]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.h
gdb: add accessors to struct dynamic_prop
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
214 the type is signed (unless TYPE_NOSIGN (below) is set). */
215
216 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
217
218 /* * No sign for this type. In C++, "char", "signed char", and
219 "unsigned char" are distinct types; so we need an extra flag to
220 indicate the absence of a sign! */
221
222 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
223
224 /* * A compiler may supply dwarf instrumentation
225 that indicates the desired endian interpretation of the variable
226 differs from the native endian representation. */
227
228 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
229
230 /* * This appears in a type's flags word if it is a stub type (e.g.,
231 if someone referenced a type that wasn't defined in a source file
232 via (struct sir_not_appearing_in_this_film *)). */
233
234 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
235
236 /* * The target type of this type is a stub type, and this type needs
237 to be updated if it gets un-stubbed in check_typedef. Used for
238 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
239 based on the TYPE_LENGTH of the target type. Also, set for
240 TYPE_CODE_TYPEDEF. */
241
242 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
243
244 /* * This is a function type which appears to have a prototype. We
245 need this for function calls in order to tell us if it's necessary
246 to coerce the args, or to just do the standard conversions. This
247 is used with a short field. */
248
249 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
250
251 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
252 to functions. */
253
254 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
255
256 /* * Identify a vector type. Gcc is handling this by adding an extra
257 attribute to the array type. We slurp that in as a new flag of a
258 type. This is used only in dwarf2read.c. */
259 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
260
261 /* * The debugging formats (especially STABS) do not contain enough
262 information to represent all Ada types---especially those whose
263 size depends on dynamic quantities. Therefore, the GNAT Ada
264 compiler includes extra information in the form of additional type
265 definitions connected by naming conventions. This flag indicates
266 that the type is an ordinary (unencoded) GDB type that has been
267 created from the necessary run-time information, and does not need
268 further interpretation. Optionally marks ordinary, fixed-size GDB
269 type. */
270
271 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
272
273 /* * This debug target supports TYPE_STUB(t). In the unsupported case
274 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
275 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
276 guessed the TYPE_STUB(t) value (see dwarfread.c). */
277
278 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
279
280 /* * Not textual. By default, GDB treats all single byte integers as
281 characters (or elements of strings) unless this flag is set. */
282
283 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
284
285 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
286 address is returned by this function call. TYPE_TARGET_TYPE
287 determines the final returned function type to be presented to
288 user. */
289
290 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
291
292 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
293 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
294 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
295
296 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
297 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
298 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
299
300 /* * True if this type was declared using the "class" keyword. This is
301 only valid for C++ structure and enum types. If false, a structure
302 was declared as a "struct"; if true it was declared "class". For
303 enum types, this is true when "enum class" or "enum struct" was
304 used to declare the type.. */
305
306 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
307
308 /* * True if this type is a "flag" enum. A flag enum is one where all
309 the values are pairwise disjoint when "and"ed together. This
310 affects how enum values are printed. */
311
312 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
313
314 /* * Constant type. If this is set, the corresponding type has a
315 const modifier. */
316
317 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
318
319 /* * Volatile type. If this is set, the corresponding type has a
320 volatile modifier. */
321
322 #define TYPE_VOLATILE(t) \
323 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
324
325 /* * Restrict type. If this is set, the corresponding type has a
326 restrict modifier. */
327
328 #define TYPE_RESTRICT(t) \
329 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
330
331 /* * Atomic type. If this is set, the corresponding type has an
332 _Atomic modifier. */
333
334 #define TYPE_ATOMIC(t) \
335 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
336
337 /* * True if this type represents either an lvalue or lvalue reference type. */
338
339 #define TYPE_IS_REFERENCE(t) \
340 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
341
342 /* * True if this type is allocatable. */
343 #define TYPE_IS_ALLOCATABLE(t) \
344 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
345
346 /* * True if this type has variant parts. */
347 #define TYPE_HAS_VARIANT_PARTS(t) \
348 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
349
350 /* * True if this type has a dynamic length. */
351 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
352 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
353
354 /* * Instruction-space delimited type. This is for Harvard architectures
355 which have separate instruction and data address spaces (and perhaps
356 others).
357
358 GDB usually defines a flat address space that is a superset of the
359 architecture's two (or more) address spaces, but this is an extension
360 of the architecture's model.
361
362 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
363 resides in instruction memory, even if its address (in the extended
364 flat address space) does not reflect this.
365
366 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
367 corresponding type resides in the data memory space, even if
368 this is not indicated by its (flat address space) address.
369
370 If neither flag is set, the default space for functions / methods
371 is instruction space, and for data objects is data memory. */
372
373 #define TYPE_CODE_SPACE(t) \
374 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
375
376 #define TYPE_DATA_SPACE(t) \
377 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
378
379 /* * Address class flags. Some environments provide for pointers
380 whose size is different from that of a normal pointer or address
381 types where the bits are interpreted differently than normal
382 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
383 target specific ways to represent these different types of address
384 classes. */
385
386 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
387 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
388 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
389 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
390 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
391 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
392 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
393 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
394
395 /* * Information about a single discriminant. */
396
397 struct discriminant_range
398 {
399 /* * The range of values for the variant. This is an inclusive
400 range. */
401 ULONGEST low, high;
402
403 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
404 is true if this should be an unsigned comparison; false for
405 signed. */
406 bool contains (ULONGEST value, bool is_unsigned) const
407 {
408 if (is_unsigned)
409 return value >= low && value <= high;
410 LONGEST valuel = (LONGEST) value;
411 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
412 }
413 };
414
415 struct variant_part;
416
417 /* * A single variant. A variant has a list of discriminant values.
418 When the discriminator matches one of these, the variant is
419 enabled. Each variant controls zero or more fields; and may also
420 control other variant parts as well. This struct corresponds to
421 DW_TAG_variant in DWARF. */
422
423 struct variant : allocate_on_obstack
424 {
425 /* * The discriminant ranges for this variant. */
426 gdb::array_view<discriminant_range> discriminants;
427
428 /* * The fields controlled by this variant. This is inclusive on
429 the low end and exclusive on the high end. A variant may not
430 control any fields, in which case the two values will be equal.
431 These are indexes into the type's array of fields. */
432 int first_field;
433 int last_field;
434
435 /* * Variant parts controlled by this variant. */
436 gdb::array_view<variant_part> parts;
437
438 /* * Return true if this is the default variant. The default
439 variant can be recognized because it has no associated
440 discriminants. */
441 bool is_default () const
442 {
443 return discriminants.empty ();
444 }
445
446 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
447 if this should be an unsigned comparison; false for signed. */
448 bool matches (ULONGEST value, bool is_unsigned) const;
449 };
450
451 /* * A variant part. Each variant part has an optional discriminant
452 and holds an array of variants. This struct corresponds to
453 DW_TAG_variant_part in DWARF. */
454
455 struct variant_part : allocate_on_obstack
456 {
457 /* * The index of the discriminant field in the outer type. This is
458 an index into the type's array of fields. If this is -1, there
459 is no discriminant, and only the default variant can be
460 considered to be selected. */
461 int discriminant_index;
462
463 /* * True if this discriminant is unsigned; false if signed. This
464 comes from the type of the discriminant. */
465 bool is_unsigned;
466
467 /* * The variants that are controlled by this variant part. Note
468 that these will always be sorted by field number. */
469 gdb::array_view<variant> variants;
470 };
471
472
473 enum dynamic_prop_kind
474 {
475 PROP_UNDEFINED, /* Not defined. */
476 PROP_CONST, /* Constant. */
477 PROP_ADDR_OFFSET, /* Address offset. */
478 PROP_LOCEXPR, /* Location expression. */
479 PROP_LOCLIST, /* Location list. */
480 PROP_VARIANT_PARTS, /* Variant parts. */
481 PROP_TYPE, /* Type. */
482 };
483
484 union dynamic_prop_data
485 {
486 /* Storage for constant property. */
487
488 LONGEST const_val;
489
490 /* Storage for dynamic property. */
491
492 void *baton;
493
494 /* Storage of variant parts for a type. A type with variant parts
495 has all its fields "linearized" -- stored in a single field
496 array, just as if they had all been declared that way. The
497 variant parts are attached via a dynamic property, and then are
498 used to control which fields end up in the final type during
499 dynamic type resolution. */
500
501 const gdb::array_view<variant_part> *variant_parts;
502
503 /* Once a variant type is resolved, we may want to be able to go
504 from the resolved type to the original type. In this case we
505 rewrite the property's kind and set this field. */
506
507 struct type *original_type;
508 };
509
510 /* * Used to store a dynamic property. */
511
512 struct dynamic_prop
513 {
514 dynamic_prop_kind kind () const
515 {
516 return m_kind;
517 }
518
519 void set_undefined ()
520 {
521 m_kind = PROP_UNDEFINED;
522 }
523
524 LONGEST const_val () const
525 {
526 gdb_assert (m_kind == PROP_CONST);
527
528 return m_data.const_val;
529 }
530
531 void set_const_val (LONGEST const_val)
532 {
533 m_kind = PROP_CONST;
534 m_data.const_val = const_val;
535 }
536
537 void *baton () const
538 {
539 gdb_assert (m_kind == PROP_LOCEXPR
540 || m_kind == PROP_LOCLIST
541 || m_kind == PROP_ADDR_OFFSET);
542
543 return m_data.baton;
544 }
545
546 void set_locexpr (void *baton)
547 {
548 m_kind = PROP_LOCEXPR;
549 m_data.baton = baton;
550 }
551
552 void set_loclist (void *baton)
553 {
554 m_kind = PROP_LOCLIST;
555 m_data.baton = baton;
556 }
557
558 void set_addr_offset (void *baton)
559 {
560 m_kind = PROP_ADDR_OFFSET;
561 m_data.baton = baton;
562 }
563
564 const gdb::array_view<variant_part> *variant_parts () const
565 {
566 gdb_assert (m_kind == PROP_VARIANT_PARTS);
567
568 return m_data.variant_parts;
569 }
570
571 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
572 {
573 m_kind = PROP_VARIANT_PARTS;
574 m_data.variant_parts = variant_parts;
575 }
576
577 struct type *original_type () const
578 {
579 gdb_assert (m_kind == PROP_TYPE);
580
581 return m_data.original_type;
582 }
583
584 void set_original_type (struct type *original_type)
585 {
586 m_kind = PROP_TYPE;
587 m_data.original_type = original_type;
588 }
589
590 /* Determine which field of the union dynamic_prop.data is used. */
591 enum dynamic_prop_kind m_kind;
592
593 /* Storage for dynamic or static value. */
594 union dynamic_prop_data m_data;
595 };
596
597 /* Compare two dynamic_prop objects for equality. dynamic_prop
598 instances are equal iff they have the same type and storage. */
599 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
600
601 /* Compare two dynamic_prop objects for inequality. */
602 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
603 {
604 return !(l == r);
605 }
606
607 /* * Define a type's dynamic property node kind. */
608 enum dynamic_prop_node_kind
609 {
610 /* A property providing a type's data location.
611 Evaluating this field yields to the location of an object's data. */
612 DYN_PROP_DATA_LOCATION,
613
614 /* A property representing DW_AT_allocated. The presence of this attribute
615 indicates that the object of the type can be allocated/deallocated. */
616 DYN_PROP_ALLOCATED,
617
618 /* A property representing DW_AT_associated. The presence of this attribute
619 indicated that the object of the type can be associated. */
620 DYN_PROP_ASSOCIATED,
621
622 /* A property providing an array's byte stride. */
623 DYN_PROP_BYTE_STRIDE,
624
625 /* A property holding variant parts. */
626 DYN_PROP_VARIANT_PARTS,
627
628 /* A property holding the size of the type. */
629 DYN_PROP_BYTE_SIZE,
630 };
631
632 /* * List for dynamic type attributes. */
633 struct dynamic_prop_list
634 {
635 /* The kind of dynamic prop in this node. */
636 enum dynamic_prop_node_kind prop_kind;
637
638 /* The dynamic property itself. */
639 struct dynamic_prop prop;
640
641 /* A pointer to the next dynamic property. */
642 struct dynamic_prop_list *next;
643 };
644
645 /* * Determine which field of the union main_type.fields[x].loc is
646 used. */
647
648 enum field_loc_kind
649 {
650 FIELD_LOC_KIND_BITPOS, /**< bitpos */
651 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
652 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
653 FIELD_LOC_KIND_PHYSNAME, /**< physname */
654 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
655 };
656
657 /* * A discriminant to determine which field in the
658 main_type.type_specific union is being used, if any.
659
660 For types such as TYPE_CODE_FLT, the use of this
661 discriminant is really redundant, as we know from the type code
662 which field is going to be used. As such, it would be possible to
663 reduce the size of this enum in order to save a bit or two for
664 other fields of struct main_type. But, since we still have extra
665 room , and for the sake of clarity and consistency, we treat all fields
666 of the union the same way. */
667
668 enum type_specific_kind
669 {
670 TYPE_SPECIFIC_NONE,
671 TYPE_SPECIFIC_CPLUS_STUFF,
672 TYPE_SPECIFIC_GNAT_STUFF,
673 TYPE_SPECIFIC_FLOATFORMAT,
674 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
675 TYPE_SPECIFIC_FUNC,
676 TYPE_SPECIFIC_SELF_TYPE
677 };
678
679 union type_owner
680 {
681 struct objfile *objfile;
682 struct gdbarch *gdbarch;
683 };
684
685 union field_location
686 {
687 /* * Position of this field, counting in bits from start of
688 containing structure. For big-endian targets, it is the bit
689 offset to the MSB. For little-endian targets, it is the bit
690 offset to the LSB. */
691
692 LONGEST bitpos;
693
694 /* * Enum value. */
695 LONGEST enumval;
696
697 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
698 physaddr is the location (in the target) of the static
699 field. Otherwise, physname is the mangled label of the
700 static field. */
701
702 CORE_ADDR physaddr;
703 const char *physname;
704
705 /* * The field location can be computed by evaluating the
706 following DWARF block. Its DATA is allocated on
707 objfile_obstack - no CU load is needed to access it. */
708
709 struct dwarf2_locexpr_baton *dwarf_block;
710 };
711
712 struct field
713 {
714 struct type *type () const
715 {
716 return this->m_type;
717 }
718
719 void set_type (struct type *type)
720 {
721 this->m_type = type;
722 }
723
724 union field_location loc;
725
726 /* * For a function or member type, this is 1 if the argument is
727 marked artificial. Artificial arguments should not be shown
728 to the user. For TYPE_CODE_RANGE it is set if the specific
729 bound is not defined. */
730
731 unsigned int artificial : 1;
732
733 /* * Discriminant for union field_location. */
734
735 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
736
737 /* * Size of this field, in bits, or zero if not packed.
738 If non-zero in an array type, indicates the element size in
739 bits (used only in Ada at the moment).
740 For an unpacked field, the field's type's length
741 says how many bytes the field occupies. */
742
743 unsigned int bitsize : 28;
744
745 /* * In a struct or union type, type of this field.
746 - In a function or member type, type of this argument.
747 - In an array type, the domain-type of the array. */
748
749 struct type *m_type;
750
751 /* * Name of field, value or argument.
752 NULL for range bounds, array domains, and member function
753 arguments. */
754
755 const char *name;
756 };
757
758 struct range_bounds
759 {
760 /* * Low bound of range. */
761
762 struct dynamic_prop low;
763
764 /* * High bound of range. */
765
766 struct dynamic_prop high;
767
768 /* The stride value for this range. This can be stored in bits or bytes
769 based on the value of BYTE_STRIDE_P. It is optional to have a stride
770 value, if this range has no stride value defined then this will be set
771 to the constant zero. */
772
773 struct dynamic_prop stride;
774
775 /* * The bias. Sometimes a range value is biased before storage.
776 The bias is added to the stored bits to form the true value. */
777
778 LONGEST bias;
779
780 /* True if HIGH range bound contains the number of elements in the
781 subrange. This affects how the final high bound is computed. */
782
783 unsigned int flag_upper_bound_is_count : 1;
784
785 /* True if LOW or/and HIGH are resolved into a static bound from
786 a dynamic one. */
787
788 unsigned int flag_bound_evaluated : 1;
789
790 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
791
792 unsigned int flag_is_byte_stride : 1;
793 };
794
795 /* Compare two range_bounds objects for equality. Simply does
796 memberwise comparison. */
797 extern bool operator== (const range_bounds &l, const range_bounds &r);
798
799 /* Compare two range_bounds objects for inequality. */
800 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
801 {
802 return !(l == r);
803 }
804
805 union type_specific
806 {
807 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
808 point to cplus_struct_default, a default static instance of a
809 struct cplus_struct_type. */
810
811 struct cplus_struct_type *cplus_stuff;
812
813 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
814 provides additional information. */
815
816 struct gnat_aux_type *gnat_stuff;
817
818 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
819 floatformat object that describes the floating-point value
820 that resides within the type. */
821
822 const struct floatformat *floatformat;
823
824 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
825
826 struct func_type *func_stuff;
827
828 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
829 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
830 is a member of. */
831
832 struct type *self_type;
833 };
834
835 /* * Main structure representing a type in GDB.
836
837 This structure is space-critical. Its layout has been tweaked to
838 reduce the space used. */
839
840 struct main_type
841 {
842 /* * Code for kind of type. */
843
844 ENUM_BITFIELD(type_code) code : 8;
845
846 /* * Flags about this type. These fields appear at this location
847 because they packs nicely here. See the TYPE_* macros for
848 documentation about these fields. */
849
850 unsigned int flag_unsigned : 1;
851 unsigned int flag_nosign : 1;
852 unsigned int flag_stub : 1;
853 unsigned int flag_target_stub : 1;
854 unsigned int flag_prototyped : 1;
855 unsigned int flag_varargs : 1;
856 unsigned int flag_vector : 1;
857 unsigned int flag_stub_supported : 1;
858 unsigned int flag_gnu_ifunc : 1;
859 unsigned int flag_fixed_instance : 1;
860 unsigned int flag_objfile_owned : 1;
861 unsigned int flag_endianity_not_default : 1;
862
863 /* * True if this type was declared with "class" rather than
864 "struct". */
865
866 unsigned int flag_declared_class : 1;
867
868 /* * True if this is an enum type with disjoint values. This
869 affects how the enum is printed. */
870
871 unsigned int flag_flag_enum : 1;
872
873 /* * A discriminant telling us which field of the type_specific
874 union is being used for this type, if any. */
875
876 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
877
878 /* * Number of fields described for this type. This field appears
879 at this location because it packs nicely here. */
880
881 short nfields;
882
883 /* * Name of this type, or NULL if none.
884
885 This is used for printing only. For looking up a name, look for
886 a symbol in the VAR_DOMAIN. This is generally allocated in the
887 objfile's obstack. However coffread.c uses malloc. */
888
889 const char *name;
890
891 /* * Every type is now associated with a particular objfile, and the
892 type is allocated on the objfile_obstack for that objfile. One
893 problem however, is that there are times when gdb allocates new
894 types while it is not in the process of reading symbols from a
895 particular objfile. Fortunately, these happen when the type
896 being created is a derived type of an existing type, such as in
897 lookup_pointer_type(). So we can just allocate the new type
898 using the same objfile as the existing type, but to do this we
899 need a backpointer to the objfile from the existing type. Yes
900 this is somewhat ugly, but without major overhaul of the internal
901 type system, it can't be avoided for now. */
902
903 union type_owner owner;
904
905 /* * For a pointer type, describes the type of object pointed to.
906 - For an array type, describes the type of the elements.
907 - For a function or method type, describes the type of the return value.
908 - For a range type, describes the type of the full range.
909 - For a complex type, describes the type of each coordinate.
910 - For a special record or union type encoding a dynamic-sized type
911 in GNAT, a memoized pointer to a corresponding static version of
912 the type.
913 - Unused otherwise. */
914
915 struct type *target_type;
916
917 /* * For structure and union types, a description of each field.
918 For set and pascal array types, there is one "field",
919 whose type is the domain type of the set or array.
920 For range types, there are two "fields",
921 the minimum and maximum values (both inclusive).
922 For enum types, each possible value is described by one "field".
923 For a function or method type, a "field" for each parameter.
924 For C++ classes, there is one field for each base class (if it is
925 a derived class) plus one field for each class data member. Member
926 functions are recorded elsewhere.
927
928 Using a pointer to a separate array of fields
929 allows all types to have the same size, which is useful
930 because we can allocate the space for a type before
931 we know what to put in it. */
932
933 union
934 {
935 struct field *fields;
936
937 /* * Union member used for range types. */
938
939 struct range_bounds *bounds;
940
941 /* If this is a scalar type, then this is its corresponding
942 complex type. */
943 struct type *complex_type;
944
945 } flds_bnds;
946
947 /* * Slot to point to additional language-specific fields of this
948 type. */
949
950 union type_specific type_specific;
951
952 /* * Contains all dynamic type properties. */
953 struct dynamic_prop_list *dyn_prop_list;
954 };
955
956 /* * Number of bits allocated for alignment. */
957
958 #define TYPE_ALIGN_BITS 8
959
960 /* * A ``struct type'' describes a particular instance of a type, with
961 some particular qualification. */
962
963 struct type
964 {
965 /* Get the type code of this type.
966
967 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
968 type, you need to do `check_typedef (type)->code ()`. */
969 type_code code () const
970 {
971 return this->main_type->code;
972 }
973
974 /* Set the type code of this type. */
975 void set_code (type_code code)
976 {
977 this->main_type->code = code;
978 }
979
980 /* Get the name of this type. */
981 const char *name () const
982 {
983 return this->main_type->name;
984 }
985
986 /* Set the name of this type. */
987 void set_name (const char *name)
988 {
989 this->main_type->name = name;
990 }
991
992 /* Get the number of fields of this type. */
993 int num_fields () const
994 {
995 return this->main_type->nfields;
996 }
997
998 /* Set the number of fields of this type. */
999 void set_num_fields (int num_fields)
1000 {
1001 this->main_type->nfields = num_fields;
1002 }
1003
1004 /* Get the fields array of this type. */
1005 struct field *fields () const
1006 {
1007 return this->main_type->flds_bnds.fields;
1008 }
1009
1010 /* Get the field at index IDX. */
1011 struct field &field (int idx) const
1012 {
1013 return this->fields ()[idx];
1014 }
1015
1016 /* Set the fields array of this type. */
1017 void set_fields (struct field *fields)
1018 {
1019 this->main_type->flds_bnds.fields = fields;
1020 }
1021
1022 type *index_type () const
1023 {
1024 return this->field (0).type ();
1025 }
1026
1027 void set_index_type (type *index_type)
1028 {
1029 this->field (0).set_type (index_type);
1030 }
1031
1032 /* Get the bounds bounds of this type. The type must be a range type. */
1033 range_bounds *bounds () const
1034 {
1035 gdb_assert (this->code () == TYPE_CODE_RANGE);
1036
1037 return this->main_type->flds_bnds.bounds;
1038 }
1039
1040 /* Set the bounds of this type. The type must be a range type. */
1041 void set_bounds (range_bounds *bounds)
1042 {
1043 gdb_assert (this->code () == TYPE_CODE_RANGE);
1044
1045 this->main_type->flds_bnds.bounds = bounds;
1046 }
1047
1048 /* * Return the dynamic property of the requested KIND from this type's
1049 list of dynamic properties. */
1050 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1051
1052 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1053 property to this type.
1054
1055 This function assumes that this type is objfile-owned. */
1056 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1057
1058 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1059 void remove_dyn_prop (dynamic_prop_node_kind kind);
1060
1061 /* * Type that is a pointer to this type.
1062 NULL if no such pointer-to type is known yet.
1063 The debugger may add the address of such a type
1064 if it has to construct one later. */
1065
1066 struct type *pointer_type;
1067
1068 /* * C++: also need a reference type. */
1069
1070 struct type *reference_type;
1071
1072 /* * A C++ rvalue reference type added in C++11. */
1073
1074 struct type *rvalue_reference_type;
1075
1076 /* * Variant chain. This points to a type that differs from this
1077 one only in qualifiers and length. Currently, the possible
1078 qualifiers are const, volatile, code-space, data-space, and
1079 address class. The length may differ only when one of the
1080 address class flags are set. The variants are linked in a
1081 circular ring and share MAIN_TYPE. */
1082
1083 struct type *chain;
1084
1085 /* * The alignment for this type. Zero means that the alignment was
1086 not specified in the debug info. Note that this is stored in a
1087 funny way: as the log base 2 (plus 1) of the alignment; so a
1088 value of 1 means the alignment is 1, and a value of 9 means the
1089 alignment is 256. */
1090
1091 unsigned align_log2 : TYPE_ALIGN_BITS;
1092
1093 /* * Flags specific to this instance of the type, indicating where
1094 on the ring we are.
1095
1096 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1097 binary or-ed with the target type, with a special case for
1098 address class and space class. For example if this typedef does
1099 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1100 instance flags are completely inherited from the target type. No
1101 qualifiers can be cleared by the typedef. See also
1102 check_typedef. */
1103 unsigned instance_flags : 9;
1104
1105 /* * Length of storage for a value of this type. The value is the
1106 expression in host bytes of what sizeof(type) would return. This
1107 size includes padding. For example, an i386 extended-precision
1108 floating point value really only occupies ten bytes, but most
1109 ABI's declare its size to be 12 bytes, to preserve alignment.
1110 A `struct type' representing such a floating-point type would
1111 have a `length' value of 12, even though the last two bytes are
1112 unused.
1113
1114 Since this field is expressed in host bytes, its value is appropriate
1115 to pass to memcpy and such (it is assumed that GDB itself always runs
1116 on an 8-bits addressable architecture). However, when using it for
1117 target address arithmetic (e.g. adding it to a target address), the
1118 type_length_units function should be used in order to get the length
1119 expressed in target addressable memory units. */
1120
1121 ULONGEST length;
1122
1123 /* * Core type, shared by a group of qualified types. */
1124
1125 struct main_type *main_type;
1126 };
1127
1128 #define NULL_TYPE ((struct type *) 0)
1129
1130 struct fn_fieldlist
1131 {
1132
1133 /* * The overloaded name.
1134 This is generally allocated in the objfile's obstack.
1135 However stabsread.c sometimes uses malloc. */
1136
1137 const char *name;
1138
1139 /* * The number of methods with this name. */
1140
1141 int length;
1142
1143 /* * The list of methods. */
1144
1145 struct fn_field *fn_fields;
1146 };
1147
1148
1149
1150 struct fn_field
1151 {
1152 /* * If is_stub is clear, this is the mangled name which we can look
1153 up to find the address of the method (FIXME: it would be cleaner
1154 to have a pointer to the struct symbol here instead).
1155
1156 If is_stub is set, this is the portion of the mangled name which
1157 specifies the arguments. For example, "ii", if there are two int
1158 arguments, or "" if there are no arguments. See gdb_mangle_name
1159 for the conversion from this format to the one used if is_stub is
1160 clear. */
1161
1162 const char *physname;
1163
1164 /* * The function type for the method.
1165
1166 (This comment used to say "The return value of the method", but
1167 that's wrong. The function type is expected here, i.e. something
1168 with TYPE_CODE_METHOD, and *not* the return-value type). */
1169
1170 struct type *type;
1171
1172 /* * For virtual functions. First baseclass that defines this
1173 virtual function. */
1174
1175 struct type *fcontext;
1176
1177 /* Attributes. */
1178
1179 unsigned int is_const:1;
1180 unsigned int is_volatile:1;
1181 unsigned int is_private:1;
1182 unsigned int is_protected:1;
1183 unsigned int is_artificial:1;
1184
1185 /* * A stub method only has some fields valid (but they are enough
1186 to reconstruct the rest of the fields). */
1187
1188 unsigned int is_stub:1;
1189
1190 /* * True if this function is a constructor, false otherwise. */
1191
1192 unsigned int is_constructor : 1;
1193
1194 /* * True if this function is deleted, false otherwise. */
1195
1196 unsigned int is_deleted : 1;
1197
1198 /* * DW_AT_defaulted attribute for this function. The value is one
1199 of the DW_DEFAULTED constants. */
1200
1201 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1202
1203 /* * Unused. */
1204
1205 unsigned int dummy:6;
1206
1207 /* * Index into that baseclass's virtual function table, minus 2;
1208 else if static: VOFFSET_STATIC; else: 0. */
1209
1210 unsigned int voffset:16;
1211
1212 #define VOFFSET_STATIC 1
1213
1214 };
1215
1216 struct decl_field
1217 {
1218 /* * Unqualified name to be prefixed by owning class qualified
1219 name. */
1220
1221 const char *name;
1222
1223 /* * Type this typedef named NAME represents. */
1224
1225 struct type *type;
1226
1227 /* * True if this field was declared protected, false otherwise. */
1228 unsigned int is_protected : 1;
1229
1230 /* * True if this field was declared private, false otherwise. */
1231 unsigned int is_private : 1;
1232 };
1233
1234 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1235 TYPE_CODE_UNION nodes. */
1236
1237 struct cplus_struct_type
1238 {
1239 /* * Number of base classes this type derives from. The
1240 baseclasses are stored in the first N_BASECLASSES fields
1241 (i.e. the `fields' field of the struct type). The only fields
1242 of struct field that are used are: type, name, loc.bitpos. */
1243
1244 short n_baseclasses;
1245
1246 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1247 All access to this field must be through TYPE_VPTR_FIELDNO as one
1248 thing it does is check whether the field has been initialized.
1249 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1250 which for portability reasons doesn't initialize this field.
1251 TYPE_VPTR_FIELDNO returns -1 for this case.
1252
1253 If -1, we were unable to find the virtual function table pointer in
1254 initial symbol reading, and get_vptr_fieldno should be called to find
1255 it if possible. get_vptr_fieldno will update this field if possible.
1256 Otherwise the value is left at -1.
1257
1258 Unused if this type does not have virtual functions. */
1259
1260 short vptr_fieldno;
1261
1262 /* * Number of methods with unique names. All overloaded methods
1263 with the same name count only once. */
1264
1265 short nfn_fields;
1266
1267 /* * Number of template arguments. */
1268
1269 unsigned short n_template_arguments;
1270
1271 /* * One if this struct is a dynamic class, as defined by the
1272 Itanium C++ ABI: if it requires a virtual table pointer,
1273 because it or any of its base classes have one or more virtual
1274 member functions or virtual base classes. Minus one if not
1275 dynamic. Zero if not yet computed. */
1276
1277 int is_dynamic : 2;
1278
1279 /* * The calling convention for this type, fetched from the
1280 DW_AT_calling_convention attribute. The value is one of the
1281 DW_CC constants. */
1282
1283 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1284
1285 /* * The base class which defined the virtual function table pointer. */
1286
1287 struct type *vptr_basetype;
1288
1289 /* * For derived classes, the number of base classes is given by
1290 n_baseclasses and virtual_field_bits is a bit vector containing
1291 one bit per base class. If the base class is virtual, the
1292 corresponding bit will be set.
1293 I.E, given:
1294
1295 class A{};
1296 class B{};
1297 class C : public B, public virtual A {};
1298
1299 B is a baseclass of C; A is a virtual baseclass for C.
1300 This is a C++ 2.0 language feature. */
1301
1302 B_TYPE *virtual_field_bits;
1303
1304 /* * For classes with private fields, the number of fields is
1305 given by nfields and private_field_bits is a bit vector
1306 containing one bit per field.
1307
1308 If the field is private, the corresponding bit will be set. */
1309
1310 B_TYPE *private_field_bits;
1311
1312 /* * For classes with protected fields, the number of fields is
1313 given by nfields and protected_field_bits is a bit vector
1314 containing one bit per field.
1315
1316 If the field is private, the corresponding bit will be set. */
1317
1318 B_TYPE *protected_field_bits;
1319
1320 /* * For classes with fields to be ignored, either this is
1321 optimized out or this field has length 0. */
1322
1323 B_TYPE *ignore_field_bits;
1324
1325 /* * For classes, structures, and unions, a description of each
1326 field, which consists of an overloaded name, followed by the
1327 types of arguments that the method expects, and then the name
1328 after it has been renamed to make it distinct.
1329
1330 fn_fieldlists points to an array of nfn_fields of these. */
1331
1332 struct fn_fieldlist *fn_fieldlists;
1333
1334 /* * typedefs defined inside this class. typedef_field points to
1335 an array of typedef_field_count elements. */
1336
1337 struct decl_field *typedef_field;
1338
1339 unsigned typedef_field_count;
1340
1341 /* * The nested types defined by this type. nested_types points to
1342 an array of nested_types_count elements. */
1343
1344 struct decl_field *nested_types;
1345
1346 unsigned nested_types_count;
1347
1348 /* * The template arguments. This is an array with
1349 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1350 classes. */
1351
1352 struct symbol **template_arguments;
1353 };
1354
1355 /* * Struct used to store conversion rankings. */
1356
1357 struct rank
1358 {
1359 short rank;
1360
1361 /* * When two conversions are of the same type and therefore have
1362 the same rank, subrank is used to differentiate the two.
1363
1364 Eg: Two derived-class-pointer to base-class-pointer conversions
1365 would both have base pointer conversion rank, but the
1366 conversion with the shorter distance to the ancestor is
1367 preferable. 'subrank' would be used to reflect that. */
1368
1369 short subrank;
1370 };
1371
1372 /* * Used for ranking a function for overload resolution. */
1373
1374 typedef std::vector<rank> badness_vector;
1375
1376 /* * GNAT Ada-specific information for various Ada types. */
1377
1378 struct gnat_aux_type
1379 {
1380 /* * Parallel type used to encode information about dynamic types
1381 used in Ada (such as variant records, variable-size array,
1382 etc). */
1383 struct type* descriptive_type;
1384 };
1385
1386 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1387
1388 struct func_type
1389 {
1390 /* * The calling convention for targets supporting multiple ABIs.
1391 Right now this is only fetched from the Dwarf-2
1392 DW_AT_calling_convention attribute. The value is one of the
1393 DW_CC constants. */
1394
1395 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1396
1397 /* * Whether this function normally returns to its caller. It is
1398 set from the DW_AT_noreturn attribute if set on the
1399 DW_TAG_subprogram. */
1400
1401 unsigned int is_noreturn : 1;
1402
1403 /* * Only those DW_TAG_call_site's in this function that have
1404 DW_AT_call_tail_call set are linked in this list. Function
1405 without its tail call list complete
1406 (DW_AT_call_all_tail_calls or its superset
1407 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1408 DW_TAG_call_site's exist in such function. */
1409
1410 struct call_site *tail_call_list;
1411
1412 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1413 contains the method. */
1414
1415 struct type *self_type;
1416 };
1417
1418 /* struct call_site_parameter can be referenced in callees by several ways. */
1419
1420 enum call_site_parameter_kind
1421 {
1422 /* * Use field call_site_parameter.u.dwarf_reg. */
1423 CALL_SITE_PARAMETER_DWARF_REG,
1424
1425 /* * Use field call_site_parameter.u.fb_offset. */
1426 CALL_SITE_PARAMETER_FB_OFFSET,
1427
1428 /* * Use field call_site_parameter.u.param_offset. */
1429 CALL_SITE_PARAMETER_PARAM_OFFSET
1430 };
1431
1432 struct call_site_target
1433 {
1434 union field_location loc;
1435
1436 /* * Discriminant for union field_location. */
1437
1438 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1439 };
1440
1441 union call_site_parameter_u
1442 {
1443 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1444 as DWARF register number, for register passed
1445 parameters. */
1446
1447 int dwarf_reg;
1448
1449 /* * Offset from the callee's frame base, for stack passed
1450 parameters. This equals offset from the caller's stack
1451 pointer. */
1452
1453 CORE_ADDR fb_offset;
1454
1455 /* * Offset relative to the start of this PER_CU to
1456 DW_TAG_formal_parameter which is referenced by both
1457 caller and the callee. */
1458
1459 cu_offset param_cu_off;
1460 };
1461
1462 struct call_site_parameter
1463 {
1464 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1465
1466 union call_site_parameter_u u;
1467
1468 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1469
1470 const gdb_byte *value;
1471 size_t value_size;
1472
1473 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1474 It may be NULL if not provided by DWARF. */
1475
1476 const gdb_byte *data_value;
1477 size_t data_value_size;
1478 };
1479
1480 /* * A place where a function gets called from, represented by
1481 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1482
1483 struct call_site
1484 {
1485 /* * Address of the first instruction after this call. It must be
1486 the first field as we overload core_addr_hash and core_addr_eq
1487 for it. */
1488
1489 CORE_ADDR pc;
1490
1491 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1492
1493 struct call_site *tail_call_next;
1494
1495 /* * Describe DW_AT_call_target. Missing attribute uses
1496 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1497
1498 struct call_site_target target;
1499
1500 /* * Size of the PARAMETER array. */
1501
1502 unsigned parameter_count;
1503
1504 /* * CU of the function where the call is located. It gets used
1505 for DWARF blocks execution in the parameter array below. */
1506
1507 dwarf2_per_cu_data *per_cu;
1508
1509 /* objfile of the function where the call is located. */
1510
1511 dwarf2_per_objfile *per_objfile;
1512
1513 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1514
1515 struct call_site_parameter parameter[1];
1516 };
1517
1518 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1519 static structure. */
1520
1521 extern const struct cplus_struct_type cplus_struct_default;
1522
1523 extern void allocate_cplus_struct_type (struct type *);
1524
1525 #define INIT_CPLUS_SPECIFIC(type) \
1526 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1527 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1528 &cplus_struct_default)
1529
1530 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1531
1532 #define HAVE_CPLUS_STRUCT(type) \
1533 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1534 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1535
1536 #define INIT_NONE_SPECIFIC(type) \
1537 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1538 TYPE_MAIN_TYPE (type)->type_specific = {})
1539
1540 extern const struct gnat_aux_type gnat_aux_default;
1541
1542 extern void allocate_gnat_aux_type (struct type *);
1543
1544 #define INIT_GNAT_SPECIFIC(type) \
1545 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1546 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1547 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1548 /* * A macro that returns non-zero if the type-specific data should be
1549 read as "gnat-stuff". */
1550 #define HAVE_GNAT_AUX_INFO(type) \
1551 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1552
1553 /* * True if TYPE is known to be an Ada type of some kind. */
1554 #define ADA_TYPE_P(type) \
1555 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1556 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1557 && TYPE_FIXED_INSTANCE (type)))
1558
1559 #define INIT_FUNC_SPECIFIC(type) \
1560 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1561 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1562 TYPE_ZALLOC (type, \
1563 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1564
1565 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1566 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1567 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1568 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1569 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1570 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1571 #define TYPE_CHAIN(thistype) (thistype)->chain
1572 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1573 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1574 so you only have to call check_typedef once. Since allocate_value
1575 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1576 #define TYPE_LENGTH(thistype) (thistype)->length
1577
1578 /* * Return the alignment of the type in target addressable memory
1579 units, or 0 if no alignment was specified. */
1580 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1581
1582 /* * Return the alignment of the type in target addressable memory
1583 units, or 0 if no alignment was specified. */
1584 extern unsigned type_raw_align (struct type *);
1585
1586 /* * Return the alignment of the type in target addressable memory
1587 units. Return 0 if the alignment cannot be determined; but note
1588 that this makes an effort to compute the alignment even it it was
1589 not specified in the debug info. */
1590 extern unsigned type_align (struct type *);
1591
1592 /* * Set the alignment of the type. The alignment must be a power of
1593 2. Returns false if the given value does not fit in the available
1594 space in struct type. */
1595 extern bool set_type_align (struct type *, ULONGEST);
1596
1597 #define TYPE_LOW_BOUND(range_type) \
1598 ((range_type)->bounds ()->low.const_val ())
1599 #define TYPE_HIGH_BOUND(range_type) \
1600 ((range_type)->bounds ()->high.const_val ())
1601 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1602 (TYPE_LOW_BOUND_KIND(range_type) == PROP_UNDEFINED)
1603 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1604 (TYPE_HIGH_BOUND_KIND(range_type) == PROP_UNDEFINED)
1605 #define TYPE_HIGH_BOUND_KIND(range_type) \
1606 ((range_type)->bounds ()->high.kind ())
1607 #define TYPE_LOW_BOUND_KIND(range_type) \
1608 ((range_type)->bounds ()->low.kind ())
1609 #define TYPE_BIT_STRIDE(range_type) \
1610 ((range_type)->bounds ()->stride.const_val () \
1611 * ((range_type)->bounds ()->flag_is_byte_stride ? 8 : 1))
1612
1613 /* Property accessors for the type data location. */
1614 #define TYPE_DATA_LOCATION(thistype) \
1615 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1616 #define TYPE_DATA_LOCATION_BATON(thistype) \
1617 TYPE_DATA_LOCATION (thistype)->data.baton
1618 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1619 (TYPE_DATA_LOCATION (thistype)->const_val ())
1620 #define TYPE_DATA_LOCATION_KIND(thistype) \
1621 (TYPE_DATA_LOCATION (thistype)->kind ())
1622 #define TYPE_DYNAMIC_LENGTH(thistype) \
1623 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1624
1625 /* Property accessors for the type allocated/associated. */
1626 #define TYPE_ALLOCATED_PROP(thistype) \
1627 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1628 #define TYPE_ASSOCIATED_PROP(thistype) \
1629 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1630
1631 /* Attribute accessors for dynamic properties. */
1632 #define TYPE_DYN_PROP_BATON(dynprop) \
1633 dynprop->data.baton
1634 #define TYPE_DYN_PROP_ADDR(dynprop) \
1635 (dynprop->const_val ())
1636 #define TYPE_DYN_PROP_KIND(dynprop) \
1637 (dynprop->kind ())
1638
1639
1640 /* Accessors for struct range_bounds data attached to an array type's
1641 index type. */
1642
1643 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1644 TYPE_HIGH_BOUND_UNDEFINED((arraytype)->index_type ())
1645 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1646 TYPE_LOW_BOUND_UNDEFINED((arraytype)->index_type ())
1647
1648 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1649 (TYPE_HIGH_BOUND((arraytype)->index_type ()))
1650
1651 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1652 (TYPE_LOW_BOUND((arraytype)->index_type ()))
1653
1654 #define TYPE_ARRAY_BIT_STRIDE(arraytype) \
1655 (TYPE_BIT_STRIDE(((arraytype)->index_type ())))
1656
1657 /* C++ */
1658
1659 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1660 /* Do not call this, use TYPE_SELF_TYPE. */
1661 extern struct type *internal_type_self_type (struct type *);
1662 extern void set_type_self_type (struct type *, struct type *);
1663
1664 extern int internal_type_vptr_fieldno (struct type *);
1665 extern void set_type_vptr_fieldno (struct type *, int);
1666 extern struct type *internal_type_vptr_basetype (struct type *);
1667 extern void set_type_vptr_basetype (struct type *, struct type *);
1668 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1669 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1670
1671 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1672 #define TYPE_SPECIFIC_FIELD(thistype) \
1673 TYPE_MAIN_TYPE(thistype)->type_specific_field
1674 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1675 where we're trying to print an Ada array using the C language.
1676 In that case, there is no "cplus_stuff", but the C language assumes
1677 that there is. What we do, in that case, is pretend that there is
1678 an implicit one which is the default cplus stuff. */
1679 #define TYPE_CPLUS_SPECIFIC(thistype) \
1680 (!HAVE_CPLUS_STRUCT(thistype) \
1681 ? (struct cplus_struct_type*)&cplus_struct_default \
1682 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1683 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1684 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1685 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1686 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1687 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1688 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1689 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1690 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1691 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1692 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1693 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1694 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1695 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1696 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1697 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1698 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1699
1700 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1701 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1702 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1703
1704 #define FIELD_NAME(thisfld) ((thisfld).name)
1705 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1706 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1707 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1708 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1709 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1710 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1711 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1712 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1713 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1714 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1715 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1716 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1717 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1718 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1719 #define SET_FIELD_PHYSNAME(thisfld, name) \
1720 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1721 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1722 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1723 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1724 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1725 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1726 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1727 FIELD_DWARF_BLOCK (thisfld) = (addr))
1728 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1729 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1730
1731 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1732 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1733 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1734 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1735 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1736 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1737 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1738 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1739 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1740 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1741
1742 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1743 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1744 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1745 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1746 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1747 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1748 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1749 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1750 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1751 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1752 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1753 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1754 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1755 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1756 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1757 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1758 #define TYPE_FIELD_PRIVATE(thistype, n) \
1759 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1760 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1761 #define TYPE_FIELD_PROTECTED(thistype, n) \
1762 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1763 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1764 #define TYPE_FIELD_IGNORE(thistype, n) \
1765 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1766 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1767 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1768 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1769 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1770
1771 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1772 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1773 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1774 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1775 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1776
1777 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1778 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1779 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1780 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1781 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1782 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1783
1784 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1785 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1786 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1787 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1788 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1789 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1790 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1791 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1792 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1793 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1794 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1795 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1796 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1797 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1798 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1799 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1800 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1801
1802 /* Accessors for typedefs defined by a class. */
1803 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1804 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1805 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1806 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1807 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1808 TYPE_TYPEDEF_FIELD (thistype, n).name
1809 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1810 TYPE_TYPEDEF_FIELD (thistype, n).type
1811 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1812 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1813 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1814 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1815 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1816 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1817
1818 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1819 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1820 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1821 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1822 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1823 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1824 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1825 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1826 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1827 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1828 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1829 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1830 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1831 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1832
1833 #define TYPE_IS_OPAQUE(thistype) \
1834 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1835 || ((thistype)->code () == TYPE_CODE_UNION)) \
1836 && ((thistype)->num_fields () == 0) \
1837 && (!HAVE_CPLUS_STRUCT (thistype) \
1838 || TYPE_NFN_FIELDS (thistype) == 0) \
1839 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1840
1841 /* * A helper macro that returns the name of a type or "unnamed type"
1842 if the type has no name. */
1843
1844 #define TYPE_SAFE_NAME(type) \
1845 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1846
1847 /* * A helper macro that returns the name of an error type. If the
1848 type has a name, it is used; otherwise, a default is used. */
1849
1850 #define TYPE_ERROR_NAME(type) \
1851 (type->name () ? type->name () : _("<error type>"))
1852
1853 /* Given TYPE, return its floatformat. */
1854 const struct floatformat *floatformat_from_type (const struct type *type);
1855
1856 struct builtin_type
1857 {
1858 /* Integral types. */
1859
1860 /* Implicit size/sign (based on the architecture's ABI). */
1861 struct type *builtin_void;
1862 struct type *builtin_char;
1863 struct type *builtin_short;
1864 struct type *builtin_int;
1865 struct type *builtin_long;
1866 struct type *builtin_signed_char;
1867 struct type *builtin_unsigned_char;
1868 struct type *builtin_unsigned_short;
1869 struct type *builtin_unsigned_int;
1870 struct type *builtin_unsigned_long;
1871 struct type *builtin_half;
1872 struct type *builtin_float;
1873 struct type *builtin_double;
1874 struct type *builtin_long_double;
1875 struct type *builtin_complex;
1876 struct type *builtin_double_complex;
1877 struct type *builtin_string;
1878 struct type *builtin_bool;
1879 struct type *builtin_long_long;
1880 struct type *builtin_unsigned_long_long;
1881 struct type *builtin_decfloat;
1882 struct type *builtin_decdouble;
1883 struct type *builtin_declong;
1884
1885 /* "True" character types.
1886 We use these for the '/c' print format, because c_char is just a
1887 one-byte integral type, which languages less laid back than C
1888 will print as ... well, a one-byte integral type. */
1889 struct type *builtin_true_char;
1890 struct type *builtin_true_unsigned_char;
1891
1892 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1893 is for when an architecture needs to describe a register that has
1894 no size. */
1895 struct type *builtin_int0;
1896 struct type *builtin_int8;
1897 struct type *builtin_uint8;
1898 struct type *builtin_int16;
1899 struct type *builtin_uint16;
1900 struct type *builtin_int24;
1901 struct type *builtin_uint24;
1902 struct type *builtin_int32;
1903 struct type *builtin_uint32;
1904 struct type *builtin_int64;
1905 struct type *builtin_uint64;
1906 struct type *builtin_int128;
1907 struct type *builtin_uint128;
1908
1909 /* Wide character types. */
1910 struct type *builtin_char16;
1911 struct type *builtin_char32;
1912 struct type *builtin_wchar;
1913
1914 /* Pointer types. */
1915
1916 /* * `pointer to data' type. Some target platforms use an implicitly
1917 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1918 struct type *builtin_data_ptr;
1919
1920 /* * `pointer to function (returning void)' type. Harvard
1921 architectures mean that ABI function and code pointers are not
1922 interconvertible. Similarly, since ANSI, C standards have
1923 explicitly said that pointers to functions and pointers to data
1924 are not interconvertible --- that is, you can't cast a function
1925 pointer to void * and back, and expect to get the same value.
1926 However, all function pointer types are interconvertible, so void
1927 (*) () can server as a generic function pointer. */
1928
1929 struct type *builtin_func_ptr;
1930
1931 /* * `function returning pointer to function (returning void)' type.
1932 The final void return type is not significant for it. */
1933
1934 struct type *builtin_func_func;
1935
1936 /* Special-purpose types. */
1937
1938 /* * This type is used to represent a GDB internal function. */
1939
1940 struct type *internal_fn;
1941
1942 /* * This type is used to represent an xmethod. */
1943 struct type *xmethod;
1944 };
1945
1946 /* * Return the type table for the specified architecture. */
1947
1948 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1949
1950 /* * Per-objfile types used by symbol readers. */
1951
1952 struct objfile_type
1953 {
1954 /* Basic types based on the objfile architecture. */
1955 struct type *builtin_void;
1956 struct type *builtin_char;
1957 struct type *builtin_short;
1958 struct type *builtin_int;
1959 struct type *builtin_long;
1960 struct type *builtin_long_long;
1961 struct type *builtin_signed_char;
1962 struct type *builtin_unsigned_char;
1963 struct type *builtin_unsigned_short;
1964 struct type *builtin_unsigned_int;
1965 struct type *builtin_unsigned_long;
1966 struct type *builtin_unsigned_long_long;
1967 struct type *builtin_half;
1968 struct type *builtin_float;
1969 struct type *builtin_double;
1970 struct type *builtin_long_double;
1971
1972 /* * This type is used to represent symbol addresses. */
1973 struct type *builtin_core_addr;
1974
1975 /* * This type represents a type that was unrecognized in symbol
1976 read-in. */
1977 struct type *builtin_error;
1978
1979 /* * Types used for symbols with no debug information. */
1980 struct type *nodebug_text_symbol;
1981 struct type *nodebug_text_gnu_ifunc_symbol;
1982 struct type *nodebug_got_plt_symbol;
1983 struct type *nodebug_data_symbol;
1984 struct type *nodebug_unknown_symbol;
1985 struct type *nodebug_tls_symbol;
1986 };
1987
1988 /* * Return the type table for the specified objfile. */
1989
1990 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1991
1992 /* Explicit floating-point formats. See "floatformat.h". */
1993 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1994 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1995 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1996 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1997 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1998 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1999 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2000 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2001 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2002 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2003 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2004 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2005
2006
2007 /* Allocate space for storing data associated with a particular
2008 type. We ensure that the space is allocated using the same
2009 mechanism that was used to allocate the space for the type
2010 structure itself. I.e. if the type is on an objfile's
2011 objfile_obstack, then the space for data associated with that type
2012 will also be allocated on the objfile_obstack. If the type is
2013 associated with a gdbarch, then the space for data associated with that
2014 type will also be allocated on the gdbarch_obstack.
2015
2016 If a type is not associated with neither an objfile or a gdbarch then
2017 you should not use this macro to allocate space for data, instead you
2018 should call xmalloc directly, and ensure the memory is correctly freed
2019 when it is no longer needed. */
2020
2021 #define TYPE_ALLOC(t,size) \
2022 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2023 ? &TYPE_OBJFILE (t)->objfile_obstack \
2024 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2025 size))
2026
2027
2028 /* See comment on TYPE_ALLOC. */
2029
2030 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2031
2032 /* Use alloc_type to allocate a type owned by an objfile. Use
2033 alloc_type_arch to allocate a type owned by an architecture. Use
2034 alloc_type_copy to allocate a type with the same owner as a
2035 pre-existing template type, no matter whether objfile or
2036 gdbarch. */
2037 extern struct type *alloc_type (struct objfile *);
2038 extern struct type *alloc_type_arch (struct gdbarch *);
2039 extern struct type *alloc_type_copy (const struct type *);
2040
2041 /* * Return the type's architecture. For types owned by an
2042 architecture, that architecture is returned. For types owned by an
2043 objfile, that objfile's architecture is returned. */
2044
2045 extern struct gdbarch *get_type_arch (const struct type *);
2046
2047 /* * This returns the target type (or NULL) of TYPE, also skipping
2048 past typedefs. */
2049
2050 extern struct type *get_target_type (struct type *type);
2051
2052 /* Return the equivalent of TYPE_LENGTH, but in number of target
2053 addressable memory units of the associated gdbarch instead of bytes. */
2054
2055 extern unsigned int type_length_units (struct type *type);
2056
2057 /* * Helper function to construct objfile-owned types. */
2058
2059 extern struct type *init_type (struct objfile *, enum type_code, int,
2060 const char *);
2061 extern struct type *init_integer_type (struct objfile *, int, int,
2062 const char *);
2063 extern struct type *init_character_type (struct objfile *, int, int,
2064 const char *);
2065 extern struct type *init_boolean_type (struct objfile *, int, int,
2066 const char *);
2067 extern struct type *init_float_type (struct objfile *, int, const char *,
2068 const struct floatformat **,
2069 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2070 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2071 extern struct type *init_complex_type (const char *, struct type *);
2072 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2073 struct type *);
2074
2075 /* Helper functions to construct architecture-owned types. */
2076 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2077 const char *);
2078 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2079 const char *);
2080 extern struct type *arch_character_type (struct gdbarch *, int, int,
2081 const char *);
2082 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2083 const char *);
2084 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2085 const struct floatformat **);
2086 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2087 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2088 struct type *);
2089
2090 /* Helper functions to construct a struct or record type. An
2091 initially empty type is created using arch_composite_type().
2092 Fields are then added using append_composite_type_field*(). A union
2093 type has its size set to the largest field. A struct type has each
2094 field packed against the previous. */
2095
2096 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2097 const char *name, enum type_code code);
2098 extern void append_composite_type_field (struct type *t, const char *name,
2099 struct type *field);
2100 extern void append_composite_type_field_aligned (struct type *t,
2101 const char *name,
2102 struct type *field,
2103 int alignment);
2104 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2105 struct type *field);
2106
2107 /* Helper functions to construct a bit flags type. An initially empty
2108 type is created using arch_flag_type(). Flags are then added using
2109 append_flag_type_field() and append_flag_type_flag(). */
2110 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2111 const char *name, int bit);
2112 extern void append_flags_type_field (struct type *type,
2113 int start_bitpos, int nr_bits,
2114 struct type *field_type, const char *name);
2115 extern void append_flags_type_flag (struct type *type, int bitpos,
2116 const char *name);
2117
2118 extern void make_vector_type (struct type *array_type);
2119 extern struct type *init_vector_type (struct type *elt_type, int n);
2120
2121 extern struct type *lookup_reference_type (struct type *, enum type_code);
2122 extern struct type *lookup_lvalue_reference_type (struct type *);
2123 extern struct type *lookup_rvalue_reference_type (struct type *);
2124
2125
2126 extern struct type *make_reference_type (struct type *, struct type **,
2127 enum type_code);
2128
2129 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2130
2131 extern struct type *make_restrict_type (struct type *);
2132
2133 extern struct type *make_unqualified_type (struct type *);
2134
2135 extern struct type *make_atomic_type (struct type *);
2136
2137 extern void replace_type (struct type *, struct type *);
2138
2139 extern int address_space_name_to_int (struct gdbarch *, const char *);
2140
2141 extern const char *address_space_int_to_name (struct gdbarch *, int);
2142
2143 extern struct type *make_type_with_address_space (struct type *type,
2144 int space_identifier);
2145
2146 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2147
2148 extern struct type *lookup_methodptr_type (struct type *);
2149
2150 extern void smash_to_method_type (struct type *type, struct type *self_type,
2151 struct type *to_type, struct field *args,
2152 int nargs, int varargs);
2153
2154 extern void smash_to_memberptr_type (struct type *, struct type *,
2155 struct type *);
2156
2157 extern void smash_to_methodptr_type (struct type *, struct type *);
2158
2159 extern struct type *allocate_stub_method (struct type *);
2160
2161 extern const char *type_name_or_error (struct type *type);
2162
2163 struct struct_elt
2164 {
2165 /* The field of the element, or NULL if no element was found. */
2166 struct field *field;
2167
2168 /* The bit offset of the element in the parent structure. */
2169 LONGEST offset;
2170 };
2171
2172 /* Given a type TYPE, lookup the field and offset of the component named
2173 NAME.
2174
2175 TYPE can be either a struct or union, or a pointer or reference to
2176 a struct or union. If it is a pointer or reference, its target
2177 type is automatically used. Thus '.' and '->' are interchangable,
2178 as specified for the definitions of the expression element types
2179 STRUCTOP_STRUCT and STRUCTOP_PTR.
2180
2181 If NOERR is nonzero, the returned structure will have field set to
2182 NULL if there is no component named NAME.
2183
2184 If the component NAME is a field in an anonymous substructure of
2185 TYPE, the returned offset is a "global" offset relative to TYPE
2186 rather than an offset within the substructure. */
2187
2188 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2189
2190 /* Given a type TYPE, lookup the type of the component named NAME.
2191
2192 TYPE can be either a struct or union, or a pointer or reference to
2193 a struct or union. If it is a pointer or reference, its target
2194 type is automatically used. Thus '.' and '->' are interchangable,
2195 as specified for the definitions of the expression element types
2196 STRUCTOP_STRUCT and STRUCTOP_PTR.
2197
2198 If NOERR is nonzero, return NULL if there is no component named
2199 NAME. */
2200
2201 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2202
2203 extern struct type *make_pointer_type (struct type *, struct type **);
2204
2205 extern struct type *lookup_pointer_type (struct type *);
2206
2207 extern struct type *make_function_type (struct type *, struct type **);
2208
2209 extern struct type *lookup_function_type (struct type *);
2210
2211 extern struct type *lookup_function_type_with_arguments (struct type *,
2212 int,
2213 struct type **);
2214
2215 extern struct type *create_static_range_type (struct type *, struct type *,
2216 LONGEST, LONGEST);
2217
2218
2219 extern struct type *create_array_type_with_stride
2220 (struct type *, struct type *, struct type *,
2221 struct dynamic_prop *, unsigned int);
2222
2223 extern struct type *create_range_type (struct type *, struct type *,
2224 const struct dynamic_prop *,
2225 const struct dynamic_prop *,
2226 LONGEST);
2227
2228 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2229 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2230 stride. */
2231
2232 extern struct type * create_range_type_with_stride
2233 (struct type *result_type, struct type *index_type,
2234 const struct dynamic_prop *low_bound,
2235 const struct dynamic_prop *high_bound, LONGEST bias,
2236 const struct dynamic_prop *stride, bool byte_stride_p);
2237
2238 extern struct type *create_array_type (struct type *, struct type *,
2239 struct type *);
2240
2241 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2242
2243 extern struct type *create_string_type (struct type *, struct type *,
2244 struct type *);
2245 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2246
2247 extern struct type *create_set_type (struct type *, struct type *);
2248
2249 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2250 const char *);
2251
2252 extern struct type *lookup_signed_typename (const struct language_defn *,
2253 const char *);
2254
2255 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2256
2257 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2258
2259 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2260 ADDR specifies the location of the variable the type is bound to.
2261 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2262 static properties is returned. */
2263 extern struct type *resolve_dynamic_type
2264 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2265 CORE_ADDR addr);
2266
2267 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2268 extern int is_dynamic_type (struct type *type);
2269
2270 extern struct type *check_typedef (struct type *);
2271
2272 extern void check_stub_method_group (struct type *, int);
2273
2274 extern char *gdb_mangle_name (struct type *, int, int);
2275
2276 extern struct type *lookup_typename (const struct language_defn *,
2277 const char *, const struct block *, int);
2278
2279 extern struct type *lookup_template_type (const char *, struct type *,
2280 const struct block *);
2281
2282 extern int get_vptr_fieldno (struct type *, struct type **);
2283
2284 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2285
2286 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2287 LONGEST *high_bound);
2288
2289 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2290
2291 extern int class_types_same_p (const struct type *, const struct type *);
2292
2293 extern int is_ancestor (struct type *, struct type *);
2294
2295 extern int is_public_ancestor (struct type *, struct type *);
2296
2297 extern int is_unique_ancestor (struct type *, struct value *);
2298
2299 /* Overload resolution */
2300
2301 /* * Badness if parameter list length doesn't match arg list length. */
2302 extern const struct rank LENGTH_MISMATCH_BADNESS;
2303
2304 /* * Dummy badness value for nonexistent parameter positions. */
2305 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2306 /* * Badness if no conversion among types. */
2307 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2308
2309 /* * Badness of an exact match. */
2310 extern const struct rank EXACT_MATCH_BADNESS;
2311
2312 /* * Badness of integral promotion. */
2313 extern const struct rank INTEGER_PROMOTION_BADNESS;
2314 /* * Badness of floating promotion. */
2315 extern const struct rank FLOAT_PROMOTION_BADNESS;
2316 /* * Badness of converting a derived class pointer
2317 to a base class pointer. */
2318 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2319 /* * Badness of integral conversion. */
2320 extern const struct rank INTEGER_CONVERSION_BADNESS;
2321 /* * Badness of floating conversion. */
2322 extern const struct rank FLOAT_CONVERSION_BADNESS;
2323 /* * Badness of integer<->floating conversions. */
2324 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2325 /* * Badness of conversion of pointer to void pointer. */
2326 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2327 /* * Badness of conversion to boolean. */
2328 extern const struct rank BOOL_CONVERSION_BADNESS;
2329 /* * Badness of converting derived to base class. */
2330 extern const struct rank BASE_CONVERSION_BADNESS;
2331 /* * Badness of converting from non-reference to reference. Subrank
2332 is the type of reference conversion being done. */
2333 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2334 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2335 /* * Conversion to rvalue reference. */
2336 #define REFERENCE_CONVERSION_RVALUE 1
2337 /* * Conversion to const lvalue reference. */
2338 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2339
2340 /* * Badness of converting integer 0 to NULL pointer. */
2341 extern const struct rank NULL_POINTER_CONVERSION;
2342 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2343 being done. */
2344 extern const struct rank CV_CONVERSION_BADNESS;
2345 #define CV_CONVERSION_CONST 1
2346 #define CV_CONVERSION_VOLATILE 2
2347
2348 /* Non-standard conversions allowed by the debugger */
2349
2350 /* * Converting a pointer to an int is usually OK. */
2351 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2352
2353 /* * Badness of converting a (non-zero) integer constant
2354 to a pointer. */
2355 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2356
2357 extern struct rank sum_ranks (struct rank a, struct rank b);
2358 extern int compare_ranks (struct rank a, struct rank b);
2359
2360 extern int compare_badness (const badness_vector &,
2361 const badness_vector &);
2362
2363 extern badness_vector rank_function (gdb::array_view<type *> parms,
2364 gdb::array_view<value *> args);
2365
2366 extern struct rank rank_one_type (struct type *, struct type *,
2367 struct value *);
2368
2369 extern void recursive_dump_type (struct type *, int);
2370
2371 extern int field_is_static (struct field *);
2372
2373 /* printcmd.c */
2374
2375 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2376 const struct value_print_options *,
2377 int, struct ui_file *);
2378
2379 extern int can_dereference (struct type *);
2380
2381 extern int is_integral_type (struct type *);
2382
2383 extern int is_floating_type (struct type *);
2384
2385 extern int is_scalar_type (struct type *type);
2386
2387 extern int is_scalar_type_recursive (struct type *);
2388
2389 extern int class_or_union_p (const struct type *);
2390
2391 extern void maintenance_print_type (const char *, int);
2392
2393 extern htab_t create_copied_types_hash (struct objfile *objfile);
2394
2395 extern struct type *copy_type_recursive (struct objfile *objfile,
2396 struct type *type,
2397 htab_t copied_types);
2398
2399 extern struct type *copy_type (const struct type *type);
2400
2401 extern bool types_equal (struct type *, struct type *);
2402
2403 extern bool types_deeply_equal (struct type *, struct type *);
2404
2405 extern int type_not_allocated (const struct type *type);
2406
2407 extern int type_not_associated (const struct type *type);
2408
2409 /* * When the type includes explicit byte ordering, return that.
2410 Otherwise, the byte ordering from gdbarch_byte_order for
2411 get_type_arch is returned. */
2412
2413 extern enum bfd_endian type_byte_order (const struct type *type);
2414
2415 /* A flag to enable printing of debugging information of C++
2416 overloading. */
2417
2418 extern unsigned int overload_debug;
2419
2420 #endif /* GDBTYPES_H */