]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.h
Add test for accessing read-only mmapped data in a core file
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
214 the type is signed (unless TYPE_NOSIGN (below) is set). */
215
216 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
217
218 /* * No sign for this type. In C++, "char", "signed char", and
219 "unsigned char" are distinct types; so we need an extra flag to
220 indicate the absence of a sign! */
221
222 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
223
224 /* * A compiler may supply dwarf instrumentation
225 that indicates the desired endian interpretation of the variable
226 differs from the native endian representation. */
227
228 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
229
230 /* * This appears in a type's flags word if it is a stub type (e.g.,
231 if someone referenced a type that wasn't defined in a source file
232 via (struct sir_not_appearing_in_this_film *)). */
233
234 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
235
236 /* * The target type of this type is a stub type, and this type needs
237 to be updated if it gets un-stubbed in check_typedef. Used for
238 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
239 based on the TYPE_LENGTH of the target type. Also, set for
240 TYPE_CODE_TYPEDEF. */
241
242 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
243
244 /* * This is a function type which appears to have a prototype. We
245 need this for function calls in order to tell us if it's necessary
246 to coerce the args, or to just do the standard conversions. This
247 is used with a short field. */
248
249 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
250
251 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
252 to functions. */
253
254 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
255
256 /* * Identify a vector type. Gcc is handling this by adding an extra
257 attribute to the array type. We slurp that in as a new flag of a
258 type. This is used only in dwarf2read.c. */
259 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
260
261 /* * The debugging formats (especially STABS) do not contain enough
262 information to represent all Ada types---especially those whose
263 size depends on dynamic quantities. Therefore, the GNAT Ada
264 compiler includes extra information in the form of additional type
265 definitions connected by naming conventions. This flag indicates
266 that the type is an ordinary (unencoded) GDB type that has been
267 created from the necessary run-time information, and does not need
268 further interpretation. Optionally marks ordinary, fixed-size GDB
269 type. */
270
271 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
272
273 /* * This debug target supports TYPE_STUB(t). In the unsupported case
274 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
275 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
276 guessed the TYPE_STUB(t) value (see dwarfread.c). */
277
278 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
279
280 /* * Not textual. By default, GDB treats all single byte integers as
281 characters (or elements of strings) unless this flag is set. */
282
283 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
284
285 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
286 address is returned by this function call. TYPE_TARGET_TYPE
287 determines the final returned function type to be presented to
288 user. */
289
290 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
291
292 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
293 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
294 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
295
296 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
297 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
298 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
299
300 /* * True if this type was declared using the "class" keyword. This is
301 only valid for C++ structure and enum types. If false, a structure
302 was declared as a "struct"; if true it was declared "class". For
303 enum types, this is true when "enum class" or "enum struct" was
304 used to declare the type.. */
305
306 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
307
308 /* * True if this type is a "flag" enum. A flag enum is one where all
309 the values are pairwise disjoint when "and"ed together. This
310 affects how enum values are printed. */
311
312 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
313
314 /* * Constant type. If this is set, the corresponding type has a
315 const modifier. */
316
317 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
318
319 /* * Volatile type. If this is set, the corresponding type has a
320 volatile modifier. */
321
322 #define TYPE_VOLATILE(t) \
323 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
324
325 /* * Restrict type. If this is set, the corresponding type has a
326 restrict modifier. */
327
328 #define TYPE_RESTRICT(t) \
329 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
330
331 /* * Atomic type. If this is set, the corresponding type has an
332 _Atomic modifier. */
333
334 #define TYPE_ATOMIC(t) \
335 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
336
337 /* * True if this type represents either an lvalue or lvalue reference type. */
338
339 #define TYPE_IS_REFERENCE(t) \
340 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
341
342 /* * True if this type is allocatable. */
343 #define TYPE_IS_ALLOCATABLE(t) \
344 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
345
346 /* * True if this type has variant parts. */
347 #define TYPE_HAS_VARIANT_PARTS(t) \
348 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
349
350 /* * True if this type has a dynamic length. */
351 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
352 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
353
354 /* * Instruction-space delimited type. This is for Harvard architectures
355 which have separate instruction and data address spaces (and perhaps
356 others).
357
358 GDB usually defines a flat address space that is a superset of the
359 architecture's two (or more) address spaces, but this is an extension
360 of the architecture's model.
361
362 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
363 resides in instruction memory, even if its address (in the extended
364 flat address space) does not reflect this.
365
366 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
367 corresponding type resides in the data memory space, even if
368 this is not indicated by its (flat address space) address.
369
370 If neither flag is set, the default space for functions / methods
371 is instruction space, and for data objects is data memory. */
372
373 #define TYPE_CODE_SPACE(t) \
374 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
375
376 #define TYPE_DATA_SPACE(t) \
377 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
378
379 /* * Address class flags. Some environments provide for pointers
380 whose size is different from that of a normal pointer or address
381 types where the bits are interpreted differently than normal
382 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
383 target specific ways to represent these different types of address
384 classes. */
385
386 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
387 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
388 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
389 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
390 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
391 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
392 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
393 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
394
395 /* * Information about a single discriminant. */
396
397 struct discriminant_range
398 {
399 /* * The range of values for the variant. This is an inclusive
400 range. */
401 ULONGEST low, high;
402
403 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
404 is true if this should be an unsigned comparison; false for
405 signed. */
406 bool contains (ULONGEST value, bool is_unsigned) const
407 {
408 if (is_unsigned)
409 return value >= low && value <= high;
410 LONGEST valuel = (LONGEST) value;
411 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
412 }
413 };
414
415 struct variant_part;
416
417 /* * A single variant. A variant has a list of discriminant values.
418 When the discriminator matches one of these, the variant is
419 enabled. Each variant controls zero or more fields; and may also
420 control other variant parts as well. This struct corresponds to
421 DW_TAG_variant in DWARF. */
422
423 struct variant : allocate_on_obstack
424 {
425 /* * The discriminant ranges for this variant. */
426 gdb::array_view<discriminant_range> discriminants;
427
428 /* * The fields controlled by this variant. This is inclusive on
429 the low end and exclusive on the high end. A variant may not
430 control any fields, in which case the two values will be equal.
431 These are indexes into the type's array of fields. */
432 int first_field;
433 int last_field;
434
435 /* * Variant parts controlled by this variant. */
436 gdb::array_view<variant_part> parts;
437
438 /* * Return true if this is the default variant. The default
439 variant can be recognized because it has no associated
440 discriminants. */
441 bool is_default () const
442 {
443 return discriminants.empty ();
444 }
445
446 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
447 if this should be an unsigned comparison; false for signed. */
448 bool matches (ULONGEST value, bool is_unsigned) const;
449 };
450
451 /* * A variant part. Each variant part has an optional discriminant
452 and holds an array of variants. This struct corresponds to
453 DW_TAG_variant_part in DWARF. */
454
455 struct variant_part : allocate_on_obstack
456 {
457 /* * The index of the discriminant field in the outer type. This is
458 an index into the type's array of fields. If this is -1, there
459 is no discriminant, and only the default variant can be
460 considered to be selected. */
461 int discriminant_index;
462
463 /* * True if this discriminant is unsigned; false if signed. This
464 comes from the type of the discriminant. */
465 bool is_unsigned;
466
467 /* * The variants that are controlled by this variant part. Note
468 that these will always be sorted by field number. */
469 gdb::array_view<variant> variants;
470 };
471
472
473 enum dynamic_prop_kind
474 {
475 PROP_UNDEFINED, /* Not defined. */
476 PROP_CONST, /* Constant. */
477 PROP_ADDR_OFFSET, /* Address offset. */
478 PROP_LOCEXPR, /* Location expression. */
479 PROP_LOCLIST, /* Location list. */
480 PROP_VARIANT_PARTS, /* Variant parts. */
481 PROP_TYPE, /* Type. */
482 };
483
484 union dynamic_prop_data
485 {
486 /* Storage for constant property. */
487
488 LONGEST const_val;
489
490 /* Storage for dynamic property. */
491
492 void *baton;
493
494 /* Storage of variant parts for a type. A type with variant parts
495 has all its fields "linearized" -- stored in a single field
496 array, just as if they had all been declared that way. The
497 variant parts are attached via a dynamic property, and then are
498 used to control which fields end up in the final type during
499 dynamic type resolution. */
500
501 const gdb::array_view<variant_part> *variant_parts;
502
503 /* Once a variant type is resolved, we may want to be able to go
504 from the resolved type to the original type. In this case we
505 rewrite the property's kind and set this field. */
506
507 struct type *original_type;
508 };
509
510 /* * Used to store a dynamic property. */
511
512 struct dynamic_prop
513 {
514 dynamic_prop_kind kind () const
515 {
516 return m_kind;
517 }
518
519 void set_undefined ()
520 {
521 m_kind = PROP_UNDEFINED;
522 }
523
524 LONGEST const_val () const
525 {
526 gdb_assert (m_kind == PROP_CONST);
527
528 return m_data.const_val;
529 }
530
531 void set_const_val (LONGEST const_val)
532 {
533 m_kind = PROP_CONST;
534 m_data.const_val = const_val;
535 }
536
537 void *baton () const
538 {
539 gdb_assert (m_kind == PROP_LOCEXPR
540 || m_kind == PROP_LOCLIST
541 || m_kind == PROP_ADDR_OFFSET);
542
543 return m_data.baton;
544 }
545
546 void set_locexpr (void *baton)
547 {
548 m_kind = PROP_LOCEXPR;
549 m_data.baton = baton;
550 }
551
552 void set_loclist (void *baton)
553 {
554 m_kind = PROP_LOCLIST;
555 m_data.baton = baton;
556 }
557
558 void set_addr_offset (void *baton)
559 {
560 m_kind = PROP_ADDR_OFFSET;
561 m_data.baton = baton;
562 }
563
564 const gdb::array_view<variant_part> *variant_parts () const
565 {
566 gdb_assert (m_kind == PROP_VARIANT_PARTS);
567
568 return m_data.variant_parts;
569 }
570
571 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
572 {
573 m_kind = PROP_VARIANT_PARTS;
574 m_data.variant_parts = variant_parts;
575 }
576
577 struct type *original_type () const
578 {
579 gdb_assert (m_kind == PROP_TYPE);
580
581 return m_data.original_type;
582 }
583
584 void set_original_type (struct type *original_type)
585 {
586 m_kind = PROP_TYPE;
587 m_data.original_type = original_type;
588 }
589
590 /* Determine which field of the union dynamic_prop.data is used. */
591 enum dynamic_prop_kind m_kind;
592
593 /* Storage for dynamic or static value. */
594 union dynamic_prop_data m_data;
595 };
596
597 /* Compare two dynamic_prop objects for equality. dynamic_prop
598 instances are equal iff they have the same type and storage. */
599 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
600
601 /* Compare two dynamic_prop objects for inequality. */
602 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
603 {
604 return !(l == r);
605 }
606
607 /* * Define a type's dynamic property node kind. */
608 enum dynamic_prop_node_kind
609 {
610 /* A property providing a type's data location.
611 Evaluating this field yields to the location of an object's data. */
612 DYN_PROP_DATA_LOCATION,
613
614 /* A property representing DW_AT_allocated. The presence of this attribute
615 indicates that the object of the type can be allocated/deallocated. */
616 DYN_PROP_ALLOCATED,
617
618 /* A property representing DW_AT_associated. The presence of this attribute
619 indicated that the object of the type can be associated. */
620 DYN_PROP_ASSOCIATED,
621
622 /* A property providing an array's byte stride. */
623 DYN_PROP_BYTE_STRIDE,
624
625 /* A property holding variant parts. */
626 DYN_PROP_VARIANT_PARTS,
627
628 /* A property holding the size of the type. */
629 DYN_PROP_BYTE_SIZE,
630 };
631
632 /* * List for dynamic type attributes. */
633 struct dynamic_prop_list
634 {
635 /* The kind of dynamic prop in this node. */
636 enum dynamic_prop_node_kind prop_kind;
637
638 /* The dynamic property itself. */
639 struct dynamic_prop prop;
640
641 /* A pointer to the next dynamic property. */
642 struct dynamic_prop_list *next;
643 };
644
645 /* * Determine which field of the union main_type.fields[x].loc is
646 used. */
647
648 enum field_loc_kind
649 {
650 FIELD_LOC_KIND_BITPOS, /**< bitpos */
651 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
652 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
653 FIELD_LOC_KIND_PHYSNAME, /**< physname */
654 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
655 };
656
657 /* * A discriminant to determine which field in the
658 main_type.type_specific union is being used, if any.
659
660 For types such as TYPE_CODE_FLT, the use of this
661 discriminant is really redundant, as we know from the type code
662 which field is going to be used. As such, it would be possible to
663 reduce the size of this enum in order to save a bit or two for
664 other fields of struct main_type. But, since we still have extra
665 room , and for the sake of clarity and consistency, we treat all fields
666 of the union the same way. */
667
668 enum type_specific_kind
669 {
670 TYPE_SPECIFIC_NONE,
671 TYPE_SPECIFIC_CPLUS_STUFF,
672 TYPE_SPECIFIC_GNAT_STUFF,
673 TYPE_SPECIFIC_FLOATFORMAT,
674 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
675 TYPE_SPECIFIC_FUNC,
676 TYPE_SPECIFIC_SELF_TYPE
677 };
678
679 union type_owner
680 {
681 struct objfile *objfile;
682 struct gdbarch *gdbarch;
683 };
684
685 union field_location
686 {
687 /* * Position of this field, counting in bits from start of
688 containing structure. For big-endian targets, it is the bit
689 offset to the MSB. For little-endian targets, it is the bit
690 offset to the LSB. */
691
692 LONGEST bitpos;
693
694 /* * Enum value. */
695 LONGEST enumval;
696
697 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
698 physaddr is the location (in the target) of the static
699 field. Otherwise, physname is the mangled label of the
700 static field. */
701
702 CORE_ADDR physaddr;
703 const char *physname;
704
705 /* * The field location can be computed by evaluating the
706 following DWARF block. Its DATA is allocated on
707 objfile_obstack - no CU load is needed to access it. */
708
709 struct dwarf2_locexpr_baton *dwarf_block;
710 };
711
712 struct field
713 {
714 struct type *type () const
715 {
716 return this->m_type;
717 }
718
719 void set_type (struct type *type)
720 {
721 this->m_type = type;
722 }
723
724 union field_location loc;
725
726 /* * For a function or member type, this is 1 if the argument is
727 marked artificial. Artificial arguments should not be shown
728 to the user. For TYPE_CODE_RANGE it is set if the specific
729 bound is not defined. */
730
731 unsigned int artificial : 1;
732
733 /* * Discriminant for union field_location. */
734
735 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
736
737 /* * Size of this field, in bits, or zero if not packed.
738 If non-zero in an array type, indicates the element size in
739 bits (used only in Ada at the moment).
740 For an unpacked field, the field's type's length
741 says how many bytes the field occupies. */
742
743 unsigned int bitsize : 28;
744
745 /* * In a struct or union type, type of this field.
746 - In a function or member type, type of this argument.
747 - In an array type, the domain-type of the array. */
748
749 struct type *m_type;
750
751 /* * Name of field, value or argument.
752 NULL for range bounds, array domains, and member function
753 arguments. */
754
755 const char *name;
756 };
757
758 struct range_bounds
759 {
760 ULONGEST bit_stride () const
761 {
762 if (this->flag_is_byte_stride)
763 return this->stride.const_val () * 8;
764 else
765 return this->stride.const_val ();
766 }
767
768 /* * Low bound of range. */
769
770 struct dynamic_prop low;
771
772 /* * High bound of range. */
773
774 struct dynamic_prop high;
775
776 /* The stride value for this range. This can be stored in bits or bytes
777 based on the value of BYTE_STRIDE_P. It is optional to have a stride
778 value, if this range has no stride value defined then this will be set
779 to the constant zero. */
780
781 struct dynamic_prop stride;
782
783 /* * The bias. Sometimes a range value is biased before storage.
784 The bias is added to the stored bits to form the true value. */
785
786 LONGEST bias;
787
788 /* True if HIGH range bound contains the number of elements in the
789 subrange. This affects how the final high bound is computed. */
790
791 unsigned int flag_upper_bound_is_count : 1;
792
793 /* True if LOW or/and HIGH are resolved into a static bound from
794 a dynamic one. */
795
796 unsigned int flag_bound_evaluated : 1;
797
798 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
799
800 unsigned int flag_is_byte_stride : 1;
801 };
802
803 /* Compare two range_bounds objects for equality. Simply does
804 memberwise comparison. */
805 extern bool operator== (const range_bounds &l, const range_bounds &r);
806
807 /* Compare two range_bounds objects for inequality. */
808 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
809 {
810 return !(l == r);
811 }
812
813 union type_specific
814 {
815 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
816 point to cplus_struct_default, a default static instance of a
817 struct cplus_struct_type. */
818
819 struct cplus_struct_type *cplus_stuff;
820
821 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
822 provides additional information. */
823
824 struct gnat_aux_type *gnat_stuff;
825
826 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
827 floatformat object that describes the floating-point value
828 that resides within the type. */
829
830 const struct floatformat *floatformat;
831
832 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
833
834 struct func_type *func_stuff;
835
836 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
837 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
838 is a member of. */
839
840 struct type *self_type;
841 };
842
843 /* * Main structure representing a type in GDB.
844
845 This structure is space-critical. Its layout has been tweaked to
846 reduce the space used. */
847
848 struct main_type
849 {
850 /* * Code for kind of type. */
851
852 ENUM_BITFIELD(type_code) code : 8;
853
854 /* * Flags about this type. These fields appear at this location
855 because they packs nicely here. See the TYPE_* macros for
856 documentation about these fields. */
857
858 unsigned int flag_unsigned : 1;
859 unsigned int flag_nosign : 1;
860 unsigned int flag_stub : 1;
861 unsigned int flag_target_stub : 1;
862 unsigned int flag_prototyped : 1;
863 unsigned int flag_varargs : 1;
864 unsigned int flag_vector : 1;
865 unsigned int flag_stub_supported : 1;
866 unsigned int flag_gnu_ifunc : 1;
867 unsigned int flag_fixed_instance : 1;
868 unsigned int flag_objfile_owned : 1;
869 unsigned int flag_endianity_not_default : 1;
870
871 /* * True if this type was declared with "class" rather than
872 "struct". */
873
874 unsigned int flag_declared_class : 1;
875
876 /* * True if this is an enum type with disjoint values. This
877 affects how the enum is printed. */
878
879 unsigned int flag_flag_enum : 1;
880
881 /* * A discriminant telling us which field of the type_specific
882 union is being used for this type, if any. */
883
884 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
885
886 /* * Number of fields described for this type. This field appears
887 at this location because it packs nicely here. */
888
889 short nfields;
890
891 /* * Name of this type, or NULL if none.
892
893 This is used for printing only. For looking up a name, look for
894 a symbol in the VAR_DOMAIN. This is generally allocated in the
895 objfile's obstack. However coffread.c uses malloc. */
896
897 const char *name;
898
899 /* * Every type is now associated with a particular objfile, and the
900 type is allocated on the objfile_obstack for that objfile. One
901 problem however, is that there are times when gdb allocates new
902 types while it is not in the process of reading symbols from a
903 particular objfile. Fortunately, these happen when the type
904 being created is a derived type of an existing type, such as in
905 lookup_pointer_type(). So we can just allocate the new type
906 using the same objfile as the existing type, but to do this we
907 need a backpointer to the objfile from the existing type. Yes
908 this is somewhat ugly, but without major overhaul of the internal
909 type system, it can't be avoided for now. */
910
911 union type_owner owner;
912
913 /* * For a pointer type, describes the type of object pointed to.
914 - For an array type, describes the type of the elements.
915 - For a function or method type, describes the type of the return value.
916 - For a range type, describes the type of the full range.
917 - For a complex type, describes the type of each coordinate.
918 - For a special record or union type encoding a dynamic-sized type
919 in GNAT, a memoized pointer to a corresponding static version of
920 the type.
921 - Unused otherwise. */
922
923 struct type *target_type;
924
925 /* * For structure and union types, a description of each field.
926 For set and pascal array types, there is one "field",
927 whose type is the domain type of the set or array.
928 For range types, there are two "fields",
929 the minimum and maximum values (both inclusive).
930 For enum types, each possible value is described by one "field".
931 For a function or method type, a "field" for each parameter.
932 For C++ classes, there is one field for each base class (if it is
933 a derived class) plus one field for each class data member. Member
934 functions are recorded elsewhere.
935
936 Using a pointer to a separate array of fields
937 allows all types to have the same size, which is useful
938 because we can allocate the space for a type before
939 we know what to put in it. */
940
941 union
942 {
943 struct field *fields;
944
945 /* * Union member used for range types. */
946
947 struct range_bounds *bounds;
948
949 /* If this is a scalar type, then this is its corresponding
950 complex type. */
951 struct type *complex_type;
952
953 } flds_bnds;
954
955 /* * Slot to point to additional language-specific fields of this
956 type. */
957
958 union type_specific type_specific;
959
960 /* * Contains all dynamic type properties. */
961 struct dynamic_prop_list *dyn_prop_list;
962 };
963
964 /* * Number of bits allocated for alignment. */
965
966 #define TYPE_ALIGN_BITS 8
967
968 /* * A ``struct type'' describes a particular instance of a type, with
969 some particular qualification. */
970
971 struct type
972 {
973 /* Get the type code of this type.
974
975 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
976 type, you need to do `check_typedef (type)->code ()`. */
977 type_code code () const
978 {
979 return this->main_type->code;
980 }
981
982 /* Set the type code of this type. */
983 void set_code (type_code code)
984 {
985 this->main_type->code = code;
986 }
987
988 /* Get the name of this type. */
989 const char *name () const
990 {
991 return this->main_type->name;
992 }
993
994 /* Set the name of this type. */
995 void set_name (const char *name)
996 {
997 this->main_type->name = name;
998 }
999
1000 /* Get the number of fields of this type. */
1001 int num_fields () const
1002 {
1003 return this->main_type->nfields;
1004 }
1005
1006 /* Set the number of fields of this type. */
1007 void set_num_fields (int num_fields)
1008 {
1009 this->main_type->nfields = num_fields;
1010 }
1011
1012 /* Get the fields array of this type. */
1013 struct field *fields () const
1014 {
1015 return this->main_type->flds_bnds.fields;
1016 }
1017
1018 /* Get the field at index IDX. */
1019 struct field &field (int idx) const
1020 {
1021 return this->fields ()[idx];
1022 }
1023
1024 /* Set the fields array of this type. */
1025 void set_fields (struct field *fields)
1026 {
1027 this->main_type->flds_bnds.fields = fields;
1028 }
1029
1030 type *index_type () const
1031 {
1032 return this->field (0).type ();
1033 }
1034
1035 void set_index_type (type *index_type)
1036 {
1037 this->field (0).set_type (index_type);
1038 }
1039
1040 /* Get the bounds bounds of this type. The type must be a range type. */
1041 range_bounds *bounds () const
1042 {
1043 switch (this->code ())
1044 {
1045 case TYPE_CODE_RANGE:
1046 return this->main_type->flds_bnds.bounds;
1047
1048 case TYPE_CODE_ARRAY:
1049 case TYPE_CODE_STRING:
1050 return this->index_type ()->bounds ();
1051
1052 default:
1053 gdb_assert_not_reached
1054 ("type::bounds called on type with invalid code");
1055 }
1056 }
1057
1058 /* Set the bounds of this type. The type must be a range type. */
1059 void set_bounds (range_bounds *bounds)
1060 {
1061 gdb_assert (this->code () == TYPE_CODE_RANGE);
1062
1063 this->main_type->flds_bnds.bounds = bounds;
1064 }
1065
1066 ULONGEST bit_stride () const
1067 {
1068 return this->bounds ()->bit_stride ();
1069 }
1070
1071 /* * Return the dynamic property of the requested KIND from this type's
1072 list of dynamic properties. */
1073 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1074
1075 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1076 property to this type.
1077
1078 This function assumes that this type is objfile-owned. */
1079 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1080
1081 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1082 void remove_dyn_prop (dynamic_prop_node_kind kind);
1083
1084 /* * Type that is a pointer to this type.
1085 NULL if no such pointer-to type is known yet.
1086 The debugger may add the address of such a type
1087 if it has to construct one later. */
1088
1089 struct type *pointer_type;
1090
1091 /* * C++: also need a reference type. */
1092
1093 struct type *reference_type;
1094
1095 /* * A C++ rvalue reference type added in C++11. */
1096
1097 struct type *rvalue_reference_type;
1098
1099 /* * Variant chain. This points to a type that differs from this
1100 one only in qualifiers and length. Currently, the possible
1101 qualifiers are const, volatile, code-space, data-space, and
1102 address class. The length may differ only when one of the
1103 address class flags are set. The variants are linked in a
1104 circular ring and share MAIN_TYPE. */
1105
1106 struct type *chain;
1107
1108 /* * The alignment for this type. Zero means that the alignment was
1109 not specified in the debug info. Note that this is stored in a
1110 funny way: as the log base 2 (plus 1) of the alignment; so a
1111 value of 1 means the alignment is 1, and a value of 9 means the
1112 alignment is 256. */
1113
1114 unsigned align_log2 : TYPE_ALIGN_BITS;
1115
1116 /* * Flags specific to this instance of the type, indicating where
1117 on the ring we are.
1118
1119 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1120 binary or-ed with the target type, with a special case for
1121 address class and space class. For example if this typedef does
1122 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1123 instance flags are completely inherited from the target type. No
1124 qualifiers can be cleared by the typedef. See also
1125 check_typedef. */
1126 unsigned instance_flags : 9;
1127
1128 /* * Length of storage for a value of this type. The value is the
1129 expression in host bytes of what sizeof(type) would return. This
1130 size includes padding. For example, an i386 extended-precision
1131 floating point value really only occupies ten bytes, but most
1132 ABI's declare its size to be 12 bytes, to preserve alignment.
1133 A `struct type' representing such a floating-point type would
1134 have a `length' value of 12, even though the last two bytes are
1135 unused.
1136
1137 Since this field is expressed in host bytes, its value is appropriate
1138 to pass to memcpy and such (it is assumed that GDB itself always runs
1139 on an 8-bits addressable architecture). However, when using it for
1140 target address arithmetic (e.g. adding it to a target address), the
1141 type_length_units function should be used in order to get the length
1142 expressed in target addressable memory units. */
1143
1144 ULONGEST length;
1145
1146 /* * Core type, shared by a group of qualified types. */
1147
1148 struct main_type *main_type;
1149 };
1150
1151 #define NULL_TYPE ((struct type *) 0)
1152
1153 struct fn_fieldlist
1154 {
1155
1156 /* * The overloaded name.
1157 This is generally allocated in the objfile's obstack.
1158 However stabsread.c sometimes uses malloc. */
1159
1160 const char *name;
1161
1162 /* * The number of methods with this name. */
1163
1164 int length;
1165
1166 /* * The list of methods. */
1167
1168 struct fn_field *fn_fields;
1169 };
1170
1171
1172
1173 struct fn_field
1174 {
1175 /* * If is_stub is clear, this is the mangled name which we can look
1176 up to find the address of the method (FIXME: it would be cleaner
1177 to have a pointer to the struct symbol here instead).
1178
1179 If is_stub is set, this is the portion of the mangled name which
1180 specifies the arguments. For example, "ii", if there are two int
1181 arguments, or "" if there are no arguments. See gdb_mangle_name
1182 for the conversion from this format to the one used if is_stub is
1183 clear. */
1184
1185 const char *physname;
1186
1187 /* * The function type for the method.
1188
1189 (This comment used to say "The return value of the method", but
1190 that's wrong. The function type is expected here, i.e. something
1191 with TYPE_CODE_METHOD, and *not* the return-value type). */
1192
1193 struct type *type;
1194
1195 /* * For virtual functions. First baseclass that defines this
1196 virtual function. */
1197
1198 struct type *fcontext;
1199
1200 /* Attributes. */
1201
1202 unsigned int is_const:1;
1203 unsigned int is_volatile:1;
1204 unsigned int is_private:1;
1205 unsigned int is_protected:1;
1206 unsigned int is_artificial:1;
1207
1208 /* * A stub method only has some fields valid (but they are enough
1209 to reconstruct the rest of the fields). */
1210
1211 unsigned int is_stub:1;
1212
1213 /* * True if this function is a constructor, false otherwise. */
1214
1215 unsigned int is_constructor : 1;
1216
1217 /* * True if this function is deleted, false otherwise. */
1218
1219 unsigned int is_deleted : 1;
1220
1221 /* * DW_AT_defaulted attribute for this function. The value is one
1222 of the DW_DEFAULTED constants. */
1223
1224 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1225
1226 /* * Unused. */
1227
1228 unsigned int dummy:6;
1229
1230 /* * Index into that baseclass's virtual function table, minus 2;
1231 else if static: VOFFSET_STATIC; else: 0. */
1232
1233 unsigned int voffset:16;
1234
1235 #define VOFFSET_STATIC 1
1236
1237 };
1238
1239 struct decl_field
1240 {
1241 /* * Unqualified name to be prefixed by owning class qualified
1242 name. */
1243
1244 const char *name;
1245
1246 /* * Type this typedef named NAME represents. */
1247
1248 struct type *type;
1249
1250 /* * True if this field was declared protected, false otherwise. */
1251 unsigned int is_protected : 1;
1252
1253 /* * True if this field was declared private, false otherwise. */
1254 unsigned int is_private : 1;
1255 };
1256
1257 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1258 TYPE_CODE_UNION nodes. */
1259
1260 struct cplus_struct_type
1261 {
1262 /* * Number of base classes this type derives from. The
1263 baseclasses are stored in the first N_BASECLASSES fields
1264 (i.e. the `fields' field of the struct type). The only fields
1265 of struct field that are used are: type, name, loc.bitpos. */
1266
1267 short n_baseclasses;
1268
1269 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1270 All access to this field must be through TYPE_VPTR_FIELDNO as one
1271 thing it does is check whether the field has been initialized.
1272 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1273 which for portability reasons doesn't initialize this field.
1274 TYPE_VPTR_FIELDNO returns -1 for this case.
1275
1276 If -1, we were unable to find the virtual function table pointer in
1277 initial symbol reading, and get_vptr_fieldno should be called to find
1278 it if possible. get_vptr_fieldno will update this field if possible.
1279 Otherwise the value is left at -1.
1280
1281 Unused if this type does not have virtual functions. */
1282
1283 short vptr_fieldno;
1284
1285 /* * Number of methods with unique names. All overloaded methods
1286 with the same name count only once. */
1287
1288 short nfn_fields;
1289
1290 /* * Number of template arguments. */
1291
1292 unsigned short n_template_arguments;
1293
1294 /* * One if this struct is a dynamic class, as defined by the
1295 Itanium C++ ABI: if it requires a virtual table pointer,
1296 because it or any of its base classes have one or more virtual
1297 member functions or virtual base classes. Minus one if not
1298 dynamic. Zero if not yet computed. */
1299
1300 int is_dynamic : 2;
1301
1302 /* * The calling convention for this type, fetched from the
1303 DW_AT_calling_convention attribute. The value is one of the
1304 DW_CC constants. */
1305
1306 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1307
1308 /* * The base class which defined the virtual function table pointer. */
1309
1310 struct type *vptr_basetype;
1311
1312 /* * For derived classes, the number of base classes is given by
1313 n_baseclasses and virtual_field_bits is a bit vector containing
1314 one bit per base class. If the base class is virtual, the
1315 corresponding bit will be set.
1316 I.E, given:
1317
1318 class A{};
1319 class B{};
1320 class C : public B, public virtual A {};
1321
1322 B is a baseclass of C; A is a virtual baseclass for C.
1323 This is a C++ 2.0 language feature. */
1324
1325 B_TYPE *virtual_field_bits;
1326
1327 /* * For classes with private fields, the number of fields is
1328 given by nfields and private_field_bits is a bit vector
1329 containing one bit per field.
1330
1331 If the field is private, the corresponding bit will be set. */
1332
1333 B_TYPE *private_field_bits;
1334
1335 /* * For classes with protected fields, the number of fields is
1336 given by nfields and protected_field_bits is a bit vector
1337 containing one bit per field.
1338
1339 If the field is private, the corresponding bit will be set. */
1340
1341 B_TYPE *protected_field_bits;
1342
1343 /* * For classes with fields to be ignored, either this is
1344 optimized out or this field has length 0. */
1345
1346 B_TYPE *ignore_field_bits;
1347
1348 /* * For classes, structures, and unions, a description of each
1349 field, which consists of an overloaded name, followed by the
1350 types of arguments that the method expects, and then the name
1351 after it has been renamed to make it distinct.
1352
1353 fn_fieldlists points to an array of nfn_fields of these. */
1354
1355 struct fn_fieldlist *fn_fieldlists;
1356
1357 /* * typedefs defined inside this class. typedef_field points to
1358 an array of typedef_field_count elements. */
1359
1360 struct decl_field *typedef_field;
1361
1362 unsigned typedef_field_count;
1363
1364 /* * The nested types defined by this type. nested_types points to
1365 an array of nested_types_count elements. */
1366
1367 struct decl_field *nested_types;
1368
1369 unsigned nested_types_count;
1370
1371 /* * The template arguments. This is an array with
1372 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1373 classes. */
1374
1375 struct symbol **template_arguments;
1376 };
1377
1378 /* * Struct used to store conversion rankings. */
1379
1380 struct rank
1381 {
1382 short rank;
1383
1384 /* * When two conversions are of the same type and therefore have
1385 the same rank, subrank is used to differentiate the two.
1386
1387 Eg: Two derived-class-pointer to base-class-pointer conversions
1388 would both have base pointer conversion rank, but the
1389 conversion with the shorter distance to the ancestor is
1390 preferable. 'subrank' would be used to reflect that. */
1391
1392 short subrank;
1393 };
1394
1395 /* * Used for ranking a function for overload resolution. */
1396
1397 typedef std::vector<rank> badness_vector;
1398
1399 /* * GNAT Ada-specific information for various Ada types. */
1400
1401 struct gnat_aux_type
1402 {
1403 /* * Parallel type used to encode information about dynamic types
1404 used in Ada (such as variant records, variable-size array,
1405 etc). */
1406 struct type* descriptive_type;
1407 };
1408
1409 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1410
1411 struct func_type
1412 {
1413 /* * The calling convention for targets supporting multiple ABIs.
1414 Right now this is only fetched from the Dwarf-2
1415 DW_AT_calling_convention attribute. The value is one of the
1416 DW_CC constants. */
1417
1418 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1419
1420 /* * Whether this function normally returns to its caller. It is
1421 set from the DW_AT_noreturn attribute if set on the
1422 DW_TAG_subprogram. */
1423
1424 unsigned int is_noreturn : 1;
1425
1426 /* * Only those DW_TAG_call_site's in this function that have
1427 DW_AT_call_tail_call set are linked in this list. Function
1428 without its tail call list complete
1429 (DW_AT_call_all_tail_calls or its superset
1430 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1431 DW_TAG_call_site's exist in such function. */
1432
1433 struct call_site *tail_call_list;
1434
1435 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1436 contains the method. */
1437
1438 struct type *self_type;
1439 };
1440
1441 /* struct call_site_parameter can be referenced in callees by several ways. */
1442
1443 enum call_site_parameter_kind
1444 {
1445 /* * Use field call_site_parameter.u.dwarf_reg. */
1446 CALL_SITE_PARAMETER_DWARF_REG,
1447
1448 /* * Use field call_site_parameter.u.fb_offset. */
1449 CALL_SITE_PARAMETER_FB_OFFSET,
1450
1451 /* * Use field call_site_parameter.u.param_offset. */
1452 CALL_SITE_PARAMETER_PARAM_OFFSET
1453 };
1454
1455 struct call_site_target
1456 {
1457 union field_location loc;
1458
1459 /* * Discriminant for union field_location. */
1460
1461 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1462 };
1463
1464 union call_site_parameter_u
1465 {
1466 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1467 as DWARF register number, for register passed
1468 parameters. */
1469
1470 int dwarf_reg;
1471
1472 /* * Offset from the callee's frame base, for stack passed
1473 parameters. This equals offset from the caller's stack
1474 pointer. */
1475
1476 CORE_ADDR fb_offset;
1477
1478 /* * Offset relative to the start of this PER_CU to
1479 DW_TAG_formal_parameter which is referenced by both
1480 caller and the callee. */
1481
1482 cu_offset param_cu_off;
1483 };
1484
1485 struct call_site_parameter
1486 {
1487 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1488
1489 union call_site_parameter_u u;
1490
1491 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1492
1493 const gdb_byte *value;
1494 size_t value_size;
1495
1496 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1497 It may be NULL if not provided by DWARF. */
1498
1499 const gdb_byte *data_value;
1500 size_t data_value_size;
1501 };
1502
1503 /* * A place where a function gets called from, represented by
1504 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1505
1506 struct call_site
1507 {
1508 /* * Address of the first instruction after this call. It must be
1509 the first field as we overload core_addr_hash and core_addr_eq
1510 for it. */
1511
1512 CORE_ADDR pc;
1513
1514 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1515
1516 struct call_site *tail_call_next;
1517
1518 /* * Describe DW_AT_call_target. Missing attribute uses
1519 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1520
1521 struct call_site_target target;
1522
1523 /* * Size of the PARAMETER array. */
1524
1525 unsigned parameter_count;
1526
1527 /* * CU of the function where the call is located. It gets used
1528 for DWARF blocks execution in the parameter array below. */
1529
1530 dwarf2_per_cu_data *per_cu;
1531
1532 /* objfile of the function where the call is located. */
1533
1534 dwarf2_per_objfile *per_objfile;
1535
1536 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1537
1538 struct call_site_parameter parameter[1];
1539 };
1540
1541 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1542 static structure. */
1543
1544 extern const struct cplus_struct_type cplus_struct_default;
1545
1546 extern void allocate_cplus_struct_type (struct type *);
1547
1548 #define INIT_CPLUS_SPECIFIC(type) \
1549 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1550 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1551 &cplus_struct_default)
1552
1553 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1554
1555 #define HAVE_CPLUS_STRUCT(type) \
1556 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1557 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1558
1559 #define INIT_NONE_SPECIFIC(type) \
1560 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1561 TYPE_MAIN_TYPE (type)->type_specific = {})
1562
1563 extern const struct gnat_aux_type gnat_aux_default;
1564
1565 extern void allocate_gnat_aux_type (struct type *);
1566
1567 #define INIT_GNAT_SPECIFIC(type) \
1568 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1569 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1570 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1571 /* * A macro that returns non-zero if the type-specific data should be
1572 read as "gnat-stuff". */
1573 #define HAVE_GNAT_AUX_INFO(type) \
1574 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1575
1576 /* * True if TYPE is known to be an Ada type of some kind. */
1577 #define ADA_TYPE_P(type) \
1578 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1579 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1580 && TYPE_FIXED_INSTANCE (type)))
1581
1582 #define INIT_FUNC_SPECIFIC(type) \
1583 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1584 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1585 TYPE_ZALLOC (type, \
1586 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1587
1588 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1589 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1590 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1591 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1592 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1593 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1594 #define TYPE_CHAIN(thistype) (thistype)->chain
1595 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1596 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1597 so you only have to call check_typedef once. Since allocate_value
1598 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1599 #define TYPE_LENGTH(thistype) (thistype)->length
1600
1601 /* * Return the alignment of the type in target addressable memory
1602 units, or 0 if no alignment was specified. */
1603 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1604
1605 /* * Return the alignment of the type in target addressable memory
1606 units, or 0 if no alignment was specified. */
1607 extern unsigned type_raw_align (struct type *);
1608
1609 /* * Return the alignment of the type in target addressable memory
1610 units. Return 0 if the alignment cannot be determined; but note
1611 that this makes an effort to compute the alignment even it it was
1612 not specified in the debug info. */
1613 extern unsigned type_align (struct type *);
1614
1615 /* * Set the alignment of the type. The alignment must be a power of
1616 2. Returns false if the given value does not fit in the available
1617 space in struct type. */
1618 extern bool set_type_align (struct type *, ULONGEST);
1619
1620 /* Property accessors for the type data location. */
1621 #define TYPE_DATA_LOCATION(thistype) \
1622 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1623 #define TYPE_DATA_LOCATION_BATON(thistype) \
1624 TYPE_DATA_LOCATION (thistype)->data.baton
1625 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1626 (TYPE_DATA_LOCATION (thistype)->const_val ())
1627 #define TYPE_DATA_LOCATION_KIND(thistype) \
1628 (TYPE_DATA_LOCATION (thistype)->kind ())
1629 #define TYPE_DYNAMIC_LENGTH(thistype) \
1630 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1631
1632 /* Property accessors for the type allocated/associated. */
1633 #define TYPE_ALLOCATED_PROP(thistype) \
1634 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1635 #define TYPE_ASSOCIATED_PROP(thistype) \
1636 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1637
1638 /* Attribute accessors for dynamic properties. */
1639 #define TYPE_DYN_PROP_BATON(dynprop) \
1640 dynprop->data.baton
1641 #define TYPE_DYN_PROP_ADDR(dynprop) \
1642 (dynprop->const_val ())
1643 #define TYPE_DYN_PROP_KIND(dynprop) \
1644 (dynprop->kind ())
1645
1646 /* C++ */
1647
1648 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1649 /* Do not call this, use TYPE_SELF_TYPE. */
1650 extern struct type *internal_type_self_type (struct type *);
1651 extern void set_type_self_type (struct type *, struct type *);
1652
1653 extern int internal_type_vptr_fieldno (struct type *);
1654 extern void set_type_vptr_fieldno (struct type *, int);
1655 extern struct type *internal_type_vptr_basetype (struct type *);
1656 extern void set_type_vptr_basetype (struct type *, struct type *);
1657 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1658 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1659
1660 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1661 #define TYPE_SPECIFIC_FIELD(thistype) \
1662 TYPE_MAIN_TYPE(thistype)->type_specific_field
1663 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1664 where we're trying to print an Ada array using the C language.
1665 In that case, there is no "cplus_stuff", but the C language assumes
1666 that there is. What we do, in that case, is pretend that there is
1667 an implicit one which is the default cplus stuff. */
1668 #define TYPE_CPLUS_SPECIFIC(thistype) \
1669 (!HAVE_CPLUS_STRUCT(thistype) \
1670 ? (struct cplus_struct_type*)&cplus_struct_default \
1671 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1672 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1673 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1674 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1675 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1676 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1677 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1678 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1679 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1680 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1681 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1682 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1683 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1684 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1685 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1686 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1687 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1688
1689 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1690 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1691 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1692
1693 #define FIELD_NAME(thisfld) ((thisfld).name)
1694 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1695 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1696 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1697 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1698 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1699 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1700 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1701 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1702 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1703 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1704 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1705 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1706 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1707 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1708 #define SET_FIELD_PHYSNAME(thisfld, name) \
1709 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1710 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1711 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1712 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1713 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1714 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1715 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1716 FIELD_DWARF_BLOCK (thisfld) = (addr))
1717 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1718 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1719
1720 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1721 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1722 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1723 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1724 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1725 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1726 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1727 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1728 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1729 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1730
1731 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1732 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1733 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1734 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1735 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1736 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1737 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1738 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1739 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1740 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1741 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1742 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1743 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1744 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1745 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1746 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1747 #define TYPE_FIELD_PRIVATE(thistype, n) \
1748 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1749 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1750 #define TYPE_FIELD_PROTECTED(thistype, n) \
1751 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1752 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1753 #define TYPE_FIELD_IGNORE(thistype, n) \
1754 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1755 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1756 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1757 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1758 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1759
1760 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1761 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1762 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1763 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1764 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1765
1766 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1767 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1768 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1769 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1770 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1771 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1772
1773 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1774 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1775 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1776 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1777 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1778 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1779 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1780 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1781 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1782 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1783 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1784 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1785 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1786 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1787 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1788 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1789 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1790
1791 /* Accessors for typedefs defined by a class. */
1792 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1793 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1794 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1795 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1796 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1797 TYPE_TYPEDEF_FIELD (thistype, n).name
1798 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1799 TYPE_TYPEDEF_FIELD (thistype, n).type
1800 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1801 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1802 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1803 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1804 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1805 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1806
1807 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1808 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1809 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1810 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1811 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1812 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1813 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1814 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1815 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1816 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1817 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1818 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1819 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1820 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1821
1822 #define TYPE_IS_OPAQUE(thistype) \
1823 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1824 || ((thistype)->code () == TYPE_CODE_UNION)) \
1825 && ((thistype)->num_fields () == 0) \
1826 && (!HAVE_CPLUS_STRUCT (thistype) \
1827 || TYPE_NFN_FIELDS (thistype) == 0) \
1828 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1829
1830 /* * A helper macro that returns the name of a type or "unnamed type"
1831 if the type has no name. */
1832
1833 #define TYPE_SAFE_NAME(type) \
1834 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1835
1836 /* * A helper macro that returns the name of an error type. If the
1837 type has a name, it is used; otherwise, a default is used. */
1838
1839 #define TYPE_ERROR_NAME(type) \
1840 (type->name () ? type->name () : _("<error type>"))
1841
1842 /* Given TYPE, return its floatformat. */
1843 const struct floatformat *floatformat_from_type (const struct type *type);
1844
1845 struct builtin_type
1846 {
1847 /* Integral types. */
1848
1849 /* Implicit size/sign (based on the architecture's ABI). */
1850 struct type *builtin_void;
1851 struct type *builtin_char;
1852 struct type *builtin_short;
1853 struct type *builtin_int;
1854 struct type *builtin_long;
1855 struct type *builtin_signed_char;
1856 struct type *builtin_unsigned_char;
1857 struct type *builtin_unsigned_short;
1858 struct type *builtin_unsigned_int;
1859 struct type *builtin_unsigned_long;
1860 struct type *builtin_half;
1861 struct type *builtin_float;
1862 struct type *builtin_double;
1863 struct type *builtin_long_double;
1864 struct type *builtin_complex;
1865 struct type *builtin_double_complex;
1866 struct type *builtin_string;
1867 struct type *builtin_bool;
1868 struct type *builtin_long_long;
1869 struct type *builtin_unsigned_long_long;
1870 struct type *builtin_decfloat;
1871 struct type *builtin_decdouble;
1872 struct type *builtin_declong;
1873
1874 /* "True" character types.
1875 We use these for the '/c' print format, because c_char is just a
1876 one-byte integral type, which languages less laid back than C
1877 will print as ... well, a one-byte integral type. */
1878 struct type *builtin_true_char;
1879 struct type *builtin_true_unsigned_char;
1880
1881 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1882 is for when an architecture needs to describe a register that has
1883 no size. */
1884 struct type *builtin_int0;
1885 struct type *builtin_int8;
1886 struct type *builtin_uint8;
1887 struct type *builtin_int16;
1888 struct type *builtin_uint16;
1889 struct type *builtin_int24;
1890 struct type *builtin_uint24;
1891 struct type *builtin_int32;
1892 struct type *builtin_uint32;
1893 struct type *builtin_int64;
1894 struct type *builtin_uint64;
1895 struct type *builtin_int128;
1896 struct type *builtin_uint128;
1897
1898 /* Wide character types. */
1899 struct type *builtin_char16;
1900 struct type *builtin_char32;
1901 struct type *builtin_wchar;
1902
1903 /* Pointer types. */
1904
1905 /* * `pointer to data' type. Some target platforms use an implicitly
1906 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1907 struct type *builtin_data_ptr;
1908
1909 /* * `pointer to function (returning void)' type. Harvard
1910 architectures mean that ABI function and code pointers are not
1911 interconvertible. Similarly, since ANSI, C standards have
1912 explicitly said that pointers to functions and pointers to data
1913 are not interconvertible --- that is, you can't cast a function
1914 pointer to void * and back, and expect to get the same value.
1915 However, all function pointer types are interconvertible, so void
1916 (*) () can server as a generic function pointer. */
1917
1918 struct type *builtin_func_ptr;
1919
1920 /* * `function returning pointer to function (returning void)' type.
1921 The final void return type is not significant for it. */
1922
1923 struct type *builtin_func_func;
1924
1925 /* Special-purpose types. */
1926
1927 /* * This type is used to represent a GDB internal function. */
1928
1929 struct type *internal_fn;
1930
1931 /* * This type is used to represent an xmethod. */
1932 struct type *xmethod;
1933 };
1934
1935 /* * Return the type table for the specified architecture. */
1936
1937 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1938
1939 /* * Per-objfile types used by symbol readers. */
1940
1941 struct objfile_type
1942 {
1943 /* Basic types based on the objfile architecture. */
1944 struct type *builtin_void;
1945 struct type *builtin_char;
1946 struct type *builtin_short;
1947 struct type *builtin_int;
1948 struct type *builtin_long;
1949 struct type *builtin_long_long;
1950 struct type *builtin_signed_char;
1951 struct type *builtin_unsigned_char;
1952 struct type *builtin_unsigned_short;
1953 struct type *builtin_unsigned_int;
1954 struct type *builtin_unsigned_long;
1955 struct type *builtin_unsigned_long_long;
1956 struct type *builtin_half;
1957 struct type *builtin_float;
1958 struct type *builtin_double;
1959 struct type *builtin_long_double;
1960
1961 /* * This type is used to represent symbol addresses. */
1962 struct type *builtin_core_addr;
1963
1964 /* * This type represents a type that was unrecognized in symbol
1965 read-in. */
1966 struct type *builtin_error;
1967
1968 /* * Types used for symbols with no debug information. */
1969 struct type *nodebug_text_symbol;
1970 struct type *nodebug_text_gnu_ifunc_symbol;
1971 struct type *nodebug_got_plt_symbol;
1972 struct type *nodebug_data_symbol;
1973 struct type *nodebug_unknown_symbol;
1974 struct type *nodebug_tls_symbol;
1975 };
1976
1977 /* * Return the type table for the specified objfile. */
1978
1979 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1980
1981 /* Explicit floating-point formats. See "floatformat.h". */
1982 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1983 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1984 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1985 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1986 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1987 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1988 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1989 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1990 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1991 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1992 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1993 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1994
1995
1996 /* Allocate space for storing data associated with a particular
1997 type. We ensure that the space is allocated using the same
1998 mechanism that was used to allocate the space for the type
1999 structure itself. I.e. if the type is on an objfile's
2000 objfile_obstack, then the space for data associated with that type
2001 will also be allocated on the objfile_obstack. If the type is
2002 associated with a gdbarch, then the space for data associated with that
2003 type will also be allocated on the gdbarch_obstack.
2004
2005 If a type is not associated with neither an objfile or a gdbarch then
2006 you should not use this macro to allocate space for data, instead you
2007 should call xmalloc directly, and ensure the memory is correctly freed
2008 when it is no longer needed. */
2009
2010 #define TYPE_ALLOC(t,size) \
2011 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2012 ? &TYPE_OBJFILE (t)->objfile_obstack \
2013 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2014 size))
2015
2016
2017 /* See comment on TYPE_ALLOC. */
2018
2019 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2020
2021 /* Use alloc_type to allocate a type owned by an objfile. Use
2022 alloc_type_arch to allocate a type owned by an architecture. Use
2023 alloc_type_copy to allocate a type with the same owner as a
2024 pre-existing template type, no matter whether objfile or
2025 gdbarch. */
2026 extern struct type *alloc_type (struct objfile *);
2027 extern struct type *alloc_type_arch (struct gdbarch *);
2028 extern struct type *alloc_type_copy (const struct type *);
2029
2030 /* * Return the type's architecture. For types owned by an
2031 architecture, that architecture is returned. For types owned by an
2032 objfile, that objfile's architecture is returned. */
2033
2034 extern struct gdbarch *get_type_arch (const struct type *);
2035
2036 /* * This returns the target type (or NULL) of TYPE, also skipping
2037 past typedefs. */
2038
2039 extern struct type *get_target_type (struct type *type);
2040
2041 /* Return the equivalent of TYPE_LENGTH, but in number of target
2042 addressable memory units of the associated gdbarch instead of bytes. */
2043
2044 extern unsigned int type_length_units (struct type *type);
2045
2046 /* * Helper function to construct objfile-owned types. */
2047
2048 extern struct type *init_type (struct objfile *, enum type_code, int,
2049 const char *);
2050 extern struct type *init_integer_type (struct objfile *, int, int,
2051 const char *);
2052 extern struct type *init_character_type (struct objfile *, int, int,
2053 const char *);
2054 extern struct type *init_boolean_type (struct objfile *, int, int,
2055 const char *);
2056 extern struct type *init_float_type (struct objfile *, int, const char *,
2057 const struct floatformat **,
2058 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2059 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2060 extern struct type *init_complex_type (const char *, struct type *);
2061 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2062 struct type *);
2063
2064 /* Helper functions to construct architecture-owned types. */
2065 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2066 const char *);
2067 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2068 const char *);
2069 extern struct type *arch_character_type (struct gdbarch *, int, int,
2070 const char *);
2071 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2072 const char *);
2073 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2074 const struct floatformat **);
2075 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2076 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2077 struct type *);
2078
2079 /* Helper functions to construct a struct or record type. An
2080 initially empty type is created using arch_composite_type().
2081 Fields are then added using append_composite_type_field*(). A union
2082 type has its size set to the largest field. A struct type has each
2083 field packed against the previous. */
2084
2085 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2086 const char *name, enum type_code code);
2087 extern void append_composite_type_field (struct type *t, const char *name,
2088 struct type *field);
2089 extern void append_composite_type_field_aligned (struct type *t,
2090 const char *name,
2091 struct type *field,
2092 int alignment);
2093 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2094 struct type *field);
2095
2096 /* Helper functions to construct a bit flags type. An initially empty
2097 type is created using arch_flag_type(). Flags are then added using
2098 append_flag_type_field() and append_flag_type_flag(). */
2099 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2100 const char *name, int bit);
2101 extern void append_flags_type_field (struct type *type,
2102 int start_bitpos, int nr_bits,
2103 struct type *field_type, const char *name);
2104 extern void append_flags_type_flag (struct type *type, int bitpos,
2105 const char *name);
2106
2107 extern void make_vector_type (struct type *array_type);
2108 extern struct type *init_vector_type (struct type *elt_type, int n);
2109
2110 extern struct type *lookup_reference_type (struct type *, enum type_code);
2111 extern struct type *lookup_lvalue_reference_type (struct type *);
2112 extern struct type *lookup_rvalue_reference_type (struct type *);
2113
2114
2115 extern struct type *make_reference_type (struct type *, struct type **,
2116 enum type_code);
2117
2118 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2119
2120 extern struct type *make_restrict_type (struct type *);
2121
2122 extern struct type *make_unqualified_type (struct type *);
2123
2124 extern struct type *make_atomic_type (struct type *);
2125
2126 extern void replace_type (struct type *, struct type *);
2127
2128 extern int address_space_name_to_int (struct gdbarch *, const char *);
2129
2130 extern const char *address_space_int_to_name (struct gdbarch *, int);
2131
2132 extern struct type *make_type_with_address_space (struct type *type,
2133 int space_identifier);
2134
2135 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2136
2137 extern struct type *lookup_methodptr_type (struct type *);
2138
2139 extern void smash_to_method_type (struct type *type, struct type *self_type,
2140 struct type *to_type, struct field *args,
2141 int nargs, int varargs);
2142
2143 extern void smash_to_memberptr_type (struct type *, struct type *,
2144 struct type *);
2145
2146 extern void smash_to_methodptr_type (struct type *, struct type *);
2147
2148 extern struct type *allocate_stub_method (struct type *);
2149
2150 extern const char *type_name_or_error (struct type *type);
2151
2152 struct struct_elt
2153 {
2154 /* The field of the element, or NULL if no element was found. */
2155 struct field *field;
2156
2157 /* The bit offset of the element in the parent structure. */
2158 LONGEST offset;
2159 };
2160
2161 /* Given a type TYPE, lookup the field and offset of the component named
2162 NAME.
2163
2164 TYPE can be either a struct or union, or a pointer or reference to
2165 a struct or union. If it is a pointer or reference, its target
2166 type is automatically used. Thus '.' and '->' are interchangable,
2167 as specified for the definitions of the expression element types
2168 STRUCTOP_STRUCT and STRUCTOP_PTR.
2169
2170 If NOERR is nonzero, the returned structure will have field set to
2171 NULL if there is no component named NAME.
2172
2173 If the component NAME is a field in an anonymous substructure of
2174 TYPE, the returned offset is a "global" offset relative to TYPE
2175 rather than an offset within the substructure. */
2176
2177 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2178
2179 /* Given a type TYPE, lookup the type of the component named NAME.
2180
2181 TYPE can be either a struct or union, or a pointer or reference to
2182 a struct or union. If it is a pointer or reference, its target
2183 type is automatically used. Thus '.' and '->' are interchangable,
2184 as specified for the definitions of the expression element types
2185 STRUCTOP_STRUCT and STRUCTOP_PTR.
2186
2187 If NOERR is nonzero, return NULL if there is no component named
2188 NAME. */
2189
2190 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2191
2192 extern struct type *make_pointer_type (struct type *, struct type **);
2193
2194 extern struct type *lookup_pointer_type (struct type *);
2195
2196 extern struct type *make_function_type (struct type *, struct type **);
2197
2198 extern struct type *lookup_function_type (struct type *);
2199
2200 extern struct type *lookup_function_type_with_arguments (struct type *,
2201 int,
2202 struct type **);
2203
2204 extern struct type *create_static_range_type (struct type *, struct type *,
2205 LONGEST, LONGEST);
2206
2207
2208 extern struct type *create_array_type_with_stride
2209 (struct type *, struct type *, struct type *,
2210 struct dynamic_prop *, unsigned int);
2211
2212 extern struct type *create_range_type (struct type *, struct type *,
2213 const struct dynamic_prop *,
2214 const struct dynamic_prop *,
2215 LONGEST);
2216
2217 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2218 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2219 stride. */
2220
2221 extern struct type * create_range_type_with_stride
2222 (struct type *result_type, struct type *index_type,
2223 const struct dynamic_prop *low_bound,
2224 const struct dynamic_prop *high_bound, LONGEST bias,
2225 const struct dynamic_prop *stride, bool byte_stride_p);
2226
2227 extern struct type *create_array_type (struct type *, struct type *,
2228 struct type *);
2229
2230 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2231
2232 extern struct type *create_string_type (struct type *, struct type *,
2233 struct type *);
2234 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2235
2236 extern struct type *create_set_type (struct type *, struct type *);
2237
2238 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2239 const char *);
2240
2241 extern struct type *lookup_signed_typename (const struct language_defn *,
2242 const char *);
2243
2244 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2245
2246 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2247
2248 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2249 ADDR specifies the location of the variable the type is bound to.
2250 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2251 static properties is returned. */
2252 extern struct type *resolve_dynamic_type
2253 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2254 CORE_ADDR addr);
2255
2256 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2257 extern int is_dynamic_type (struct type *type);
2258
2259 extern struct type *check_typedef (struct type *);
2260
2261 extern void check_stub_method_group (struct type *, int);
2262
2263 extern char *gdb_mangle_name (struct type *, int, int);
2264
2265 extern struct type *lookup_typename (const struct language_defn *,
2266 const char *, const struct block *, int);
2267
2268 extern struct type *lookup_template_type (const char *, struct type *,
2269 const struct block *);
2270
2271 extern int get_vptr_fieldno (struct type *, struct type **);
2272
2273 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2274
2275 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2276 LONGEST *high_bound);
2277
2278 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2279
2280 extern int class_types_same_p (const struct type *, const struct type *);
2281
2282 extern int is_ancestor (struct type *, struct type *);
2283
2284 extern int is_public_ancestor (struct type *, struct type *);
2285
2286 extern int is_unique_ancestor (struct type *, struct value *);
2287
2288 /* Overload resolution */
2289
2290 /* * Badness if parameter list length doesn't match arg list length. */
2291 extern const struct rank LENGTH_MISMATCH_BADNESS;
2292
2293 /* * Dummy badness value for nonexistent parameter positions. */
2294 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2295 /* * Badness if no conversion among types. */
2296 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2297
2298 /* * Badness of an exact match. */
2299 extern const struct rank EXACT_MATCH_BADNESS;
2300
2301 /* * Badness of integral promotion. */
2302 extern const struct rank INTEGER_PROMOTION_BADNESS;
2303 /* * Badness of floating promotion. */
2304 extern const struct rank FLOAT_PROMOTION_BADNESS;
2305 /* * Badness of converting a derived class pointer
2306 to a base class pointer. */
2307 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2308 /* * Badness of integral conversion. */
2309 extern const struct rank INTEGER_CONVERSION_BADNESS;
2310 /* * Badness of floating conversion. */
2311 extern const struct rank FLOAT_CONVERSION_BADNESS;
2312 /* * Badness of integer<->floating conversions. */
2313 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2314 /* * Badness of conversion of pointer to void pointer. */
2315 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2316 /* * Badness of conversion to boolean. */
2317 extern const struct rank BOOL_CONVERSION_BADNESS;
2318 /* * Badness of converting derived to base class. */
2319 extern const struct rank BASE_CONVERSION_BADNESS;
2320 /* * Badness of converting from non-reference to reference. Subrank
2321 is the type of reference conversion being done. */
2322 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2323 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2324 /* * Conversion to rvalue reference. */
2325 #define REFERENCE_CONVERSION_RVALUE 1
2326 /* * Conversion to const lvalue reference. */
2327 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2328
2329 /* * Badness of converting integer 0 to NULL pointer. */
2330 extern const struct rank NULL_POINTER_CONVERSION;
2331 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2332 being done. */
2333 extern const struct rank CV_CONVERSION_BADNESS;
2334 #define CV_CONVERSION_CONST 1
2335 #define CV_CONVERSION_VOLATILE 2
2336
2337 /* Non-standard conversions allowed by the debugger */
2338
2339 /* * Converting a pointer to an int is usually OK. */
2340 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2341
2342 /* * Badness of converting a (non-zero) integer constant
2343 to a pointer. */
2344 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2345
2346 extern struct rank sum_ranks (struct rank a, struct rank b);
2347 extern int compare_ranks (struct rank a, struct rank b);
2348
2349 extern int compare_badness (const badness_vector &,
2350 const badness_vector &);
2351
2352 extern badness_vector rank_function (gdb::array_view<type *> parms,
2353 gdb::array_view<value *> args);
2354
2355 extern struct rank rank_one_type (struct type *, struct type *,
2356 struct value *);
2357
2358 extern void recursive_dump_type (struct type *, int);
2359
2360 extern int field_is_static (struct field *);
2361
2362 /* printcmd.c */
2363
2364 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2365 const struct value_print_options *,
2366 int, struct ui_file *);
2367
2368 extern int can_dereference (struct type *);
2369
2370 extern int is_integral_type (struct type *);
2371
2372 extern int is_floating_type (struct type *);
2373
2374 extern int is_scalar_type (struct type *type);
2375
2376 extern int is_scalar_type_recursive (struct type *);
2377
2378 extern int class_or_union_p (const struct type *);
2379
2380 extern void maintenance_print_type (const char *, int);
2381
2382 extern htab_t create_copied_types_hash (struct objfile *objfile);
2383
2384 extern struct type *copy_type_recursive (struct objfile *objfile,
2385 struct type *type,
2386 htab_t copied_types);
2387
2388 extern struct type *copy_type (const struct type *type);
2389
2390 extern bool types_equal (struct type *, struct type *);
2391
2392 extern bool types_deeply_equal (struct type *, struct type *);
2393
2394 extern int type_not_allocated (const struct type *type);
2395
2396 extern int type_not_associated (const struct type *type);
2397
2398 /* * When the type includes explicit byte ordering, return that.
2399 Otherwise, the byte ordering from gdbarch_byte_order for
2400 get_type_arch is returned. */
2401
2402 extern enum bfd_endian type_byte_order (const struct type *type);
2403
2404 /* A flag to enable printing of debugging information of C++
2405 overloading. */
2406
2407 extern unsigned int overload_debug;
2408
2409 #endif /* GDBTYPES_H */