]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gnu-v3-abi.c
Update copyright year range in header of all files managed by GDB
[thirdparty/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001-2023 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "dwarf2.h"
27 #include "objfiles.h"
28 #include "valprint.h"
29 #include "c-lang.h"
30 #include "typeprint.h"
31 #include <algorithm>
32 #include "cli/cli-style.h"
33 #include "dwarf2/loc.h"
34 #include "inferior.h"
35
36 static struct cp_abi_ops gnu_v3_abi_ops;
37
38 /* A gdbarch key for std::type_info, in the event that it can't be
39 found in the debug info. */
40
41 static const registry<gdbarch>::key<struct type> std_type_info_gdbarch_data;
42
43
44 static int
45 gnuv3_is_vtable_name (const char *name)
46 {
47 return startswith (name, "_ZTV");
48 }
49
50 static int
51 gnuv3_is_operator_name (const char *name)
52 {
53 return startswith (name, CP_OPERATOR_STR);
54 }
55
56
57 /* To help us find the components of a vtable, we build ourselves a
58 GDB type object representing the vtable structure. Following the
59 V3 ABI, it goes something like this:
60
61 struct gdb_gnu_v3_abi_vtable {
62
63 / * An array of virtual call and virtual base offsets. The real
64 length of this array depends on the class hierarchy; we use
65 negative subscripts to access the elements. Yucky, but
66 better than the alternatives. * /
67 ptrdiff_t vcall_and_vbase_offsets[0];
68
69 / * The offset from a virtual pointer referring to this table
70 to the top of the complete object. * /
71 ptrdiff_t offset_to_top;
72
73 / * The type_info pointer for this class. This is really a
74 std::type_info *, but GDB doesn't really look at the
75 type_info object itself, so we don't bother to get the type
76 exactly right. * /
77 void *type_info;
78
79 / * Virtual table pointers in objects point here. * /
80
81 / * Virtual function pointers. Like the vcall/vbase array, the
82 real length of this table depends on the class hierarchy. * /
83 void (*virtual_functions[0]) ();
84
85 };
86
87 The catch, of course, is that the exact layout of this table
88 depends on the ABI --- word size, endianness, alignment, etc. So
89 the GDB type object is actually a per-architecture kind of thing.
90
91 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
92 which refers to the struct type * for this structure, laid out
93 appropriately for the architecture. */
94 static const registry<gdbarch>::key<struct type> vtable_type_gdbarch_data;
95
96
97 /* Human-readable names for the numbers of the fields above. */
98 enum {
99 vtable_field_vcall_and_vbase_offsets,
100 vtable_field_offset_to_top,
101 vtable_field_type_info,
102 vtable_field_virtual_functions
103 };
104
105
106 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
107 described above, laid out appropriately for ARCH.
108
109 We use this function as the gdbarch per-architecture data
110 initialization function. */
111 static struct type *
112 get_gdb_vtable_type (struct gdbarch *arch)
113 {
114 struct type *t;
115 struct field *field_list, *field;
116 int offset;
117
118 struct type *result = vtable_type_gdbarch_data.get (arch);
119 if (result != nullptr)
120 return result;
121
122 struct type *void_ptr_type
123 = builtin_type (arch)->builtin_data_ptr;
124 struct type *ptr_to_void_fn_type
125 = builtin_type (arch)->builtin_func_ptr;
126
127 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
128 struct type *ptrdiff_type
129 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
130
131 /* We assume no padding is necessary, since GDB doesn't know
132 anything about alignment at the moment. If this assumption bites
133 us, we should add a gdbarch method which, given a type, returns
134 the alignment that type requires, and then use that here. */
135
136 /* Build the field list. */
137 field_list = XCNEWVEC (struct field, 4);
138 field = &field_list[0];
139 offset = 0;
140
141 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
142 field->set_name ("vcall_and_vbase_offsets");
143 field->set_type (lookup_array_range_type (ptrdiff_type, 0, -1));
144 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
145 offset += field->type ()->length ();
146 field++;
147
148 /* ptrdiff_t offset_to_top; */
149 field->set_name ("offset_to_top");
150 field->set_type (ptrdiff_type);
151 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
152 offset += field->type ()->length ();
153 field++;
154
155 /* void *type_info; */
156 field->set_name ("type_info");
157 field->set_type (void_ptr_type);
158 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
159 offset += field->type ()->length ();
160 field++;
161
162 /* void (*virtual_functions[0]) (); */
163 field->set_name ("virtual_functions");
164 field->set_type (lookup_array_range_type (ptr_to_void_fn_type, 0, -1));
165 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
166 offset += field->type ()->length ();
167 field++;
168
169 /* We assumed in the allocation above that there were four fields. */
170 gdb_assert (field == (field_list + 4));
171
172 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
173 t->set_num_fields (field - field_list);
174 t->set_fields (field_list);
175 t->set_name ("gdb_gnu_v3_abi_vtable");
176 INIT_CPLUS_SPECIFIC (t);
177
178 result = make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
179 vtable_type_gdbarch_data.set (arch, result);
180 return result;
181 }
182
183
184 /* Return the ptrdiff_t type used in the vtable type. */
185 static struct type *
186 vtable_ptrdiff_type (struct gdbarch *gdbarch)
187 {
188 struct type *vtable_type = get_gdb_vtable_type (gdbarch);
189
190 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
191 return vtable_type->field (vtable_field_offset_to_top).type ();
192 }
193
194 /* Return the offset from the start of the imaginary `struct
195 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
196 (i.e., where objects' virtual table pointers point). */
197 static int
198 vtable_address_point_offset (struct gdbarch *gdbarch)
199 {
200 struct type *vtable_type = get_gdb_vtable_type (gdbarch);
201
202 return (vtable_type->field (vtable_field_virtual_functions).loc_bitpos ()
203 / TARGET_CHAR_BIT);
204 }
205
206
207 /* Determine whether structure TYPE is a dynamic class. Cache the
208 result. */
209
210 static int
211 gnuv3_dynamic_class (struct type *type)
212 {
213 int fieldnum, fieldelem;
214
215 type = check_typedef (type);
216 gdb_assert (type->code () == TYPE_CODE_STRUCT
217 || type->code () == TYPE_CODE_UNION);
218
219 if (type->code () == TYPE_CODE_UNION)
220 return 0;
221
222 if (TYPE_CPLUS_DYNAMIC (type))
223 return TYPE_CPLUS_DYNAMIC (type) == 1;
224
225 ALLOCATE_CPLUS_STRUCT_TYPE (type);
226
227 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
228 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
229 || gnuv3_dynamic_class (type->field (fieldnum).type ()))
230 {
231 TYPE_CPLUS_DYNAMIC (type) = 1;
232 return 1;
233 }
234
235 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
236 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
237 fieldelem++)
238 {
239 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
240
241 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
242 {
243 TYPE_CPLUS_DYNAMIC (type) = 1;
244 return 1;
245 }
246 }
247
248 TYPE_CPLUS_DYNAMIC (type) = -1;
249 return 0;
250 }
251
252 /* Find the vtable for a value of CONTAINER_TYPE located at
253 CONTAINER_ADDR. Return a value of the correct vtable type for this
254 architecture, or NULL if CONTAINER does not have a vtable. */
255
256 static struct value *
257 gnuv3_get_vtable (struct gdbarch *gdbarch,
258 struct type *container_type, CORE_ADDR container_addr)
259 {
260 struct type *vtable_type = get_gdb_vtable_type (gdbarch);
261 struct type *vtable_pointer_type;
262 struct value *vtable_pointer;
263 CORE_ADDR vtable_address;
264
265 container_type = check_typedef (container_type);
266 gdb_assert (container_type->code () == TYPE_CODE_STRUCT);
267
268 /* If this type does not have a virtual table, don't read the first
269 field. */
270 if (!gnuv3_dynamic_class (container_type))
271 return NULL;
272
273 /* We do not consult the debug information to find the virtual table.
274 The ABI specifies that it is always at offset zero in any class,
275 and debug information may not represent it.
276
277 We avoid using value_contents on principle, because the object might
278 be large. */
279
280 /* Find the type "pointer to virtual table". */
281 vtable_pointer_type = lookup_pointer_type (vtable_type);
282
283 /* Load it from the start of the class. */
284 vtable_pointer = value_at (vtable_pointer_type, container_addr);
285 vtable_address = value_as_address (vtable_pointer);
286
287 /* Correct it to point at the start of the virtual table, rather
288 than the address point. */
289 return value_at_lazy (vtable_type,
290 vtable_address
291 - vtable_address_point_offset (gdbarch));
292 }
293
294
295 static struct type *
296 gnuv3_rtti_type (struct value *value,
297 int *full_p, LONGEST *top_p, int *using_enc_p)
298 {
299 struct gdbarch *gdbarch;
300 struct type *values_type = check_typedef (value_type (value));
301 struct value *vtable;
302 struct minimal_symbol *vtable_symbol;
303 const char *vtable_symbol_name;
304 const char *class_name;
305 struct type *run_time_type;
306 LONGEST offset_to_top;
307 const char *atsign;
308
309 /* We only have RTTI for dynamic class objects. */
310 if (values_type->code () != TYPE_CODE_STRUCT
311 || !gnuv3_dynamic_class (values_type))
312 return NULL;
313
314 /* Determine architecture. */
315 gdbarch = values_type->arch ();
316
317 if (using_enc_p)
318 *using_enc_p = 0;
319
320 vtable = gnuv3_get_vtable (gdbarch, values_type,
321 value_as_address (value_addr (value)));
322 if (vtable == NULL)
323 return NULL;
324
325 /* Find the linker symbol for this vtable. */
326 vtable_symbol
327 = lookup_minimal_symbol_by_pc (value_address (vtable)
328 + value_embedded_offset (vtable)).minsym;
329 if (! vtable_symbol)
330 return NULL;
331
332 /* The symbol's demangled name should be something like "vtable for
333 CLASS", where CLASS is the name of the run-time type of VALUE.
334 If we didn't like this approach, we could instead look in the
335 type_info object itself to get the class name. But this way
336 should work just as well, and doesn't read target memory. */
337 vtable_symbol_name = vtable_symbol->demangled_name ();
338 if (vtable_symbol_name == NULL
339 || !startswith (vtable_symbol_name, "vtable for "))
340 {
341 warning (_("can't find linker symbol for virtual table for `%s' value"),
342 TYPE_SAFE_NAME (values_type));
343 if (vtable_symbol_name)
344 warning (_(" found `%s' instead"), vtable_symbol_name);
345 return NULL;
346 }
347 class_name = vtable_symbol_name + 11;
348
349 /* Strip off @plt and version suffixes. */
350 atsign = strchr (class_name, '@');
351 if (atsign != NULL)
352 {
353 char *copy;
354
355 copy = (char *) alloca (atsign - class_name + 1);
356 memcpy (copy, class_name, atsign - class_name);
357 copy[atsign - class_name] = '\0';
358 class_name = copy;
359 }
360
361 /* Try to look up the class name as a type name. */
362 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
363 run_time_type = cp_lookup_rtti_type (class_name, NULL);
364 if (run_time_type == NULL)
365 return NULL;
366
367 /* Get the offset from VALUE to the top of the complete object.
368 NOTE: this is the reverse of the meaning of *TOP_P. */
369 offset_to_top
370 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
371
372 if (full_p)
373 *full_p = (- offset_to_top == value_embedded_offset (value)
374 && (value_enclosing_type (value)->length ()
375 >= run_time_type->length ()));
376 if (top_p)
377 *top_p = - offset_to_top;
378 return run_time_type;
379 }
380
381 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
382 function, of type FNTYPE. */
383
384 static struct value *
385 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
386 struct type *fntype, int vtable_index)
387 {
388 struct value *vtable, *vfn;
389
390 /* Every class with virtual functions must have a vtable. */
391 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
392 value_as_address (value_addr (container)));
393 gdb_assert (vtable != NULL);
394
395 /* Fetch the appropriate function pointer from the vtable. */
396 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
397 vtable_index);
398
399 /* If this architecture uses function descriptors directly in the vtable,
400 then the address of the vtable entry is actually a "function pointer"
401 (i.e. points to the descriptor). We don't need to scale the index
402 by the size of a function descriptor; GCC does that before outputting
403 debug information. */
404 if (gdbarch_vtable_function_descriptors (gdbarch))
405 vfn = value_addr (vfn);
406
407 /* Cast the function pointer to the appropriate type. */
408 vfn = value_cast (lookup_pointer_type (fntype), vfn);
409
410 return vfn;
411 }
412
413 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
414 for a description of the arguments. */
415
416 static struct value *
417 gnuv3_virtual_fn_field (struct value **value_p,
418 struct fn_field *f, int j,
419 struct type *vfn_base, int offset)
420 {
421 struct type *values_type = check_typedef (value_type (*value_p));
422 struct gdbarch *gdbarch;
423
424 /* Some simple sanity checks. */
425 if (values_type->code () != TYPE_CODE_STRUCT)
426 error (_("Only classes can have virtual functions."));
427
428 /* Determine architecture. */
429 gdbarch = values_type->arch ();
430
431 /* Cast our value to the base class which defines this virtual
432 function. This takes care of any necessary `this'
433 adjustments. */
434 if (vfn_base != values_type)
435 *value_p = value_cast (vfn_base, *value_p);
436
437 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
438 TYPE_FN_FIELD_VOFFSET (f, j));
439 }
440
441 /* Compute the offset of the baseclass which is
442 the INDEXth baseclass of class TYPE,
443 for value at VALADDR (in host) at ADDRESS (in target).
444 The result is the offset of the baseclass value relative
445 to (the address of)(ARG) + OFFSET.
446
447 -1 is returned on error. */
448
449 static int
450 gnuv3_baseclass_offset (struct type *type, int index,
451 const bfd_byte *valaddr, LONGEST embedded_offset,
452 CORE_ADDR address, const struct value *val)
453 {
454 struct gdbarch *gdbarch;
455 struct type *ptr_type;
456 struct value *vtable;
457 struct value *vbase_array;
458 long int cur_base_offset, base_offset;
459
460 /* Determine architecture. */
461 gdbarch = type->arch ();
462 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
463
464 /* If it isn't a virtual base, this is easy. The offset is in the
465 type definition. */
466 if (!BASETYPE_VIA_VIRTUAL (type, index))
467 return TYPE_BASECLASS_BITPOS (type, index) / 8;
468
469 /* If we have a DWARF expression for the offset, evaluate it. */
470 if (type->field (index).loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK)
471 {
472 struct dwarf2_property_baton baton;
473 baton.property_type
474 = lookup_pointer_type (type->field (index).type ());
475 baton.locexpr = *type->field (index).loc_dwarf_block ();
476
477 struct dynamic_prop prop;
478 prop.set_locexpr (&baton);
479
480 struct property_addr_info addr_stack;
481 addr_stack.type = type;
482 /* Note that we don't set "valaddr" here. Doing so causes
483 regressions. FIXME. */
484 addr_stack.addr = address + embedded_offset;
485 addr_stack.next = nullptr;
486
487 CORE_ADDR result;
488 if (dwarf2_evaluate_property (&prop, nullptr, &addr_stack, &result,
489 {addr_stack.addr}))
490 return (int) (result - addr_stack.addr);
491 }
492
493 /* To access a virtual base, we need to use the vbase offset stored in
494 our vtable. Recent GCC versions provide this information. If it isn't
495 available, we could get what we needed from RTTI, or from drawing the
496 complete inheritance graph based on the debug info. Neither is
497 worthwhile. */
498 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
499 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
500 error (_("Expected a negative vbase offset (old compiler?)"));
501
502 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
503 if ((- cur_base_offset) % ptr_type->length () != 0)
504 error (_("Misaligned vbase offset."));
505 cur_base_offset = cur_base_offset / ((int) ptr_type->length ());
506
507 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
508 gdb_assert (vtable != NULL);
509 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
510 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
511 return base_offset;
512 }
513
514 /* Locate a virtual method in DOMAIN or its non-virtual base classes
515 which has virtual table index VOFFSET. The method has an associated
516 "this" adjustment of ADJUSTMENT bytes. */
517
518 static const char *
519 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
520 LONGEST adjustment)
521 {
522 int i;
523
524 /* Search this class first. */
525 if (adjustment == 0)
526 {
527 int len;
528
529 len = TYPE_NFN_FIELDS (domain);
530 for (i = 0; i < len; i++)
531 {
532 int len2, j;
533 struct fn_field *f;
534
535 f = TYPE_FN_FIELDLIST1 (domain, i);
536 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
537
538 check_stub_method_group (domain, i);
539 for (j = 0; j < len2; j++)
540 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
541 return TYPE_FN_FIELD_PHYSNAME (f, j);
542 }
543 }
544
545 /* Next search non-virtual bases. If it's in a virtual base,
546 we're out of luck. */
547 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
548 {
549 int pos;
550 struct type *basetype;
551
552 if (BASETYPE_VIA_VIRTUAL (domain, i))
553 continue;
554
555 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
556 basetype = domain->field (i).type ();
557 /* Recurse with a modified adjustment. We don't need to adjust
558 voffset. */
559 if (adjustment >= pos && adjustment < pos + basetype->length ())
560 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
561 }
562
563 return NULL;
564 }
565
566 /* Decode GNU v3 method pointer. */
567
568 static int
569 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
570 const gdb_byte *contents,
571 CORE_ADDR *value_p,
572 LONGEST *adjustment_p)
573 {
574 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
575 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
576 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
577 CORE_ADDR ptr_value;
578 LONGEST voffset, adjustment;
579 int vbit;
580
581 /* Extract the pointer to member. The first element is either a pointer
582 or a vtable offset. For pointers, we need to use extract_typed_address
583 to allow the back-end to convert the pointer to a GDB address -- but
584 vtable offsets we must handle as integers. At this point, we do not
585 yet know which case we have, so we extract the value under both
586 interpretations and choose the right one later on. */
587 ptr_value = extract_typed_address (contents, funcptr_type);
588 voffset = extract_signed_integer (contents,
589 funcptr_type->length (), byte_order);
590 contents += funcptr_type->length ();
591 adjustment = extract_signed_integer (contents,
592 offset_type->length (), byte_order);
593
594 if (!gdbarch_vbit_in_delta (gdbarch))
595 {
596 vbit = voffset & 1;
597 voffset = voffset ^ vbit;
598 }
599 else
600 {
601 vbit = adjustment & 1;
602 adjustment = adjustment >> 1;
603 }
604
605 *value_p = vbit? voffset : ptr_value;
606 *adjustment_p = adjustment;
607 return vbit;
608 }
609
610 /* GNU v3 implementation of cplus_print_method_ptr. */
611
612 static void
613 gnuv3_print_method_ptr (const gdb_byte *contents,
614 struct type *type,
615 struct ui_file *stream)
616 {
617 struct type *self_type = TYPE_SELF_TYPE (type);
618 struct gdbarch *gdbarch = self_type->arch ();
619 CORE_ADDR ptr_value;
620 LONGEST adjustment;
621 int vbit;
622
623 /* Extract the pointer to member. */
624 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
625
626 /* Check for NULL. */
627 if (ptr_value == 0 && vbit == 0)
628 {
629 gdb_printf (stream, "NULL");
630 return;
631 }
632
633 /* Search for a virtual method. */
634 if (vbit)
635 {
636 CORE_ADDR voffset;
637 const char *physname;
638
639 /* It's a virtual table offset, maybe in this class. Search
640 for a field with the correct vtable offset. First convert it
641 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
642 voffset = ptr_value / vtable_ptrdiff_type (gdbarch)->length ();
643
644 physname = gnuv3_find_method_in (self_type, voffset, adjustment);
645
646 /* If we found a method, print that. We don't bother to disambiguate
647 possible paths to the method based on the adjustment. */
648 if (physname)
649 {
650 gdb::unique_xmalloc_ptr<char> demangled_name
651 = gdb_demangle (physname, DMGL_ANSI | DMGL_PARAMS);
652
653 gdb_printf (stream, "&virtual ");
654 if (demangled_name == NULL)
655 gdb_puts (physname, stream);
656 else
657 gdb_puts (demangled_name.get (), stream);
658 return;
659 }
660 }
661 else if (ptr_value != 0)
662 {
663 /* Found a non-virtual function: print out the type. */
664 gdb_puts ("(", stream);
665 c_print_type (type, "", stream, -1, 0, current_language->la_language,
666 &type_print_raw_options);
667 gdb_puts (") ", stream);
668 }
669
670 /* We didn't find it; print the raw data. */
671 if (vbit)
672 {
673 gdb_printf (stream, "&virtual table offset ");
674 print_longest (stream, 'd', 1, ptr_value);
675 }
676 else
677 {
678 struct value_print_options opts;
679
680 get_user_print_options (&opts);
681 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
682 }
683
684 if (adjustment)
685 {
686 gdb_printf (stream, ", this adjustment ");
687 print_longest (stream, 'd', 1, adjustment);
688 }
689 }
690
691 /* GNU v3 implementation of cplus_method_ptr_size. */
692
693 static int
694 gnuv3_method_ptr_size (struct type *type)
695 {
696 return 2 * builtin_type (type->arch ())->builtin_data_ptr->length ();
697 }
698
699 /* GNU v3 implementation of cplus_make_method_ptr. */
700
701 static void
702 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
703 CORE_ADDR value, int is_virtual)
704 {
705 struct gdbarch *gdbarch = type->arch ();
706 int size = builtin_type (gdbarch)->builtin_data_ptr->length ();
707 enum bfd_endian byte_order = type_byte_order (type);
708
709 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
710 always zero, since the method pointer is of the correct type.
711 But if the method pointer came from a base class, this is
712 incorrect - it should be the offset to the base. The best
713 fix might be to create the pointer to member pointing at the
714 base class and cast it to the derived class, but that requires
715 support for adjusting pointers to members when casting them -
716 not currently supported by GDB. */
717
718 if (!gdbarch_vbit_in_delta (gdbarch))
719 {
720 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
721 store_unsigned_integer (contents + size, size, byte_order, 0);
722 }
723 else
724 {
725 store_unsigned_integer (contents, size, byte_order, value);
726 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
727 }
728 }
729
730 /* GNU v3 implementation of cplus_method_ptr_to_value. */
731
732 static struct value *
733 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
734 {
735 struct gdbarch *gdbarch;
736 const gdb_byte *contents = value_contents (method_ptr).data ();
737 CORE_ADDR ptr_value;
738 struct type *self_type, *final_type, *method_type;
739 LONGEST adjustment;
740 int vbit;
741
742 self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr)));
743 final_type = lookup_pointer_type (self_type);
744
745 method_type = check_typedef (value_type (method_ptr))->target_type ();
746
747 /* Extract the pointer to member. */
748 gdbarch = self_type->arch ();
749 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
750
751 /* First convert THIS to match the containing type of the pointer to
752 member. This cast may adjust the value of THIS. */
753 *this_p = value_cast (final_type, *this_p);
754
755 /* Then apply whatever adjustment is necessary. This creates a somewhat
756 strange pointer: it claims to have type FINAL_TYPE, but in fact it
757 might not be a valid FINAL_TYPE. For instance, it might be a
758 base class of FINAL_TYPE. And if it's not the primary base class,
759 then printing it out as a FINAL_TYPE object would produce some pretty
760 garbage.
761
762 But we don't really know the type of the first argument in
763 METHOD_TYPE either, which is why this happens. We can't
764 dereference this later as a FINAL_TYPE, but once we arrive in the
765 called method we'll have debugging information for the type of
766 "this" - and that'll match the value we produce here.
767
768 You can provoke this case by casting a Base::* to a Derived::*, for
769 instance. */
770 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
771 *this_p = value_ptradd (*this_p, adjustment);
772 *this_p = value_cast (final_type, *this_p);
773
774 if (vbit)
775 {
776 LONGEST voffset;
777
778 voffset = ptr_value / vtable_ptrdiff_type (gdbarch)->length ();
779 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
780 method_type, voffset);
781 }
782 else
783 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
784 }
785
786 /* Objects of this type are stored in a hash table and a vector when
787 printing the vtables for a class. */
788
789 struct value_and_voffset
790 {
791 /* The value representing the object. */
792 struct value *value;
793
794 /* The maximum vtable offset we've found for any object at this
795 offset in the outermost object. */
796 int max_voffset;
797 };
798
799 /* Hash function for value_and_voffset. */
800
801 static hashval_t
802 hash_value_and_voffset (const void *p)
803 {
804 const struct value_and_voffset *o = (const struct value_and_voffset *) p;
805
806 return value_address (o->value) + value_embedded_offset (o->value);
807 }
808
809 /* Equality function for value_and_voffset. */
810
811 static int
812 eq_value_and_voffset (const void *a, const void *b)
813 {
814 const struct value_and_voffset *ova = (const struct value_and_voffset *) a;
815 const struct value_and_voffset *ovb = (const struct value_and_voffset *) b;
816
817 return (value_address (ova->value) + value_embedded_offset (ova->value)
818 == value_address (ovb->value) + value_embedded_offset (ovb->value));
819 }
820
821 /* Comparison function for value_and_voffset. */
822
823 static bool
824 compare_value_and_voffset (const struct value_and_voffset *va,
825 const struct value_and_voffset *vb)
826 {
827 CORE_ADDR addra = (value_address (va->value)
828 + value_embedded_offset (va->value));
829 CORE_ADDR addrb = (value_address (vb->value)
830 + value_embedded_offset (vb->value));
831
832 return addra < addrb;
833 }
834
835 /* A helper function used when printing vtables. This determines the
836 key (most derived) sub-object at each address and also computes the
837 maximum vtable offset seen for the corresponding vtable. Updates
838 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
839 needed. VALUE is the object to examine. */
840
841 static void
842 compute_vtable_size (htab_t offset_hash,
843 std::vector<value_and_voffset *> *offset_vec,
844 struct value *value)
845 {
846 int i;
847 struct type *type = check_typedef (value_type (value));
848 void **slot;
849 struct value_and_voffset search_vo, *current_vo;
850
851 gdb_assert (type->code () == TYPE_CODE_STRUCT);
852
853 /* If the object is not dynamic, then we are done; as it cannot have
854 dynamic base types either. */
855 if (!gnuv3_dynamic_class (type))
856 return;
857
858 /* Update the hash and the vec, if needed. */
859 search_vo.value = value;
860 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
861 if (*slot)
862 current_vo = (struct value_and_voffset *) *slot;
863 else
864 {
865 current_vo = XNEW (struct value_and_voffset);
866 current_vo->value = value;
867 current_vo->max_voffset = -1;
868 *slot = current_vo;
869 offset_vec->push_back (current_vo);
870 }
871
872 /* Update the value_and_voffset object with the highest vtable
873 offset from this class. */
874 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
875 {
876 int j;
877 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
878
879 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
880 {
881 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
882 {
883 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
884
885 if (voffset > current_vo->max_voffset)
886 current_vo->max_voffset = voffset;
887 }
888 }
889 }
890
891 /* Recurse into base classes. */
892 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
893 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
894 }
895
896 /* Helper for gnuv3_print_vtable that prints a single vtable. */
897
898 static void
899 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
900 int max_voffset,
901 struct value_print_options *opts)
902 {
903 int i;
904 struct type *type = check_typedef (value_type (value));
905 struct value *vtable;
906 CORE_ADDR vt_addr;
907
908 vtable = gnuv3_get_vtable (gdbarch, type,
909 value_address (value)
910 + value_embedded_offset (value));
911 vt_addr = value_address (value_field (vtable,
912 vtable_field_virtual_functions));
913
914 gdb_printf (_("vtable for '%s' @ %s (subobject @ %s):\n"),
915 TYPE_SAFE_NAME (type),
916 paddress (gdbarch, vt_addr),
917 paddress (gdbarch, (value_address (value)
918 + value_embedded_offset (value))));
919
920 for (i = 0; i <= max_voffset; ++i)
921 {
922 /* Initialize it just to avoid a GCC false warning. */
923 CORE_ADDR addr = 0;
924 int got_error = 0;
925 struct value *vfn;
926
927 gdb_printf ("[%d]: ", i);
928
929 vfn = value_subscript (value_field (vtable,
930 vtable_field_virtual_functions),
931 i);
932
933 if (gdbarch_vtable_function_descriptors (gdbarch))
934 vfn = value_addr (vfn);
935
936 try
937 {
938 addr = value_as_address (vfn);
939 }
940 catch (const gdb_exception_error &ex)
941 {
942 fprintf_styled (gdb_stdout, metadata_style.style (),
943 _("<error: %s>"), ex.what ());
944 got_error = 1;
945 }
946
947 if (!got_error)
948 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
949 gdb_printf ("\n");
950 }
951 }
952
953 /* Implementation of the print_vtable method. */
954
955 static void
956 gnuv3_print_vtable (struct value *value)
957 {
958 struct gdbarch *gdbarch;
959 struct type *type;
960 struct value *vtable;
961 struct value_print_options opts;
962 int count;
963
964 value = coerce_ref (value);
965 type = check_typedef (value_type (value));
966 if (type->code () == TYPE_CODE_PTR)
967 {
968 value = value_ind (value);
969 type = check_typedef (value_type (value));
970 }
971
972 get_user_print_options (&opts);
973
974 /* Respect 'set print object'. */
975 if (opts.objectprint)
976 {
977 value = value_full_object (value, NULL, 0, 0, 0);
978 type = check_typedef (value_type (value));
979 }
980
981 gdbarch = type->arch ();
982
983 vtable = NULL;
984 if (type->code () == TYPE_CODE_STRUCT)
985 vtable = gnuv3_get_vtable (gdbarch, type,
986 value_as_address (value_addr (value)));
987
988 if (!vtable)
989 {
990 gdb_printf (_("This object does not have a virtual function table\n"));
991 return;
992 }
993
994 htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset,
995 eq_value_and_voffset,
996 xfree, xcalloc, xfree));
997 std::vector<value_and_voffset *> result_vec;
998
999 compute_vtable_size (offset_hash.get (), &result_vec, value);
1000 std::sort (result_vec.begin (), result_vec.end (),
1001 compare_value_and_voffset);
1002
1003 count = 0;
1004 for (value_and_voffset *iter : result_vec)
1005 {
1006 if (iter->max_voffset >= 0)
1007 {
1008 if (count > 0)
1009 gdb_printf ("\n");
1010 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
1011 ++count;
1012 }
1013 }
1014 }
1015
1016 /* Return a GDB type representing `struct std::type_info', laid out
1017 appropriately for ARCH.
1018
1019 We use this function as the gdbarch per-architecture data
1020 initialization function. */
1021
1022 static struct type *
1023 build_std_type_info_type (struct gdbarch *arch)
1024 {
1025 struct type *t;
1026 struct field *field_list, *field;
1027 int offset;
1028 struct type *void_ptr_type
1029 = builtin_type (arch)->builtin_data_ptr;
1030 struct type *char_type
1031 = builtin_type (arch)->builtin_char;
1032 struct type *char_ptr_type
1033 = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
1034
1035 field_list = XCNEWVEC (struct field, 2);
1036 field = &field_list[0];
1037 offset = 0;
1038
1039 /* The vtable. */
1040 field->set_name ("_vptr.type_info");
1041 field->set_type (void_ptr_type);
1042 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
1043 offset += field->type ()->length ();
1044 field++;
1045
1046 /* The name. */
1047 field->set_name ("__name");
1048 field->set_type (char_ptr_type);
1049 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
1050 offset += field->type ()->length ();
1051 field++;
1052
1053 gdb_assert (field == (field_list + 2));
1054
1055 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
1056 t->set_num_fields (field - field_list);
1057 t->set_fields (field_list);
1058 t->set_name ("gdb_gnu_v3_type_info");
1059 INIT_CPLUS_SPECIFIC (t);
1060
1061 return t;
1062 }
1063
1064 /* Implement the 'get_typeid_type' method. */
1065
1066 static struct type *
1067 gnuv3_get_typeid_type (struct gdbarch *gdbarch)
1068 {
1069 struct symbol *typeinfo;
1070 struct type *typeinfo_type;
1071
1072 typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN,
1073 NULL).symbol;
1074 if (typeinfo == NULL)
1075 {
1076 typeinfo_type = std_type_info_gdbarch_data.get (gdbarch);
1077 if (typeinfo_type == nullptr)
1078 {
1079 typeinfo_type = build_std_type_info_type (gdbarch);
1080 std_type_info_gdbarch_data.set (gdbarch, typeinfo_type);
1081 }
1082 }
1083 else
1084 typeinfo_type = typeinfo->type ();
1085
1086 return typeinfo_type;
1087 }
1088
1089 /* Implement the 'get_typeid' method. */
1090
1091 static struct value *
1092 gnuv3_get_typeid (struct value *value)
1093 {
1094 struct type *typeinfo_type;
1095 struct type *type;
1096 struct gdbarch *gdbarch;
1097 struct value *result;
1098 std::string type_name;
1099 gdb::unique_xmalloc_ptr<char> canonical;
1100
1101 /* We have to handle values a bit trickily here, to allow this code
1102 to work properly with non_lvalue values that are really just
1103 disguised types. */
1104 if (value_lval_const (value) == lval_memory)
1105 value = coerce_ref (value);
1106
1107 type = check_typedef (value_type (value));
1108
1109 /* In the non_lvalue case, a reference might have slipped through
1110 here. */
1111 if (type->code () == TYPE_CODE_REF)
1112 type = check_typedef (type->target_type ());
1113
1114 /* Ignore top-level cv-qualifiers. */
1115 type = make_cv_type (0, 0, type, NULL);
1116 gdbarch = type->arch ();
1117
1118 type_name = type_to_string (type);
1119 if (type_name.empty ())
1120 error (_("cannot find typeinfo for unnamed type"));
1121
1122 /* We need to canonicalize the type name here, because we do lookups
1123 using the demangled name, and so we must match the format it
1124 uses. E.g., GDB tends to use "const char *" as a type name, but
1125 the demangler uses "char const *". */
1126 canonical = cp_canonicalize_string (type_name.c_str ());
1127 const char *name = (canonical == nullptr
1128 ? type_name.c_str ()
1129 : canonical.get ());
1130
1131 typeinfo_type = gnuv3_get_typeid_type (gdbarch);
1132
1133 /* We check for lval_memory because in the "typeid (type-id)" case,
1134 the type is passed via a not_lval value object. */
1135 if (type->code () == TYPE_CODE_STRUCT
1136 && value_lval_const (value) == lval_memory
1137 && gnuv3_dynamic_class (type))
1138 {
1139 struct value *vtable, *typeinfo_value;
1140 CORE_ADDR address = value_address (value) + value_embedded_offset (value);
1141
1142 vtable = gnuv3_get_vtable (gdbarch, type, address);
1143 if (vtable == NULL)
1144 error (_("cannot find typeinfo for object of type '%s'"),
1145 name);
1146 typeinfo_value = value_field (vtable, vtable_field_type_info);
1147 result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
1148 typeinfo_value));
1149 }
1150 else
1151 {
1152 std::string sym_name = std::string ("typeinfo for ") + name;
1153 bound_minimal_symbol minsym
1154 = lookup_minimal_symbol (sym_name.c_str (), NULL, NULL);
1155
1156 if (minsym.minsym == NULL)
1157 error (_("could not find typeinfo symbol for '%s'"), name);
1158
1159 result = value_at_lazy (typeinfo_type, minsym.value_address ());
1160 }
1161
1162 return result;
1163 }
1164
1165 /* Implement the 'get_typename_from_type_info' method. */
1166
1167 static std::string
1168 gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
1169 {
1170 struct gdbarch *gdbarch = value_type (type_info_ptr)->arch ();
1171 struct bound_minimal_symbol typeinfo_sym;
1172 CORE_ADDR addr;
1173 const char *symname;
1174 const char *class_name;
1175 const char *atsign;
1176
1177 addr = value_as_address (type_info_ptr);
1178 typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
1179 if (typeinfo_sym.minsym == NULL)
1180 error (_("could not find minimal symbol for typeinfo address %s"),
1181 paddress (gdbarch, addr));
1182
1183 #define TYPEINFO_PREFIX "typeinfo for "
1184 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
1185 symname = typeinfo_sym.minsym->demangled_name ();
1186 if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
1187 TYPEINFO_PREFIX_LEN))
1188 error (_("typeinfo symbol '%s' has unexpected name"),
1189 typeinfo_sym.minsym->linkage_name ());
1190 class_name = symname + TYPEINFO_PREFIX_LEN;
1191
1192 /* Strip off @plt and version suffixes. */
1193 atsign = strchr (class_name, '@');
1194 if (atsign != NULL)
1195 return std::string (class_name, atsign - class_name);
1196 return class_name;
1197 }
1198
1199 /* Implement the 'get_type_from_type_info' method. */
1200
1201 static struct type *
1202 gnuv3_get_type_from_type_info (struct value *type_info_ptr)
1203 {
1204 /* We have to parse the type name, since in general there is not a
1205 symbol for a type. This is somewhat bogus since there may be a
1206 mis-parse. Another approach might be to re-use the demangler's
1207 internal form to reconstruct the type somehow. */
1208 std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr);
1209 expression_up expr (parse_expression (type_name.c_str ()));
1210 struct value *type_val = evaluate_type (expr.get ());
1211 return value_type (type_val);
1212 }
1213
1214 /* Determine if we are currently in a C++ thunk. If so, get the address
1215 of the routine we are thunking to and continue to there instead. */
1216
1217 static CORE_ADDR
1218 gnuv3_skip_trampoline (frame_info_ptr frame, CORE_ADDR stop_pc)
1219 {
1220 CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
1221 struct gdbarch *gdbarch = get_frame_arch (frame);
1222 struct bound_minimal_symbol thunk_sym, fn_sym;
1223 struct obj_section *section;
1224 const char *thunk_name, *fn_name;
1225
1226 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
1227 if (real_stop_pc == 0)
1228 real_stop_pc = stop_pc;
1229
1230 /* Find the linker symbol for this potential thunk. */
1231 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
1232 section = find_pc_section (real_stop_pc);
1233 if (thunk_sym.minsym == NULL || section == NULL)
1234 return 0;
1235
1236 /* The symbol's demangled name should be something like "virtual
1237 thunk to FUNCTION", where FUNCTION is the name of the function
1238 being thunked to. */
1239 thunk_name = thunk_sym.minsym->demangled_name ();
1240 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1241 return 0;
1242
1243 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1244 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1245 if (fn_sym.minsym == NULL)
1246 return 0;
1247
1248 method_stop_pc = fn_sym.value_address ();
1249
1250 /* Some targets have minimal symbols pointing to function descriptors
1251 (powerpc 64 for example). Make sure to retrieve the address
1252 of the real function from the function descriptor before passing on
1253 the address to other layers of GDB. */
1254 func_addr = gdbarch_convert_from_func_ptr_addr
1255 (gdbarch, method_stop_pc, current_inferior ()->top_target ());
1256 if (func_addr != 0)
1257 method_stop_pc = func_addr;
1258
1259 real_stop_pc = gdbarch_skip_trampoline_code
1260 (gdbarch, frame, method_stop_pc);
1261 if (real_stop_pc == 0)
1262 real_stop_pc = method_stop_pc;
1263
1264 return real_stop_pc;
1265 }
1266
1267 /* A member function is in one these states. */
1268
1269 enum definition_style
1270 {
1271 DOES_NOT_EXIST_IN_SOURCE,
1272 DEFAULTED_INSIDE,
1273 DEFAULTED_OUTSIDE,
1274 DELETED,
1275 EXPLICIT,
1276 };
1277
1278 /* Return how the given field is defined. */
1279
1280 static definition_style
1281 get_def_style (struct fn_field *fn, int fieldelem)
1282 {
1283 if (TYPE_FN_FIELD_DELETED (fn, fieldelem))
1284 return DELETED;
1285
1286 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1287 return DOES_NOT_EXIST_IN_SOURCE;
1288
1289 switch (TYPE_FN_FIELD_DEFAULTED (fn, fieldelem))
1290 {
1291 case DW_DEFAULTED_no:
1292 return EXPLICIT;
1293 case DW_DEFAULTED_in_class:
1294 return DEFAULTED_INSIDE;
1295 case DW_DEFAULTED_out_of_class:
1296 return DEFAULTED_OUTSIDE;
1297 default:
1298 break;
1299 }
1300
1301 return EXPLICIT;
1302 }
1303
1304 /* Helper functions to determine whether the given definition style
1305 denotes that the definition is user-provided or implicit.
1306 Being defaulted outside the class decl counts as an explicit
1307 user-definition, while being defaulted inside is implicit. */
1308
1309 static bool
1310 is_user_provided_def (definition_style def)
1311 {
1312 return def == EXPLICIT || def == DEFAULTED_OUTSIDE;
1313 }
1314
1315 static bool
1316 is_implicit_def (definition_style def)
1317 {
1318 return def == DOES_NOT_EXIST_IN_SOURCE || def == DEFAULTED_INSIDE;
1319 }
1320
1321 /* Helper function to decide if METHOD_TYPE is a copy/move
1322 constructor type for CLASS_TYPE. EXPECTED is the expected
1323 type code for the "right-hand-side" argument.
1324 This function is supposed to be used by the IS_COPY_CONSTRUCTOR_TYPE
1325 and IS_MOVE_CONSTRUCTOR_TYPE functions below. Normally, you should
1326 not need to call this directly. */
1327
1328 static bool
1329 is_copy_or_move_constructor_type (struct type *class_type,
1330 struct type *method_type,
1331 type_code expected)
1332 {
1333 /* The method should take at least two arguments... */
1334 if (method_type->num_fields () < 2)
1335 return false;
1336
1337 /* ...and the second argument should be the same as the class
1338 type, with the expected type code... */
1339 struct type *arg_type = method_type->field (1).type ();
1340
1341 if (arg_type->code () != expected)
1342 return false;
1343
1344 struct type *target = check_typedef (arg_type->target_type ());
1345 if (!(class_types_same_p (target, class_type)))
1346 return false;
1347
1348 /* ...and if any of the remaining arguments don't have a default value
1349 then this is not a copy or move constructor, but just a
1350 constructor. */
1351 for (int i = 2; i < method_type->num_fields (); i++)
1352 {
1353 arg_type = method_type->field (i).type ();
1354 /* FIXME aktemur/2019-10-31: As of this date, neither
1355 clang++-7.0.0 nor g++-8.2.0 produce a DW_AT_default_value
1356 attribute. GDB is also not set to read this attribute, yet.
1357 Hence, we immediately return false if there are more than
1358 2 parameters.
1359 GCC bug link:
1360 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42959
1361 */
1362 return false;
1363 }
1364
1365 return true;
1366 }
1367
1368 /* Return true if METHOD_TYPE is a copy ctor type for CLASS_TYPE. */
1369
1370 static bool
1371 is_copy_constructor_type (struct type *class_type,
1372 struct type *method_type)
1373 {
1374 return is_copy_or_move_constructor_type (class_type, method_type,
1375 TYPE_CODE_REF);
1376 }
1377
1378 /* Return true if METHOD_TYPE is a move ctor type for CLASS_TYPE. */
1379
1380 static bool
1381 is_move_constructor_type (struct type *class_type,
1382 struct type *method_type)
1383 {
1384 return is_copy_or_move_constructor_type (class_type, method_type,
1385 TYPE_CODE_RVALUE_REF);
1386 }
1387
1388 /* Return pass-by-reference information for the given TYPE.
1389
1390 The rule in the v3 ABI document comes from section 3.1.1. If the
1391 type has a non-trivial copy constructor or destructor, then the
1392 caller must make a copy (by calling the copy constructor if there
1393 is one or perform the copy itself otherwise), pass the address of
1394 the copy, and then destroy the temporary (if necessary).
1395
1396 For return values with non-trivial copy/move constructors or
1397 destructors, space will be allocated in the caller, and a pointer
1398 will be passed as the first argument (preceding "this").
1399
1400 We don't have a bulletproof mechanism for determining whether a
1401 constructor or destructor is trivial. For GCC and DWARF5 debug
1402 information, we can check the calling_convention attribute,
1403 the 'artificial' flag, the 'defaulted' attribute, and the
1404 'deleted' attribute. */
1405
1406 static struct language_pass_by_ref_info
1407 gnuv3_pass_by_reference (struct type *type)
1408 {
1409 int fieldnum, fieldelem;
1410
1411 type = check_typedef (type);
1412
1413 /* Start with the default values. */
1414 struct language_pass_by_ref_info info;
1415
1416 bool has_cc_attr = false;
1417 bool is_pass_by_value = false;
1418 bool is_dynamic = false;
1419 definition_style cctor_def = DOES_NOT_EXIST_IN_SOURCE;
1420 definition_style dtor_def = DOES_NOT_EXIST_IN_SOURCE;
1421 definition_style mctor_def = DOES_NOT_EXIST_IN_SOURCE;
1422
1423 /* We're only interested in things that can have methods. */
1424 if (type->code () != TYPE_CODE_STRUCT
1425 && type->code () != TYPE_CODE_UNION)
1426 return info;
1427
1428 /* The compiler may have emitted the calling convention attribute.
1429 Note: GCC does not produce this attribute as of version 9.2.1.
1430 Bug link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92418 */
1431 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_value)
1432 {
1433 has_cc_attr = true;
1434 is_pass_by_value = true;
1435 /* Do not return immediately. We have to find out if this type
1436 is copy_constructible and destructible. */
1437 }
1438
1439 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_reference)
1440 {
1441 has_cc_attr = true;
1442 is_pass_by_value = false;
1443 }
1444
1445 /* A dynamic class has a non-trivial copy constructor.
1446 See c++98 section 12.8 Copying class objects [class.copy]. */
1447 if (gnuv3_dynamic_class (type))
1448 is_dynamic = true;
1449
1450 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1451 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1452 fieldelem++)
1453 {
1454 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1455 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1456 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1457
1458 if (name[0] == '~')
1459 {
1460 /* We've found a destructor.
1461 There should be at most one dtor definition. */
1462 gdb_assert (dtor_def == DOES_NOT_EXIST_IN_SOURCE);
1463 dtor_def = get_def_style (fn, fieldelem);
1464 }
1465 else if (is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1466 || TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
1467 {
1468 /* FIXME drow/2007-09-23: We could do this using the name of
1469 the method and the name of the class instead of dealing
1470 with the mangled name. We don't have a convenient function
1471 to strip off both leading scope qualifiers and trailing
1472 template arguments yet. */
1473 if (is_copy_constructor_type (type, fieldtype))
1474 {
1475 /* There may be more than one cctors. E.g.: one that
1476 take a const parameter and another that takes a
1477 non-const parameter. Such as:
1478
1479 class K {
1480 K (const K &k)...
1481 K (K &k)...
1482 };
1483
1484 It is sufficient for the type to be non-trivial
1485 even only one of the cctors is explicit.
1486 Therefore, update the cctor_def value in the
1487 implicit -> explicit direction, not backwards. */
1488
1489 if (is_implicit_def (cctor_def))
1490 cctor_def = get_def_style (fn, fieldelem);
1491 }
1492 else if (is_move_constructor_type (type, fieldtype))
1493 {
1494 /* Again, there may be multiple move ctors. Update the
1495 mctor_def value if we found an explicit def and the
1496 existing one is not explicit. Otherwise retain the
1497 existing value. */
1498 if (is_implicit_def (mctor_def))
1499 mctor_def = get_def_style (fn, fieldelem);
1500 }
1501 }
1502 }
1503
1504 bool cctor_implicitly_deleted
1505 = (mctor_def != DOES_NOT_EXIST_IN_SOURCE
1506 && cctor_def == DOES_NOT_EXIST_IN_SOURCE);
1507
1508 bool cctor_explicitly_deleted = (cctor_def == DELETED);
1509
1510 if (cctor_implicitly_deleted || cctor_explicitly_deleted)
1511 info.copy_constructible = false;
1512
1513 if (dtor_def == DELETED)
1514 info.destructible = false;
1515
1516 info.trivially_destructible = is_implicit_def (dtor_def);
1517
1518 info.trivially_copy_constructible
1519 = (is_implicit_def (cctor_def)
1520 && !is_dynamic);
1521
1522 info.trivially_copyable
1523 = (info.trivially_copy_constructible
1524 && info.trivially_destructible
1525 && !is_user_provided_def (mctor_def));
1526
1527 /* Even if all the constructors and destructors were artificial, one
1528 of them may have invoked a non-artificial constructor or
1529 destructor in a base class. If any base class needs to be passed
1530 by reference, so does this class. Similarly for members, which
1531 are constructed whenever this class is. We do not need to worry
1532 about recursive loops here, since we are only looking at members
1533 of complete class type. Also ignore any static members. */
1534 for (fieldnum = 0; fieldnum < type->num_fields (); fieldnum++)
1535 if (!field_is_static (&type->field (fieldnum)))
1536 {
1537 struct type *field_type = type->field (fieldnum).type ();
1538
1539 /* For arrays, make the decision based on the element type. */
1540 if (field_type->code () == TYPE_CODE_ARRAY)
1541 field_type = check_typedef (field_type->target_type ());
1542
1543 struct language_pass_by_ref_info field_info
1544 = gnuv3_pass_by_reference (field_type);
1545
1546 if (!field_info.copy_constructible)
1547 info.copy_constructible = false;
1548 if (!field_info.destructible)
1549 info.destructible = false;
1550 if (!field_info.trivially_copyable)
1551 info.trivially_copyable = false;
1552 if (!field_info.trivially_copy_constructible)
1553 info.trivially_copy_constructible = false;
1554 if (!field_info.trivially_destructible)
1555 info.trivially_destructible = false;
1556 }
1557
1558 /* Consistency check. */
1559 if (has_cc_attr && info.trivially_copyable != is_pass_by_value)
1560 {
1561 /* DWARF CC attribute is not the same as the inferred value;
1562 use the DWARF attribute. */
1563 info.trivially_copyable = is_pass_by_value;
1564 }
1565
1566 return info;
1567 }
1568
1569 static void
1570 init_gnuv3_ops (void)
1571 {
1572 gnu_v3_abi_ops.shortname = "gnu-v3";
1573 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1574 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1575 gnu_v3_abi_ops.is_destructor_name =
1576 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1577 gnu_v3_abi_ops.is_constructor_name =
1578 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1579 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1580 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1581 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1582 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1583 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1584 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1585 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1586 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1587 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1588 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1589 gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
1590 gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
1591 gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
1592 gnu_v3_abi_ops.get_typename_from_type_info
1593 = gnuv3_get_typename_from_type_info;
1594 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1595 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1596 }
1597
1598 void _initialize_gnu_v3_abi ();
1599 void
1600 _initialize_gnu_v3_abi ()
1601 {
1602 init_gnuv3_ops ();
1603
1604 register_cp_abi (&gnu_v3_abi_ops);
1605 set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
1606 }