]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
Unify gdb printf functions
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "bfd.h"
25 #include "inferior.h"
26 #include "regcache.h"
27 #include "completer.h"
28 #include "osabi.h"
29 #include "arch-utils.h"
30 /* For argument passing to the inferior. */
31 #include "symtab.h"
32 #include "dis-asm.h"
33 #include "trad-frame.h"
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "gdbtypes.h"
40 #include "objfiles.h"
41 #include "hppa-tdep.h"
42 #include <algorithm>
43
44 static bool hppa_debug = false;
45
46 /* Some local constants. */
47 static const int hppa32_num_regs = 128;
48 static const int hppa64_num_regs = 96;
49
50 /* We use the objfile->obj_private pointer for two things:
51 * 1. An unwind table;
52 *
53 * 2. A pointer to any associated shared library object.
54 *
55 * #defines are used to help refer to these objects.
56 */
57
58 /* Info about the unwind table associated with an object file.
59 * This is hung off of the "objfile->obj_private" pointer, and
60 * is allocated in the objfile's psymbol obstack. This allows
61 * us to have unique unwind info for each executable and shared
62 * library that we are debugging.
63 */
64 struct hppa_unwind_info
65 {
66 struct unwind_table_entry *table; /* Pointer to unwind info */
67 struct unwind_table_entry *cache; /* Pointer to last entry we found */
68 int last; /* Index of last entry */
69 };
70
71 struct hppa_objfile_private
72 {
73 struct hppa_unwind_info *unwind_info = nullptr; /* a pointer */
74 struct so_list *so_info = nullptr; /* a pointer */
75 CORE_ADDR dp = 0;
76
77 int dummy_call_sequence_reg = 0;
78 CORE_ADDR dummy_call_sequence_addr = 0;
79 };
80
81 /* hppa-specific object data -- unwind and solib info.
82 TODO/maybe: think about splitting this into two parts; the unwind data is
83 common to all hppa targets, but is only used in this file; we can register
84 that separately and make this static. The solib data is probably hpux-
85 specific, so we can create a separate extern objfile_data that is registered
86 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
87 static const struct objfile_key<hppa_objfile_private> hppa_objfile_priv_data;
88
89 /* Get at various relevant fields of an instruction word. */
90 #define MASK_5 0x1f
91 #define MASK_11 0x7ff
92 #define MASK_14 0x3fff
93 #define MASK_21 0x1fffff
94
95 /* Sizes (in bytes) of the native unwind entries. */
96 #define UNWIND_ENTRY_SIZE 16
97 #define STUB_UNWIND_ENTRY_SIZE 8
98
99 /* Routines to extract various sized constants out of hppa
100 instructions. */
101
102 /* This assumes that no garbage lies outside of the lower bits of
103 value. */
104
105 static int
106 hppa_sign_extend (unsigned val, unsigned bits)
107 {
108 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
109 }
110
111 /* For many immediate values the sign bit is the low bit! */
112
113 static int
114 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
115 {
116 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
117 }
118
119 /* Extract the bits at positions between FROM and TO, using HP's numbering
120 (MSB = 0). */
121
122 int
123 hppa_get_field (unsigned word, int from, int to)
124 {
125 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
126 }
127
128 /* Extract the immediate field from a ld{bhw}s instruction. */
129
130 int
131 hppa_extract_5_load (unsigned word)
132 {
133 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
134 }
135
136 /* Extract the immediate field from a break instruction. */
137
138 unsigned
139 hppa_extract_5r_store (unsigned word)
140 {
141 return (word & MASK_5);
142 }
143
144 /* Extract the immediate field from a {sr}sm instruction. */
145
146 unsigned
147 hppa_extract_5R_store (unsigned word)
148 {
149 return (word >> 16 & MASK_5);
150 }
151
152 /* Extract a 14 bit immediate field. */
153
154 int
155 hppa_extract_14 (unsigned word)
156 {
157 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
158 }
159
160 /* Extract a 21 bit constant. */
161
162 int
163 hppa_extract_21 (unsigned word)
164 {
165 int val;
166
167 word &= MASK_21;
168 word <<= 11;
169 val = hppa_get_field (word, 20, 20);
170 val <<= 11;
171 val |= hppa_get_field (word, 9, 19);
172 val <<= 2;
173 val |= hppa_get_field (word, 5, 6);
174 val <<= 5;
175 val |= hppa_get_field (word, 0, 4);
176 val <<= 2;
177 val |= hppa_get_field (word, 7, 8);
178 return hppa_sign_extend (val, 21) << 11;
179 }
180
181 /* extract a 17 bit constant from branch instructions, returning the
182 19 bit signed value. */
183
184 int
185 hppa_extract_17 (unsigned word)
186 {
187 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
188 hppa_get_field (word, 29, 29) << 10 |
189 hppa_get_field (word, 11, 15) << 11 |
190 (word & 0x1) << 16, 17) << 2;
191 }
192
193 CORE_ADDR
194 hppa_symbol_address(const char *sym)
195 {
196 struct bound_minimal_symbol minsym;
197
198 minsym = lookup_minimal_symbol (sym, NULL, NULL);
199 if (minsym.minsym)
200 return BMSYMBOL_VALUE_ADDRESS (minsym);
201 else
202 return (CORE_ADDR)-1;
203 }
204
205 \f
206
207 /* Compare the start address for two unwind entries returning 1 if
208 the first address is larger than the second, -1 if the second is
209 larger than the first, and zero if they are equal. */
210
211 static int
212 compare_unwind_entries (const void *arg1, const void *arg2)
213 {
214 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
215 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
216
217 if (a->region_start > b->region_start)
218 return 1;
219 else if (a->region_start < b->region_start)
220 return -1;
221 else
222 return 0;
223 }
224
225 static void
226 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
227 {
228 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
229 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
230 {
231 bfd_vma value = section->vma - section->filepos;
232 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
233
234 if (value < *low_text_segment_address)
235 *low_text_segment_address = value;
236 }
237 }
238
239 static void
240 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
241 asection *section, unsigned int entries,
242 size_t size, CORE_ADDR text_offset)
243 {
244 /* We will read the unwind entries into temporary memory, then
245 fill in the actual unwind table. */
246
247 if (size > 0)
248 {
249 struct gdbarch *gdbarch = objfile->arch ();
250 hppa_gdbarch_tdep *tdep = (hppa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
251 unsigned long tmp;
252 unsigned i;
253 char *buf = (char *) alloca (size);
254 CORE_ADDR low_text_segment_address;
255
256 /* For ELF targets, then unwinds are supposed to
257 be segment relative offsets instead of absolute addresses.
258
259 Note that when loading a shared library (text_offset != 0) the
260 unwinds are already relative to the text_offset that will be
261 passed in. */
262 if (tdep->is_elf && text_offset == 0)
263 {
264 low_text_segment_address = -1;
265
266 bfd_map_over_sections (objfile->obfd,
267 record_text_segment_lowaddr,
268 &low_text_segment_address);
269
270 text_offset = low_text_segment_address;
271 }
272 else if (tdep->solib_get_text_base)
273 {
274 text_offset = tdep->solib_get_text_base (objfile);
275 }
276
277 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
278
279 /* Now internalize the information being careful to handle host/target
280 endian issues. */
281 for (i = 0; i < entries; i++)
282 {
283 table[i].region_start = bfd_get_32 (objfile->obfd,
284 (bfd_byte *) buf);
285 table[i].region_start += text_offset;
286 buf += 4;
287 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
288 table[i].region_end += text_offset;
289 buf += 4;
290 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
291 buf += 4;
292 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
293 table[i].Millicode = (tmp >> 30) & 0x1;
294 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
295 table[i].Region_description = (tmp >> 27) & 0x3;
296 table[i].reserved = (tmp >> 26) & 0x1;
297 table[i].Entry_SR = (tmp >> 25) & 0x1;
298 table[i].Entry_FR = (tmp >> 21) & 0xf;
299 table[i].Entry_GR = (tmp >> 16) & 0x1f;
300 table[i].Args_stored = (tmp >> 15) & 0x1;
301 table[i].Variable_Frame = (tmp >> 14) & 0x1;
302 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
303 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
304 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
305 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
306 table[i].sr4export = (tmp >> 9) & 0x1;
307 table[i].cxx_info = (tmp >> 8) & 0x1;
308 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
309 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
310 table[i].reserved1 = (tmp >> 5) & 0x1;
311 table[i].Save_SP = (tmp >> 4) & 0x1;
312 table[i].Save_RP = (tmp >> 3) & 0x1;
313 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
314 table[i].save_r19 = (tmp >> 1) & 0x1;
315 table[i].Cleanup_defined = tmp & 0x1;
316 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
317 buf += 4;
318 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
319 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
320 table[i].Large_frame = (tmp >> 29) & 0x1;
321 table[i].alloca_frame = (tmp >> 28) & 0x1;
322 table[i].reserved2 = (tmp >> 27) & 0x1;
323 table[i].Total_frame_size = tmp & 0x7ffffff;
324
325 /* Stub unwinds are handled elsewhere. */
326 table[i].stub_unwind.stub_type = 0;
327 table[i].stub_unwind.padding = 0;
328 }
329 }
330 }
331
332 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
333 the object file. This info is used mainly by find_unwind_entry() to find
334 out the stack frame size and frame pointer used by procedures. We put
335 everything on the psymbol obstack in the objfile so that it automatically
336 gets freed when the objfile is destroyed. */
337
338 static void
339 read_unwind_info (struct objfile *objfile)
340 {
341 asection *unwind_sec, *stub_unwind_sec;
342 size_t unwind_size, stub_unwind_size, total_size;
343 unsigned index, unwind_entries;
344 unsigned stub_entries, total_entries;
345 CORE_ADDR text_offset;
346 struct hppa_unwind_info *ui;
347 struct hppa_objfile_private *obj_private;
348
349 text_offset = objfile->text_section_offset ();
350 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
351 sizeof (struct hppa_unwind_info));
352
353 ui->table = NULL;
354 ui->cache = NULL;
355 ui->last = -1;
356
357 /* For reasons unknown the HP PA64 tools generate multiple unwinder
358 sections in a single executable. So we just iterate over every
359 section in the BFD looking for unwinder sections instead of trying
360 to do a lookup with bfd_get_section_by_name.
361
362 First determine the total size of the unwind tables so that we
363 can allocate memory in a nice big hunk. */
364 total_entries = 0;
365 for (unwind_sec = objfile->obfd->sections;
366 unwind_sec;
367 unwind_sec = unwind_sec->next)
368 {
369 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
370 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
371 {
372 unwind_size = bfd_section_size (unwind_sec);
373 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
374
375 total_entries += unwind_entries;
376 }
377 }
378
379 /* Now compute the size of the stub unwinds. Note the ELF tools do not
380 use stub unwinds at the current time. */
381 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
382
383 if (stub_unwind_sec)
384 {
385 stub_unwind_size = bfd_section_size (stub_unwind_sec);
386 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
387 }
388 else
389 {
390 stub_unwind_size = 0;
391 stub_entries = 0;
392 }
393
394 /* Compute total number of unwind entries and their total size. */
395 total_entries += stub_entries;
396 total_size = total_entries * sizeof (struct unwind_table_entry);
397
398 /* Allocate memory for the unwind table. */
399 ui->table = (struct unwind_table_entry *)
400 obstack_alloc (&objfile->objfile_obstack, total_size);
401 ui->last = total_entries - 1;
402
403 /* Now read in each unwind section and internalize the standard unwind
404 entries. */
405 index = 0;
406 for (unwind_sec = objfile->obfd->sections;
407 unwind_sec;
408 unwind_sec = unwind_sec->next)
409 {
410 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
411 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
412 {
413 unwind_size = bfd_section_size (unwind_sec);
414 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
415
416 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
417 unwind_entries, unwind_size, text_offset);
418 index += unwind_entries;
419 }
420 }
421
422 /* Now read in and internalize the stub unwind entries. */
423 if (stub_unwind_size > 0)
424 {
425 unsigned int i;
426 char *buf = (char *) alloca (stub_unwind_size);
427
428 /* Read in the stub unwind entries. */
429 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
430 0, stub_unwind_size);
431
432 /* Now convert them into regular unwind entries. */
433 for (i = 0; i < stub_entries; i++, index++)
434 {
435 /* Clear out the next unwind entry. */
436 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
437
438 /* Convert offset & size into region_start and region_end.
439 Stuff away the stub type into "reserved" fields. */
440 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
441 (bfd_byte *) buf);
442 ui->table[index].region_start += text_offset;
443 buf += 4;
444 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
445 (bfd_byte *) buf);
446 buf += 2;
447 ui->table[index].region_end
448 = ui->table[index].region_start + 4 *
449 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
450 buf += 2;
451 }
452
453 }
454
455 /* Unwind table needs to be kept sorted. */
456 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
457 compare_unwind_entries);
458
459 /* Keep a pointer to the unwind information. */
460 obj_private = hppa_objfile_priv_data.get (objfile);
461 if (obj_private == NULL)
462 obj_private = hppa_objfile_priv_data.emplace (objfile);
463
464 obj_private->unwind_info = ui;
465 }
466
467 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
468 of the objfiles seeking the unwind table entry for this PC. Each objfile
469 contains a sorted list of struct unwind_table_entry. Since we do a binary
470 search of the unwind tables, we depend upon them to be sorted. */
471
472 struct unwind_table_entry *
473 find_unwind_entry (CORE_ADDR pc)
474 {
475 int first, middle, last;
476
477 if (hppa_debug)
478 gdb_printf (gdb_stdlog, "{ find_unwind_entry %s -> ",
479 hex_string (pc));
480
481 /* A function at address 0? Not in HP-UX! */
482 if (pc == (CORE_ADDR) 0)
483 {
484 if (hppa_debug)
485 gdb_printf (gdb_stdlog, "NULL }\n");
486 return NULL;
487 }
488
489 for (objfile *objfile : current_program_space->objfiles ())
490 {
491 struct hppa_unwind_info *ui;
492 ui = NULL;
493 struct hppa_objfile_private *priv = hppa_objfile_priv_data.get (objfile);
494 if (priv)
495 ui = priv->unwind_info;
496
497 if (!ui)
498 {
499 read_unwind_info (objfile);
500 priv = hppa_objfile_priv_data.get (objfile);
501 if (priv == NULL)
502 error (_("Internal error reading unwind information."));
503 ui = priv->unwind_info;
504 }
505
506 /* First, check the cache. */
507
508 if (ui->cache
509 && pc >= ui->cache->region_start
510 && pc <= ui->cache->region_end)
511 {
512 if (hppa_debug)
513 gdb_printf (gdb_stdlog, "%s (cached) }\n",
514 hex_string ((uintptr_t) ui->cache));
515 return ui->cache;
516 }
517
518 /* Not in the cache, do a binary search. */
519
520 first = 0;
521 last = ui->last;
522
523 while (first <= last)
524 {
525 middle = (first + last) / 2;
526 if (pc >= ui->table[middle].region_start
527 && pc <= ui->table[middle].region_end)
528 {
529 ui->cache = &ui->table[middle];
530 if (hppa_debug)
531 gdb_printf (gdb_stdlog, "%s }\n",
532 hex_string ((uintptr_t) ui->cache));
533 return &ui->table[middle];
534 }
535
536 if (pc < ui->table[middle].region_start)
537 last = middle - 1;
538 else
539 first = middle + 1;
540 }
541 }
542
543 if (hppa_debug)
544 gdb_printf (gdb_stdlog, "NULL (not found) }\n");
545
546 return NULL;
547 }
548
549 /* Implement the stack_frame_destroyed_p gdbarch method.
550
551 The epilogue is defined here as the area either on the `bv' instruction
552 itself or an instruction which destroys the function's stack frame.
553
554 We do not assume that the epilogue is at the end of a function as we can
555 also have return sequences in the middle of a function. */
556
557 static int
558 hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
559 {
560 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
561 unsigned long status;
562 unsigned int inst;
563 gdb_byte buf[4];
564
565 status = target_read_memory (pc, buf, 4);
566 if (status != 0)
567 return 0;
568
569 inst = extract_unsigned_integer (buf, 4, byte_order);
570
571 /* The most common way to perform a stack adjustment ldo X(sp),sp
572 We are destroying a stack frame if the offset is negative. */
573 if ((inst & 0xffffc000) == 0x37de0000
574 && hppa_extract_14 (inst) < 0)
575 return 1;
576
577 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
578 if (((inst & 0x0fc010e0) == 0x0fc010e0
579 || (inst & 0x0fc010e0) == 0x0fc010e0)
580 && hppa_extract_14 (inst) < 0)
581 return 1;
582
583 /* bv %r0(%rp) or bv,n %r0(%rp) */
584 if (inst == 0xe840c000 || inst == 0xe840c002)
585 return 1;
586
587 return 0;
588 }
589
590 constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};
591
592 typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;
593
594 /* Return the name of a register. */
595
596 static const char *
597 hppa32_register_name (struct gdbarch *gdbarch, int i)
598 {
599 static const char *names[] = {
600 "flags", "r1", "rp", "r3",
601 "r4", "r5", "r6", "r7",
602 "r8", "r9", "r10", "r11",
603 "r12", "r13", "r14", "r15",
604 "r16", "r17", "r18", "r19",
605 "r20", "r21", "r22", "r23",
606 "r24", "r25", "r26", "dp",
607 "ret0", "ret1", "sp", "r31",
608 "sar", "pcoqh", "pcsqh", "pcoqt",
609 "pcsqt", "eiem", "iir", "isr",
610 "ior", "ipsw", "goto", "sr4",
611 "sr0", "sr1", "sr2", "sr3",
612 "sr5", "sr6", "sr7", "cr0",
613 "cr8", "cr9", "ccr", "cr12",
614 "cr13", "cr24", "cr25", "cr26",
615 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
616 "fpsr", "fpe1", "fpe2", "fpe3",
617 "fpe4", "fpe5", "fpe6", "fpe7",
618 "fr4", "fr4R", "fr5", "fr5R",
619 "fr6", "fr6R", "fr7", "fr7R",
620 "fr8", "fr8R", "fr9", "fr9R",
621 "fr10", "fr10R", "fr11", "fr11R",
622 "fr12", "fr12R", "fr13", "fr13R",
623 "fr14", "fr14R", "fr15", "fr15R",
624 "fr16", "fr16R", "fr17", "fr17R",
625 "fr18", "fr18R", "fr19", "fr19R",
626 "fr20", "fr20R", "fr21", "fr21R",
627 "fr22", "fr22R", "fr23", "fr23R",
628 "fr24", "fr24R", "fr25", "fr25R",
629 "fr26", "fr26R", "fr27", "fr27R",
630 "fr28", "fr28R", "fr29", "fr29R",
631 "fr30", "fr30R", "fr31", "fr31R"
632 };
633 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
634 return NULL;
635 else
636 return names[i];
637 }
638
639 static const char *
640 hppa64_register_name (struct gdbarch *gdbarch, int i)
641 {
642 static const char *names[] = {
643 "flags", "r1", "rp", "r3",
644 "r4", "r5", "r6", "r7",
645 "r8", "r9", "r10", "r11",
646 "r12", "r13", "r14", "r15",
647 "r16", "r17", "r18", "r19",
648 "r20", "r21", "r22", "r23",
649 "r24", "r25", "r26", "dp",
650 "ret0", "ret1", "sp", "r31",
651 "sar", "pcoqh", "pcsqh", "pcoqt",
652 "pcsqt", "eiem", "iir", "isr",
653 "ior", "ipsw", "goto", "sr4",
654 "sr0", "sr1", "sr2", "sr3",
655 "sr5", "sr6", "sr7", "cr0",
656 "cr8", "cr9", "ccr", "cr12",
657 "cr13", "cr24", "cr25", "cr26",
658 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
659 "fpsr", "fpe1", "fpe2", "fpe3",
660 "fr4", "fr5", "fr6", "fr7",
661 "fr8", "fr9", "fr10", "fr11",
662 "fr12", "fr13", "fr14", "fr15",
663 "fr16", "fr17", "fr18", "fr19",
664 "fr20", "fr21", "fr22", "fr23",
665 "fr24", "fr25", "fr26", "fr27",
666 "fr28", "fr29", "fr30", "fr31"
667 };
668 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
669 return NULL;
670 else
671 return names[i];
672 }
673
674 /* Map dwarf DBX register numbers to GDB register numbers. */
675 static int
676 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
677 {
678 /* The general registers and the sar are the same in both sets. */
679 if (reg >= 0 && reg <= 32)
680 return reg;
681
682 /* fr4-fr31 are mapped from 72 in steps of 2. */
683 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
684 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
685
686 return -1;
687 }
688
689 /* This function pushes a stack frame with arguments as part of the
690 inferior function calling mechanism.
691
692 This is the version of the function for the 32-bit PA machines, in
693 which later arguments appear at lower addresses. (The stack always
694 grows towards higher addresses.)
695
696 We simply allocate the appropriate amount of stack space and put
697 arguments into their proper slots. */
698
699 static CORE_ADDR
700 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
701 struct regcache *regcache, CORE_ADDR bp_addr,
702 int nargs, struct value **args, CORE_ADDR sp,
703 function_call_return_method return_method,
704 CORE_ADDR struct_addr)
705 {
706 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
707
708 /* Stack base address at which any pass-by-reference parameters are
709 stored. */
710 CORE_ADDR struct_end = 0;
711 /* Stack base address at which the first parameter is stored. */
712 CORE_ADDR param_end = 0;
713
714 /* Two passes. First pass computes the location of everything,
715 second pass writes the bytes out. */
716 int write_pass;
717
718 /* Global pointer (r19) of the function we are trying to call. */
719 CORE_ADDR gp;
720
721 hppa_gdbarch_tdep *tdep = (hppa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
722
723 for (write_pass = 0; write_pass < 2; write_pass++)
724 {
725 CORE_ADDR struct_ptr = 0;
726 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
727 struct_ptr is adjusted for each argument below, so the first
728 argument will end up at sp-36. */
729 CORE_ADDR param_ptr = 32;
730 int i;
731 int small_struct = 0;
732
733 for (i = 0; i < nargs; i++)
734 {
735 struct value *arg = args[i];
736 struct type *type = check_typedef (value_type (arg));
737 /* The corresponding parameter that is pushed onto the
738 stack, and [possibly] passed in a register. */
739 gdb_byte param_val[8];
740 int param_len;
741 memset (param_val, 0, sizeof param_val);
742 if (TYPE_LENGTH (type) > 8)
743 {
744 /* Large parameter, pass by reference. Store the value
745 in "struct" area and then pass its address. */
746 param_len = 4;
747 struct_ptr += align_up (TYPE_LENGTH (type), 8);
748 if (write_pass)
749 write_memory (struct_end - struct_ptr,
750 value_contents (arg).data (), TYPE_LENGTH (type));
751 store_unsigned_integer (param_val, 4, byte_order,
752 struct_end - struct_ptr);
753 }
754 else if (type->code () == TYPE_CODE_INT
755 || type->code () == TYPE_CODE_ENUM)
756 {
757 /* Integer value store, right aligned. "unpack_long"
758 takes care of any sign-extension problems. */
759 param_len = align_up (TYPE_LENGTH (type), 4);
760 store_unsigned_integer
761 (param_val, param_len, byte_order,
762 unpack_long (type, value_contents (arg).data ()));
763 }
764 else if (type->code () == TYPE_CODE_FLT)
765 {
766 /* Floating point value store, right aligned. */
767 param_len = align_up (TYPE_LENGTH (type), 4);
768 memcpy (param_val, value_contents (arg).data (), param_len);
769 }
770 else
771 {
772 param_len = align_up (TYPE_LENGTH (type), 4);
773
774 /* Small struct value are stored right-aligned. */
775 memcpy (param_val + param_len - TYPE_LENGTH (type),
776 value_contents (arg).data (), TYPE_LENGTH (type));
777
778 /* Structures of size 5, 6 and 7 bytes are special in that
779 the higher-ordered word is stored in the lower-ordered
780 argument, and even though it is a 8-byte quantity the
781 registers need not be 8-byte aligned. */
782 if (param_len > 4 && param_len < 8)
783 small_struct = 1;
784 }
785
786 param_ptr += param_len;
787 if (param_len == 8 && !small_struct)
788 param_ptr = align_up (param_ptr, 8);
789
790 /* First 4 non-FP arguments are passed in gr26-gr23.
791 First 4 32-bit FP arguments are passed in fr4L-fr7L.
792 First 2 64-bit FP arguments are passed in fr5 and fr7.
793
794 The rest go on the stack, starting at sp-36, towards lower
795 addresses. 8-byte arguments must be aligned to a 8-byte
796 stack boundary. */
797 if (write_pass)
798 {
799 write_memory (param_end - param_ptr, param_val, param_len);
800
801 /* There are some cases when we don't know the type
802 expected by the callee (e.g. for variadic functions), so
803 pass the parameters in both general and fp regs. */
804 if (param_ptr <= 48)
805 {
806 int grreg = 26 - (param_ptr - 36) / 4;
807 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
808 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
809
810 regcache->cooked_write (grreg, param_val);
811 regcache->cooked_write (fpLreg, param_val);
812
813 if (param_len > 4)
814 {
815 regcache->cooked_write (grreg + 1, param_val + 4);
816
817 regcache->cooked_write (fpreg, param_val);
818 regcache->cooked_write (fpreg + 1, param_val + 4);
819 }
820 }
821 }
822 }
823
824 /* Update the various stack pointers. */
825 if (!write_pass)
826 {
827 struct_end = sp + align_up (struct_ptr, 64);
828 /* PARAM_PTR already accounts for all the arguments passed
829 by the user. However, the ABI mandates minimum stack
830 space allocations for outgoing arguments. The ABI also
831 mandates minimum stack alignments which we must
832 preserve. */
833 param_end = struct_end + align_up (param_ptr, 64);
834 }
835 }
836
837 /* If a structure has to be returned, set up register 28 to hold its
838 address. */
839 if (return_method == return_method_struct)
840 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
841
842 gp = tdep->find_global_pointer (gdbarch, function);
843
844 if (gp != 0)
845 regcache_cooked_write_unsigned (regcache, 19, gp);
846
847 /* Set the return address. */
848 if (!gdbarch_push_dummy_code_p (gdbarch))
849 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
850
851 /* Update the Stack Pointer. */
852 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
853
854 return param_end;
855 }
856
857 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
858 Runtime Architecture for PA-RISC 2.0", which is distributed as part
859 as of the HP-UX Software Transition Kit (STK). This implementation
860 is based on version 3.3, dated October 6, 1997. */
861
862 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
863
864 static int
865 hppa64_integral_or_pointer_p (const struct type *type)
866 {
867 switch (type->code ())
868 {
869 case TYPE_CODE_INT:
870 case TYPE_CODE_BOOL:
871 case TYPE_CODE_CHAR:
872 case TYPE_CODE_ENUM:
873 case TYPE_CODE_RANGE:
874 {
875 int len = TYPE_LENGTH (type);
876 return (len == 1 || len == 2 || len == 4 || len == 8);
877 }
878 case TYPE_CODE_PTR:
879 case TYPE_CODE_REF:
880 case TYPE_CODE_RVALUE_REF:
881 return (TYPE_LENGTH (type) == 8);
882 default:
883 break;
884 }
885
886 return 0;
887 }
888
889 /* Check whether TYPE is a "Floating Scalar Type". */
890
891 static int
892 hppa64_floating_p (const struct type *type)
893 {
894 switch (type->code ())
895 {
896 case TYPE_CODE_FLT:
897 {
898 int len = TYPE_LENGTH (type);
899 return (len == 4 || len == 8 || len == 16);
900 }
901 default:
902 break;
903 }
904
905 return 0;
906 }
907
908 /* If CODE points to a function entry address, try to look up the corresponding
909 function descriptor and return its address instead. If CODE is not a
910 function entry address, then just return it unchanged. */
911 static CORE_ADDR
912 hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
913 {
914 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
915 struct obj_section *sec, *opd;
916
917 sec = find_pc_section (code);
918
919 if (!sec)
920 return code;
921
922 /* If CODE is in a data section, assume it's already a fptr. */
923 if (!(sec->the_bfd_section->flags & SEC_CODE))
924 return code;
925
926 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
927 {
928 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
929 break;
930 }
931
932 if (opd < sec->objfile->sections_end)
933 {
934 for (CORE_ADDR addr = opd->addr (); addr < opd->endaddr (); addr += 2 * 8)
935 {
936 ULONGEST opdaddr;
937 gdb_byte tmp[8];
938
939 if (target_read_memory (addr, tmp, sizeof (tmp)))
940 break;
941 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
942
943 if (opdaddr == code)
944 return addr - 16;
945 }
946 }
947
948 return code;
949 }
950
951 static CORE_ADDR
952 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
953 struct regcache *regcache, CORE_ADDR bp_addr,
954 int nargs, struct value **args, CORE_ADDR sp,
955 function_call_return_method return_method,
956 CORE_ADDR struct_addr)
957 {
958 hppa_gdbarch_tdep *tdep = (hppa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
959 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
960 int i, offset = 0;
961 CORE_ADDR gp;
962
963 /* "The outgoing parameter area [...] must be aligned at a 16-byte
964 boundary." */
965 sp = align_up (sp, 16);
966
967 for (i = 0; i < nargs; i++)
968 {
969 struct value *arg = args[i];
970 struct type *type = value_type (arg);
971 int len = TYPE_LENGTH (type);
972 const bfd_byte *valbuf;
973 bfd_byte fptrbuf[8];
974 int regnum;
975
976 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
977 offset = align_up (offset, 8);
978
979 if (hppa64_integral_or_pointer_p (type))
980 {
981 /* "Integral scalar parameters smaller than 64 bits are
982 padded on the left (i.e., the value is in the
983 least-significant bits of the 64-bit storage unit, and
984 the high-order bits are undefined)." Therefore we can
985 safely sign-extend them. */
986 if (len < 8)
987 {
988 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
989 len = 8;
990 }
991 }
992 else if (hppa64_floating_p (type))
993 {
994 if (len > 8)
995 {
996 /* "Quad-precision (128-bit) floating-point scalar
997 parameters are aligned on a 16-byte boundary." */
998 offset = align_up (offset, 16);
999
1000 /* "Double-extended- and quad-precision floating-point
1001 parameters within the first 64 bytes of the parameter
1002 list are always passed in general registers." */
1003 }
1004 else
1005 {
1006 if (len == 4)
1007 {
1008 /* "Single-precision (32-bit) floating-point scalar
1009 parameters are padded on the left with 32 bits of
1010 garbage (i.e., the floating-point value is in the
1011 least-significant 32 bits of a 64-bit storage
1012 unit)." */
1013 offset += 4;
1014 }
1015
1016 /* "Single- and double-precision floating-point
1017 parameters in this area are passed according to the
1018 available formal parameter information in a function
1019 prototype. [...] If no prototype is in scope,
1020 floating-point parameters must be passed both in the
1021 corresponding general registers and in the
1022 corresponding floating-point registers." */
1023 regnum = HPPA64_FP4_REGNUM + offset / 8;
1024
1025 if (regnum < HPPA64_FP4_REGNUM + 8)
1026 {
1027 /* "Single-precision floating-point parameters, when
1028 passed in floating-point registers, are passed in
1029 the right halves of the floating point registers;
1030 the left halves are unused." */
1031 regcache->cooked_write_part (regnum, offset % 8, len,
1032 value_contents (arg).data ());
1033 }
1034 }
1035 }
1036 else
1037 {
1038 if (len > 8)
1039 {
1040 /* "Aggregates larger than 8 bytes are aligned on a
1041 16-byte boundary, possibly leaving an unused argument
1042 slot, which is filled with garbage. If necessary,
1043 they are padded on the right (with garbage), to a
1044 multiple of 8 bytes." */
1045 offset = align_up (offset, 16);
1046 }
1047 }
1048
1049 /* If we are passing a function pointer, make sure we pass a function
1050 descriptor instead of the function entry address. */
1051 if (type->code () == TYPE_CODE_PTR
1052 && TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC)
1053 {
1054 ULONGEST codeptr, fptr;
1055
1056 codeptr = unpack_long (type, value_contents (arg).data ());
1057 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1058 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1059 fptr);
1060 valbuf = fptrbuf;
1061 }
1062 else
1063 {
1064 valbuf = value_contents (arg).data ();
1065 }
1066
1067 /* Always store the argument in memory. */
1068 write_memory (sp + offset, valbuf, len);
1069
1070 regnum = HPPA_ARG0_REGNUM - offset / 8;
1071 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1072 {
1073 regcache->cooked_write_part (regnum, offset % 8, std::min (len, 8),
1074 valbuf);
1075 offset += std::min (len, 8);
1076 valbuf += std::min (len, 8);
1077 len -= std::min (len, 8);
1078 regnum--;
1079 }
1080
1081 offset += len;
1082 }
1083
1084 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1085 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1086
1087 /* Allocate the outgoing parameter area. Make sure the outgoing
1088 parameter area is multiple of 16 bytes in length. */
1089 sp += std::max (align_up (offset, 16), (ULONGEST) 64);
1090
1091 /* Allocate 32-bytes of scratch space. The documentation doesn't
1092 mention this, but it seems to be needed. */
1093 sp += 32;
1094
1095 /* Allocate the frame marker area. */
1096 sp += 16;
1097
1098 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1099 its address. */
1100 if (return_method == return_method_struct)
1101 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1102
1103 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1104 gp = tdep->find_global_pointer (gdbarch, function);
1105 if (gp != 0)
1106 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1107
1108 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1109 if (!gdbarch_push_dummy_code_p (gdbarch))
1110 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1111
1112 /* Set up GR30 to hold the stack pointer (sp). */
1113 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1114
1115 return sp;
1116 }
1117 \f
1118
1119 /* Handle 32/64-bit struct return conventions. */
1120
1121 static enum return_value_convention
1122 hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1123 struct type *type, struct regcache *regcache,
1124 gdb_byte *readbuf, const gdb_byte *writebuf)
1125 {
1126 if (TYPE_LENGTH (type) <= 2 * 4)
1127 {
1128 /* The value always lives in the right hand end of the register
1129 (or register pair)? */
1130 int b;
1131 int reg = type->code () == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1132 int part = TYPE_LENGTH (type) % 4;
1133 /* The left hand register contains only part of the value,
1134 transfer that first so that the rest can be xfered as entire
1135 4-byte registers. */
1136 if (part > 0)
1137 {
1138 if (readbuf != NULL)
1139 regcache->cooked_read_part (reg, 4 - part, part, readbuf);
1140 if (writebuf != NULL)
1141 regcache->cooked_write_part (reg, 4 - part, part, writebuf);
1142 reg++;
1143 }
1144 /* Now transfer the remaining register values. */
1145 for (b = part; b < TYPE_LENGTH (type); b += 4)
1146 {
1147 if (readbuf != NULL)
1148 regcache->cooked_read (reg, readbuf + b);
1149 if (writebuf != NULL)
1150 regcache->cooked_write (reg, writebuf + b);
1151 reg++;
1152 }
1153 return RETURN_VALUE_REGISTER_CONVENTION;
1154 }
1155 else
1156 return RETURN_VALUE_STRUCT_CONVENTION;
1157 }
1158
1159 static enum return_value_convention
1160 hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1161 struct type *type, struct regcache *regcache,
1162 gdb_byte *readbuf, const gdb_byte *writebuf)
1163 {
1164 int len = TYPE_LENGTH (type);
1165 int regnum, offset;
1166
1167 if (len > 16)
1168 {
1169 /* All return values larger than 128 bits must be aggregate
1170 return values. */
1171 gdb_assert (!hppa64_integral_or_pointer_p (type));
1172 gdb_assert (!hppa64_floating_p (type));
1173
1174 /* "Aggregate return values larger than 128 bits are returned in
1175 a buffer allocated by the caller. The address of the buffer
1176 must be passed in GR 28." */
1177 return RETURN_VALUE_STRUCT_CONVENTION;
1178 }
1179
1180 if (hppa64_integral_or_pointer_p (type))
1181 {
1182 /* "Integral return values are returned in GR 28. Values
1183 smaller than 64 bits are padded on the left (with garbage)." */
1184 regnum = HPPA_RET0_REGNUM;
1185 offset = 8 - len;
1186 }
1187 else if (hppa64_floating_p (type))
1188 {
1189 if (len > 8)
1190 {
1191 /* "Double-extended- and quad-precision floating-point
1192 values are returned in GRs 28 and 29. The sign,
1193 exponent, and most-significant bits of the mantissa are
1194 returned in GR 28; the least-significant bits of the
1195 mantissa are passed in GR 29. For double-extended
1196 precision values, GR 29 is padded on the right with 48
1197 bits of garbage." */
1198 regnum = HPPA_RET0_REGNUM;
1199 offset = 0;
1200 }
1201 else
1202 {
1203 /* "Single-precision and double-precision floating-point
1204 return values are returned in FR 4R (single precision) or
1205 FR 4 (double-precision)." */
1206 regnum = HPPA64_FP4_REGNUM;
1207 offset = 8 - len;
1208 }
1209 }
1210 else
1211 {
1212 /* "Aggregate return values up to 64 bits in size are returned
1213 in GR 28. Aggregates smaller than 64 bits are left aligned
1214 in the register; the pad bits on the right are undefined."
1215
1216 "Aggregate return values between 65 and 128 bits are returned
1217 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1218 the remaining bits are placed, left aligned, in GR 29. The
1219 pad bits on the right of GR 29 (if any) are undefined." */
1220 regnum = HPPA_RET0_REGNUM;
1221 offset = 0;
1222 }
1223
1224 if (readbuf)
1225 {
1226 while (len > 0)
1227 {
1228 regcache->cooked_read_part (regnum, offset, std::min (len, 8),
1229 readbuf);
1230 readbuf += std::min (len, 8);
1231 len -= std::min (len, 8);
1232 regnum++;
1233 }
1234 }
1235
1236 if (writebuf)
1237 {
1238 while (len > 0)
1239 {
1240 regcache->cooked_write_part (regnum, offset, std::min (len, 8),
1241 writebuf);
1242 writebuf += std::min (len, 8);
1243 len -= std::min (len, 8);
1244 regnum++;
1245 }
1246 }
1247
1248 return RETURN_VALUE_REGISTER_CONVENTION;
1249 }
1250 \f
1251
1252 static CORE_ADDR
1253 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1254 struct target_ops *targ)
1255 {
1256 if (addr & 2)
1257 {
1258 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1259 CORE_ADDR plabel = addr & ~3;
1260 return read_memory_typed_address (plabel, func_ptr_type);
1261 }
1262
1263 return addr;
1264 }
1265
1266 static CORE_ADDR
1267 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1268 {
1269 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1270 and not _bit_)! */
1271 return align_up (addr, 64);
1272 }
1273
1274 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1275
1276 static CORE_ADDR
1277 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1278 {
1279 /* Just always 16-byte align. */
1280 return align_up (addr, 16);
1281 }
1282
1283 static CORE_ADDR
1284 hppa_read_pc (readable_regcache *regcache)
1285 {
1286 ULONGEST ipsw;
1287 ULONGEST pc;
1288
1289 regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw);
1290 regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc);
1291
1292 /* If the current instruction is nullified, then we are effectively
1293 still executing the previous instruction. Pretend we are still
1294 there. This is needed when single stepping; if the nullified
1295 instruction is on a different line, we don't want GDB to think
1296 we've stepped onto that line. */
1297 if (ipsw & 0x00200000)
1298 pc -= 4;
1299
1300 return pc & ~0x3;
1301 }
1302
1303 void
1304 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1305 {
1306 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1307 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1308 }
1309
1310 /* For the given instruction (INST), return any adjustment it makes
1311 to the stack pointer or zero for no adjustment.
1312
1313 This only handles instructions commonly found in prologues. */
1314
1315 static int
1316 prologue_inst_adjust_sp (unsigned long inst)
1317 {
1318 /* This must persist across calls. */
1319 static int save_high21;
1320
1321 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1322 if ((inst & 0xffffc000) == 0x37de0000)
1323 return hppa_extract_14 (inst);
1324
1325 /* stwm X,D(sp) */
1326 if ((inst & 0xffe00000) == 0x6fc00000)
1327 return hppa_extract_14 (inst);
1328
1329 /* std,ma X,D(sp) */
1330 if ((inst & 0xffe00008) == 0x73c00008)
1331 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
1332
1333 /* addil high21,%r30; ldo low11,(%r1),%r30)
1334 save high bits in save_high21 for later use. */
1335 if ((inst & 0xffe00000) == 0x2bc00000)
1336 {
1337 save_high21 = hppa_extract_21 (inst);
1338 return 0;
1339 }
1340
1341 if ((inst & 0xffff0000) == 0x343e0000)
1342 return save_high21 + hppa_extract_14 (inst);
1343
1344 /* fstws as used by the HP compilers. */
1345 if ((inst & 0xffffffe0) == 0x2fd01220)
1346 return hppa_extract_5_load (inst);
1347
1348 /* No adjustment. */
1349 return 0;
1350 }
1351
1352 /* Return nonzero if INST is a branch of some kind, else return zero. */
1353
1354 static int
1355 is_branch (unsigned long inst)
1356 {
1357 switch (inst >> 26)
1358 {
1359 case 0x20:
1360 case 0x21:
1361 case 0x22:
1362 case 0x23:
1363 case 0x27:
1364 case 0x28:
1365 case 0x29:
1366 case 0x2a:
1367 case 0x2b:
1368 case 0x2f:
1369 case 0x30:
1370 case 0x31:
1371 case 0x32:
1372 case 0x33:
1373 case 0x38:
1374 case 0x39:
1375 case 0x3a:
1376 case 0x3b:
1377 return 1;
1378
1379 default:
1380 return 0;
1381 }
1382 }
1383
1384 /* Return the register number for a GR which is saved by INST or
1385 zero if INST does not save a GR.
1386
1387 Referenced from:
1388
1389 parisc 1.1:
1390 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
1391
1392 parisc 2.0:
1393 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
1394
1395 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1396 on page 106 in parisc 2.0, all instructions for storing values from
1397 the general registers are:
1398
1399 Store: stb, sth, stw, std (according to Chapter 7, they
1400 are only in both "inst >> 26" and "inst >> 6".
1401 Store Absolute: stwa, stda (according to Chapter 7, they are only
1402 in "inst >> 6".
1403 Store Bytes: stby, stdby (according to Chapter 7, they are
1404 only in "inst >> 6").
1405
1406 For (inst >> 26), according to Chapter 7:
1407
1408 The effective memory reference address is formed by the addition
1409 of an immediate displacement to a base value.
1410
1411 - stb: 0x18, store a byte from a general register.
1412
1413 - sth: 0x19, store a halfword from a general register.
1414
1415 - stw: 0x1a, store a word from a general register.
1416
1417 - stwm: 0x1b, store a word from a general register and perform base
1418 register modification (2.0 will still treat it as stw).
1419
1420 - std: 0x1c, store a doubleword from a general register (2.0 only).
1421
1422 - stw: 0x1f, store a word from a general register (2.0 only).
1423
1424 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1425
1426 The effective memory reference address is formed by the addition
1427 of an index value to a base value specified in the instruction.
1428
1429 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1430
1431 - sth: 0x09, store a halfword from a general register (1.1 calls
1432 sths).
1433
1434 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1435
1436 - std: 0x0b: store a doubleword from a general register (2.0 only)
1437
1438 Implement fast byte moves (stores) to unaligned word or doubleword
1439 destination.
1440
1441 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1442
1443 - stdby: 0x0d for unaligned doubleword (2.0 only).
1444
1445 Store a word or doubleword using an absolute memory address formed
1446 using short or long displacement or indexed
1447
1448 - stwa: 0x0e, store a word from a general register to an absolute
1449 address (1.0 calls stwas).
1450
1451 - stda: 0x0f, store a doubleword from a general register to an
1452 absolute address (2.0 only). */
1453
1454 static int
1455 inst_saves_gr (unsigned long inst)
1456 {
1457 switch ((inst >> 26) & 0x0f)
1458 {
1459 case 0x03:
1460 switch ((inst >> 6) & 0x0f)
1461 {
1462 case 0x08:
1463 case 0x09:
1464 case 0x0a:
1465 case 0x0b:
1466 case 0x0c:
1467 case 0x0d:
1468 case 0x0e:
1469 case 0x0f:
1470 return hppa_extract_5R_store (inst);
1471 default:
1472 return 0;
1473 }
1474 case 0x18:
1475 case 0x19:
1476 case 0x1a:
1477 case 0x1b:
1478 case 0x1c:
1479 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1480 case 0x1f:
1481 return hppa_extract_5R_store (inst);
1482 default:
1483 return 0;
1484 }
1485 }
1486
1487 /* Return the register number for a FR which is saved by INST or
1488 zero it INST does not save a FR.
1489
1490 Note we only care about full 64bit register stores (that's the only
1491 kind of stores the prologue will use).
1492
1493 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1494
1495 static int
1496 inst_saves_fr (unsigned long inst)
1497 {
1498 /* Is this an FSTD? */
1499 if ((inst & 0xfc00dfc0) == 0x2c001200)
1500 return hppa_extract_5r_store (inst);
1501 if ((inst & 0xfc000002) == 0x70000002)
1502 return hppa_extract_5R_store (inst);
1503 /* Is this an FSTW? */
1504 if ((inst & 0xfc00df80) == 0x24001200)
1505 return hppa_extract_5r_store (inst);
1506 if ((inst & 0xfc000002) == 0x7c000000)
1507 return hppa_extract_5R_store (inst);
1508 return 0;
1509 }
1510
1511 /* Advance PC across any function entry prologue instructions
1512 to reach some "real" code.
1513
1514 Use information in the unwind table to determine what exactly should
1515 be in the prologue. */
1516
1517
1518 static CORE_ADDR
1519 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1520 int stop_before_branch)
1521 {
1522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1523 gdb_byte buf[4];
1524 CORE_ADDR orig_pc = pc;
1525 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1526 unsigned long args_stored, status, i, restart_gr, restart_fr;
1527 struct unwind_table_entry *u;
1528 int final_iteration;
1529
1530 restart_gr = 0;
1531 restart_fr = 0;
1532
1533 restart:
1534 u = find_unwind_entry (pc);
1535 if (!u)
1536 return pc;
1537
1538 /* If we are not at the beginning of a function, then return now. */
1539 if ((pc & ~0x3) != u->region_start)
1540 return pc;
1541
1542 /* This is how much of a frame adjustment we need to account for. */
1543 stack_remaining = u->Total_frame_size << 3;
1544
1545 /* Magic register saves we want to know about. */
1546 save_rp = u->Save_RP;
1547 save_sp = u->Save_SP;
1548
1549 /* An indication that args may be stored into the stack. Unfortunately
1550 the HPUX compilers tend to set this in cases where no args were
1551 stored too!. */
1552 args_stored = 1;
1553
1554 /* Turn the Entry_GR field into a bitmask. */
1555 save_gr = 0;
1556 for (i = 3; i < u->Entry_GR + 3; i++)
1557 {
1558 /* Frame pointer gets saved into a special location. */
1559 if (u->Save_SP && i == HPPA_FP_REGNUM)
1560 continue;
1561
1562 save_gr |= (1 << i);
1563 }
1564 save_gr &= ~restart_gr;
1565
1566 /* Turn the Entry_FR field into a bitmask too. */
1567 save_fr = 0;
1568 for (i = 12; i < u->Entry_FR + 12; i++)
1569 save_fr |= (1 << i);
1570 save_fr &= ~restart_fr;
1571
1572 final_iteration = 0;
1573
1574 /* Loop until we find everything of interest or hit a branch.
1575
1576 For unoptimized GCC code and for any HP CC code this will never ever
1577 examine any user instructions.
1578
1579 For optimized GCC code we're faced with problems. GCC will schedule
1580 its prologue and make prologue instructions available for delay slot
1581 filling. The end result is user code gets mixed in with the prologue
1582 and a prologue instruction may be in the delay slot of the first branch
1583 or call.
1584
1585 Some unexpected things are expected with debugging optimized code, so
1586 we allow this routine to walk past user instructions in optimized
1587 GCC code. */
1588 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1589 || args_stored)
1590 {
1591 unsigned int reg_num;
1592 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1593 unsigned long old_save_rp, old_save_sp, next_inst;
1594
1595 /* Save copies of all the triggers so we can compare them later
1596 (only for HPC). */
1597 old_save_gr = save_gr;
1598 old_save_fr = save_fr;
1599 old_save_rp = save_rp;
1600 old_save_sp = save_sp;
1601 old_stack_remaining = stack_remaining;
1602
1603 status = target_read_memory (pc, buf, 4);
1604 inst = extract_unsigned_integer (buf, 4, byte_order);
1605
1606 /* Yow! */
1607 if (status != 0)
1608 return pc;
1609
1610 /* Note the interesting effects of this instruction. */
1611 stack_remaining -= prologue_inst_adjust_sp (inst);
1612
1613 /* There are limited ways to store the return pointer into the
1614 stack. */
1615 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1616 save_rp = 0;
1617
1618 /* These are the only ways we save SP into the stack. At this time
1619 the HP compilers never bother to save SP into the stack. */
1620 if ((inst & 0xffffc000) == 0x6fc10000
1621 || (inst & 0xffffc00c) == 0x73c10008)
1622 save_sp = 0;
1623
1624 /* Are we loading some register with an offset from the argument
1625 pointer? */
1626 if ((inst & 0xffe00000) == 0x37a00000
1627 || (inst & 0xffffffe0) == 0x081d0240)
1628 {
1629 pc += 4;
1630 continue;
1631 }
1632
1633 /* Account for general and floating-point register saves. */
1634 reg_num = inst_saves_gr (inst);
1635 save_gr &= ~(1 << reg_num);
1636
1637 /* Ugh. Also account for argument stores into the stack.
1638 Unfortunately args_stored only tells us that some arguments
1639 where stored into the stack. Not how many or what kind!
1640
1641 This is a kludge as on the HP compiler sets this bit and it
1642 never does prologue scheduling. So once we see one, skip past
1643 all of them. We have similar code for the fp arg stores below.
1644
1645 FIXME. Can still die if we have a mix of GR and FR argument
1646 stores! */
1647 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1648 && reg_num <= 26)
1649 {
1650 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1651 && reg_num <= 26)
1652 {
1653 pc += 4;
1654 status = target_read_memory (pc, buf, 4);
1655 inst = extract_unsigned_integer (buf, 4, byte_order);
1656 if (status != 0)
1657 return pc;
1658 reg_num = inst_saves_gr (inst);
1659 }
1660 args_stored = 0;
1661 continue;
1662 }
1663
1664 reg_num = inst_saves_fr (inst);
1665 save_fr &= ~(1 << reg_num);
1666
1667 status = target_read_memory (pc + 4, buf, 4);
1668 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1669
1670 /* Yow! */
1671 if (status != 0)
1672 return pc;
1673
1674 /* We've got to be read to handle the ldo before the fp register
1675 save. */
1676 if ((inst & 0xfc000000) == 0x34000000
1677 && inst_saves_fr (next_inst) >= 4
1678 && inst_saves_fr (next_inst)
1679 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1680 {
1681 /* So we drop into the code below in a reasonable state. */
1682 reg_num = inst_saves_fr (next_inst);
1683 pc -= 4;
1684 }
1685
1686 /* Ugh. Also account for argument stores into the stack.
1687 This is a kludge as on the HP compiler sets this bit and it
1688 never does prologue scheduling. So once we see one, skip past
1689 all of them. */
1690 if (reg_num >= 4
1691 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1692 {
1693 while (reg_num >= 4
1694 && reg_num
1695 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1696 {
1697 pc += 8;
1698 status = target_read_memory (pc, buf, 4);
1699 inst = extract_unsigned_integer (buf, 4, byte_order);
1700 if (status != 0)
1701 return pc;
1702 if ((inst & 0xfc000000) != 0x34000000)
1703 break;
1704 status = target_read_memory (pc + 4, buf, 4);
1705 next_inst = extract_unsigned_integer (buf, 4, byte_order);
1706 if (status != 0)
1707 return pc;
1708 reg_num = inst_saves_fr (next_inst);
1709 }
1710 args_stored = 0;
1711 continue;
1712 }
1713
1714 /* Quit if we hit any kind of branch. This can happen if a prologue
1715 instruction is in the delay slot of the first call/branch. */
1716 if (is_branch (inst) && stop_before_branch)
1717 break;
1718
1719 /* What a crock. The HP compilers set args_stored even if no
1720 arguments were stored into the stack (boo hiss). This could
1721 cause this code to then skip a bunch of user insns (up to the
1722 first branch).
1723
1724 To combat this we try to identify when args_stored was bogusly
1725 set and clear it. We only do this when args_stored is nonzero,
1726 all other resources are accounted for, and nothing changed on
1727 this pass. */
1728 if (args_stored
1729 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1730 && old_save_gr == save_gr && old_save_fr == save_fr
1731 && old_save_rp == save_rp && old_save_sp == save_sp
1732 && old_stack_remaining == stack_remaining)
1733 break;
1734
1735 /* Bump the PC. */
1736 pc += 4;
1737
1738 /* !stop_before_branch, so also look at the insn in the delay slot
1739 of the branch. */
1740 if (final_iteration)
1741 break;
1742 if (is_branch (inst))
1743 final_iteration = 1;
1744 }
1745
1746 /* We've got a tentative location for the end of the prologue. However
1747 because of limitations in the unwind descriptor mechanism we may
1748 have went too far into user code looking for the save of a register
1749 that does not exist. So, if there registers we expected to be saved
1750 but never were, mask them out and restart.
1751
1752 This should only happen in optimized code, and should be very rare. */
1753 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1754 {
1755 pc = orig_pc;
1756 restart_gr = save_gr;
1757 restart_fr = save_fr;
1758 goto restart;
1759 }
1760
1761 return pc;
1762 }
1763
1764
1765 /* Return the address of the PC after the last prologue instruction if
1766 we can determine it from the debug symbols. Else return zero. */
1767
1768 static CORE_ADDR
1769 after_prologue (CORE_ADDR pc)
1770 {
1771 struct symtab_and_line sal;
1772 CORE_ADDR func_addr, func_end;
1773
1774 /* If we can not find the symbol in the partial symbol table, then
1775 there is no hope we can determine the function's start address
1776 with this code. */
1777 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1778 return 0;
1779
1780 /* Get the line associated with FUNC_ADDR. */
1781 sal = find_pc_line (func_addr, 0);
1782
1783 /* There are only two cases to consider. First, the end of the source line
1784 is within the function bounds. In that case we return the end of the
1785 source line. Second is the end of the source line extends beyond the
1786 bounds of the current function. We need to use the slow code to
1787 examine instructions in that case.
1788
1789 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1790 the wrong thing to do. In fact, it should be entirely possible for this
1791 function to always return zero since the slow instruction scanning code
1792 is supposed to *always* work. If it does not, then it is a bug. */
1793 if (sal.end < func_end)
1794 return sal.end;
1795 else
1796 return 0;
1797 }
1798
1799 /* To skip prologues, I use this predicate. Returns either PC itself
1800 if the code at PC does not look like a function prologue; otherwise
1801 returns an address that (if we're lucky) follows the prologue.
1802
1803 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1804 It doesn't necessarily skips all the insns in the prologue. In fact
1805 we might not want to skip all the insns because a prologue insn may
1806 appear in the delay slot of the first branch, and we don't want to
1807 skip over the branch in that case. */
1808
1809 static CORE_ADDR
1810 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1811 {
1812 CORE_ADDR post_prologue_pc;
1813
1814 /* See if we can determine the end of the prologue via the symbol table.
1815 If so, then return either PC, or the PC after the prologue, whichever
1816 is greater. */
1817
1818 post_prologue_pc = after_prologue (pc);
1819
1820 /* If after_prologue returned a useful address, then use it. Else
1821 fall back on the instruction skipping code.
1822
1823 Some folks have claimed this causes problems because the breakpoint
1824 may be the first instruction of the prologue. If that happens, then
1825 the instruction skipping code has a bug that needs to be fixed. */
1826 if (post_prologue_pc != 0)
1827 return std::max (pc, post_prologue_pc);
1828 else
1829 return (skip_prologue_hard_way (gdbarch, pc, 1));
1830 }
1831
1832 /* Return an unwind entry that falls within the frame's code block. */
1833
1834 static struct unwind_table_entry *
1835 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1836 {
1837 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1838
1839 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1840 result of get_frame_address_in_block implies a problem.
1841 The bits should have been removed earlier, before the return
1842 value of gdbarch_unwind_pc. That might be happening already;
1843 if it isn't, it should be fixed. Then this call can be
1844 removed. */
1845 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1846 return find_unwind_entry (pc);
1847 }
1848
1849 struct hppa_frame_cache
1850 {
1851 CORE_ADDR base;
1852 trad_frame_saved_reg *saved_regs;
1853 };
1854
1855 static struct hppa_frame_cache *
1856 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1857 {
1858 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1859 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1860 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1861 struct hppa_frame_cache *cache;
1862 long saved_gr_mask;
1863 long saved_fr_mask;
1864 long frame_size;
1865 struct unwind_table_entry *u;
1866 CORE_ADDR prologue_end;
1867 int fp_in_r1 = 0;
1868 int i;
1869
1870 if (hppa_debug)
1871 gdb_printf (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1872 frame_relative_level(this_frame));
1873
1874 if ((*this_cache) != NULL)
1875 {
1876 if (hppa_debug)
1877 gdb_printf (gdb_stdlog, "base=%s (cached) }",
1878 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1879 return (struct hppa_frame_cache *) (*this_cache);
1880 }
1881 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1882 (*this_cache) = cache;
1883 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1884
1885 /* Yow! */
1886 u = hppa_find_unwind_entry_in_block (this_frame);
1887 if (!u)
1888 {
1889 if (hppa_debug)
1890 gdb_printf (gdb_stdlog, "base=NULL (no unwind entry) }");
1891 return (struct hppa_frame_cache *) (*this_cache);
1892 }
1893
1894 /* Turn the Entry_GR field into a bitmask. */
1895 saved_gr_mask = 0;
1896 for (i = 3; i < u->Entry_GR + 3; i++)
1897 {
1898 /* Frame pointer gets saved into a special location. */
1899 if (u->Save_SP && i == HPPA_FP_REGNUM)
1900 continue;
1901
1902 saved_gr_mask |= (1 << i);
1903 }
1904
1905 /* Turn the Entry_FR field into a bitmask too. */
1906 saved_fr_mask = 0;
1907 for (i = 12; i < u->Entry_FR + 12; i++)
1908 saved_fr_mask |= (1 << i);
1909
1910 /* Loop until we find everything of interest or hit a branch.
1911
1912 For unoptimized GCC code and for any HP CC code this will never ever
1913 examine any user instructions.
1914
1915 For optimized GCC code we're faced with problems. GCC will schedule
1916 its prologue and make prologue instructions available for delay slot
1917 filling. The end result is user code gets mixed in with the prologue
1918 and a prologue instruction may be in the delay slot of the first branch
1919 or call.
1920
1921 Some unexpected things are expected with debugging optimized code, so
1922 we allow this routine to walk past user instructions in optimized
1923 GCC code. */
1924 {
1925 int final_iteration = 0;
1926 CORE_ADDR pc, start_pc, end_pc;
1927 int looking_for_sp = u->Save_SP;
1928 int looking_for_rp = u->Save_RP;
1929 int fp_loc = -1;
1930
1931 /* We have to use skip_prologue_hard_way instead of just
1932 skip_prologue_using_sal, in case we stepped into a function without
1933 symbol information. hppa_skip_prologue also bounds the returned
1934 pc by the passed in pc, so it will not return a pc in the next
1935 function.
1936
1937 We used to call hppa_skip_prologue to find the end of the prologue,
1938 but if some non-prologue instructions get scheduled into the prologue,
1939 and the program is compiled with debug information, the "easy" way
1940 in hppa_skip_prologue will return a prologue end that is too early
1941 for us to notice any potential frame adjustments. */
1942
1943 /* We used to use get_frame_func to locate the beginning of the
1944 function to pass to skip_prologue. However, when objects are
1945 compiled without debug symbols, get_frame_func can return the wrong
1946 function (or 0). We can do better than that by using unwind records.
1947 This only works if the Region_description of the unwind record
1948 indicates that it includes the entry point of the function.
1949 HP compilers sometimes generate unwind records for regions that
1950 do not include the entry or exit point of a function. GNU tools
1951 do not do this. */
1952
1953 if ((u->Region_description & 0x2) == 0)
1954 start_pc = u->region_start;
1955 else
1956 start_pc = get_frame_func (this_frame);
1957
1958 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1959 end_pc = get_frame_pc (this_frame);
1960
1961 if (prologue_end != 0 && end_pc > prologue_end)
1962 end_pc = prologue_end;
1963
1964 frame_size = 0;
1965
1966 for (pc = start_pc;
1967 ((saved_gr_mask || saved_fr_mask
1968 || looking_for_sp || looking_for_rp
1969 || frame_size < (u->Total_frame_size << 3))
1970 && pc < end_pc);
1971 pc += 4)
1972 {
1973 int reg;
1974 gdb_byte buf4[4];
1975 long inst;
1976
1977 if (!safe_frame_unwind_memory (this_frame, pc, buf4))
1978 {
1979 error (_("Cannot read instruction at %s."),
1980 paddress (gdbarch, pc));
1981 return (struct hppa_frame_cache *) (*this_cache);
1982 }
1983
1984 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
1985
1986 /* Note the interesting effects of this instruction. */
1987 frame_size += prologue_inst_adjust_sp (inst);
1988
1989 /* There are limited ways to store the return pointer into the
1990 stack. */
1991 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1992 {
1993 looking_for_rp = 0;
1994 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-20);
1995 }
1996 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1997 {
1998 looking_for_rp = 0;
1999 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-24);
2000 }
2001 else if (inst == 0x0fc212c1
2002 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2003 {
2004 looking_for_rp = 0;
2005 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-16);
2006 }
2007
2008 /* Check to see if we saved SP into the stack. This also
2009 happens to indicate the location of the saved frame
2010 pointer. */
2011 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2012 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2013 {
2014 looking_for_sp = 0;
2015 cache->saved_regs[HPPA_FP_REGNUM].set_addr (0);
2016 }
2017 else if (inst == 0x08030241) /* copy %r3, %r1 */
2018 {
2019 fp_in_r1 = 1;
2020 }
2021
2022 /* Account for general and floating-point register saves. */
2023 reg = inst_saves_gr (inst);
2024 if (reg >= 3 && reg <= 18
2025 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2026 {
2027 saved_gr_mask &= ~(1 << reg);
2028 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
2029 /* stwm with a positive displacement is a _post_
2030 _modify_. */
2031 cache->saved_regs[reg].set_addr (0);
2032 else if ((inst & 0xfc00000c) == 0x70000008)
2033 /* A std has explicit post_modify forms. */
2034 cache->saved_regs[reg].set_addr (0);
2035 else
2036 {
2037 CORE_ADDR offset;
2038
2039 if ((inst >> 26) == 0x1c)
2040 offset = (inst & 0x1 ? -(1 << 13) : 0)
2041 | (((inst >> 4) & 0x3ff) << 3);
2042 else if ((inst >> 26) == 0x03)
2043 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2044 else
2045 offset = hppa_extract_14 (inst);
2046
2047 /* Handle code with and without frame pointers. */
2048 if (u->Save_SP)
2049 cache->saved_regs[reg].set_addr (offset);
2050 else
2051 cache->saved_regs[reg].set_addr ((u->Total_frame_size << 3)
2052 + offset);
2053 }
2054 }
2055
2056 /* GCC handles callee saved FP regs a little differently.
2057
2058 It emits an instruction to put the value of the start of
2059 the FP store area into %r1. It then uses fstds,ma with a
2060 basereg of %r1 for the stores.
2061
2062 HP CC emits them at the current stack pointer modifying the
2063 stack pointer as it stores each register. */
2064
2065 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2066 if ((inst & 0xffffc000) == 0x34610000
2067 || (inst & 0xffffc000) == 0x37c10000)
2068 fp_loc = hppa_extract_14 (inst);
2069
2070 reg = inst_saves_fr (inst);
2071 if (reg >= 12 && reg <= 21)
2072 {
2073 /* Note +4 braindamage below is necessary because the FP
2074 status registers are internally 8 registers rather than
2075 the expected 4 registers. */
2076 saved_fr_mask &= ~(1 << reg);
2077 if (fp_loc == -1)
2078 {
2079 /* 1st HP CC FP register store. After this
2080 instruction we've set enough state that the GCC and
2081 HPCC code are both handled in the same manner. */
2082 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].set_addr (0);
2083 fp_loc = 8;
2084 }
2085 else
2086 {
2087 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].set_addr (fp_loc);
2088 fp_loc += 8;
2089 }
2090 }
2091
2092 /* Quit if we hit any kind of branch the previous iteration. */
2093 if (final_iteration)
2094 break;
2095 /* We want to look precisely one instruction beyond the branch
2096 if we have not found everything yet. */
2097 if (is_branch (inst))
2098 final_iteration = 1;
2099 }
2100 }
2101
2102 {
2103 /* The frame base always represents the value of %sp at entry to
2104 the current function (and is thus equivalent to the "saved"
2105 stack pointer. */
2106 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2107 HPPA_SP_REGNUM);
2108 CORE_ADDR fp;
2109
2110 if (hppa_debug)
2111 gdb_printf (gdb_stdlog, " (this_sp=%s, pc=%s, "
2112 "prologue_end=%s) ",
2113 paddress (gdbarch, this_sp),
2114 paddress (gdbarch, get_frame_pc (this_frame)),
2115 paddress (gdbarch, prologue_end));
2116
2117 /* Check to see if a frame pointer is available, and use it for
2118 frame unwinding if it is.
2119
2120 There are some situations where we need to rely on the frame
2121 pointer to do stack unwinding. For example, if a function calls
2122 alloca (), the stack pointer can get adjusted inside the body of
2123 the function. In this case, the ABI requires that the compiler
2124 maintain a frame pointer for the function.
2125
2126 The unwind record has a flag (alloca_frame) that indicates that
2127 a function has a variable frame; unfortunately, gcc/binutils
2128 does not set this flag. Instead, whenever a frame pointer is used
2129 and saved on the stack, the Save_SP flag is set. We use this to
2130 decide whether to use the frame pointer for unwinding.
2131
2132 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2133 instead of Save_SP. */
2134
2135 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2136
2137 if (u->alloca_frame)
2138 fp -= u->Total_frame_size << 3;
2139
2140 if (get_frame_pc (this_frame) >= prologue_end
2141 && (u->Save_SP || u->alloca_frame) && fp != 0)
2142 {
2143 cache->base = fp;
2144
2145 if (hppa_debug)
2146 gdb_printf (gdb_stdlog, " (base=%s) [frame pointer]",
2147 paddress (gdbarch, cache->base));
2148 }
2149 else if (u->Save_SP
2150 && cache->saved_regs[HPPA_SP_REGNUM].is_addr ())
2151 {
2152 /* Both we're expecting the SP to be saved and the SP has been
2153 saved. The entry SP value is saved at this frame's SP
2154 address. */
2155 cache->base = read_memory_integer (this_sp, word_size, byte_order);
2156
2157 if (hppa_debug)
2158 gdb_printf (gdb_stdlog, " (base=%s) [saved]",
2159 paddress (gdbarch, cache->base));
2160 }
2161 else
2162 {
2163 /* The prologue has been slowly allocating stack space. Adjust
2164 the SP back. */
2165 cache->base = this_sp - frame_size;
2166 if (hppa_debug)
2167 gdb_printf (gdb_stdlog, " (base=%s) [unwind adjust]",
2168 paddress (gdbarch, cache->base));
2169
2170 }
2171 cache->saved_regs[HPPA_SP_REGNUM].set_value (cache->base);
2172 }
2173
2174 /* The PC is found in the "return register", "Millicode" uses "r31"
2175 as the return register while normal code uses "rp". */
2176 if (u->Millicode)
2177 {
2178 if (cache->saved_regs[31].is_addr ())
2179 {
2180 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2181 if (hppa_debug)
2182 gdb_printf (gdb_stdlog, " (pc=r31) [stack] } ");
2183 }
2184 else
2185 {
2186 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2187 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (r31);
2188 if (hppa_debug)
2189 gdb_printf (gdb_stdlog, " (pc=r31) [frame] } ");
2190 }
2191 }
2192 else
2193 {
2194 if (cache->saved_regs[HPPA_RP_REGNUM].is_addr ())
2195 {
2196 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2197 cache->saved_regs[HPPA_RP_REGNUM];
2198 if (hppa_debug)
2199 gdb_printf (gdb_stdlog, " (pc=rp) [stack] } ");
2200 }
2201 else
2202 {
2203 ULONGEST rp = get_frame_register_unsigned (this_frame,
2204 HPPA_RP_REGNUM);
2205 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (rp);
2206 if (hppa_debug)
2207 gdb_printf (gdb_stdlog, " (pc=rp) [frame] } ");
2208 }
2209 }
2210
2211 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2212 frame. However, there is a one-insn window where we haven't saved it
2213 yet, but we've already clobbered it. Detect this case and fix it up.
2214
2215 The prologue sequence for frame-pointer functions is:
2216 0: stw %rp, -20(%sp)
2217 4: copy %r3, %r1
2218 8: copy %sp, %r3
2219 c: stw,ma %r1, XX(%sp)
2220
2221 So if we are at offset c, the r3 value that we want is not yet saved
2222 on the stack, but it's been overwritten. The prologue analyzer will
2223 set fp_in_r1 when it sees the copy insn so we know to get the value
2224 from r1 instead. */
2225 if (u->Save_SP && !cache->saved_regs[HPPA_FP_REGNUM].is_addr ()
2226 && fp_in_r1)
2227 {
2228 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2229 cache->saved_regs[HPPA_FP_REGNUM].set_value (r1);
2230 }
2231
2232 {
2233 /* Convert all the offsets into addresses. */
2234 int reg;
2235 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2236 {
2237 if (cache->saved_regs[reg].is_addr ())
2238 cache->saved_regs[reg].set_addr (cache->saved_regs[reg].addr ()
2239 + cache->base);
2240 }
2241 }
2242
2243 {
2244 hppa_gdbarch_tdep *tdep = (hppa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2245
2246 if (tdep->unwind_adjust_stub)
2247 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2248 }
2249
2250 if (hppa_debug)
2251 gdb_printf (gdb_stdlog, "base=%s }",
2252 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2253 return (struct hppa_frame_cache *) (*this_cache);
2254 }
2255
2256 static void
2257 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2258 struct frame_id *this_id)
2259 {
2260 struct hppa_frame_cache *info;
2261 struct unwind_table_entry *u;
2262
2263 info = hppa_frame_cache (this_frame, this_cache);
2264 u = hppa_find_unwind_entry_in_block (this_frame);
2265
2266 (*this_id) = frame_id_build (info->base, u->region_start);
2267 }
2268
2269 static struct value *
2270 hppa_frame_prev_register (struct frame_info *this_frame,
2271 void **this_cache, int regnum)
2272 {
2273 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2274
2275 return hppa_frame_prev_register_helper (this_frame,
2276 info->saved_regs, regnum);
2277 }
2278
2279 static int
2280 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2281 struct frame_info *this_frame, void **this_cache)
2282 {
2283 if (hppa_find_unwind_entry_in_block (this_frame))
2284 return 1;
2285
2286 return 0;
2287 }
2288
2289 static const struct frame_unwind hppa_frame_unwind =
2290 {
2291 "hppa unwind table",
2292 NORMAL_FRAME,
2293 default_frame_unwind_stop_reason,
2294 hppa_frame_this_id,
2295 hppa_frame_prev_register,
2296 NULL,
2297 hppa_frame_unwind_sniffer
2298 };
2299
2300 /* This is a generic fallback frame unwinder that kicks in if we fail all
2301 the other ones. Normally we would expect the stub and regular unwinder
2302 to work, but in some cases we might hit a function that just doesn't
2303 have any unwind information available. In this case we try to do
2304 unwinding solely based on code reading. This is obviously going to be
2305 slow, so only use this as a last resort. Currently this will only
2306 identify the stack and pc for the frame. */
2307
2308 static struct hppa_frame_cache *
2309 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2310 {
2311 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2312 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2313 struct hppa_frame_cache *cache;
2314 unsigned int frame_size = 0;
2315 int found_rp = 0;
2316 CORE_ADDR start_pc;
2317
2318 if (hppa_debug)
2319 gdb_printf (gdb_stdlog,
2320 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2321 frame_relative_level (this_frame));
2322
2323 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2324 (*this_cache) = cache;
2325 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2326
2327 start_pc = get_frame_func (this_frame);
2328 if (start_pc)
2329 {
2330 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2331 CORE_ADDR pc;
2332
2333 for (pc = start_pc; pc < cur_pc; pc += 4)
2334 {
2335 unsigned int insn;
2336
2337 insn = read_memory_unsigned_integer (pc, 4, byte_order);
2338 frame_size += prologue_inst_adjust_sp (insn);
2339
2340 /* There are limited ways to store the return pointer into the
2341 stack. */
2342 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2343 {
2344 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-20);
2345 found_rp = 1;
2346 }
2347 else if (insn == 0x0fc212c1
2348 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2349 {
2350 cache->saved_regs[HPPA_RP_REGNUM].set_addr (-16);
2351 found_rp = 1;
2352 }
2353 }
2354 }
2355
2356 if (hppa_debug)
2357 gdb_printf (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2358 frame_size, found_rp);
2359
2360 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2361 cache->base -= frame_size;
2362 cache->saved_regs[HPPA_SP_REGNUM].set_value (cache->base);
2363
2364 if (cache->saved_regs[HPPA_RP_REGNUM].is_addr ())
2365 {
2366 cache->saved_regs[HPPA_RP_REGNUM].set_addr (cache->saved_regs[HPPA_RP_REGNUM].addr ()
2367 + cache->base);
2368 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2369 cache->saved_regs[HPPA_RP_REGNUM];
2370 }
2371 else
2372 {
2373 ULONGEST rp;
2374 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2375 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (rp);
2376 }
2377
2378 return cache;
2379 }
2380
2381 static void
2382 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2383 struct frame_id *this_id)
2384 {
2385 struct hppa_frame_cache *info =
2386 hppa_fallback_frame_cache (this_frame, this_cache);
2387
2388 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2389 }
2390
2391 static struct value *
2392 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2393 void **this_cache, int regnum)
2394 {
2395 struct hppa_frame_cache *info
2396 = hppa_fallback_frame_cache (this_frame, this_cache);
2397
2398 return hppa_frame_prev_register_helper (this_frame,
2399 info->saved_regs, regnum);
2400 }
2401
2402 static const struct frame_unwind hppa_fallback_frame_unwind =
2403 {
2404 "hppa prologue",
2405 NORMAL_FRAME,
2406 default_frame_unwind_stop_reason,
2407 hppa_fallback_frame_this_id,
2408 hppa_fallback_frame_prev_register,
2409 NULL,
2410 default_frame_sniffer
2411 };
2412
2413 /* Stub frames, used for all kinds of call stubs. */
2414 struct hppa_stub_unwind_cache
2415 {
2416 CORE_ADDR base;
2417 trad_frame_saved_reg *saved_regs;
2418 };
2419
2420 static struct hppa_stub_unwind_cache *
2421 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2422 void **this_cache)
2423 {
2424 struct hppa_stub_unwind_cache *info;
2425
2426 if (*this_cache)
2427 return (struct hppa_stub_unwind_cache *) *this_cache;
2428
2429 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2430 *this_cache = info;
2431 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2432
2433 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2434
2435 /* By default we assume that stubs do not change the rp. */
2436 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_realreg (HPPA_RP_REGNUM);
2437
2438 return info;
2439 }
2440
2441 static void
2442 hppa_stub_frame_this_id (struct frame_info *this_frame,
2443 void **this_prologue_cache,
2444 struct frame_id *this_id)
2445 {
2446 struct hppa_stub_unwind_cache *info
2447 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2448
2449 if (info)
2450 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2451 }
2452
2453 static struct value *
2454 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2455 void **this_prologue_cache, int regnum)
2456 {
2457 struct hppa_stub_unwind_cache *info
2458 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2459
2460 if (info == NULL)
2461 error (_("Requesting registers from null frame."));
2462
2463 return hppa_frame_prev_register_helper (this_frame,
2464 info->saved_regs, regnum);
2465 }
2466
2467 static int
2468 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2469 struct frame_info *this_frame,
2470 void **this_cache)
2471 {
2472 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2473 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2474 hppa_gdbarch_tdep *tdep = (hppa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2475
2476 if (pc == 0
2477 || (tdep->in_solib_call_trampoline != NULL
2478 && tdep->in_solib_call_trampoline (gdbarch, pc))
2479 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2480 return 1;
2481 return 0;
2482 }
2483
2484 static const struct frame_unwind hppa_stub_frame_unwind = {
2485 "hppa stub",
2486 NORMAL_FRAME,
2487 default_frame_unwind_stop_reason,
2488 hppa_stub_frame_this_id,
2489 hppa_stub_frame_prev_register,
2490 NULL,
2491 hppa_stub_unwind_sniffer
2492 };
2493
2494 CORE_ADDR
2495 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2496 {
2497 ULONGEST ipsw;
2498 CORE_ADDR pc;
2499
2500 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2501 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2502
2503 /* If the current instruction is nullified, then we are effectively
2504 still executing the previous instruction. Pretend we are still
2505 there. This is needed when single stepping; if the nullified
2506 instruction is on a different line, we don't want GDB to think
2507 we've stepped onto that line. */
2508 if (ipsw & 0x00200000)
2509 pc -= 4;
2510
2511 return pc & ~0x3;
2512 }
2513
2514 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2515 Return NULL if no such symbol was found. */
2516
2517 struct bound_minimal_symbol
2518 hppa_lookup_stub_minimal_symbol (const char *name,
2519 enum unwind_stub_types stub_type)
2520 {
2521 struct bound_minimal_symbol result;
2522
2523 for (objfile *objfile : current_program_space->objfiles ())
2524 {
2525 for (minimal_symbol *msym : objfile->msymbols ())
2526 {
2527 if (strcmp (msym->linkage_name (), name) == 0)
2528 {
2529 struct unwind_table_entry *u;
2530
2531 u = find_unwind_entry (MSYMBOL_VALUE (msym));
2532 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2533 {
2534 result.objfile = objfile;
2535 result.minsym = msym;
2536 return result;
2537 }
2538 }
2539 }
2540 }
2541
2542 return result;
2543 }
2544
2545 static void
2546 unwind_command (const char *exp, int from_tty)
2547 {
2548 CORE_ADDR address;
2549 struct unwind_table_entry *u;
2550
2551 /* If we have an expression, evaluate it and use it as the address. */
2552
2553 if (exp != 0 && *exp != 0)
2554 address = parse_and_eval_address (exp);
2555 else
2556 return;
2557
2558 u = find_unwind_entry (address);
2559
2560 if (!u)
2561 {
2562 gdb_printf ("Can't find unwind table entry for %s\n", exp);
2563 return;
2564 }
2565
2566 gdb_printf ("unwind_table_entry (%s):\n", host_address_to_string (u));
2567
2568 gdb_printf ("\tregion_start = %s\n", hex_string (u->region_start));
2569
2570 gdb_printf ("\tregion_end = %s\n", hex_string (u->region_end));
2571
2572 #define pif(FLD) if (u->FLD) gdb_printf (" "#FLD);
2573
2574 gdb_printf ("\n\tflags =");
2575 pif (Cannot_unwind);
2576 pif (Millicode);
2577 pif (Millicode_save_sr0);
2578 pif (Entry_SR);
2579 pif (Args_stored);
2580 pif (Variable_Frame);
2581 pif (Separate_Package_Body);
2582 pif (Frame_Extension_Millicode);
2583 pif (Stack_Overflow_Check);
2584 pif (Two_Instruction_SP_Increment);
2585 pif (sr4export);
2586 pif (cxx_info);
2587 pif (cxx_try_catch);
2588 pif (sched_entry_seq);
2589 pif (Save_SP);
2590 pif (Save_RP);
2591 pif (Save_MRP_in_frame);
2592 pif (save_r19);
2593 pif (Cleanup_defined);
2594 pif (MPE_XL_interrupt_marker);
2595 pif (HP_UX_interrupt_marker);
2596 pif (Large_frame);
2597 pif (alloca_frame);
2598
2599 gdb_putc ('\n');
2600
2601 #define pin(FLD) gdb_printf ("\t"#FLD" = 0x%x\n", u->FLD);
2602
2603 pin (Region_description);
2604 pin (Entry_FR);
2605 pin (Entry_GR);
2606 pin (Total_frame_size);
2607
2608 if (u->stub_unwind.stub_type)
2609 {
2610 gdb_printf ("\tstub type = ");
2611 switch (u->stub_unwind.stub_type)
2612 {
2613 case LONG_BRANCH:
2614 gdb_printf ("long branch\n");
2615 break;
2616 case PARAMETER_RELOCATION:
2617 gdb_printf ("parameter relocation\n");
2618 break;
2619 case EXPORT:
2620 gdb_printf ("export\n");
2621 break;
2622 case IMPORT:
2623 gdb_printf ("import\n");
2624 break;
2625 case IMPORT_SHLIB:
2626 gdb_printf ("import shlib\n");
2627 break;
2628 default:
2629 gdb_printf ("unknown (%d)\n", u->stub_unwind.stub_type);
2630 }
2631 }
2632 }
2633
2634 /* Return the GDB type object for the "standard" data type of data in
2635 register REGNUM. */
2636
2637 static struct type *
2638 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2639 {
2640 if (regnum < HPPA_FP4_REGNUM)
2641 return builtin_type (gdbarch)->builtin_uint32;
2642 else
2643 return builtin_type (gdbarch)->builtin_float;
2644 }
2645
2646 static struct type *
2647 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2648 {
2649 if (regnum < HPPA64_FP4_REGNUM)
2650 return builtin_type (gdbarch)->builtin_uint64;
2651 else
2652 return builtin_type (gdbarch)->builtin_double;
2653 }
2654
2655 /* Return non-zero if REGNUM is not a register available to the user
2656 through ptrace/ttrace. */
2657
2658 static int
2659 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2660 {
2661 return (regnum == 0
2662 || regnum == HPPA_PCSQ_HEAD_REGNUM
2663 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2664 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2665 }
2666
2667 static int
2668 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2669 {
2670 /* cr26 and cr27 are readable (but not writable) from userspace. */
2671 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2672 return 0;
2673 else
2674 return hppa32_cannot_store_register (gdbarch, regnum);
2675 }
2676
2677 static int
2678 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2679 {
2680 return (regnum == 0
2681 || regnum == HPPA_PCSQ_HEAD_REGNUM
2682 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2683 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2684 }
2685
2686 static int
2687 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2688 {
2689 /* cr26 and cr27 are readable (but not writable) from userspace. */
2690 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2691 return 0;
2692 else
2693 return hppa64_cannot_store_register (gdbarch, regnum);
2694 }
2695
2696 static CORE_ADDR
2697 hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2698 {
2699 /* The low two bits of the PC on the PA contain the privilege level.
2700 Some genius implementing a (non-GCC) compiler apparently decided
2701 this means that "addresses" in a text section therefore include a
2702 privilege level, and thus symbol tables should contain these bits.
2703 This seems like a bonehead thing to do--anyway, it seems to work
2704 for our purposes to just ignore those bits. */
2705
2706 return (addr &= ~0x3);
2707 }
2708
2709 /* Get the ARGIth function argument for the current function. */
2710
2711 static CORE_ADDR
2712 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2713 struct type *type)
2714 {
2715 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2716 }
2717
2718 static enum register_status
2719 hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2720 int regnum, gdb_byte *buf)
2721 {
2722 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2723 ULONGEST tmp;
2724 enum register_status status;
2725
2726 status = regcache->raw_read (regnum, &tmp);
2727 if (status == REG_VALID)
2728 {
2729 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2730 tmp &= ~0x3;
2731 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2732 }
2733 return status;
2734 }
2735
2736 static CORE_ADDR
2737 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2738 {
2739 return 0;
2740 }
2741
2742 struct value *
2743 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2744 trad_frame_saved_reg saved_regs[],
2745 int regnum)
2746 {
2747 struct gdbarch *arch = get_frame_arch (this_frame);
2748 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2749
2750 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2751 {
2752 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2753 CORE_ADDR pc;
2754 struct value *pcoq_val =
2755 trad_frame_get_prev_register (this_frame, saved_regs,
2756 HPPA_PCOQ_HEAD_REGNUM);
2757
2758 pc = extract_unsigned_integer (value_contents_all (pcoq_val).data (),
2759 size, byte_order);
2760 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2761 }
2762
2763 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2764 }
2765 \f
2766
2767 /* An instruction to match. */
2768 struct insn_pattern
2769 {
2770 unsigned int data; /* See if it matches this.... */
2771 unsigned int mask; /* ... with this mask. */
2772 };
2773
2774 /* See bfd/elf32-hppa.c */
2775 static struct insn_pattern hppa_long_branch_stub[] = {
2776 /* ldil LR'xxx,%r1 */
2777 { 0x20200000, 0xffe00000 },
2778 /* be,n RR'xxx(%sr4,%r1) */
2779 { 0xe0202002, 0xffe02002 },
2780 { 0, 0 }
2781 };
2782
2783 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2784 /* b,l .+8, %r1 */
2785 { 0xe8200000, 0xffe00000 },
2786 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2787 { 0x28200000, 0xffe00000 },
2788 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2789 { 0xe0202002, 0xffe02002 },
2790 { 0, 0 }
2791 };
2792
2793 static struct insn_pattern hppa_import_stub[] = {
2794 /* addil LR'xxx, %dp */
2795 { 0x2b600000, 0xffe00000 },
2796 /* ldw RR'xxx(%r1), %r21 */
2797 { 0x48350000, 0xffffb000 },
2798 /* bv %r0(%r21) */
2799 { 0xeaa0c000, 0xffffffff },
2800 /* ldw RR'xxx+4(%r1), %r19 */
2801 { 0x48330000, 0xffffb000 },
2802 { 0, 0 }
2803 };
2804
2805 static struct insn_pattern hppa_import_pic_stub[] = {
2806 /* addil LR'xxx,%r19 */
2807 { 0x2a600000, 0xffe00000 },
2808 /* ldw RR'xxx(%r1),%r21 */
2809 { 0x48350000, 0xffffb000 },
2810 /* bv %r0(%r21) */
2811 { 0xeaa0c000, 0xffffffff },
2812 /* ldw RR'xxx+4(%r1),%r19 */
2813 { 0x48330000, 0xffffb000 },
2814 { 0, 0 },
2815 };
2816
2817 static struct insn_pattern hppa_plt_stub[] = {
2818 /* b,l 1b, %r20 - 1b is 3 insns before here */
2819 { 0xea9f1fdd, 0xffffffff },
2820 /* depi 0,31,2,%r20 */
2821 { 0xd6801c1e, 0xffffffff },
2822 { 0, 0 }
2823 };
2824
2825 /* Maximum number of instructions on the patterns above. */
2826 #define HPPA_MAX_INSN_PATTERN_LEN 4
2827
2828 /* Return non-zero if the instructions at PC match the series
2829 described in PATTERN, or zero otherwise. PATTERN is an array of
2830 'struct insn_pattern' objects, terminated by an entry whose mask is
2831 zero.
2832
2833 When the match is successful, fill INSN[i] with what PATTERN[i]
2834 matched. */
2835
2836 static int
2837 hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2838 struct insn_pattern *pattern, unsigned int *insn)
2839 {
2840 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2841 CORE_ADDR npc = pc;
2842 int i;
2843
2844 for (i = 0; pattern[i].mask; i++)
2845 {
2846 gdb_byte buf[HPPA_INSN_SIZE];
2847
2848 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2849 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2850 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2851 npc += 4;
2852 else
2853 return 0;
2854 }
2855
2856 return 1;
2857 }
2858
2859 /* This relaxed version of the instruction matcher allows us to match
2860 from somewhere inside the pattern, by looking backwards in the
2861 instruction scheme. */
2862
2863 static int
2864 hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2865 struct insn_pattern *pattern, unsigned int *insn)
2866 {
2867 int offset, len = 0;
2868
2869 while (pattern[len].mask)
2870 len++;
2871
2872 for (offset = 0; offset < len; offset++)
2873 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2874 pattern, insn))
2875 return 1;
2876
2877 return 0;
2878 }
2879
2880 static int
2881 hppa_in_dyncall (CORE_ADDR pc)
2882 {
2883 struct unwind_table_entry *u;
2884
2885 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2886 if (!u)
2887 return 0;
2888
2889 return (pc >= u->region_start && pc <= u->region_end);
2890 }
2891
2892 int
2893 hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2894 {
2895 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2896 struct unwind_table_entry *u;
2897
2898 if (in_plt_section (pc) || hppa_in_dyncall (pc))
2899 return 1;
2900
2901 /* The GNU toolchain produces linker stubs without unwind
2902 information. Since the pattern matching for linker stubs can be
2903 quite slow, so bail out if we do have an unwind entry. */
2904
2905 u = find_unwind_entry (pc);
2906 if (u != NULL)
2907 return 0;
2908
2909 return
2910 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2911 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2912 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2913 || hppa_match_insns_relaxed (gdbarch, pc,
2914 hppa_long_branch_pic_stub, insn));
2915 }
2916
2917 /* This code skips several kind of "trampolines" used on PA-RISC
2918 systems: $$dyncall, import stubs and PLT stubs. */
2919
2920 CORE_ADDR
2921 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2922 {
2923 struct gdbarch *gdbarch = get_frame_arch (frame);
2924 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2925
2926 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2927 int dp_rel;
2928
2929 /* $$dyncall handles both PLABELs and direct addresses. */
2930 if (hppa_in_dyncall (pc))
2931 {
2932 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2933
2934 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2935 if (pc & 0x2)
2936 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2937
2938 return pc;
2939 }
2940
2941 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2942 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2943 {
2944 /* Extract the target address from the addil/ldw sequence. */
2945 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2946
2947 if (dp_rel)
2948 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2949 else
2950 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2951
2952 /* fallthrough */
2953 }
2954
2955 if (in_plt_section (pc))
2956 {
2957 pc = read_memory_typed_address (pc, func_ptr_type);
2958
2959 /* If the PLT slot has not yet been resolved, the target will be
2960 the PLT stub. */
2961 if (in_plt_section (pc))
2962 {
2963 /* Sanity check: are we pointing to the PLT stub? */
2964 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
2965 {
2966 warning (_("Cannot resolve PLT stub at %s."),
2967 paddress (gdbarch, pc));
2968 return 0;
2969 }
2970
2971 /* This should point to the fixup routine. */
2972 pc = read_memory_typed_address (pc + 8, func_ptr_type);
2973 }
2974 }
2975
2976 return pc;
2977 }
2978 \f
2979
2980 /* Here is a table of C type sizes on hppa with various compiles
2981 and options. I measured this on PA 9000/800 with HP-UX 11.11
2982 and these compilers:
2983
2984 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2985 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2986 /opt/aCC/bin/aCC B3910B A.03.45
2987 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2988
2989 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2990 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2991 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2992 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2993 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2994 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2995 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2996 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2997
2998 Each line is:
2999
3000 compiler and options
3001 char, short, int, long, long long
3002 float, double, long double
3003 char *, void (*)()
3004
3005 So all these compilers use either ILP32 or LP64 model.
3006 TODO: gcc has more options so it needs more investigation.
3007
3008 For floating point types, see:
3009
3010 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3011 HP-UX floating-point guide, hpux 11.00
3012
3013 -- chastain 2003-12-18 */
3014
3015 static struct gdbarch *
3016 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3017 {
3018 struct gdbarch *gdbarch;
3019
3020 /* find a candidate among the list of pre-declared architectures. */
3021 arches = gdbarch_list_lookup_by_info (arches, &info);
3022 if (arches != NULL)
3023 return (arches->gdbarch);
3024
3025 /* If none found, then allocate and initialize one. */
3026 hppa_gdbarch_tdep *tdep = new hppa_gdbarch_tdep;
3027 gdbarch = gdbarch_alloc (&info, tdep);
3028
3029 /* Determine from the bfd_arch_info structure if we are dealing with
3030 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3031 then default to a 32bit machine. */
3032 if (info.bfd_arch_info != NULL)
3033 tdep->bytes_per_address =
3034 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3035 else
3036 tdep->bytes_per_address = 4;
3037
3038 tdep->find_global_pointer = hppa_find_global_pointer;
3039
3040 /* Some parts of the gdbarch vector depend on whether we are running
3041 on a 32 bits or 64 bits target. */
3042 switch (tdep->bytes_per_address)
3043 {
3044 case 4:
3045 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3046 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3047 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3048 set_gdbarch_cannot_store_register (gdbarch,
3049 hppa32_cannot_store_register);
3050 set_gdbarch_cannot_fetch_register (gdbarch,
3051 hppa32_cannot_fetch_register);
3052 break;
3053 case 8:
3054 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3055 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3056 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3057 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3058 set_gdbarch_cannot_store_register (gdbarch,
3059 hppa64_cannot_store_register);
3060 set_gdbarch_cannot_fetch_register (gdbarch,
3061 hppa64_cannot_fetch_register);
3062 break;
3063 default:
3064 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3065 tdep->bytes_per_address);
3066 }
3067
3068 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3069 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3070
3071 /* The following gdbarch vector elements are the same in both ILP32
3072 and LP64, but might show differences some day. */
3073 set_gdbarch_long_long_bit (gdbarch, 64);
3074 set_gdbarch_long_double_bit (gdbarch, 128);
3075 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3076
3077 /* The following gdbarch vector elements do not depend on the address
3078 size, or in any other gdbarch element previously set. */
3079 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3080 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3081 hppa_stack_frame_destroyed_p);
3082 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3083 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3084 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3085 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3086 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3087 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3088 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3089
3090 /* Helper for function argument information. */
3091 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3092
3093 /* When a hardware watchpoint triggers, we'll move the inferior past
3094 it by removing all eventpoints; stepping past the instruction
3095 that caused the trigger; reinserting eventpoints; and checking
3096 whether any watched location changed. */
3097 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3098
3099 /* Inferior function call methods. */
3100 switch (tdep->bytes_per_address)
3101 {
3102 case 4:
3103 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3104 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3105 set_gdbarch_convert_from_func_ptr_addr
3106 (gdbarch, hppa32_convert_from_func_ptr_addr);
3107 break;
3108 case 8:
3109 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3110 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3111 break;
3112 default:
3113 internal_error (__FILE__, __LINE__, _("bad switch"));
3114 }
3115
3116 /* Struct return methods. */
3117 switch (tdep->bytes_per_address)
3118 {
3119 case 4:
3120 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3121 break;
3122 case 8:
3123 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3124 break;
3125 default:
3126 internal_error (__FILE__, __LINE__, _("bad switch"));
3127 }
3128
3129 set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
3130 set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
3131 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3132
3133 /* Frame unwind methods. */
3134 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3135
3136 /* Hook in ABI-specific overrides, if they have been registered. */
3137 gdbarch_init_osabi (info, gdbarch);
3138
3139 /* Hook in the default unwinders. */
3140 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3141 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3142 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3143
3144 return gdbarch;
3145 }
3146
3147 static void
3148 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3149 {
3150 hppa_gdbarch_tdep *tdep = (hppa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3151
3152 gdb_printf (file, "bytes_per_address = %d\n",
3153 tdep->bytes_per_address);
3154 gdb_printf (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3155 }
3156
3157 void _initialize_hppa_tdep ();
3158 void
3159 _initialize_hppa_tdep ()
3160 {
3161 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3162
3163 add_cmd ("unwind", class_maintenance, unwind_command,
3164 _("Print unwind table entry at given address."),
3165 &maintenanceprintlist);
3166
3167 /* Debug this files internals. */
3168 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3169 Set whether hppa target specific debugging information should be displayed."),
3170 _("\
3171 Show whether hppa target specific debugging information is displayed."), _("\
3172 This flag controls whether hppa target specific debugging information is\n\
3173 displayed. This information is particularly useful for debugging frame\n\
3174 unwinding problems."),
3175 NULL,
3176 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3177 &setdebuglist, &showdebuglist);
3178 }