]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/go32-nat.c
gdb, gdbserver, gdbsupport: fix leading space vs tabs issues
[thirdparty/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2020 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
23
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
37
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
44
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
56
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
69
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
75
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
83
84 #include "defs.h"
85
86 #include <fcntl.h>
87
88 #include "x86-nat.h"
89 #include "inferior.h"
90 #include "infrun.h"
91 #include "gdbthread.h"
92 #include "gdbsupport/gdb_wait.h"
93 #include "gdbcore.h"
94 #include "command.h"
95 #include "gdbcmd.h"
96 #include "floatformat.h"
97 #include "buildsym-legacy.h"
98 #include "i387-tdep.h"
99 #include "i386-tdep.h"
100 #include "nat/x86-cpuid.h"
101 #include "value.h"
102 #include "regcache.h"
103 #include "top.h"
104 #include "cli/cli-utils.h"
105 #include "inf-child.h"
106
107 #include <ctype.h>
108 #include <unistd.h>
109 #include <sys/utsname.h>
110 #include <io.h>
111 #include <dos.h>
112 #include <dpmi.h>
113 #include <go32.h>
114 #include <sys/farptr.h>
115 #include <debug/v2load.h>
116 #include <debug/dbgcom.h>
117 #if __DJGPP_MINOR__ > 2
118 #include <debug/redir.h>
119 #endif
120
121 #include <langinfo.h>
122
123 #if __DJGPP_MINOR__ < 3
124 /* This code will be provided from DJGPP 2.03 on. Until then I code it
125 here. */
126 typedef struct
127 {
128 unsigned short sig0;
129 unsigned short sig1;
130 unsigned short sig2;
131 unsigned short sig3;
132 unsigned short exponent:15;
133 unsigned short sign:1;
134 }
135 NPXREG;
136
137 typedef struct
138 {
139 unsigned int control;
140 unsigned int status;
141 unsigned int tag;
142 unsigned int eip;
143 unsigned int cs;
144 unsigned int dataptr;
145 unsigned int datasel;
146 NPXREG reg[8];
147 }
148 NPX;
149
150 static NPX npx;
151
152 static void save_npx (void); /* Save the FPU of the debugged program. */
153 static void load_npx (void); /* Restore the FPU of the debugged program. */
154
155 /* ------------------------------------------------------------------------- */
156 /* Store the contents of the NPX in the global variable `npx'. */
157 /* *INDENT-OFF* */
158
159 static void
160 save_npx (void)
161 {
162 asm ("inb $0xa0, %%al \n\
163 testb $0x20, %%al \n\
164 jz 1f \n\
165 xorb %%al, %%al \n\
166 outb %%al, $0xf0 \n\
167 movb $0x20, %%al \n\
168 outb %%al, $0xa0 \n\
169 outb %%al, $0x20 \n\
170 1: \n\
171 fnsave %0 \n\
172 fwait "
173 : "=m" (npx)
174 : /* No input */
175 : "%eax");
176 }
177
178 /* *INDENT-ON* */
179
180
181 /* ------------------------------------------------------------------------- */
182 /* Reload the contents of the NPX from the global variable `npx'. */
183
184 static void
185 load_npx (void)
186 {
187 asm ("frstor %0":"=m" (npx));
188 }
189 /* ------------------------------------------------------------------------- */
190 /* Stubs for the missing redirection functions. */
191 typedef struct {
192 char *command;
193 int redirected;
194 } cmdline_t;
195
196 void
197 redir_cmdline_delete (cmdline_t *ptr)
198 {
199 ptr->redirected = 0;
200 }
201
202 int
203 redir_cmdline_parse (const char *args, cmdline_t *ptr)
204 {
205 return -1;
206 }
207
208 int
209 redir_to_child (cmdline_t *ptr)
210 {
211 return 1;
212 }
213
214 int
215 redir_to_debugger (cmdline_t *ptr)
216 {
217 return 1;
218 }
219
220 int
221 redir_debug_init (cmdline_t *ptr)
222 {
223 return 0;
224 }
225 #endif /* __DJGPP_MINOR < 3 */
226
227 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
228
229 /* This holds the current reference counts for each debug register. */
230 static int dr_ref_count[4];
231
232 #define SOME_PID 42
233
234 static int prog_has_started = 0;
235
236 #define r_ofs(x) (offsetof(TSS,x))
237
238 static struct
239 {
240 size_t tss_ofs;
241 size_t size;
242 }
243 regno_mapping[] =
244 {
245 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
246 {r_ofs (tss_ecx), 4},
247 {r_ofs (tss_edx), 4},
248 {r_ofs (tss_ebx), 4},
249 {r_ofs (tss_esp), 4},
250 {r_ofs (tss_ebp), 4},
251 {r_ofs (tss_esi), 4},
252 {r_ofs (tss_edi), 4},
253 {r_ofs (tss_eip), 4},
254 {r_ofs (tss_eflags), 4},
255 {r_ofs (tss_cs), 2},
256 {r_ofs (tss_ss), 2},
257 {r_ofs (tss_ds), 2},
258 {r_ofs (tss_es), 2},
259 {r_ofs (tss_fs), 2},
260 {r_ofs (tss_gs), 2},
261 {0, 10}, /* 8 FP registers, from npx.reg[] */
262 {1, 10},
263 {2, 10},
264 {3, 10},
265 {4, 10},
266 {5, 10},
267 {6, 10},
268 {7, 10},
269 /* The order of the next 7 registers must be consistent
270 with their numbering in config/i386/tm-i386.h, which see. */
271 {0, 2}, /* control word, from npx */
272 {4, 2}, /* status word, from npx */
273 {8, 2}, /* tag word, from npx */
274 {16, 2}, /* last FP exception CS from npx */
275 {12, 4}, /* last FP exception EIP from npx */
276 {24, 2}, /* last FP exception operand selector from npx */
277 {20, 4}, /* last FP exception operand offset from npx */
278 {18, 2} /* last FP opcode from npx */
279 };
280
281 static struct
282 {
283 int go32_sig;
284 enum gdb_signal gdb_sig;
285 }
286 sig_map[] =
287 {
288 {0, GDB_SIGNAL_FPE},
289 {1, GDB_SIGNAL_TRAP},
290 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
291 but I think SIGBUS is better, since the NMI is usually activated
292 as a result of a memory parity check failure. */
293 {2, GDB_SIGNAL_BUS},
294 {3, GDB_SIGNAL_TRAP},
295 {4, GDB_SIGNAL_FPE},
296 {5, GDB_SIGNAL_SEGV},
297 {6, GDB_SIGNAL_ILL},
298 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
299 {8, GDB_SIGNAL_SEGV},
300 {9, GDB_SIGNAL_SEGV},
301 {10, GDB_SIGNAL_BUS},
302 {11, GDB_SIGNAL_SEGV},
303 {12, GDB_SIGNAL_SEGV},
304 {13, GDB_SIGNAL_SEGV},
305 {14, GDB_SIGNAL_SEGV},
306 {16, GDB_SIGNAL_FPE},
307 {17, GDB_SIGNAL_BUS},
308 {31, GDB_SIGNAL_ILL},
309 {0x1b, GDB_SIGNAL_INT},
310 {0x75, GDB_SIGNAL_FPE},
311 {0x78, GDB_SIGNAL_ALRM},
312 {0x79, GDB_SIGNAL_INT},
313 {0x7a, GDB_SIGNAL_QUIT},
314 {-1, GDB_SIGNAL_LAST}
315 };
316
317 static struct {
318 enum gdb_signal gdb_sig;
319 int djgpp_excepno;
320 } excepn_map[] = {
321 {GDB_SIGNAL_0, -1},
322 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
323 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
324 {GDB_SIGNAL_SEGV, 13}, /* GPF */
325 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
326 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
327 details. */
328 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
329 {GDB_SIGNAL_FPE, 0x75},
330 {GDB_SIGNAL_INT, 0x79},
331 {GDB_SIGNAL_QUIT, 0x7a},
332 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
333 {GDB_SIGNAL_PROF, 0x78},
334 {GDB_SIGNAL_LAST, -1}
335 };
336
337 /* The go32 target. */
338
339 struct go32_nat_target final : public x86_nat_target<inf_child_target>
340 {
341 void attach (const char *, int) override;
342
343 void resume (ptid_t, int, enum gdb_signal) override;
344
345 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
346
347 void fetch_registers (struct regcache *, int) override;
348 void store_registers (struct regcache *, int) override;
349
350 enum target_xfer_status xfer_partial (enum target_object object,
351 const char *annex,
352 gdb_byte *readbuf,
353 const gdb_byte *writebuf,
354 ULONGEST offset, ULONGEST len,
355 ULONGEST *xfered_len) override;
356
357 void files_info () override;
358
359 void terminal_init () override;
360
361 void terminal_inferior () override;
362
363 void terminal_ours_for_output () override;
364
365 void terminal_ours () override;
366
367 void terminal_info (const char *, int) override;
368
369 void pass_ctrlc () override;
370
371 void kill () override;
372
373 void create_inferior (const char *, const std::string &,
374 char **, int) override;
375
376 void mourn_inferior () override;
377
378 bool thread_alive (ptid_t ptid) override;
379
380 std::string pid_to_str (ptid_t) override;
381 };
382
383 static go32_nat_target the_go32_nat_target;
384
385 void
386 go32_nat_target::attach (const char *args, int from_tty)
387 {
388 error (_("\
389 You cannot attach to a running program on this platform.\n\
390 Use the `run' command to run DJGPP programs."));
391 }
392
393 static int resume_is_step;
394 static int resume_signal = -1;
395
396 void
397 go32_nat_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
398 {
399 int i;
400
401 resume_is_step = step;
402
403 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
404 {
405 for (i = 0, resume_signal = -1;
406 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
407 if (excepn_map[i].gdb_sig == siggnal)
408 {
409 resume_signal = excepn_map[i].djgpp_excepno;
410 break;
411 }
412 if (resume_signal == -1)
413 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
414 gdb_signal_to_name (siggnal));
415 }
416 }
417
418 static char child_cwd[FILENAME_MAX];
419
420 ptid_t
421 go32_nat_target::wait (ptid_t ptid, struct target_waitstatus *status,
422 target_wait_flags options)
423 {
424 int i;
425 unsigned char saved_opcode;
426 unsigned long INT3_addr = 0;
427 int stepping_over_INT = 0;
428
429 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
430 if (resume_is_step)
431 {
432 /* If the next instruction is INT xx or INTO, we need to handle
433 them specially. Intel manuals say that these instructions
434 reset the single-step flag (a.k.a. TF). However, it seems
435 that, at least in the DPMI environment, and at least when
436 stepping over the DPMI interrupt 31h, the problem is having
437 TF set at all when INT 31h is executed: the debuggee either
438 crashes (and takes the system with it) or is killed by a
439 SIGTRAP.
440
441 So we need to emulate single-step mode: we put an INT3 opcode
442 right after the INT xx instruction, let the debuggee run
443 until it hits INT3 and stops, then restore the original
444 instruction which we overwrote with the INT3 opcode, and back
445 up the debuggee's EIP to that instruction. */
446 read_child (a_tss.tss_eip, &saved_opcode, 1);
447 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
448 {
449 unsigned char INT3_opcode = 0xCC;
450
451 INT3_addr
452 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
453 stepping_over_INT = 1;
454 read_child (INT3_addr, &saved_opcode, 1);
455 write_child (INT3_addr, &INT3_opcode, 1);
456 }
457 else
458 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
459 }
460
461 /* The special value FFFFh in tss_trap indicates to run_child that
462 tss_irqn holds a signal to be delivered to the debuggee. */
463 if (resume_signal <= -1)
464 {
465 a_tss.tss_trap = 0;
466 a_tss.tss_irqn = 0xff;
467 }
468 else
469 {
470 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
471 a_tss.tss_irqn = resume_signal;
472 }
473
474 /* The child might change working directory behind our back. The
475 GDB users won't like the side effects of that when they work with
476 relative file names, and GDB might be confused by its current
477 directory not being in sync with the truth. So we always make a
478 point of changing back to where GDB thinks is its cwd, when we
479 return control to the debugger, but restore child's cwd before we
480 run it. */
481 /* Initialize child_cwd, before the first call to run_child and not
482 in the initialization, so the child get also the changed directory
483 set with the gdb-command "cd ..." */
484 if (!*child_cwd)
485 /* Initialize child's cwd with the current one. */
486 getcwd (child_cwd, sizeof (child_cwd));
487
488 chdir (child_cwd);
489
490 #if __DJGPP_MINOR__ < 3
491 load_npx ();
492 #endif
493 run_child ();
494 #if __DJGPP_MINOR__ < 3
495 save_npx ();
496 #endif
497
498 /* Did we step over an INT xx instruction? */
499 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
500 {
501 /* Restore the original opcode. */
502 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
503 write_child (a_tss.tss_eip, &saved_opcode, 1);
504 /* Simulate a TRAP exception. */
505 a_tss.tss_irqn = 1;
506 a_tss.tss_eflags |= 0x0100;
507 }
508
509 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
510 if (current_directory != NULL)
511 chdir (current_directory);
512
513 if (a_tss.tss_irqn == 0x21)
514 {
515 status->kind = TARGET_WAITKIND_EXITED;
516 status->value.integer = a_tss.tss_eax & 0xff;
517 }
518 else
519 {
520 status->value.sig = GDB_SIGNAL_UNKNOWN;
521 status->kind = TARGET_WAITKIND_STOPPED;
522 for (i = 0; sig_map[i].go32_sig != -1; i++)
523 {
524 if (a_tss.tss_irqn == sig_map[i].go32_sig)
525 {
526 #if __DJGPP_MINOR__ < 3
527 if ((status->value.sig = sig_map[i].gdb_sig) !=
528 GDB_SIGNAL_TRAP)
529 status->kind = TARGET_WAITKIND_SIGNALLED;
530 #else
531 status->value.sig = sig_map[i].gdb_sig;
532 #endif
533 break;
534 }
535 }
536 }
537 return ptid_t (SOME_PID);
538 }
539
540 static void
541 fetch_register (struct regcache *regcache, int regno)
542 {
543 struct gdbarch *gdbarch = regcache->arch ();
544 if (regno < gdbarch_fp0_regnum (gdbarch))
545 regcache->raw_supply (regno,
546 (char *) &a_tss + regno_mapping[regno].tss_ofs);
547 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
548 regno))
549 i387_supply_fsave (regcache, regno, &npx);
550 else
551 internal_error (__FILE__, __LINE__,
552 _("Invalid register no. %d in fetch_register."), regno);
553 }
554
555 void
556 go32_nat_target::fetch_registers (struct regcache *regcache, int regno)
557 {
558 if (regno >= 0)
559 fetch_register (regcache, regno);
560 else
561 {
562 for (regno = 0;
563 regno < gdbarch_fp0_regnum (regcache->arch ());
564 regno++)
565 fetch_register (regcache, regno);
566 i387_supply_fsave (regcache, -1, &npx);
567 }
568 }
569
570 static void
571 store_register (const struct regcache *regcache, int regno)
572 {
573 struct gdbarch *gdbarch = regcache->arch ();
574 if (regno < gdbarch_fp0_regnum (gdbarch))
575 regcache->raw_collect (regno,
576 (char *) &a_tss + regno_mapping[regno].tss_ofs);
577 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
578 regno))
579 i387_collect_fsave (regcache, regno, &npx);
580 else
581 internal_error (__FILE__, __LINE__,
582 _("Invalid register no. %d in store_register."), regno);
583 }
584
585 void
586 go32_nat_target::store_registers (struct regcache *regcache, int regno)
587 {
588 unsigned r;
589
590 if (regno >= 0)
591 store_register (regcache, regno);
592 else
593 {
594 for (r = 0; r < gdbarch_fp0_regnum (regcache->arch ()); r++)
595 store_register (regcache, r);
596 i387_collect_fsave (regcache, -1, &npx);
597 }
598 }
599
600 /* Const-correct version of DJGPP's write_child, which unfortunately
601 takes a non-const buffer pointer. */
602
603 static int
604 my_write_child (unsigned child_addr, const void *buf, unsigned len)
605 {
606 static void *buffer = NULL;
607 static unsigned buffer_len = 0;
608 int res;
609
610 if (buffer_len < len)
611 {
612 buffer = xrealloc (buffer, len);
613 buffer_len = len;
614 }
615
616 memcpy (buffer, buf, len);
617 res = write_child (child_addr, buffer, len);
618 return res;
619 }
620
621 /* Helper for go32_xfer_partial that handles memory transfers.
622 Arguments are like target_xfer_partial. */
623
624 static enum target_xfer_status
625 go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
626 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
627 {
628 int res;
629
630 if (writebuf != NULL)
631 res = my_write_child (memaddr, writebuf, len);
632 else
633 res = read_child (memaddr, readbuf, len);
634
635 /* read_child and write_child return zero on success, non-zero on
636 failure. */
637 if (res != 0)
638 return TARGET_XFER_E_IO;
639
640 *xfered_len = len;
641 return TARGET_XFER_OK;
642 }
643
644 /* Target to_xfer_partial implementation. */
645
646 enum target_xfer_status
647 go32_nat_target::xfer_partial (enum target_object object,
648 const char *annex, gdb_byte *readbuf,
649 const gdb_byte *writebuf, ULONGEST offset,
650 ULONGEST len,
651 ULONGEST *xfered_len)
652 {
653 switch (object)
654 {
655 case TARGET_OBJECT_MEMORY:
656 return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
657
658 default:
659 return this->beneath ()->xfer_partial (object, annex,
660 readbuf, writebuf, offset, len,
661 xfered_len);
662 }
663 }
664
665 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
666
667 void
668 go32_nat_target::files_info ()
669 {
670 printf_unfiltered ("You are running a DJGPP V2 program.\n");
671 }
672
673 void
674 go32_nat_target::kill_inferior ()
675 {
676 mourn_inferior ();
677 }
678
679 void
680 go32_nat_target::create_inferior (const char *exec_file,
681 const std::string &allargs,
682 char **env, int from_tty)
683 {
684 extern char **environ;
685 jmp_buf start_state;
686 char *cmdline;
687 char **env_save = environ;
688 size_t cmdlen;
689 struct inferior *inf;
690 int result;
691 const char *args = allargs.c_str ();
692
693 /* If no exec file handed to us, get it from the exec-file command -- with
694 a good, common error message if none is specified. */
695 if (exec_file == 0)
696 exec_file = get_exec_file (1);
697
698 resume_signal = -1;
699 resume_is_step = 0;
700
701 /* Initialize child's cwd as empty to be initialized when starting
702 the child. */
703 *child_cwd = 0;
704
705 /* Init command line storage. */
706 if (redir_debug_init (&child_cmd) == -1)
707 internal_error (__FILE__, __LINE__,
708 _("Cannot allocate redirection storage: "
709 "not enough memory.\n"));
710
711 /* Parse the command line and create redirections. */
712 if (strpbrk (args, "<>"))
713 {
714 if (redir_cmdline_parse (args, &child_cmd) == 0)
715 args = child_cmd.command;
716 else
717 error (_("Syntax error in command line."));
718 }
719 else
720 child_cmd.command = xstrdup (args);
721
722 cmdlen = strlen (args);
723 /* v2loadimage passes command lines via DOS memory, so it cannot
724 possibly handle commands longer than 1MB. */
725 if (cmdlen > 1024*1024)
726 error (_("Command line too long."));
727
728 cmdline = (char *) xmalloc (cmdlen + 4);
729 strcpy (cmdline + 1, args);
730 /* If the command-line length fits into DOS 126-char limits, use the
731 DOS command tail format; otherwise, tell v2loadimage to pass it
732 through a buffer in conventional memory. */
733 if (cmdlen < 127)
734 {
735 cmdline[0] = strlen (args);
736 cmdline[cmdlen + 1] = 13;
737 }
738 else
739 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
740
741 environ = env;
742
743 result = v2loadimage (exec_file, cmdline, start_state);
744
745 environ = env_save;
746 xfree (cmdline);
747
748 if (result != 0)
749 error (_("Load failed for image %s"), exec_file);
750
751 edi_init (start_state);
752 #if __DJGPP_MINOR__ < 3
753 save_npx ();
754 #endif
755
756 inf = current_inferior ();
757 inferior_appeared (inf, SOME_PID);
758
759 if (!target_is_pushed (this))
760 push_target (this);
761
762 thread_info *thr = add_thread_silent (ptid_t (SOME_PID));
763 switch_to_thread (thr);
764
765 clear_proceed_status (0);
766 insert_breakpoints ();
767 prog_has_started = 1;
768 }
769
770 void
771 go32_nat_target::mourn_inferior ()
772 {
773 redir_cmdline_delete (&child_cmd);
774 resume_signal = -1;
775 resume_is_step = 0;
776
777 cleanup_client ();
778
779 /* We need to make sure all the breakpoint enable bits in the DR7
780 register are reset when the inferior exits. Otherwise, if they
781 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
782 failure to set more watchpoints, and other calamities. It would
783 be nice if GDB itself would take care to remove all breakpoints
784 at all times, but it doesn't, probably under an assumption that
785 the OS cleans up when the debuggee exits. */
786 x86_cleanup_dregs ();
787
788 prog_has_started = 0;
789
790 generic_mourn_inferior ();
791 maybe_unpush_target ();
792 }
793
794 /* Hardware watchpoint support. */
795
796 #define D_REGS edi.dr
797 #define CONTROL D_REGS[7]
798 #define STATUS D_REGS[6]
799
800 /* Pass the address ADDR to the inferior in the I'th debug register.
801 Here we just store the address in D_REGS, the watchpoint will be
802 actually set up when go32_wait runs the debuggee. */
803 static void
804 go32_set_dr (int i, CORE_ADDR addr)
805 {
806 if (i < 0 || i > 3)
807 internal_error (__FILE__, __LINE__,
808 _("Invalid register %d in go32_set_dr.\n"), i);
809 D_REGS[i] = addr;
810 }
811
812 /* Pass the value VAL to the inferior in the DR7 debug control
813 register. Here we just store the address in D_REGS, the watchpoint
814 will be actually set up when go32_wait runs the debuggee. */
815 static void
816 go32_set_dr7 (unsigned long val)
817 {
818 CONTROL = val;
819 }
820
821 /* Get the value of the DR6 debug status register from the inferior.
822 Here we just return the value stored in D_REGS, as we've got it
823 from the last go32_wait call. */
824 static unsigned long
825 go32_get_dr6 (void)
826 {
827 return STATUS;
828 }
829
830 /* Get the value of the DR7 debug status register from the inferior.
831 Here we just return the value stored in D_REGS, as we've got it
832 from the last go32_wait call. */
833
834 static unsigned long
835 go32_get_dr7 (void)
836 {
837 return CONTROL;
838 }
839
840 /* Get the value of the DR debug register I from the inferior. Here
841 we just return the value stored in D_REGS, as we've got it from the
842 last go32_wait call. */
843
844 static CORE_ADDR
845 go32_get_dr (int i)
846 {
847 if (i < 0 || i > 3)
848 internal_error (__FILE__, __LINE__,
849 _("Invalid register %d in go32_get_dr.\n"), i);
850 return D_REGS[i];
851 }
852
853 /* Put the device open on handle FD into either raw or cooked
854 mode, return 1 if it was in raw mode, zero otherwise. */
855
856 static int
857 device_mode (int fd, int raw_p)
858 {
859 int oldmode, newmode;
860 __dpmi_regs regs;
861
862 regs.x.ax = 0x4400;
863 regs.x.bx = fd;
864 __dpmi_int (0x21, &regs);
865 if (regs.x.flags & 1)
866 return -1;
867 newmode = oldmode = regs.x.dx;
868
869 if (raw_p)
870 newmode |= 0x20;
871 else
872 newmode &= ~0x20;
873
874 if (oldmode & 0x80) /* Only for character dev. */
875 {
876 regs.x.ax = 0x4401;
877 regs.x.bx = fd;
878 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
879 __dpmi_int (0x21, &regs);
880 if (regs.x.flags & 1)
881 return -1;
882 }
883 return (oldmode & 0x20) == 0x20;
884 }
885
886
887 static int inf_mode_valid = 0;
888 static int inf_terminal_mode;
889
890 /* This semaphore is needed because, amazingly enough, GDB calls
891 target.to_terminal_ours more than once after the inferior stops.
892 But we need the information from the first call only, since the
893 second call will always see GDB's own cooked terminal. */
894 static int terminal_is_ours = 1;
895
896 void
897 go32_nat_target::terminal_init ()
898 {
899 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
900 terminal_is_ours = 1;
901 }
902
903 void
904 go32_nat_target::terminal_info (const char *args, int from_tty)
905 {
906 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
907 !inf_mode_valid
908 ? "default" : inf_terminal_mode ? "raw" : "cooked");
909
910 #if __DJGPP_MINOR__ > 2
911 if (child_cmd.redirection)
912 {
913 int i;
914
915 for (i = 0; i < DBG_HANDLES; i++)
916 {
917 if (child_cmd.redirection[i]->file_name)
918 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
919 i, child_cmd.redirection[i]->file_name);
920 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
921 printf_unfiltered
922 ("\tFile handle %d appears to be closed by inferior.\n", i);
923 /* Mask off the raw/cooked bit when comparing device info words. */
924 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
925 != (_get_dev_info (i) & 0xdf))
926 printf_unfiltered
927 ("\tFile handle %d appears to be redirected by inferior.\n", i);
928 }
929 }
930 #endif
931 }
932
933 void
934 go32_nat_target::terminal_inferior ()
935 {
936 /* Redirect standard handles as child wants them. */
937 errno = 0;
938 if (redir_to_child (&child_cmd) == -1)
939 {
940 redir_to_debugger (&child_cmd);
941 error (_("Cannot redirect standard handles for program: %s."),
942 safe_strerror (errno));
943 }
944 /* Set the console device of the inferior to whatever mode
945 (raw or cooked) we found it last time. */
946 if (terminal_is_ours)
947 {
948 if (inf_mode_valid)
949 device_mode (0, inf_terminal_mode);
950 terminal_is_ours = 0;
951 }
952 }
953
954 void
955 go32_nat_target::terminal_ours ()
956 {
957 /* Switch to cooked mode on the gdb terminal and save the inferior
958 terminal mode to be restored when it is resumed. */
959 if (!terminal_is_ours)
960 {
961 inf_terminal_mode = device_mode (0, 0);
962 if (inf_terminal_mode != -1)
963 inf_mode_valid = 1;
964 else
965 /* If device_mode returned -1, we don't know what happens with
966 handle 0 anymore, so make the info invalid. */
967 inf_mode_valid = 0;
968 terminal_is_ours = 1;
969
970 /* Restore debugger's standard handles. */
971 errno = 0;
972 if (redir_to_debugger (&child_cmd) == -1)
973 {
974 redir_to_child (&child_cmd);
975 error (_("Cannot redirect standard handles for debugger: %s."),
976 safe_strerror (errno));
977 }
978 }
979 }
980
981 void
982 go32_nat_target::pass_ctrlc ()
983 {
984 }
985
986 bool
987 go32_nat_target::thread_alive (ptid_t ptid)
988 {
989 return ptid != null_ptid;
990 }
991
992 std::string
993 go32_nat_target::pid_to_str (ptid_t ptid)
994 {
995 return normal_pid_to_str (ptid);
996 }
997
998 /* Return the current DOS codepage number. */
999 static int
1000 dos_codepage (void)
1001 {
1002 __dpmi_regs regs;
1003
1004 regs.x.ax = 0x6601;
1005 __dpmi_int (0x21, &regs);
1006 if (!(regs.x.flags & 1))
1007 return regs.x.bx & 0xffff;
1008 else
1009 return 437; /* default */
1010 }
1011
1012 /* Limited emulation of `nl_langinfo', for charset.c. */
1013 char *
1014 nl_langinfo (nl_item item)
1015 {
1016 char *retval;
1017
1018 switch (item)
1019 {
1020 case CODESET:
1021 {
1022 /* 8 is enough for SHORT_MAX + "CP" + null. */
1023 char buf[8];
1024 int blen = sizeof (buf);
1025 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1026
1027 if (needed > blen) /* Should never happen. */
1028 buf[0] = 0;
1029 retval = xstrdup (buf);
1030 }
1031 break;
1032 default:
1033 retval = xstrdup ("");
1034 break;
1035 }
1036 return retval;
1037 }
1038
1039 unsigned short windows_major, windows_minor;
1040
1041 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1042 static void
1043 go32_get_windows_version(void)
1044 {
1045 __dpmi_regs r;
1046
1047 r.x.ax = 0x1600;
1048 __dpmi_int(0x2f, &r);
1049 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1050 && (r.h.al > 3 || r.h.ah > 0))
1051 {
1052 windows_major = r.h.al;
1053 windows_minor = r.h.ah;
1054 }
1055 else
1056 windows_major = 0xff; /* meaning no Windows */
1057 }
1058
1059 /* A subroutine of go32_sysinfo to display memory info. */
1060 static void
1061 print_mem (unsigned long datum, const char *header, int in_pages_p)
1062 {
1063 if (datum != 0xffffffffUL)
1064 {
1065 if (in_pages_p)
1066 datum <<= 12;
1067 puts_filtered (header);
1068 if (datum > 1024)
1069 {
1070 printf_filtered ("%lu KB", datum >> 10);
1071 if (datum > 1024 * 1024)
1072 printf_filtered (" (%lu MB)", datum >> 20);
1073 }
1074 else
1075 printf_filtered ("%lu Bytes", datum);
1076 puts_filtered ("\n");
1077 }
1078 }
1079
1080 /* Display assorted information about the underlying OS. */
1081 static void
1082 go32_sysinfo (const char *arg, int from_tty)
1083 {
1084 static const char test_pattern[] =
1085 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1086 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1087 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1088 struct utsname u;
1089 char cpuid_vendor[13];
1090 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1091 unsigned true_dos_version = _get_dos_version (1);
1092 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1093 int dpmi_flags;
1094 char dpmi_vendor_info[129];
1095 int dpmi_vendor_available;
1096 __dpmi_version_ret dpmi_version_data;
1097 long eflags;
1098 __dpmi_free_mem_info mem_info;
1099 __dpmi_regs regs;
1100
1101 cpuid_vendor[0] = '\0';
1102 if (uname (&u))
1103 strcpy (u.machine, "Unknown x86");
1104 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1105 {
1106 /* CPUID with EAX = 0 returns the Vendor ID. */
1107 #if 0
1108 /* Ideally we would use x86_cpuid(), but it needs someone to run
1109 native tests first to make sure things actually work. They should.
1110 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1111 unsigned int eax, ebx, ecx, edx;
1112
1113 if (x86_cpuid (0, &eax, &ebx, &ecx, &edx))
1114 {
1115 cpuid_max = eax;
1116 memcpy (&vendor[0], &ebx, 4);
1117 memcpy (&vendor[4], &ecx, 4);
1118 memcpy (&vendor[8], &edx, 4);
1119 cpuid_vendor[12] = '\0';
1120 }
1121 #else
1122 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1123 "xorl %%ecx, %%ecx;"
1124 "xorl %%edx, %%edx;"
1125 "movl $0, %%eax;"
1126 "cpuid;"
1127 "movl %%ebx, %0;"
1128 "movl %%edx, %1;"
1129 "movl %%ecx, %2;"
1130 "movl %%eax, %3;"
1131 : "=m" (cpuid_vendor[0]),
1132 "=m" (cpuid_vendor[4]),
1133 "=m" (cpuid_vendor[8]),
1134 "=m" (cpuid_max)
1135 :
1136 : "%eax", "%ebx", "%ecx", "%edx");
1137 cpuid_vendor[12] = '\0';
1138 #endif
1139 }
1140
1141 printf_filtered ("CPU Type.......................%s", u.machine);
1142 if (cpuid_vendor[0])
1143 printf_filtered (" (%s)", cpuid_vendor);
1144 puts_filtered ("\n");
1145
1146 /* CPUID with EAX = 1 returns processor signature and features. */
1147 if (cpuid_max >= 1)
1148 {
1149 static const char *brand_name[] = {
1150 "",
1151 " Celeron",
1152 " III",
1153 " III Xeon",
1154 "", "", "", "",
1155 " 4"
1156 };
1157 char cpu_string[80];
1158 char cpu_brand[20];
1159 unsigned brand_idx;
1160 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1161 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1162 int hygon_p = strcmp (cpuid_vendor, "HygonGenuine") == 0;
1163 unsigned cpu_family, cpu_model;
1164
1165 #if 0
1166 /* See comment above about cpuid usage. */
1167 x86_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1168 #else
1169 __asm__ __volatile__ ("movl $1, %%eax;"
1170 "cpuid;"
1171 : "=a" (cpuid_eax),
1172 "=b" (cpuid_ebx),
1173 "=d" (cpuid_edx)
1174 :
1175 : "%ecx");
1176 #endif
1177 brand_idx = cpuid_ebx & 0xff;
1178 cpu_family = (cpuid_eax >> 8) & 0xf;
1179 cpu_model = (cpuid_eax >> 4) & 0xf;
1180 cpu_brand[0] = '\0';
1181 if (intel_p)
1182 {
1183 if (brand_idx > 0
1184 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1185 && *brand_name[brand_idx])
1186 strcpy (cpu_brand, brand_name[brand_idx]);
1187 else if (cpu_family == 5)
1188 {
1189 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1190 strcpy (cpu_brand, " MMX");
1191 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1192 strcpy (cpu_brand, " OverDrive");
1193 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1194 strcpy (cpu_brand, " Dual");
1195 }
1196 else if (cpu_family == 6 && cpu_model < 8)
1197 {
1198 switch (cpu_model)
1199 {
1200 case 1:
1201 strcpy (cpu_brand, " Pro");
1202 break;
1203 case 3:
1204 strcpy (cpu_brand, " II");
1205 break;
1206 case 5:
1207 strcpy (cpu_brand, " II Xeon");
1208 break;
1209 case 6:
1210 strcpy (cpu_brand, " Celeron");
1211 break;
1212 case 7:
1213 strcpy (cpu_brand, " III");
1214 break;
1215 }
1216 }
1217 }
1218 else if (amd_p)
1219 {
1220 switch (cpu_family)
1221 {
1222 case 4:
1223 strcpy (cpu_brand, "486/5x86");
1224 break;
1225 case 5:
1226 switch (cpu_model)
1227 {
1228 case 0:
1229 case 1:
1230 case 2:
1231 case 3:
1232 strcpy (cpu_brand, "-K5");
1233 break;
1234 case 6:
1235 case 7:
1236 strcpy (cpu_brand, "-K6");
1237 break;
1238 case 8:
1239 strcpy (cpu_brand, "-K6-2");
1240 break;
1241 case 9:
1242 strcpy (cpu_brand, "-K6-III");
1243 break;
1244 }
1245 break;
1246 case 6:
1247 switch (cpu_model)
1248 {
1249 case 1:
1250 case 2:
1251 case 4:
1252 strcpy (cpu_brand, " Athlon");
1253 break;
1254 case 3:
1255 strcpy (cpu_brand, " Duron");
1256 break;
1257 }
1258 break;
1259 }
1260 }
1261 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1262 intel_p ? "Pentium" : (amd_p ? "AMD" : (hygon_p ? "Hygon" : "ix86")),
1263 cpu_brand, cpu_model, cpuid_eax & 0xf);
1264 printfi_filtered (31, "%s\n", cpu_string);
1265 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1266 || ((cpuid_edx & 1) == 0)
1267 || ((amd_p || hygon_p) && (cpuid_edx & (3 << 30)) != 0))
1268 {
1269 puts_filtered ("CPU Features...................");
1270 /* We only list features which might be useful in the DPMI
1271 environment. */
1272 if ((cpuid_edx & 1) == 0)
1273 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1274 if ((cpuid_edx & (1 << 1)) != 0)
1275 puts_filtered ("VME ");
1276 if ((cpuid_edx & (1 << 2)) != 0)
1277 puts_filtered ("DE ");
1278 if ((cpuid_edx & (1 << 4)) != 0)
1279 puts_filtered ("TSC ");
1280 if ((cpuid_edx & (1 << 23)) != 0)
1281 puts_filtered ("MMX ");
1282 if ((cpuid_edx & (1 << 25)) != 0)
1283 puts_filtered ("SSE ");
1284 if ((cpuid_edx & (1 << 26)) != 0)
1285 puts_filtered ("SSE2 ");
1286 if (amd_p || hygon_p)
1287 {
1288 if ((cpuid_edx & (1 << 31)) != 0)
1289 puts_filtered ("3DNow! ");
1290 if ((cpuid_edx & (1 << 30)) != 0)
1291 puts_filtered ("3DNow!Ext");
1292 }
1293 puts_filtered ("\n");
1294 }
1295 }
1296 puts_filtered ("\n");
1297 printf_filtered ("DOS Version....................%s %s.%s",
1298 _os_flavor, u.release, u.version);
1299 if (true_dos_version != advertized_dos_version)
1300 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1301 puts_filtered ("\n");
1302 if (!windows_major)
1303 go32_get_windows_version ();
1304 if (windows_major != 0xff)
1305 {
1306 const char *windows_flavor;
1307
1308 printf_filtered ("Windows Version................%d.%02d (Windows ",
1309 windows_major, windows_minor);
1310 switch (windows_major)
1311 {
1312 case 3:
1313 windows_flavor = "3.X";
1314 break;
1315 case 4:
1316 switch (windows_minor)
1317 {
1318 case 0:
1319 windows_flavor = "95, 95A, or 95B";
1320 break;
1321 case 3:
1322 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1323 break;
1324 case 10:
1325 windows_flavor = "98 or 98 SE";
1326 break;
1327 case 90:
1328 windows_flavor = "ME";
1329 break;
1330 default:
1331 windows_flavor = "9X";
1332 break;
1333 }
1334 break;
1335 default:
1336 windows_flavor = "??";
1337 break;
1338 }
1339 printf_filtered ("%s)\n", windows_flavor);
1340 }
1341 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1342 printf_filtered ("Windows Version................"
1343 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1344 puts_filtered ("\n");
1345 /* On some versions of Windows, __dpmi_get_capabilities returns
1346 zero, but the buffer is not filled with info, so we fill the
1347 buffer with a known pattern and test for it afterwards. */
1348 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1349 dpmi_vendor_available =
1350 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1351 if (dpmi_vendor_available == 0
1352 && memcmp (dpmi_vendor_info, test_pattern,
1353 sizeof(dpmi_vendor_info)) != 0)
1354 {
1355 /* The DPMI spec says the vendor string should be ASCIIZ, but
1356 I don't trust the vendors to follow that... */
1357 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1358 dpmi_vendor_info[128] = '\0';
1359 printf_filtered ("DPMI Host......................"
1360 "%s v%d.%d (capabilities: %#x)\n",
1361 &dpmi_vendor_info[2],
1362 (unsigned)dpmi_vendor_info[0],
1363 (unsigned)dpmi_vendor_info[1],
1364 ((unsigned)dpmi_flags & 0x7f));
1365 }
1366 else
1367 printf_filtered ("DPMI Host......................(Info not available)\n");
1368 __dpmi_get_version (&dpmi_version_data);
1369 printf_filtered ("DPMI Version...................%d.%02d\n",
1370 dpmi_version_data.major, dpmi_version_data.minor);
1371 printf_filtered ("DPMI Info......................"
1372 "%s-bit DPMI, with%s Virtual Memory support\n",
1373 (dpmi_version_data.flags & 1) ? "32" : "16",
1374 (dpmi_version_data.flags & 4) ? "" : "out");
1375 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1376 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1377 printfi_filtered (31, "Processor type: i%d86\n",
1378 dpmi_version_data.cpu);
1379 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1380 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1381
1382 /* a_tss is only initialized when the debuggee is first run. */
1383 if (prog_has_started)
1384 {
1385 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1386 printf_filtered ("Protection....................."
1387 "Ring %d (in %s), with%s I/O protection\n",
1388 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1389 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1390 }
1391 puts_filtered ("\n");
1392 __dpmi_get_free_memory_information (&mem_info);
1393 print_mem (mem_info.total_number_of_physical_pages,
1394 "DPMI Total Physical Memory.....", 1);
1395 print_mem (mem_info.total_number_of_free_pages,
1396 "DPMI Free Physical Memory......", 1);
1397 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1398 "DPMI Swap Space................", 1);
1399 print_mem (mem_info.linear_address_space_size_in_pages,
1400 "DPMI Total Linear Address Size.", 1);
1401 print_mem (mem_info.free_linear_address_space_in_pages,
1402 "DPMI Free Linear Address Size..", 1);
1403 print_mem (mem_info.largest_available_free_block_in_bytes,
1404 "DPMI Largest Free Memory Block.", 0);
1405
1406 regs.h.ah = 0x48;
1407 regs.x.bx = 0xffff;
1408 __dpmi_int (0x21, &regs);
1409 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1410 regs.x.ax = 0x5800;
1411 __dpmi_int (0x21, &regs);
1412 if ((regs.x.flags & 1) == 0)
1413 {
1414 static const char *dos_hilo[] = {
1415 "Low", "", "", "", "High", "", "", "", "High, then Low"
1416 };
1417 static const char *dos_fit[] = {
1418 "First", "Best", "Last"
1419 };
1420 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1421 int fit_idx = regs.x.ax & 0x0f;
1422
1423 if (hilo_idx > 8)
1424 hilo_idx = 0;
1425 if (fit_idx > 2)
1426 fit_idx = 0;
1427 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1428 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1429 regs.x.ax = 0x5802;
1430 __dpmi_int (0x21, &regs);
1431 if ((regs.x.flags & 1) != 0)
1432 regs.h.al = 0;
1433 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1434 regs.h.al == 0 ? "not " : "");
1435 }
1436 }
1437
1438 struct seg_descr {
1439 unsigned short limit0;
1440 unsigned short base0;
1441 unsigned char base1;
1442 unsigned stype:5;
1443 unsigned dpl:2;
1444 unsigned present:1;
1445 unsigned limit1:4;
1446 unsigned available:1;
1447 unsigned dummy:1;
1448 unsigned bit32:1;
1449 unsigned page_granular:1;
1450 unsigned char base2;
1451 } __attribute__ ((packed));
1452
1453 struct gate_descr {
1454 unsigned short offset0;
1455 unsigned short selector;
1456 unsigned param_count:5;
1457 unsigned dummy:3;
1458 unsigned stype:5;
1459 unsigned dpl:2;
1460 unsigned present:1;
1461 unsigned short offset1;
1462 } __attribute__ ((packed));
1463
1464 /* Read LEN bytes starting at logical address ADDR, and put the result
1465 into DEST. Return 1 if success, zero if not. */
1466 static int
1467 read_memory_region (unsigned long addr, void *dest, size_t len)
1468 {
1469 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1470 int retval = 1;
1471
1472 /* For the low memory, we can simply use _dos_ds. */
1473 if (addr <= dos_ds_limit - len)
1474 dosmemget (addr, len, dest);
1475 else
1476 {
1477 /* For memory above 1MB we need to set up a special segment to
1478 be able to access that memory. */
1479 int sel = __dpmi_allocate_ldt_descriptors (1);
1480
1481 if (sel <= 0)
1482 retval = 0;
1483 else
1484 {
1485 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1486 size_t segment_limit = len - 1;
1487
1488 /* Make sure the crucial bits in the descriptor access
1489 rights are set correctly. Some DPMI providers might barf
1490 if we set the segment limit to something that is not an
1491 integral multiple of 4KB pages if the granularity bit is
1492 not set to byte-granular, even though the DPMI spec says
1493 it's the host's responsibility to set that bit correctly. */
1494 if (len > 1024 * 1024)
1495 {
1496 access_rights |= 0x8000;
1497 /* Page-granular segments should have the low 12 bits of
1498 the limit set. */
1499 segment_limit |= 0xfff;
1500 }
1501 else
1502 access_rights &= ~0x8000;
1503
1504 if (__dpmi_set_segment_base_address (sel, addr) != -1
1505 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1506 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1507 /* W2K silently fails to set the segment limit, leaving
1508 it at zero; this test avoids the resulting crash. */
1509 && __dpmi_get_segment_limit (sel) >= segment_limit)
1510 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1511 else
1512 retval = 0;
1513
1514 __dpmi_free_ldt_descriptor (sel);
1515 }
1516 }
1517 return retval;
1518 }
1519
1520 /* Get a segment descriptor stored at index IDX in the descriptor
1521 table whose base address is TABLE_BASE. Return the descriptor
1522 type, or -1 if failure. */
1523 static int
1524 get_descriptor (unsigned long table_base, int idx, void *descr)
1525 {
1526 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1527
1528 if (read_memory_region (addr, descr, 8))
1529 return (int)((struct seg_descr *)descr)->stype;
1530 return -1;
1531 }
1532
1533 struct dtr_reg {
1534 unsigned short limit __attribute__((packed));
1535 unsigned long base __attribute__((packed));
1536 };
1537
1538 /* Display a segment descriptor stored at index IDX in a descriptor
1539 table whose type is TYPE and whose base address is BASE_ADDR. If
1540 FORCE is non-zero, display even invalid descriptors. */
1541 static void
1542 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1543 {
1544 struct seg_descr descr;
1545 struct gate_descr gate;
1546
1547 /* Get the descriptor from the table. */
1548 if (idx == 0 && type == 0)
1549 puts_filtered ("0x000: null descriptor\n");
1550 else if (get_descriptor (base_addr, idx, &descr) != -1)
1551 {
1552 /* For each type of descriptor table, this has a bit set if the
1553 corresponding type of selectors is valid in that table. */
1554 static unsigned allowed_descriptors[] = {
1555 0xffffdafeL, /* GDT */
1556 0x0000c0e0L, /* IDT */
1557 0xffffdafaL /* LDT */
1558 };
1559
1560 /* If the program hasn't started yet, assume the debuggee will
1561 have the same CPL as the debugger. */
1562 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1563 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1564
1565 if (descr.present
1566 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1567 {
1568 printf_filtered ("0x%03x: ",
1569 type == 1
1570 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1571 if (descr.page_granular)
1572 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1573 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1574 || descr.stype == 9 || descr.stype == 11
1575 || (descr.stype >= 16 && descr.stype < 32))
1576 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1577 descr.base2, descr.base1, descr.base0, limit);
1578
1579 switch (descr.stype)
1580 {
1581 case 1:
1582 case 3:
1583 printf_filtered (" 16-bit TSS (task %sactive)",
1584 descr.stype == 3 ? "" : "in");
1585 break;
1586 case 2:
1587 puts_filtered (" LDT");
1588 break;
1589 case 4:
1590 memcpy (&gate, &descr, sizeof gate);
1591 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1592 gate.selector, gate.offset1, gate.offset0);
1593 printf_filtered (" 16-bit Call Gate (params=%d)",
1594 gate.param_count);
1595 break;
1596 case 5:
1597 printf_filtered ("TSS selector=0x%04x", descr.base0);
1598 printfi_filtered (16, "Task Gate");
1599 break;
1600 case 6:
1601 case 7:
1602 memcpy (&gate, &descr, sizeof gate);
1603 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1604 gate.selector, gate.offset1, gate.offset0);
1605 printf_filtered (" 16-bit %s Gate",
1606 descr.stype == 6 ? "Interrupt" : "Trap");
1607 break;
1608 case 9:
1609 case 11:
1610 printf_filtered (" 32-bit TSS (task %sactive)",
1611 descr.stype == 3 ? "" : "in");
1612 break;
1613 case 12:
1614 memcpy (&gate, &descr, sizeof gate);
1615 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1616 gate.selector, gate.offset1, gate.offset0);
1617 printf_filtered (" 32-bit Call Gate (params=%d)",
1618 gate.param_count);
1619 break;
1620 case 14:
1621 case 15:
1622 memcpy (&gate, &descr, sizeof gate);
1623 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1624 gate.selector, gate.offset1, gate.offset0);
1625 printf_filtered (" 32-bit %s Gate",
1626 descr.stype == 14 ? "Interrupt" : "Trap");
1627 break;
1628 case 16: /* data segments */
1629 case 17:
1630 case 18:
1631 case 19:
1632 case 20:
1633 case 21:
1634 case 22:
1635 case 23:
1636 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1637 descr.bit32 ? "32" : "16",
1638 descr.stype & 2
1639 ? "Read/Write," : "Read-Only, ",
1640 descr.stype & 4 ? "down" : "up",
1641 descr.stype & 1 ? "" : ", N.Acc");
1642 break;
1643 case 24: /* code segments */
1644 case 25:
1645 case 26:
1646 case 27:
1647 case 28:
1648 case 29:
1649 case 30:
1650 case 31:
1651 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1652 descr.bit32 ? "32" : "16",
1653 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1654 descr.stype & 4 ? "" : "N.",
1655 descr.stype & 1 ? "" : ", N.Acc");
1656 break;
1657 default:
1658 printf_filtered ("Unknown type 0x%02x", descr.stype);
1659 break;
1660 }
1661 puts_filtered ("\n");
1662 }
1663 else if (force)
1664 {
1665 printf_filtered ("0x%03x: ",
1666 type == 1
1667 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1668 if (!descr.present)
1669 puts_filtered ("Segment not present\n");
1670 else
1671 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1672 descr.stype);
1673 }
1674 }
1675 else if (force)
1676 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1677 }
1678
1679 static void
1680 go32_sldt (const char *arg, int from_tty)
1681 {
1682 struct dtr_reg gdtr;
1683 unsigned short ldtr = 0;
1684 int ldt_idx;
1685 struct seg_descr ldt_descr;
1686 long ldt_entry = -1L;
1687 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1688
1689 if (arg && *arg)
1690 {
1691 arg = skip_spaces (arg);
1692
1693 if (*arg)
1694 {
1695 ldt_entry = parse_and_eval_long (arg);
1696 if (ldt_entry < 0
1697 || (ldt_entry & 4) == 0
1698 || (ldt_entry & 3) != (cpl & 3))
1699 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1700 }
1701 }
1702
1703 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1704 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1705 ldt_idx = ldtr / 8;
1706 if (ldt_idx == 0)
1707 puts_filtered ("There is no LDT.\n");
1708 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1709 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1710 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1711 ldt_descr.base0
1712 | (ldt_descr.base1 << 16)
1713 | (ldt_descr.base2 << 24));
1714 else
1715 {
1716 unsigned base =
1717 ldt_descr.base0
1718 | (ldt_descr.base1 << 16)
1719 | (ldt_descr.base2 << 24);
1720 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1721 int max_entry;
1722
1723 if (ldt_descr.page_granular)
1724 /* Page-granular segments must have the low 12 bits of their
1725 limit set. */
1726 limit = (limit << 12) | 0xfff;
1727 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1728 64KB. */
1729 if (limit > 0xffff)
1730 limit = 0xffff;
1731
1732 max_entry = (limit + 1) / 8;
1733
1734 if (ldt_entry >= 0)
1735 {
1736 if (ldt_entry > limit)
1737 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1738 (unsigned long)ldt_entry, limit);
1739
1740 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1741 }
1742 else
1743 {
1744 int i;
1745
1746 for (i = 0; i < max_entry; i++)
1747 display_descriptor (ldt_descr.stype, base, i, 0);
1748 }
1749 }
1750 }
1751
1752 static void
1753 go32_sgdt (const char *arg, int from_tty)
1754 {
1755 struct dtr_reg gdtr;
1756 long gdt_entry = -1L;
1757 int max_entry;
1758
1759 if (arg && *arg)
1760 {
1761 arg = skip_spaces (arg);
1762
1763 if (*arg)
1764 {
1765 gdt_entry = parse_and_eval_long (arg);
1766 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1767 error (_("Invalid GDT entry 0x%03lx: "
1768 "not an integral multiple of 8."),
1769 (unsigned long)gdt_entry);
1770 }
1771 }
1772
1773 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1774 max_entry = (gdtr.limit + 1) / 8;
1775
1776 if (gdt_entry >= 0)
1777 {
1778 if (gdt_entry > gdtr.limit)
1779 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1780 (unsigned long)gdt_entry, gdtr.limit);
1781
1782 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1783 }
1784 else
1785 {
1786 int i;
1787
1788 for (i = 0; i < max_entry; i++)
1789 display_descriptor (0, gdtr.base, i, 0);
1790 }
1791 }
1792
1793 static void
1794 go32_sidt (const char *arg, int from_tty)
1795 {
1796 struct dtr_reg idtr;
1797 long idt_entry = -1L;
1798 int max_entry;
1799
1800 if (arg && *arg)
1801 {
1802 arg = skip_spaces (arg);
1803
1804 if (*arg)
1805 {
1806 idt_entry = parse_and_eval_long (arg);
1807 if (idt_entry < 0)
1808 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1809 }
1810 }
1811
1812 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1813 max_entry = (idtr.limit + 1) / 8;
1814 if (max_entry > 0x100) /* No more than 256 entries. */
1815 max_entry = 0x100;
1816
1817 if (idt_entry >= 0)
1818 {
1819 if (idt_entry > idtr.limit)
1820 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1821 (unsigned long)idt_entry, idtr.limit);
1822
1823 display_descriptor (1, idtr.base, idt_entry, 1);
1824 }
1825 else
1826 {
1827 int i;
1828
1829 for (i = 0; i < max_entry; i++)
1830 display_descriptor (1, idtr.base, i, 0);
1831 }
1832 }
1833
1834 /* Cached linear address of the base of the page directory. For
1835 now, available only under CWSDPMI. Code based on ideas and
1836 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1837 static unsigned long pdbr;
1838
1839 static unsigned long
1840 get_cr3 (void)
1841 {
1842 unsigned offset;
1843 unsigned taskreg;
1844 unsigned long taskbase, cr3;
1845 struct dtr_reg gdtr;
1846
1847 if (pdbr > 0 && pdbr <= 0xfffff)
1848 return pdbr;
1849
1850 /* Get the linear address of GDT and the Task Register. */
1851 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1852 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1853
1854 /* Task Register is a segment selector for the TSS of the current
1855 task. Therefore, it can be used as an index into the GDT to get
1856 at the segment descriptor for the TSS. To get the index, reset
1857 the low 3 bits of the selector (which give the CPL). Add 2 to the
1858 offset to point to the 3 low bytes of the base address. */
1859 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1860
1861
1862 /* CWSDPMI's task base is always under the 1MB mark. */
1863 if (offset > 0xfffff)
1864 return 0;
1865
1866 _farsetsel (_dos_ds);
1867 taskbase = _farnspeekl (offset) & 0xffffffU;
1868 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1869 if (taskbase > 0xfffff)
1870 return 0;
1871
1872 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1873 offset 1Ch in the TSS. */
1874 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1875 if (cr3 > 0xfffff)
1876 {
1877 #if 0 /* Not fully supported yet. */
1878 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1879 the first Page Table right below the Page Directory. Thus,
1880 the first Page Table's entry for its own address and the Page
1881 Directory entry for that Page Table will hold the same
1882 physical address. The loop below searches the entire UMB
1883 range of addresses for such an occurrence. */
1884 unsigned long addr, pte_idx;
1885
1886 for (addr = 0xb0000, pte_idx = 0xb0;
1887 pte_idx < 0xff;
1888 addr += 0x1000, pte_idx++)
1889 {
1890 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1891 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1892 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1893 {
1894 cr3 = addr + 0x1000;
1895 break;
1896 }
1897 }
1898 #endif
1899
1900 if (cr3 > 0xfffff)
1901 cr3 = 0;
1902 }
1903
1904 return cr3;
1905 }
1906
1907 /* Return the N'th Page Directory entry. */
1908 static unsigned long
1909 get_pde (int n)
1910 {
1911 unsigned long pde = 0;
1912
1913 if (pdbr && n >= 0 && n < 1024)
1914 {
1915 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1916 }
1917 return pde;
1918 }
1919
1920 /* Return the N'th entry of the Page Table whose Page Directory entry
1921 is PDE. */
1922 static unsigned long
1923 get_pte (unsigned long pde, int n)
1924 {
1925 unsigned long pte = 0;
1926
1927 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1928 page tables, for now. */
1929 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1930 {
1931 pde &= ~0xfff; /* Clear non-address bits. */
1932 pte = _farpeekl (_dos_ds, pde + 4*n);
1933 }
1934 return pte;
1935 }
1936
1937 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1938 says this is a Page Directory entry. If FORCE is non-zero, display
1939 the entry even if its Present flag is off. OFF is the offset of the
1940 address from the page's base address. */
1941 static void
1942 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1943 {
1944 if ((entry & 1) != 0)
1945 {
1946 printf_filtered ("Base=0x%05lx000", entry >> 12);
1947 if ((entry & 0x100) && !is_dir)
1948 puts_filtered (" Global");
1949 if ((entry & 0x40) && !is_dir)
1950 puts_filtered (" Dirty");
1951 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1952 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1953 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1954 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1955 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1956 if (off)
1957 printf_filtered (" +0x%x", off);
1958 puts_filtered ("\n");
1959 }
1960 else if (force)
1961 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1962 is_dir ? " Table" : "", entry >> 1);
1963 }
1964
1965 static void
1966 go32_pde (const char *arg, int from_tty)
1967 {
1968 long pde_idx = -1, i;
1969
1970 if (arg && *arg)
1971 {
1972 arg = skip_spaces (arg);
1973
1974 if (*arg)
1975 {
1976 pde_idx = parse_and_eval_long (arg);
1977 if (pde_idx < 0 || pde_idx >= 1024)
1978 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1979 }
1980 }
1981
1982 pdbr = get_cr3 ();
1983 if (!pdbr)
1984 puts_filtered ("Access to Page Directories is "
1985 "not supported on this system.\n");
1986 else if (pde_idx >= 0)
1987 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1988 else
1989 for (i = 0; i < 1024; i++)
1990 display_ptable_entry (get_pde (i), 1, 0, 0);
1991 }
1992
1993 /* A helper function to display entries in a Page Table pointed to by
1994 the N'th entry in the Page Directory. If FORCE is non-zero, say
1995 something even if the Page Table is not accessible. */
1996 static void
1997 display_page_table (long n, int force)
1998 {
1999 unsigned long pde = get_pde (n);
2000
2001 if ((pde & 1) != 0)
2002 {
2003 int i;
2004
2005 printf_filtered ("Page Table pointed to by "
2006 "Page Directory entry 0x%lx:\n", n);
2007 for (i = 0; i < 1024; i++)
2008 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2009 puts_filtered ("\n");
2010 }
2011 else if (force)
2012 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2013 }
2014
2015 static void
2016 go32_pte (const char *arg, int from_tty)
2017 {
2018 long pde_idx = -1L, i;
2019
2020 if (arg && *arg)
2021 {
2022 arg = skip_spaces (arg);
2023
2024 if (*arg)
2025 {
2026 pde_idx = parse_and_eval_long (arg);
2027 if (pde_idx < 0 || pde_idx >= 1024)
2028 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2029 }
2030 }
2031
2032 pdbr = get_cr3 ();
2033 if (!pdbr)
2034 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2035 else if (pde_idx >= 0)
2036 display_page_table (pde_idx, 1);
2037 else
2038 for (i = 0; i < 1024; i++)
2039 display_page_table (i, 0);
2040 }
2041
2042 static void
2043 go32_pte_for_address (const char *arg, int from_tty)
2044 {
2045 CORE_ADDR addr = 0, i;
2046
2047 if (arg && *arg)
2048 {
2049 arg = skip_spaces (arg);
2050
2051 if (*arg)
2052 addr = parse_and_eval_address (arg);
2053 }
2054 if (!addr)
2055 error_no_arg (_("linear address"));
2056
2057 pdbr = get_cr3 ();
2058 if (!pdbr)
2059 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2060 else
2061 {
2062 int pde_idx = (addr >> 22) & 0x3ff;
2063 int pte_idx = (addr >> 12) & 0x3ff;
2064 unsigned offs = addr & 0xfff;
2065
2066 printf_filtered ("Page Table entry for address %s:\n",
2067 hex_string(addr));
2068 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2069 }
2070 }
2071
2072 static struct cmd_list_element *info_dos_cmdlist = NULL;
2073
2074 void _initialize_go32_nat ();
2075 void
2076 _initialize_go32_nat ()
2077 {
2078 x86_dr_low.set_control = go32_set_dr7;
2079 x86_dr_low.set_addr = go32_set_dr;
2080 x86_dr_low.get_status = go32_get_dr6;
2081 x86_dr_low.get_control = go32_get_dr7;
2082 x86_dr_low.get_addr = go32_get_dr;
2083 x86_set_debug_register_length (4);
2084
2085 add_inf_child_target (&the_go32_nat_target);
2086
2087 /* Initialize child's cwd as empty to be initialized when starting
2088 the child. */
2089 *child_cwd = 0;
2090
2091 /* Initialize child's command line storage. */
2092 if (redir_debug_init (&child_cmd) == -1)
2093 internal_error (__FILE__, __LINE__,
2094 _("Cannot allocate redirection storage: "
2095 "not enough memory.\n"));
2096
2097 /* We are always processing GCC-compiled programs. */
2098 processing_gcc_compilation = 2;
2099
2100 add_basic_prefix_cmd ("dos", class_info, _("\
2101 Print information specific to DJGPP (aka MS-DOS) debugging."),
2102 &info_dos_cmdlist, "info dos ", 0, &infolist);
2103
2104 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2105 Display information about the target system, including CPU, OS, DPMI, etc."),
2106 &info_dos_cmdlist);
2107 add_cmd ("ldt", class_info, go32_sldt, _("\
2108 Display entries in the LDT (Local Descriptor Table).\n\
2109 Entry number (an expression) as an argument means display only that entry."),
2110 &info_dos_cmdlist);
2111 add_cmd ("gdt", class_info, go32_sgdt, _("\
2112 Display entries in the GDT (Global Descriptor Table).\n\
2113 Entry number (an expression) as an argument means display only that entry."),
2114 &info_dos_cmdlist);
2115 add_cmd ("idt", class_info, go32_sidt, _("\
2116 Display entries in the IDT (Interrupt Descriptor Table).\n\
2117 Entry number (an expression) as an argument means display only that entry."),
2118 &info_dos_cmdlist);
2119 add_cmd ("pde", class_info, go32_pde, _("\
2120 Display entries in the Page Directory.\n\
2121 Entry number (an expression) as an argument means display only that entry."),
2122 &info_dos_cmdlist);
2123 add_cmd ("pte", class_info, go32_pte, _("\
2124 Display entries in Page Tables.\n\
2125 Entry number (an expression) as an argument means display only entries\n\
2126 from the Page Table pointed to by the specified Page Directory entry."),
2127 &info_dos_cmdlist);
2128 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2129 Display a Page Table entry for a linear address.\n\
2130 The address argument must be a linear address, after adding to\n\
2131 it the base address of the appropriate segment.\n\
2132 The base address of variables and functions in the debuggee's data\n\
2133 or code segment is stored in the variable __djgpp_base_address,\n\
2134 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2135 For other segments, look up their base address in the output of\n\
2136 the `info dos ldt' command."),
2137 &info_dos_cmdlist);
2138 }
2139
2140 pid_t
2141 tcgetpgrp (int fd)
2142 {
2143 if (isatty (fd))
2144 return SOME_PID;
2145 errno = ENOTTY;
2146 return -1;
2147 }
2148
2149 int
2150 tcsetpgrp (int fd, pid_t pgid)
2151 {
2152 if (isatty (fd) && pgid == SOME_PID)
2153 return 0;
2154 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2155 return -1;
2156 }