]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-linux-tdep.c
Add non-wrapping mode to ada_decode
[thirdparty/binutils-gdb.git] / gdb / hppa-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on PA-RISC, for GDB.
2
3 Copyright (C) 2004-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "osabi.h"
23 #include "target.h"
24 #include "objfiles.h"
25 #include "solib-svr4.h"
26 #include "glibc-tdep.h"
27 #include "frame-unwind.h"
28 #include "trad-frame.h"
29 #include "dwarf2/frame.h"
30 #include "value.h"
31 #include "regset.h"
32 #include "regcache.h"
33 #include "hppa-tdep.h"
34 #include "linux-tdep.h"
35 #include "elf/common.h"
36
37 /* Map DWARF DBX register numbers to GDB register numbers. */
38 static int
39 hppa_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
40 {
41 /* The general registers and the sar are the same in both sets. */
42 if (reg >= 0 && reg <= 32)
43 return reg;
44
45 /* fr4-fr31 (left and right halves) are mapped from 72. */
46 if (reg >= 72 && reg <= 72 + 28 * 2)
47 return HPPA_FP4_REGNUM + (reg - 72);
48
49 return -1;
50 }
51
52 static void
53 hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v)
54 {
55 /* Probably this should be done by the kernel, but it isn't. */
56 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3);
57 regcache_cooked_write_unsigned (regcache,
58 HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3);
59 }
60
61 /* An instruction to match. */
62 struct insn_pattern
63 {
64 unsigned int data; /* See if it matches this.... */
65 unsigned int mask; /* ... with this mask. */
66 };
67
68 static struct insn_pattern hppa_sigtramp[] = {
69 /* ldi 0, %r25 or ldi 1, %r25 */
70 { 0x34190000, 0xfffffffd },
71 /* ldi __NR_rt_sigreturn, %r20 */
72 { 0x3414015a, 0xffffffff },
73 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
74 { 0xe4008200, 0xffffffff },
75 /* nop */
76 { 0x08000240, 0xffffffff },
77 { 0, 0 }
78 };
79
80 #define HPPA_MAX_INSN_PATTERN_LEN (4)
81
82 /* Return non-zero if the instructions at PC match the series
83 described in PATTERN, or zero otherwise. PATTERN is an array of
84 'struct insn_pattern' objects, terminated by an entry whose mask is
85 zero.
86
87 When the match is successful, fill INSN[i] with what PATTERN[i]
88 matched. */
89 static int
90 insns_match_pattern (struct gdbarch *gdbarch, CORE_ADDR pc,
91 struct insn_pattern *pattern,
92 unsigned int *insn)
93 {
94 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
95 int i;
96 CORE_ADDR npc = pc;
97
98 for (i = 0; pattern[i].mask; i++)
99 {
100 gdb_byte buf[4];
101
102 target_read_memory (npc, buf, 4);
103 insn[i] = extract_unsigned_integer (buf, 4, byte_order);
104 if ((insn[i] & pattern[i].mask) == pattern[i].data)
105 npc += 4;
106 else
107 return 0;
108 }
109 return 1;
110 }
111
112 /* Signal frames. */
113
114 /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
115
116 Unfortunately, because of various bugs and changes to the kernel,
117 we have several cases to deal with.
118
119 In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
120 the beginning of the trampoline and struct rt_sigframe.
121
122 In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
123 the 4th word in the trampoline structure. This is wrong, it should point
124 at the 5th word. This is fixed in 2.6.5-rc2-pa4.
125
126 To detect these cases, we first take pc, align it to 64-bytes
127 to get the beginning of the signal frame, and then check offsets 0, 4
128 and 5 to see if we found the beginning of the trampoline. This will
129 tell us how to locate the sigcontext structure.
130
131 Note that with a 2.4 64-bit kernel, the signal context is not properly
132 passed back to userspace so the unwind will not work correctly. */
133 static CORE_ADDR
134 hppa_linux_sigtramp_find_sigcontext (struct gdbarch *gdbarch, CORE_ADDR pc)
135 {
136 unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
137 int offs = 0;
138 int attempt;
139 /* offsets to try to find the trampoline */
140 static int pcoffs[] = { 0, 4*4, 5*4 };
141 /* offsets to the rt_sigframe structure */
142 static int sfoffs[] = { 4*4, 10*4, 10*4 };
143 CORE_ADDR sp;
144
145 /* Most of the time, this will be correct. The one case when this will
146 fail is if the user defined an alternate stack, in which case the
147 beginning of the stack will not be align_down (pc, 64). */
148 sp = align_down (pc, 64);
149
150 /* rt_sigreturn trampoline:
151 3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2)
152 3414015a ldi __NR_rt_sigreturn, %r20
153 e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
154 08000240 nop */
155
156 for (attempt = 0; attempt < ARRAY_SIZE (pcoffs); attempt++)
157 {
158 if (insns_match_pattern (gdbarch, sp + pcoffs[attempt],
159 hppa_sigtramp, dummy))
160 {
161 offs = sfoffs[attempt];
162 break;
163 }
164 }
165
166 if (offs == 0)
167 {
168 if (insns_match_pattern (gdbarch, pc, hppa_sigtramp, dummy))
169 {
170 /* sigaltstack case: we have no way of knowing which offset to
171 use in this case; default to new kernel handling. If this is
172 wrong the unwinding will fail. */
173 attempt = 2;
174 sp = pc - pcoffs[attempt];
175 }
176 else
177 return 0;
178 }
179
180 /* sp + sfoffs[try] points to a struct rt_sigframe, which contains
181 a struct siginfo and a struct ucontext. struct ucontext contains
182 a struct sigcontext. Return an offset to this sigcontext here. Too
183 bad we cannot include system specific headers :-(.
184 sizeof(struct siginfo) == 128
185 offsetof(struct ucontext, uc_mcontext) == 24. */
186 return sp + sfoffs[attempt] + 128 + 24;
187 }
188
189 struct hppa_linux_sigtramp_unwind_cache
190 {
191 CORE_ADDR base;
192 trad_frame_saved_reg *saved_regs;
193 };
194
195 static struct hppa_linux_sigtramp_unwind_cache *
196 hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
197 void **this_cache)
198 {
199 struct gdbarch *gdbarch = get_frame_arch (this_frame);
200 struct hppa_linux_sigtramp_unwind_cache *info;
201 CORE_ADDR pc, scptr;
202 int i;
203
204 if (*this_cache)
205 return (struct hppa_linux_sigtramp_unwind_cache *) *this_cache;
206
207 info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
208 *this_cache = info;
209 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
210
211 pc = get_frame_pc (this_frame);
212 scptr = hppa_linux_sigtramp_find_sigcontext (gdbarch, pc);
213
214 /* structure of struct sigcontext:
215
216 struct sigcontext {
217 unsigned long sc_flags;
218 unsigned long sc_gr[32];
219 unsigned long long sc_fr[32];
220 unsigned long sc_iasq[2];
221 unsigned long sc_iaoq[2];
222 unsigned long sc_sar; */
223
224 /* Skip sc_flags. */
225 scptr += 4;
226
227 /* GR[0] is the psw. */
228 info->saved_regs[HPPA_IPSW_REGNUM].set_addr (scptr);
229 scptr += 4;
230
231 /* General registers. */
232 for (i = 1; i < 32; i++)
233 {
234 info->saved_regs[HPPA_R0_REGNUM + i].set_addr (scptr);
235 scptr += 4;
236 }
237
238 /* Pad to long long boundary. */
239 scptr += 4;
240
241 /* FP regs; FP0-3 are not restored. */
242 scptr += (8 * 4);
243
244 for (i = 4; i < 32; i++)
245 {
246 info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].set_addr (scptr);
247 scptr += 4;
248 info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].set_addr (scptr);
249 scptr += 4;
250 }
251
252 /* IASQ/IAOQ. */
253 info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].set_addr (scptr);
254 scptr += 4;
255 info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].set_addr (scptr);
256 scptr += 4;
257
258 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_addr (scptr);
259 scptr += 4;
260 info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].set_addr (scptr);
261 scptr += 4;
262
263 info->saved_regs[HPPA_SAR_REGNUM].set_addr (scptr);
264
265 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
266
267 return info;
268 }
269
270 static void
271 hppa_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
272 void **this_prologue_cache,
273 struct frame_id *this_id)
274 {
275 struct hppa_linux_sigtramp_unwind_cache *info
276 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
277 *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
278 }
279
280 static struct value *
281 hppa_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
282 void **this_prologue_cache,
283 int regnum)
284 {
285 struct hppa_linux_sigtramp_unwind_cache *info
286 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
287 return hppa_frame_prev_register_helper (this_frame,
288 info->saved_regs, regnum);
289 }
290
291 /* hppa-linux always uses "new-style" rt-signals. The signal handler's return
292 address should point to a signal trampoline on the stack. The signal
293 trampoline is embedded in a rt_sigframe structure that is aligned on
294 the stack. We take advantage of the fact that sp must be 64-byte aligned,
295 and the trampoline is small, so by rounding down the trampoline address
296 we can find the beginning of the struct rt_sigframe. */
297 static int
298 hppa_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
299 struct frame_info *this_frame,
300 void **this_prologue_cache)
301 {
302 struct gdbarch *gdbarch = get_frame_arch (this_frame);
303 CORE_ADDR pc = get_frame_pc (this_frame);
304
305 if (hppa_linux_sigtramp_find_sigcontext (gdbarch, pc))
306 return 1;
307
308 return 0;
309 }
310
311 static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
312 SIGTRAMP_FRAME,
313 default_frame_unwind_stop_reason,
314 hppa_linux_sigtramp_frame_this_id,
315 hppa_linux_sigtramp_frame_prev_register,
316 NULL,
317 hppa_linux_sigtramp_frame_sniffer
318 };
319
320 /* Attempt to find (and return) the global pointer for the given
321 function.
322
323 This is a rather nasty bit of code searchs for the .dynamic section
324 in the objfile corresponding to the pc of the function we're trying
325 to call. Once it finds the addresses at which the .dynamic section
326 lives in the child process, it scans the Elf32_Dyn entries for a
327 DT_PLTGOT tag. If it finds one of these, the corresponding
328 d_un.d_ptr value is the global pointer. */
329
330 static CORE_ADDR
331 hppa_linux_find_global_pointer (struct gdbarch *gdbarch,
332 struct value *function)
333 {
334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
335 struct obj_section *faddr_sect;
336 CORE_ADDR faddr;
337
338 faddr = value_as_address (function);
339
340 /* Is this a plabel? If so, dereference it to get the gp value. */
341 if (faddr & 2)
342 {
343 int status;
344 gdb_byte buf[4];
345
346 faddr &= ~3;
347
348 status = target_read_memory (faddr + 4, buf, sizeof (buf));
349 if (status == 0)
350 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
351 }
352
353 /* If the address is in the plt section, then the real function hasn't
354 yet been fixed up by the linker so we cannot determine the gp of
355 that function. */
356 if (in_plt_section (faddr))
357 return 0;
358
359 faddr_sect = find_pc_section (faddr);
360 if (faddr_sect != NULL)
361 {
362 struct obj_section *osect;
363
364 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
365 {
366 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
367 break;
368 }
369
370 if (osect < faddr_sect->objfile->sections_end)
371 {
372 CORE_ADDR addr, endaddr;
373
374 addr = obj_section_addr (osect);
375 endaddr = obj_section_endaddr (osect);
376
377 while (addr < endaddr)
378 {
379 int status;
380 LONGEST tag;
381 gdb_byte buf[4];
382
383 status = target_read_memory (addr, buf, sizeof (buf));
384 if (status != 0)
385 break;
386 tag = extract_signed_integer (buf, sizeof (buf), byte_order);
387
388 if (tag == DT_PLTGOT)
389 {
390 CORE_ADDR global_pointer;
391
392 status = target_read_memory (addr + 4, buf, sizeof (buf));
393 if (status != 0)
394 break;
395 global_pointer = extract_unsigned_integer (buf, sizeof (buf),
396 byte_order);
397 /* The payoff... */
398 return global_pointer;
399 }
400
401 if (tag == DT_NULL)
402 break;
403
404 addr += 8;
405 }
406 }
407 }
408 return 0;
409 }
410 \f
411 /*
412 * Registers saved in a coredump:
413 * gr0..gr31
414 * sr0..sr7
415 * iaoq0..iaoq1
416 * iasq0..iasq1
417 * sar, iir, isr, ior, ipsw
418 * cr0, cr24..cr31
419 * cr8,9,12,13
420 * cr10, cr15
421 */
422
423 static const struct regcache_map_entry hppa_linux_gregmap[] =
424 {
425 { 32, HPPA_R0_REGNUM },
426 { 1, HPPA_SR4_REGNUM+1 },
427 { 1, HPPA_SR4_REGNUM+2 },
428 { 1, HPPA_SR4_REGNUM+3 },
429 { 1, HPPA_SR4_REGNUM+4 },
430 { 1, HPPA_SR4_REGNUM },
431 { 1, HPPA_SR4_REGNUM+5 },
432 { 1, HPPA_SR4_REGNUM+6 },
433 { 1, HPPA_SR4_REGNUM+7 },
434 { 1, HPPA_PCOQ_HEAD_REGNUM },
435 { 1, HPPA_PCOQ_TAIL_REGNUM },
436 { 1, HPPA_PCSQ_HEAD_REGNUM },
437 { 1, HPPA_PCSQ_TAIL_REGNUM },
438 { 1, HPPA_SAR_REGNUM },
439 { 1, HPPA_IIR_REGNUM },
440 { 1, HPPA_ISR_REGNUM },
441 { 1, HPPA_IOR_REGNUM },
442 { 1, HPPA_IPSW_REGNUM },
443 { 1, HPPA_RCR_REGNUM },
444 { 8, HPPA_TR0_REGNUM },
445 { 4, HPPA_PID0_REGNUM },
446 { 1, HPPA_CCR_REGNUM },
447 { 1, HPPA_EIEM_REGNUM },
448 { 0 }
449 };
450
451 static const struct regcache_map_entry hppa_linux_fpregmap[] =
452 {
453 /* FIXME: Only works for 32-bit mode. In 64-bit mode there should
454 be 32 fpregs, 8 bytes each. */
455 { 64, HPPA_FP0_REGNUM, 4 },
456 { 0 }
457 };
458
459 /* HPPA Linux kernel register set. */
460 static const struct regset hppa_linux_regset =
461 {
462 hppa_linux_gregmap,
463 regcache_supply_regset, regcache_collect_regset
464 };
465
466 static const struct regset hppa_linux_fpregset =
467 {
468 hppa_linux_fpregmap,
469 regcache_supply_regset, regcache_collect_regset
470 };
471
472 static void
473 hppa_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
474 iterate_over_regset_sections_cb *cb,
475 void *cb_data,
476 const struct regcache *regcache)
477 {
478 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
479
480 cb (".reg", 80 * tdep->bytes_per_address, 80 * tdep->bytes_per_address,
481 &hppa_linux_regset, NULL, cb_data);
482 cb (".reg2", 64 * 4, 64 * 4, &hppa_linux_fpregset, NULL, cb_data);
483 }
484
485 static void
486 hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
487 {
488 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
489
490 linux_init_abi (info, gdbarch, 0);
491
492 /* GNU/Linux is always ELF. */
493 tdep->is_elf = 1;
494
495 tdep->find_global_pointer = hppa_linux_find_global_pointer;
496
497 set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
498
499 frame_unwind_append_unwinder (gdbarch, &hppa_linux_sigtramp_frame_unwind);
500
501 /* GNU/Linux uses SVR4-style shared libraries. */
502 set_solib_svr4_fetch_link_map_offsets
503 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
504
505 tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline;
506 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
507
508 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
509 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
510
511 /* On hppa-linux, currently, sizeof(long double) == 8. There has been
512 some discussions to support 128-bit long double, but it requires some
513 more work in gcc and glibc first. */
514 set_gdbarch_long_double_bit (gdbarch, 64);
515 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
516
517 set_gdbarch_iterate_over_regset_sections
518 (gdbarch, hppa_linux_iterate_over_regset_sections);
519
520 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
521
522 /* Enable TLS support. */
523 set_gdbarch_fetch_tls_load_module_address (gdbarch,
524 svr4_fetch_objfile_link_map);
525 }
526
527 void _initialize_hppa_linux_tdep ();
528 void
529 _initialize_hppa_linux_tdep ()
530 {
531 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX,
532 hppa_linux_init_abi);
533 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w,
534 GDB_OSABI_LINUX, hppa_linux_init_abi);
535 }