]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.h
Prefer existing data when evaluating DWARF expression
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61
62 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
63 are already DWARF-specific. */
64
65 /* * Offset relative to the start of its containing CU (compilation
66 unit). */
67 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
68
69 /* * Offset relative to the start of its .debug_info or .debug_types
70 section. */
71 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
72
73 static inline char *
74 sect_offset_str (sect_offset offset)
75 {
76 return hex_string (to_underlying (offset));
77 }
78
79 /* Some macros for char-based bitfields. */
80
81 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
82 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
83 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
84 #define B_TYPE unsigned char
85 #define B_BYTES(x) ( 1 + ((x)>>3) )
86 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
87
88 /* * Different kinds of data types are distinguished by the `code'
89 field. */
90
91 enum type_code
92 {
93 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
94 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
95 TYPE_CODE_PTR, /**< Pointer type */
96
97 /* * Array type with lower & upper bounds.
98
99 Regardless of the language, GDB represents multidimensional
100 array types the way C does: as arrays of arrays. So an
101 instance of a GDB array type T can always be seen as a series
102 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
103 memory.
104
105 Row-major languages like C lay out multi-dimensional arrays so
106 that incrementing the rightmost index in a subscripting
107 expression results in the smallest change in the address of the
108 element referred to. Column-major languages like Fortran lay
109 them out so that incrementing the leftmost index results in the
110 smallest change.
111
112 This means that, in column-major languages, working our way
113 from type to target type corresponds to working through indices
114 from right to left, not left to right. */
115 TYPE_CODE_ARRAY,
116
117 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
118 TYPE_CODE_UNION, /**< C union or Pascal variant part */
119 TYPE_CODE_ENUM, /**< Enumeration type */
120 TYPE_CODE_FLAGS, /**< Bit flags type */
121 TYPE_CODE_FUNC, /**< Function type */
122 TYPE_CODE_INT, /**< Integer type */
123
124 /* * Floating type. This is *NOT* a complex type. */
125 TYPE_CODE_FLT,
126
127 /* * Void type. The length field specifies the length (probably
128 always one) which is used in pointer arithmetic involving
129 pointers to this type, but actually dereferencing such a
130 pointer is invalid; a void type has no length and no actual
131 representation in memory or registers. A pointer to a void
132 type is a generic pointer. */
133 TYPE_CODE_VOID,
134
135 TYPE_CODE_SET, /**< Pascal sets */
136 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
137
138 /* * A string type which is like an array of character but prints
139 differently. It does not contain a length field as Pascal
140 strings (for many Pascals, anyway) do; if we want to deal with
141 such strings, we should use a new type code. */
142 TYPE_CODE_STRING,
143
144 /* * Unknown type. The length field is valid if we were able to
145 deduce that much about the type, or 0 if we don't even know
146 that. */
147 TYPE_CODE_ERROR,
148
149 /* C++ */
150 TYPE_CODE_METHOD, /**< Method type */
151
152 /* * Pointer-to-member-function type. This describes how to access a
153 particular member function of a class (possibly a virtual
154 member function). The representation may vary between different
155 C++ ABIs. */
156 TYPE_CODE_METHODPTR,
157
158 /* * Pointer-to-member type. This is the offset within a class to
159 some particular data member. The only currently supported
160 representation uses an unbiased offset, with -1 representing
161 NULL; this is used by the Itanium C++ ABI (used by GCC on all
162 platforms). */
163 TYPE_CODE_MEMBERPTR,
164
165 TYPE_CODE_REF, /**< C++ Reference types */
166
167 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
168
169 TYPE_CODE_CHAR, /**< *real* character type */
170
171 /* * Boolean type. 0 is false, 1 is true, and other values are
172 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
173 TYPE_CODE_BOOL,
174
175 /* Fortran */
176 TYPE_CODE_COMPLEX, /**< Complex float */
177
178 TYPE_CODE_TYPEDEF,
179
180 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
181
182 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
183
184 TYPE_CODE_MODULE, /**< Fortran module. */
185
186 /* * Internal function type. */
187 TYPE_CODE_INTERNAL_FUNCTION,
188
189 /* * Methods implemented in extension languages. */
190 TYPE_CODE_XMETHOD
191 };
192
193 /* * Some bits for the type's instance_flags word. See the macros
194 below for documentation on each bit. */
195
196 enum type_instance_flag_value : unsigned
197 {
198 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
199 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
200 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
201 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
202 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
203 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
204 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
205 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
206 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
207 };
208
209 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
210
211 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
212 the type is signed (unless TYPE_NOSIGN (below) is set). */
213
214 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
215
216 /* * No sign for this type. In C++, "char", "signed char", and
217 "unsigned char" are distinct types; so we need an extra flag to
218 indicate the absence of a sign! */
219
220 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
221
222 /* * A compiler may supply dwarf instrumentation
223 that indicates the desired endian interpretation of the variable
224 differs from the native endian representation. */
225
226 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
227
228 /* * This appears in a type's flags word if it is a stub type (e.g.,
229 if someone referenced a type that wasn't defined in a source file
230 via (struct sir_not_appearing_in_this_film *)). */
231
232 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
233
234 /* * The target type of this type is a stub type, and this type needs
235 to be updated if it gets un-stubbed in check_typedef. Used for
236 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
237 based on the TYPE_LENGTH of the target type. Also, set for
238 TYPE_CODE_TYPEDEF. */
239
240 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
241
242 /* * This is a function type which appears to have a prototype. We
243 need this for function calls in order to tell us if it's necessary
244 to coerce the args, or to just do the standard conversions. This
245 is used with a short field. */
246
247 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
248
249 /* * This flag is used to indicate that processing for this type
250 is incomplete.
251
252 (Mostly intended for HP platforms, where class methods, for
253 instance, can be encountered before their classes in the debug
254 info; the incomplete type has to be marked so that the class and
255 the method can be assigned correct types.) */
256
257 #define TYPE_INCOMPLETE(t) (TYPE_MAIN_TYPE (t)->flag_incomplete)
258
259 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
260 to functions. */
261
262 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
263
264 /* * Identify a vector type. Gcc is handling this by adding an extra
265 attribute to the array type. We slurp that in as a new flag of a
266 type. This is used only in dwarf2read.c. */
267 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
268
269 /* * The debugging formats (especially STABS) do not contain enough
270 information to represent all Ada types---especially those whose
271 size depends on dynamic quantities. Therefore, the GNAT Ada
272 compiler includes extra information in the form of additional type
273 definitions connected by naming conventions. This flag indicates
274 that the type is an ordinary (unencoded) GDB type that has been
275 created from the necessary run-time information, and does not need
276 further interpretation. Optionally marks ordinary, fixed-size GDB
277 type. */
278
279 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
280
281 /* * This debug target supports TYPE_STUB(t). In the unsupported case
282 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
283 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
284 guessed the TYPE_STUB(t) value (see dwarfread.c). */
285
286 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
287
288 /* * Not textual. By default, GDB treats all single byte integers as
289 characters (or elements of strings) unless this flag is set. */
290
291 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
292
293 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
294 address is returned by this function call. TYPE_TARGET_TYPE
295 determines the final returned function type to be presented to
296 user. */
297
298 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
299
300 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
301 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
302 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
303
304 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
305 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
306 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
307
308 /* * True if this type was declared using the "class" keyword. This is
309 only valid for C++ structure and enum types. If false, a structure
310 was declared as a "struct"; if true it was declared "class". For
311 enum types, this is true when "enum class" or "enum struct" was
312 used to declare the type.. */
313
314 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
315
316 /* * True if this type is a "flag" enum. A flag enum is one where all
317 the values are pairwise disjoint when "and"ed together. This
318 affects how enum values are printed. */
319
320 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
321
322 /* * True if this type is a discriminated union type. Only valid for
323 TYPE_CODE_UNION. A discriminated union stores a reference to the
324 discriminant field along with the discriminator values in a dynamic
325 property. */
326
327 #define TYPE_FLAG_DISCRIMINATED_UNION(t) \
328 (TYPE_MAIN_TYPE (t)->flag_discriminated_union)
329
330 /* * Constant type. If this is set, the corresponding type has a
331 const modifier. */
332
333 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
334
335 /* * Volatile type. If this is set, the corresponding type has a
336 volatile modifier. */
337
338 #define TYPE_VOLATILE(t) \
339 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
340
341 /* * Restrict type. If this is set, the corresponding type has a
342 restrict modifier. */
343
344 #define TYPE_RESTRICT(t) \
345 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
346
347 /* * Atomic type. If this is set, the corresponding type has an
348 _Atomic modifier. */
349
350 #define TYPE_ATOMIC(t) \
351 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
352
353 /* * True if this type represents either an lvalue or lvalue reference type. */
354
355 #define TYPE_IS_REFERENCE(t) \
356 (TYPE_CODE (t) == TYPE_CODE_REF || TYPE_CODE (t) == TYPE_CODE_RVALUE_REF)
357
358 /* * True if this type is allocatable. */
359 #define TYPE_IS_ALLOCATABLE(t) \
360 (get_dyn_prop (DYN_PROP_ALLOCATED, t) != NULL)
361
362 /* * True if this type has variant parts. */
363 #define TYPE_HAS_VARIANT_PARTS(t) \
364 (get_dyn_prop (DYN_PROP_VARIANT_PARTS, t) != nullptr)
365
366 /* * Instruction-space delimited type. This is for Harvard architectures
367 which have separate instruction and data address spaces (and perhaps
368 others).
369
370 GDB usually defines a flat address space that is a superset of the
371 architecture's two (or more) address spaces, but this is an extension
372 of the architecture's model.
373
374 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
375 resides in instruction memory, even if its address (in the extended
376 flat address space) does not reflect this.
377
378 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
379 corresponding type resides in the data memory space, even if
380 this is not indicated by its (flat address space) address.
381
382 If neither flag is set, the default space for functions / methods
383 is instruction space, and for data objects is data memory. */
384
385 #define TYPE_CODE_SPACE(t) \
386 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
387
388 #define TYPE_DATA_SPACE(t) \
389 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
390
391 /* * Address class flags. Some environments provide for pointers
392 whose size is different from that of a normal pointer or address
393 types where the bits are interpreted differently than normal
394 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
395 target specific ways to represent these different types of address
396 classes. */
397
398 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
399 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
400 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
401 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
402 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
403 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
404 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
405 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
406
407 /* * Information about a single discriminant. */
408
409 struct discriminant_range
410 {
411 /* * The range of values for the variant. This is an inclusive
412 range. */
413 ULONGEST low, high;
414
415 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
416 is true if this should be an unsigned comparison; false for
417 signed. */
418 bool contains (ULONGEST value, bool is_unsigned) const
419 {
420 if (is_unsigned)
421 return value >= low && value <= high;
422 LONGEST valuel = (LONGEST) value;
423 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
424 }
425 };
426
427 struct variant_part;
428
429 /* * A single variant. A variant has a list of discriminant values.
430 When the discriminator matches one of these, the variant is
431 enabled. Each variant controls zero or more fields; and may also
432 control other variant parts as well. This struct corresponds to
433 DW_TAG_variant in DWARF. */
434
435 struct variant : allocate_on_obstack
436 {
437 /* * The discriminant ranges for this variant. */
438 gdb::array_view<discriminant_range> discriminants;
439
440 /* * The fields controlled by this variant. This is inclusive on
441 the low end and exclusive on the high end. A variant may not
442 control any fields, in which case the two values will be equal.
443 These are indexes into the type's array of fields. */
444 int first_field;
445 int last_field;
446
447 /* * Variant parts controlled by this variant. */
448 gdb::array_view<variant_part> parts;
449
450 /* * Return true if this is the default variant. The default
451 variant can be recognized because it has no associated
452 discriminants. */
453 bool is_default () const
454 {
455 return discriminants.empty ();
456 }
457
458 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
459 if this should be an unsigned comparison; false for signed. */
460 bool matches (ULONGEST value, bool is_unsigned) const;
461 };
462
463 /* * A variant part. Each variant part has an optional discriminant
464 and holds an array of variants. This struct corresponds to
465 DW_TAG_variant_part in DWARF. */
466
467 struct variant_part : allocate_on_obstack
468 {
469 /* * The index of the discriminant field in the outer type. This is
470 an index into the type's array of fields. If this is -1, there
471 is no discriminant, and only the default variant can be
472 considered to be selected. */
473 int discriminant_index;
474
475 /* * True if this discriminant is unsigned; false if signed. This
476 comes from the type of the discriminant. */
477 bool is_unsigned;
478
479 /* * The variants that are controlled by this variant part. Note
480 that these will always be sorted by field number. */
481 gdb::array_view<variant> variants;
482 };
483
484
485 /* * Information needed for a discriminated union. A discriminated
486 union is handled somewhat differently from an ordinary union.
487
488 One field is designated as the discriminant. Only one other field
489 is active at a time; which one depends on the value of the
490 discriminant and the data in this structure.
491
492 Additionally, it is possible to have a univariant discriminated
493 union. In this case, the union has just a single field, which is
494 assumed to be the only active variant -- in this case no
495 discriminant is provided. */
496
497 struct discriminant_info
498 {
499 /* * The index of the discriminant field. If -1, then this union
500 must have just a single field. */
501
502 int discriminant_index;
503
504 /* * The index of the default branch of the union. If -1, then
505 there is no default branch. */
506
507 int default_index;
508
509 /* * The discriminant values corresponding to each branch. This has
510 a number of entries equal to the number of fields in this union.
511 If discriminant_index is not -1, then that entry in this array is
512 not used. If default_index is not -1, then that entry in this
513 array is not used. */
514
515 ULONGEST discriminants[1];
516 };
517
518 enum dynamic_prop_kind
519 {
520 PROP_UNDEFINED, /* Not defined. */
521 PROP_CONST, /* Constant. */
522 PROP_ADDR_OFFSET, /* Address offset. */
523 PROP_LOCEXPR, /* Location expression. */
524 PROP_LOCLIST, /* Location list. */
525 PROP_VARIANT_PARTS, /* Variant parts. */
526 PROP_TYPE, /* Type. */
527 };
528
529 union dynamic_prop_data
530 {
531 /* Storage for constant property. */
532
533 LONGEST const_val;
534
535 /* Storage for dynamic property. */
536
537 void *baton;
538
539 /* Storage of variant parts for a type. A type with variant parts
540 has all its fields "linearized" -- stored in a single field
541 array, just as if they had all been declared that way. The
542 variant parts are attached via a dynamic property, and then are
543 used to control which fields end up in the final type during
544 dynamic type resolution. */
545
546 const gdb::array_view<variant_part> *variant_parts;
547
548 /* Once a variant type is resolved, we may want to be able to go
549 from the resolved type to the original type. In this case we
550 rewrite the property's kind and set this field. */
551
552 struct type *original_type;
553 };
554
555 /* * Used to store a dynamic property. */
556
557 struct dynamic_prop
558 {
559 /* Determine which field of the union dynamic_prop.data is used. */
560 enum dynamic_prop_kind kind;
561
562 /* Storage for dynamic or static value. */
563 union dynamic_prop_data data;
564 };
565
566 /* Compare two dynamic_prop objects for equality. dynamic_prop
567 instances are equal iff they have the same type and storage. */
568 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
569
570 /* Compare two dynamic_prop objects for inequality. */
571 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
572 {
573 return !(l == r);
574 }
575
576 /* * Define a type's dynamic property node kind. */
577 enum dynamic_prop_node_kind
578 {
579 /* A property providing a type's data location.
580 Evaluating this field yields to the location of an object's data. */
581 DYN_PROP_DATA_LOCATION,
582
583 /* A property representing DW_AT_allocated. The presence of this attribute
584 indicates that the object of the type can be allocated/deallocated. */
585 DYN_PROP_ALLOCATED,
586
587 /* A property representing DW_AT_allocated. The presence of this attribute
588 indicated that the object of the type can be associated. */
589 DYN_PROP_ASSOCIATED,
590
591 /* A property providing an array's byte stride. */
592 DYN_PROP_BYTE_STRIDE,
593
594 /* A property holding information about a discriminated union. */
595 DYN_PROP_DISCRIMINATED,
596
597 /* A property holding variant parts. */
598 DYN_PROP_VARIANT_PARTS,
599 };
600
601 /* * List for dynamic type attributes. */
602 struct dynamic_prop_list
603 {
604 /* The kind of dynamic prop in this node. */
605 enum dynamic_prop_node_kind prop_kind;
606
607 /* The dynamic property itself. */
608 struct dynamic_prop prop;
609
610 /* A pointer to the next dynamic property. */
611 struct dynamic_prop_list *next;
612 };
613
614 /* * Determine which field of the union main_type.fields[x].loc is
615 used. */
616
617 enum field_loc_kind
618 {
619 FIELD_LOC_KIND_BITPOS, /**< bitpos */
620 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
621 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
622 FIELD_LOC_KIND_PHYSNAME, /**< physname */
623 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
624 };
625
626 /* * A discriminant to determine which field in the
627 main_type.type_specific union is being used, if any.
628
629 For types such as TYPE_CODE_FLT, the use of this
630 discriminant is really redundant, as we know from the type code
631 which field is going to be used. As such, it would be possible to
632 reduce the size of this enum in order to save a bit or two for
633 other fields of struct main_type. But, since we still have extra
634 room , and for the sake of clarity and consistency, we treat all fields
635 of the union the same way. */
636
637 enum type_specific_kind
638 {
639 TYPE_SPECIFIC_NONE,
640 TYPE_SPECIFIC_CPLUS_STUFF,
641 TYPE_SPECIFIC_GNAT_STUFF,
642 TYPE_SPECIFIC_FLOATFORMAT,
643 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
644 TYPE_SPECIFIC_FUNC,
645 TYPE_SPECIFIC_SELF_TYPE
646 };
647
648 union type_owner
649 {
650 struct objfile *objfile;
651 struct gdbarch *gdbarch;
652 };
653
654 union field_location
655 {
656 /* * Position of this field, counting in bits from start of
657 containing structure. For big-endian targets, it is the bit
658 offset to the MSB. For little-endian targets, it is the bit
659 offset to the LSB. */
660
661 LONGEST bitpos;
662
663 /* * Enum value. */
664 LONGEST enumval;
665
666 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
667 physaddr is the location (in the target) of the static
668 field. Otherwise, physname is the mangled label of the
669 static field. */
670
671 CORE_ADDR physaddr;
672 const char *physname;
673
674 /* * The field location can be computed by evaluating the
675 following DWARF block. Its DATA is allocated on
676 objfile_obstack - no CU load is needed to access it. */
677
678 struct dwarf2_locexpr_baton *dwarf_block;
679 };
680
681 struct field
682 {
683 union field_location loc;
684
685 /* * For a function or member type, this is 1 if the argument is
686 marked artificial. Artificial arguments should not be shown
687 to the user. For TYPE_CODE_RANGE it is set if the specific
688 bound is not defined. */
689
690 unsigned int artificial : 1;
691
692 /* * Discriminant for union field_location. */
693
694 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
695
696 /* * Size of this field, in bits, or zero if not packed.
697 If non-zero in an array type, indicates the element size in
698 bits (used only in Ada at the moment).
699 For an unpacked field, the field's type's length
700 says how many bytes the field occupies. */
701
702 unsigned int bitsize : 28;
703
704 /* * In a struct or union type, type of this field.
705 - In a function or member type, type of this argument.
706 - In an array type, the domain-type of the array. */
707
708 struct type *type;
709
710 /* * Name of field, value or argument.
711 NULL for range bounds, array domains, and member function
712 arguments. */
713
714 const char *name;
715 };
716
717 struct range_bounds
718 {
719 /* * Low bound of range. */
720
721 struct dynamic_prop low;
722
723 /* * High bound of range. */
724
725 struct dynamic_prop high;
726
727 /* The stride value for this range. This can be stored in bits or bytes
728 based on the value of BYTE_STRIDE_P. It is optional to have a stride
729 value, if this range has no stride value defined then this will be set
730 to the constant zero. */
731
732 struct dynamic_prop stride;
733
734 /* * The bias. Sometimes a range value is biased before storage.
735 The bias is added to the stored bits to form the true value. */
736
737 LONGEST bias;
738
739 /* True if HIGH range bound contains the number of elements in the
740 subrange. This affects how the final high bound is computed. */
741
742 unsigned int flag_upper_bound_is_count : 1;
743
744 /* True if LOW or/and HIGH are resolved into a static bound from
745 a dynamic one. */
746
747 unsigned int flag_bound_evaluated : 1;
748
749 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
750
751 unsigned int flag_is_byte_stride : 1;
752 };
753
754 /* Compare two range_bounds objects for equality. Simply does
755 memberwise comparison. */
756 extern bool operator== (const range_bounds &l, const range_bounds &r);
757
758 /* Compare two range_bounds objects for inequality. */
759 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
760 {
761 return !(l == r);
762 }
763
764 union type_specific
765 {
766 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
767 point to cplus_struct_default, a default static instance of a
768 struct cplus_struct_type. */
769
770 struct cplus_struct_type *cplus_stuff;
771
772 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
773 provides additional information. */
774
775 struct gnat_aux_type *gnat_stuff;
776
777 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
778 floatformat object that describes the floating-point value
779 that resides within the type. */
780
781 const struct floatformat *floatformat;
782
783 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
784
785 struct func_type *func_stuff;
786
787 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
788 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
789 is a member of. */
790
791 struct type *self_type;
792 };
793
794 /* * Main structure representing a type in GDB.
795
796 This structure is space-critical. Its layout has been tweaked to
797 reduce the space used. */
798
799 struct main_type
800 {
801 /* * Code for kind of type. */
802
803 ENUM_BITFIELD(type_code) code : 8;
804
805 /* * Flags about this type. These fields appear at this location
806 because they packs nicely here. See the TYPE_* macros for
807 documentation about these fields. */
808
809 unsigned int flag_unsigned : 1;
810 unsigned int flag_nosign : 1;
811 unsigned int flag_stub : 1;
812 unsigned int flag_target_stub : 1;
813 unsigned int flag_static : 1;
814 unsigned int flag_prototyped : 1;
815 unsigned int flag_incomplete : 1;
816 unsigned int flag_varargs : 1;
817 unsigned int flag_vector : 1;
818 unsigned int flag_stub_supported : 1;
819 unsigned int flag_gnu_ifunc : 1;
820 unsigned int flag_fixed_instance : 1;
821 unsigned int flag_objfile_owned : 1;
822 unsigned int flag_endianity_not_default : 1;
823
824 /* * True if this type was declared with "class" rather than
825 "struct". */
826
827 unsigned int flag_declared_class : 1;
828
829 /* * True if this is an enum type with disjoint values. This
830 affects how the enum is printed. */
831
832 unsigned int flag_flag_enum : 1;
833
834 /* * True if this type is a discriminated union type. Only valid
835 for TYPE_CODE_UNION. A discriminated union stores a reference to
836 the discriminant field along with the discriminator values in a
837 dynamic property. */
838
839 unsigned int flag_discriminated_union : 1;
840
841 /* * A discriminant telling us which field of the type_specific
842 union is being used for this type, if any. */
843
844 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
845
846 /* * Number of fields described for this type. This field appears
847 at this location because it packs nicely here. */
848
849 short nfields;
850
851 /* * Name of this type, or NULL if none.
852
853 This is used for printing only. For looking up a name, look for
854 a symbol in the VAR_DOMAIN. This is generally allocated in the
855 objfile's obstack. However coffread.c uses malloc. */
856
857 const char *name;
858
859 /* * Every type is now associated with a particular objfile, and the
860 type is allocated on the objfile_obstack for that objfile. One
861 problem however, is that there are times when gdb allocates new
862 types while it is not in the process of reading symbols from a
863 particular objfile. Fortunately, these happen when the type
864 being created is a derived type of an existing type, such as in
865 lookup_pointer_type(). So we can just allocate the new type
866 using the same objfile as the existing type, but to do this we
867 need a backpointer to the objfile from the existing type. Yes
868 this is somewhat ugly, but without major overhaul of the internal
869 type system, it can't be avoided for now. */
870
871 union type_owner owner;
872
873 /* * For a pointer type, describes the type of object pointed to.
874 - For an array type, describes the type of the elements.
875 - For a function or method type, describes the type of the return value.
876 - For a range type, describes the type of the full range.
877 - For a complex type, describes the type of each coordinate.
878 - For a special record or union type encoding a dynamic-sized type
879 in GNAT, a memoized pointer to a corresponding static version of
880 the type.
881 - Unused otherwise. */
882
883 struct type *target_type;
884
885 /* * For structure and union types, a description of each field.
886 For set and pascal array types, there is one "field",
887 whose type is the domain type of the set or array.
888 For range types, there are two "fields",
889 the minimum and maximum values (both inclusive).
890 For enum types, each possible value is described by one "field".
891 For a function or method type, a "field" for each parameter.
892 For C++ classes, there is one field for each base class (if it is
893 a derived class) plus one field for each class data member. Member
894 functions are recorded elsewhere.
895
896 Using a pointer to a separate array of fields
897 allows all types to have the same size, which is useful
898 because we can allocate the space for a type before
899 we know what to put in it. */
900
901 union
902 {
903 struct field *fields;
904
905 /* * Union member used for range types. */
906
907 struct range_bounds *bounds;
908
909 /* If this is a scalar type, then this is its corresponding
910 complex type. */
911 struct type *complex_type;
912
913 } flds_bnds;
914
915 /* * Slot to point to additional language-specific fields of this
916 type. */
917
918 union type_specific type_specific;
919
920 /* * Contains all dynamic type properties. */
921 struct dynamic_prop_list *dyn_prop_list;
922 };
923
924 /* * Number of bits allocated for alignment. */
925
926 #define TYPE_ALIGN_BITS 8
927
928 /* * A ``struct type'' describes a particular instance of a type, with
929 some particular qualification. */
930
931 struct type
932 {
933 /* * Type that is a pointer to this type.
934 NULL if no such pointer-to type is known yet.
935 The debugger may add the address of such a type
936 if it has to construct one later. */
937
938 struct type *pointer_type;
939
940 /* * C++: also need a reference type. */
941
942 struct type *reference_type;
943
944 /* * A C++ rvalue reference type added in C++11. */
945
946 struct type *rvalue_reference_type;
947
948 /* * Variant chain. This points to a type that differs from this
949 one only in qualifiers and length. Currently, the possible
950 qualifiers are const, volatile, code-space, data-space, and
951 address class. The length may differ only when one of the
952 address class flags are set. The variants are linked in a
953 circular ring and share MAIN_TYPE. */
954
955 struct type *chain;
956
957 /* * The alignment for this type. Zero means that the alignment was
958 not specified in the debug info. Note that this is stored in a
959 funny way: as the log base 2 (plus 1) of the alignment; so a
960 value of 1 means the alignment is 1, and a value of 9 means the
961 alignment is 256. */
962
963 unsigned align_log2 : TYPE_ALIGN_BITS;
964
965 /* * Flags specific to this instance of the type, indicating where
966 on the ring we are.
967
968 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
969 binary or-ed with the target type, with a special case for
970 address class and space class. For example if this typedef does
971 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
972 instance flags are completely inherited from the target type. No
973 qualifiers can be cleared by the typedef. See also
974 check_typedef. */
975 unsigned instance_flags : 9;
976
977 /* * Length of storage for a value of this type. The value is the
978 expression in host bytes of what sizeof(type) would return. This
979 size includes padding. For example, an i386 extended-precision
980 floating point value really only occupies ten bytes, but most
981 ABI's declare its size to be 12 bytes, to preserve alignment.
982 A `struct type' representing such a floating-point type would
983 have a `length' value of 12, even though the last two bytes are
984 unused.
985
986 Since this field is expressed in host bytes, its value is appropriate
987 to pass to memcpy and such (it is assumed that GDB itself always runs
988 on an 8-bits addressable architecture). However, when using it for
989 target address arithmetic (e.g. adding it to a target address), the
990 type_length_units function should be used in order to get the length
991 expressed in target addressable memory units. */
992
993 ULONGEST length;
994
995 /* * Core type, shared by a group of qualified types. */
996
997 struct main_type *main_type;
998 };
999
1000 #define NULL_TYPE ((struct type *) 0)
1001
1002 struct fn_fieldlist
1003 {
1004
1005 /* * The overloaded name.
1006 This is generally allocated in the objfile's obstack.
1007 However stabsread.c sometimes uses malloc. */
1008
1009 const char *name;
1010
1011 /* * The number of methods with this name. */
1012
1013 int length;
1014
1015 /* * The list of methods. */
1016
1017 struct fn_field *fn_fields;
1018 };
1019
1020
1021
1022 struct fn_field
1023 {
1024 /* * If is_stub is clear, this is the mangled name which we can look
1025 up to find the address of the method (FIXME: it would be cleaner
1026 to have a pointer to the struct symbol here instead).
1027
1028 If is_stub is set, this is the portion of the mangled name which
1029 specifies the arguments. For example, "ii", if there are two int
1030 arguments, or "" if there are no arguments. See gdb_mangle_name
1031 for the conversion from this format to the one used if is_stub is
1032 clear. */
1033
1034 const char *physname;
1035
1036 /* * The function type for the method.
1037
1038 (This comment used to say "The return value of the method", but
1039 that's wrong. The function type is expected here, i.e. something
1040 with TYPE_CODE_METHOD, and *not* the return-value type). */
1041
1042 struct type *type;
1043
1044 /* * For virtual functions. First baseclass that defines this
1045 virtual function. */
1046
1047 struct type *fcontext;
1048
1049 /* Attributes. */
1050
1051 unsigned int is_const:1;
1052 unsigned int is_volatile:1;
1053 unsigned int is_private:1;
1054 unsigned int is_protected:1;
1055 unsigned int is_artificial:1;
1056
1057 /* * A stub method only has some fields valid (but they are enough
1058 to reconstruct the rest of the fields). */
1059
1060 unsigned int is_stub:1;
1061
1062 /* * True if this function is a constructor, false otherwise. */
1063
1064 unsigned int is_constructor : 1;
1065
1066 /* * True if this function is deleted, false otherwise. */
1067
1068 unsigned int is_deleted : 1;
1069
1070 /* * DW_AT_defaulted attribute for this function. The value is one
1071 of the DW_DEFAULTED constants. */
1072
1073 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1074
1075 /* * Unused. */
1076
1077 unsigned int dummy:6;
1078
1079 /* * Index into that baseclass's virtual function table, minus 2;
1080 else if static: VOFFSET_STATIC; else: 0. */
1081
1082 unsigned int voffset:16;
1083
1084 #define VOFFSET_STATIC 1
1085
1086 };
1087
1088 struct decl_field
1089 {
1090 /* * Unqualified name to be prefixed by owning class qualified
1091 name. */
1092
1093 const char *name;
1094
1095 /* * Type this typedef named NAME represents. */
1096
1097 struct type *type;
1098
1099 /* * True if this field was declared protected, false otherwise. */
1100 unsigned int is_protected : 1;
1101
1102 /* * True if this field was declared private, false otherwise. */
1103 unsigned int is_private : 1;
1104 };
1105
1106 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1107 TYPE_CODE_UNION nodes. */
1108
1109 struct cplus_struct_type
1110 {
1111 /* * Number of base classes this type derives from. The
1112 baseclasses are stored in the first N_BASECLASSES fields
1113 (i.e. the `fields' field of the struct type). The only fields
1114 of struct field that are used are: type, name, loc.bitpos. */
1115
1116 short n_baseclasses;
1117
1118 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1119 All access to this field must be through TYPE_VPTR_FIELDNO as one
1120 thing it does is check whether the field has been initialized.
1121 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1122 which for portability reasons doesn't initialize this field.
1123 TYPE_VPTR_FIELDNO returns -1 for this case.
1124
1125 If -1, we were unable to find the virtual function table pointer in
1126 initial symbol reading, and get_vptr_fieldno should be called to find
1127 it if possible. get_vptr_fieldno will update this field if possible.
1128 Otherwise the value is left at -1.
1129
1130 Unused if this type does not have virtual functions. */
1131
1132 short vptr_fieldno;
1133
1134 /* * Number of methods with unique names. All overloaded methods
1135 with the same name count only once. */
1136
1137 short nfn_fields;
1138
1139 /* * Number of template arguments. */
1140
1141 unsigned short n_template_arguments;
1142
1143 /* * One if this struct is a dynamic class, as defined by the
1144 Itanium C++ ABI: if it requires a virtual table pointer,
1145 because it or any of its base classes have one or more virtual
1146 member functions or virtual base classes. Minus one if not
1147 dynamic. Zero if not yet computed. */
1148
1149 int is_dynamic : 2;
1150
1151 /* * The calling convention for this type, fetched from the
1152 DW_AT_calling_convention attribute. The value is one of the
1153 DW_CC constants. */
1154
1155 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1156
1157 /* * The base class which defined the virtual function table pointer. */
1158
1159 struct type *vptr_basetype;
1160
1161 /* * For derived classes, the number of base classes is given by
1162 n_baseclasses and virtual_field_bits is a bit vector containing
1163 one bit per base class. If the base class is virtual, the
1164 corresponding bit will be set.
1165 I.E, given:
1166
1167 class A{};
1168 class B{};
1169 class C : public B, public virtual A {};
1170
1171 B is a baseclass of C; A is a virtual baseclass for C.
1172 This is a C++ 2.0 language feature. */
1173
1174 B_TYPE *virtual_field_bits;
1175
1176 /* * For classes with private fields, the number of fields is
1177 given by nfields and private_field_bits is a bit vector
1178 containing one bit per field.
1179
1180 If the field is private, the corresponding bit will be set. */
1181
1182 B_TYPE *private_field_bits;
1183
1184 /* * For classes with protected fields, the number of fields is
1185 given by nfields and protected_field_bits is a bit vector
1186 containing one bit per field.
1187
1188 If the field is private, the corresponding bit will be set. */
1189
1190 B_TYPE *protected_field_bits;
1191
1192 /* * For classes with fields to be ignored, either this is
1193 optimized out or this field has length 0. */
1194
1195 B_TYPE *ignore_field_bits;
1196
1197 /* * For classes, structures, and unions, a description of each
1198 field, which consists of an overloaded name, followed by the
1199 types of arguments that the method expects, and then the name
1200 after it has been renamed to make it distinct.
1201
1202 fn_fieldlists points to an array of nfn_fields of these. */
1203
1204 struct fn_fieldlist *fn_fieldlists;
1205
1206 /* * typedefs defined inside this class. typedef_field points to
1207 an array of typedef_field_count elements. */
1208
1209 struct decl_field *typedef_field;
1210
1211 unsigned typedef_field_count;
1212
1213 /* * The nested types defined by this type. nested_types points to
1214 an array of nested_types_count elements. */
1215
1216 struct decl_field *nested_types;
1217
1218 unsigned nested_types_count;
1219
1220 /* * The template arguments. This is an array with
1221 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1222 classes. */
1223
1224 struct symbol **template_arguments;
1225 };
1226
1227 /* * Struct used to store conversion rankings. */
1228
1229 struct rank
1230 {
1231 short rank;
1232
1233 /* * When two conversions are of the same type and therefore have
1234 the same rank, subrank is used to differentiate the two.
1235
1236 Eg: Two derived-class-pointer to base-class-pointer conversions
1237 would both have base pointer conversion rank, but the
1238 conversion with the shorter distance to the ancestor is
1239 preferable. 'subrank' would be used to reflect that. */
1240
1241 short subrank;
1242 };
1243
1244 /* * Used for ranking a function for overload resolution. */
1245
1246 typedef std::vector<rank> badness_vector;
1247
1248 /* * GNAT Ada-specific information for various Ada types. */
1249
1250 struct gnat_aux_type
1251 {
1252 /* * Parallel type used to encode information about dynamic types
1253 used in Ada (such as variant records, variable-size array,
1254 etc). */
1255 struct type* descriptive_type;
1256 };
1257
1258 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1259
1260 struct func_type
1261 {
1262 /* * The calling convention for targets supporting multiple ABIs.
1263 Right now this is only fetched from the Dwarf-2
1264 DW_AT_calling_convention attribute. The value is one of the
1265 DW_CC constants. */
1266
1267 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1268
1269 /* * Whether this function normally returns to its caller. It is
1270 set from the DW_AT_noreturn attribute if set on the
1271 DW_TAG_subprogram. */
1272
1273 unsigned int is_noreturn : 1;
1274
1275 /* * Only those DW_TAG_call_site's in this function that have
1276 DW_AT_call_tail_call set are linked in this list. Function
1277 without its tail call list complete
1278 (DW_AT_call_all_tail_calls or its superset
1279 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1280 DW_TAG_call_site's exist in such function. */
1281
1282 struct call_site *tail_call_list;
1283
1284 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1285 contains the method. */
1286
1287 struct type *self_type;
1288 };
1289
1290 /* struct call_site_parameter can be referenced in callees by several ways. */
1291
1292 enum call_site_parameter_kind
1293 {
1294 /* * Use field call_site_parameter.u.dwarf_reg. */
1295 CALL_SITE_PARAMETER_DWARF_REG,
1296
1297 /* * Use field call_site_parameter.u.fb_offset. */
1298 CALL_SITE_PARAMETER_FB_OFFSET,
1299
1300 /* * Use field call_site_parameter.u.param_offset. */
1301 CALL_SITE_PARAMETER_PARAM_OFFSET
1302 };
1303
1304 struct call_site_target
1305 {
1306 union field_location loc;
1307
1308 /* * Discriminant for union field_location. */
1309
1310 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1311 };
1312
1313 union call_site_parameter_u
1314 {
1315 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1316 as DWARF register number, for register passed
1317 parameters. */
1318
1319 int dwarf_reg;
1320
1321 /* * Offset from the callee's frame base, for stack passed
1322 parameters. This equals offset from the caller's stack
1323 pointer. */
1324
1325 CORE_ADDR fb_offset;
1326
1327 /* * Offset relative to the start of this PER_CU to
1328 DW_TAG_formal_parameter which is referenced by both
1329 caller and the callee. */
1330
1331 cu_offset param_cu_off;
1332 };
1333
1334 struct call_site_parameter
1335 {
1336 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1337
1338 union call_site_parameter_u u;
1339
1340 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1341
1342 const gdb_byte *value;
1343 size_t value_size;
1344
1345 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1346 It may be NULL if not provided by DWARF. */
1347
1348 const gdb_byte *data_value;
1349 size_t data_value_size;
1350 };
1351
1352 /* * A place where a function gets called from, represented by
1353 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1354
1355 struct call_site
1356 {
1357 /* * Address of the first instruction after this call. It must be
1358 the first field as we overload core_addr_hash and core_addr_eq
1359 for it. */
1360
1361 CORE_ADDR pc;
1362
1363 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1364
1365 struct call_site *tail_call_next;
1366
1367 /* * Describe DW_AT_call_target. Missing attribute uses
1368 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1369
1370 struct call_site_target target;
1371
1372 /* * Size of the PARAMETER array. */
1373
1374 unsigned parameter_count;
1375
1376 /* * CU of the function where the call is located. It gets used
1377 for DWARF blocks execution in the parameter array below. */
1378
1379 struct dwarf2_per_cu_data *per_cu;
1380
1381 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1382
1383 struct call_site_parameter parameter[1];
1384 };
1385
1386 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1387 static structure. */
1388
1389 extern const struct cplus_struct_type cplus_struct_default;
1390
1391 extern void allocate_cplus_struct_type (struct type *);
1392
1393 #define INIT_CPLUS_SPECIFIC(type) \
1394 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1395 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1396 &cplus_struct_default)
1397
1398 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1399
1400 #define HAVE_CPLUS_STRUCT(type) \
1401 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1402 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1403
1404 #define INIT_NONE_SPECIFIC(type) \
1405 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1406 TYPE_MAIN_TYPE (type)->type_specific = {})
1407
1408 extern const struct gnat_aux_type gnat_aux_default;
1409
1410 extern void allocate_gnat_aux_type (struct type *);
1411
1412 #define INIT_GNAT_SPECIFIC(type) \
1413 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1414 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1415 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1416 /* * A macro that returns non-zero if the type-specific data should be
1417 read as "gnat-stuff". */
1418 #define HAVE_GNAT_AUX_INFO(type) \
1419 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1420
1421 /* * True if TYPE is known to be an Ada type of some kind. */
1422 #define ADA_TYPE_P(type) \
1423 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1424 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1425 && TYPE_FIXED_INSTANCE (type)))
1426
1427 #define INIT_FUNC_SPECIFIC(type) \
1428 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1429 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1430 TYPE_ZALLOC (type, \
1431 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1432
1433 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1434 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1435 #define TYPE_NAME(thistype) TYPE_MAIN_TYPE(thistype)->name
1436 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1437 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1438 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1439 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1440 #define TYPE_CHAIN(thistype) (thistype)->chain
1441 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1442 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1443 so you only have to call check_typedef once. Since allocate_value
1444 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1445 #define TYPE_LENGTH(thistype) (thistype)->length
1446
1447 /* * Return the alignment of the type in target addressable memory
1448 units, or 0 if no alignment was specified. */
1449 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1450
1451 /* * Return the alignment of the type in target addressable memory
1452 units, or 0 if no alignment was specified. */
1453 extern unsigned type_raw_align (struct type *);
1454
1455 /* * Return the alignment of the type in target addressable memory
1456 units. Return 0 if the alignment cannot be determined; but note
1457 that this makes an effort to compute the alignment even it it was
1458 not specified in the debug info. */
1459 extern unsigned type_align (struct type *);
1460
1461 /* * Set the alignment of the type. The alignment must be a power of
1462 2. Returns false if the given value does not fit in the available
1463 space in struct type. */
1464 extern bool set_type_align (struct type *, ULONGEST);
1465
1466 /* * Note that TYPE_CODE can be TYPE_CODE_TYPEDEF, so if you want the real
1467 type, you need to do TYPE_CODE (check_type (this_type)). */
1468 #define TYPE_CODE(thistype) TYPE_MAIN_TYPE(thistype)->code
1469 #define TYPE_NFIELDS(thistype) TYPE_MAIN_TYPE(thistype)->nfields
1470 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1471
1472 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1473 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1474 #define TYPE_LOW_BOUND(range_type) \
1475 TYPE_RANGE_DATA(range_type)->low.data.const_val
1476 #define TYPE_HIGH_BOUND(range_type) \
1477 TYPE_RANGE_DATA(range_type)->high.data.const_val
1478 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1479 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1480 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1481 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1482 #define TYPE_HIGH_BOUND_KIND(range_type) \
1483 TYPE_RANGE_DATA(range_type)->high.kind
1484 #define TYPE_LOW_BOUND_KIND(range_type) \
1485 TYPE_RANGE_DATA(range_type)->low.kind
1486 #define TYPE_BIT_STRIDE(range_type) \
1487 (TYPE_RANGE_DATA(range_type)->stride.data.const_val \
1488 * (TYPE_RANGE_DATA(range_type)->flag_is_byte_stride ? 8 : 1))
1489
1490 /* Property accessors for the type data location. */
1491 #define TYPE_DATA_LOCATION(thistype) \
1492 get_dyn_prop (DYN_PROP_DATA_LOCATION, thistype)
1493 #define TYPE_DATA_LOCATION_BATON(thistype) \
1494 TYPE_DATA_LOCATION (thistype)->data.baton
1495 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1496 TYPE_DATA_LOCATION (thistype)->data.const_val
1497 #define TYPE_DATA_LOCATION_KIND(thistype) \
1498 TYPE_DATA_LOCATION (thistype)->kind
1499
1500 /* Property accessors for the type allocated/associated. */
1501 #define TYPE_ALLOCATED_PROP(thistype) \
1502 get_dyn_prop (DYN_PROP_ALLOCATED, thistype)
1503 #define TYPE_ASSOCIATED_PROP(thistype) \
1504 get_dyn_prop (DYN_PROP_ASSOCIATED, thistype)
1505
1506 /* Attribute accessors for dynamic properties. */
1507 #define TYPE_DYN_PROP_LIST(thistype) \
1508 TYPE_MAIN_TYPE(thistype)->dyn_prop_list
1509 #define TYPE_DYN_PROP_BATON(dynprop) \
1510 dynprop->data.baton
1511 #define TYPE_DYN_PROP_ADDR(dynprop) \
1512 dynprop->data.const_val
1513 #define TYPE_DYN_PROP_KIND(dynprop) \
1514 dynprop->kind
1515
1516
1517 /* Accessors for struct range_bounds data attached to an array type's
1518 index type. */
1519
1520 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1521 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1522 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1523 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1524
1525 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1526 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1527
1528 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1529 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1530
1531 #define TYPE_ARRAY_BIT_STRIDE(arraytype) \
1532 (TYPE_BIT_STRIDE(TYPE_INDEX_TYPE((arraytype))))
1533
1534 /* C++ */
1535
1536 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1537 /* Do not call this, use TYPE_SELF_TYPE. */
1538 extern struct type *internal_type_self_type (struct type *);
1539 extern void set_type_self_type (struct type *, struct type *);
1540
1541 extern int internal_type_vptr_fieldno (struct type *);
1542 extern void set_type_vptr_fieldno (struct type *, int);
1543 extern struct type *internal_type_vptr_basetype (struct type *);
1544 extern void set_type_vptr_basetype (struct type *, struct type *);
1545 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1546 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1547
1548 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1549 #define TYPE_SPECIFIC_FIELD(thistype) \
1550 TYPE_MAIN_TYPE(thistype)->type_specific_field
1551 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1552 where we're trying to print an Ada array using the C language.
1553 In that case, there is no "cplus_stuff", but the C language assumes
1554 that there is. What we do, in that case, is pretend that there is
1555 an implicit one which is the default cplus stuff. */
1556 #define TYPE_CPLUS_SPECIFIC(thistype) \
1557 (!HAVE_CPLUS_STRUCT(thistype) \
1558 ? (struct cplus_struct_type*)&cplus_struct_default \
1559 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1560 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1561 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1562 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1563 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1564 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1565 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1566 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1567 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1568 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1569 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1570 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1571 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1572 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1573 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1574 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1575 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1576
1577 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1578 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1579 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1580
1581 #define FIELD_TYPE(thisfld) ((thisfld).type)
1582 #define FIELD_NAME(thisfld) ((thisfld).name)
1583 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1584 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1585 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1586 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1587 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1588 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1589 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1590 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1591 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1592 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1593 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1594 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1595 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1596 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1597 #define SET_FIELD_PHYSNAME(thisfld, name) \
1598 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1599 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1600 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1601 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1602 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1603 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1604 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1605 FIELD_DWARF_BLOCK (thisfld) = (addr))
1606 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1607 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1608
1609 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1610 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1611 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1612 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1613 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1614 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1615 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1616 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1617 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1618 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1619 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1620 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1621
1622 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1623 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1624 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1625 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1626 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1627 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1628 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1629 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1630 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1631 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1632 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1633 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1634 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1635 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1636 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1637 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1638 #define TYPE_FIELD_PRIVATE(thistype, n) \
1639 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1640 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1641 #define TYPE_FIELD_PROTECTED(thistype, n) \
1642 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1643 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1644 #define TYPE_FIELD_IGNORE(thistype, n) \
1645 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1646 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1647 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1648 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1649 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1650
1651 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1652 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1653 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1654 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1655 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1656
1657 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1658 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1659 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1660 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1661 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1662 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1663
1664 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1665 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1666 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1667 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1668 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1669 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1670 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1671 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1672 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1673 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1674 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1675 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1676 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1677 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1678 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1679 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1680 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1681
1682 /* Accessors for typedefs defined by a class. */
1683 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1684 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1685 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1686 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1687 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1688 TYPE_TYPEDEF_FIELD (thistype, n).name
1689 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1690 TYPE_TYPEDEF_FIELD (thistype, n).type
1691 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1692 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1693 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1694 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1695 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1696 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1697
1698 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1699 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1700 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1701 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1702 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1703 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1704 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1705 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1706 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1707 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1708 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1709 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1710 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1711 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1712
1713 #define TYPE_IS_OPAQUE(thistype) \
1714 (((TYPE_CODE (thistype) == TYPE_CODE_STRUCT) \
1715 || (TYPE_CODE (thistype) == TYPE_CODE_UNION)) \
1716 && (TYPE_NFIELDS (thistype) == 0) \
1717 && (!HAVE_CPLUS_STRUCT (thistype) \
1718 || TYPE_NFN_FIELDS (thistype) == 0) \
1719 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1720
1721 /* * A helper macro that returns the name of a type or "unnamed type"
1722 if the type has no name. */
1723
1724 #define TYPE_SAFE_NAME(type) \
1725 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<unnamed type>"))
1726
1727 /* * A helper macro that returns the name of an error type. If the
1728 type has a name, it is used; otherwise, a default is used. */
1729
1730 #define TYPE_ERROR_NAME(type) \
1731 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<error type>"))
1732
1733 /* Given TYPE, return its floatformat. */
1734 const struct floatformat *floatformat_from_type (const struct type *type);
1735
1736 struct builtin_type
1737 {
1738 /* Integral types. */
1739
1740 /* Implicit size/sign (based on the architecture's ABI). */
1741 struct type *builtin_void;
1742 struct type *builtin_char;
1743 struct type *builtin_short;
1744 struct type *builtin_int;
1745 struct type *builtin_long;
1746 struct type *builtin_signed_char;
1747 struct type *builtin_unsigned_char;
1748 struct type *builtin_unsigned_short;
1749 struct type *builtin_unsigned_int;
1750 struct type *builtin_unsigned_long;
1751 struct type *builtin_half;
1752 struct type *builtin_float;
1753 struct type *builtin_double;
1754 struct type *builtin_long_double;
1755 struct type *builtin_complex;
1756 struct type *builtin_double_complex;
1757 struct type *builtin_string;
1758 struct type *builtin_bool;
1759 struct type *builtin_long_long;
1760 struct type *builtin_unsigned_long_long;
1761 struct type *builtin_decfloat;
1762 struct type *builtin_decdouble;
1763 struct type *builtin_declong;
1764
1765 /* "True" character types.
1766 We use these for the '/c' print format, because c_char is just a
1767 one-byte integral type, which languages less laid back than C
1768 will print as ... well, a one-byte integral type. */
1769 struct type *builtin_true_char;
1770 struct type *builtin_true_unsigned_char;
1771
1772 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1773 is for when an architecture needs to describe a register that has
1774 no size. */
1775 struct type *builtin_int0;
1776 struct type *builtin_int8;
1777 struct type *builtin_uint8;
1778 struct type *builtin_int16;
1779 struct type *builtin_uint16;
1780 struct type *builtin_int24;
1781 struct type *builtin_uint24;
1782 struct type *builtin_int32;
1783 struct type *builtin_uint32;
1784 struct type *builtin_int64;
1785 struct type *builtin_uint64;
1786 struct type *builtin_int128;
1787 struct type *builtin_uint128;
1788
1789 /* Wide character types. */
1790 struct type *builtin_char16;
1791 struct type *builtin_char32;
1792 struct type *builtin_wchar;
1793
1794 /* Pointer types. */
1795
1796 /* * `pointer to data' type. Some target platforms use an implicitly
1797 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1798 struct type *builtin_data_ptr;
1799
1800 /* * `pointer to function (returning void)' type. Harvard
1801 architectures mean that ABI function and code pointers are not
1802 interconvertible. Similarly, since ANSI, C standards have
1803 explicitly said that pointers to functions and pointers to data
1804 are not interconvertible --- that is, you can't cast a function
1805 pointer to void * and back, and expect to get the same value.
1806 However, all function pointer types are interconvertible, so void
1807 (*) () can server as a generic function pointer. */
1808
1809 struct type *builtin_func_ptr;
1810
1811 /* * `function returning pointer to function (returning void)' type.
1812 The final void return type is not significant for it. */
1813
1814 struct type *builtin_func_func;
1815
1816 /* Special-purpose types. */
1817
1818 /* * This type is used to represent a GDB internal function. */
1819
1820 struct type *internal_fn;
1821
1822 /* * This type is used to represent an xmethod. */
1823 struct type *xmethod;
1824 };
1825
1826 /* * Return the type table for the specified architecture. */
1827
1828 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1829
1830 /* * Per-objfile types used by symbol readers. */
1831
1832 struct objfile_type
1833 {
1834 /* Basic types based on the objfile architecture. */
1835 struct type *builtin_void;
1836 struct type *builtin_char;
1837 struct type *builtin_short;
1838 struct type *builtin_int;
1839 struct type *builtin_long;
1840 struct type *builtin_long_long;
1841 struct type *builtin_signed_char;
1842 struct type *builtin_unsigned_char;
1843 struct type *builtin_unsigned_short;
1844 struct type *builtin_unsigned_int;
1845 struct type *builtin_unsigned_long;
1846 struct type *builtin_unsigned_long_long;
1847 struct type *builtin_half;
1848 struct type *builtin_float;
1849 struct type *builtin_double;
1850 struct type *builtin_long_double;
1851
1852 /* * This type is used to represent symbol addresses. */
1853 struct type *builtin_core_addr;
1854
1855 /* * This type represents a type that was unrecognized in symbol
1856 read-in. */
1857 struct type *builtin_error;
1858
1859 /* * Types used for symbols with no debug information. */
1860 struct type *nodebug_text_symbol;
1861 struct type *nodebug_text_gnu_ifunc_symbol;
1862 struct type *nodebug_got_plt_symbol;
1863 struct type *nodebug_data_symbol;
1864 struct type *nodebug_unknown_symbol;
1865 struct type *nodebug_tls_symbol;
1866 };
1867
1868 /* * Return the type table for the specified objfile. */
1869
1870 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1871
1872 /* Explicit floating-point formats. See "floatformat.h". */
1873 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1874 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1875 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1876 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1877 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1878 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1879 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1880 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1881 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1882 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1883 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1884 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1885
1886
1887 /* Allocate space for storing data associated with a particular
1888 type. We ensure that the space is allocated using the same
1889 mechanism that was used to allocate the space for the type
1890 structure itself. I.e. if the type is on an objfile's
1891 objfile_obstack, then the space for data associated with that type
1892 will also be allocated on the objfile_obstack. If the type is
1893 associated with a gdbarch, then the space for data associated with that
1894 type will also be allocated on the gdbarch_obstack.
1895
1896 If a type is not associated with neither an objfile or a gdbarch then
1897 you should not use this macro to allocate space for data, instead you
1898 should call xmalloc directly, and ensure the memory is correctly freed
1899 when it is no longer needed. */
1900
1901 #define TYPE_ALLOC(t,size) \
1902 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
1903 ? &TYPE_OBJFILE (t)->objfile_obstack \
1904 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
1905 size))
1906
1907
1908 /* See comment on TYPE_ALLOC. */
1909
1910 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
1911
1912 /* Use alloc_type to allocate a type owned by an objfile. Use
1913 alloc_type_arch to allocate a type owned by an architecture. Use
1914 alloc_type_copy to allocate a type with the same owner as a
1915 pre-existing template type, no matter whether objfile or
1916 gdbarch. */
1917 extern struct type *alloc_type (struct objfile *);
1918 extern struct type *alloc_type_arch (struct gdbarch *);
1919 extern struct type *alloc_type_copy (const struct type *);
1920
1921 /* * Return the type's architecture. For types owned by an
1922 architecture, that architecture is returned. For types owned by an
1923 objfile, that objfile's architecture is returned. */
1924
1925 extern struct gdbarch *get_type_arch (const struct type *);
1926
1927 /* * This returns the target type (or NULL) of TYPE, also skipping
1928 past typedefs. */
1929
1930 extern struct type *get_target_type (struct type *type);
1931
1932 /* Return the equivalent of TYPE_LENGTH, but in number of target
1933 addressable memory units of the associated gdbarch instead of bytes. */
1934
1935 extern unsigned int type_length_units (struct type *type);
1936
1937 /* * Helper function to construct objfile-owned types. */
1938
1939 extern struct type *init_type (struct objfile *, enum type_code, int,
1940 const char *);
1941 extern struct type *init_integer_type (struct objfile *, int, int,
1942 const char *);
1943 extern struct type *init_character_type (struct objfile *, int, int,
1944 const char *);
1945 extern struct type *init_boolean_type (struct objfile *, int, int,
1946 const char *);
1947 extern struct type *init_float_type (struct objfile *, int, const char *,
1948 const struct floatformat **,
1949 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
1950 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1951 extern struct type *init_complex_type (const char *, struct type *);
1952 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1953 struct type *);
1954
1955 /* Helper functions to construct architecture-owned types. */
1956 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1957 const char *);
1958 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1959 const char *);
1960 extern struct type *arch_character_type (struct gdbarch *, int, int,
1961 const char *);
1962 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1963 const char *);
1964 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1965 const struct floatformat **);
1966 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1967 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1968 struct type *);
1969
1970 /* Helper functions to construct a struct or record type. An
1971 initially empty type is created using arch_composite_type().
1972 Fields are then added using append_composite_type_field*(). A union
1973 type has its size set to the largest field. A struct type has each
1974 field packed against the previous. */
1975
1976 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1977 const char *name, enum type_code code);
1978 extern void append_composite_type_field (struct type *t, const char *name,
1979 struct type *field);
1980 extern void append_composite_type_field_aligned (struct type *t,
1981 const char *name,
1982 struct type *field,
1983 int alignment);
1984 struct field *append_composite_type_field_raw (struct type *t, const char *name,
1985 struct type *field);
1986
1987 /* Helper functions to construct a bit flags type. An initially empty
1988 type is created using arch_flag_type(). Flags are then added using
1989 append_flag_type_field() and append_flag_type_flag(). */
1990 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1991 const char *name, int bit);
1992 extern void append_flags_type_field (struct type *type,
1993 int start_bitpos, int nr_bits,
1994 struct type *field_type, const char *name);
1995 extern void append_flags_type_flag (struct type *type, int bitpos,
1996 const char *name);
1997
1998 extern void make_vector_type (struct type *array_type);
1999 extern struct type *init_vector_type (struct type *elt_type, int n);
2000
2001 extern struct type *lookup_reference_type (struct type *, enum type_code);
2002 extern struct type *lookup_lvalue_reference_type (struct type *);
2003 extern struct type *lookup_rvalue_reference_type (struct type *);
2004
2005
2006 extern struct type *make_reference_type (struct type *, struct type **,
2007 enum type_code);
2008
2009 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2010
2011 extern struct type *make_restrict_type (struct type *);
2012
2013 extern struct type *make_unqualified_type (struct type *);
2014
2015 extern struct type *make_atomic_type (struct type *);
2016
2017 extern void replace_type (struct type *, struct type *);
2018
2019 extern int address_space_name_to_int (struct gdbarch *, const char *);
2020
2021 extern const char *address_space_int_to_name (struct gdbarch *, int);
2022
2023 extern struct type *make_type_with_address_space (struct type *type,
2024 int space_identifier);
2025
2026 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2027
2028 extern struct type *lookup_methodptr_type (struct type *);
2029
2030 extern void smash_to_method_type (struct type *type, struct type *self_type,
2031 struct type *to_type, struct field *args,
2032 int nargs, int varargs);
2033
2034 extern void smash_to_memberptr_type (struct type *, struct type *,
2035 struct type *);
2036
2037 extern void smash_to_methodptr_type (struct type *, struct type *);
2038
2039 extern struct type *allocate_stub_method (struct type *);
2040
2041 extern const char *type_name_or_error (struct type *type);
2042
2043 struct struct_elt
2044 {
2045 /* The field of the element, or NULL if no element was found. */
2046 struct field *field;
2047
2048 /* The bit offset of the element in the parent structure. */
2049 LONGEST offset;
2050 };
2051
2052 /* Given a type TYPE, lookup the field and offset of the component named
2053 NAME.
2054
2055 TYPE can be either a struct or union, or a pointer or reference to
2056 a struct or union. If it is a pointer or reference, its target
2057 type is automatically used. Thus '.' and '->' are interchangable,
2058 as specified for the definitions of the expression element types
2059 STRUCTOP_STRUCT and STRUCTOP_PTR.
2060
2061 If NOERR is nonzero, the returned structure will have field set to
2062 NULL if there is no component named NAME.
2063
2064 If the component NAME is a field in an anonymous substructure of
2065 TYPE, the returned offset is a "global" offset relative to TYPE
2066 rather than an offset within the substructure. */
2067
2068 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2069
2070 /* Given a type TYPE, lookup the type of the component named NAME.
2071
2072 TYPE can be either a struct or union, or a pointer or reference to
2073 a struct or union. If it is a pointer or reference, its target
2074 type is automatically used. Thus '.' and '->' are interchangable,
2075 as specified for the definitions of the expression element types
2076 STRUCTOP_STRUCT and STRUCTOP_PTR.
2077
2078 If NOERR is nonzero, return NULL if there is no component named
2079 NAME. */
2080
2081 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2082
2083 extern struct type *make_pointer_type (struct type *, struct type **);
2084
2085 extern struct type *lookup_pointer_type (struct type *);
2086
2087 extern struct type *make_function_type (struct type *, struct type **);
2088
2089 extern struct type *lookup_function_type (struct type *);
2090
2091 extern struct type *lookup_function_type_with_arguments (struct type *,
2092 int,
2093 struct type **);
2094
2095 extern struct type *create_static_range_type (struct type *, struct type *,
2096 LONGEST, LONGEST);
2097
2098
2099 extern struct type *create_array_type_with_stride
2100 (struct type *, struct type *, struct type *,
2101 struct dynamic_prop *, unsigned int);
2102
2103 extern struct type *create_range_type (struct type *, struct type *,
2104 const struct dynamic_prop *,
2105 const struct dynamic_prop *,
2106 LONGEST);
2107
2108 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2109 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2110 stride. */
2111
2112 extern struct type * create_range_type_with_stride
2113 (struct type *result_type, struct type *index_type,
2114 const struct dynamic_prop *low_bound,
2115 const struct dynamic_prop *high_bound, LONGEST bias,
2116 const struct dynamic_prop *stride, bool byte_stride_p);
2117
2118 extern struct type *create_array_type (struct type *, struct type *,
2119 struct type *);
2120
2121 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2122
2123 extern struct type *create_string_type (struct type *, struct type *,
2124 struct type *);
2125 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2126
2127 extern struct type *create_set_type (struct type *, struct type *);
2128
2129 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2130 const char *);
2131
2132 extern struct type *lookup_signed_typename (const struct language_defn *,
2133 const char *);
2134
2135 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2136
2137 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2138
2139 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2140 ADDR specifies the location of the variable the type is bound to.
2141 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2142 static properties is returned. */
2143 extern struct type *resolve_dynamic_type
2144 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2145 CORE_ADDR addr);
2146
2147 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2148 extern int is_dynamic_type (struct type *type);
2149
2150 /* * Return the dynamic property of the requested KIND from TYPE's
2151 list of dynamic properties. */
2152 extern struct dynamic_prop *get_dyn_prop
2153 (enum dynamic_prop_node_kind kind, const struct type *type);
2154
2155 /* * Given a dynamic property PROP of a given KIND, add this dynamic
2156 property to the given TYPE.
2157
2158 This function assumes that TYPE is objfile-owned. */
2159 extern void add_dyn_prop
2160 (enum dynamic_prop_node_kind kind, struct dynamic_prop prop,
2161 struct type *type);
2162
2163 extern void remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2164 struct type *type);
2165
2166 extern struct type *check_typedef (struct type *);
2167
2168 extern void check_stub_method_group (struct type *, int);
2169
2170 extern char *gdb_mangle_name (struct type *, int, int);
2171
2172 extern struct type *lookup_typename (const struct language_defn *,
2173 const char *, const struct block *, int);
2174
2175 extern struct type *lookup_template_type (const char *, struct type *,
2176 const struct block *);
2177
2178 extern int get_vptr_fieldno (struct type *, struct type **);
2179
2180 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2181
2182 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2183 LONGEST *high_bound);
2184
2185 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2186
2187 extern int class_types_same_p (const struct type *, const struct type *);
2188
2189 extern int is_ancestor (struct type *, struct type *);
2190
2191 extern int is_public_ancestor (struct type *, struct type *);
2192
2193 extern int is_unique_ancestor (struct type *, struct value *);
2194
2195 /* Overload resolution */
2196
2197 /* * Badness if parameter list length doesn't match arg list length. */
2198 extern const struct rank LENGTH_MISMATCH_BADNESS;
2199
2200 /* * Dummy badness value for nonexistent parameter positions. */
2201 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2202 /* * Badness if no conversion among types. */
2203 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2204
2205 /* * Badness of an exact match. */
2206 extern const struct rank EXACT_MATCH_BADNESS;
2207
2208 /* * Badness of integral promotion. */
2209 extern const struct rank INTEGER_PROMOTION_BADNESS;
2210 /* * Badness of floating promotion. */
2211 extern const struct rank FLOAT_PROMOTION_BADNESS;
2212 /* * Badness of converting a derived class pointer
2213 to a base class pointer. */
2214 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2215 /* * Badness of integral conversion. */
2216 extern const struct rank INTEGER_CONVERSION_BADNESS;
2217 /* * Badness of floating conversion. */
2218 extern const struct rank FLOAT_CONVERSION_BADNESS;
2219 /* * Badness of integer<->floating conversions. */
2220 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2221 /* * Badness of conversion of pointer to void pointer. */
2222 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2223 /* * Badness of conversion to boolean. */
2224 extern const struct rank BOOL_CONVERSION_BADNESS;
2225 /* * Badness of converting derived to base class. */
2226 extern const struct rank BASE_CONVERSION_BADNESS;
2227 /* * Badness of converting from non-reference to reference. Subrank
2228 is the type of reference conversion being done. */
2229 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2230 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2231 /* * Conversion to rvalue reference. */
2232 #define REFERENCE_CONVERSION_RVALUE 1
2233 /* * Conversion to const lvalue reference. */
2234 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2235
2236 /* * Badness of converting integer 0 to NULL pointer. */
2237 extern const struct rank NULL_POINTER_CONVERSION;
2238 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2239 being done. */
2240 extern const struct rank CV_CONVERSION_BADNESS;
2241 #define CV_CONVERSION_CONST 1
2242 #define CV_CONVERSION_VOLATILE 2
2243
2244 /* Non-standard conversions allowed by the debugger */
2245
2246 /* * Converting a pointer to an int is usually OK. */
2247 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2248
2249 /* * Badness of converting a (non-zero) integer constant
2250 to a pointer. */
2251 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2252
2253 extern struct rank sum_ranks (struct rank a, struct rank b);
2254 extern int compare_ranks (struct rank a, struct rank b);
2255
2256 extern int compare_badness (const badness_vector &,
2257 const badness_vector &);
2258
2259 extern badness_vector rank_function (gdb::array_view<type *> parms,
2260 gdb::array_view<value *> args);
2261
2262 extern struct rank rank_one_type (struct type *, struct type *,
2263 struct value *);
2264
2265 extern void recursive_dump_type (struct type *, int);
2266
2267 extern int field_is_static (struct field *);
2268
2269 /* printcmd.c */
2270
2271 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2272 const struct value_print_options *,
2273 int, struct ui_file *);
2274
2275 extern int can_dereference (struct type *);
2276
2277 extern int is_integral_type (struct type *);
2278
2279 extern int is_floating_type (struct type *);
2280
2281 extern int is_scalar_type (struct type *type);
2282
2283 extern int is_scalar_type_recursive (struct type *);
2284
2285 extern int class_or_union_p (const struct type *);
2286
2287 extern void maintenance_print_type (const char *, int);
2288
2289 extern htab_t create_copied_types_hash (struct objfile *objfile);
2290
2291 extern struct type *copy_type_recursive (struct objfile *objfile,
2292 struct type *type,
2293 htab_t copied_types);
2294
2295 extern struct type *copy_type (const struct type *type);
2296
2297 extern bool types_equal (struct type *, struct type *);
2298
2299 extern bool types_deeply_equal (struct type *, struct type *);
2300
2301 extern int type_not_allocated (const struct type *type);
2302
2303 extern int type_not_associated (const struct type *type);
2304
2305 /* * When the type includes explicit byte ordering, return that.
2306 Otherwise, the byte ordering from gdbarch_byte_order for
2307 get_type_arch is returned. */
2308
2309 extern enum bfd_endian type_byte_order (const struct type *type);
2310
2311 /* A flag to enable printing of debugging information of C++
2312 overloading. */
2313
2314 extern unsigned int overload_debug;
2315
2316 #endif /* GDBTYPES_H */