]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.h
gdb: remove TYPE_ARRAY_{LOWER,UPPER}_BOUND_VALUE
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
214 the type is signed (unless TYPE_NOSIGN (below) is set). */
215
216 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
217
218 /* * No sign for this type. In C++, "char", "signed char", and
219 "unsigned char" are distinct types; so we need an extra flag to
220 indicate the absence of a sign! */
221
222 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
223
224 /* * A compiler may supply dwarf instrumentation
225 that indicates the desired endian interpretation of the variable
226 differs from the native endian representation. */
227
228 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
229
230 /* * This appears in a type's flags word if it is a stub type (e.g.,
231 if someone referenced a type that wasn't defined in a source file
232 via (struct sir_not_appearing_in_this_film *)). */
233
234 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
235
236 /* * The target type of this type is a stub type, and this type needs
237 to be updated if it gets un-stubbed in check_typedef. Used for
238 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
239 based on the TYPE_LENGTH of the target type. Also, set for
240 TYPE_CODE_TYPEDEF. */
241
242 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
243
244 /* * This is a function type which appears to have a prototype. We
245 need this for function calls in order to tell us if it's necessary
246 to coerce the args, or to just do the standard conversions. This
247 is used with a short field. */
248
249 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
250
251 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
252 to functions. */
253
254 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
255
256 /* * Identify a vector type. Gcc is handling this by adding an extra
257 attribute to the array type. We slurp that in as a new flag of a
258 type. This is used only in dwarf2read.c. */
259 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
260
261 /* * The debugging formats (especially STABS) do not contain enough
262 information to represent all Ada types---especially those whose
263 size depends on dynamic quantities. Therefore, the GNAT Ada
264 compiler includes extra information in the form of additional type
265 definitions connected by naming conventions. This flag indicates
266 that the type is an ordinary (unencoded) GDB type that has been
267 created from the necessary run-time information, and does not need
268 further interpretation. Optionally marks ordinary, fixed-size GDB
269 type. */
270
271 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
272
273 /* * This debug target supports TYPE_STUB(t). In the unsupported case
274 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
275 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
276 guessed the TYPE_STUB(t) value (see dwarfread.c). */
277
278 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
279
280 /* * Not textual. By default, GDB treats all single byte integers as
281 characters (or elements of strings) unless this flag is set. */
282
283 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
284
285 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
286 address is returned by this function call. TYPE_TARGET_TYPE
287 determines the final returned function type to be presented to
288 user. */
289
290 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
291
292 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
293 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
294 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
295
296 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
297 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
298 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
299
300 /* * True if this type was declared using the "class" keyword. This is
301 only valid for C++ structure and enum types. If false, a structure
302 was declared as a "struct"; if true it was declared "class". For
303 enum types, this is true when "enum class" or "enum struct" was
304 used to declare the type.. */
305
306 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
307
308 /* * True if this type is a "flag" enum. A flag enum is one where all
309 the values are pairwise disjoint when "and"ed together. This
310 affects how enum values are printed. */
311
312 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
313
314 /* * Constant type. If this is set, the corresponding type has a
315 const modifier. */
316
317 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
318
319 /* * Volatile type. If this is set, the corresponding type has a
320 volatile modifier. */
321
322 #define TYPE_VOLATILE(t) \
323 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
324
325 /* * Restrict type. If this is set, the corresponding type has a
326 restrict modifier. */
327
328 #define TYPE_RESTRICT(t) \
329 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
330
331 /* * Atomic type. If this is set, the corresponding type has an
332 _Atomic modifier. */
333
334 #define TYPE_ATOMIC(t) \
335 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
336
337 /* * True if this type represents either an lvalue or lvalue reference type. */
338
339 #define TYPE_IS_REFERENCE(t) \
340 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
341
342 /* * True if this type is allocatable. */
343 #define TYPE_IS_ALLOCATABLE(t) \
344 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
345
346 /* * True if this type has variant parts. */
347 #define TYPE_HAS_VARIANT_PARTS(t) \
348 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
349
350 /* * True if this type has a dynamic length. */
351 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
352 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
353
354 /* * Instruction-space delimited type. This is for Harvard architectures
355 which have separate instruction and data address spaces (and perhaps
356 others).
357
358 GDB usually defines a flat address space that is a superset of the
359 architecture's two (or more) address spaces, but this is an extension
360 of the architecture's model.
361
362 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
363 resides in instruction memory, even if its address (in the extended
364 flat address space) does not reflect this.
365
366 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
367 corresponding type resides in the data memory space, even if
368 this is not indicated by its (flat address space) address.
369
370 If neither flag is set, the default space for functions / methods
371 is instruction space, and for data objects is data memory. */
372
373 #define TYPE_CODE_SPACE(t) \
374 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
375
376 #define TYPE_DATA_SPACE(t) \
377 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
378
379 /* * Address class flags. Some environments provide for pointers
380 whose size is different from that of a normal pointer or address
381 types where the bits are interpreted differently than normal
382 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
383 target specific ways to represent these different types of address
384 classes. */
385
386 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
387 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
388 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
389 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
390 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
391 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
392 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
393 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
394
395 /* * Information about a single discriminant. */
396
397 struct discriminant_range
398 {
399 /* * The range of values for the variant. This is an inclusive
400 range. */
401 ULONGEST low, high;
402
403 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
404 is true if this should be an unsigned comparison; false for
405 signed. */
406 bool contains (ULONGEST value, bool is_unsigned) const
407 {
408 if (is_unsigned)
409 return value >= low && value <= high;
410 LONGEST valuel = (LONGEST) value;
411 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
412 }
413 };
414
415 struct variant_part;
416
417 /* * A single variant. A variant has a list of discriminant values.
418 When the discriminator matches one of these, the variant is
419 enabled. Each variant controls zero or more fields; and may also
420 control other variant parts as well. This struct corresponds to
421 DW_TAG_variant in DWARF. */
422
423 struct variant : allocate_on_obstack
424 {
425 /* * The discriminant ranges for this variant. */
426 gdb::array_view<discriminant_range> discriminants;
427
428 /* * The fields controlled by this variant. This is inclusive on
429 the low end and exclusive on the high end. A variant may not
430 control any fields, in which case the two values will be equal.
431 These are indexes into the type's array of fields. */
432 int first_field;
433 int last_field;
434
435 /* * Variant parts controlled by this variant. */
436 gdb::array_view<variant_part> parts;
437
438 /* * Return true if this is the default variant. The default
439 variant can be recognized because it has no associated
440 discriminants. */
441 bool is_default () const
442 {
443 return discriminants.empty ();
444 }
445
446 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
447 if this should be an unsigned comparison; false for signed. */
448 bool matches (ULONGEST value, bool is_unsigned) const;
449 };
450
451 /* * A variant part. Each variant part has an optional discriminant
452 and holds an array of variants. This struct corresponds to
453 DW_TAG_variant_part in DWARF. */
454
455 struct variant_part : allocate_on_obstack
456 {
457 /* * The index of the discriminant field in the outer type. This is
458 an index into the type's array of fields. If this is -1, there
459 is no discriminant, and only the default variant can be
460 considered to be selected. */
461 int discriminant_index;
462
463 /* * True if this discriminant is unsigned; false if signed. This
464 comes from the type of the discriminant. */
465 bool is_unsigned;
466
467 /* * The variants that are controlled by this variant part. Note
468 that these will always be sorted by field number. */
469 gdb::array_view<variant> variants;
470 };
471
472
473 enum dynamic_prop_kind
474 {
475 PROP_UNDEFINED, /* Not defined. */
476 PROP_CONST, /* Constant. */
477 PROP_ADDR_OFFSET, /* Address offset. */
478 PROP_LOCEXPR, /* Location expression. */
479 PROP_LOCLIST, /* Location list. */
480 PROP_VARIANT_PARTS, /* Variant parts. */
481 PROP_TYPE, /* Type. */
482 };
483
484 union dynamic_prop_data
485 {
486 /* Storage for constant property. */
487
488 LONGEST const_val;
489
490 /* Storage for dynamic property. */
491
492 void *baton;
493
494 /* Storage of variant parts for a type. A type with variant parts
495 has all its fields "linearized" -- stored in a single field
496 array, just as if they had all been declared that way. The
497 variant parts are attached via a dynamic property, and then are
498 used to control which fields end up in the final type during
499 dynamic type resolution. */
500
501 const gdb::array_view<variant_part> *variant_parts;
502
503 /* Once a variant type is resolved, we may want to be able to go
504 from the resolved type to the original type. In this case we
505 rewrite the property's kind and set this field. */
506
507 struct type *original_type;
508 };
509
510 /* * Used to store a dynamic property. */
511
512 struct dynamic_prop
513 {
514 dynamic_prop_kind kind () const
515 {
516 return m_kind;
517 }
518
519 void set_undefined ()
520 {
521 m_kind = PROP_UNDEFINED;
522 }
523
524 LONGEST const_val () const
525 {
526 gdb_assert (m_kind == PROP_CONST);
527
528 return m_data.const_val;
529 }
530
531 void set_const_val (LONGEST const_val)
532 {
533 m_kind = PROP_CONST;
534 m_data.const_val = const_val;
535 }
536
537 void *baton () const
538 {
539 gdb_assert (m_kind == PROP_LOCEXPR
540 || m_kind == PROP_LOCLIST
541 || m_kind == PROP_ADDR_OFFSET);
542
543 return m_data.baton;
544 }
545
546 void set_locexpr (void *baton)
547 {
548 m_kind = PROP_LOCEXPR;
549 m_data.baton = baton;
550 }
551
552 void set_loclist (void *baton)
553 {
554 m_kind = PROP_LOCLIST;
555 m_data.baton = baton;
556 }
557
558 void set_addr_offset (void *baton)
559 {
560 m_kind = PROP_ADDR_OFFSET;
561 m_data.baton = baton;
562 }
563
564 const gdb::array_view<variant_part> *variant_parts () const
565 {
566 gdb_assert (m_kind == PROP_VARIANT_PARTS);
567
568 return m_data.variant_parts;
569 }
570
571 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
572 {
573 m_kind = PROP_VARIANT_PARTS;
574 m_data.variant_parts = variant_parts;
575 }
576
577 struct type *original_type () const
578 {
579 gdb_assert (m_kind == PROP_TYPE);
580
581 return m_data.original_type;
582 }
583
584 void set_original_type (struct type *original_type)
585 {
586 m_kind = PROP_TYPE;
587 m_data.original_type = original_type;
588 }
589
590 /* Determine which field of the union dynamic_prop.data is used. */
591 enum dynamic_prop_kind m_kind;
592
593 /* Storage for dynamic or static value. */
594 union dynamic_prop_data m_data;
595 };
596
597 /* Compare two dynamic_prop objects for equality. dynamic_prop
598 instances are equal iff they have the same type and storage. */
599 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
600
601 /* Compare two dynamic_prop objects for inequality. */
602 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
603 {
604 return !(l == r);
605 }
606
607 /* * Define a type's dynamic property node kind. */
608 enum dynamic_prop_node_kind
609 {
610 /* A property providing a type's data location.
611 Evaluating this field yields to the location of an object's data. */
612 DYN_PROP_DATA_LOCATION,
613
614 /* A property representing DW_AT_allocated. The presence of this attribute
615 indicates that the object of the type can be allocated/deallocated. */
616 DYN_PROP_ALLOCATED,
617
618 /* A property representing DW_AT_associated. The presence of this attribute
619 indicated that the object of the type can be associated. */
620 DYN_PROP_ASSOCIATED,
621
622 /* A property providing an array's byte stride. */
623 DYN_PROP_BYTE_STRIDE,
624
625 /* A property holding variant parts. */
626 DYN_PROP_VARIANT_PARTS,
627
628 /* A property holding the size of the type. */
629 DYN_PROP_BYTE_SIZE,
630 };
631
632 /* * List for dynamic type attributes. */
633 struct dynamic_prop_list
634 {
635 /* The kind of dynamic prop in this node. */
636 enum dynamic_prop_node_kind prop_kind;
637
638 /* The dynamic property itself. */
639 struct dynamic_prop prop;
640
641 /* A pointer to the next dynamic property. */
642 struct dynamic_prop_list *next;
643 };
644
645 /* * Determine which field of the union main_type.fields[x].loc is
646 used. */
647
648 enum field_loc_kind
649 {
650 FIELD_LOC_KIND_BITPOS, /**< bitpos */
651 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
652 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
653 FIELD_LOC_KIND_PHYSNAME, /**< physname */
654 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
655 };
656
657 /* * A discriminant to determine which field in the
658 main_type.type_specific union is being used, if any.
659
660 For types such as TYPE_CODE_FLT, the use of this
661 discriminant is really redundant, as we know from the type code
662 which field is going to be used. As such, it would be possible to
663 reduce the size of this enum in order to save a bit or two for
664 other fields of struct main_type. But, since we still have extra
665 room , and for the sake of clarity and consistency, we treat all fields
666 of the union the same way. */
667
668 enum type_specific_kind
669 {
670 TYPE_SPECIFIC_NONE,
671 TYPE_SPECIFIC_CPLUS_STUFF,
672 TYPE_SPECIFIC_GNAT_STUFF,
673 TYPE_SPECIFIC_FLOATFORMAT,
674 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
675 TYPE_SPECIFIC_FUNC,
676 TYPE_SPECIFIC_SELF_TYPE
677 };
678
679 union type_owner
680 {
681 struct objfile *objfile;
682 struct gdbarch *gdbarch;
683 };
684
685 union field_location
686 {
687 /* * Position of this field, counting in bits from start of
688 containing structure. For big-endian targets, it is the bit
689 offset to the MSB. For little-endian targets, it is the bit
690 offset to the LSB. */
691
692 LONGEST bitpos;
693
694 /* * Enum value. */
695 LONGEST enumval;
696
697 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
698 physaddr is the location (in the target) of the static
699 field. Otherwise, physname is the mangled label of the
700 static field. */
701
702 CORE_ADDR physaddr;
703 const char *physname;
704
705 /* * The field location can be computed by evaluating the
706 following DWARF block. Its DATA is allocated on
707 objfile_obstack - no CU load is needed to access it. */
708
709 struct dwarf2_locexpr_baton *dwarf_block;
710 };
711
712 struct field
713 {
714 struct type *type () const
715 {
716 return this->m_type;
717 }
718
719 void set_type (struct type *type)
720 {
721 this->m_type = type;
722 }
723
724 union field_location loc;
725
726 /* * For a function or member type, this is 1 if the argument is
727 marked artificial. Artificial arguments should not be shown
728 to the user. For TYPE_CODE_RANGE it is set if the specific
729 bound is not defined. */
730
731 unsigned int artificial : 1;
732
733 /* * Discriminant for union field_location. */
734
735 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
736
737 /* * Size of this field, in bits, or zero if not packed.
738 If non-zero in an array type, indicates the element size in
739 bits (used only in Ada at the moment).
740 For an unpacked field, the field's type's length
741 says how many bytes the field occupies. */
742
743 unsigned int bitsize : 28;
744
745 /* * In a struct or union type, type of this field.
746 - In a function or member type, type of this argument.
747 - In an array type, the domain-type of the array. */
748
749 struct type *m_type;
750
751 /* * Name of field, value or argument.
752 NULL for range bounds, array domains, and member function
753 arguments. */
754
755 const char *name;
756 };
757
758 struct range_bounds
759 {
760 /* * Low bound of range. */
761
762 struct dynamic_prop low;
763
764 /* * High bound of range. */
765
766 struct dynamic_prop high;
767
768 /* The stride value for this range. This can be stored in bits or bytes
769 based on the value of BYTE_STRIDE_P. It is optional to have a stride
770 value, if this range has no stride value defined then this will be set
771 to the constant zero. */
772
773 struct dynamic_prop stride;
774
775 /* * The bias. Sometimes a range value is biased before storage.
776 The bias is added to the stored bits to form the true value. */
777
778 LONGEST bias;
779
780 /* True if HIGH range bound contains the number of elements in the
781 subrange. This affects how the final high bound is computed. */
782
783 unsigned int flag_upper_bound_is_count : 1;
784
785 /* True if LOW or/and HIGH are resolved into a static bound from
786 a dynamic one. */
787
788 unsigned int flag_bound_evaluated : 1;
789
790 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
791
792 unsigned int flag_is_byte_stride : 1;
793 };
794
795 /* Compare two range_bounds objects for equality. Simply does
796 memberwise comparison. */
797 extern bool operator== (const range_bounds &l, const range_bounds &r);
798
799 /* Compare two range_bounds objects for inequality. */
800 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
801 {
802 return !(l == r);
803 }
804
805 union type_specific
806 {
807 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
808 point to cplus_struct_default, a default static instance of a
809 struct cplus_struct_type. */
810
811 struct cplus_struct_type *cplus_stuff;
812
813 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
814 provides additional information. */
815
816 struct gnat_aux_type *gnat_stuff;
817
818 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
819 floatformat object that describes the floating-point value
820 that resides within the type. */
821
822 const struct floatformat *floatformat;
823
824 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
825
826 struct func_type *func_stuff;
827
828 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
829 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
830 is a member of. */
831
832 struct type *self_type;
833 };
834
835 /* * Main structure representing a type in GDB.
836
837 This structure is space-critical. Its layout has been tweaked to
838 reduce the space used. */
839
840 struct main_type
841 {
842 /* * Code for kind of type. */
843
844 ENUM_BITFIELD(type_code) code : 8;
845
846 /* * Flags about this type. These fields appear at this location
847 because they packs nicely here. See the TYPE_* macros for
848 documentation about these fields. */
849
850 unsigned int flag_unsigned : 1;
851 unsigned int flag_nosign : 1;
852 unsigned int flag_stub : 1;
853 unsigned int flag_target_stub : 1;
854 unsigned int flag_prototyped : 1;
855 unsigned int flag_varargs : 1;
856 unsigned int flag_vector : 1;
857 unsigned int flag_stub_supported : 1;
858 unsigned int flag_gnu_ifunc : 1;
859 unsigned int flag_fixed_instance : 1;
860 unsigned int flag_objfile_owned : 1;
861 unsigned int flag_endianity_not_default : 1;
862
863 /* * True if this type was declared with "class" rather than
864 "struct". */
865
866 unsigned int flag_declared_class : 1;
867
868 /* * True if this is an enum type with disjoint values. This
869 affects how the enum is printed. */
870
871 unsigned int flag_flag_enum : 1;
872
873 /* * A discriminant telling us which field of the type_specific
874 union is being used for this type, if any. */
875
876 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
877
878 /* * Number of fields described for this type. This field appears
879 at this location because it packs nicely here. */
880
881 short nfields;
882
883 /* * Name of this type, or NULL if none.
884
885 This is used for printing only. For looking up a name, look for
886 a symbol in the VAR_DOMAIN. This is generally allocated in the
887 objfile's obstack. However coffread.c uses malloc. */
888
889 const char *name;
890
891 /* * Every type is now associated with a particular objfile, and the
892 type is allocated on the objfile_obstack for that objfile. One
893 problem however, is that there are times when gdb allocates new
894 types while it is not in the process of reading symbols from a
895 particular objfile. Fortunately, these happen when the type
896 being created is a derived type of an existing type, such as in
897 lookup_pointer_type(). So we can just allocate the new type
898 using the same objfile as the existing type, but to do this we
899 need a backpointer to the objfile from the existing type. Yes
900 this is somewhat ugly, but without major overhaul of the internal
901 type system, it can't be avoided for now. */
902
903 union type_owner owner;
904
905 /* * For a pointer type, describes the type of object pointed to.
906 - For an array type, describes the type of the elements.
907 - For a function or method type, describes the type of the return value.
908 - For a range type, describes the type of the full range.
909 - For a complex type, describes the type of each coordinate.
910 - For a special record or union type encoding a dynamic-sized type
911 in GNAT, a memoized pointer to a corresponding static version of
912 the type.
913 - Unused otherwise. */
914
915 struct type *target_type;
916
917 /* * For structure and union types, a description of each field.
918 For set and pascal array types, there is one "field",
919 whose type is the domain type of the set or array.
920 For range types, there are two "fields",
921 the minimum and maximum values (both inclusive).
922 For enum types, each possible value is described by one "field".
923 For a function or method type, a "field" for each parameter.
924 For C++ classes, there is one field for each base class (if it is
925 a derived class) plus one field for each class data member. Member
926 functions are recorded elsewhere.
927
928 Using a pointer to a separate array of fields
929 allows all types to have the same size, which is useful
930 because we can allocate the space for a type before
931 we know what to put in it. */
932
933 union
934 {
935 struct field *fields;
936
937 /* * Union member used for range types. */
938
939 struct range_bounds *bounds;
940
941 /* If this is a scalar type, then this is its corresponding
942 complex type. */
943 struct type *complex_type;
944
945 } flds_bnds;
946
947 /* * Slot to point to additional language-specific fields of this
948 type. */
949
950 union type_specific type_specific;
951
952 /* * Contains all dynamic type properties. */
953 struct dynamic_prop_list *dyn_prop_list;
954 };
955
956 /* * Number of bits allocated for alignment. */
957
958 #define TYPE_ALIGN_BITS 8
959
960 /* * A ``struct type'' describes a particular instance of a type, with
961 some particular qualification. */
962
963 struct type
964 {
965 /* Get the type code of this type.
966
967 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
968 type, you need to do `check_typedef (type)->code ()`. */
969 type_code code () const
970 {
971 return this->main_type->code;
972 }
973
974 /* Set the type code of this type. */
975 void set_code (type_code code)
976 {
977 this->main_type->code = code;
978 }
979
980 /* Get the name of this type. */
981 const char *name () const
982 {
983 return this->main_type->name;
984 }
985
986 /* Set the name of this type. */
987 void set_name (const char *name)
988 {
989 this->main_type->name = name;
990 }
991
992 /* Get the number of fields of this type. */
993 int num_fields () const
994 {
995 return this->main_type->nfields;
996 }
997
998 /* Set the number of fields of this type. */
999 void set_num_fields (int num_fields)
1000 {
1001 this->main_type->nfields = num_fields;
1002 }
1003
1004 /* Get the fields array of this type. */
1005 struct field *fields () const
1006 {
1007 return this->main_type->flds_bnds.fields;
1008 }
1009
1010 /* Get the field at index IDX. */
1011 struct field &field (int idx) const
1012 {
1013 return this->fields ()[idx];
1014 }
1015
1016 /* Set the fields array of this type. */
1017 void set_fields (struct field *fields)
1018 {
1019 this->main_type->flds_bnds.fields = fields;
1020 }
1021
1022 type *index_type () const
1023 {
1024 return this->field (0).type ();
1025 }
1026
1027 void set_index_type (type *index_type)
1028 {
1029 this->field (0).set_type (index_type);
1030 }
1031
1032 /* Get the bounds bounds of this type. The type must be a range type. */
1033 range_bounds *bounds () const
1034 {
1035 gdb_assert (this->code () == TYPE_CODE_RANGE);
1036
1037 return this->main_type->flds_bnds.bounds;
1038 }
1039
1040 /* Set the bounds of this type. The type must be a range type. */
1041 void set_bounds (range_bounds *bounds)
1042 {
1043 gdb_assert (this->code () == TYPE_CODE_RANGE);
1044
1045 this->main_type->flds_bnds.bounds = bounds;
1046 }
1047
1048 /* * Return the dynamic property of the requested KIND from this type's
1049 list of dynamic properties. */
1050 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1051
1052 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1053 property to this type.
1054
1055 This function assumes that this type is objfile-owned. */
1056 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1057
1058 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1059 void remove_dyn_prop (dynamic_prop_node_kind kind);
1060
1061 /* * Type that is a pointer to this type.
1062 NULL if no such pointer-to type is known yet.
1063 The debugger may add the address of such a type
1064 if it has to construct one later. */
1065
1066 struct type *pointer_type;
1067
1068 /* * C++: also need a reference type. */
1069
1070 struct type *reference_type;
1071
1072 /* * A C++ rvalue reference type added in C++11. */
1073
1074 struct type *rvalue_reference_type;
1075
1076 /* * Variant chain. This points to a type that differs from this
1077 one only in qualifiers and length. Currently, the possible
1078 qualifiers are const, volatile, code-space, data-space, and
1079 address class. The length may differ only when one of the
1080 address class flags are set. The variants are linked in a
1081 circular ring and share MAIN_TYPE. */
1082
1083 struct type *chain;
1084
1085 /* * The alignment for this type. Zero means that the alignment was
1086 not specified in the debug info. Note that this is stored in a
1087 funny way: as the log base 2 (plus 1) of the alignment; so a
1088 value of 1 means the alignment is 1, and a value of 9 means the
1089 alignment is 256. */
1090
1091 unsigned align_log2 : TYPE_ALIGN_BITS;
1092
1093 /* * Flags specific to this instance of the type, indicating where
1094 on the ring we are.
1095
1096 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1097 binary or-ed with the target type, with a special case for
1098 address class and space class. For example if this typedef does
1099 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1100 instance flags are completely inherited from the target type. No
1101 qualifiers can be cleared by the typedef. See also
1102 check_typedef. */
1103 unsigned instance_flags : 9;
1104
1105 /* * Length of storage for a value of this type. The value is the
1106 expression in host bytes of what sizeof(type) would return. This
1107 size includes padding. For example, an i386 extended-precision
1108 floating point value really only occupies ten bytes, but most
1109 ABI's declare its size to be 12 bytes, to preserve alignment.
1110 A `struct type' representing such a floating-point type would
1111 have a `length' value of 12, even though the last two bytes are
1112 unused.
1113
1114 Since this field is expressed in host bytes, its value is appropriate
1115 to pass to memcpy and such (it is assumed that GDB itself always runs
1116 on an 8-bits addressable architecture). However, when using it for
1117 target address arithmetic (e.g. adding it to a target address), the
1118 type_length_units function should be used in order to get the length
1119 expressed in target addressable memory units. */
1120
1121 ULONGEST length;
1122
1123 /* * Core type, shared by a group of qualified types. */
1124
1125 struct main_type *main_type;
1126 };
1127
1128 #define NULL_TYPE ((struct type *) 0)
1129
1130 struct fn_fieldlist
1131 {
1132
1133 /* * The overloaded name.
1134 This is generally allocated in the objfile's obstack.
1135 However stabsread.c sometimes uses malloc. */
1136
1137 const char *name;
1138
1139 /* * The number of methods with this name. */
1140
1141 int length;
1142
1143 /* * The list of methods. */
1144
1145 struct fn_field *fn_fields;
1146 };
1147
1148
1149
1150 struct fn_field
1151 {
1152 /* * If is_stub is clear, this is the mangled name which we can look
1153 up to find the address of the method (FIXME: it would be cleaner
1154 to have a pointer to the struct symbol here instead).
1155
1156 If is_stub is set, this is the portion of the mangled name which
1157 specifies the arguments. For example, "ii", if there are two int
1158 arguments, or "" if there are no arguments. See gdb_mangle_name
1159 for the conversion from this format to the one used if is_stub is
1160 clear. */
1161
1162 const char *physname;
1163
1164 /* * The function type for the method.
1165
1166 (This comment used to say "The return value of the method", but
1167 that's wrong. The function type is expected here, i.e. something
1168 with TYPE_CODE_METHOD, and *not* the return-value type). */
1169
1170 struct type *type;
1171
1172 /* * For virtual functions. First baseclass that defines this
1173 virtual function. */
1174
1175 struct type *fcontext;
1176
1177 /* Attributes. */
1178
1179 unsigned int is_const:1;
1180 unsigned int is_volatile:1;
1181 unsigned int is_private:1;
1182 unsigned int is_protected:1;
1183 unsigned int is_artificial:1;
1184
1185 /* * A stub method only has some fields valid (but they are enough
1186 to reconstruct the rest of the fields). */
1187
1188 unsigned int is_stub:1;
1189
1190 /* * True if this function is a constructor, false otherwise. */
1191
1192 unsigned int is_constructor : 1;
1193
1194 /* * True if this function is deleted, false otherwise. */
1195
1196 unsigned int is_deleted : 1;
1197
1198 /* * DW_AT_defaulted attribute for this function. The value is one
1199 of the DW_DEFAULTED constants. */
1200
1201 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1202
1203 /* * Unused. */
1204
1205 unsigned int dummy:6;
1206
1207 /* * Index into that baseclass's virtual function table, minus 2;
1208 else if static: VOFFSET_STATIC; else: 0. */
1209
1210 unsigned int voffset:16;
1211
1212 #define VOFFSET_STATIC 1
1213
1214 };
1215
1216 struct decl_field
1217 {
1218 /* * Unqualified name to be prefixed by owning class qualified
1219 name. */
1220
1221 const char *name;
1222
1223 /* * Type this typedef named NAME represents. */
1224
1225 struct type *type;
1226
1227 /* * True if this field was declared protected, false otherwise. */
1228 unsigned int is_protected : 1;
1229
1230 /* * True if this field was declared private, false otherwise. */
1231 unsigned int is_private : 1;
1232 };
1233
1234 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1235 TYPE_CODE_UNION nodes. */
1236
1237 struct cplus_struct_type
1238 {
1239 /* * Number of base classes this type derives from. The
1240 baseclasses are stored in the first N_BASECLASSES fields
1241 (i.e. the `fields' field of the struct type). The only fields
1242 of struct field that are used are: type, name, loc.bitpos. */
1243
1244 short n_baseclasses;
1245
1246 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1247 All access to this field must be through TYPE_VPTR_FIELDNO as one
1248 thing it does is check whether the field has been initialized.
1249 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1250 which for portability reasons doesn't initialize this field.
1251 TYPE_VPTR_FIELDNO returns -1 for this case.
1252
1253 If -1, we were unable to find the virtual function table pointer in
1254 initial symbol reading, and get_vptr_fieldno should be called to find
1255 it if possible. get_vptr_fieldno will update this field if possible.
1256 Otherwise the value is left at -1.
1257
1258 Unused if this type does not have virtual functions. */
1259
1260 short vptr_fieldno;
1261
1262 /* * Number of methods with unique names. All overloaded methods
1263 with the same name count only once. */
1264
1265 short nfn_fields;
1266
1267 /* * Number of template arguments. */
1268
1269 unsigned short n_template_arguments;
1270
1271 /* * One if this struct is a dynamic class, as defined by the
1272 Itanium C++ ABI: if it requires a virtual table pointer,
1273 because it or any of its base classes have one or more virtual
1274 member functions or virtual base classes. Minus one if not
1275 dynamic. Zero if not yet computed. */
1276
1277 int is_dynamic : 2;
1278
1279 /* * The calling convention for this type, fetched from the
1280 DW_AT_calling_convention attribute. The value is one of the
1281 DW_CC constants. */
1282
1283 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1284
1285 /* * The base class which defined the virtual function table pointer. */
1286
1287 struct type *vptr_basetype;
1288
1289 /* * For derived classes, the number of base classes is given by
1290 n_baseclasses and virtual_field_bits is a bit vector containing
1291 one bit per base class. If the base class is virtual, the
1292 corresponding bit will be set.
1293 I.E, given:
1294
1295 class A{};
1296 class B{};
1297 class C : public B, public virtual A {};
1298
1299 B is a baseclass of C; A is a virtual baseclass for C.
1300 This is a C++ 2.0 language feature. */
1301
1302 B_TYPE *virtual_field_bits;
1303
1304 /* * For classes with private fields, the number of fields is
1305 given by nfields and private_field_bits is a bit vector
1306 containing one bit per field.
1307
1308 If the field is private, the corresponding bit will be set. */
1309
1310 B_TYPE *private_field_bits;
1311
1312 /* * For classes with protected fields, the number of fields is
1313 given by nfields and protected_field_bits is a bit vector
1314 containing one bit per field.
1315
1316 If the field is private, the corresponding bit will be set. */
1317
1318 B_TYPE *protected_field_bits;
1319
1320 /* * For classes with fields to be ignored, either this is
1321 optimized out or this field has length 0. */
1322
1323 B_TYPE *ignore_field_bits;
1324
1325 /* * For classes, structures, and unions, a description of each
1326 field, which consists of an overloaded name, followed by the
1327 types of arguments that the method expects, and then the name
1328 after it has been renamed to make it distinct.
1329
1330 fn_fieldlists points to an array of nfn_fields of these. */
1331
1332 struct fn_fieldlist *fn_fieldlists;
1333
1334 /* * typedefs defined inside this class. typedef_field points to
1335 an array of typedef_field_count elements. */
1336
1337 struct decl_field *typedef_field;
1338
1339 unsigned typedef_field_count;
1340
1341 /* * The nested types defined by this type. nested_types points to
1342 an array of nested_types_count elements. */
1343
1344 struct decl_field *nested_types;
1345
1346 unsigned nested_types_count;
1347
1348 /* * The template arguments. This is an array with
1349 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1350 classes. */
1351
1352 struct symbol **template_arguments;
1353 };
1354
1355 /* * Struct used to store conversion rankings. */
1356
1357 struct rank
1358 {
1359 short rank;
1360
1361 /* * When two conversions are of the same type and therefore have
1362 the same rank, subrank is used to differentiate the two.
1363
1364 Eg: Two derived-class-pointer to base-class-pointer conversions
1365 would both have base pointer conversion rank, but the
1366 conversion with the shorter distance to the ancestor is
1367 preferable. 'subrank' would be used to reflect that. */
1368
1369 short subrank;
1370 };
1371
1372 /* * Used for ranking a function for overload resolution. */
1373
1374 typedef std::vector<rank> badness_vector;
1375
1376 /* * GNAT Ada-specific information for various Ada types. */
1377
1378 struct gnat_aux_type
1379 {
1380 /* * Parallel type used to encode information about dynamic types
1381 used in Ada (such as variant records, variable-size array,
1382 etc). */
1383 struct type* descriptive_type;
1384 };
1385
1386 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1387
1388 struct func_type
1389 {
1390 /* * The calling convention for targets supporting multiple ABIs.
1391 Right now this is only fetched from the Dwarf-2
1392 DW_AT_calling_convention attribute. The value is one of the
1393 DW_CC constants. */
1394
1395 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1396
1397 /* * Whether this function normally returns to its caller. It is
1398 set from the DW_AT_noreturn attribute if set on the
1399 DW_TAG_subprogram. */
1400
1401 unsigned int is_noreturn : 1;
1402
1403 /* * Only those DW_TAG_call_site's in this function that have
1404 DW_AT_call_tail_call set are linked in this list. Function
1405 without its tail call list complete
1406 (DW_AT_call_all_tail_calls or its superset
1407 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1408 DW_TAG_call_site's exist in such function. */
1409
1410 struct call_site *tail_call_list;
1411
1412 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1413 contains the method. */
1414
1415 struct type *self_type;
1416 };
1417
1418 /* struct call_site_parameter can be referenced in callees by several ways. */
1419
1420 enum call_site_parameter_kind
1421 {
1422 /* * Use field call_site_parameter.u.dwarf_reg. */
1423 CALL_SITE_PARAMETER_DWARF_REG,
1424
1425 /* * Use field call_site_parameter.u.fb_offset. */
1426 CALL_SITE_PARAMETER_FB_OFFSET,
1427
1428 /* * Use field call_site_parameter.u.param_offset. */
1429 CALL_SITE_PARAMETER_PARAM_OFFSET
1430 };
1431
1432 struct call_site_target
1433 {
1434 union field_location loc;
1435
1436 /* * Discriminant for union field_location. */
1437
1438 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1439 };
1440
1441 union call_site_parameter_u
1442 {
1443 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1444 as DWARF register number, for register passed
1445 parameters. */
1446
1447 int dwarf_reg;
1448
1449 /* * Offset from the callee's frame base, for stack passed
1450 parameters. This equals offset from the caller's stack
1451 pointer. */
1452
1453 CORE_ADDR fb_offset;
1454
1455 /* * Offset relative to the start of this PER_CU to
1456 DW_TAG_formal_parameter which is referenced by both
1457 caller and the callee. */
1458
1459 cu_offset param_cu_off;
1460 };
1461
1462 struct call_site_parameter
1463 {
1464 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1465
1466 union call_site_parameter_u u;
1467
1468 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1469
1470 const gdb_byte *value;
1471 size_t value_size;
1472
1473 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1474 It may be NULL if not provided by DWARF. */
1475
1476 const gdb_byte *data_value;
1477 size_t data_value_size;
1478 };
1479
1480 /* * A place where a function gets called from, represented by
1481 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1482
1483 struct call_site
1484 {
1485 /* * Address of the first instruction after this call. It must be
1486 the first field as we overload core_addr_hash and core_addr_eq
1487 for it. */
1488
1489 CORE_ADDR pc;
1490
1491 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1492
1493 struct call_site *tail_call_next;
1494
1495 /* * Describe DW_AT_call_target. Missing attribute uses
1496 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1497
1498 struct call_site_target target;
1499
1500 /* * Size of the PARAMETER array. */
1501
1502 unsigned parameter_count;
1503
1504 /* * CU of the function where the call is located. It gets used
1505 for DWARF blocks execution in the parameter array below. */
1506
1507 dwarf2_per_cu_data *per_cu;
1508
1509 /* objfile of the function where the call is located. */
1510
1511 dwarf2_per_objfile *per_objfile;
1512
1513 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1514
1515 struct call_site_parameter parameter[1];
1516 };
1517
1518 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1519 static structure. */
1520
1521 extern const struct cplus_struct_type cplus_struct_default;
1522
1523 extern void allocate_cplus_struct_type (struct type *);
1524
1525 #define INIT_CPLUS_SPECIFIC(type) \
1526 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1527 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1528 &cplus_struct_default)
1529
1530 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1531
1532 #define HAVE_CPLUS_STRUCT(type) \
1533 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1534 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1535
1536 #define INIT_NONE_SPECIFIC(type) \
1537 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1538 TYPE_MAIN_TYPE (type)->type_specific = {})
1539
1540 extern const struct gnat_aux_type gnat_aux_default;
1541
1542 extern void allocate_gnat_aux_type (struct type *);
1543
1544 #define INIT_GNAT_SPECIFIC(type) \
1545 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1546 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1547 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1548 /* * A macro that returns non-zero if the type-specific data should be
1549 read as "gnat-stuff". */
1550 #define HAVE_GNAT_AUX_INFO(type) \
1551 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1552
1553 /* * True if TYPE is known to be an Ada type of some kind. */
1554 #define ADA_TYPE_P(type) \
1555 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1556 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1557 && TYPE_FIXED_INSTANCE (type)))
1558
1559 #define INIT_FUNC_SPECIFIC(type) \
1560 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1561 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1562 TYPE_ZALLOC (type, \
1563 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1564
1565 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1566 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1567 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1568 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1569 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1570 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1571 #define TYPE_CHAIN(thistype) (thistype)->chain
1572 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1573 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1574 so you only have to call check_typedef once. Since allocate_value
1575 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1576 #define TYPE_LENGTH(thistype) (thistype)->length
1577
1578 /* * Return the alignment of the type in target addressable memory
1579 units, or 0 if no alignment was specified. */
1580 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1581
1582 /* * Return the alignment of the type in target addressable memory
1583 units, or 0 if no alignment was specified. */
1584 extern unsigned type_raw_align (struct type *);
1585
1586 /* * Return the alignment of the type in target addressable memory
1587 units. Return 0 if the alignment cannot be determined; but note
1588 that this makes an effort to compute the alignment even it it was
1589 not specified in the debug info. */
1590 extern unsigned type_align (struct type *);
1591
1592 /* * Set the alignment of the type. The alignment must be a power of
1593 2. Returns false if the given value does not fit in the available
1594 space in struct type. */
1595 extern bool set_type_align (struct type *, ULONGEST);
1596
1597 #define TYPE_BIT_STRIDE(range_type) \
1598 ((range_type)->bounds ()->stride.const_val () \
1599 * ((range_type)->bounds ()->flag_is_byte_stride ? 8 : 1))
1600
1601 /* Property accessors for the type data location. */
1602 #define TYPE_DATA_LOCATION(thistype) \
1603 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1604 #define TYPE_DATA_LOCATION_BATON(thistype) \
1605 TYPE_DATA_LOCATION (thistype)->data.baton
1606 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1607 (TYPE_DATA_LOCATION (thistype)->const_val ())
1608 #define TYPE_DATA_LOCATION_KIND(thistype) \
1609 (TYPE_DATA_LOCATION (thistype)->kind ())
1610 #define TYPE_DYNAMIC_LENGTH(thistype) \
1611 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1612
1613 /* Property accessors for the type allocated/associated. */
1614 #define TYPE_ALLOCATED_PROP(thistype) \
1615 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1616 #define TYPE_ASSOCIATED_PROP(thistype) \
1617 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1618
1619 /* Attribute accessors for dynamic properties. */
1620 #define TYPE_DYN_PROP_BATON(dynprop) \
1621 dynprop->data.baton
1622 #define TYPE_DYN_PROP_ADDR(dynprop) \
1623 (dynprop->const_val ())
1624 #define TYPE_DYN_PROP_KIND(dynprop) \
1625 (dynprop->kind ())
1626
1627
1628 /* Accessors for struct range_bounds data attached to an array type's
1629 index type. */
1630
1631 #define TYPE_ARRAY_BIT_STRIDE(arraytype) \
1632 (TYPE_BIT_STRIDE(((arraytype)->index_type ())))
1633
1634 /* C++ */
1635
1636 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1637 /* Do not call this, use TYPE_SELF_TYPE. */
1638 extern struct type *internal_type_self_type (struct type *);
1639 extern void set_type_self_type (struct type *, struct type *);
1640
1641 extern int internal_type_vptr_fieldno (struct type *);
1642 extern void set_type_vptr_fieldno (struct type *, int);
1643 extern struct type *internal_type_vptr_basetype (struct type *);
1644 extern void set_type_vptr_basetype (struct type *, struct type *);
1645 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1646 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1647
1648 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1649 #define TYPE_SPECIFIC_FIELD(thistype) \
1650 TYPE_MAIN_TYPE(thistype)->type_specific_field
1651 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1652 where we're trying to print an Ada array using the C language.
1653 In that case, there is no "cplus_stuff", but the C language assumes
1654 that there is. What we do, in that case, is pretend that there is
1655 an implicit one which is the default cplus stuff. */
1656 #define TYPE_CPLUS_SPECIFIC(thistype) \
1657 (!HAVE_CPLUS_STRUCT(thistype) \
1658 ? (struct cplus_struct_type*)&cplus_struct_default \
1659 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1660 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1661 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1662 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1663 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1664 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1665 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1666 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1667 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1668 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1669 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1670 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1671 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1672 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1673 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1674 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1675 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1676
1677 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1678 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1679 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1680
1681 #define FIELD_NAME(thisfld) ((thisfld).name)
1682 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1683 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1684 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1685 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1686 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1687 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1688 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1689 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1690 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1691 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1692 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1693 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1694 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1695 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1696 #define SET_FIELD_PHYSNAME(thisfld, name) \
1697 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1698 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1699 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1700 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1701 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1702 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1703 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1704 FIELD_DWARF_BLOCK (thisfld) = (addr))
1705 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1706 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1707
1708 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1709 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1710 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1711 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1712 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1713 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1714 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1715 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1716 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1717 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1718
1719 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1720 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1721 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1722 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1723 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1724 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1725 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1726 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1727 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1728 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1729 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1730 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1731 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1732 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1733 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1734 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1735 #define TYPE_FIELD_PRIVATE(thistype, n) \
1736 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1737 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1738 #define TYPE_FIELD_PROTECTED(thistype, n) \
1739 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1740 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1741 #define TYPE_FIELD_IGNORE(thistype, n) \
1742 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1743 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1744 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1745 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1746 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1747
1748 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1749 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1750 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1751 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1752 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1753
1754 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1755 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1756 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1757 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1758 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1759 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1760
1761 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1762 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1763 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1764 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1765 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1766 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1767 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1768 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1769 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1770 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1771 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1772 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1773 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1774 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1775 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1776 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1777 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1778
1779 /* Accessors for typedefs defined by a class. */
1780 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1781 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1782 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1783 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1784 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1785 TYPE_TYPEDEF_FIELD (thistype, n).name
1786 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1787 TYPE_TYPEDEF_FIELD (thistype, n).type
1788 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1789 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1790 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1791 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1792 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1793 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1794
1795 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1796 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1797 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1798 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1799 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1800 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1801 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1802 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1803 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1804 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1805 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1806 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1807 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1808 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1809
1810 #define TYPE_IS_OPAQUE(thistype) \
1811 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1812 || ((thistype)->code () == TYPE_CODE_UNION)) \
1813 && ((thistype)->num_fields () == 0) \
1814 && (!HAVE_CPLUS_STRUCT (thistype) \
1815 || TYPE_NFN_FIELDS (thistype) == 0) \
1816 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1817
1818 /* * A helper macro that returns the name of a type or "unnamed type"
1819 if the type has no name. */
1820
1821 #define TYPE_SAFE_NAME(type) \
1822 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1823
1824 /* * A helper macro that returns the name of an error type. If the
1825 type has a name, it is used; otherwise, a default is used. */
1826
1827 #define TYPE_ERROR_NAME(type) \
1828 (type->name () ? type->name () : _("<error type>"))
1829
1830 /* Given TYPE, return its floatformat. */
1831 const struct floatformat *floatformat_from_type (const struct type *type);
1832
1833 struct builtin_type
1834 {
1835 /* Integral types. */
1836
1837 /* Implicit size/sign (based on the architecture's ABI). */
1838 struct type *builtin_void;
1839 struct type *builtin_char;
1840 struct type *builtin_short;
1841 struct type *builtin_int;
1842 struct type *builtin_long;
1843 struct type *builtin_signed_char;
1844 struct type *builtin_unsigned_char;
1845 struct type *builtin_unsigned_short;
1846 struct type *builtin_unsigned_int;
1847 struct type *builtin_unsigned_long;
1848 struct type *builtin_half;
1849 struct type *builtin_float;
1850 struct type *builtin_double;
1851 struct type *builtin_long_double;
1852 struct type *builtin_complex;
1853 struct type *builtin_double_complex;
1854 struct type *builtin_string;
1855 struct type *builtin_bool;
1856 struct type *builtin_long_long;
1857 struct type *builtin_unsigned_long_long;
1858 struct type *builtin_decfloat;
1859 struct type *builtin_decdouble;
1860 struct type *builtin_declong;
1861
1862 /* "True" character types.
1863 We use these for the '/c' print format, because c_char is just a
1864 one-byte integral type, which languages less laid back than C
1865 will print as ... well, a one-byte integral type. */
1866 struct type *builtin_true_char;
1867 struct type *builtin_true_unsigned_char;
1868
1869 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1870 is for when an architecture needs to describe a register that has
1871 no size. */
1872 struct type *builtin_int0;
1873 struct type *builtin_int8;
1874 struct type *builtin_uint8;
1875 struct type *builtin_int16;
1876 struct type *builtin_uint16;
1877 struct type *builtin_int24;
1878 struct type *builtin_uint24;
1879 struct type *builtin_int32;
1880 struct type *builtin_uint32;
1881 struct type *builtin_int64;
1882 struct type *builtin_uint64;
1883 struct type *builtin_int128;
1884 struct type *builtin_uint128;
1885
1886 /* Wide character types. */
1887 struct type *builtin_char16;
1888 struct type *builtin_char32;
1889 struct type *builtin_wchar;
1890
1891 /* Pointer types. */
1892
1893 /* * `pointer to data' type. Some target platforms use an implicitly
1894 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1895 struct type *builtin_data_ptr;
1896
1897 /* * `pointer to function (returning void)' type. Harvard
1898 architectures mean that ABI function and code pointers are not
1899 interconvertible. Similarly, since ANSI, C standards have
1900 explicitly said that pointers to functions and pointers to data
1901 are not interconvertible --- that is, you can't cast a function
1902 pointer to void * and back, and expect to get the same value.
1903 However, all function pointer types are interconvertible, so void
1904 (*) () can server as a generic function pointer. */
1905
1906 struct type *builtin_func_ptr;
1907
1908 /* * `function returning pointer to function (returning void)' type.
1909 The final void return type is not significant for it. */
1910
1911 struct type *builtin_func_func;
1912
1913 /* Special-purpose types. */
1914
1915 /* * This type is used to represent a GDB internal function. */
1916
1917 struct type *internal_fn;
1918
1919 /* * This type is used to represent an xmethod. */
1920 struct type *xmethod;
1921 };
1922
1923 /* * Return the type table for the specified architecture. */
1924
1925 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1926
1927 /* * Per-objfile types used by symbol readers. */
1928
1929 struct objfile_type
1930 {
1931 /* Basic types based on the objfile architecture. */
1932 struct type *builtin_void;
1933 struct type *builtin_char;
1934 struct type *builtin_short;
1935 struct type *builtin_int;
1936 struct type *builtin_long;
1937 struct type *builtin_long_long;
1938 struct type *builtin_signed_char;
1939 struct type *builtin_unsigned_char;
1940 struct type *builtin_unsigned_short;
1941 struct type *builtin_unsigned_int;
1942 struct type *builtin_unsigned_long;
1943 struct type *builtin_unsigned_long_long;
1944 struct type *builtin_half;
1945 struct type *builtin_float;
1946 struct type *builtin_double;
1947 struct type *builtin_long_double;
1948
1949 /* * This type is used to represent symbol addresses. */
1950 struct type *builtin_core_addr;
1951
1952 /* * This type represents a type that was unrecognized in symbol
1953 read-in. */
1954 struct type *builtin_error;
1955
1956 /* * Types used for symbols with no debug information. */
1957 struct type *nodebug_text_symbol;
1958 struct type *nodebug_text_gnu_ifunc_symbol;
1959 struct type *nodebug_got_plt_symbol;
1960 struct type *nodebug_data_symbol;
1961 struct type *nodebug_unknown_symbol;
1962 struct type *nodebug_tls_symbol;
1963 };
1964
1965 /* * Return the type table for the specified objfile. */
1966
1967 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1968
1969 /* Explicit floating-point formats. See "floatformat.h". */
1970 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1971 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1972 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1973 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1974 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1975 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1976 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1977 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1978 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1979 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1980 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1981 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1982
1983
1984 /* Allocate space for storing data associated with a particular
1985 type. We ensure that the space is allocated using the same
1986 mechanism that was used to allocate the space for the type
1987 structure itself. I.e. if the type is on an objfile's
1988 objfile_obstack, then the space for data associated with that type
1989 will also be allocated on the objfile_obstack. If the type is
1990 associated with a gdbarch, then the space for data associated with that
1991 type will also be allocated on the gdbarch_obstack.
1992
1993 If a type is not associated with neither an objfile or a gdbarch then
1994 you should not use this macro to allocate space for data, instead you
1995 should call xmalloc directly, and ensure the memory is correctly freed
1996 when it is no longer needed. */
1997
1998 #define TYPE_ALLOC(t,size) \
1999 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2000 ? &TYPE_OBJFILE (t)->objfile_obstack \
2001 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2002 size))
2003
2004
2005 /* See comment on TYPE_ALLOC. */
2006
2007 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2008
2009 /* Use alloc_type to allocate a type owned by an objfile. Use
2010 alloc_type_arch to allocate a type owned by an architecture. Use
2011 alloc_type_copy to allocate a type with the same owner as a
2012 pre-existing template type, no matter whether objfile or
2013 gdbarch. */
2014 extern struct type *alloc_type (struct objfile *);
2015 extern struct type *alloc_type_arch (struct gdbarch *);
2016 extern struct type *alloc_type_copy (const struct type *);
2017
2018 /* * Return the type's architecture. For types owned by an
2019 architecture, that architecture is returned. For types owned by an
2020 objfile, that objfile's architecture is returned. */
2021
2022 extern struct gdbarch *get_type_arch (const struct type *);
2023
2024 /* * This returns the target type (or NULL) of TYPE, also skipping
2025 past typedefs. */
2026
2027 extern struct type *get_target_type (struct type *type);
2028
2029 /* Return the equivalent of TYPE_LENGTH, but in number of target
2030 addressable memory units of the associated gdbarch instead of bytes. */
2031
2032 extern unsigned int type_length_units (struct type *type);
2033
2034 /* * Helper function to construct objfile-owned types. */
2035
2036 extern struct type *init_type (struct objfile *, enum type_code, int,
2037 const char *);
2038 extern struct type *init_integer_type (struct objfile *, int, int,
2039 const char *);
2040 extern struct type *init_character_type (struct objfile *, int, int,
2041 const char *);
2042 extern struct type *init_boolean_type (struct objfile *, int, int,
2043 const char *);
2044 extern struct type *init_float_type (struct objfile *, int, const char *,
2045 const struct floatformat **,
2046 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2047 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2048 extern struct type *init_complex_type (const char *, struct type *);
2049 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2050 struct type *);
2051
2052 /* Helper functions to construct architecture-owned types. */
2053 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2054 const char *);
2055 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2056 const char *);
2057 extern struct type *arch_character_type (struct gdbarch *, int, int,
2058 const char *);
2059 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2060 const char *);
2061 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2062 const struct floatformat **);
2063 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2064 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2065 struct type *);
2066
2067 /* Helper functions to construct a struct or record type. An
2068 initially empty type is created using arch_composite_type().
2069 Fields are then added using append_composite_type_field*(). A union
2070 type has its size set to the largest field. A struct type has each
2071 field packed against the previous. */
2072
2073 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2074 const char *name, enum type_code code);
2075 extern void append_composite_type_field (struct type *t, const char *name,
2076 struct type *field);
2077 extern void append_composite_type_field_aligned (struct type *t,
2078 const char *name,
2079 struct type *field,
2080 int alignment);
2081 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2082 struct type *field);
2083
2084 /* Helper functions to construct a bit flags type. An initially empty
2085 type is created using arch_flag_type(). Flags are then added using
2086 append_flag_type_field() and append_flag_type_flag(). */
2087 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2088 const char *name, int bit);
2089 extern void append_flags_type_field (struct type *type,
2090 int start_bitpos, int nr_bits,
2091 struct type *field_type, const char *name);
2092 extern void append_flags_type_flag (struct type *type, int bitpos,
2093 const char *name);
2094
2095 extern void make_vector_type (struct type *array_type);
2096 extern struct type *init_vector_type (struct type *elt_type, int n);
2097
2098 extern struct type *lookup_reference_type (struct type *, enum type_code);
2099 extern struct type *lookup_lvalue_reference_type (struct type *);
2100 extern struct type *lookup_rvalue_reference_type (struct type *);
2101
2102
2103 extern struct type *make_reference_type (struct type *, struct type **,
2104 enum type_code);
2105
2106 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2107
2108 extern struct type *make_restrict_type (struct type *);
2109
2110 extern struct type *make_unqualified_type (struct type *);
2111
2112 extern struct type *make_atomic_type (struct type *);
2113
2114 extern void replace_type (struct type *, struct type *);
2115
2116 extern int address_space_name_to_int (struct gdbarch *, const char *);
2117
2118 extern const char *address_space_int_to_name (struct gdbarch *, int);
2119
2120 extern struct type *make_type_with_address_space (struct type *type,
2121 int space_identifier);
2122
2123 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2124
2125 extern struct type *lookup_methodptr_type (struct type *);
2126
2127 extern void smash_to_method_type (struct type *type, struct type *self_type,
2128 struct type *to_type, struct field *args,
2129 int nargs, int varargs);
2130
2131 extern void smash_to_memberptr_type (struct type *, struct type *,
2132 struct type *);
2133
2134 extern void smash_to_methodptr_type (struct type *, struct type *);
2135
2136 extern struct type *allocate_stub_method (struct type *);
2137
2138 extern const char *type_name_or_error (struct type *type);
2139
2140 struct struct_elt
2141 {
2142 /* The field of the element, or NULL if no element was found. */
2143 struct field *field;
2144
2145 /* The bit offset of the element in the parent structure. */
2146 LONGEST offset;
2147 };
2148
2149 /* Given a type TYPE, lookup the field and offset of the component named
2150 NAME.
2151
2152 TYPE can be either a struct or union, or a pointer or reference to
2153 a struct or union. If it is a pointer or reference, its target
2154 type is automatically used. Thus '.' and '->' are interchangable,
2155 as specified for the definitions of the expression element types
2156 STRUCTOP_STRUCT and STRUCTOP_PTR.
2157
2158 If NOERR is nonzero, the returned structure will have field set to
2159 NULL if there is no component named NAME.
2160
2161 If the component NAME is a field in an anonymous substructure of
2162 TYPE, the returned offset is a "global" offset relative to TYPE
2163 rather than an offset within the substructure. */
2164
2165 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2166
2167 /* Given a type TYPE, lookup the type of the component named NAME.
2168
2169 TYPE can be either a struct or union, or a pointer or reference to
2170 a struct or union. If it is a pointer or reference, its target
2171 type is automatically used. Thus '.' and '->' are interchangable,
2172 as specified for the definitions of the expression element types
2173 STRUCTOP_STRUCT and STRUCTOP_PTR.
2174
2175 If NOERR is nonzero, return NULL if there is no component named
2176 NAME. */
2177
2178 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2179
2180 extern struct type *make_pointer_type (struct type *, struct type **);
2181
2182 extern struct type *lookup_pointer_type (struct type *);
2183
2184 extern struct type *make_function_type (struct type *, struct type **);
2185
2186 extern struct type *lookup_function_type (struct type *);
2187
2188 extern struct type *lookup_function_type_with_arguments (struct type *,
2189 int,
2190 struct type **);
2191
2192 extern struct type *create_static_range_type (struct type *, struct type *,
2193 LONGEST, LONGEST);
2194
2195
2196 extern struct type *create_array_type_with_stride
2197 (struct type *, struct type *, struct type *,
2198 struct dynamic_prop *, unsigned int);
2199
2200 extern struct type *create_range_type (struct type *, struct type *,
2201 const struct dynamic_prop *,
2202 const struct dynamic_prop *,
2203 LONGEST);
2204
2205 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2206 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2207 stride. */
2208
2209 extern struct type * create_range_type_with_stride
2210 (struct type *result_type, struct type *index_type,
2211 const struct dynamic_prop *low_bound,
2212 const struct dynamic_prop *high_bound, LONGEST bias,
2213 const struct dynamic_prop *stride, bool byte_stride_p);
2214
2215 extern struct type *create_array_type (struct type *, struct type *,
2216 struct type *);
2217
2218 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2219
2220 extern struct type *create_string_type (struct type *, struct type *,
2221 struct type *);
2222 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2223
2224 extern struct type *create_set_type (struct type *, struct type *);
2225
2226 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2227 const char *);
2228
2229 extern struct type *lookup_signed_typename (const struct language_defn *,
2230 const char *);
2231
2232 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2233
2234 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2235
2236 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2237 ADDR specifies the location of the variable the type is bound to.
2238 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2239 static properties is returned. */
2240 extern struct type *resolve_dynamic_type
2241 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2242 CORE_ADDR addr);
2243
2244 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2245 extern int is_dynamic_type (struct type *type);
2246
2247 extern struct type *check_typedef (struct type *);
2248
2249 extern void check_stub_method_group (struct type *, int);
2250
2251 extern char *gdb_mangle_name (struct type *, int, int);
2252
2253 extern struct type *lookup_typename (const struct language_defn *,
2254 const char *, const struct block *, int);
2255
2256 extern struct type *lookup_template_type (const char *, struct type *,
2257 const struct block *);
2258
2259 extern int get_vptr_fieldno (struct type *, struct type **);
2260
2261 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2262
2263 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2264 LONGEST *high_bound);
2265
2266 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2267
2268 extern int class_types_same_p (const struct type *, const struct type *);
2269
2270 extern int is_ancestor (struct type *, struct type *);
2271
2272 extern int is_public_ancestor (struct type *, struct type *);
2273
2274 extern int is_unique_ancestor (struct type *, struct value *);
2275
2276 /* Overload resolution */
2277
2278 /* * Badness if parameter list length doesn't match arg list length. */
2279 extern const struct rank LENGTH_MISMATCH_BADNESS;
2280
2281 /* * Dummy badness value for nonexistent parameter positions. */
2282 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2283 /* * Badness if no conversion among types. */
2284 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2285
2286 /* * Badness of an exact match. */
2287 extern const struct rank EXACT_MATCH_BADNESS;
2288
2289 /* * Badness of integral promotion. */
2290 extern const struct rank INTEGER_PROMOTION_BADNESS;
2291 /* * Badness of floating promotion. */
2292 extern const struct rank FLOAT_PROMOTION_BADNESS;
2293 /* * Badness of converting a derived class pointer
2294 to a base class pointer. */
2295 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2296 /* * Badness of integral conversion. */
2297 extern const struct rank INTEGER_CONVERSION_BADNESS;
2298 /* * Badness of floating conversion. */
2299 extern const struct rank FLOAT_CONVERSION_BADNESS;
2300 /* * Badness of integer<->floating conversions. */
2301 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2302 /* * Badness of conversion of pointer to void pointer. */
2303 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2304 /* * Badness of conversion to boolean. */
2305 extern const struct rank BOOL_CONVERSION_BADNESS;
2306 /* * Badness of converting derived to base class. */
2307 extern const struct rank BASE_CONVERSION_BADNESS;
2308 /* * Badness of converting from non-reference to reference. Subrank
2309 is the type of reference conversion being done. */
2310 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2311 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2312 /* * Conversion to rvalue reference. */
2313 #define REFERENCE_CONVERSION_RVALUE 1
2314 /* * Conversion to const lvalue reference. */
2315 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2316
2317 /* * Badness of converting integer 0 to NULL pointer. */
2318 extern const struct rank NULL_POINTER_CONVERSION;
2319 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2320 being done. */
2321 extern const struct rank CV_CONVERSION_BADNESS;
2322 #define CV_CONVERSION_CONST 1
2323 #define CV_CONVERSION_VOLATILE 2
2324
2325 /* Non-standard conversions allowed by the debugger */
2326
2327 /* * Converting a pointer to an int is usually OK. */
2328 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2329
2330 /* * Badness of converting a (non-zero) integer constant
2331 to a pointer. */
2332 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2333
2334 extern struct rank sum_ranks (struct rank a, struct rank b);
2335 extern int compare_ranks (struct rank a, struct rank b);
2336
2337 extern int compare_badness (const badness_vector &,
2338 const badness_vector &);
2339
2340 extern badness_vector rank_function (gdb::array_view<type *> parms,
2341 gdb::array_view<value *> args);
2342
2343 extern struct rank rank_one_type (struct type *, struct type *,
2344 struct value *);
2345
2346 extern void recursive_dump_type (struct type *, int);
2347
2348 extern int field_is_static (struct field *);
2349
2350 /* printcmd.c */
2351
2352 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2353 const struct value_print_options *,
2354 int, struct ui_file *);
2355
2356 extern int can_dereference (struct type *);
2357
2358 extern int is_integral_type (struct type *);
2359
2360 extern int is_floating_type (struct type *);
2361
2362 extern int is_scalar_type (struct type *type);
2363
2364 extern int is_scalar_type_recursive (struct type *);
2365
2366 extern int class_or_union_p (const struct type *);
2367
2368 extern void maintenance_print_type (const char *, int);
2369
2370 extern htab_t create_copied_types_hash (struct objfile *objfile);
2371
2372 extern struct type *copy_type_recursive (struct objfile *objfile,
2373 struct type *type,
2374 htab_t copied_types);
2375
2376 extern struct type *copy_type (const struct type *type);
2377
2378 extern bool types_equal (struct type *, struct type *);
2379
2380 extern bool types_deeply_equal (struct type *, struct type *);
2381
2382 extern int type_not_allocated (const struct type *type);
2383
2384 extern int type_not_associated (const struct type *type);
2385
2386 /* * When the type includes explicit byte ordering, return that.
2387 Otherwise, the byte ordering from gdbarch_byte_order for
2388 get_type_arch is returned. */
2389
2390 extern enum bfd_endian type_byte_order (const struct type *type);
2391
2392 /* A flag to enable printing of debugging information of C++
2393 overloading. */
2394
2395 extern unsigned int overload_debug;
2396
2397 #endif /* GDBTYPES_H */