_string (type);
1786 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1787 }
1788
1789 /* See gdbtypes.h. */
1790
1791 struct type *
1792 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1793 {
1794 struct_elt elt = lookup_struct_elt (type, name, noerr);
1795 if (elt.field != NULL)
1796 return FIELD_TYPE (*elt.field);
1797 else
1798 return NULL;
1799 }
1800
1801 /* Store in *MAX the largest number representable by unsigned integer type
1802 TYPE. */
1803
1804 void
1805 get_unsigned_type_max (struct type *type, ULONGEST *max)
1806 {
1807 unsigned int n;
1808
1809 type = check_typedef (type);
1810 gdb_assert (type->code () == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1811 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1812
1813 /* Written this way to avoid overflow. */
1814 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1815 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1816 }
1817
1818 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1819 signed integer type TYPE. */
1820
1821 void
1822 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1823 {
1824 unsigned int n;
1825
1826 type = check_typedef (type);
1827 gdb_assert (type->code () == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1828 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1829
1830 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1831 *min = -((ULONGEST) 1 << (n - 1));
1832 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1833 }
1834
1835 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1836 cplus_stuff.vptr_fieldno.
1837
1838 cplus_stuff is initialized to cplus_struct_default which does not
1839 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1840 designated initializers). We cope with that here. */
1841
1842 int
1843 internal_type_vptr_fieldno (struct type *type)
1844 {
1845 type = check_typedef (type);
1846 gdb_assert (type->code () == TYPE_CODE_STRUCT
1847 || type->code () == TYPE_CODE_UNION);
1848 if (!HAVE_CPLUS_STRUCT (type))
1849 return -1;
1850 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1851 }
1852
1853 /* Set the value of cplus_stuff.vptr_fieldno. */
1854
1855 void
1856 set_type_vptr_fieldno (struct type *type, int fieldno)
1857 {
1858 type = check_typedef (type);
1859 gdb_assert (type->code () == TYPE_CODE_STRUCT
1860 || type->code () == TYPE_CODE_UNION);
1861 if (!HAVE_CPLUS_STRUCT (type))
1862 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1863 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1864 }
1865
1866 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1867 cplus_stuff.vptr_basetype. */
1868
1869 struct type *
1870 internal_type_vptr_basetype (struct type *type)
1871 {
1872 type = check_typedef (type);
1873 gdb_assert (type->code () == TYPE_CODE_STRUCT
1874 || type->code () == TYPE_CODE_UNION);
1875 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1876 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1877 }
1878
1879 /* Set the value of cplus_stuff.vptr_basetype. */
1880
1881 void
1882 set_type_vptr_basetype (struct type *type, struct type *basetype)
1883 {
1884 type = check_typedef (type);
1885 gdb_assert (type->code () == TYPE_CODE_STRUCT
1886 || type->code () == TYPE_CODE_UNION);
1887 if (!HAVE_CPLUS_STRUCT (type))
1888 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1889 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1890 }
1891
1892 /* Lookup the vptr basetype/fieldno values for TYPE.
1893 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1894 vptr_fieldno. Also, if found and basetype is from the same objfile,
1895 cache the results.
1896 If not found, return -1 and ignore BASETYPEP.
1897 Callers should be aware that in some cases (for example,
1898 the type or one of its baseclasses is a stub type and we are
1899 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1900 this function will not be able to find the
1901 virtual function table pointer, and vptr_fieldno will remain -1 and
1902 vptr_basetype will remain NULL or incomplete. */
1903
1904 int
1905 get_vptr_fieldno (struct type *type, struct type **basetypep)
1906 {
1907 type = check_typedef (type);
1908
1909 if (TYPE_VPTR_FIELDNO (type) < 0)
1910 {
1911 int i;
1912
1913 /* We must start at zero in case the first (and only) baseclass
1914 is virtual (and hence we cannot share the table pointer). */
1915 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1916 {
1917 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1918 int fieldno;
1919 struct type *basetype;
1920
1921 fieldno = get_vptr_fieldno (baseclass, &basetype);
1922 if (fieldno >= 0)
1923 {
1924 /* If the type comes from a different objfile we can't cache
1925 it, it may have a different lifetime. PR 2384 */
1926 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1927 {
1928 set_type_vptr_fieldno (type, fieldno);
1929 set_type_vptr_basetype (type, basetype);
1930 }
1931 if (basetypep)
1932 *basetypep = basetype;
1933 return fieldno;
1934 }
1935 }
1936
1937 /* Not found. */
1938 return -1;
1939 }
1940 else
1941 {
1942 if (basetypep)
1943 *basetypep = TYPE_VPTR_BASETYPE (type);
1944 return TYPE_VPTR_FIELDNO (type);
1945 }
1946 }
1947
1948 static void
1949 stub_noname_complaint (void)
1950 {
1951 complaint (_("stub type has NULL name"));
1952 }
1953
1954 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1955 attached to it, and that property has a non-constant value. */
1956
1957 static int
1958 array_type_has_dynamic_stride (struct type *type)
1959 {
1960 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
1961
1962 return (prop != NULL && prop->kind != PROP_CONST);
1963 }
1964
1965 /* Worker for is_dynamic_type. */
1966
1967 static int
1968 is_dynamic_type_internal (struct type *type, int top_level)
1969 {
1970 type = check_typedef (type);
1971
1972 /* We only want to recognize references at the outermost level. */
1973 if (top_level && type->code () == TYPE_CODE_REF)
1974 type = check_typedef (TYPE_TARGET_TYPE (type));
1975
1976 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1977 dynamic, even if the type itself is statically defined.
1978 From a user's point of view, this may appear counter-intuitive;
1979 but it makes sense in this context, because the point is to determine
1980 whether any part of the type needs to be resolved before it can
1981 be exploited. */
1982 if (TYPE_DATA_LOCATION (type) != NULL
1983 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1984 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1985 return 1;
1986
1987 if (TYPE_ASSOCIATED_PROP (type))
1988 return 1;
1989
1990 if (TYPE_ALLOCATED_PROP (type))
1991 return 1;
1992
1993 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
1994 if (prop != nullptr && prop->kind != PROP_TYPE)
1995 return 1;
1996
1997 if (TYPE_HAS_DYNAMIC_LENGTH (type))
1998 return 1;
1999
2000 switch (type->code ())
2001 {
2002 case TYPE_CODE_RANGE:
2003 {
2004 /* A range type is obviously dynamic if it has at least one
2005 dynamic bound. But also consider the range type to be
2006 dynamic when its subtype is dynamic, even if the bounds
2007 of the range type are static. It allows us to assume that
2008 the subtype of a static range type is also static. */
2009 return (!has_static_range (TYPE_RANGE_DATA (type))
2010 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2011 }
2012
2013 case TYPE_CODE_STRING:
2014 /* Strings are very much like an array of characters, and can be
2015 treated as one here. */
2016 case TYPE_CODE_ARRAY:
2017 {
2018 gdb_assert (type->num_fields () == 1);
2019
2020 /* The array is dynamic if either the bounds are dynamic... */
2021 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
2022 return 1;
2023 /* ... or the elements it contains have a dynamic contents... */
2024 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2025 return 1;
2026 /* ... or if it has a dynamic stride... */
2027 if (array_type_has_dynamic_stride (type))
2028 return 1;
2029 return 0;
2030 }
2031
2032 case TYPE_CODE_STRUCT:
2033 case TYPE_CODE_UNION:
2034 {
2035 int i;
2036
2037 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2038
2039 for (i = 0; i < type->num_fields (); ++i)
2040 {
2041 /* Static fields can be ignored here. */
2042 if (field_is_static (&type->field (i)))
2043 continue;
2044 /* If the field has dynamic type, then so does TYPE. */
2045 if (is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
2046 return 1;
2047 /* If the field is at a fixed offset, then it is not
2048 dynamic. */
2049 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2050 continue;
2051 /* Do not consider C++ virtual base types to be dynamic
2052 due to the field's offset being dynamic; these are
2053 handled via other means. */
2054 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2055 continue;
2056 return 1;
2057 }
2058 }
2059 break;
2060 }
2061
2062 return 0;
2063 }
2064
2065 /* See gdbtypes.h. */
2066
2067 int
2068 is_dynamic_type (struct type *type)
2069 {
2070 return is_dynamic_type_internal (type, 1);
2071 }
2072
2073 static struct type *resolve_dynamic_type_internal
2074 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2075
2076 /* Given a dynamic range type (dyn_range_type) and a stack of
2077 struct property_addr_info elements, return a static version
2078 of that type. */
2079
2080 static struct type *
2081 resolve_dynamic_range (struct type *dyn_range_type,
2082 struct property_addr_info *addr_stack)
2083 {
2084 CORE_ADDR value;
2085 struct type *static_range_type, *static_target_type;
2086 const struct dynamic_prop *prop;
2087 struct dynamic_prop low_bound, high_bound, stride;
2088
2089 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2090
2091 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2092 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2093 {
2094 low_bound.kind = PROP_CONST;
2095 low_bound.data.const_val = value;
2096 }
2097 else
2098 {
2099 low_bound.kind = PROP_UNDEFINED;
2100 low_bound.data.const_val = 0;
2101 }
2102
2103 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2104 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2105 {
2106 high_bound.kind = PROP_CONST;
2107 high_bound.data.const_val = value;
2108
2109 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2110 high_bound.data.const_val
2111 = low_bound.data.const_val + high_bound.data.const_val - 1;
2112 }
2113 else
2114 {
2115 high_bound.kind = PROP_UNDEFINED;
2116 high_bound.data.const_val = 0;
2117 }
2118
2119 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2120 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2121 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2122 {
2123 stride.kind = PROP_CONST;
2124 stride.data.const_val = value;
2125
2126 /* If we have a bit stride that is not an exact number of bytes then
2127 I really don't think this is going to work with current GDB, the
2128 array indexing code in GDB seems to be pretty heavily tied to byte
2129 offsets right now. Assuming 8 bits in a byte. */
2130 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2131 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2132 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2133 error (_("bit strides that are not a multiple of the byte size "
2134 "are currently not supported"));
2135 }
2136 else
2137 {
2138 stride.kind = PROP_UNDEFINED;
2139 stride.data.const_val = 0;
2140 byte_stride_p = true;
2141 }
2142
2143 static_target_type
2144 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2145 addr_stack, 0);
2146 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2147 static_range_type = create_range_type_with_stride
2148 (copy_type (dyn_range_type), static_target_type,
2149 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2150 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2151 return static_range_type;
2152 }
2153
2154 /* Resolves dynamic bound values of an array or string type TYPE to static
2155 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2156 needed during the dynamic resolution. */
2157
2158 static struct type *
2159 resolve_dynamic_array_or_string (struct type *type,
2160 struct property_addr_info *addr_stack)
2161 {
2162 CORE_ADDR value;
2163 struct type *elt_type;
2164 struct type *range_type;
2165 struct type *ary_dim;
2166 struct dynamic_prop *prop;
2167 unsigned int bit_stride = 0;
2168
2169 /* For dynamic type resolution strings can be treated like arrays of
2170 characters. */
2171 gdb_assert (type->code () == TYPE_CODE_ARRAY
2172 || type->code () == TYPE_CODE_STRING);
2173
2174 type = copy_type (type);
2175
2176 elt_type = type;
2177 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2178 range_type = resolve_dynamic_range (range_type, addr_stack);
2179
2180 /* Resolve allocated/associated here before creating a new array type, which
2181 will update the length of the array accordingly. */
2182 prop = TYPE_ALLOCATED_PROP (type);
2183 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2184 {
2185 TYPE_DYN_PROP_ADDR (prop) = value;
2186 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2187 }
2188 prop = TYPE_ASSOCIATED_PROP (type);
2189 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2190 {
2191 TYPE_DYN_PROP_ADDR (prop) = value;
2192 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2193 }
2194
2195 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2196
2197 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2198 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2199 else
2200 elt_type = TYPE_TARGET_TYPE (type);
2201
2202 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2203 if (prop != NULL)
2204 {
2205 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2206 {
2207 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2208 bit_stride = (unsigned int) (value * 8);
2209 }
2210 else
2211 {
2212 /* Could be a bug in our code, but it could also happen
2213 if the DWARF info is not correct. Issue a warning,
2214 and assume no byte/bit stride (leave bit_stride = 0). */
2215 warning (_("cannot determine array stride for type %s"),
2216 type->name () ? type->name () : "<no name>");
2217 }
2218 }
2219 else
2220 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2221
2222 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2223 bit_stride);
2224 }
2225
2226 /* Resolve dynamic bounds of members of the union TYPE to static
2227 bounds. ADDR_STACK is a stack of struct property_addr_info
2228 to be used if needed during the dynamic resolution. */
2229
2230 static struct type *
2231 resolve_dynamic_union (struct type *type,
2232 struct property_addr_info *addr_stack)
2233 {
2234 struct type *resolved_type;
2235 int i;
2236 unsigned int max_len = 0;
2237
2238 gdb_assert (type->code () == TYPE_CODE_UNION);
2239
2240 resolved_type = copy_type (type);
2241 resolved_type->set_fields
2242 ((struct field *)
2243 TYPE_ALLOC (resolved_type,
2244 resolved_type->num_fields () * sizeof (struct field)));
2245 memcpy (resolved_type->fields (),
2246 type->fields (),
2247 resolved_type->num_fields () * sizeof (struct field));
2248 for (i = 0; i < resolved_type->num_fields (); ++i)
2249 {
2250 struct type *t;
2251
2252 if (field_is_static (&type->field (i)))
2253 continue;
2254
2255 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2256 addr_stack, 0);
2257 TYPE_FIELD_TYPE (resolved_type, i) = t;
2258 if (TYPE_LENGTH (t) > max_len)
2259 max_len = TYPE_LENGTH (t);
2260 }
2261
2262 TYPE_LENGTH (resolved_type) = max_len;
2263 return resolved_type;
2264 }
2265
2266 /* See gdbtypes.h. */
2267
2268 bool
2269 variant::matches (ULONGEST value, bool is_unsigned) const
2270 {
2271 for (const discriminant_range &range : discriminants)
2272 if (range.contains (value, is_unsigned))
2273 return true;
2274 return false;
2275 }
2276
2277 static void
2278 compute_variant_fields_inner (struct type *type,
2279 struct property_addr_info *addr_stack,
2280 const variant_part &part,
2281 std::vector<bool> &flags);
2282
2283 /* A helper function to determine which variant fields will be active.
2284 This handles both the variant's direct fields, and any variant
2285 parts embedded in this variant. TYPE is the type we're examining.
2286 ADDR_STACK holds information about the concrete object. VARIANT is
2287 the current variant to be handled. FLAGS is where the results are
2288 stored -- this function sets the Nth element in FLAGS if the
2289 corresponding field is enabled. ENABLED is whether this variant is
2290 enabled or not. */
2291
2292 static void
2293 compute_variant_fields_recurse (struct type *type,
2294 struct property_addr_info *addr_stack,
2295 const variant &variant,
2296 std::vector<bool> &flags,
2297 bool enabled)
2298 {
2299 for (int field = variant.first_field; field < variant.last_field; ++field)
2300 flags[field] = enabled;
2301
2302 for (const variant_part &new_part : variant.parts)
2303 {
2304 if (enabled)
2305 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2306 else
2307 {
2308 for (const auto &sub_variant : new_part.variants)
2309 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2310 flags, enabled);
2311 }
2312 }
2313 }
2314
2315 /* A helper function to determine which variant fields will be active.
2316 This evaluates the discriminant, decides which variant (if any) is
2317 active, and then updates FLAGS to reflect which fields should be
2318 available. TYPE is the type we're examining. ADDR_STACK holds
2319 information about the concrete object. VARIANT is the current
2320 variant to be handled. FLAGS is where the results are stored --
2321 this function sets the Nth element in FLAGS if the corresponding
2322 field is enabled. */
2323
2324 static void
2325 compute_variant_fields_inner (struct type *type,
2326 struct property_addr_info *addr_stack,
2327 const variant_part &part,
2328 std::vector<bool> &flags)
2329 {
2330 /* Evaluate the discriminant. */
2331 gdb::optional<ULONGEST> discr_value;
2332 if (part.discriminant_index != -1)
2333 {
2334 int idx = part.discriminant_index;
2335
2336 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2337 error (_("Cannot determine struct field location"
2338 " (invalid location kind)"));
2339
2340 if (addr_stack->valaddr.data () != NULL)
2341 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2342 idx);
2343 else
2344 {
2345 CORE_ADDR addr = (addr_stack->addr
2346 + (TYPE_FIELD_BITPOS (type, idx)
2347 / TARGET_CHAR_BIT));
2348
2349 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2350 LONGEST size = bitsize / 8;
2351 if (size == 0)
2352 size = TYPE_LENGTH (TYPE_FIELD_TYPE (type, idx));
2353
2354 gdb_byte bits[sizeof (ULONGEST)];
2355 read_memory (addr, bits, size);
2356
2357 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2358 % TARGET_CHAR_BIT);
2359
2360 discr_value = unpack_bits_as_long (TYPE_FIELD_TYPE (type, idx),
2361 bits, bitpos, bitsize);
2362 }
2363 }
2364
2365 /* Go through each variant and see which applies. */
2366 const variant *default_variant = nullptr;
2367 const variant *applied_variant = nullptr;
2368 for (const auto &variant : part.variants)
2369 {
2370 if (variant.is_default ())
2371 default_variant = &variant;
2372 else if (discr_value.has_value ()
2373 && variant.matches (*discr_value, part.is_unsigned))
2374 {
2375 applied_variant = &variant;
2376 break;
2377 }
2378 }
2379 if (applied_variant == nullptr)
2380 applied_variant = default_variant;
2381
2382 for (const auto &variant : part.variants)
2383 compute_variant_fields_recurse (type, addr_stack, variant,
2384 flags, applied_variant == &variant);
2385 }
2386
2387 /* Determine which variant fields are available in TYPE. The enabled
2388 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2389 about the concrete object. PARTS describes the top-level variant
2390 parts for this type. */
2391
2392 static void
2393 compute_variant_fields (struct type *type,
2394 struct type *resolved_type,
2395 struct property_addr_info *addr_stack,
2396 const gdb::array_view<variant_part> &parts)
2397 {
2398 /* Assume all fields are included by default. */
2399 std::vector<bool> flags (resolved_type->num_fields (), true);
2400
2401 /* Now disable fields based on the variants that control them. */
2402 for (const auto &part : parts)
2403 compute_variant_fields_inner (type, addr_stack, part, flags);
2404
2405 resolved_type->set_num_fields
2406 (std::count (flags.begin (), flags.end (), true));
2407 resolved_type->set_fields
2408 ((struct field *)
2409 TYPE_ALLOC (resolved_type,
2410 resolved_type->num_fields () * sizeof (struct field)));
2411
2412 int out = 0;
2413 for (int i = 0; i < type->num_fields (); ++i)
2414 {
2415 if (!flags[i])
2416 continue;
2417
2418 resolved_type->field (out) = type->field (i);
2419 ++out;
2420 }
2421 }
2422
2423 /* Resolve dynamic bounds of members of the struct TYPE to static
2424 bounds. ADDR_STACK is a stack of struct property_addr_info to
2425 be used if needed during the dynamic resolution. */
2426
2427 static struct type *
2428 resolve_dynamic_struct (struct type *type,
2429 struct property_addr_info *addr_stack)
2430 {
2431 struct type *resolved_type;
2432 int i;
2433 unsigned resolved_type_bit_length = 0;
2434
2435 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2436 gdb_assert (type->num_fields () > 0);
2437
2438 resolved_type = copy_type (type);
2439
2440 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2441 if (variant_prop != nullptr && variant_prop->kind == PROP_VARIANT_PARTS)
2442 {
2443 compute_variant_fields (type, resolved_type, addr_stack,
2444 *variant_prop->data.variant_parts);
2445 /* We want to leave the property attached, so that the Rust code
2446 can tell whether the type was originally an enum. */
2447 variant_prop->kind = PROP_TYPE;
2448 variant_prop->data.original_type = type;
2449 }
2450 else
2451 {
2452 resolved_type->set_fields
2453 ((struct field *)
2454 TYPE_ALLOC (resolved_type,
2455 resolved_type->num_fields () * sizeof (struct field)));
2456 memcpy (resolved_type->fields (),
2457 type->fields (),
2458 resolved_type->num_fields () * sizeof (struct field));
2459 }
2460
2461 for (i = 0; i < resolved_type->num_fields (); ++i)
2462 {
2463 unsigned new_bit_length;
2464 struct property_addr_info pinfo;
2465
2466 if (field_is_static (&resolved_type->field (i)))
2467 continue;
2468
2469 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2470 {
2471 struct dwarf2_property_baton baton;
2472 baton.property_type
2473 = lookup_pointer_type (TYPE_FIELD_TYPE (resolved_type, i));
2474 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2475
2476 struct dynamic_prop prop;
2477 prop.kind = PROP_LOCEXPR;
2478 prop.data.baton = &baton;
2479
2480 CORE_ADDR addr;
2481 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2482 true))
2483 SET_FIELD_BITPOS (resolved_type->field (i),
2484 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2485 }
2486
2487 /* As we know this field is not a static field, the field's
2488 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2489 this is the case, but only trigger a simple error rather
2490 than an internal error if that fails. While failing
2491 that verification indicates a bug in our code, the error
2492 is not severe enough to suggest to the user he stops
2493 his debugging session because of it. */
2494 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2495 error (_("Cannot determine struct field location"
2496 " (invalid location kind)"));
2497
2498 pinfo.type = check_typedef (TYPE_FIELD_TYPE (resolved_type, i));
2499 pinfo.valaddr = addr_stack->valaddr;
2500 pinfo.addr
2501 = (addr_stack->addr
2502 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2503 pinfo.next = addr_stack;
2504
2505 TYPE_FIELD_TYPE (resolved_type, i)
2506 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2507 &pinfo, 0);
2508 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2509 == FIELD_LOC_KIND_BITPOS);
2510
2511 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2512 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2513 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2514 else
2515 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2516 * TARGET_CHAR_BIT);
2517
2518 /* Normally, we would use the position and size of the last field
2519 to determine the size of the enclosing structure. But GCC seems
2520 to be encoding the position of some fields incorrectly when
2521 the struct contains a dynamic field that is not placed last.
2522 So we compute the struct size based on the field that has
2523 the highest position + size - probably the best we can do. */
2524 if (new_bit_length > resolved_type_bit_length)
2525 resolved_type_bit_length = new_bit_length;
2526 }
2527
2528 /* The length of a type won't change for fortran, but it does for C and Ada.
2529 For fortran the size of dynamic fields might change over time but not the
2530 type length of the structure. If we adapt it, we run into problems
2531 when calculating the element offset for arrays of structs. */
2532 if (current_language->la_language != language_fortran)
2533 TYPE_LENGTH (resolved_type)
2534 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2535
2536 /* The Ada language uses this field as a cache for static fixed types: reset
2537 it as RESOLVED_TYPE must have its own static fixed type. */
2538 TYPE_TARGET_TYPE (resolved_type) = NULL;
2539
2540 return resolved_type;
2541 }
2542
2543 /* Worker for resolved_dynamic_type. */
2544
2545 static struct type *
2546 resolve_dynamic_type_internal (struct type *type,
2547 struct property_addr_info *addr_stack,
2548 int top_level)
2549 {
2550 struct type *real_type = check_typedef (type);
2551 struct type *resolved_type = nullptr;
2552 struct dynamic_prop *prop;
2553 CORE_ADDR value;
2554
2555 if (!is_dynamic_type_internal (real_type, top_level))
2556 return type;
2557
2558 gdb::optional<CORE_ADDR> type_length;
2559 prop = TYPE_DYNAMIC_LENGTH (type);
2560 if (prop != NULL
2561 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2562 type_length = value;
2563
2564 if (type->code () == TYPE_CODE_TYPEDEF)
2565 {
2566 resolved_type = copy_type (type);
2567 TYPE_TARGET_TYPE (resolved_type)
2568 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2569 top_level);
2570 }
2571 else
2572 {
2573 /* Before trying to resolve TYPE, make sure it is not a stub. */
2574 type = real_type;
2575
2576 switch (type->code ())
2577 {
2578 case TYPE_CODE_REF:
2579 {
2580 struct property_addr_info pinfo;
2581
2582 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2583 pinfo.valaddr = {};
2584 if (addr_stack->valaddr.data () != NULL)
2585 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2586 type);
2587 else
2588 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2589 pinfo.next = addr_stack;
2590
2591 resolved_type = copy_type (type);
2592 TYPE_TARGET_TYPE (resolved_type)
2593 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2594 &pinfo, top_level);
2595 break;
2596 }
2597
2598 case TYPE_CODE_STRING:
2599 /* Strings are very much like an array of characters, and can be
2600 treated as one here. */
2601 case TYPE_CODE_ARRAY:
2602 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2603 break;
2604
2605 case TYPE_CODE_RANGE:
2606 resolved_type = resolve_dynamic_range (type, addr_stack);
2607 break;
2608
2609 case TYPE_CODE_UNION:
2610 resolved_type = resolve_dynamic_union (type, addr_stack);
2611 break;
2612
2613 case TYPE_CODE_STRUCT:
2614 resolved_type = resolve_dynamic_struct (type, addr_stack);
2615 break;
2616 }
2617 }
2618
2619 if (resolved_type == nullptr)
2620 return type;
2621
2622 if (type_length.has_value ())
2623 {
2624 TYPE_LENGTH (resolved_type) = *type_length;
2625 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2626 }
2627
2628 /* Resolve data_location attribute. */
2629 prop = TYPE_DATA_LOCATION (resolved_type);
2630 if (prop != NULL
2631 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2632 {
2633 TYPE_DYN_PROP_ADDR (prop) = value;
2634 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2635 }
2636
2637 return resolved_type;
2638 }
2639
2640 /* See gdbtypes.h */
2641
2642 struct type *
2643 resolve_dynamic_type (struct type *type,
2644 gdb::array_view<const gdb_byte> valaddr,
2645 CORE_ADDR addr)
2646 {
2647 struct property_addr_info pinfo
2648 = {check_typedef (type), valaddr, addr, NULL};
2649
2650 return resolve_dynamic_type_internal (type, &pinfo, 1);
2651 }
2652
2653 /* See gdbtypes.h */
2654
2655 dynamic_prop *
2656 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2657 {
2658 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2659
2660 while (node != NULL)
2661 {
2662 if (node->prop_kind == prop_kind)
2663 return &node->prop;
2664 node = node->next;
2665 }
2666 return NULL;
2667 }
2668
2669 /* See gdbtypes.h */
2670
2671 void
2672 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2673 {
2674 struct dynamic_prop_list *temp;
2675
2676 gdb_assert (TYPE_OBJFILE_OWNED (this));
2677
2678 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
2679 struct dynamic_prop_list);
2680 temp->prop_kind = prop_kind;
2681 temp->prop = prop;
2682 temp->next = this->main_type->dyn_prop_list;
2683
2684 this->main_type->dyn_prop_list = temp;
2685 }
2686
2687 /* See gdbtypes.h. */
2688
2689 void
2690 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2691 {
2692 struct dynamic_prop_list *prev_node, *curr_node;
2693
2694 curr_node = this->main_type->dyn_prop_list;
2695 prev_node = NULL;
2696
2697 while (NULL != curr_node)
2698 {
2699 if (curr_node->prop_kind == kind)
2700 {
2701 /* Update the linked list but don't free anything.
2702 The property was allocated on objstack and it is not known
2703 if we are on top of it. Nevertheless, everything is released
2704 when the complete objstack is freed. */
2705 if (NULL == prev_node)
2706 this->main_type->dyn_prop_list = curr_node->next;
2707 else
2708 prev_node->next = curr_node->next;
2709
2710 return;
2711 }
2712
2713 prev_node = curr_node;
2714 curr_node = curr_node->next;
2715 }
2716 }
2717
2718 /* Find the real type of TYPE. This function returns the real type,
2719 after removing all layers of typedefs, and completing opaque or stub
2720 types. Completion changes the TYPE argument, but stripping of
2721 typedefs does not.
2722
2723 Instance flags (e.g. const/volatile) are preserved as typedefs are
2724 stripped. If necessary a new qualified form of the underlying type
2725 is created.
2726
2727 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2728 not been computed and we're either in the middle of reading symbols, or
2729 there was no name for the typedef in the debug info.
2730
2731 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2732 QUITs in the symbol reading code can also throw.
2733 Thus this function can throw an exception.
2734
2735 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2736 the target type.
2737
2738 If this is a stubbed struct (i.e. declared as struct foo *), see if
2739 we can find a full definition in some other file. If so, copy this
2740 definition, so we can use it in future. There used to be a comment
2741 (but not any code) that if we don't find a full definition, we'd
2742 set a flag so we don't spend time in the future checking the same
2743 type. That would be a mistake, though--we might load in more
2744 symbols which contain a full definition for the type. */
2745
2746 struct type *
2747 check_typedef (struct type *type)
2748 {
2749 struct type *orig_type = type;
2750 /* While we're removing typedefs, we don't want to lose qualifiers.
2751 E.g., const/volatile. */
2752 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2753
2754 gdb_assert (type);
2755
2756 while (type->code () == TYPE_CODE_TYPEDEF)
2757 {
2758 if (!TYPE_TARGET_TYPE (type))
2759 {
2760 const char *name;
2761 struct symbol *sym;
2762
2763 /* It is dangerous to call lookup_symbol if we are currently
2764 reading a symtab. Infinite recursion is one danger. */
2765 if (currently_reading_symtab)
2766 return make_qualified_type (type, instance_flags, NULL);
2767
2768 name = type->name ();
2769 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2770 VAR_DOMAIN as appropriate? */
2771 if (name == NULL)
2772 {
2773 stub_noname_complaint ();
2774 return make_qualified_type (type, instance_flags, NULL);
2775 }
2776 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2777 if (sym)
2778 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2779 else /* TYPE_CODE_UNDEF */
2780 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2781 }
2782 type = TYPE_TARGET_TYPE (type);
2783
2784 /* Preserve the instance flags as we traverse down the typedef chain.
2785
2786 Handling address spaces/classes is nasty, what do we do if there's a
2787 conflict?
2788 E.g., what if an outer typedef marks the type as class_1 and an inner
2789 typedef marks the type as class_2?
2790 This is the wrong place to do such error checking. We leave it to
2791 the code that created the typedef in the first place to flag the
2792 error. We just pick the outer address space (akin to letting the
2793 outer cast in a chain of casting win), instead of assuming
2794 "it can't happen". */
2795 {
2796 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2797 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2798 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2799 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2800
2801 /* Treat code vs data spaces and address classes separately. */
2802 if ((instance_flags & ALL_SPACES) != 0)
2803 new_instance_flags &= ~ALL_SPACES;
2804 if ((instance_flags & ALL_CLASSES) != 0)
2805 new_instance_flags &= ~ALL_CLASSES;
2806
2807 instance_flags |= new_instance_flags;
2808 }
2809 }
2810
2811 /* If this is a struct/class/union with no fields, then check
2812 whether a full definition exists somewhere else. This is for
2813 systems where a type definition with no fields is issued for such
2814 types, instead of identifying them as stub types in the first
2815 place. */
2816
2817 if (TYPE_IS_OPAQUE (type)
2818 && opaque_type_resolution
2819 && !currently_reading_symtab)
2820 {
2821 const char *name = type->name ();
2822 struct type *newtype;
2823
2824 if (name == NULL)
2825 {
2826 stub_noname_complaint ();
2827 return make_qualified_type (type, instance_flags, NULL);
2828 }
2829 newtype = lookup_transparent_type (name);
2830
2831 if (newtype)
2832 {
2833 /* If the resolved type and the stub are in the same
2834 objfile, then replace the stub type with the real deal.
2835 But if they're in separate objfiles, leave the stub
2836 alone; we'll just look up the transparent type every time
2837 we call check_typedef. We can't create pointers between
2838 types allocated to different objfiles, since they may
2839 have different lifetimes. Trying to copy NEWTYPE over to
2840 TYPE's objfile is pointless, too, since you'll have to
2841 move over any other types NEWTYPE refers to, which could
2842 be an unbounded amount of stuff. */
2843 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2844 type = make_qualified_type (newtype,
2845 TYPE_INSTANCE_FLAGS (type),
2846 type);
2847 else
2848 type = newtype;
2849 }
2850 }
2851 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2852 types. */
2853 else if (TYPE_STUB (type) && !currently_reading_symtab)
2854 {
2855 const char *name = type->name ();
2856 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2857 as appropriate? */
2858 struct symbol *sym;
2859
2860 if (name == NULL)
2861 {
2862 stub_noname_complaint ();
2863 return make_qualified_type (type, instance_flags, NULL);
2864 }
2865 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2866 if (sym)
2867 {
2868 /* Same as above for opaque types, we can replace the stub
2869 with the complete type only if they are in the same
2870 objfile. */
2871 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
2872 type = make_qualified_type (SYMBOL_TYPE (sym),
2873 TYPE_INSTANCE_FLAGS (type),
2874 type);
2875 else
2876 type = SYMBOL_TYPE (sym);
2877 }
2878 }
2879
2880 if (TYPE_TARGET_STUB (type))
2881 {
2882 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2883
2884 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2885 {
2886 /* Nothing we can do. */
2887 }
2888 else if (type->code () == TYPE_CODE_RANGE)
2889 {
2890 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2891 TYPE_TARGET_STUB (type) = 0;
2892 }
2893 else if (type->code () == TYPE_CODE_ARRAY
2894 && update_static_array_size (type))
2895 TYPE_TARGET_STUB (type) = 0;
2896 }
2897
2898 type = make_qualified_type (type, instance_flags, NULL);
2899
2900 /* Cache TYPE_LENGTH for future use. */
2901 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2902
2903 return type;
2904 }
2905
2906 /* Parse a type expression in the string [P..P+LENGTH). If an error
2907 occurs, silently return a void type. */
2908
2909 static struct type *
2910 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2911 {
2912 struct ui_file *saved_gdb_stderr;
2913 struct type *type = NULL; /* Initialize to keep gcc happy. */
2914
2915 /* Suppress error messages. */
2916 saved_gdb_stderr = gdb_stderr;
2917 gdb_stderr = &null_stream;
2918
2919 /* Call parse_and_eval_type() without fear of longjmp()s. */
2920 try
2921 {
2922 type = parse_and_eval_type (p, length);
2923 }
2924 catch (const gdb_exception_error &except)
2925 {
2926 type = builtin_type (gdbarch)->builtin_void;
2927 }
2928
2929 /* Stop suppressing error messages. */
2930 gdb_stderr = saved_gdb_stderr;
2931
2932 return type;
2933 }
2934
2935 /* Ugly hack to convert method stubs into method types.
2936
2937 He ain't kiddin'. This demangles the name of the method into a
2938 string including argument types, parses out each argument type,
2939 generates a string casting a zero to that type, evaluates the
2940 string, and stuffs the resulting type into an argtype vector!!!
2941 Then it knows the type of the whole function (including argument
2942 types for overloading), which info used to be in the stab's but was
2943 removed to hack back the space required for them. */
2944
2945 static void
2946 check_stub_method (struct type *type, int method_id, int signature_id)
2947 {
2948 struct gdbarch *gdbarch = get_type_arch (type);
2949 struct fn_field *f;
2950 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2951 char *demangled_name = gdb_demangle (mangled_name,
2952 DMGL_PARAMS | DMGL_ANSI);
2953 char *argtypetext, *p;
2954 int depth = 0, argcount = 1;
2955 struct field *argtypes;
2956 struct type *mtype;
2957
2958 /* Make sure we got back a function string that we can use. */
2959 if (demangled_name)
2960 p = strchr (demangled_name, '(');
2961 else
2962 p = NULL;
2963
2964 if (demangled_name == NULL || p == NULL)
2965 error (_("Internal: Cannot demangle mangled name `%s'."),
2966 mangled_name);
2967
2968 /* Now, read in the parameters that define this type. */
2969 p += 1;
2970 argtypetext = p;
2971 while (*p)
2972 {
2973 if (*p == '(' || *p == '<')
2974 {
2975 depth += 1;
2976 }
2977 else if (*p == ')' || *p == '>')
2978 {
2979 depth -= 1;
2980 }
2981 else if (*p == ',' && depth == 0)
2982 {
2983 argcount += 1;
2984 }
2985
2986 p += 1;
2987 }
2988
2989 /* If we read one argument and it was ``void'', don't count it. */
2990 if (startswith (argtypetext, "(void)"))
2991 argcount -= 1;
2992
2993 /* We need one extra slot, for the THIS pointer. */
2994
2995 argtypes = (struct field *)
2996 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2997 p = argtypetext;
2998
2999 /* Add THIS pointer for non-static methods. */
3000 f = TYPE_FN_FIELDLIST1 (type, method_id);
3001 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
3002 argcount = 0;
3003 else
3004 {
3005 argtypes[0].type = lookup_pointer_type (type);
3006 argcount = 1;
3007 }
3008
3009 if (*p != ')') /* () means no args, skip while. */
3010 {
3011 depth = 0;
3012 while (*p)
3013 {
3014 if (depth <= 0 && (*p == ',' || *p == ')'))
3015 {
3016 /* Avoid parsing of ellipsis, they will be handled below.
3017 Also avoid ``void'' as above. */
3018 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3019 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3020 {
3021 argtypes[argcount].type =
3022 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
3023 argcount += 1;
3024 }
3025 argtypetext = p + 1;
3026 }
3027
3028 if (*p == '(' || *p == '<')
3029 {
3030 depth += 1;
3031 }
3032 else if (*p == ')' || *p == '>')
3033 {
3034 depth -= 1;
3035 }
3036
3037 p += 1;
3038 }
3039 }
3040
3041 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3042
3043 /* Now update the old "stub" type into a real type. */
3044 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3045 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3046 We want a method (TYPE_CODE_METHOD). */
3047 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3048 argtypes, argcount, p[-2] == '.');
3049 TYPE_STUB (mtype) = 0;
3050 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3051
3052 xfree (demangled_name);
3053 }
3054
3055 /* This is the external interface to check_stub_method, above. This
3056 function unstubs all of the signatures for TYPE's METHOD_ID method
3057 name. After calling this function TYPE_FN_FIELD_STUB will be
3058 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3059 correct.
3060
3061 This function unfortunately can not die until stabs do. */
3062
3063 void
3064 check_stub_method_group (struct type *type, int method_id)
3065 {
3066 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3067 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3068
3069 for (int j = 0; j < len; j++)
3070 {
3071 if (TYPE_FN_FIELD_STUB (f, j))
3072 check_stub_method (type, method_id, j);
3073 }
3074 }
3075
3076 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3077 const struct cplus_struct_type cplus_struct_default = { };
3078
3079 void
3080 allocate_cplus_struct_type (struct type *type)
3081 {
3082 if (HAVE_CPLUS_STRUCT (type))
3083 /* Structure was already allocated. Nothing more to do. */
3084 return;
3085
3086 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3087 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3088 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3089 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3090 set_type_vptr_fieldno (type, -1);
3091 }
3092
3093 const struct gnat_aux_type gnat_aux_default =
3094 { NULL };
3095
3096 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3097 and allocate the associated gnat-specific data. The gnat-specific
3098 data is also initialized to gnat_aux_default. */
3099
3100 void
3101 allocate_gnat_aux_type (struct type *type)
3102 {
3103 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3104 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3105 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3106 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3107 }
3108
3109 /* Helper function to initialize a newly allocated type. Set type code
3110 to CODE and initialize the type-specific fields accordingly. */
3111
3112 static void
3113 set_type_code (struct type *type, enum type_code code)
3114 {
3115 type->set_code (code);
3116
3117 switch (code)
3118 {
3119 case TYPE_CODE_STRUCT:
3120 case TYPE_CODE_UNION:
3121 case TYPE_CODE_NAMESPACE:
3122 INIT_CPLUS_SPECIFIC (type);
3123 break;
3124 case TYPE_CODE_FLT:
3125 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3126 break;
3127 case TYPE_CODE_FUNC:
3128 INIT_FUNC_SPECIFIC (type);
3129 break;
3130 }
3131 }
3132
3133 /* Helper function to verify floating-point format and size.
3134 BIT is the type size in bits; if BIT equals -1, the size is
3135 determined by the floatformat. Returns size to be used. */
3136
3137 static int
3138 verify_floatformat (int bit, const struct floatformat *floatformat)
3139 {
3140 gdb_assert (floatformat != NULL);
3141
3142 if (bit == -1)
3143 bit = floatformat->totalsize;
3144
3145 gdb_assert (bit >= 0);
3146 gdb_assert (bit >= floatformat->totalsize);
3147
3148 return bit;
3149 }
3150
3151 /* Return the floating-point format for a floating-point variable of
3152 type TYPE. */
3153
3154 const struct floatformat *
3155 floatformat_from_type (const struct type *type)
3156 {
3157 gdb_assert (type->code () == TYPE_CODE_FLT);
3158 gdb_assert (TYPE_FLOATFORMAT (type));
3159 return TYPE_FLOATFORMAT (type);
3160 }
3161
3162 /* Helper function to initialize the standard scalar types.
3163
3164 If NAME is non-NULL, then it is used to initialize the type name.
3165 Note that NAME is not copied; it is required to have a lifetime at
3166 least as long as OBJFILE. */
3167
3168 struct type *
3169 init_type (struct objfile *objfile, enum type_code code, int bit,
3170 const char *name)
3171 {
3172 struct type *type;
3173
3174 type = alloc_type (objfile);
3175 set_type_code (type, code);
3176 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3177 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3178 type->set_name (name);
3179
3180 return type;
3181 }
3182
3183 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3184 to use with variables that have no debug info. NAME is the type
3185 name. */
3186
3187 static struct type *
3188 init_nodebug_var_type (struct objfile *objfile, const char *name)
3189 {
3190 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3191 }
3192
3193 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3194 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3195 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3196
3197 struct type *
3198 init_integer_type (struct objfile *objfile,
3199 int bit, int unsigned_p, const char *name)
3200 {
3201 struct type *t;
3202
3203 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3204 if (unsigned_p)
3205 TYPE_UNSIGNED (t) = 1;
3206
3207 return t;
3208 }
3209
3210 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3211 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3212 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3213
3214 struct type *
3215 init_character_type (struct objfile *objfile,
3216 int bit, int unsigned_p, const char *name)
3217 {
3218 struct type *t;
3219
3220 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3221 if (unsigned_p)
3222 TYPE_UNSIGNED (t) = 1;
3223
3224 return t;
3225 }
3226
3227 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3228 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3229 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3230
3231 struct type *
3232 init_boolean_type (struct objfile *objfile,
3233 int bit, int unsigned_p, const char *name)
3234 {
3235 struct type *t;
3236
3237 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3238 if (unsigned_p)
3239 TYPE_UNSIGNED (t) = 1;
3240
3241 return t;
3242 }
3243
3244 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3245 BIT is the type size in bits; if BIT equals -1, the size is
3246 determined by the floatformat. NAME is the type name. Set the
3247 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3248 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3249 order of the objfile's architecture is used. */
3250
3251 struct type *
3252 init_float_type (struct objfile *objfile,
3253 int bit, const char *name,
3254 const struct floatformat **floatformats,
3255 enum bfd_endian byte_order)
3256 {
3257 if (byte_order == BFD_ENDIAN_UNKNOWN)
3258 {
3259 struct gdbarch *gdbarch = objfile->arch ();
3260 byte_order = gdbarch_byte_order (gdbarch);
3261 }
3262 const struct floatformat *fmt = floatformats[byte_order];
3263 struct type *t;
3264
3265 bit = verify_floatformat (bit, fmt);
3266 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3267 TYPE_FLOATFORMAT (t) = fmt;
3268
3269 return t;
3270 }
3271
3272 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3273 BIT is the type size in bits. NAME is the type name. */
3274
3275 struct type *
3276 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3277 {
3278 struct type *t;
3279
3280 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3281 return t;
3282 }
3283
3284 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3285 name. TARGET_TYPE is the component type. */
3286
3287 struct type *
3288 init_complex_type (const char *name, struct type *target_type)
3289 {
3290 struct type *t;
3291
3292 gdb_assert (target_type->code () == TYPE_CODE_INT
3293 || target_type->code () == TYPE_CODE_FLT);
3294
3295 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3296 {
3297 if (name == nullptr)
3298 {
3299 char *new_name
3300 = (char *) TYPE_ALLOC (target_type,
3301 strlen (target_type->name ())
3302 + strlen ("_Complex ") + 1);
3303 strcpy (new_name, "_Complex ");
3304 strcat (new_name, target_type->name ());
3305 name = new_name;
3306 }
3307
3308 t = alloc_type_copy (target_type);
3309 set_type_code (t, TYPE_CODE_COMPLEX);
3310 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3311 t->set_name (name);
3312
3313 TYPE_TARGET_TYPE (t) = target_type;
3314 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3315 }
3316
3317 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3318 }
3319
3320 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3321 BIT is the pointer type size in bits. NAME is the type name.
3322 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3323 TYPE_UNSIGNED flag. */
3324
3325 struct type *
3326 init_pointer_type (struct objfile *objfile,
3327 int bit, const char *name, struct type *target_type)
3328 {
3329 struct type *t;
3330
3331 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3332 TYPE_TARGET_TYPE (t) = target_type;
3333 TYPE_UNSIGNED (t) = 1;
3334 return t;
3335 }
3336
3337 /* See gdbtypes.h. */
3338
3339 unsigned
3340 type_raw_align (struct type *type)
3341 {
3342 if (type->align_log2 != 0)
3343 return 1 << (type->align_log2 - 1);
3344 return 0;
3345 }
3346
3347 /* See gdbtypes.h. */
3348
3349 unsigned
3350 type_align (struct type *type)
3351 {
3352 /* Check alignment provided in the debug information. */
3353 unsigned raw_align = type_raw_align (type);
3354 if (raw_align != 0)
3355 return raw_align;
3356
3357 /* Allow the architecture to provide an alignment. */
3358 struct gdbarch *arch = get_type_arch (type);
3359 ULONGEST align = gdbarch_type_align (arch, type);
3360 if (align != 0)
3361 return align;
3362
3363 switch (type->code ())
3364 {
3365 case TYPE_CODE_PTR:
3366 case TYPE_CODE_FUNC:
3367 case TYPE_CODE_FLAGS:
3368 case TYPE_CODE_INT:
3369 case TYPE_CODE_RANGE:
3370 case TYPE_CODE_FLT:
3371 case TYPE_CODE_ENUM:
3372 case TYPE_CODE_REF:
3373 case TYPE_CODE_RVALUE_REF:
3374 case TYPE_CODE_CHAR:
3375 case TYPE_CODE_BOOL:
3376 case TYPE_CODE_DECFLOAT:
3377 case TYPE_CODE_METHODPTR:
3378 case TYPE_CODE_MEMBERPTR:
3379 align = type_length_units (check_typedef (type));
3380 break;
3381
3382 case TYPE_CODE_ARRAY:
3383 case TYPE_CODE_COMPLEX:
3384 case TYPE_CODE_TYPEDEF:
3385 align = type_align (TYPE_TARGET_TYPE (type));
3386 break;
3387
3388 case TYPE_CODE_STRUCT:
3389 case TYPE_CODE_UNION:
3390 {
3391 int number_of_non_static_fields = 0;
3392 for (unsigned i = 0; i < type->num_fields (); ++i)
3393 {
3394 if (!field_is_static (&type->field (i)))
3395 {
3396 number_of_non_static_fields++;
3397 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3398 if (f_align == 0)
3399 {
3400 /* Don't pretend we know something we don't. */
3401 align = 0;
3402 break;
3403 }
3404 if (f_align > align)
3405 align = f_align;
3406 }
3407 }
3408 /* A struct with no fields, or with only static fields has an
3409 alignment of 1. */
3410 if (number_of_non_static_fields == 0)
3411 align = 1;
3412 }
3413 break;
3414
3415 case TYPE_CODE_SET:
3416 case TYPE_CODE_STRING:
3417 /* Not sure what to do here, and these can't appear in C or C++
3418 anyway. */
3419 break;
3420
3421 case TYPE_CODE_VOID:
3422 align = 1;
3423 break;
3424
3425 case TYPE_CODE_ERROR:
3426 case TYPE_CODE_METHOD:
3427 default:
3428 break;
3429 }
3430
3431 if ((align & (align - 1)) != 0)
3432 {
3433 /* Not a power of 2, so pass. */
3434 align = 0;
3435 }
3436
3437 return align;
3438 }
3439
3440 /* See gdbtypes.h. */
3441
3442 bool
3443 set_type_align (struct type *type, ULONGEST align)
3444 {
3445 /* Must be a power of 2. Zero is ok. */
3446 gdb_assert ((align & (align - 1)) == 0);
3447
3448 unsigned result = 0;
3449 while (align != 0)
3450 {
3451 ++result;
3452 align >>= 1;
3453 }
3454
3455 if (result >= (1 << TYPE_ALIGN_BITS))
3456 return false;
3457
3458 type->align_log2 = result;
3459 return true;
3460 }
3461
3462 \f
3463 /* Queries on types. */
3464
3465 int
3466 can_dereference (struct type *t)
3467 {
3468 /* FIXME: Should we return true for references as well as
3469 pointers? */
3470 t = check_typedef (t);
3471 return
3472 (t != NULL
3473 && t->code () == TYPE_CODE_PTR
3474 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3475 }
3476
3477 int
3478 is_integral_type (struct type *t)
3479 {
3480 t = check_typedef (t);
3481 return
3482 ((t != NULL)
3483 && ((t->code () == TYPE_CODE_INT)
3484 || (t->code () == TYPE_CODE_ENUM)
3485 || (t->code () == TYPE_CODE_FLAGS)
3486 || (t->code () == TYPE_CODE_CHAR)
3487 || (t->code () == TYPE_CODE_RANGE)
3488 || (t->code () == TYPE_CODE_BOOL)));
3489 }
3490
3491 int
3492 is_floating_type (struct type *t)
3493 {
3494 t = check_typedef (t);
3495 return
3496 ((t != NULL)
3497 && ((t->code () == TYPE_CODE_FLT)
3498 || (t->code () == TYPE_CODE_DECFLOAT)));
3499 }
3500
3501 /* Return true if TYPE is scalar. */
3502
3503 int
3504 is_scalar_type (struct type *type)
3505 {
3506 type = check_typedef (type);
3507
3508 switch (type->code ())
3509 {
3510 case TYPE_CODE_ARRAY:
3511 case TYPE_CODE_STRUCT:
3512 case TYPE_CODE_UNION:
3513 case TYPE_CODE_SET:
3514 case TYPE_CODE_STRING:
3515 return 0;
3516 default:
3517 return 1;
3518 }
3519 }
3520
3521 /* Return true if T is scalar, or a composite type which in practice has
3522 the memory layout of a scalar type. E.g., an array or struct with only
3523 one scalar element inside it, or a union with only scalar elements. */
3524
3525 int
3526 is_scalar_type_recursive (struct type *t)
3527 {
3528 t = check_typedef (t);
3529
3530 if (is_scalar_type (t))
3531 return 1;
3532 /* Are we dealing with an array or string of known dimensions? */
3533 else if ((t->code () == TYPE_CODE_ARRAY
3534 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3535 && TYPE_INDEX_TYPE(t)->code () == TYPE_CODE_RANGE)
3536 {
3537 LONGEST low_bound, high_bound;
3538 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3539
3540 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3541
3542 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3543 }
3544 /* Are we dealing with a struct with one element? */
3545 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3546 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3547 else if (t->code () == TYPE_CODE_UNION)
3548 {
3549 int i, n = t->num_fields ();
3550
3551 /* If all elements of the union are scalar, then the union is scalar. */
3552 for (i = 0; i < n; i++)
3553 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3554 return 0;
3555
3556 return 1;
3557 }
3558
3559 return 0;
3560 }
3561
3562 /* Return true is T is a class or a union. False otherwise. */
3563
3564 int
3565 class_or_union_p (const struct type *t)
3566 {
3567 return (t->code () == TYPE_CODE_STRUCT
3568 || t->code () == TYPE_CODE_UNION);
3569 }
3570
3571 /* A helper function which returns true if types A and B represent the
3572 "same" class type. This is true if the types have the same main
3573 type, or the same name. */
3574
3575 int
3576 class_types_same_p (const struct type *a, const struct type *b)
3577 {
3578 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3579 || (a->name () && b->name ()
3580 && !strcmp (a->name (), b->name ())));
3581 }
3582
3583 /* If BASE is an ancestor of DCLASS return the distance between them.
3584 otherwise return -1;
3585 eg:
3586
3587 class A {};
3588 class B: public A {};
3589 class C: public B {};
3590 class D: C {};
3591
3592 distance_to_ancestor (A, A, 0) = 0
3593 distance_to_ancestor (A, B, 0) = 1
3594 distance_to_ancestor (A, C, 0) = 2
3595 distance_to_ancestor (A, D, 0) = 3
3596
3597 If PUBLIC is 1 then only public ancestors are considered,
3598 and the function returns the distance only if BASE is a public ancestor
3599 of DCLASS.
3600 Eg:
3601
3602 distance_to_ancestor (A, D, 1) = -1. */
3603
3604 static int
3605 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3606 {
3607 int i;
3608 int d;
3609
3610 base = check_typedef (base);
3611 dclass = check_typedef (dclass);
3612
3613 if (class_types_same_p (base, dclass))
3614 return 0;
3615
3616 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3617 {
3618 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3619 continue;
3620
3621 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3622 if (d >= 0)
3623 return 1 + d;
3624 }
3625
3626 return -1;
3627 }
3628
3629 /* Check whether BASE is an ancestor or base class or DCLASS
3630 Return 1 if so, and 0 if not.
3631 Note: If BASE and DCLASS are of the same type, this function
3632 will return 1. So for some class A, is_ancestor (A, A) will
3633 return 1. */
3634
3635 int
3636 is_ancestor (struct type *base, struct type *dclass)
3637 {
3638 return distance_to_ancestor (base, dclass, 0) >= 0;
3639 }
3640
3641 /* Like is_ancestor, but only returns true when BASE is a public
3642 ancestor of DCLASS. */
3643
3644 int
3645 is_public_ancestor (struct type *base, struct type *dclass)
3646 {
3647 return distance_to_ancestor (base, dclass, 1) >= 0;
3648 }
3649
3650 /* A helper function for is_unique_ancestor. */
3651
3652 static int
3653 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3654 int *offset,
3655 const gdb_byte *valaddr, int embedded_offset,
3656 CORE_ADDR address, struct value *val)
3657 {
3658 int i, count = 0;
3659
3660 base = check_typedef (base);
3661 dclass = check_typedef (dclass);
3662
3663 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3664 {
3665 struct type *iter;
3666 int this_offset;
3667
3668 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3669
3670 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3671 address, val);
3672
3673 if (class_types_same_p (base, iter))
3674 {
3675 /* If this is the first subclass, set *OFFSET and set count
3676 to 1. Otherwise, if this is at the same offset as
3677 previous instances, do nothing. Otherwise, increment
3678 count. */
3679 if (*offset == -1)
3680 {
3681 *offset = this_offset;
3682 count = 1;
3683 }
3684 else if (this_offset == *offset)
3685 {
3686 /* Nothing. */
3687 }
3688 else
3689 ++count;
3690 }
3691 else
3692 count += is_unique_ancestor_worker (base, iter, offset,
3693 valaddr,
3694 embedded_offset + this_offset,
3695 address, val);
3696 }
3697
3698 return count;
3699 }
3700
3701 /* Like is_ancestor, but only returns true if BASE is a unique base
3702 class of the type of VAL. */
3703
3704 int
3705 is_unique_ancestor (struct type *base, struct value *val)
3706 {
3707 int offset = -1;
3708
3709 return is_unique_ancestor_worker (base, value_type (val), &offset,
3710 value_contents_for_printing (val),
3711 value_embedded_offset (val),
3712 value_address (val), val) == 1;
3713 }
3714
3715 /* See gdbtypes.h. */
3716
3717 enum bfd_endian
3718 type_byte_order (const struct type *type)
3719 {
3720 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3721 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3722 {
3723 if (byteorder == BFD_ENDIAN_BIG)
3724 return BFD_ENDIAN_LITTLE;
3725 else
3726 {
3727 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3728 return BFD_ENDIAN_BIG;
3729 }
3730 }
3731
3732 return byteorder;
3733 }
3734
3735 \f
3736 /* Overload resolution. */
3737
3738 /* Return the sum of the rank of A with the rank of B. */
3739
3740 struct rank
3741 sum_ranks (struct rank a, struct rank b)
3742 {
3743 struct rank c;
3744 c.rank = a.rank + b.rank;
3745 c.subrank = a.subrank + b.subrank;
3746 return c;
3747 }
3748
3749 /* Compare rank A and B and return:
3750 0 if a = b
3751 1 if a is better than b
3752 -1 if b is better than a. */
3753
3754 int
3755 compare_ranks (struct rank a, struct rank b)
3756 {
3757 if (a.rank == b.rank)
3758 {
3759 if (a.subrank == b.subrank)
3760 return 0;
3761 if (a.subrank < b.subrank)
3762 return 1;
3763 if (a.subrank > b.subrank)
3764 return -1;
3765 }
3766
3767 if (a.rank < b.rank)
3768 return 1;
3769
3770 /* a.rank > b.rank */
3771 return -1;
3772 }
3773
3774 /* Functions for overload resolution begin here. */
3775
3776 /* Compare two badness vectors A and B and return the result.
3777 0 => A and B are identical
3778 1 => A and B are incomparable
3779 2 => A is better than B
3780 3 => A is worse than B */
3781
3782 int
3783 compare_badness (const badness_vector &a, const badness_vector &b)
3784 {
3785 int i;
3786 int tmp;
3787 short found_pos = 0; /* any positives in c? */
3788 short found_neg = 0; /* any negatives in c? */
3789
3790 /* differing sizes => incomparable */
3791 if (a.size () != b.size ())
3792 return 1;
3793
3794 /* Subtract b from a */
3795 for (i = 0; i < a.size (); i++)
3796 {
3797 tmp = compare_ranks (b[i], a[i]);
3798 if (tmp > 0)
3799 found_pos = 1;
3800 else if (tmp < 0)
3801 found_neg = 1;
3802 }
3803
3804 if (found_pos)
3805 {
3806 if (found_neg)
3807 return 1; /* incomparable */
3808 else
3809 return 3; /* A > B */
3810 }
3811 else
3812 /* no positives */
3813 {
3814 if (found_neg)
3815 return 2; /* A < B */
3816 else
3817 return 0; /* A == B */
3818 }
3819 }
3820
3821 /* Rank a function by comparing its parameter types (PARMS), to the
3822 types of an argument list (ARGS). Return the badness vector. This
3823 has ARGS.size() + 1 entries. */
3824
3825 badness_vector
3826 rank_function (gdb::array_view<type *> parms,
3827 gdb::array_view<value *> args)
3828 {
3829 /* add 1 for the length-match rank. */
3830 badness_vector bv;
3831 bv.reserve (1 + args.size ());
3832
3833 /* First compare the lengths of the supplied lists.
3834 If there is a mismatch, set it to a high value. */
3835
3836 /* pai/1997-06-03 FIXME: when we have debug info about default
3837 arguments and ellipsis parameter lists, we should consider those
3838 and rank the length-match more finely. */
3839
3840 bv.push_back ((args.size () != parms.size ())
3841 ? LENGTH_MISMATCH_BADNESS
3842 : EXACT_MATCH_BADNESS);
3843
3844 /* Now rank all the parameters of the candidate function. */
3845 size_t min_len = std::min (parms.size (), args.size ());
3846
3847 for (size_t i = 0; i < min_len; i++)
3848 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3849 args[i]));
3850
3851 /* If more arguments than parameters, add dummy entries. */
3852 for (size_t i = min_len; i < args.size (); i++)
3853 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3854
3855 return bv;
3856 }
3857
3858 /* Compare the names of two integer types, assuming that any sign
3859 qualifiers have been checked already. We do it this way because
3860 there may be an "int" in the name of one of the types. */
3861
3862 static int
3863 integer_types_same_name_p (const char *first, const char *second)
3864 {
3865 int first_p, second_p;
3866
3867 /* If both are shorts, return 1; if neither is a short, keep
3868 checking. */
3869 first_p = (strstr (first, "short") != NULL);
3870 second_p = (strstr (second, "short") != NULL);
3871 if (first_p && second_p)
3872 return 1;
3873 if (first_p || second_p)
3874 return 0;
3875
3876 /* Likewise for long. */
3877 first_p = (strstr (first, "long") != NULL);
3878 second_p = (strstr (second, "long") != NULL);
3879 if (first_p && second_p)
3880 return 1;
3881 if (first_p || second_p)
3882 return 0;
3883
3884 /* Likewise for char. */
3885 first_p = (strstr (first, "char") != NULL);
3886 second_p = (strstr (second, "char") != NULL);
3887 if (first_p && second_p)
3888 return 1;
3889 if (first_p || second_p)
3890 return 0;
3891
3892 /* They must both be ints. */
3893 return 1;
3894 }
3895
3896 /* Compares type A to type B. Returns true if they represent the same
3897 type, false otherwise. */
3898
3899 bool
3900 types_equal (struct type *a, struct type *b)
3901 {
3902 /* Identical type pointers. */
3903 /* However, this still doesn't catch all cases of same type for b
3904 and a. The reason is that builtin types are different from
3905 the same ones constructed from the object. */
3906 if (a == b)
3907 return true;
3908
3909 /* Resolve typedefs */
3910 if (a->code () == TYPE_CODE_TYPEDEF)
3911 a = check_typedef (a);
3912 if (b->code () == TYPE_CODE_TYPEDEF)
3913 b = check_typedef (b);
3914
3915 /* If after resolving typedefs a and b are not of the same type
3916 code then they are not equal. */
3917 if (a->code () != b->code ())
3918 return false;
3919
3920 /* If a and b are both pointers types or both reference types then
3921 they are equal of the same type iff the objects they refer to are
3922 of the same type. */
3923 if (a->code () == TYPE_CODE_PTR
3924 || a->code () == TYPE_CODE_REF)
3925 return types_equal (TYPE_TARGET_TYPE (a),
3926 TYPE_TARGET_TYPE (b));
3927
3928 /* Well, damnit, if the names are exactly the same, I'll say they
3929 are exactly the same. This happens when we generate method
3930 stubs. The types won't point to the same address, but they
3931 really are the same. */
3932
3933 if (a->name () && b->name ()
3934 && strcmp (a->name (), b->name ()) == 0)
3935 return true;
3936
3937 /* Check if identical after resolving typedefs. */
3938 if (a == b)
3939 return true;
3940
3941 /* Two function types are equal if their argument and return types
3942 are equal. */
3943 if (a->code () == TYPE_CODE_FUNC)
3944 {
3945 int i;
3946
3947 if (a->num_fields () != b->num_fields ())
3948 return false;
3949
3950 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3951 return false;
3952
3953 for (i = 0; i < a->num_fields (); ++i)
3954 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3955 return false;
3956
3957 return true;
3958 }
3959
3960 return false;
3961 }
3962 \f
3963 /* Deep comparison of types. */
3964
3965 /* An entry in the type-equality bcache. */
3966
3967 struct type_equality_entry
3968 {
3969 type_equality_entry (struct type *t1, struct type *t2)
3970 : type1 (t1),
3971 type2 (t2)
3972 {
3973 }
3974
3975 struct type *type1, *type2;
3976 };
3977
3978 /* A helper function to compare two strings. Returns true if they are
3979 the same, false otherwise. Handles NULLs properly. */
3980
3981 static bool
3982 compare_maybe_null_strings (const char *s, const char *t)
3983 {
3984 if (s == NULL || t == NULL)
3985 return s == t;
3986 return strcmp (s, t) == 0;
3987 }
3988
3989 /* A helper function for check_types_worklist that checks two types for
3990 "deep" equality. Returns true if the types are considered the
3991 same, false otherwise. */
3992
3993 static bool
3994 check_types_equal (struct type *type1, struct type *type2,
3995 std::vector<type_equality_entry> *worklist)
3996 {
3997 type1 = check_typedef (type1);
3998 type2 = check_typedef (type2);
3999
4000 if (type1 == type2)
4001 return true;
4002
4003 if (type1->code () != type2->code ()
4004 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4005 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
4006 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
4007 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
4008 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
4009 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
4010 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4011 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
4012 || type1->num_fields () != type2->num_fields ())
4013 return false;
4014
4015 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4016 return false;
4017 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4018 return false;
4019
4020 if (type1->code () == TYPE_CODE_RANGE)
4021 {
4022 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
4023 return false;
4024 }
4025 else
4026 {
4027 int i;
4028
4029 for (i = 0; i < type1->num_fields (); ++i)
4030 {
4031 const struct field *field1 = &type1->field (i);
4032 const struct field *field2 = &type2->field (i);
4033
4034 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4035 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4036 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4037 return false;
4038 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4039 FIELD_NAME (*field2)))
4040 return false;
4041 switch (FIELD_LOC_KIND (*field1))
4042 {
4043 case FIELD_LOC_KIND_BITPOS:
4044 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4045 return false;
4046 break;
4047 case FIELD_LOC_KIND_ENUMVAL:
4048 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4049 return false;
4050 break;
4051 case FIELD_LOC_KIND_PHYSADDR:
4052 if (FIELD_STATIC_PHYSADDR (*field1)
4053 != FIELD_STATIC_PHYSADDR (*field2))
4054 return false;
4055 break;
4056 case FIELD_LOC_KIND_PHYSNAME:
4057 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4058 FIELD_STATIC_PHYSNAME (*field2)))
4059 return false;
4060 break;
4061 case FIELD_LOC_KIND_DWARF_BLOCK:
4062 {
4063 struct dwarf2_locexpr_baton *block1, *block2;
4064
4065 block1 = FIELD_DWARF_BLOCK (*field1);
4066 block2 = FIELD_DWARF_BLOCK (*field2);
4067 if (block1->per_cu != block2->per_cu
4068 || block1->size != block2->size
4069 || memcmp (block1->data, block2->data, block1->size) != 0)
4070 return false;
4071 }
4072 break;
4073 default:
4074 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4075 "%d by check_types_equal"),
4076 FIELD_LOC_KIND (*field1));
4077 }
4078
4079 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
4080 }
4081 }
4082
4083 if (TYPE_TARGET_TYPE (type1) != NULL)
4084 {
4085 if (TYPE_TARGET_TYPE (type2) == NULL)
4086 return false;
4087
4088 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4089 TYPE_TARGET_TYPE (type2));
4090 }
4091 else if (TYPE_TARGET_TYPE (type2) != NULL)
4092 return false;
4093
4094 return true;
4095 }
4096
4097 /* Check types on a worklist for equality. Returns false if any pair
4098 is not equal, true if they are all considered equal. */
4099
4100 static bool
4101 check_types_worklist (std::vector<type_equality_entry> *worklist,
4102 gdb::bcache *cache)
4103 {
4104 while (!worklist->empty ())
4105 {
4106 int added;
4107
4108 struct type_equality_entry entry = std::move (worklist->back ());
4109 worklist->pop_back ();
4110
4111 /* If the type pair has already been visited, we know it is
4112 ok. */
4113 cache->insert (&entry, sizeof (entry), &added);
4114 if (!added)
4115 continue;
4116
4117 if (!check_types_equal (entry.type1, entry.type2, worklist))
4118 return false;
4119 }
4120
4121 return true;
4122 }
4123
4124 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4125 "deep comparison". Otherwise return false. */
4126
4127 bool
4128 types_deeply_equal (struct type *type1, struct type *type2)
4129 {
4130 std::vector<type_equality_entry> worklist;
4131
4132 gdb_assert (type1 != NULL && type2 != NULL);
4133
4134 /* Early exit for the simple case. */
4135 if (type1 == type2)
4136 return true;
4137
4138 gdb::bcache cache (nullptr, nullptr);
4139 worklist.emplace_back (type1, type2);
4140 return check_types_worklist (&worklist, &cache);
4141 }
4142
4143 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4144 Otherwise return one. */
4145
4146 int
4147 type_not_allocated (const struct type *type)
4148 {
4149 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4150
4151 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4152 && !TYPE_DYN_PROP_ADDR (prop));
4153 }
4154
4155 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4156 Otherwise return one. */
4157
4158 int
4159 type_not_associated (const struct type *type)
4160 {
4161 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4162
4163 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4164 && !TYPE_DYN_PROP_ADDR (prop));
4165 }
4166
4167 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4168
4169 static struct rank
4170 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4171 {
4172 struct rank rank = {0,0};
4173
4174 switch (arg->code ())
4175 {
4176 case TYPE_CODE_PTR:
4177
4178 /* Allowed pointer conversions are:
4179 (a) pointer to void-pointer conversion. */
4180 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4181 return VOID_PTR_CONVERSION_BADNESS;
4182
4183 /* (b) pointer to ancestor-pointer conversion. */
4184 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4185 TYPE_TARGET_TYPE (arg),
4186 0);
4187 if (rank.subrank >= 0)
4188 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4189
4190 return INCOMPATIBLE_TYPE_BADNESS;
4191 case TYPE_CODE_ARRAY:
4192 {
4193 struct type *t1 = TYPE_TARGET_TYPE (parm);
4194 struct type *t2 = TYPE_TARGET_TYPE (arg);
4195
4196 if (types_equal (t1, t2))
4197 {
4198 /* Make sure they are CV equal. */
4199 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4200 rank.subrank |= CV_CONVERSION_CONST;
4201 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4202 rank.subrank |= CV_CONVERSION_VOLATILE;
4203 if (rank.subrank != 0)
4204 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4205 return EXACT_MATCH_BADNESS;
4206 }
4207 return INCOMPATIBLE_TYPE_BADNESS;
4208 }
4209 case TYPE_CODE_FUNC:
4210 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4211 case TYPE_CODE_INT:
4212 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4213 {
4214 if (value_as_long (value) == 0)
4215 {
4216 /* Null pointer conversion: allow it to be cast to a pointer.
4217 [4.10.1 of C++ standard draft n3290] */
4218 return NULL_POINTER_CONVERSION_BADNESS;
4219 }
4220 else
4221 {
4222 /* If type checking is disabled, allow the conversion. */
4223 if (!strict_type_checking)
4224 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4225 }
4226 }
4227 /* fall through */
4228 case TYPE_CODE_ENUM:
4229 case TYPE_CODE_FLAGS:
4230 case TYPE_CODE_CHAR:
4231 case TYPE_CODE_RANGE:
4232 case TYPE_CODE_BOOL:
4233 default:
4234 return INCOMPATIBLE_TYPE_BADNESS;
4235 }
4236 }
4237
4238 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4239
4240 static struct rank
4241 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4242 {
4243 switch (arg->code ())
4244 {
4245 case TYPE_CODE_PTR:
4246 case TYPE_CODE_ARRAY:
4247 return rank_one_type (TYPE_TARGET_TYPE (parm),
4248 TYPE_TARGET_TYPE (arg), NULL);
4249 default:
4250 return INCOMPATIBLE_TYPE_BADNESS;
4251 }
4252 }
4253
4254 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4255
4256 static struct rank
4257 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4258 {
4259 switch (arg->code ())
4260 {
4261 case TYPE_CODE_PTR: /* funcptr -> func */
4262 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4263 default:
4264 return INCOMPATIBLE_TYPE_BADNESS;
4265 }
4266 }
4267
4268 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4269
4270 static struct rank
4271 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4272 {
4273 switch (arg->code ())
4274 {
4275 case TYPE_CODE_INT:
4276 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4277 {
4278 /* Deal with signed, unsigned, and plain chars and
4279 signed and unsigned ints. */
4280 if (TYPE_NOSIGN (parm))
4281 {
4282 /* This case only for character types. */
4283 if (TYPE_NOSIGN (arg))
4284 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4285 else /* signed/unsigned char -> plain char */
4286 return INTEGER_CONVERSION_BADNESS;
4287 }
4288 else if (TYPE_UNSIGNED (parm))
4289 {
4290 if (TYPE_UNSIGNED (arg))
4291 {
4292 /* unsigned int -> unsigned int, or
4293 unsigned long -> unsigned long */
4294 if (integer_types_same_name_p (parm->name (),
4295 arg->name ()))
4296 return EXACT_MATCH_BADNESS;
4297 else if (integer_types_same_name_p (arg->name (),
4298 "int")
4299 && integer_types_same_name_p (parm->name (),
4300 "long"))
4301 /* unsigned int -> unsigned long */
4302 return INTEGER_PROMOTION_BADNESS;
4303 else
4304 /* unsigned long -> unsigned int */
4305 return INTEGER_CONVERSION_BADNESS;
4306 }
4307 else
4308 {
4309 if (integer_types_same_name_p (arg->name (),
4310 "long")
4311 && integer_types_same_name_p (parm->name (),
4312 "int"))
4313 /* signed long -> unsigned int */
4314 return INTEGER_CONVERSION_BADNESS;
4315 else
4316 /* signed int/long -> unsigned int/long */
4317 return INTEGER_CONVERSION_BADNESS;
4318 }
4319 }
4320 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4321 {
4322 if (integer_types_same_name_p (parm->name (),
4323 arg->name ()))
4324 return EXACT_MATCH_BADNESS;
4325 else if (integer_types_same_name_p (arg->name (),
4326 "int")
4327 && integer_types_same_name_p (parm->name (),
4328 "long"))
4329 return INTEGER_PROMOTION_BADNESS;
4330 else
4331 return INTEGER_CONVERSION_BADNESS;
4332 }
4333 else
4334 return INTEGER_CONVERSION_BADNESS;
4335 }
4336 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4337 return INTEGER_PROMOTION_BADNESS;
4338 else
4339 return INTEGER_CONVERSION_BADNESS;
4340 case TYPE_CODE_ENUM:
4341 case TYPE_CODE_FLAGS:
4342 case TYPE_CODE_CHAR:
4343 case TYPE_CODE_RANGE:
4344 case TYPE_CODE_BOOL:
4345 if (TYPE_DECLARED_CLASS (arg))
4346 return INCOMPATIBLE_TYPE_BADNESS;
4347 return INTEGER_PROMOTION_BADNESS;
4348 case TYPE_CODE_FLT:
4349 return INT_FLOAT_CONVERSION_BADNESS;
4350 case TYPE_CODE_PTR:
4351 return NS_POINTER_CONVERSION_BADNESS;
4352 default:
4353 return INCOMPATIBLE_TYPE_BADNESS;
4354 }
4355 }
4356
4357 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4358
4359 static struct rank
4360 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4361 {
4362 switch (arg->code ())
4363 {
4364 case TYPE_CODE_INT:
4365 case TYPE_CODE_CHAR:
4366 case TYPE_CODE_RANGE:
4367 case TYPE_CODE_BOOL:
4368 case TYPE_CODE_ENUM:
4369 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4370 return INCOMPATIBLE_TYPE_BADNESS;
4371 return INTEGER_CONVERSION_BADNESS;
4372 case TYPE_CODE_FLT:
4373 return INT_FLOAT_CONVERSION_BADNESS;
4374 default:
4375 return INCOMPATIBLE_TYPE_BADNESS;
4376 }
4377 }
4378
4379 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4380
4381 static struct rank
4382 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4383 {
4384 switch (arg->code ())
4385 {
4386 case TYPE_CODE_RANGE:
4387 case TYPE_CODE_BOOL:
4388 case TYPE_CODE_ENUM:
4389 if (TYPE_DECLARED_CLASS (arg))
4390 return INCOMPATIBLE_TYPE_BADNESS;
4391 return INTEGER_CONVERSION_BADNESS;
4392 case TYPE_CODE_FLT:
4393 return INT_FLOAT_CONVERSION_BADNESS;
4394 case TYPE_CODE_INT:
4395 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4396 return INTEGER_CONVERSION_BADNESS;
4397 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4398 return INTEGER_PROMOTION_BADNESS;
4399 /* fall through */
4400 case TYPE_CODE_CHAR:
4401 /* Deal with signed, unsigned, and plain chars for C++ and
4402 with int cases falling through from previous case. */
4403 if (TYPE_NOSIGN (parm))
4404 {
4405 if (TYPE_NOSIGN (arg))
4406 return EXACT_MATCH_BADNESS;
4407 else
4408 return INTEGER_CONVERSION_BADNESS;
4409 }
4410 else if (TYPE_UNSIGNED (parm))
4411 {
4412 if (TYPE_UNSIGNED (arg))
4413 return EXACT_MATCH_BADNESS;
4414 else
4415 return INTEGER_PROMOTION_BADNESS;
4416 }
4417 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4418 return EXACT_MATCH_BADNESS;
4419 else
4420 return INTEGER_CONVERSION_BADNESS;
4421 default:
4422 return INCOMPATIBLE_TYPE_BADNESS;
4423 }
4424 }
4425
4426 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4427
4428 static struct rank
4429 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4430 {
4431 switch (arg->code ())
4432 {
4433 case TYPE_CODE_INT:
4434 case TYPE_CODE_CHAR:
4435 case TYPE_CODE_RANGE:
4436 case TYPE_CODE_BOOL:
4437 case TYPE_CODE_ENUM:
4438 return INTEGER_CONVERSION_BADNESS;
4439 case TYPE_CODE_FLT:
4440 return INT_FLOAT_CONVERSION_BADNESS;
4441 default:
4442 return INCOMPATIBLE_TYPE_BADNESS;
4443 }
4444 }
4445
4446 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4447
4448 static struct rank
4449 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4450 {
4451 switch (arg->code ())
4452 {
4453 /* n3290 draft, section 4.12.1 (conv.bool):
4454
4455 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4456 pointer to member type can be converted to a prvalue of type
4457 bool. A zero value, null pointer value, or null member pointer
4458 value is converted to false; any other value is converted to
4459 true. A prvalue of type std::nullptr_t can be converted to a
4460 prvalue of type bool; the resulting value is false." */
4461 case TYPE_CODE_INT:
4462 case TYPE_CODE_CHAR:
4463 case TYPE_CODE_ENUM:
4464 case TYPE_CODE_FLT:
4465 case TYPE_CODE_MEMBERPTR:
4466 case TYPE_CODE_PTR:
4467 return BOOL_CONVERSION_BADNESS;
4468 case TYPE_CODE_RANGE:
4469 return INCOMPATIBLE_TYPE_BADNESS;
4470 case TYPE_CODE_BOOL:
4471 return EXACT_MATCH_BADNESS;
4472 default:
4473 return INCOMPATIBLE_TYPE_BADNESS;
4474 }
4475 }
4476
4477 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4478
4479 static struct rank
4480 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4481 {
4482 switch (arg->code ())
4483 {
4484 case TYPE_CODE_FLT:
4485 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4486 return FLOAT_PROMOTION_BADNESS;
4487 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4488 return EXACT_MATCH_BADNESS;
4489 else
4490 return FLOAT_CONVERSION_BADNESS;
4491 case TYPE_CODE_INT:
4492 case TYPE_CODE_BOOL:
4493 case TYPE_CODE_ENUM:
4494 case TYPE_CODE_RANGE:
4495 case TYPE_CODE_CHAR:
4496 return INT_FLOAT_CONVERSION_BADNESS;
4497 default:
4498 return INCOMPATIBLE_TYPE_BADNESS;
4499 }
4500 }
4501
4502 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4503
4504 static struct rank
4505 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4506 {
4507 switch (arg->code ())
4508 { /* Strictly not needed for C++, but... */
4509 case TYPE_CODE_FLT:
4510 return FLOAT_PROMOTION_BADNESS;
4511 case TYPE_CODE_COMPLEX:
4512 return EXACT_MATCH_BADNESS;
4513 default:
4514 return INCOMPATIBLE_TYPE_BADNESS;
4515 }
4516 }
4517
4518 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4519
4520 static struct rank
4521 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4522 {
4523 struct rank rank = {0, 0};
4524
4525 switch (arg->code ())
4526 {
4527 case TYPE_CODE_STRUCT:
4528 /* Check for derivation */
4529 rank.subrank = distance_to_ancestor (parm, arg, 0);
4530 if (rank.subrank >= 0)
4531 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4532 /* fall through */
4533 default:
4534 return INCOMPATIBLE_TYPE_BADNESS;
4535 }
4536 }
4537
4538 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4539
4540 static struct rank
4541 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4542 {
4543 switch (arg->code ())
4544 {
4545 /* Not in C++ */
4546 case TYPE_CODE_SET:
4547 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4548 TYPE_FIELD_TYPE (arg, 0), NULL);
4549 default:
4550 return INCOMPATIBLE_TYPE_BADNESS;
4551 }
4552 }
4553
4554 /* Compare one type (PARM) for compatibility with another (ARG).
4555 * PARM is intended to be the parameter type of a function; and
4556 * ARG is the supplied argument's type. This function tests if
4557 * the latter can be converted to the former.
4558 * VALUE is the argument's value or NULL if none (or called recursively)
4559 *
4560 * Return 0 if they are identical types;
4561 * Otherwise, return an integer which corresponds to how compatible
4562 * PARM is to ARG. The higher the return value, the worse the match.
4563 * Generally the "bad" conversions are all uniformly assigned a 100. */
4564
4565 struct rank
4566 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4567 {
4568 struct rank rank = {0,0};
4569
4570 /* Resolve typedefs */
4571 if (parm->code () == TYPE_CODE_TYPEDEF)
4572 parm = check_typedef (parm);
4573 if (arg->code () == TYPE_CODE_TYPEDEF)
4574 arg = check_typedef (arg);
4575
4576 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4577 {
4578 if (VALUE_LVAL (value) == not_lval)
4579 {
4580 /* Rvalues should preferably bind to rvalue references or const
4581 lvalue references. */
4582 if (parm->code () == TYPE_CODE_RVALUE_REF)
4583 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4584 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4585 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4586 else
4587 return INCOMPATIBLE_TYPE_BADNESS;
4588 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4589 }
4590 else
4591 {
4592 /* It's illegal to pass an lvalue as an rvalue. */
4593 if (parm->code () == TYPE_CODE_RVALUE_REF)
4594 return INCOMPATIBLE_TYPE_BADNESS;
4595 }
4596 }
4597
4598 if (types_equal (parm, arg))
4599 {
4600 struct type *t1 = parm;
4601 struct type *t2 = arg;
4602
4603 /* For pointers and references, compare target type. */
4604 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4605 {
4606 t1 = TYPE_TARGET_TYPE (parm);
4607 t2 = TYPE_TARGET_TYPE (arg);
4608 }
4609
4610 /* Make sure they are CV equal, too. */
4611 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4612 rank.subrank |= CV_CONVERSION_CONST;
4613 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4614 rank.subrank |= CV_CONVERSION_VOLATILE;
4615 if (rank.subrank != 0)
4616 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4617 return EXACT_MATCH_BADNESS;
4618 }
4619
4620 /* See through references, since we can almost make non-references
4621 references. */
4622
4623 if (TYPE_IS_REFERENCE (arg))
4624 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4625 REFERENCE_SEE_THROUGH_BADNESS));
4626 if (TYPE_IS_REFERENCE (parm))
4627 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4628 REFERENCE_SEE_THROUGH_BADNESS));
4629 if (overload_debug)
4630 /* Debugging only. */
4631 fprintf_filtered (gdb_stderr,
4632 "------ Arg is %s [%d], parm is %s [%d]\n",
4633 arg->name (), arg->code (),
4634 parm->name (), parm->code ());
4635
4636 /* x -> y means arg of type x being supplied for parameter of type y. */
4637
4638 switch (parm->code ())
4639 {
4640 case TYPE_CODE_PTR:
4641 return rank_one_type_parm_ptr (parm, arg, value);
4642 case TYPE_CODE_ARRAY:
4643 return rank_one_type_parm_array (parm, arg, value);
4644 case TYPE_CODE_FUNC:
4645 return rank_one_type_parm_func (parm, arg, value);
4646 case TYPE_CODE_INT:
4647 return rank_one_type_parm_int (parm, arg, value);
4648 case TYPE_CODE_ENUM:
4649 return rank_one_type_parm_enum (parm, arg, value);
4650 case TYPE_CODE_CHAR:
4651 return rank_one_type_parm_char (parm, arg, value);
4652 case TYPE_CODE_RANGE:
4653 return rank_one_type_parm_range (parm, arg, value);
4654 case TYPE_CODE_BOOL:
4655 return rank_one_type_parm_bool (parm, arg, value);
4656 case TYPE_CODE_FLT:
4657 return rank_one_type_parm_float (parm, arg, value);
4658 case TYPE_CODE_COMPLEX:
4659 return rank_one_type_parm_complex (parm, arg, value);
4660 case TYPE_CODE_STRUCT:
4661 return rank_one_type_parm_struct (parm, arg, value);
4662 case TYPE_CODE_SET:
4663 return rank_one_type_parm_set (parm, arg, value);
4664 default:
4665 return INCOMPATIBLE_TYPE_BADNESS;
4666 } /* switch (arg->code ()) */
4667 }
4668
4669 /* End of functions for overload resolution. */
4670 \f
4671 /* Routines to pretty-print types. */
4672
4673 static void
4674 print_bit_vector (B_TYPE *bits, int nbits)
4675 {
4676 int bitno;
4677
4678 for (bitno = 0; bitno < nbits; bitno++)
4679 {
4680 if ((bitno % 8) == 0)
4681 {
4682 puts_filtered (" ");
4683 }
4684 if (B_TST (bits, bitno))
4685 printf_filtered (("1"));
4686 else
4687 printf_filtered (("0"));
4688 }
4689 }
4690
4691 /* Note the first arg should be the "this" pointer, we may not want to
4692 include it since we may get into a infinitely recursive
4693 situation. */
4694
4695 static void
4696 print_args (struct field *args, int nargs, int spaces)
4697 {
4698 if (args != NULL)
4699 {
4700 int i;
4701
4702 for (i = 0; i < nargs; i++)
4703 {
4704 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4705 args[i].name != NULL ? args[i].name : "<NULL>");
4706 recursive_dump_type (args[i].type, spaces + 2);
4707 }
4708 }
4709 }
4710
4711 int
4712 field_is_static (struct field *f)
4713 {
4714 /* "static" fields are the fields whose location is not relative
4715 to the address of the enclosing struct. It would be nice to
4716 have a dedicated flag that would be set for static fields when
4717 the type is being created. But in practice, checking the field
4718 loc_kind should give us an accurate answer. */
4719 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4720 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4721 }
4722
4723 static void
4724 dump_fn_fieldlists (struct type *type, int spaces)
4725 {
4726 int method_idx;
4727 int overload_idx;
4728 struct fn_field *f;
4729
4730 printfi_filtered (spaces, "fn_fieldlists ");
4731 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4732 printf_filtered ("\n");
4733 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4734 {
4735 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4736 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4737 method_idx,
4738 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4739 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4740 gdb_stdout);
4741 printf_filtered (_(") length %d\n"),
4742 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4743 for (overload_idx = 0;
4744 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4745 overload_idx++)
4746 {
4747 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4748 overload_idx,
4749 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4750 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4751 gdb_stdout);
4752 printf_filtered (")\n");
4753 printfi_filtered (spaces + 8, "type ");
4754 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4755 gdb_stdout);
4756 printf_filtered ("\n");
4757
4758 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4759 spaces + 8 + 2);
4760
4761 printfi_filtered (spaces + 8, "args ");
4762 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4763 gdb_stdout);
4764 printf_filtered ("\n");
4765 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4766 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4767 spaces + 8 + 2);
4768 printfi_filtered (spaces + 8, "fcontext ");
4769 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4770 gdb_stdout);
4771 printf_filtered ("\n");
4772
4773 printfi_filtered (spaces + 8, "is_const %d\n",
4774 TYPE_FN_FIELD_CONST (f, overload_idx));
4775 printfi_filtered (spaces + 8, "is_volatile %d\n",
4776 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4777 printfi_filtered (spaces + 8, "is_private %d\n",
4778 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4779 printfi_filtered (spaces + 8, "is_protected %d\n",
4780 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4781 printfi_filtered (spaces + 8, "is_stub %d\n",
4782 TYPE_FN_FIELD_STUB (f, overload_idx));
4783 printfi_filtered (spaces + 8, "defaulted %d\n",
4784 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4785 printfi_filtered (spaces + 8, "is_deleted %d\n",
4786 TYPE_FN_FIELD_DELETED (f, overload_idx));
4787 printfi_filtered (spaces + 8, "voffset %u\n",
4788 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4789 }
4790 }
4791 }
4792
4793 static void
4794 print_cplus_stuff (struct type *type, int spaces)
4795 {
4796 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4797 printfi_filtered (spaces, "vptr_basetype ");
4798 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4799 puts_filtered ("\n");
4800 if (TYPE_VPTR_BASETYPE (type) != NULL)
4801 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4802
4803 printfi_filtered (spaces, "n_baseclasses %d\n",
4804 TYPE_N_BASECLASSES (type));
4805 printfi_filtered (spaces, "nfn_fields %d\n",
4806 TYPE_NFN_FIELDS (type));
4807 if (TYPE_N_BASECLASSES (type) > 0)
4808 {
4809 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4810 TYPE_N_BASECLASSES (type));
4811 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4812 gdb_stdout);
4813 printf_filtered (")");
4814
4815 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4816 TYPE_N_BASECLASSES (type));
4817 puts_filtered ("\n");
4818 }
4819 if (type->num_fields () > 0)
4820 {
4821 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4822 {
4823 printfi_filtered (spaces,
4824 "private_field_bits (%d bits at *",
4825 type->num_fields ());
4826 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4827 gdb_stdout);
4828 printf_filtered (")");
4829 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4830 type->num_fields ());
4831 puts_filtered ("\n");
4832 }
4833 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4834 {
4835 printfi_filtered (spaces,
4836 "protected_field_bits (%d bits at *",
4837 type->num_fields ());
4838 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4839 gdb_stdout);
4840 printf_filtered (")");
4841 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4842 type->num_fields ());
4843 puts_filtered ("\n");
4844 }
4845 }
4846 if (TYPE_NFN_FIELDS (type) > 0)
4847 {
4848 dump_fn_fieldlists (type, spaces);
4849 }
4850
4851 printfi_filtered (spaces, "calling_convention %d\n",
4852 TYPE_CPLUS_CALLING_CONVENTION (type));
4853 }
4854
4855 /* Print the contents of the TYPE's type_specific union, assuming that
4856 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4857
4858 static void
4859 print_gnat_stuff (struct type *type, int spaces)
4860 {
4861 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4862
4863 if (descriptive_type == NULL)
4864 printfi_filtered (spaces + 2, "no descriptive type\n");
4865 else
4866 {
4867 printfi_filtered (spaces + 2, "descriptive type\n");
4868 recursive_dump_type (descriptive_type, spaces + 4);
4869 }
4870 }
4871
4872 static struct obstack dont_print_type_obstack;
4873
4874 void
4875 recursive_dump_type (struct type *type, int spaces)
4876 {
4877 int idx;
4878
4879 if (spaces == 0)
4880 obstack_begin (&dont_print_type_obstack, 0);
4881
4882 if (type->num_fields () > 0
4883 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4884 {
4885 struct type **first_dont_print
4886 = (struct type **) obstack_base (&dont_print_type_obstack);
4887
4888 int i = (struct type **)
4889 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4890
4891 while (--i >= 0)
4892 {
4893 if (type == first_dont_print[i])
4894 {
4895 printfi_filtered (spaces, "type node ");
4896 gdb_print_host_address (type, gdb_stdout);
4897 printf_filtered (_(" <same as already seen type>\n"));
4898 return;
4899 }
4900 }
4901
4902 obstack_ptr_grow (&dont_print_type_obstack, type);
4903 }
4904
4905 printfi_filtered (spaces, "type node ");
4906 gdb_print_host_address (type, gdb_stdout);
4907 printf_filtered ("\n");
4908 printfi_filtered (spaces, "name '%s' (",
4909 type->name () ? type->name () : "<NULL>");
4910 gdb_print_host_address (type->name (), gdb_stdout);
4911 printf_filtered (")\n");
4912 printfi_filtered (spaces, "code 0x%x ", type->code ());
4913 switch (type->code ())
4914 {
4915 case TYPE_CODE_UNDEF:
4916 printf_filtered ("(TYPE_CODE_UNDEF)");
4917 break;
4918 case TYPE_CODE_PTR:
4919 printf_filtered ("(TYPE_CODE_PTR)");
4920 break;
4921 case TYPE_CODE_ARRAY:
4922 printf_filtered ("(TYPE_CODE_ARRAY)");
4923 break;
4924 case TYPE_CODE_STRUCT:
4925 printf_filtered ("(TYPE_CODE_STRUCT)");
4926 break;
4927 case TYPE_CODE_UNION:
4928 printf_filtered ("(TYPE_CODE_UNION)");
4929 break;
4930 case TYPE_CODE_ENUM:
4931 printf_filtered ("(TYPE_CODE_ENUM)");
4932 break;
4933 case TYPE_CODE_FLAGS:
4934 printf_filtered ("(TYPE_CODE_FLAGS)");
4935 break;
4936 case TYPE_CODE_FUNC:
4937 printf_filtered ("(TYPE_CODE_FUNC)");
4938 break;
4939 case TYPE_CODE_INT:
4940 printf_filtered ("(TYPE_CODE_INT)");
4941 break;
4942 case TYPE_CODE_FLT:
4943 printf_filtered ("(TYPE_CODE_FLT)");
4944 break;
4945 case TYPE_CODE_VOID:
4946 printf_filtered ("(TYPE_CODE_VOID)");
4947 break;
4948 case TYPE_CODE_SET:
4949 printf_filtered ("(TYPE_CODE_SET)");
4950 break;
4951 case TYPE_CODE_RANGE:
4952 printf_filtered ("(TYPE_CODE_RANGE)");
4953 break;
4954 case TYPE_CODE_STRING:
4955 printf_filtered ("(TYPE_CODE_STRING)");
4956 break;
4957 case TYPE_CODE_ERROR:
4958 printf_filtered ("(TYPE_CODE_ERROR)");
4959 break;
4960 case TYPE_CODE_MEMBERPTR:
4961 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4962 break;
4963 case TYPE_CODE_METHODPTR:
4964 printf_filtered ("(TYPE_CODE_METHODPTR)");
4965 break;
4966 case TYPE_CODE_METHOD:
4967 printf_filtered ("(TYPE_CODE_METHOD)");
4968 break;
4969 case TYPE_CODE_REF:
4970 printf_filtered ("(TYPE_CODE_REF)");
4971 break;
4972 case TYPE_CODE_CHAR:
4973 printf_filtered ("(TYPE_CODE_CHAR)");
4974 break;
4975 case TYPE_CODE_BOOL:
4976 printf_filtered ("(TYPE_CODE_BOOL)");
4977 break;
4978 case TYPE_CODE_COMPLEX:
4979 printf_filtered ("(TYPE_CODE_COMPLEX)");
4980 break;
4981 case TYPE_CODE_TYPEDEF:
4982 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4983 break;
4984 case TYPE_CODE_NAMESPACE:
4985 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4986 break;
4987 default:
4988 printf_filtered ("(UNKNOWN TYPE CODE)");
4989 break;
4990 }
4991 puts_filtered ("\n");
4992 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4993 if (TYPE_OBJFILE_OWNED (type))
4994 {
4995 printfi_filtered (spaces, "objfile ");
4996 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4997 }
4998 else
4999 {
5000 printfi_filtered (spaces, "gdbarch ");
5001 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5002 }
5003 printf_filtered ("\n");
5004 printfi_filtered (spaces, "target_type ");
5005 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5006 printf_filtered ("\n");
5007 if (TYPE_TARGET_TYPE (type) != NULL)
5008 {
5009 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5010 }
5011 printfi_filtered (spaces, "pointer_type ");
5012 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5013 printf_filtered ("\n");
5014 printfi_filtered (spaces, "reference_type ");
5015 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5016 printf_filtered ("\n");
5017 printfi_filtered (spaces, "type_chain ");
5018 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5019 printf_filtered ("\n");
5020 printfi_filtered (spaces, "instance_flags 0x%x",
5021 TYPE_INSTANCE_FLAGS (type));
5022 if (TYPE_CONST (type))
5023 {
5024 puts_filtered (" TYPE_CONST");
5025 }
5026 if (TYPE_VOLATILE (type))
5027 {
5028 puts_filtered (" TYPE_VOLATILE");
5029 }
5030 if (TYPE_CODE_SPACE (type))
5031 {
5032 puts_filtered (" TYPE_CODE_SPACE");
5033 }
5034 if (TYPE_DATA_SPACE (type))
5035 {
5036 puts_filtered (" TYPE_DATA_SPACE");
5037 }
5038 if (TYPE_ADDRESS_CLASS_1 (type))
5039 {
5040 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5041 }
5042 if (TYPE_ADDRESS_CLASS_2 (type))
5043 {
5044 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5045 }
5046 if (TYPE_RESTRICT (type))
5047 {
5048 puts_filtered (" TYPE_RESTRICT");
5049 }
5050 if (TYPE_ATOMIC (type))
5051 {
5052 puts_filtered (" TYPE_ATOMIC");
5053 }
5054 puts_filtered ("\n");
5055
5056 printfi_filtered (spaces, "flags");
5057 if (TYPE_UNSIGNED (type))
5058 {
5059 puts_filtered (" TYPE_UNSIGNED");
5060 }
5061 if (TYPE_NOSIGN (type))
5062 {
5063 puts_filtered (" TYPE_NOSIGN");
5064 }
5065 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5066 {
5067 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5068 }
5069 if (TYPE_STUB (type))
5070 {
5071 puts_filtered (" TYPE_STUB");
5072 }
5073 if (TYPE_TARGET_STUB (type))
5074 {
5075 puts_filtered (" TYPE_TARGET_STUB");
5076 }
5077 if (TYPE_PROTOTYPED (type))
5078 {
5079 puts_filtered (" TYPE_PROTOTYPED");
5080 }
5081 if (TYPE_VARARGS (type))
5082 {
5083 puts_filtered (" TYPE_VARARGS");
5084 }
5085 /* This is used for things like AltiVec registers on ppc. Gcc emits
5086 an attribute for the array type, which tells whether or not we
5087 have a vector, instead of a regular array. */
5088 if (TYPE_VECTOR (type))
5089 {
5090 puts_filtered (" TYPE_VECTOR");
5091 }
5092 if (TYPE_FIXED_INSTANCE (type))
5093 {
5094 puts_filtered (" TYPE_FIXED_INSTANCE");
5095 }
5096 if (TYPE_STUB_SUPPORTED (type))
5097 {
5098 puts_filtered (" TYPE_STUB_SUPPORTED");
5099 }
5100 if (TYPE_NOTTEXT (type))
5101 {
5102 puts_filtered (" TYPE_NOTTEXT");
5103 }
5104 puts_filtered ("\n");
5105 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
5106 gdb_print_host_address (type->fields (), gdb_stdout);
5107 puts_filtered ("\n");
5108 for (idx = 0; idx < type->num_fields (); idx++)
5109 {
5110 if (type->code () == TYPE_CODE_ENUM)
5111 printfi_filtered (spaces + 2,
5112 "[%d] enumval %s type ",
5113 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5114 else
5115 printfi_filtered (spaces + 2,
5116 "[%d] bitpos %s bitsize %d type ",
5117 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5118 TYPE_FIELD_BITSIZE (type, idx));
5119 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
5120 printf_filtered (" name '%s' (",
5121 TYPE_FIELD_NAME (type, idx) != NULL
5122 ? TYPE_FIELD_NAME (type, idx)
5123 : "<NULL>");
5124 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5125 printf_filtered (")\n");
5126 if (TYPE_FIELD_TYPE (type, idx) != NULL)
5127 {
5128 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
5129 }
5130 }
5131 if (type->code () == TYPE_CODE_RANGE)
5132 {
5133 printfi_filtered (spaces, "low %s%s high %s%s\n",
5134 plongest (TYPE_LOW_BOUND (type)),
5135 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
5136 plongest (TYPE_HIGH_BOUND (type)),
5137 TYPE_HIGH_BOUND_UNDEFINED (type)
5138 ? " (undefined)" : "");
5139 }
5140
5141 switch (TYPE_SPECIFIC_FIELD (type))
5142 {
5143 case TYPE_SPECIFIC_CPLUS_STUFF:
5144 printfi_filtered (spaces, "cplus_stuff ");
5145 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5146 gdb_stdout);
5147 puts_filtered ("\n");
5148 print_cplus_stuff (type, spaces);
5149 break;
5150
5151 case TYPE_SPECIFIC_GNAT_STUFF:
5152 printfi_filtered (spaces, "gnat_stuff ");
5153 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5154 puts_filtered ("\n");
5155 print_gnat_stuff (type, spaces);
5156 break;
5157
5158 case TYPE_SPECIFIC_FLOATFORMAT:
5159 printfi_filtered (spaces, "floatformat ");
5160 if (TYPE_FLOATFORMAT (type) == NULL
5161 || TYPE_FLOATFORMAT (type)->name == NULL)
5162 puts_filtered ("(null)");
5163 else
5164 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5165 puts_filtered ("\n");
5166 break;
5167
5168 case TYPE_SPECIFIC_FUNC:
5169 printfi_filtered (spaces, "calling_convention %d\n",
5170 TYPE_CALLING_CONVENTION (type));
5171 /* tail_call_list is not printed. */
5172 break;
5173
5174 case TYPE_SPECIFIC_SELF_TYPE:
5175 printfi_filtered (spaces, "self_type ");
5176 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5177 puts_filtered ("\n");
5178 break;
5179 }
5180
5181 if (spaces == 0)
5182 obstack_free (&dont_print_type_obstack, NULL);
5183 }
5184 \f
5185 /* Trivial helpers for the libiberty hash table, for mapping one
5186 type to another. */
5187
5188 struct type_pair : public allocate_on_obstack
5189 {
5190 type_pair (struct type *old_, struct type *newobj_)
5191 : old (old_), newobj (newobj_)
5192 {}
5193
5194 struct type * const old, * const newobj;
5195 };
5196
5197 static hashval_t
5198 type_pair_hash (const void *item)
5199 {
5200 const struct type_pair *pair = (const struct type_pair *) item;
5201
5202 return htab_hash_pointer (pair->old);
5203 }
5204
5205 static int
5206 type_pair_eq (const void *item_lhs, const void *item_rhs)
5207 {
5208 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5209 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5210
5211 return lhs->old == rhs->old;
5212 }
5213
5214 /* Allocate the hash table used by copy_type_recursive to walk
5215 types without duplicates. We use OBJFILE's obstack, because
5216 OBJFILE is about to be deleted. */
5217
5218 htab_t
5219 create_copied_types_hash (struct objfile *objfile)
5220 {
5221 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5222 NULL, &objfile->objfile_obstack,
5223 hashtab_obstack_allocate,
5224 dummy_obstack_deallocate);
5225 }
5226
5227 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5228
5229 static struct dynamic_prop_list *
5230 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5231 struct dynamic_prop_list *list)
5232 {
5233 struct dynamic_prop_list *copy = list;
5234 struct dynamic_prop_list **node_ptr = &copy;
5235
5236 while (*node_ptr != NULL)
5237 {
5238 struct dynamic_prop_list *node_copy;
5239
5240 node_copy = ((struct dynamic_prop_list *)
5241 obstack_copy (objfile_obstack, *node_ptr,
5242 sizeof (struct dynamic_prop_list)));
5243 node_copy->prop = (*node_ptr)->prop;
5244 *node_ptr = node_copy;
5245
5246 node_ptr = &node_copy->next;
5247 }
5248
5249 return copy;
5250 }
5251
5252 /* Recursively copy (deep copy) TYPE, if it is associated with
5253 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5254 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5255 it is not associated with OBJFILE. */
5256
5257 struct type *
5258 copy_type_recursive (struct objfile *objfile,
5259 struct type *type,
5260 htab_t copied_types)
5261 {
5262 void **slot;
5263 struct type *new_type;
5264
5265 if (! TYPE_OBJFILE_OWNED (type))
5266 return type;
5267
5268 /* This type shouldn't be pointing to any types in other objfiles;
5269 if it did, the type might disappear unexpectedly. */
5270 gdb_assert (TYPE_OBJFILE (type) == objfile);
5271
5272 struct type_pair pair (type, nullptr);
5273
5274 slot = htab_find_slot (copied_types, &pair, INSERT);
5275 if (*slot != NULL)
5276 return ((struct type_pair *) *slot)->newobj;
5277
5278 new_type = alloc_type_arch (get_type_arch (type));
5279
5280 /* We must add the new type to the hash table immediately, in case
5281 we encounter this type again during a recursive call below. */
5282 struct type_pair *stored
5283 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5284
5285 *slot = stored;
5286
5287 /* Copy the common fields of types. For the main type, we simply
5288 copy the entire thing and then update specific fields as needed. */
5289 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5290 TYPE_OBJFILE_OWNED (new_type) = 0;
5291 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5292
5293 if (type->name ())
5294 new_type->set_name (xstrdup (type->name ()));
5295
5296 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5297 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5298
5299 /* Copy the fields. */
5300 if (type->num_fields ())
5301 {
5302 int i, nfields;
5303
5304 nfields = type->num_fields ();
5305 new_type->set_fields
5306 ((struct field *)
5307 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5308
5309 for (i = 0; i < nfields; i++)
5310 {
5311 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5312 TYPE_FIELD_ARTIFICIAL (type, i);
5313 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5314 if (TYPE_FIELD_TYPE (type, i))
5315 TYPE_FIELD_TYPE (new_type, i)
5316 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5317 copied_types);
5318 if (TYPE_FIELD_NAME (type, i))
5319 TYPE_FIELD_NAME (new_type, i) =
5320 xstrdup (TYPE_FIELD_NAME (type, i));
5321 switch (TYPE_FIELD_LOC_KIND (type, i))
5322 {
5323 case FIELD_LOC_KIND_BITPOS:
5324 SET_FIELD_BITPOS (new_type->field (i),
5325 TYPE_FIELD_BITPOS (type, i));
5326 break;
5327 case FIELD_LOC_KIND_ENUMVAL:
5328 SET_FIELD_ENUMVAL (new_type->field (i),
5329 TYPE_FIELD_ENUMVAL (type, i));
5330 break;
5331 case FIELD_LOC_KIND_PHYSADDR:
5332 SET_FIELD_PHYSADDR (new_type->field (i),
5333 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5334 break;
5335 case FIELD_LOC_KIND_PHYSNAME:
5336 SET_FIELD_PHYSNAME (new_type->field (i),
5337 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5338 i)));
5339 break;
5340 default:
5341 internal_error (__FILE__, __LINE__,
5342 _("Unexpected type field location kind: %d"),
5343 TYPE_FIELD_LOC_KIND (type, i));
5344 }
5345 }
5346 }
5347
5348 /* For range types, copy the bounds information. */
5349 if (type->code () == TYPE_CODE_RANGE)
5350 {
5351 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5352 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5353 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5354 }
5355
5356 if (type->main_type->dyn_prop_list != NULL)
5357 new_type->main_type->dyn_prop_list
5358 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5359 type->main_type->dyn_prop_list);
5360
5361
5362 /* Copy pointers to other types. */
5363 if (TYPE_TARGET_TYPE (type))
5364 TYPE_TARGET_TYPE (new_type) =
5365 copy_type_recursive (objfile,
5366 TYPE_TARGET_TYPE (type),
5367 copied_types);
5368
5369 /* Maybe copy the type_specific bits.
5370
5371 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5372 base classes and methods. There's no fundamental reason why we
5373 can't, but at the moment it is not needed. */
5374
5375 switch (TYPE_SPECIFIC_FIELD (type))
5376 {
5377 case TYPE_SPECIFIC_NONE:
5378 break;
5379 case TYPE_SPECIFIC_FUNC:
5380 INIT_FUNC_SPECIFIC (new_type);
5381 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5382 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5383 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5384 break;
5385 case TYPE_SPECIFIC_FLOATFORMAT:
5386 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5387 break;
5388 case TYPE_SPECIFIC_CPLUS_STUFF:
5389 INIT_CPLUS_SPECIFIC (new_type);
5390 break;
5391 case TYPE_SPECIFIC_GNAT_STUFF:
5392 INIT_GNAT_SPECIFIC (new_type);
5393 break;
5394 case TYPE_SPECIFIC_SELF_TYPE:
5395 set_type_self_type (new_type,
5396 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5397 copied_types));
5398 break;
5399 default:
5400 gdb_assert_not_reached ("bad type_specific_kind");
5401 }
5402
5403 return new_type;
5404 }
5405
5406 /* Make a copy of the given TYPE, except that the pointer & reference
5407 types are not preserved.
5408
5409 This function assumes that the given type has an associated objfile.
5410 This objfile is used to allocate the new type. */
5411
5412 struct type *
5413 copy_type (const struct type *type)
5414 {
5415 struct type *new_type;
5416
5417 gdb_assert (TYPE_OBJFILE_OWNED (type));
5418
5419 new_type = alloc_type_copy (type);
5420 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5421 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5422 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5423 sizeof (struct main_type));
5424 if (type->main_type->dyn_prop_list != NULL)
5425 new_type->main_type->dyn_prop_list
5426 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5427 type->main_type->dyn_prop_list);
5428
5429 return new_type;
5430 }
5431 \f
5432 /* Helper functions to initialize architecture-specific types. */
5433
5434 /* Allocate a type structure associated with GDBARCH and set its
5435 CODE, LENGTH, and NAME fields. */
5436
5437 struct type *
5438 arch_type (struct gdbarch *gdbarch,
5439 enum type_code code, int bit, const char *name)
5440 {
5441 struct type *type;
5442
5443 type = alloc_type_arch (gdbarch);
5444 set_type_code (type, code);
5445 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5446 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5447
5448 if (name)
5449 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5450
5451 return type;
5452 }
5453
5454 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5455 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5456 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5457
5458 struct type *
5459 arch_integer_type (struct gdbarch *gdbarch,
5460 int bit, int unsigned_p, const char *name)
5461 {
5462 struct type *t;
5463
5464 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5465 if (unsigned_p)
5466 TYPE_UNSIGNED (t) = 1;
5467
5468 return t;
5469 }
5470
5471 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5472 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5473 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5474
5475 struct type *
5476 arch_character_type (struct gdbarch *gdbarch,
5477 int bit, int unsigned_p, const char *name)
5478 {
5479 struct type *t;
5480
5481 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5482 if (unsigned_p)
5483 TYPE_UNSIGNED (t) = 1;
5484
5485 return t;
5486 }
5487
5488 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5489 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5490 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5491
5492 struct type *
5493 arch_boolean_type (struct gdbarch *gdbarch,
5494 int bit, int unsigned_p, const char *name)
5495 {
5496 struct type *t;
5497
5498 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5499 if (unsigned_p)
5500 TYPE_UNSIGNED (t) = 1;
5501
5502 return t;
5503 }
5504
5505 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5506 BIT is the type size in bits; if BIT equals -1, the size is
5507 determined by the floatformat. NAME is the type name. Set the
5508 TYPE_FLOATFORMAT from FLOATFORMATS. */
5509
5510 struct type *
5511 arch_float_type (struct gdbarch *gdbarch,
5512 int bit, const char *name,
5513 const struct floatformat **floatformats)
5514 {
5515 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5516 struct type *t;
5517
5518 bit = verify_floatformat (bit, fmt);
5519 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5520 TYPE_FLOATFORMAT (t) = fmt;
5521
5522 return t;
5523 }
5524
5525 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5526 BIT is the type size in bits. NAME is the type name. */
5527
5528 struct type *
5529 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5530 {
5531 struct type *t;
5532
5533 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5534 return t;
5535 }
5536
5537 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5538 BIT is the pointer type size in bits. NAME is the type name.
5539 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5540 TYPE_UNSIGNED flag. */
5541
5542 struct type *
5543 arch_pointer_type (struct gdbarch *gdbarch,
5544 int bit, const char *name, struct type *target_type)
5545 {
5546 struct type *t;
5547
5548 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5549 TYPE_TARGET_TYPE (t) = target_type;
5550 TYPE_UNSIGNED (t) = 1;
5551 return t;
5552 }
5553
5554 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5555 NAME is the type name. BIT is the size of the flag word in bits. */
5556
5557 struct type *
5558 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5559 {
5560 struct type *type;
5561
5562 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5563 TYPE_UNSIGNED (type) = 1;
5564 type->set_num_fields (0);
5565 /* Pre-allocate enough space assuming every field is one bit. */
5566 type->set_fields
5567 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5568
5569 return type;
5570 }
5571
5572 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5573 position BITPOS is called NAME. Pass NAME as "" for fields that
5574 should not be printed. */
5575
5576 void
5577 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5578 struct type *field_type, const char *name)
5579 {
5580 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5581 int field_nr = type->num_fields ();
5582
5583 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5584 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5585 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5586 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5587 gdb_assert (name != NULL);
5588
5589 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5590 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5591 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5592 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5593 type->set_num_fields (type->num_fields () + 1);
5594 }
5595
5596 /* Special version of append_flags_type_field to add a flag field.
5597 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5598 position BITPOS is called NAME. */
5599
5600 void
5601 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5602 {
5603 struct gdbarch *gdbarch = get_type_arch (type);
5604
5605 append_flags_type_field (type, bitpos, 1,
5606 builtin_type (gdbarch)->builtin_bool,
5607 name);
5608 }
5609
5610 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5611 specified by CODE) associated with GDBARCH. NAME is the type name. */
5612
5613 struct type *
5614 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5615 enum type_code code)
5616 {
5617 struct type *t;
5618
5619 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5620 t = arch_type (gdbarch, code, 0, NULL);
5621 t->set_name (name);
5622 INIT_CPLUS_SPECIFIC (t);
5623 return t;
5624 }
5625
5626 /* Add new field with name NAME and type FIELD to composite type T.
5627 Do not set the field's position or adjust the type's length;
5628 the caller should do so. Return the new field. */
5629
5630 struct field *
5631 append_composite_type_field_raw (struct type *t, const char *name,
5632 struct type *field)
5633 {
5634 struct field *f;
5635
5636 t->set_num_fields (t->num_fields () + 1);
5637 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5638 t->num_fields ()));
5639 f = &t->field (t->num_fields () - 1);
5640 memset (f, 0, sizeof f[0]);
5641 FIELD_TYPE (f[0]) = field;
5642 FIELD_NAME (f[0]) = name;
5643 return f;
5644 }
5645
5646 /* Add new field with name NAME and type FIELD to composite type T.
5647 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5648
5649 void
5650 append_composite_type_field_aligned (struct type *t, const char *name,
5651 struct type *field, int alignment)
5652 {
5653 struct field *f = append_composite_type_field_raw (t, name, field);
5654
5655 if (t->code () == TYPE_CODE_UNION)
5656 {
5657 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5658 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5659 }
5660 else if (t->code () == TYPE_CODE_STRUCT)
5661 {
5662 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5663 if (t->num_fields () > 1)
5664 {
5665 SET_FIELD_BITPOS (f[0],
5666 (FIELD_BITPOS (f[-1])
5667 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5668 * TARGET_CHAR_BIT)));
5669
5670 if (alignment)
5671 {
5672 int left;
5673
5674 alignment *= TARGET_CHAR_BIT;
5675 left = FIELD_BITPOS (f[0]) % alignment;
5676
5677 if (left)
5678 {
5679 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5680 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5681 }
5682 }
5683 }
5684 }
5685 }
5686
5687 /* Add new field with name NAME and type FIELD to composite type T. */
5688
5689 void
5690 append_composite_type_field (struct type *t, const char *name,
5691 struct type *field)
5692 {
5693 append_composite_type_field_aligned (t, name, field, 0);
5694 }
5695
5696 static struct gdbarch_data *gdbtypes_data;
5697
5698 const struct builtin_type *
5699 builtin_type (struct gdbarch *gdbarch)
5700 {
5701 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5702 }
5703
5704 static void *
5705 gdbtypes_post_init (struct gdbarch *gdbarch)
5706 {
5707 struct builtin_type *builtin_type
5708 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5709
5710 /* Basic types. */
5711 builtin_type->builtin_void
5712 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5713 builtin_type->builtin_char
5714 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5715 !gdbarch_char_signed (gdbarch), "char");
5716 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5717 builtin_type->builtin_signed_char
5718 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5719 0, "signed char");
5720 builtin_type->builtin_unsigned_char
5721 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5722 1, "unsigned char");
5723 builtin_type->builtin_short
5724 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5725 0, "short");
5726 builtin_type->builtin_unsigned_short
5727 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5728 1, "unsigned short");
5729 builtin_type->builtin_int
5730 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5731 0, "int");
5732 builtin_type->builtin_unsigned_int
5733 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5734 1, "unsigned int");
5735 builtin_type->builtin_long
5736 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5737 0, "long");
5738 builtin_type->builtin_unsigned_long
5739 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5740 1, "unsigned long");
5741 builtin_type->builtin_long_long
5742 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5743 0, "long long");
5744 builtin_type->builtin_unsigned_long_long
5745 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5746 1, "unsigned long long");
5747 builtin_type->builtin_half
5748 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5749 "half", gdbarch_half_format (gdbarch));
5750 builtin_type->builtin_float
5751 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5752 "float", gdbarch_float_format (gdbarch));
5753 builtin_type->builtin_double
5754 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5755 "double", gdbarch_double_format (gdbarch));
5756 builtin_type->builtin_long_double
5757 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5758 "long double", gdbarch_long_double_format (gdbarch));
5759 builtin_type->builtin_complex
5760 = init_complex_type ("complex", builtin_type->builtin_float);
5761 builtin_type->builtin_double_complex
5762 = init_complex_type ("double complex", builtin_type->builtin_double);
5763 builtin_type->builtin_string
5764 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5765 builtin_type->builtin_bool
5766 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5767
5768 /* The following three are about decimal floating point types, which
5769 are 32-bits, 64-bits and 128-bits respectively. */
5770 builtin_type->builtin_decfloat
5771 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5772 builtin_type->builtin_decdouble
5773 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5774 builtin_type->builtin_declong
5775 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5776
5777 /* "True" character types. */
5778 builtin_type->builtin_true_char
5779 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5780 builtin_type->builtin_true_unsigned_char
5781 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5782
5783 /* Fixed-size integer types. */
5784 builtin_type->builtin_int0
5785 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5786 builtin_type->builtin_int8
5787 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5788 builtin_type->builtin_uint8
5789 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5790 builtin_type->builtin_int16
5791 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5792 builtin_type->builtin_uint16
5793 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5794 builtin_type->builtin_int24
5795 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5796 builtin_type->builtin_uint24
5797 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5798 builtin_type->builtin_int32
5799 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5800 builtin_type->builtin_uint32
5801 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5802 builtin_type->builtin_int64
5803 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5804 builtin_type->builtin_uint64
5805 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5806 builtin_type->builtin_int128
5807 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5808 builtin_type->builtin_uint128
5809 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5810 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5811 TYPE_INSTANCE_FLAG_NOTTEXT;
5812 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5813 TYPE_INSTANCE_FLAG_NOTTEXT;
5814
5815 /* Wide character types. */
5816 builtin_type->builtin_char16
5817 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5818 builtin_type->builtin_char32
5819 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5820 builtin_type->builtin_wchar
5821 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5822 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5823
5824 /* Default data/code pointer types. */
5825 builtin_type->builtin_data_ptr
5826 = lookup_pointer_type (builtin_type->builtin_void);
5827 builtin_type->builtin_func_ptr
5828 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5829 builtin_type->builtin_func_func
5830 = lookup_function_type (builtin_type->builtin_func_ptr);
5831
5832 /* This type represents a GDB internal function. */
5833 builtin_type->internal_fn
5834 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5835 "<internal function>");
5836
5837 /* This type represents an xmethod. */
5838 builtin_type->xmethod
5839 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5840
5841 return builtin_type;
5842 }
5843
5844 /* This set of objfile-based types is intended to be used by symbol
5845 readers as basic types. */
5846
5847 static const struct objfile_key<struct objfile_type,
5848 gdb::noop_deleter<struct objfile_type>>
5849 objfile_type_data;
5850
5851 const struct objfile_type *
5852 objfile_type (struct objfile *objfile)
5853 {
5854 struct gdbarch *gdbarch;
5855 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5856
5857 if (objfile_type)
5858 return objfile_type;
5859
5860 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5861 1, struct objfile_type);
5862
5863 /* Use the objfile architecture to determine basic type properties. */
5864 gdbarch = objfile->arch ();
5865
5866 /* Basic types. */
5867 objfile_type->builtin_void
5868 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5869 objfile_type->builtin_char
5870 = init_integer_type (objfile, TARGET_CHAR_BIT,
5871 !gdbarch_char_signed (gdbarch), "char");
5872 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5873 objfile_type->builtin_signed_char
5874 = init_integer_type (objfile, TARGET_CHAR_BIT,
5875 0, "signed char");
5876 objfile_type->builtin_unsigned_char
5877 = init_integer_type (objfile, TARGET_CHAR_BIT,
5878 1, "unsigned char");
5879 objfile_type->builtin_short
5880 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5881 0, "short");
5882 objfile_type->builtin_unsigned_short
5883 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5884 1, "unsigned short");
5885 objfile_type->builtin_int
5886 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5887 0, "int");
5888 objfile_type->builtin_unsigned_int
5889 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5890 1, "unsigned int");
5891 objfile_type->builtin_long
5892 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5893 0, "long");
5894 objfile_type->builtin_unsigned_long
5895 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5896 1, "unsigned long");
5897 objfile_type->builtin_long_long
5898 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5899 0, "long long");
5900 objfile_type->builtin_unsigned_long_long
5901 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5902 1, "unsigned long long");
5903 objfile_type->builtin_float
5904 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5905 "float", gdbarch_float_format (gdbarch));
5906 objfile_type->builtin_double
5907 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5908 "double", gdbarch_double_format (gdbarch));
5909 objfile_type->builtin_long_double
5910 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5911 "long double", gdbarch_long_double_format (gdbarch));
5912
5913 /* This type represents a type that was unrecognized in symbol read-in. */
5914 objfile_type->builtin_error
5915 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5916
5917 /* The following set of types is used for symbols with no
5918 debug information. */
5919 objfile_type->nodebug_text_symbol
5920 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5921 "<text variable, no debug info>");
5922 objfile_type->nodebug_text_gnu_ifunc_symbol
5923 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5924 "<text gnu-indirect-function variable, no debug info>");
5925 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5926 objfile_type->nodebug_got_plt_symbol
5927 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5928 "<text from jump slot in .got.plt, no debug info>",
5929 objfile_type->nodebug_text_symbol);
5930 objfile_type->nodebug_data_symbol
5931 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5932 objfile_type->nodebug_unknown_symbol
5933 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5934 objfile_type->nodebug_tls_symbol
5935 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5936
5937 /* NOTE: on some targets, addresses and pointers are not necessarily
5938 the same.
5939
5940 The upshot is:
5941 - gdb's `struct type' always describes the target's
5942 representation.
5943 - gdb's `struct value' objects should always hold values in
5944 target form.
5945 - gdb's CORE_ADDR values are addresses in the unified virtual
5946 address space that the assembler and linker work with. Thus,
5947 since target_read_memory takes a CORE_ADDR as an argument, it
5948 can access any memory on the target, even if the processor has
5949 separate code and data address spaces.
5950
5951 In this context, objfile_type->builtin_core_addr is a bit odd:
5952 it's a target type for a value the target will never see. It's
5953 only used to hold the values of (typeless) linker symbols, which
5954 are indeed in the unified virtual address space. */
5955
5956 objfile_type->builtin_core_addr
5957 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5958 "__CORE_ADDR");
5959
5960 objfile_type_data.set (objfile, objfile_type);
5961 return objfile_type;
5962 }
5963
5964 void _initialize_gdbtypes ();
5965 void
5966 _initialize_gdbtypes ()
5967 {
5968 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5969
5970 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5971 _("Set debugging of C++ overloading."),
5972 _("Show debugging of C++ overloading."),
5973 _("When enabled, ranking of the "
5974 "functions is displayed."),
5975 NULL,
5976 show_overload_debug,
5977 &setdebuglist, &showdebuglist);
5978
5979 /* Add user knob for controlling resolution of opaque types. */
5980 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5981 &opaque_type_resolution,
5982 _("Set resolution of opaque struct/class/union"
5983 " types (if set before loading symbols)."),
5984 _("Show resolution of opaque struct/class/union"
5985 " types (if set before loading symbols)."),
5986 NULL, NULL,
5987 show_opaque_type_resolution,
5988 &setlist, &showlist);
5989
5990 /* Add an option to permit non-strict type checking. */
5991 add_setshow_boolean_cmd ("type", class_support,
5992 &strict_type_checking,
5993 _("Set strict type checking."),
5994 _("Show strict type checking."),
5995 NULL, NULL,
5996 show_strict_type_checking,
5997 &setchecklist, &showchecklist);
5998 }