]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
* cli/cli-decode.c (set_cmd_completer): New function.
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "bfd.h"
28 #include "inferior.h"
29 #include "value.h"
30 #include "regcache.h"
31 #include "completer.h"
32
33 /* For argument passing to the inferior */
34 #include "symtab.h"
35
36 #ifdef USG
37 #include <sys/types.h>
38 #endif
39
40 #include <dl.h>
41 #include <sys/param.h>
42 #include <signal.h>
43
44 #include <sys/ptrace.h>
45 #include <machine/save_state.h>
46
47 #ifdef COFF_ENCAPSULATE
48 #include "a.out.encap.h"
49 #else
50 #endif
51
52 /*#include <sys/user.h> After a.out.h */
53 #include <sys/file.h>
54 #include "gdb_stat.h"
55 #include "gdb_wait.h"
56
57 #include "gdbcore.h"
58 #include "gdbcmd.h"
59 #include "target.h"
60 #include "symfile.h"
61 #include "objfiles.h"
62
63 /* To support detection of the pseudo-initial frame
64 that threads have. */
65 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
66 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
67
68 static int extract_5_load (unsigned int);
69
70 static unsigned extract_5R_store (unsigned int);
71
72 static unsigned extract_5r_store (unsigned int);
73
74 static void find_dummy_frame_regs (struct frame_info *,
75 struct frame_saved_regs *);
76
77 static int find_proc_framesize (CORE_ADDR);
78
79 static int find_return_regnum (CORE_ADDR);
80
81 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
82
83 static int extract_17 (unsigned int);
84
85 static unsigned deposit_21 (unsigned int, unsigned int);
86
87 static int extract_21 (unsigned);
88
89 static unsigned deposit_14 (int, unsigned int);
90
91 static int extract_14 (unsigned);
92
93 static void unwind_command (char *, int);
94
95 static int low_sign_extend (unsigned int, unsigned int);
96
97 static int sign_extend (unsigned int, unsigned int);
98
99 static int restore_pc_queue (struct frame_saved_regs *);
100
101 static int hppa_alignof (struct type *);
102
103 /* To support multi-threading and stepping. */
104 int hppa_prepare_to_proceed ();
105
106 static int prologue_inst_adjust_sp (unsigned long);
107
108 static int is_branch (unsigned long);
109
110 static int inst_saves_gr (unsigned long);
111
112 static int inst_saves_fr (unsigned long);
113
114 static int pc_in_interrupt_handler (CORE_ADDR);
115
116 static int pc_in_linker_stub (CORE_ADDR);
117
118 static int compare_unwind_entries (const void *, const void *);
119
120 static void read_unwind_info (struct objfile *);
121
122 static void internalize_unwinds (struct objfile *,
123 struct unwind_table_entry *,
124 asection *, unsigned int,
125 unsigned int, CORE_ADDR);
126 static void pa_print_registers (char *, int, int);
127 static void pa_strcat_registers (char *, int, int, struct ui_file *);
128 static void pa_register_look_aside (char *, int, long *);
129 static void pa_print_fp_reg (int);
130 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
131 static void record_text_segment_lowaddr (bfd *, asection *, void *);
132
133 typedef struct
134 {
135 struct minimal_symbol *msym;
136 CORE_ADDR solib_handle;
137 CORE_ADDR return_val;
138 }
139 args_for_find_stub;
140
141 static int cover_find_stub_with_shl_get (PTR);
142
143 static int is_pa_2 = 0; /* False */
144
145 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
146 extern int hp_som_som_object_present;
147
148 /* In breakpoint.c */
149 extern int exception_catchpoints_are_fragile;
150
151 /* This is defined in valops.c. */
152 extern struct value *find_function_in_inferior (char *);
153
154 /* Should call_function allocate stack space for a struct return? */
155 int
156 hppa_use_struct_convention (int gcc_p, struct type *type)
157 {
158 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
159 }
160 \f
161
162 /* Routines to extract various sized constants out of hppa
163 instructions. */
164
165 /* This assumes that no garbage lies outside of the lower bits of
166 value. */
167
168 static int
169 sign_extend (unsigned val, unsigned bits)
170 {
171 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
172 }
173
174 /* For many immediate values the sign bit is the low bit! */
175
176 static int
177 low_sign_extend (unsigned val, unsigned bits)
178 {
179 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
180 }
181
182 /* extract the immediate field from a ld{bhw}s instruction */
183
184 static int
185 extract_5_load (unsigned word)
186 {
187 return low_sign_extend (word >> 16 & MASK_5, 5);
188 }
189
190 /* extract the immediate field from a break instruction */
191
192 static unsigned
193 extract_5r_store (unsigned word)
194 {
195 return (word & MASK_5);
196 }
197
198 /* extract the immediate field from a {sr}sm instruction */
199
200 static unsigned
201 extract_5R_store (unsigned word)
202 {
203 return (word >> 16 & MASK_5);
204 }
205
206 /* extract a 14 bit immediate field */
207
208 static int
209 extract_14 (unsigned word)
210 {
211 return low_sign_extend (word & MASK_14, 14);
212 }
213
214 /* deposit a 14 bit constant in a word */
215
216 static unsigned
217 deposit_14 (int opnd, unsigned word)
218 {
219 unsigned sign = (opnd < 0 ? 1 : 0);
220
221 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
222 }
223
224 /* extract a 21 bit constant */
225
226 static int
227 extract_21 (unsigned word)
228 {
229 int val;
230
231 word &= MASK_21;
232 word <<= 11;
233 val = GET_FIELD (word, 20, 20);
234 val <<= 11;
235 val |= GET_FIELD (word, 9, 19);
236 val <<= 2;
237 val |= GET_FIELD (word, 5, 6);
238 val <<= 5;
239 val |= GET_FIELD (word, 0, 4);
240 val <<= 2;
241 val |= GET_FIELD (word, 7, 8);
242 return sign_extend (val, 21) << 11;
243 }
244
245 /* deposit a 21 bit constant in a word. Although 21 bit constants are
246 usually the top 21 bits of a 32 bit constant, we assume that only
247 the low 21 bits of opnd are relevant */
248
249 static unsigned
250 deposit_21 (unsigned opnd, unsigned word)
251 {
252 unsigned val = 0;
253
254 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
255 val <<= 2;
256 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
257 val <<= 2;
258 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
259 val <<= 11;
260 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
261 val <<= 1;
262 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
263 return word | val;
264 }
265
266 /* extract a 17 bit constant from branch instructions, returning the
267 19 bit signed value. */
268
269 static int
270 extract_17 (unsigned word)
271 {
272 return sign_extend (GET_FIELD (word, 19, 28) |
273 GET_FIELD (word, 29, 29) << 10 |
274 GET_FIELD (word, 11, 15) << 11 |
275 (word & 0x1) << 16, 17) << 2;
276 }
277 \f
278
279 /* Compare the start address for two unwind entries returning 1 if
280 the first address is larger than the second, -1 if the second is
281 larger than the first, and zero if they are equal. */
282
283 static int
284 compare_unwind_entries (const void *arg1, const void *arg2)
285 {
286 const struct unwind_table_entry *a = arg1;
287 const struct unwind_table_entry *b = arg2;
288
289 if (a->region_start > b->region_start)
290 return 1;
291 else if (a->region_start < b->region_start)
292 return -1;
293 else
294 return 0;
295 }
296
297 static CORE_ADDR low_text_segment_address;
298
299 static void
300 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
301 {
302 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
303 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
304 && section->vma < low_text_segment_address)
305 low_text_segment_address = section->vma;
306 }
307
308 static void
309 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
310 asection *section, unsigned int entries, unsigned int size,
311 CORE_ADDR text_offset)
312 {
313 /* We will read the unwind entries into temporary memory, then
314 fill in the actual unwind table. */
315 if (size > 0)
316 {
317 unsigned long tmp;
318 unsigned i;
319 char *buf = alloca (size);
320
321 low_text_segment_address = -1;
322
323 /* If addresses are 64 bits wide, then unwinds are supposed to
324 be segment relative offsets instead of absolute addresses.
325
326 Note that when loading a shared library (text_offset != 0) the
327 unwinds are already relative to the text_offset that will be
328 passed in. */
329 if (TARGET_PTR_BIT == 64 && text_offset == 0)
330 {
331 bfd_map_over_sections (objfile->obfd,
332 record_text_segment_lowaddr, (PTR) NULL);
333
334 /* ?!? Mask off some low bits. Should this instead subtract
335 out the lowest section's filepos or something like that?
336 This looks very hokey to me. */
337 low_text_segment_address &= ~0xfff;
338 text_offset += low_text_segment_address;
339 }
340
341 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
342
343 /* Now internalize the information being careful to handle host/target
344 endian issues. */
345 for (i = 0; i < entries; i++)
346 {
347 table[i].region_start = bfd_get_32 (objfile->obfd,
348 (bfd_byte *) buf);
349 table[i].region_start += text_offset;
350 buf += 4;
351 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
352 table[i].region_end += text_offset;
353 buf += 4;
354 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
355 buf += 4;
356 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
357 table[i].Millicode = (tmp >> 30) & 0x1;
358 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
359 table[i].Region_description = (tmp >> 27) & 0x3;
360 table[i].reserved1 = (tmp >> 26) & 0x1;
361 table[i].Entry_SR = (tmp >> 25) & 0x1;
362 table[i].Entry_FR = (tmp >> 21) & 0xf;
363 table[i].Entry_GR = (tmp >> 16) & 0x1f;
364 table[i].Args_stored = (tmp >> 15) & 0x1;
365 table[i].Variable_Frame = (tmp >> 14) & 0x1;
366 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
367 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
368 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
369 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
370 table[i].Ada_Region = (tmp >> 9) & 0x1;
371 table[i].cxx_info = (tmp >> 8) & 0x1;
372 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
373 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
374 table[i].reserved2 = (tmp >> 5) & 0x1;
375 table[i].Save_SP = (tmp >> 4) & 0x1;
376 table[i].Save_RP = (tmp >> 3) & 0x1;
377 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
378 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
379 table[i].Cleanup_defined = tmp & 0x1;
380 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
381 buf += 4;
382 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
383 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
384 table[i].Large_frame = (tmp >> 29) & 0x1;
385 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
386 table[i].reserved4 = (tmp >> 27) & 0x1;
387 table[i].Total_frame_size = tmp & 0x7ffffff;
388
389 /* Stub unwinds are handled elsewhere. */
390 table[i].stub_unwind.stub_type = 0;
391 table[i].stub_unwind.padding = 0;
392 }
393 }
394 }
395
396 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
397 the object file. This info is used mainly by find_unwind_entry() to find
398 out the stack frame size and frame pointer used by procedures. We put
399 everything on the psymbol obstack in the objfile so that it automatically
400 gets freed when the objfile is destroyed. */
401
402 static void
403 read_unwind_info (struct objfile *objfile)
404 {
405 asection *unwind_sec, *stub_unwind_sec;
406 unsigned unwind_size, stub_unwind_size, total_size;
407 unsigned index, unwind_entries;
408 unsigned stub_entries, total_entries;
409 CORE_ADDR text_offset;
410 struct obj_unwind_info *ui;
411 obj_private_data_t *obj_private;
412
413 text_offset = ANOFFSET (objfile->section_offsets, 0);
414 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
415 sizeof (struct obj_unwind_info));
416
417 ui->table = NULL;
418 ui->cache = NULL;
419 ui->last = -1;
420
421 /* For reasons unknown the HP PA64 tools generate multiple unwinder
422 sections in a single executable. So we just iterate over every
423 section in the BFD looking for unwinder sections intead of trying
424 to do a lookup with bfd_get_section_by_name.
425
426 First determine the total size of the unwind tables so that we
427 can allocate memory in a nice big hunk. */
428 total_entries = 0;
429 for (unwind_sec = objfile->obfd->sections;
430 unwind_sec;
431 unwind_sec = unwind_sec->next)
432 {
433 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
434 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
435 {
436 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
437 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
438
439 total_entries += unwind_entries;
440 }
441 }
442
443 /* Now compute the size of the stub unwinds. Note the ELF tools do not
444 use stub unwinds at the curren time. */
445 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
446
447 if (stub_unwind_sec)
448 {
449 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
450 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
451 }
452 else
453 {
454 stub_unwind_size = 0;
455 stub_entries = 0;
456 }
457
458 /* Compute total number of unwind entries and their total size. */
459 total_entries += stub_entries;
460 total_size = total_entries * sizeof (struct unwind_table_entry);
461
462 /* Allocate memory for the unwind table. */
463 ui->table = (struct unwind_table_entry *)
464 obstack_alloc (&objfile->psymbol_obstack, total_size);
465 ui->last = total_entries - 1;
466
467 /* Now read in each unwind section and internalize the standard unwind
468 entries. */
469 index = 0;
470 for (unwind_sec = objfile->obfd->sections;
471 unwind_sec;
472 unwind_sec = unwind_sec->next)
473 {
474 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
475 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
476 {
477 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
478 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
479
480 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
481 unwind_entries, unwind_size, text_offset);
482 index += unwind_entries;
483 }
484 }
485
486 /* Now read in and internalize the stub unwind entries. */
487 if (stub_unwind_size > 0)
488 {
489 unsigned int i;
490 char *buf = alloca (stub_unwind_size);
491
492 /* Read in the stub unwind entries. */
493 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
494 0, stub_unwind_size);
495
496 /* Now convert them into regular unwind entries. */
497 for (i = 0; i < stub_entries; i++, index++)
498 {
499 /* Clear out the next unwind entry. */
500 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
501
502 /* Convert offset & size into region_start and region_end.
503 Stuff away the stub type into "reserved" fields. */
504 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
505 (bfd_byte *) buf);
506 ui->table[index].region_start += text_offset;
507 buf += 4;
508 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
509 (bfd_byte *) buf);
510 buf += 2;
511 ui->table[index].region_end
512 = ui->table[index].region_start + 4 *
513 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
514 buf += 2;
515 }
516
517 }
518
519 /* Unwind table needs to be kept sorted. */
520 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
521 compare_unwind_entries);
522
523 /* Keep a pointer to the unwind information. */
524 if (objfile->obj_private == NULL)
525 {
526 obj_private = (obj_private_data_t *)
527 obstack_alloc (&objfile->psymbol_obstack,
528 sizeof (obj_private_data_t));
529 obj_private->unwind_info = NULL;
530 obj_private->so_info = NULL;
531 obj_private->dp = 0;
532
533 objfile->obj_private = (PTR) obj_private;
534 }
535 obj_private = (obj_private_data_t *) objfile->obj_private;
536 obj_private->unwind_info = ui;
537 }
538
539 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
540 of the objfiles seeking the unwind table entry for this PC. Each objfile
541 contains a sorted list of struct unwind_table_entry. Since we do a binary
542 search of the unwind tables, we depend upon them to be sorted. */
543
544 struct unwind_table_entry *
545 find_unwind_entry (CORE_ADDR pc)
546 {
547 int first, middle, last;
548 struct objfile *objfile;
549
550 /* A function at address 0? Not in HP-UX! */
551 if (pc == (CORE_ADDR) 0)
552 return NULL;
553
554 ALL_OBJFILES (objfile)
555 {
556 struct obj_unwind_info *ui;
557 ui = NULL;
558 if (objfile->obj_private)
559 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
560
561 if (!ui)
562 {
563 read_unwind_info (objfile);
564 if (objfile->obj_private == NULL)
565 error ("Internal error reading unwind information.");
566 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
567 }
568
569 /* First, check the cache */
570
571 if (ui->cache
572 && pc >= ui->cache->region_start
573 && pc <= ui->cache->region_end)
574 return ui->cache;
575
576 /* Not in the cache, do a binary search */
577
578 first = 0;
579 last = ui->last;
580
581 while (first <= last)
582 {
583 middle = (first + last) / 2;
584 if (pc >= ui->table[middle].region_start
585 && pc <= ui->table[middle].region_end)
586 {
587 ui->cache = &ui->table[middle];
588 return &ui->table[middle];
589 }
590
591 if (pc < ui->table[middle].region_start)
592 last = middle - 1;
593 else
594 first = middle + 1;
595 }
596 } /* ALL_OBJFILES() */
597 return NULL;
598 }
599
600 /* Return the adjustment necessary to make for addresses on the stack
601 as presented by hpread.c.
602
603 This is necessary because of the stack direction on the PA and the
604 bizarre way in which someone (?) decided they wanted to handle
605 frame pointerless code in GDB. */
606 int
607 hpread_adjust_stack_address (CORE_ADDR func_addr)
608 {
609 struct unwind_table_entry *u;
610
611 u = find_unwind_entry (func_addr);
612 if (!u)
613 return 0;
614 else
615 return u->Total_frame_size << 3;
616 }
617
618 /* Called to determine if PC is in an interrupt handler of some
619 kind. */
620
621 static int
622 pc_in_interrupt_handler (CORE_ADDR pc)
623 {
624 struct unwind_table_entry *u;
625 struct minimal_symbol *msym_us;
626
627 u = find_unwind_entry (pc);
628 if (!u)
629 return 0;
630
631 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
632 its frame isn't a pure interrupt frame. Deal with this. */
633 msym_us = lookup_minimal_symbol_by_pc (pc);
634
635 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
636 }
637
638 /* Called when no unwind descriptor was found for PC. Returns 1 if it
639 appears that PC is in a linker stub.
640
641 ?!? Need to handle stubs which appear in PA64 code. */
642
643 static int
644 pc_in_linker_stub (CORE_ADDR pc)
645 {
646 int found_magic_instruction = 0;
647 int i;
648 char buf[4];
649
650 /* If unable to read memory, assume pc is not in a linker stub. */
651 if (target_read_memory (pc, buf, 4) != 0)
652 return 0;
653
654 /* We are looking for something like
655
656 ; $$dyncall jams RP into this special spot in the frame (RP')
657 ; before calling the "call stub"
658 ldw -18(sp),rp
659
660 ldsid (rp),r1 ; Get space associated with RP into r1
661 mtsp r1,sp ; Move it into space register 0
662 be,n 0(sr0),rp) ; back to your regularly scheduled program */
663
664 /* Maximum known linker stub size is 4 instructions. Search forward
665 from the given PC, then backward. */
666 for (i = 0; i < 4; i++)
667 {
668 /* If we hit something with an unwind, stop searching this direction. */
669
670 if (find_unwind_entry (pc + i * 4) != 0)
671 break;
672
673 /* Check for ldsid (rp),r1 which is the magic instruction for a
674 return from a cross-space function call. */
675 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
676 {
677 found_magic_instruction = 1;
678 break;
679 }
680 /* Add code to handle long call/branch and argument relocation stubs
681 here. */
682 }
683
684 if (found_magic_instruction != 0)
685 return 1;
686
687 /* Now look backward. */
688 for (i = 0; i < 4; i++)
689 {
690 /* If we hit something with an unwind, stop searching this direction. */
691
692 if (find_unwind_entry (pc - i * 4) != 0)
693 break;
694
695 /* Check for ldsid (rp),r1 which is the magic instruction for a
696 return from a cross-space function call. */
697 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
698 {
699 found_magic_instruction = 1;
700 break;
701 }
702 /* Add code to handle long call/branch and argument relocation stubs
703 here. */
704 }
705 return found_magic_instruction;
706 }
707
708 static int
709 find_return_regnum (CORE_ADDR pc)
710 {
711 struct unwind_table_entry *u;
712
713 u = find_unwind_entry (pc);
714
715 if (!u)
716 return RP_REGNUM;
717
718 if (u->Millicode)
719 return 31;
720
721 return RP_REGNUM;
722 }
723
724 /* Return size of frame, or -1 if we should use a frame pointer. */
725 static int
726 find_proc_framesize (CORE_ADDR pc)
727 {
728 struct unwind_table_entry *u;
729 struct minimal_symbol *msym_us;
730
731 /* This may indicate a bug in our callers... */
732 if (pc == (CORE_ADDR) 0)
733 return -1;
734
735 u = find_unwind_entry (pc);
736
737 if (!u)
738 {
739 if (pc_in_linker_stub (pc))
740 /* Linker stubs have a zero size frame. */
741 return 0;
742 else
743 return -1;
744 }
745
746 msym_us = lookup_minimal_symbol_by_pc (pc);
747
748 /* If Save_SP is set, and we're not in an interrupt or signal caller,
749 then we have a frame pointer. Use it. */
750 if (u->Save_SP && !pc_in_interrupt_handler (pc)
751 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
752 return -1;
753
754 return u->Total_frame_size << 3;
755 }
756
757 /* Return offset from sp at which rp is saved, or 0 if not saved. */
758 static int rp_saved (CORE_ADDR);
759
760 static int
761 rp_saved (CORE_ADDR pc)
762 {
763 struct unwind_table_entry *u;
764
765 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
766 if (pc == (CORE_ADDR) 0)
767 return 0;
768
769 u = find_unwind_entry (pc);
770
771 if (!u)
772 {
773 if (pc_in_linker_stub (pc))
774 /* This is the so-called RP'. */
775 return -24;
776 else
777 return 0;
778 }
779
780 if (u->Save_RP)
781 return (TARGET_PTR_BIT == 64 ? -16 : -20);
782 else if (u->stub_unwind.stub_type != 0)
783 {
784 switch (u->stub_unwind.stub_type)
785 {
786 case EXPORT:
787 case IMPORT:
788 return -24;
789 case PARAMETER_RELOCATION:
790 return -8;
791 default:
792 return 0;
793 }
794 }
795 else
796 return 0;
797 }
798 \f
799 int
800 frameless_function_invocation (struct frame_info *frame)
801 {
802 struct unwind_table_entry *u;
803
804 u = find_unwind_entry (frame->pc);
805
806 if (u == 0)
807 return 0;
808
809 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
810 }
811
812 CORE_ADDR
813 saved_pc_after_call (struct frame_info *frame)
814 {
815 int ret_regnum;
816 CORE_ADDR pc;
817 struct unwind_table_entry *u;
818
819 ret_regnum = find_return_regnum (get_frame_pc (frame));
820 pc = read_register (ret_regnum) & ~0x3;
821
822 /* If PC is in a linker stub, then we need to dig the address
823 the stub will return to out of the stack. */
824 u = find_unwind_entry (pc);
825 if (u && u->stub_unwind.stub_type != 0)
826 return FRAME_SAVED_PC (frame);
827 else
828 return pc;
829 }
830 \f
831 CORE_ADDR
832 hppa_frame_saved_pc (struct frame_info *frame)
833 {
834 CORE_ADDR pc = get_frame_pc (frame);
835 struct unwind_table_entry *u;
836 CORE_ADDR old_pc;
837 int spun_around_loop = 0;
838 int rp_offset = 0;
839
840 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
841 at the base of the frame in an interrupt handler. Registers within
842 are saved in the exact same order as GDB numbers registers. How
843 convienent. */
844 if (pc_in_interrupt_handler (pc))
845 return read_memory_integer (frame->frame + PC_REGNUM * 4,
846 TARGET_PTR_BIT / 8) & ~0x3;
847
848 if ((frame->pc >= frame->frame
849 && frame->pc <= (frame->frame
850 /* A call dummy is sized in words, but it is
851 actually a series of instructions. Account
852 for that scaling factor. */
853 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
854 * CALL_DUMMY_LENGTH)
855 /* Similarly we have to account for 64bit
856 wide register saves. */
857 + (32 * REGISTER_SIZE)
858 /* We always consider FP regs 8 bytes long. */
859 + (NUM_REGS - FP0_REGNUM) * 8
860 /* Similarly we have to account for 64bit
861 wide register saves. */
862 + (6 * REGISTER_SIZE))))
863 {
864 return read_memory_integer ((frame->frame
865 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
866 TARGET_PTR_BIT / 8) & ~0x3;
867 }
868
869 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
870 /* Deal with signal handler caller frames too. */
871 if (frame->signal_handler_caller)
872 {
873 CORE_ADDR rp;
874 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
875 return rp & ~0x3;
876 }
877 #endif
878
879 if (frameless_function_invocation (frame))
880 {
881 int ret_regnum;
882
883 ret_regnum = find_return_regnum (pc);
884
885 /* If the next frame is an interrupt frame or a signal
886 handler caller, then we need to look in the saved
887 register area to get the return pointer (the values
888 in the registers may not correspond to anything useful). */
889 if (frame->next
890 && (frame->next->signal_handler_caller
891 || pc_in_interrupt_handler (frame->next->pc)))
892 {
893 struct frame_saved_regs saved_regs;
894
895 get_frame_saved_regs (frame->next, &saved_regs);
896 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
897 TARGET_PTR_BIT / 8) & 0x2)
898 {
899 pc = read_memory_integer (saved_regs.regs[31],
900 TARGET_PTR_BIT / 8) & ~0x3;
901
902 /* Syscalls are really two frames. The syscall stub itself
903 with a return pointer in %rp and the kernel call with
904 a return pointer in %r31. We return the %rp variant
905 if %r31 is the same as frame->pc. */
906 if (pc == frame->pc)
907 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
908 TARGET_PTR_BIT / 8) & ~0x3;
909 }
910 else
911 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
912 TARGET_PTR_BIT / 8) & ~0x3;
913 }
914 else
915 pc = read_register (ret_regnum) & ~0x3;
916 }
917 else
918 {
919 spun_around_loop = 0;
920 old_pc = pc;
921
922 restart:
923 rp_offset = rp_saved (pc);
924
925 /* Similar to code in frameless function case. If the next
926 frame is a signal or interrupt handler, then dig the right
927 information out of the saved register info. */
928 if (rp_offset == 0
929 && frame->next
930 && (frame->next->signal_handler_caller
931 || pc_in_interrupt_handler (frame->next->pc)))
932 {
933 struct frame_saved_regs saved_regs;
934
935 get_frame_saved_regs (frame->next, &saved_regs);
936 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
937 TARGET_PTR_BIT / 8) & 0x2)
938 {
939 pc = read_memory_integer (saved_regs.regs[31],
940 TARGET_PTR_BIT / 8) & ~0x3;
941
942 /* Syscalls are really two frames. The syscall stub itself
943 with a return pointer in %rp and the kernel call with
944 a return pointer in %r31. We return the %rp variant
945 if %r31 is the same as frame->pc. */
946 if (pc == frame->pc)
947 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
948 TARGET_PTR_BIT / 8) & ~0x3;
949 }
950 else
951 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
952 TARGET_PTR_BIT / 8) & ~0x3;
953 }
954 else if (rp_offset == 0)
955 {
956 old_pc = pc;
957 pc = read_register (RP_REGNUM) & ~0x3;
958 }
959 else
960 {
961 old_pc = pc;
962 pc = read_memory_integer (frame->frame + rp_offset,
963 TARGET_PTR_BIT / 8) & ~0x3;
964 }
965 }
966
967 /* If PC is inside a linker stub, then dig out the address the stub
968 will return to.
969
970 Don't do this for long branch stubs. Why? For some unknown reason
971 _start is marked as a long branch stub in hpux10. */
972 u = find_unwind_entry (pc);
973 if (u && u->stub_unwind.stub_type != 0
974 && u->stub_unwind.stub_type != LONG_BRANCH)
975 {
976 unsigned int insn;
977
978 /* If this is a dynamic executable, and we're in a signal handler,
979 then the call chain will eventually point us into the stub for
980 _sigreturn. Unlike most cases, we'll be pointed to the branch
981 to the real sigreturn rather than the code after the real branch!.
982
983 Else, try to dig the address the stub will return to in the normal
984 fashion. */
985 insn = read_memory_integer (pc, 4);
986 if ((insn & 0xfc00e000) == 0xe8000000)
987 return (pc + extract_17 (insn) + 8) & ~0x3;
988 else
989 {
990 if (old_pc == pc)
991 spun_around_loop++;
992
993 if (spun_around_loop > 1)
994 {
995 /* We're just about to go around the loop again with
996 no more hope of success. Die. */
997 error ("Unable to find return pc for this frame");
998 }
999 else
1000 goto restart;
1001 }
1002 }
1003
1004 return pc;
1005 }
1006 \f
1007 /* We need to correct the PC and the FP for the outermost frame when we are
1008 in a system call. */
1009
1010 void
1011 init_extra_frame_info (int fromleaf, struct frame_info *frame)
1012 {
1013 int flags;
1014 int framesize;
1015
1016 if (frame->next && !fromleaf)
1017 return;
1018
1019 /* If the next frame represents a frameless function invocation
1020 then we have to do some adjustments that are normally done by
1021 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1022 if (fromleaf)
1023 {
1024 /* Find the framesize of *this* frame without peeking at the PC
1025 in the current frame structure (it isn't set yet). */
1026 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1027
1028 /* Now adjust our base frame accordingly. If we have a frame pointer
1029 use it, else subtract the size of this frame from the current
1030 frame. (we always want frame->frame to point at the lowest address
1031 in the frame). */
1032 if (framesize == -1)
1033 frame->frame = TARGET_READ_FP ();
1034 else
1035 frame->frame -= framesize;
1036 return;
1037 }
1038
1039 flags = read_register (FLAGS_REGNUM);
1040 if (flags & 2) /* In system call? */
1041 frame->pc = read_register (31) & ~0x3;
1042
1043 /* The outermost frame is always derived from PC-framesize
1044
1045 One might think frameless innermost frames should have
1046 a frame->frame that is the same as the parent's frame->frame.
1047 That is wrong; frame->frame in that case should be the *high*
1048 address of the parent's frame. It's complicated as hell to
1049 explain, but the parent *always* creates some stack space for
1050 the child. So the child actually does have a frame of some
1051 sorts, and its base is the high address in its parent's frame. */
1052 framesize = find_proc_framesize (frame->pc);
1053 if (framesize == -1)
1054 frame->frame = TARGET_READ_FP ();
1055 else
1056 frame->frame = read_register (SP_REGNUM) - framesize;
1057 }
1058 \f
1059 /* Given a GDB frame, determine the address of the calling function's frame.
1060 This will be used to create a new GDB frame struct, and then
1061 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1062
1063 This may involve searching through prologues for several functions
1064 at boundaries where GCC calls HP C code, or where code which has
1065 a frame pointer calls code without a frame pointer. */
1066
1067 CORE_ADDR
1068 frame_chain (struct frame_info *frame)
1069 {
1070 int my_framesize, caller_framesize;
1071 struct unwind_table_entry *u;
1072 CORE_ADDR frame_base;
1073 struct frame_info *tmp_frame;
1074
1075 /* A frame in the current frame list, or zero. */
1076 struct frame_info *saved_regs_frame = 0;
1077 /* Where the registers were saved in saved_regs_frame.
1078 If saved_regs_frame is zero, this is garbage. */
1079 struct frame_saved_regs saved_regs;
1080
1081 CORE_ADDR caller_pc;
1082
1083 struct minimal_symbol *min_frame_symbol;
1084 struct symbol *frame_symbol;
1085 char *frame_symbol_name;
1086
1087 /* If this is a threaded application, and we see the
1088 routine "__pthread_exit", treat it as the stack root
1089 for this thread. */
1090 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1091 frame_symbol = find_pc_function (frame->pc);
1092
1093 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1094 {
1095 /* The test above for "no user function name" would defend
1096 against the slim likelihood that a user might define a
1097 routine named "__pthread_exit" and then try to debug it.
1098
1099 If it weren't commented out, and you tried to debug the
1100 pthread library itself, you'd get errors.
1101
1102 So for today, we don't make that check. */
1103 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1104 if (frame_symbol_name != 0)
1105 {
1106 if (0 == strncmp (frame_symbol_name,
1107 THREAD_INITIAL_FRAME_SYMBOL,
1108 THREAD_INITIAL_FRAME_SYM_LEN))
1109 {
1110 /* Pretend we've reached the bottom of the stack. */
1111 return (CORE_ADDR) 0;
1112 }
1113 }
1114 } /* End of hacky code for threads. */
1115
1116 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1117 are easy; at *sp we have a full save state strucutre which we can
1118 pull the old stack pointer from. Also see frame_saved_pc for
1119 code to dig a saved PC out of the save state structure. */
1120 if (pc_in_interrupt_handler (frame->pc))
1121 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1122 TARGET_PTR_BIT / 8);
1123 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1124 else if (frame->signal_handler_caller)
1125 {
1126 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1127 }
1128 #endif
1129 else
1130 frame_base = frame->frame;
1131
1132 /* Get frame sizes for the current frame and the frame of the
1133 caller. */
1134 my_framesize = find_proc_framesize (frame->pc);
1135 caller_pc = FRAME_SAVED_PC (frame);
1136
1137 /* If we can't determine the caller's PC, then it's not likely we can
1138 really determine anything meaningful about its frame. We'll consider
1139 this to be stack bottom. */
1140 if (caller_pc == (CORE_ADDR) 0)
1141 return (CORE_ADDR) 0;
1142
1143 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
1144
1145 /* If caller does not have a frame pointer, then its frame
1146 can be found at current_frame - caller_framesize. */
1147 if (caller_framesize != -1)
1148 {
1149 return frame_base - caller_framesize;
1150 }
1151 /* Both caller and callee have frame pointers and are GCC compiled
1152 (SAVE_SP bit in unwind descriptor is on for both functions.
1153 The previous frame pointer is found at the top of the current frame. */
1154 if (caller_framesize == -1 && my_framesize == -1)
1155 {
1156 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1157 }
1158 /* Caller has a frame pointer, but callee does not. This is a little
1159 more difficult as GCC and HP C lay out locals and callee register save
1160 areas very differently.
1161
1162 The previous frame pointer could be in a register, or in one of
1163 several areas on the stack.
1164
1165 Walk from the current frame to the innermost frame examining
1166 unwind descriptors to determine if %r3 ever gets saved into the
1167 stack. If so return whatever value got saved into the stack.
1168 If it was never saved in the stack, then the value in %r3 is still
1169 valid, so use it.
1170
1171 We use information from unwind descriptors to determine if %r3
1172 is saved into the stack (Entry_GR field has this information). */
1173
1174 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
1175 {
1176 u = find_unwind_entry (tmp_frame->pc);
1177
1178 if (!u)
1179 {
1180 /* We could find this information by examining prologues. I don't
1181 think anyone has actually written any tools (not even "strip")
1182 which leave them out of an executable, so maybe this is a moot
1183 point. */
1184 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1185 code that doesn't have unwind entries. For example, stepping into
1186 the dynamic linker will give you a PC that has none. Thus, I've
1187 disabled this warning. */
1188 #if 0
1189 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1190 #endif
1191 return (CORE_ADDR) 0;
1192 }
1193
1194 if (u->Save_SP
1195 || tmp_frame->signal_handler_caller
1196 || pc_in_interrupt_handler (tmp_frame->pc))
1197 break;
1198
1199 /* Entry_GR specifies the number of callee-saved general registers
1200 saved in the stack. It starts at %r3, so %r3 would be 1. */
1201 if (u->Entry_GR >= 1)
1202 {
1203 /* The unwind entry claims that r3 is saved here. However,
1204 in optimized code, GCC often doesn't actually save r3.
1205 We'll discover this if we look at the prologue. */
1206 get_frame_saved_regs (tmp_frame, &saved_regs);
1207 saved_regs_frame = tmp_frame;
1208
1209 /* If we have an address for r3, that's good. */
1210 if (saved_regs.regs[FP_REGNUM])
1211 break;
1212 }
1213 }
1214
1215 if (tmp_frame)
1216 {
1217 /* We may have walked down the chain into a function with a frame
1218 pointer. */
1219 if (u->Save_SP
1220 && !tmp_frame->signal_handler_caller
1221 && !pc_in_interrupt_handler (tmp_frame->pc))
1222 {
1223 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
1224 }
1225 /* %r3 was saved somewhere in the stack. Dig it out. */
1226 else
1227 {
1228 /* Sick.
1229
1230 For optimization purposes many kernels don't have the
1231 callee saved registers into the save_state structure upon
1232 entry into the kernel for a syscall; the optimization
1233 is usually turned off if the process is being traced so
1234 that the debugger can get full register state for the
1235 process.
1236
1237 This scheme works well except for two cases:
1238
1239 * Attaching to a process when the process is in the
1240 kernel performing a system call (debugger can't get
1241 full register state for the inferior process since
1242 the process wasn't being traced when it entered the
1243 system call).
1244
1245 * Register state is not complete if the system call
1246 causes the process to core dump.
1247
1248
1249 The following heinous code is an attempt to deal with
1250 the lack of register state in a core dump. It will
1251 fail miserably if the function which performs the
1252 system call has a variable sized stack frame. */
1253
1254 if (tmp_frame != saved_regs_frame)
1255 get_frame_saved_regs (tmp_frame, &saved_regs);
1256
1257 /* Abominable hack. */
1258 if (current_target.to_has_execution == 0
1259 && ((saved_regs.regs[FLAGS_REGNUM]
1260 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1261 TARGET_PTR_BIT / 8)
1262 & 0x2))
1263 || (saved_regs.regs[FLAGS_REGNUM] == 0
1264 && read_register (FLAGS_REGNUM) & 0x2)))
1265 {
1266 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1267 if (!u)
1268 {
1269 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1270 TARGET_PTR_BIT / 8);
1271 }
1272 else
1273 {
1274 return frame_base - (u->Total_frame_size << 3);
1275 }
1276 }
1277
1278 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1279 TARGET_PTR_BIT / 8);
1280 }
1281 }
1282 else
1283 {
1284 /* Get the innermost frame. */
1285 tmp_frame = frame;
1286 while (tmp_frame->next != NULL)
1287 tmp_frame = tmp_frame->next;
1288
1289 if (tmp_frame != saved_regs_frame)
1290 get_frame_saved_regs (tmp_frame, &saved_regs);
1291
1292 /* Abominable hack. See above. */
1293 if (current_target.to_has_execution == 0
1294 && ((saved_regs.regs[FLAGS_REGNUM]
1295 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1296 TARGET_PTR_BIT / 8)
1297 & 0x2))
1298 || (saved_regs.regs[FLAGS_REGNUM] == 0
1299 && read_register (FLAGS_REGNUM) & 0x2)))
1300 {
1301 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1302 if (!u)
1303 {
1304 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1305 TARGET_PTR_BIT / 8);
1306 }
1307 else
1308 {
1309 return frame_base - (u->Total_frame_size << 3);
1310 }
1311 }
1312
1313 /* The value in %r3 was never saved into the stack (thus %r3 still
1314 holds the value of the previous frame pointer). */
1315 return TARGET_READ_FP ();
1316 }
1317 }
1318 \f
1319
1320 /* To see if a frame chain is valid, see if the caller looks like it
1321 was compiled with gcc. */
1322
1323 int
1324 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1325 {
1326 struct minimal_symbol *msym_us;
1327 struct minimal_symbol *msym_start;
1328 struct unwind_table_entry *u, *next_u = NULL;
1329 struct frame_info *next;
1330
1331 if (!chain)
1332 return 0;
1333
1334 u = find_unwind_entry (thisframe->pc);
1335
1336 if (u == NULL)
1337 return 1;
1338
1339 /* We can't just check that the same of msym_us is "_start", because
1340 someone idiotically decided that they were going to make a Ltext_end
1341 symbol with the same address. This Ltext_end symbol is totally
1342 indistinguishable (as nearly as I can tell) from the symbol for a function
1343 which is (legitimately, since it is in the user's namespace)
1344 named Ltext_end, so we can't just ignore it. */
1345 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1346 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1347 if (msym_us
1348 && msym_start
1349 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1350 return 0;
1351
1352 /* Grrrr. Some new idiot decided that they don't want _start for the
1353 PRO configurations; $START$ calls main directly.... Deal with it. */
1354 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1355 if (msym_us
1356 && msym_start
1357 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1358 return 0;
1359
1360 next = get_next_frame (thisframe);
1361 if (next)
1362 next_u = find_unwind_entry (next->pc);
1363
1364 /* If this frame does not save SP, has no stack, isn't a stub,
1365 and doesn't "call" an interrupt routine or signal handler caller,
1366 then its not valid. */
1367 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1368 || (thisframe->next && thisframe->next->signal_handler_caller)
1369 || (next_u && next_u->HP_UX_interrupt_marker))
1370 return 1;
1371
1372 if (pc_in_linker_stub (thisframe->pc))
1373 return 1;
1374
1375 return 0;
1376 }
1377
1378 /*
1379 These functions deal with saving and restoring register state
1380 around a function call in the inferior. They keep the stack
1381 double-word aligned; eventually, on an hp700, the stack will have
1382 to be aligned to a 64-byte boundary. */
1383
1384 void
1385 push_dummy_frame (struct inferior_status *inf_status)
1386 {
1387 CORE_ADDR sp, pc, pcspace;
1388 register int regnum;
1389 CORE_ADDR int_buffer;
1390 double freg_buffer;
1391
1392 /* Oh, what a hack. If we're trying to perform an inferior call
1393 while the inferior is asleep, we have to make sure to clear
1394 the "in system call" bit in the flag register (the call will
1395 start after the syscall returns, so we're no longer in the system
1396 call!) This state is kept in "inf_status", change it there.
1397
1398 We also need a number of horrid hacks to deal with lossage in the
1399 PC queue registers (apparently they're not valid when the in syscall
1400 bit is set). */
1401 pc = target_read_pc (inferior_ptid);
1402 int_buffer = read_register (FLAGS_REGNUM);
1403 if (int_buffer & 0x2)
1404 {
1405 unsigned int sid;
1406 int_buffer &= ~0x2;
1407 write_inferior_status_register (inf_status, 0, int_buffer);
1408 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1409 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
1410 sid = (pc >> 30) & 0x3;
1411 if (sid == 0)
1412 pcspace = read_register (SR4_REGNUM);
1413 else
1414 pcspace = read_register (SR4_REGNUM + 4 + sid);
1415 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1416 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
1417 }
1418 else
1419 pcspace = read_register (PCSQ_HEAD_REGNUM);
1420
1421 /* Space for "arguments"; the RP goes in here. */
1422 sp = read_register (SP_REGNUM) + 48;
1423 int_buffer = read_register (RP_REGNUM) | 0x3;
1424
1425 /* The 32bit and 64bit ABIs save the return pointer into different
1426 stack slots. */
1427 if (REGISTER_SIZE == 8)
1428 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1429 else
1430 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
1431
1432 int_buffer = TARGET_READ_FP ();
1433 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
1434
1435 write_register (FP_REGNUM, sp);
1436
1437 sp += 2 * REGISTER_SIZE;
1438
1439 for (regnum = 1; regnum < 32; regnum++)
1440 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1441 sp = push_word (sp, read_register (regnum));
1442
1443 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1444 if (REGISTER_SIZE != 8)
1445 sp += 4;
1446
1447 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1448 {
1449 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1450 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1451 }
1452 sp = push_word (sp, read_register (IPSW_REGNUM));
1453 sp = push_word (sp, read_register (SAR_REGNUM));
1454 sp = push_word (sp, pc);
1455 sp = push_word (sp, pcspace);
1456 sp = push_word (sp, pc + 4);
1457 sp = push_word (sp, pcspace);
1458 write_register (SP_REGNUM, sp);
1459 }
1460
1461 static void
1462 find_dummy_frame_regs (struct frame_info *frame,
1463 struct frame_saved_regs *frame_saved_regs)
1464 {
1465 CORE_ADDR fp = frame->frame;
1466 int i;
1467
1468 /* The 32bit and 64bit ABIs save RP into different locations. */
1469 if (REGISTER_SIZE == 8)
1470 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1471 else
1472 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1473
1474 frame_saved_regs->regs[FP_REGNUM] = fp;
1475
1476 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1477
1478 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
1479 {
1480 if (i != FP_REGNUM)
1481 {
1482 frame_saved_regs->regs[i] = fp;
1483 fp += REGISTER_SIZE;
1484 }
1485 }
1486
1487 /* This is not necessary or desirable for the 64bit ABI. */
1488 if (REGISTER_SIZE != 8)
1489 fp += 4;
1490
1491 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1492 frame_saved_regs->regs[i] = fp;
1493
1494 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1495 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1496 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1497 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1498 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1499 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
1500 }
1501
1502 void
1503 hppa_pop_frame (void)
1504 {
1505 register struct frame_info *frame = get_current_frame ();
1506 register CORE_ADDR fp, npc, target_pc;
1507 register int regnum;
1508 struct frame_saved_regs fsr;
1509 double freg_buffer;
1510
1511 fp = FRAME_FP (frame);
1512 get_frame_saved_regs (frame, &fsr);
1513
1514 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1515 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1516 restore_pc_queue (&fsr);
1517 #endif
1518
1519 for (regnum = 31; regnum > 0; regnum--)
1520 if (fsr.regs[regnum])
1521 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1522 REGISTER_SIZE));
1523
1524 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1525 if (fsr.regs[regnum])
1526 {
1527 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1528 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1529 }
1530
1531 if (fsr.regs[IPSW_REGNUM])
1532 write_register (IPSW_REGNUM,
1533 read_memory_integer (fsr.regs[IPSW_REGNUM],
1534 REGISTER_SIZE));
1535
1536 if (fsr.regs[SAR_REGNUM])
1537 write_register (SAR_REGNUM,
1538 read_memory_integer (fsr.regs[SAR_REGNUM],
1539 REGISTER_SIZE));
1540
1541 /* If the PC was explicitly saved, then just restore it. */
1542 if (fsr.regs[PCOQ_TAIL_REGNUM])
1543 {
1544 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1545 REGISTER_SIZE);
1546 write_register (PCOQ_TAIL_REGNUM, npc);
1547 }
1548 /* Else use the value in %rp to set the new PC. */
1549 else
1550 {
1551 npc = read_register (RP_REGNUM);
1552 write_pc (npc);
1553 }
1554
1555 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
1556
1557 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1558 write_register (SP_REGNUM, fp - 48);
1559 else
1560 write_register (SP_REGNUM, fp);
1561
1562 /* The PC we just restored may be inside a return trampoline. If so
1563 we want to restart the inferior and run it through the trampoline.
1564
1565 Do this by setting a momentary breakpoint at the location the
1566 trampoline returns to.
1567
1568 Don't skip through the trampoline if we're popping a dummy frame. */
1569 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1570 if (target_pc && !fsr.regs[IPSW_REGNUM])
1571 {
1572 struct symtab_and_line sal;
1573 struct breakpoint *breakpoint;
1574 struct cleanup *old_chain;
1575
1576 /* Set up our breakpoint. Set it to be silent as the MI code
1577 for "return_command" will print the frame we returned to. */
1578 sal = find_pc_line (target_pc, 0);
1579 sal.pc = target_pc;
1580 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1581 breakpoint->silent = 1;
1582
1583 /* So we can clean things up. */
1584 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1585
1586 /* Start up the inferior. */
1587 clear_proceed_status ();
1588 proceed_to_finish = 1;
1589 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1590
1591 /* Perform our cleanups. */
1592 do_cleanups (old_chain);
1593 }
1594 flush_cached_frames ();
1595 }
1596
1597 /* After returning to a dummy on the stack, restore the instruction
1598 queue space registers. */
1599
1600 static int
1601 restore_pc_queue (struct frame_saved_regs *fsr)
1602 {
1603 CORE_ADDR pc = read_pc ();
1604 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1605 TARGET_PTR_BIT / 8);
1606 struct target_waitstatus w;
1607 int insn_count;
1608
1609 /* Advance past break instruction in the call dummy. */
1610 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1611 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1612
1613 /* HPUX doesn't let us set the space registers or the space
1614 registers of the PC queue through ptrace. Boo, hiss.
1615 Conveniently, the call dummy has this sequence of instructions
1616 after the break:
1617 mtsp r21, sr0
1618 ble,n 0(sr0, r22)
1619
1620 So, load up the registers and single step until we are in the
1621 right place. */
1622
1623 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1624 REGISTER_SIZE));
1625 write_register (22, new_pc);
1626
1627 for (insn_count = 0; insn_count < 3; insn_count++)
1628 {
1629 /* FIXME: What if the inferior gets a signal right now? Want to
1630 merge this into wait_for_inferior (as a special kind of
1631 watchpoint? By setting a breakpoint at the end? Is there
1632 any other choice? Is there *any* way to do this stuff with
1633 ptrace() or some equivalent?). */
1634 resume (1, 0);
1635 target_wait (inferior_ptid, &w);
1636
1637 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1638 {
1639 stop_signal = w.value.sig;
1640 terminal_ours_for_output ();
1641 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1642 target_signal_to_name (stop_signal),
1643 target_signal_to_string (stop_signal));
1644 gdb_flush (gdb_stdout);
1645 return 0;
1646 }
1647 }
1648 target_terminal_ours ();
1649 target_fetch_registers (-1);
1650 return 1;
1651 }
1652
1653
1654 #ifdef PA20W_CALLING_CONVENTIONS
1655
1656 /* This function pushes a stack frame with arguments as part of the
1657 inferior function calling mechanism.
1658
1659 This is the version for the PA64, in which later arguments appear
1660 at higher addresses. (The stack always grows towards higher
1661 addresses.)
1662
1663 We simply allocate the appropriate amount of stack space and put
1664 arguments into their proper slots. The call dummy code will copy
1665 arguments into registers as needed by the ABI.
1666
1667 This ABI also requires that the caller provide an argument pointer
1668 to the callee, so we do that too. */
1669
1670 CORE_ADDR
1671 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1672 int struct_return, CORE_ADDR struct_addr)
1673 {
1674 /* array of arguments' offsets */
1675 int *offset = (int *) alloca (nargs * sizeof (int));
1676
1677 /* array of arguments' lengths: real lengths in bytes, not aligned to
1678 word size */
1679 int *lengths = (int *) alloca (nargs * sizeof (int));
1680
1681 /* The value of SP as it was passed into this function after
1682 aligning. */
1683 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1684
1685 /* The number of stack bytes occupied by the current argument. */
1686 int bytes_reserved;
1687
1688 /* The total number of bytes reserved for the arguments. */
1689 int cum_bytes_reserved = 0;
1690
1691 /* Similarly, but aligned. */
1692 int cum_bytes_aligned = 0;
1693 int i;
1694
1695 /* Iterate over each argument provided by the user. */
1696 for (i = 0; i < nargs; i++)
1697 {
1698 struct type *arg_type = VALUE_TYPE (args[i]);
1699
1700 /* Integral scalar values smaller than a register are padded on
1701 the left. We do this by promoting them to full-width,
1702 although the ABI says to pad them with garbage. */
1703 if (is_integral_type (arg_type)
1704 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1705 {
1706 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1707 ? builtin_type_unsigned_long
1708 : builtin_type_long),
1709 args[i]);
1710 arg_type = VALUE_TYPE (args[i]);
1711 }
1712
1713 lengths[i] = TYPE_LENGTH (arg_type);
1714
1715 /* Align the size of the argument to the word size for this
1716 target. */
1717 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1718
1719 offset[i] = cum_bytes_reserved;
1720
1721 /* Aggregates larger than eight bytes (the only types larger
1722 than eight bytes we have) are aligned on a 16-byte boundary,
1723 possibly padded on the right with garbage. This may leave an
1724 empty word on the stack, and thus an unused register, as per
1725 the ABI. */
1726 if (bytes_reserved > 8)
1727 {
1728 /* Round up the offset to a multiple of two slots. */
1729 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1730 & -(2*REGISTER_SIZE));
1731
1732 /* Note the space we've wasted, if any. */
1733 bytes_reserved += new_offset - offset[i];
1734 offset[i] = new_offset;
1735 }
1736
1737 cum_bytes_reserved += bytes_reserved;
1738 }
1739
1740 /* CUM_BYTES_RESERVED already accounts for all the arguments
1741 passed by the user. However, the ABIs mandate minimum stack space
1742 allocations for outgoing arguments.
1743
1744 The ABIs also mandate minimum stack alignments which we must
1745 preserve. */
1746 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1747 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1748
1749 /* Now write each of the args at the proper offset down the stack. */
1750 for (i = 0; i < nargs; i++)
1751 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1752
1753 /* If a structure has to be returned, set up register 28 to hold its
1754 address */
1755 if (struct_return)
1756 write_register (28, struct_addr);
1757
1758 /* For the PA64 we must pass a pointer to the outgoing argument list.
1759 The ABI mandates that the pointer should point to the first byte of
1760 storage beyond the register flushback area.
1761
1762 However, the call dummy expects the outgoing argument pointer to
1763 be passed in register %r4. */
1764 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1765
1766 /* ?!? This needs further work. We need to set up the global data
1767 pointer for this procedure. This assumes the same global pointer
1768 for every procedure. The call dummy expects the dp value to
1769 be passed in register %r6. */
1770 write_register (6, read_register (27));
1771
1772 /* The stack will have 64 bytes of additional space for a frame marker. */
1773 return sp + 64;
1774 }
1775
1776 #else
1777
1778 /* This function pushes a stack frame with arguments as part of the
1779 inferior function calling mechanism.
1780
1781 This is the version of the function for the 32-bit PA machines, in
1782 which later arguments appear at lower addresses. (The stack always
1783 grows towards higher addresses.)
1784
1785 We simply allocate the appropriate amount of stack space and put
1786 arguments into their proper slots. The call dummy code will copy
1787 arguments into registers as needed by the ABI. */
1788
1789 CORE_ADDR
1790 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1791 int struct_return, CORE_ADDR struct_addr)
1792 {
1793 /* array of arguments' offsets */
1794 int *offset = (int *) alloca (nargs * sizeof (int));
1795
1796 /* array of arguments' lengths: real lengths in bytes, not aligned to
1797 word size */
1798 int *lengths = (int *) alloca (nargs * sizeof (int));
1799
1800 /* The number of stack bytes occupied by the current argument. */
1801 int bytes_reserved;
1802
1803 /* The total number of bytes reserved for the arguments. */
1804 int cum_bytes_reserved = 0;
1805
1806 /* Similarly, but aligned. */
1807 int cum_bytes_aligned = 0;
1808 int i;
1809
1810 /* Iterate over each argument provided by the user. */
1811 for (i = 0; i < nargs; i++)
1812 {
1813 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1814
1815 /* Align the size of the argument to the word size for this
1816 target. */
1817 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1818
1819 offset[i] = (cum_bytes_reserved
1820 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
1821
1822 /* If the argument is a double word argument, then it needs to be
1823 double word aligned. */
1824 if ((bytes_reserved == 2 * REGISTER_SIZE)
1825 && (offset[i] % 2 * REGISTER_SIZE))
1826 {
1827 int new_offset = 0;
1828 /* BYTES_RESERVED is already aligned to the word, so we put
1829 the argument at one word more down the stack.
1830
1831 This will leave one empty word on the stack, and one unused
1832 register as mandated by the ABI. */
1833 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1834 & -(2 * REGISTER_SIZE));
1835
1836 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
1837 {
1838 bytes_reserved += REGISTER_SIZE;
1839 offset[i] += REGISTER_SIZE;
1840 }
1841 }
1842
1843 cum_bytes_reserved += bytes_reserved;
1844
1845 }
1846
1847 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1848 by the user. However, the ABI mandates minimum stack space
1849 allocations for outgoing arguments.
1850
1851 The ABI also mandates minimum stack alignments which we must
1852 preserve. */
1853 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1854 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1855
1856 /* Now write each of the args at the proper offset down the stack.
1857 ?!? We need to promote values to a full register instead of skipping
1858 words in the stack. */
1859 for (i = 0; i < nargs; i++)
1860 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1861
1862 /* If a structure has to be returned, set up register 28 to hold its
1863 address */
1864 if (struct_return)
1865 write_register (28, struct_addr);
1866
1867 /* The stack will have 32 bytes of additional space for a frame marker. */
1868 return sp + 32;
1869 }
1870
1871 #endif
1872
1873 /* elz: this function returns a value which is built looking at the given address.
1874 It is called from call_function_by_hand, in case we need to return a
1875 value which is larger than 64 bits, and it is stored in the stack rather than
1876 in the registers r28 and r29 or fr4.
1877 This function does the same stuff as value_being_returned in values.c, but
1878 gets the value from the stack rather than from the buffer where all the
1879 registers were saved when the function called completed. */
1880 struct value *
1881 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
1882 {
1883 register struct value *val;
1884
1885 val = allocate_value (valtype);
1886 CHECK_TYPEDEF (valtype);
1887 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1888
1889 return val;
1890 }
1891
1892
1893
1894 /* elz: Used to lookup a symbol in the shared libraries.
1895 This function calls shl_findsym, indirectly through a
1896 call to __d_shl_get. __d_shl_get is in end.c, which is always
1897 linked in by the hp compilers/linkers.
1898 The call to shl_findsym cannot be made directly because it needs
1899 to be active in target address space.
1900 inputs: - minimal symbol pointer for the function we want to look up
1901 - address in target space of the descriptor for the library
1902 where we want to look the symbol up.
1903 This address is retrieved using the
1904 som_solib_get_solib_by_pc function (somsolib.c).
1905 output: - real address in the library of the function.
1906 note: the handle can be null, in which case shl_findsym will look for
1907 the symbol in all the loaded shared libraries.
1908 files to look at if you need reference on this stuff:
1909 dld.c, dld_shl_findsym.c
1910 end.c
1911 man entry for shl_findsym */
1912
1913 CORE_ADDR
1914 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
1915 {
1916 struct symbol *get_sym, *symbol2;
1917 struct minimal_symbol *buff_minsym, *msymbol;
1918 struct type *ftype;
1919 struct value **args;
1920 struct value *funcval;
1921 struct value *val;
1922
1923 int x, namelen, err_value, tmp = -1;
1924 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1925 CORE_ADDR stub_addr;
1926
1927
1928 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
1929 funcval = find_function_in_inferior ("__d_shl_get");
1930 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1931 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1932 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1933 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1934 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1935 namelen = strlen (SYMBOL_NAME (function));
1936 value_return_addr = endo_buff_addr + namelen;
1937 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1938
1939 /* do alignment */
1940 if ((x = value_return_addr % 64) != 0)
1941 value_return_addr = value_return_addr + 64 - x;
1942
1943 errno_return_addr = value_return_addr + 64;
1944
1945
1946 /* set up stuff needed by __d_shl_get in buffer in end.o */
1947
1948 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1949
1950 target_write_memory (value_return_addr, (char *) &tmp, 4);
1951
1952 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1953
1954 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1955 (char *) &handle, 4);
1956
1957 /* now prepare the arguments for the call */
1958
1959 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
1960 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1961 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
1962 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
1963 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1964 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
1965
1966 /* now call the function */
1967
1968 val = call_function_by_hand (funcval, 6, args);
1969
1970 /* now get the results */
1971
1972 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1973
1974 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
1975 if (stub_addr <= 0)
1976 error ("call to __d_shl_get failed, error code is %d", err_value);
1977
1978 return (stub_addr);
1979 }
1980
1981 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
1982 static int
1983 cover_find_stub_with_shl_get (PTR args_untyped)
1984 {
1985 args_for_find_stub *args = args_untyped;
1986 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
1987 return 0;
1988 }
1989
1990 /* Insert the specified number of args and function address
1991 into a call sequence of the above form stored at DUMMYNAME.
1992
1993 On the hppa we need to call the stack dummy through $$dyncall.
1994 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1995 real_pc, which is the location where gdb should start up the
1996 inferior to do the function call.
1997
1998 This has to work across several versions of hpux, bsd, osf1. It has to
1999 work regardless of what compiler was used to build the inferior program.
2000 It should work regardless of whether or not end.o is available. It has
2001 to work even if gdb can not call into the dynamic loader in the inferior
2002 to query it for symbol names and addresses.
2003
2004 Yes, all those cases should work. Luckily code exists to handle most
2005 of them. The complexity is in selecting exactly what scheme should
2006 be used to perform the inferior call.
2007
2008 At the current time this routine is known not to handle cases where
2009 the program was linked with HP's compiler without including end.o.
2010
2011 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2012
2013 CORE_ADDR
2014 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2015 struct value **args, struct type *type, int gcc_p)
2016 {
2017 CORE_ADDR dyncall_addr;
2018 struct minimal_symbol *msymbol;
2019 struct minimal_symbol *trampoline;
2020 int flags = read_register (FLAGS_REGNUM);
2021 struct unwind_table_entry *u = NULL;
2022 CORE_ADDR new_stub = 0;
2023 CORE_ADDR solib_handle = 0;
2024
2025 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2026 passed an import stub, not a PLABEL. It is also necessary to set %r19
2027 (the PIC register) before performing the call.
2028
2029 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2030 are calling the target directly. When using __d_plt_call we want to
2031 use a PLABEL instead of an import stub. */
2032 int using_gcc_plt_call = 1;
2033
2034 #ifdef GDB_TARGET_IS_HPPA_20W
2035 /* We currently use completely different code for the PA2.0W inferior
2036 function call sequences. This needs to be cleaned up. */
2037 {
2038 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2039 struct target_waitstatus w;
2040 int inst1, inst2;
2041 char buf[4];
2042 int status;
2043 struct objfile *objfile;
2044
2045 /* We can not modify the PC space queues directly, so we start
2046 up the inferior and execute a couple instructions to set the
2047 space queues so that they point to the call dummy in the stack. */
2048 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2049 sr5 = read_register (SR5_REGNUM);
2050 if (1)
2051 {
2052 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2053 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2054 if (target_read_memory (pcoqh, buf, 4) != 0)
2055 error ("Couldn't modify space queue\n");
2056 inst1 = extract_unsigned_integer (buf, 4);
2057
2058 if (target_read_memory (pcoqt, buf, 4) != 0)
2059 error ("Couldn't modify space queue\n");
2060 inst2 = extract_unsigned_integer (buf, 4);
2061
2062 /* BVE (r1) */
2063 *((int *) buf) = 0xe820d000;
2064 if (target_write_memory (pcoqh, buf, 4) != 0)
2065 error ("Couldn't modify space queue\n");
2066
2067 /* NOP */
2068 *((int *) buf) = 0x08000240;
2069 if (target_write_memory (pcoqt, buf, 4) != 0)
2070 {
2071 *((int *) buf) = inst1;
2072 target_write_memory (pcoqh, buf, 4);
2073 error ("Couldn't modify space queue\n");
2074 }
2075
2076 write_register (1, pc);
2077
2078 /* Single step twice, the BVE instruction will set the space queue
2079 such that it points to the PC value written immediately above
2080 (ie the call dummy). */
2081 resume (1, 0);
2082 target_wait (inferior_ptid, &w);
2083 resume (1, 0);
2084 target_wait (inferior_ptid, &w);
2085
2086 /* Restore the two instructions at the old PC locations. */
2087 *((int *) buf) = inst1;
2088 target_write_memory (pcoqh, buf, 4);
2089 *((int *) buf) = inst2;
2090 target_write_memory (pcoqt, buf, 4);
2091 }
2092
2093 /* The call dummy wants the ultimate destination address initially
2094 in register %r5. */
2095 write_register (5, fun);
2096
2097 /* We need to see if this objfile has a different DP value than our
2098 own (it could be a shared library for example). */
2099 ALL_OBJFILES (objfile)
2100 {
2101 struct obj_section *s;
2102 obj_private_data_t *obj_private;
2103
2104 /* See if FUN is in any section within this shared library. */
2105 for (s = objfile->sections; s < objfile->sections_end; s++)
2106 if (s->addr <= fun && fun < s->endaddr)
2107 break;
2108
2109 if (s >= objfile->sections_end)
2110 continue;
2111
2112 obj_private = (obj_private_data_t *) objfile->obj_private;
2113
2114 /* The DP value may be different for each objfile. But within an
2115 objfile each function uses the same dp value. Thus we do not need
2116 to grope around the opd section looking for dp values.
2117
2118 ?!? This is not strictly correct since we may be in a shared library
2119 and want to call back into the main program. To make that case
2120 work correctly we need to set obj_private->dp for the main program's
2121 objfile, then remove this conditional. */
2122 if (obj_private->dp)
2123 write_register (27, obj_private->dp);
2124 break;
2125 }
2126 return pc;
2127 }
2128 #endif
2129
2130 #ifndef GDB_TARGET_IS_HPPA_20W
2131 /* Prefer __gcc_plt_call over the HP supplied routine because
2132 __gcc_plt_call works for any number of arguments. */
2133 trampoline = NULL;
2134 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2135 using_gcc_plt_call = 0;
2136
2137 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2138 if (msymbol == NULL)
2139 error ("Can't find an address for $$dyncall trampoline");
2140
2141 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2142
2143 /* FUN could be a procedure label, in which case we have to get
2144 its real address and the value of its GOT/DP if we plan to
2145 call the routine via gcc_plt_call. */
2146 if ((fun & 0x2) && using_gcc_plt_call)
2147 {
2148 /* Get the GOT/DP value for the target function. It's
2149 at *(fun+4). Note the call dummy is *NOT* allowed to
2150 trash %r19 before calling the target function. */
2151 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2152 REGISTER_SIZE));
2153
2154 /* Now get the real address for the function we are calling, it's
2155 at *fun. */
2156 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2157 TARGET_PTR_BIT / 8);
2158 }
2159 else
2160 {
2161
2162 #ifndef GDB_TARGET_IS_PA_ELF
2163 /* FUN could be an export stub, the real address of a function, or
2164 a PLABEL. When using gcc's PLT call routine we must call an import
2165 stub rather than the export stub or real function for lazy binding
2166 to work correctly
2167
2168 If we are using the gcc PLT call routine, then we need to
2169 get the import stub for the target function. */
2170 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2171 {
2172 struct objfile *objfile;
2173 struct minimal_symbol *funsymbol, *stub_symbol;
2174 CORE_ADDR newfun = 0;
2175
2176 funsymbol = lookup_minimal_symbol_by_pc (fun);
2177 if (!funsymbol)
2178 error ("Unable to find minimal symbol for target function.\n");
2179
2180 /* Search all the object files for an import symbol with the
2181 right name. */
2182 ALL_OBJFILES (objfile)
2183 {
2184 stub_symbol
2185 = lookup_minimal_symbol_solib_trampoline
2186 (SYMBOL_NAME (funsymbol), NULL, objfile);
2187
2188 if (!stub_symbol)
2189 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2190 NULL, objfile);
2191
2192 /* Found a symbol with the right name. */
2193 if (stub_symbol)
2194 {
2195 struct unwind_table_entry *u;
2196 /* It must be a shared library trampoline. */
2197 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2198 continue;
2199
2200 /* It must also be an import stub. */
2201 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2202 if (u == NULL
2203 || (u->stub_unwind.stub_type != IMPORT
2204 #ifdef GDB_NATIVE_HPUX_11
2205 /* Sigh. The hpux 10.20 dynamic linker will blow
2206 chunks if we perform a call to an unbound function
2207 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2208 linker will blow chunks if we do not call the
2209 unbound function via the IMPORT_SHLIB stub.
2210
2211 We currently have no way to select bevahior on just
2212 the target. However, we only support HPUX/SOM in
2213 native mode. So we conditinalize on a native
2214 #ifdef. Ugly. Ugly. Ugly */
2215 && u->stub_unwind.stub_type != IMPORT_SHLIB
2216 #endif
2217 ))
2218 continue;
2219
2220 /* OK. Looks like the correct import stub. */
2221 newfun = SYMBOL_VALUE (stub_symbol);
2222 fun = newfun;
2223
2224 /* If we found an IMPORT stub, then we want to stop
2225 searching now. If we found an IMPORT_SHLIB, we want
2226 to continue the search in the hopes that we will find
2227 an IMPORT stub. */
2228 if (u->stub_unwind.stub_type == IMPORT)
2229 break;
2230 }
2231 }
2232
2233 /* Ouch. We did not find an import stub. Make an attempt to
2234 do the right thing instead of just croaking. Most of the
2235 time this will actually work. */
2236 if (newfun == 0)
2237 write_register (19, som_solib_get_got_by_pc (fun));
2238
2239 u = find_unwind_entry (fun);
2240 if (u
2241 && (u->stub_unwind.stub_type == IMPORT
2242 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2243 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2244
2245 /* If we found the import stub in the shared library, then we have
2246 to set %r19 before we call the stub. */
2247 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2248 write_register (19, som_solib_get_got_by_pc (fun));
2249 }
2250 #endif
2251 }
2252
2253 /* If we are calling into another load module then have sr4export call the
2254 magic __d_plt_call routine which is linked in from end.o.
2255
2256 You can't use _sr4export to make the call as the value in sp-24 will get
2257 fried and you end up returning to the wrong location. You can't call the
2258 target as the code to bind the PLT entry to a function can't return to a
2259 stack address.
2260
2261 Also, query the dynamic linker in the inferior to provide a suitable
2262 PLABEL for the target function. */
2263 if (!using_gcc_plt_call)
2264 {
2265 CORE_ADDR new_fun;
2266
2267 /* Get a handle for the shared library containing FUN. Given the
2268 handle we can query the shared library for a PLABEL. */
2269 solib_handle = som_solib_get_solib_by_pc (fun);
2270
2271 if (solib_handle)
2272 {
2273 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2274
2275 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2276
2277 if (trampoline == NULL)
2278 {
2279 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2280 }
2281
2282 /* This is where sr4export will jump to. */
2283 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2284
2285 /* If the function is in a shared library, then call __d_shl_get to
2286 get a PLABEL for the target function. */
2287 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2288
2289 if (new_stub == 0)
2290 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
2291
2292 /* We have to store the address of the stub in __shlib_funcptr. */
2293 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2294 (struct objfile *) NULL);
2295
2296 if (msymbol == NULL)
2297 error ("Can't find an address for __shlib_funcptr");
2298 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2299 (char *) &new_stub, 4);
2300
2301 /* We want sr4export to call __d_plt_call, so we claim it is
2302 the final target. Clear trampoline. */
2303 fun = new_fun;
2304 trampoline = NULL;
2305 }
2306 }
2307
2308 /* Store upper 21 bits of function address into ldil. fun will either be
2309 the final target (most cases) or __d_plt_call when calling into a shared
2310 library and __gcc_plt_call is not available. */
2311 store_unsigned_integer
2312 (&dummy[FUNC_LDIL_OFFSET],
2313 INSTRUCTION_SIZE,
2314 deposit_21 (fun >> 11,
2315 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2316 INSTRUCTION_SIZE)));
2317
2318 /* Store lower 11 bits of function address into ldo */
2319 store_unsigned_integer
2320 (&dummy[FUNC_LDO_OFFSET],
2321 INSTRUCTION_SIZE,
2322 deposit_14 (fun & MASK_11,
2323 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2324 INSTRUCTION_SIZE)));
2325 #ifdef SR4EXPORT_LDIL_OFFSET
2326
2327 {
2328 CORE_ADDR trampoline_addr;
2329
2330 /* We may still need sr4export's address too. */
2331
2332 if (trampoline == NULL)
2333 {
2334 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2335 if (msymbol == NULL)
2336 error ("Can't find an address for _sr4export trampoline");
2337
2338 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2339 }
2340 else
2341 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2342
2343
2344 /* Store upper 21 bits of trampoline's address into ldil */
2345 store_unsigned_integer
2346 (&dummy[SR4EXPORT_LDIL_OFFSET],
2347 INSTRUCTION_SIZE,
2348 deposit_21 (trampoline_addr >> 11,
2349 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2350 INSTRUCTION_SIZE)));
2351
2352 /* Store lower 11 bits of trampoline's address into ldo */
2353 store_unsigned_integer
2354 (&dummy[SR4EXPORT_LDO_OFFSET],
2355 INSTRUCTION_SIZE,
2356 deposit_14 (trampoline_addr & MASK_11,
2357 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2358 INSTRUCTION_SIZE)));
2359 }
2360 #endif
2361
2362 write_register (22, pc);
2363
2364 /* If we are in a syscall, then we should call the stack dummy
2365 directly. $$dyncall is not needed as the kernel sets up the
2366 space id registers properly based on the value in %r31. In
2367 fact calling $$dyncall will not work because the value in %r22
2368 will be clobbered on the syscall exit path.
2369
2370 Similarly if the current PC is in a shared library. Note however,
2371 this scheme won't work if the shared library isn't mapped into
2372 the same space as the stack. */
2373 if (flags & 2)
2374 return pc;
2375 #ifndef GDB_TARGET_IS_PA_ELF
2376 else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid)))
2377 return pc;
2378 #endif
2379 else
2380 return dyncall_addr;
2381 #endif
2382 }
2383
2384
2385
2386
2387 /* If the pid is in a syscall, then the FP register is not readable.
2388 We'll return zero in that case, rather than attempting to read it
2389 and cause a warning. */
2390 CORE_ADDR
2391 target_read_fp (int pid)
2392 {
2393 int flags = read_register (FLAGS_REGNUM);
2394
2395 if (flags & 2)
2396 {
2397 return (CORE_ADDR) 0;
2398 }
2399
2400 /* This is the only site that may directly read_register () the FP
2401 register. All others must use TARGET_READ_FP (). */
2402 return read_register (FP_REGNUM);
2403 }
2404
2405
2406 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2407 bits. */
2408
2409 CORE_ADDR
2410 target_read_pc (ptid_t ptid)
2411 {
2412 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2413
2414 /* The following test does not belong here. It is OS-specific, and belongs
2415 in native code. */
2416 /* Test SS_INSYSCALL */
2417 if (flags & 2)
2418 return read_register_pid (31, ptid) & ~0x3;
2419
2420 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2421 }
2422
2423 /* Write out the PC. If currently in a syscall, then also write the new
2424 PC value into %r31. */
2425
2426 void
2427 target_write_pc (CORE_ADDR v, ptid_t ptid)
2428 {
2429 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2430
2431 /* The following test does not belong here. It is OS-specific, and belongs
2432 in native code. */
2433 /* If in a syscall, then set %r31. Also make sure to get the
2434 privilege bits set correctly. */
2435 /* Test SS_INSYSCALL */
2436 if (flags & 2)
2437 write_register_pid (31, v | 0x3, ptid);
2438
2439 write_register_pid (PC_REGNUM, v, ptid);
2440 write_register_pid (NPC_REGNUM, v + 4, ptid);
2441 }
2442
2443 /* return the alignment of a type in bytes. Structures have the maximum
2444 alignment required by their fields. */
2445
2446 static int
2447 hppa_alignof (struct type *type)
2448 {
2449 int max_align, align, i;
2450 CHECK_TYPEDEF (type);
2451 switch (TYPE_CODE (type))
2452 {
2453 case TYPE_CODE_PTR:
2454 case TYPE_CODE_INT:
2455 case TYPE_CODE_FLT:
2456 return TYPE_LENGTH (type);
2457 case TYPE_CODE_ARRAY:
2458 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2459 case TYPE_CODE_STRUCT:
2460 case TYPE_CODE_UNION:
2461 max_align = 1;
2462 for (i = 0; i < TYPE_NFIELDS (type); i++)
2463 {
2464 /* Bit fields have no real alignment. */
2465 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2466 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2467 {
2468 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2469 max_align = max (max_align, align);
2470 }
2471 }
2472 return max_align;
2473 default:
2474 return 4;
2475 }
2476 }
2477
2478 /* Print the register regnum, or all registers if regnum is -1 */
2479
2480 void
2481 pa_do_registers_info (int regnum, int fpregs)
2482 {
2483 char raw_regs[REGISTER_BYTES];
2484 int i;
2485
2486 /* Make a copy of gdb's save area (may cause actual
2487 reads from the target). */
2488 for (i = 0; i < NUM_REGS; i++)
2489 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2490
2491 if (regnum == -1)
2492 pa_print_registers (raw_regs, regnum, fpregs);
2493 else if (regnum < FP4_REGNUM)
2494 {
2495 long reg_val[2];
2496
2497 /* Why is the value not passed through "extract_signed_integer"
2498 as in "pa_print_registers" below? */
2499 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2500
2501 if (!is_pa_2)
2502 {
2503 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2504 }
2505 else
2506 {
2507 /* Fancy % formats to prevent leading zeros. */
2508 if (reg_val[0] == 0)
2509 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2510 else
2511 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2512 reg_val[0], reg_val[1]);
2513 }
2514 }
2515 else
2516 /* Note that real floating point values only start at
2517 FP4_REGNUM. FP0 and up are just status and error
2518 registers, which have integral (bit) values. */
2519 pa_print_fp_reg (regnum);
2520 }
2521
2522 /********** new function ********************/
2523 void
2524 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2525 enum precision_type precision)
2526 {
2527 char raw_regs[REGISTER_BYTES];
2528 int i;
2529
2530 /* Make a copy of gdb's save area (may cause actual
2531 reads from the target). */
2532 for (i = 0; i < NUM_REGS; i++)
2533 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2534
2535 if (regnum == -1)
2536 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2537
2538 else if (regnum < FP4_REGNUM)
2539 {
2540 long reg_val[2];
2541
2542 /* Why is the value not passed through "extract_signed_integer"
2543 as in "pa_print_registers" below? */
2544 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2545
2546 if (!is_pa_2)
2547 {
2548 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2549 }
2550 else
2551 {
2552 /* Fancy % formats to prevent leading zeros. */
2553 if (reg_val[0] == 0)
2554 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2555 reg_val[1]);
2556 else
2557 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2558 reg_val[0], reg_val[1]);
2559 }
2560 }
2561 else
2562 /* Note that real floating point values only start at
2563 FP4_REGNUM. FP0 and up are just status and error
2564 registers, which have integral (bit) values. */
2565 pa_strcat_fp_reg (regnum, stream, precision);
2566 }
2567
2568 /* If this is a PA2.0 machine, fetch the real 64-bit register
2569 value. Otherwise use the info from gdb's saved register area.
2570
2571 Note that reg_val is really expected to be an array of longs,
2572 with two elements. */
2573 static void
2574 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2575 {
2576 static int know_which = 0; /* False */
2577
2578 int regaddr;
2579 unsigned int offset;
2580 register int i;
2581 int start;
2582
2583
2584 char buf[MAX_REGISTER_RAW_SIZE];
2585 long long reg_val;
2586
2587 if (!know_which)
2588 {
2589 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2590 {
2591 is_pa_2 = (1 == 1);
2592 }
2593
2594 know_which = 1; /* True */
2595 }
2596
2597 raw_val[0] = 0;
2598 raw_val[1] = 0;
2599
2600 if (!is_pa_2)
2601 {
2602 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2603 return;
2604 }
2605
2606 /* Code below copied from hppah-nat.c, with fixes for wide
2607 registers, using different area of save_state, etc. */
2608 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2609 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2610 {
2611 /* Use narrow regs area of save_state and default macro. */
2612 offset = U_REGS_OFFSET;
2613 regaddr = register_addr (regnum, offset);
2614 start = 1;
2615 }
2616 else
2617 {
2618 /* Use wide regs area, and calculate registers as 8 bytes wide.
2619
2620 We'd like to do this, but current version of "C" doesn't
2621 permit "offsetof":
2622
2623 offset = offsetof(save_state_t, ss_wide);
2624
2625 Note that to avoid "C" doing typed pointer arithmetic, we
2626 have to cast away the type in our offset calculation:
2627 otherwise we get an offset of 1! */
2628
2629 /* NB: save_state_t is not available before HPUX 9.
2630 The ss_wide field is not available previous to HPUX 10.20,
2631 so to avoid compile-time warnings, we only compile this for
2632 PA 2.0 processors. This control path should only be followed
2633 if we're debugging a PA 2.0 processor, so this should not cause
2634 problems. */
2635
2636 /* #if the following code out so that this file can still be
2637 compiled on older HPUX boxes (< 10.20) which don't have
2638 this structure/structure member. */
2639 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2640 save_state_t temp;
2641
2642 offset = ((int) &temp.ss_wide) - ((int) &temp);
2643 regaddr = offset + regnum * 8;
2644 start = 0;
2645 #endif
2646 }
2647
2648 for (i = start; i < 2; i++)
2649 {
2650 errno = 0;
2651 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2652 (PTRACE_ARG3_TYPE) regaddr, 0);
2653 if (errno != 0)
2654 {
2655 /* Warning, not error, in case we are attached; sometimes the
2656 kernel doesn't let us at the registers. */
2657 char *err = safe_strerror (errno);
2658 char *msg = alloca (strlen (err) + 128);
2659 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2660 warning (msg);
2661 goto error_exit;
2662 }
2663
2664 regaddr += sizeof (long);
2665 }
2666
2667 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2668 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2669
2670 error_exit:
2671 ;
2672 }
2673
2674 /* "Info all-reg" command */
2675
2676 static void
2677 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2678 {
2679 int i, j;
2680 /* Alas, we are compiled so that "long long" is 32 bits */
2681 long raw_val[2];
2682 long long_val;
2683 int rows = 48, columns = 2;
2684
2685 for (i = 0; i < rows; i++)
2686 {
2687 for (j = 0; j < columns; j++)
2688 {
2689 /* We display registers in column-major order. */
2690 int regnum = i + j * rows;
2691
2692 /* Q: Why is the value passed through "extract_signed_integer",
2693 while above, in "pa_do_registers_info" it isn't?
2694 A: ? */
2695 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2696
2697 /* Even fancier % formats to prevent leading zeros
2698 and still maintain the output in columns. */
2699 if (!is_pa_2)
2700 {
2701 /* Being big-endian, on this machine the low bits
2702 (the ones we want to look at) are in the second longword. */
2703 long_val = extract_signed_integer (&raw_val[1], 4);
2704 printf_filtered ("%10.10s: %8lx ",
2705 REGISTER_NAME (regnum), long_val);
2706 }
2707 else
2708 {
2709 /* raw_val = extract_signed_integer(&raw_val, 8); */
2710 if (raw_val[0] == 0)
2711 printf_filtered ("%10.10s: %8lx ",
2712 REGISTER_NAME (regnum), raw_val[1]);
2713 else
2714 printf_filtered ("%10.10s: %8lx%8.8lx ",
2715 REGISTER_NAME (regnum),
2716 raw_val[0], raw_val[1]);
2717 }
2718 }
2719 printf_unfiltered ("\n");
2720 }
2721
2722 if (fpregs)
2723 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2724 pa_print_fp_reg (i);
2725 }
2726
2727 /************* new function ******************/
2728 static void
2729 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2730 struct ui_file *stream)
2731 {
2732 int i, j;
2733 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2734 long long_val;
2735 enum precision_type precision;
2736
2737 precision = unspecified_precision;
2738
2739 for (i = 0; i < 18; i++)
2740 {
2741 for (j = 0; j < 4; j++)
2742 {
2743 /* Q: Why is the value passed through "extract_signed_integer",
2744 while above, in "pa_do_registers_info" it isn't?
2745 A: ? */
2746 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2747
2748 /* Even fancier % formats to prevent leading zeros
2749 and still maintain the output in columns. */
2750 if (!is_pa_2)
2751 {
2752 /* Being big-endian, on this machine the low bits
2753 (the ones we want to look at) are in the second longword. */
2754 long_val = extract_signed_integer (&raw_val[1], 4);
2755 fprintf_filtered (stream, "%8.8s: %8lx ",
2756 REGISTER_NAME (i + (j * 18)), long_val);
2757 }
2758 else
2759 {
2760 /* raw_val = extract_signed_integer(&raw_val, 8); */
2761 if (raw_val[0] == 0)
2762 fprintf_filtered (stream, "%8.8s: %8lx ",
2763 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2764 else
2765 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2766 REGISTER_NAME (i + (j * 18)), raw_val[0],
2767 raw_val[1]);
2768 }
2769 }
2770 fprintf_unfiltered (stream, "\n");
2771 }
2772
2773 if (fpregs)
2774 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2775 pa_strcat_fp_reg (i, stream, precision);
2776 }
2777
2778 static void
2779 pa_print_fp_reg (int i)
2780 {
2781 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2782 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2783
2784 /* Get 32bits of data. */
2785 read_relative_register_raw_bytes (i, raw_buffer);
2786
2787 /* Put it in the buffer. No conversions are ever necessary. */
2788 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2789
2790 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2791 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2792 fputs_filtered ("(single precision) ", gdb_stdout);
2793
2794 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2795 1, 0, Val_pretty_default);
2796 printf_filtered ("\n");
2797
2798 /* If "i" is even, then this register can also be a double-precision
2799 FP register. Dump it out as such. */
2800 if ((i % 2) == 0)
2801 {
2802 /* Get the data in raw format for the 2nd half. */
2803 read_relative_register_raw_bytes (i + 1, raw_buffer);
2804
2805 /* Copy it into the appropriate part of the virtual buffer. */
2806 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2807 REGISTER_RAW_SIZE (i));
2808
2809 /* Dump it as a double. */
2810 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2811 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2812 fputs_filtered ("(double precision) ", gdb_stdout);
2813
2814 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2815 1, 0, Val_pretty_default);
2816 printf_filtered ("\n");
2817 }
2818 }
2819
2820 /*************** new function ***********************/
2821 static void
2822 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2823 {
2824 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2825 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2826
2827 fputs_filtered (REGISTER_NAME (i), stream);
2828 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2829
2830 /* Get 32bits of data. */
2831 read_relative_register_raw_bytes (i, raw_buffer);
2832
2833 /* Put it in the buffer. No conversions are ever necessary. */
2834 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2835
2836 if (precision == double_precision && (i % 2) == 0)
2837 {
2838
2839 char raw_buf[MAX_REGISTER_RAW_SIZE];
2840
2841 /* Get the data in raw format for the 2nd half. */
2842 read_relative_register_raw_bytes (i + 1, raw_buf);
2843
2844 /* Copy it into the appropriate part of the virtual buffer. */
2845 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2846
2847 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2848 1, 0, Val_pretty_default);
2849
2850 }
2851 else
2852 {
2853 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2854 1, 0, Val_pretty_default);
2855 }
2856
2857 }
2858
2859 /* Return one if PC is in the call path of a trampoline, else return zero.
2860
2861 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2862 just shared library trampolines (import, export). */
2863
2864 int
2865 in_solib_call_trampoline (CORE_ADDR pc, char *name)
2866 {
2867 struct minimal_symbol *minsym;
2868 struct unwind_table_entry *u;
2869 static CORE_ADDR dyncall = 0;
2870 static CORE_ADDR sr4export = 0;
2871
2872 #ifdef GDB_TARGET_IS_HPPA_20W
2873 /* PA64 has a completely different stub/trampoline scheme. Is it
2874 better? Maybe. It's certainly harder to determine with any
2875 certainty that we are in a stub because we can not refer to the
2876 unwinders to help.
2877
2878 The heuristic is simple. Try to lookup the current PC value in th
2879 minimal symbol table. If that fails, then assume we are not in a
2880 stub and return.
2881
2882 Then see if the PC value falls within the section bounds for the
2883 section containing the minimal symbol we found in the first
2884 step. If it does, then assume we are not in a stub and return.
2885
2886 Finally peek at the instructions to see if they look like a stub. */
2887 {
2888 struct minimal_symbol *minsym;
2889 asection *sec;
2890 CORE_ADDR addr;
2891 int insn, i;
2892
2893 minsym = lookup_minimal_symbol_by_pc (pc);
2894 if (! minsym)
2895 return 0;
2896
2897 sec = SYMBOL_BFD_SECTION (minsym);
2898
2899 if (sec->vma <= pc
2900 && sec->vma + sec->_cooked_size < pc)
2901 return 0;
2902
2903 /* We might be in a stub. Peek at the instructions. Stubs are 3
2904 instructions long. */
2905 insn = read_memory_integer (pc, 4);
2906
2907 /* Find out where we think we are within the stub. */
2908 if ((insn & 0xffffc00e) == 0x53610000)
2909 addr = pc;
2910 else if ((insn & 0xffffffff) == 0xe820d000)
2911 addr = pc - 4;
2912 else if ((insn & 0xffffc00e) == 0x537b0000)
2913 addr = pc - 8;
2914 else
2915 return 0;
2916
2917 /* Now verify each insn in the range looks like a stub instruction. */
2918 insn = read_memory_integer (addr, 4);
2919 if ((insn & 0xffffc00e) != 0x53610000)
2920 return 0;
2921
2922 /* Now verify each insn in the range looks like a stub instruction. */
2923 insn = read_memory_integer (addr + 4, 4);
2924 if ((insn & 0xffffffff) != 0xe820d000)
2925 return 0;
2926
2927 /* Now verify each insn in the range looks like a stub instruction. */
2928 insn = read_memory_integer (addr + 8, 4);
2929 if ((insn & 0xffffc00e) != 0x537b0000)
2930 return 0;
2931
2932 /* Looks like a stub. */
2933 return 1;
2934 }
2935 #endif
2936
2937 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2938 new exec file */
2939
2940 /* First see if PC is in one of the two C-library trampolines. */
2941 if (!dyncall)
2942 {
2943 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2944 if (minsym)
2945 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2946 else
2947 dyncall = -1;
2948 }
2949
2950 if (!sr4export)
2951 {
2952 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2953 if (minsym)
2954 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2955 else
2956 sr4export = -1;
2957 }
2958
2959 if (pc == dyncall || pc == sr4export)
2960 return 1;
2961
2962 minsym = lookup_minimal_symbol_by_pc (pc);
2963 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
2964 return 1;
2965
2966 /* Get the unwind descriptor corresponding to PC, return zero
2967 if no unwind was found. */
2968 u = find_unwind_entry (pc);
2969 if (!u)
2970 return 0;
2971
2972 /* If this isn't a linker stub, then return now. */
2973 if (u->stub_unwind.stub_type == 0)
2974 return 0;
2975
2976 /* By definition a long-branch stub is a call stub. */
2977 if (u->stub_unwind.stub_type == LONG_BRANCH)
2978 return 1;
2979
2980 /* The call and return path execute the same instructions within
2981 an IMPORT stub! So an IMPORT stub is both a call and return
2982 trampoline. */
2983 if (u->stub_unwind.stub_type == IMPORT)
2984 return 1;
2985
2986 /* Parameter relocation stubs always have a call path and may have a
2987 return path. */
2988 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2989 || u->stub_unwind.stub_type == EXPORT)
2990 {
2991 CORE_ADDR addr;
2992
2993 /* Search forward from the current PC until we hit a branch
2994 or the end of the stub. */
2995 for (addr = pc; addr <= u->region_end; addr += 4)
2996 {
2997 unsigned long insn;
2998
2999 insn = read_memory_integer (addr, 4);
3000
3001 /* Does it look like a bl? If so then it's the call path, if
3002 we find a bv or be first, then we're on the return path. */
3003 if ((insn & 0xfc00e000) == 0xe8000000)
3004 return 1;
3005 else if ((insn & 0xfc00e001) == 0xe800c000
3006 || (insn & 0xfc000000) == 0xe0000000)
3007 return 0;
3008 }
3009
3010 /* Should never happen. */
3011 warning ("Unable to find branch in parameter relocation stub.\n");
3012 return 0;
3013 }
3014
3015 /* Unknown stub type. For now, just return zero. */
3016 return 0;
3017 }
3018
3019 /* Return one if PC is in the return path of a trampoline, else return zero.
3020
3021 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3022 just shared library trampolines (import, export). */
3023
3024 int
3025 in_solib_return_trampoline (CORE_ADDR pc, char *name)
3026 {
3027 struct unwind_table_entry *u;
3028
3029 /* Get the unwind descriptor corresponding to PC, return zero
3030 if no unwind was found. */
3031 u = find_unwind_entry (pc);
3032 if (!u)
3033 return 0;
3034
3035 /* If this isn't a linker stub or it's just a long branch stub, then
3036 return zero. */
3037 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3038 return 0;
3039
3040 /* The call and return path execute the same instructions within
3041 an IMPORT stub! So an IMPORT stub is both a call and return
3042 trampoline. */
3043 if (u->stub_unwind.stub_type == IMPORT)
3044 return 1;
3045
3046 /* Parameter relocation stubs always have a call path and may have a
3047 return path. */
3048 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3049 || u->stub_unwind.stub_type == EXPORT)
3050 {
3051 CORE_ADDR addr;
3052
3053 /* Search forward from the current PC until we hit a branch
3054 or the end of the stub. */
3055 for (addr = pc; addr <= u->region_end; addr += 4)
3056 {
3057 unsigned long insn;
3058
3059 insn = read_memory_integer (addr, 4);
3060
3061 /* Does it look like a bl? If so then it's the call path, if
3062 we find a bv or be first, then we're on the return path. */
3063 if ((insn & 0xfc00e000) == 0xe8000000)
3064 return 0;
3065 else if ((insn & 0xfc00e001) == 0xe800c000
3066 || (insn & 0xfc000000) == 0xe0000000)
3067 return 1;
3068 }
3069
3070 /* Should never happen. */
3071 warning ("Unable to find branch in parameter relocation stub.\n");
3072 return 0;
3073 }
3074
3075 /* Unknown stub type. For now, just return zero. */
3076 return 0;
3077
3078 }
3079
3080 /* Figure out if PC is in a trampoline, and if so find out where
3081 the trampoline will jump to. If not in a trampoline, return zero.
3082
3083 Simple code examination probably is not a good idea since the code
3084 sequences in trampolines can also appear in user code.
3085
3086 We use unwinds and information from the minimal symbol table to
3087 determine when we're in a trampoline. This won't work for ELF
3088 (yet) since it doesn't create stub unwind entries. Whether or
3089 not ELF will create stub unwinds or normal unwinds for linker
3090 stubs is still being debated.
3091
3092 This should handle simple calls through dyncall or sr4export,
3093 long calls, argument relocation stubs, and dyncall/sr4export
3094 calling an argument relocation stub. It even handles some stubs
3095 used in dynamic executables. */
3096
3097 CORE_ADDR
3098 skip_trampoline_code (CORE_ADDR pc, char *name)
3099 {
3100 long orig_pc = pc;
3101 long prev_inst, curr_inst, loc;
3102 static CORE_ADDR dyncall = 0;
3103 static CORE_ADDR dyncall_external = 0;
3104 static CORE_ADDR sr4export = 0;
3105 struct minimal_symbol *msym;
3106 struct unwind_table_entry *u;
3107
3108 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3109 new exec file */
3110
3111 if (!dyncall)
3112 {
3113 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3114 if (msym)
3115 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3116 else
3117 dyncall = -1;
3118 }
3119
3120 if (!dyncall_external)
3121 {
3122 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3123 if (msym)
3124 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3125 else
3126 dyncall_external = -1;
3127 }
3128
3129 if (!sr4export)
3130 {
3131 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3132 if (msym)
3133 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3134 else
3135 sr4export = -1;
3136 }
3137
3138 /* Addresses passed to dyncall may *NOT* be the actual address
3139 of the function. So we may have to do something special. */
3140 if (pc == dyncall)
3141 {
3142 pc = (CORE_ADDR) read_register (22);
3143
3144 /* If bit 30 (counting from the left) is on, then pc is the address of
3145 the PLT entry for this function, not the address of the function
3146 itself. Bit 31 has meaning too, but only for MPE. */
3147 if (pc & 0x2)
3148 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3149 }
3150 if (pc == dyncall_external)
3151 {
3152 pc = (CORE_ADDR) read_register (22);
3153 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3154 }
3155 else if (pc == sr4export)
3156 pc = (CORE_ADDR) (read_register (22));
3157
3158 /* Get the unwind descriptor corresponding to PC, return zero
3159 if no unwind was found. */
3160 u = find_unwind_entry (pc);
3161 if (!u)
3162 return 0;
3163
3164 /* If this isn't a linker stub, then return now. */
3165 /* elz: attention here! (FIXME) because of a compiler/linker
3166 error, some stubs which should have a non zero stub_unwind.stub_type
3167 have unfortunately a value of zero. So this function would return here
3168 as if we were not in a trampoline. To fix this, we go look at the partial
3169 symbol information, which reports this guy as a stub.
3170 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3171 partial symbol information is also wrong sometimes. This is because
3172 when it is entered (somread.c::som_symtab_read()) it can happen that
3173 if the type of the symbol (from the som) is Entry, and the symbol is
3174 in a shared library, then it can also be a trampoline. This would
3175 be OK, except that I believe the way they decide if we are ina shared library
3176 does not work. SOOOO..., even if we have a regular function w/o trampolines
3177 its minimal symbol can be assigned type mst_solib_trampoline.
3178 Also, if we find that the symbol is a real stub, then we fix the unwind
3179 descriptor, and define the stub type to be EXPORT.
3180 Hopefully this is correct most of the times. */
3181 if (u->stub_unwind.stub_type == 0)
3182 {
3183
3184 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3185 we can delete all the code which appears between the lines */
3186 /*--------------------------------------------------------------------------*/
3187 msym = lookup_minimal_symbol_by_pc (pc);
3188
3189 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3190 return orig_pc == pc ? 0 : pc & ~0x3;
3191
3192 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3193 {
3194 struct objfile *objfile;
3195 struct minimal_symbol *msymbol;
3196 int function_found = 0;
3197
3198 /* go look if there is another minimal symbol with the same name as
3199 this one, but with type mst_text. This would happen if the msym
3200 is an actual trampoline, in which case there would be another
3201 symbol with the same name corresponding to the real function */
3202
3203 ALL_MSYMBOLS (objfile, msymbol)
3204 {
3205 if (MSYMBOL_TYPE (msymbol) == mst_text
3206 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3207 {
3208 function_found = 1;
3209 break;
3210 }
3211 }
3212
3213 if (function_found)
3214 /* the type of msym is correct (mst_solib_trampoline), but
3215 the unwind info is wrong, so set it to the correct value */
3216 u->stub_unwind.stub_type = EXPORT;
3217 else
3218 /* the stub type info in the unwind is correct (this is not a
3219 trampoline), but the msym type information is wrong, it
3220 should be mst_text. So we need to fix the msym, and also
3221 get out of this function */
3222 {
3223 MSYMBOL_TYPE (msym) = mst_text;
3224 return orig_pc == pc ? 0 : pc & ~0x3;
3225 }
3226 }
3227
3228 /*--------------------------------------------------------------------------*/
3229 }
3230
3231 /* It's a stub. Search for a branch and figure out where it goes.
3232 Note we have to handle multi insn branch sequences like ldil;ble.
3233 Most (all?) other branches can be determined by examining the contents
3234 of certain registers and the stack. */
3235
3236 loc = pc;
3237 curr_inst = 0;
3238 prev_inst = 0;
3239 while (1)
3240 {
3241 /* Make sure we haven't walked outside the range of this stub. */
3242 if (u != find_unwind_entry (loc))
3243 {
3244 warning ("Unable to find branch in linker stub");
3245 return orig_pc == pc ? 0 : pc & ~0x3;
3246 }
3247
3248 prev_inst = curr_inst;
3249 curr_inst = read_memory_integer (loc, 4);
3250
3251 /* Does it look like a branch external using %r1? Then it's the
3252 branch from the stub to the actual function. */
3253 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3254 {
3255 /* Yup. See if the previous instruction loaded
3256 a value into %r1. If so compute and return the jump address. */
3257 if ((prev_inst & 0xffe00000) == 0x20200000)
3258 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3259 else
3260 {
3261 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3262 return orig_pc == pc ? 0 : pc & ~0x3;
3263 }
3264 }
3265
3266 /* Does it look like a be 0(sr0,%r21)? OR
3267 Does it look like a be, n 0(sr0,%r21)? OR
3268 Does it look like a bve (r21)? (this is on PA2.0)
3269 Does it look like a bve, n(r21)? (this is also on PA2.0)
3270 That's the branch from an
3271 import stub to an export stub.
3272
3273 It is impossible to determine the target of the branch via
3274 simple examination of instructions and/or data (consider
3275 that the address in the plabel may be the address of the
3276 bind-on-reference routine in the dynamic loader).
3277
3278 So we have try an alternative approach.
3279
3280 Get the name of the symbol at our current location; it should
3281 be a stub symbol with the same name as the symbol in the
3282 shared library.
3283
3284 Then lookup a minimal symbol with the same name; we should
3285 get the minimal symbol for the target routine in the shared
3286 library as those take precedence of import/export stubs. */
3287 if ((curr_inst == 0xe2a00000) ||
3288 (curr_inst == 0xe2a00002) ||
3289 (curr_inst == 0xeaa0d000) ||
3290 (curr_inst == 0xeaa0d002))
3291 {
3292 struct minimal_symbol *stubsym, *libsym;
3293
3294 stubsym = lookup_minimal_symbol_by_pc (loc);
3295 if (stubsym == NULL)
3296 {
3297 warning ("Unable to find symbol for 0x%lx", loc);
3298 return orig_pc == pc ? 0 : pc & ~0x3;
3299 }
3300
3301 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3302 if (libsym == NULL)
3303 {
3304 warning ("Unable to find library symbol for %s\n",
3305 SYMBOL_NAME (stubsym));
3306 return orig_pc == pc ? 0 : pc & ~0x3;
3307 }
3308
3309 return SYMBOL_VALUE (libsym);
3310 }
3311
3312 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3313 branch from the stub to the actual function. */
3314 /*elz */
3315 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3316 || (curr_inst & 0xffe0e000) == 0xe8000000
3317 || (curr_inst & 0xffe0e000) == 0xe800A000)
3318 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3319
3320 /* Does it look like bv (rp)? Note this depends on the
3321 current stack pointer being the same as the stack
3322 pointer in the stub itself! This is a branch on from the
3323 stub back to the original caller. */
3324 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3325 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3326 {
3327 /* Yup. See if the previous instruction loaded
3328 rp from sp - 8. */
3329 if (prev_inst == 0x4bc23ff1)
3330 return (read_memory_integer
3331 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3332 else
3333 {
3334 warning ("Unable to find restore of %%rp before bv (%%rp).");
3335 return orig_pc == pc ? 0 : pc & ~0x3;
3336 }
3337 }
3338
3339 /* elz: added this case to capture the new instruction
3340 at the end of the return part of an export stub used by
3341 the PA2.0: BVE, n (rp) */
3342 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3343 {
3344 return (read_memory_integer
3345 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3346 }
3347
3348 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3349 the original caller from the stub. Used in dynamic executables. */
3350 else if (curr_inst == 0xe0400002)
3351 {
3352 /* The value we jump to is sitting in sp - 24. But that's
3353 loaded several instructions before the be instruction.
3354 I guess we could check for the previous instruction being
3355 mtsp %r1,%sr0 if we want to do sanity checking. */
3356 return (read_memory_integer
3357 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3358 }
3359
3360 /* Haven't found the branch yet, but we're still in the stub.
3361 Keep looking. */
3362 loc += 4;
3363 }
3364 }
3365
3366
3367 /* For the given instruction (INST), return any adjustment it makes
3368 to the stack pointer or zero for no adjustment.
3369
3370 This only handles instructions commonly found in prologues. */
3371
3372 static int
3373 prologue_inst_adjust_sp (unsigned long inst)
3374 {
3375 /* This must persist across calls. */
3376 static int save_high21;
3377
3378 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3379 if ((inst & 0xffffc000) == 0x37de0000)
3380 return extract_14 (inst);
3381
3382 /* stwm X,D(sp) */
3383 if ((inst & 0xffe00000) == 0x6fc00000)
3384 return extract_14 (inst);
3385
3386 /* std,ma X,D(sp) */
3387 if ((inst & 0xffe00008) == 0x73c00008)
3388 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3389
3390 /* addil high21,%r1; ldo low11,(%r1),%r30)
3391 save high bits in save_high21 for later use. */
3392 if ((inst & 0xffe00000) == 0x28200000)
3393 {
3394 save_high21 = extract_21 (inst);
3395 return 0;
3396 }
3397
3398 if ((inst & 0xffff0000) == 0x343e0000)
3399 return save_high21 + extract_14 (inst);
3400
3401 /* fstws as used by the HP compilers. */
3402 if ((inst & 0xffffffe0) == 0x2fd01220)
3403 return extract_5_load (inst);
3404
3405 /* No adjustment. */
3406 return 0;
3407 }
3408
3409 /* Return nonzero if INST is a branch of some kind, else return zero. */
3410
3411 static int
3412 is_branch (unsigned long inst)
3413 {
3414 switch (inst >> 26)
3415 {
3416 case 0x20:
3417 case 0x21:
3418 case 0x22:
3419 case 0x23:
3420 case 0x27:
3421 case 0x28:
3422 case 0x29:
3423 case 0x2a:
3424 case 0x2b:
3425 case 0x2f:
3426 case 0x30:
3427 case 0x31:
3428 case 0x32:
3429 case 0x33:
3430 case 0x38:
3431 case 0x39:
3432 case 0x3a:
3433 case 0x3b:
3434 return 1;
3435
3436 default:
3437 return 0;
3438 }
3439 }
3440
3441 /* Return the register number for a GR which is saved by INST or
3442 zero it INST does not save a GR. */
3443
3444 static int
3445 inst_saves_gr (unsigned long inst)
3446 {
3447 /* Does it look like a stw? */
3448 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3449 || (inst >> 26) == 0x1f
3450 || ((inst >> 26) == 0x1f
3451 && ((inst >> 6) == 0xa)))
3452 return extract_5R_store (inst);
3453
3454 /* Does it look like a std? */
3455 if ((inst >> 26) == 0x1c
3456 || ((inst >> 26) == 0x03
3457 && ((inst >> 6) & 0xf) == 0xb))
3458 return extract_5R_store (inst);
3459
3460 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3461 if ((inst >> 26) == 0x1b)
3462 return extract_5R_store (inst);
3463
3464 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3465 too. */
3466 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3467 || ((inst >> 26) == 0x3
3468 && (((inst >> 6) & 0xf) == 0x8
3469 || (inst >> 6) & 0xf) == 0x9))
3470 return extract_5R_store (inst);
3471
3472 return 0;
3473 }
3474
3475 /* Return the register number for a FR which is saved by INST or
3476 zero it INST does not save a FR.
3477
3478 Note we only care about full 64bit register stores (that's the only
3479 kind of stores the prologue will use).
3480
3481 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3482
3483 static int
3484 inst_saves_fr (unsigned long inst)
3485 {
3486 /* is this an FSTD ? */
3487 if ((inst & 0xfc00dfc0) == 0x2c001200)
3488 return extract_5r_store (inst);
3489 if ((inst & 0xfc000002) == 0x70000002)
3490 return extract_5R_store (inst);
3491 /* is this an FSTW ? */
3492 if ((inst & 0xfc00df80) == 0x24001200)
3493 return extract_5r_store (inst);
3494 if ((inst & 0xfc000002) == 0x7c000000)
3495 return extract_5R_store (inst);
3496 return 0;
3497 }
3498
3499 /* Advance PC across any function entry prologue instructions
3500 to reach some "real" code.
3501
3502 Use information in the unwind table to determine what exactly should
3503 be in the prologue. */
3504
3505
3506 CORE_ADDR
3507 skip_prologue_hard_way (CORE_ADDR pc)
3508 {
3509 char buf[4];
3510 CORE_ADDR orig_pc = pc;
3511 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3512 unsigned long args_stored, status, i, restart_gr, restart_fr;
3513 struct unwind_table_entry *u;
3514
3515 restart_gr = 0;
3516 restart_fr = 0;
3517
3518 restart:
3519 u = find_unwind_entry (pc);
3520 if (!u)
3521 return pc;
3522
3523 /* If we are not at the beginning of a function, then return now. */
3524 if ((pc & ~0x3) != u->region_start)
3525 return pc;
3526
3527 /* This is how much of a frame adjustment we need to account for. */
3528 stack_remaining = u->Total_frame_size << 3;
3529
3530 /* Magic register saves we want to know about. */
3531 save_rp = u->Save_RP;
3532 save_sp = u->Save_SP;
3533
3534 /* An indication that args may be stored into the stack. Unfortunately
3535 the HPUX compilers tend to set this in cases where no args were
3536 stored too!. */
3537 args_stored = 1;
3538
3539 /* Turn the Entry_GR field into a bitmask. */
3540 save_gr = 0;
3541 for (i = 3; i < u->Entry_GR + 3; i++)
3542 {
3543 /* Frame pointer gets saved into a special location. */
3544 if (u->Save_SP && i == FP_REGNUM)
3545 continue;
3546
3547 save_gr |= (1 << i);
3548 }
3549 save_gr &= ~restart_gr;
3550
3551 /* Turn the Entry_FR field into a bitmask too. */
3552 save_fr = 0;
3553 for (i = 12; i < u->Entry_FR + 12; i++)
3554 save_fr |= (1 << i);
3555 save_fr &= ~restart_fr;
3556
3557 /* Loop until we find everything of interest or hit a branch.
3558
3559 For unoptimized GCC code and for any HP CC code this will never ever
3560 examine any user instructions.
3561
3562 For optimzied GCC code we're faced with problems. GCC will schedule
3563 its prologue and make prologue instructions available for delay slot
3564 filling. The end result is user code gets mixed in with the prologue
3565 and a prologue instruction may be in the delay slot of the first branch
3566 or call.
3567
3568 Some unexpected things are expected with debugging optimized code, so
3569 we allow this routine to walk past user instructions in optimized
3570 GCC code. */
3571 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3572 || args_stored)
3573 {
3574 unsigned int reg_num;
3575 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3576 unsigned long old_save_rp, old_save_sp, next_inst;
3577
3578 /* Save copies of all the triggers so we can compare them later
3579 (only for HPC). */
3580 old_save_gr = save_gr;
3581 old_save_fr = save_fr;
3582 old_save_rp = save_rp;
3583 old_save_sp = save_sp;
3584 old_stack_remaining = stack_remaining;
3585
3586 status = target_read_memory (pc, buf, 4);
3587 inst = extract_unsigned_integer (buf, 4);
3588
3589 /* Yow! */
3590 if (status != 0)
3591 return pc;
3592
3593 /* Note the interesting effects of this instruction. */
3594 stack_remaining -= prologue_inst_adjust_sp (inst);
3595
3596 /* There are limited ways to store the return pointer into the
3597 stack. */
3598 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3599 save_rp = 0;
3600
3601 /* These are the only ways we save SP into the stack. At this time
3602 the HP compilers never bother to save SP into the stack. */
3603 if ((inst & 0xffffc000) == 0x6fc10000
3604 || (inst & 0xffffc00c) == 0x73c10008)
3605 save_sp = 0;
3606
3607 /* Are we loading some register with an offset from the argument
3608 pointer? */
3609 if ((inst & 0xffe00000) == 0x37a00000
3610 || (inst & 0xffffffe0) == 0x081d0240)
3611 {
3612 pc += 4;
3613 continue;
3614 }
3615
3616 /* Account for general and floating-point register saves. */
3617 reg_num = inst_saves_gr (inst);
3618 save_gr &= ~(1 << reg_num);
3619
3620 /* Ugh. Also account for argument stores into the stack.
3621 Unfortunately args_stored only tells us that some arguments
3622 where stored into the stack. Not how many or what kind!
3623
3624 This is a kludge as on the HP compiler sets this bit and it
3625 never does prologue scheduling. So once we see one, skip past
3626 all of them. We have similar code for the fp arg stores below.
3627
3628 FIXME. Can still die if we have a mix of GR and FR argument
3629 stores! */
3630 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3631 {
3632 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3633 {
3634 pc += 4;
3635 status = target_read_memory (pc, buf, 4);
3636 inst = extract_unsigned_integer (buf, 4);
3637 if (status != 0)
3638 return pc;
3639 reg_num = inst_saves_gr (inst);
3640 }
3641 args_stored = 0;
3642 continue;
3643 }
3644
3645 reg_num = inst_saves_fr (inst);
3646 save_fr &= ~(1 << reg_num);
3647
3648 status = target_read_memory (pc + 4, buf, 4);
3649 next_inst = extract_unsigned_integer (buf, 4);
3650
3651 /* Yow! */
3652 if (status != 0)
3653 return pc;
3654
3655 /* We've got to be read to handle the ldo before the fp register
3656 save. */
3657 if ((inst & 0xfc000000) == 0x34000000
3658 && inst_saves_fr (next_inst) >= 4
3659 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3660 {
3661 /* So we drop into the code below in a reasonable state. */
3662 reg_num = inst_saves_fr (next_inst);
3663 pc -= 4;
3664 }
3665
3666 /* Ugh. Also account for argument stores into the stack.
3667 This is a kludge as on the HP compiler sets this bit and it
3668 never does prologue scheduling. So once we see one, skip past
3669 all of them. */
3670 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3671 {
3672 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3673 {
3674 pc += 8;
3675 status = target_read_memory (pc, buf, 4);
3676 inst = extract_unsigned_integer (buf, 4);
3677 if (status != 0)
3678 return pc;
3679 if ((inst & 0xfc000000) != 0x34000000)
3680 break;
3681 status = target_read_memory (pc + 4, buf, 4);
3682 next_inst = extract_unsigned_integer (buf, 4);
3683 if (status != 0)
3684 return pc;
3685 reg_num = inst_saves_fr (next_inst);
3686 }
3687 args_stored = 0;
3688 continue;
3689 }
3690
3691 /* Quit if we hit any kind of branch. This can happen if a prologue
3692 instruction is in the delay slot of the first call/branch. */
3693 if (is_branch (inst))
3694 break;
3695
3696 /* What a crock. The HP compilers set args_stored even if no
3697 arguments were stored into the stack (boo hiss). This could
3698 cause this code to then skip a bunch of user insns (up to the
3699 first branch).
3700
3701 To combat this we try to identify when args_stored was bogusly
3702 set and clear it. We only do this when args_stored is nonzero,
3703 all other resources are accounted for, and nothing changed on
3704 this pass. */
3705 if (args_stored
3706 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3707 && old_save_gr == save_gr && old_save_fr == save_fr
3708 && old_save_rp == save_rp && old_save_sp == save_sp
3709 && old_stack_remaining == stack_remaining)
3710 break;
3711
3712 /* Bump the PC. */
3713 pc += 4;
3714 }
3715
3716 /* We've got a tenative location for the end of the prologue. However
3717 because of limitations in the unwind descriptor mechanism we may
3718 have went too far into user code looking for the save of a register
3719 that does not exist. So, if there registers we expected to be saved
3720 but never were, mask them out and restart.
3721
3722 This should only happen in optimized code, and should be very rare. */
3723 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3724 {
3725 pc = orig_pc;
3726 restart_gr = save_gr;
3727 restart_fr = save_fr;
3728 goto restart;
3729 }
3730
3731 return pc;
3732 }
3733
3734
3735 /* Return the address of the PC after the last prologue instruction if
3736 we can determine it from the debug symbols. Else return zero. */
3737
3738 static CORE_ADDR
3739 after_prologue (CORE_ADDR pc)
3740 {
3741 struct symtab_and_line sal;
3742 CORE_ADDR func_addr, func_end;
3743 struct symbol *f;
3744
3745 /* If we can not find the symbol in the partial symbol table, then
3746 there is no hope we can determine the function's start address
3747 with this code. */
3748 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3749 return 0;
3750
3751 /* Get the line associated with FUNC_ADDR. */
3752 sal = find_pc_line (func_addr, 0);
3753
3754 /* There are only two cases to consider. First, the end of the source line
3755 is within the function bounds. In that case we return the end of the
3756 source line. Second is the end of the source line extends beyond the
3757 bounds of the current function. We need to use the slow code to
3758 examine instructions in that case.
3759
3760 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3761 the wrong thing to do. In fact, it should be entirely possible for this
3762 function to always return zero since the slow instruction scanning code
3763 is supposed to *always* work. If it does not, then it is a bug. */
3764 if (sal.end < func_end)
3765 return sal.end;
3766 else
3767 return 0;
3768 }
3769
3770 /* To skip prologues, I use this predicate. Returns either PC itself
3771 if the code at PC does not look like a function prologue; otherwise
3772 returns an address that (if we're lucky) follows the prologue. If
3773 LENIENT, then we must skip everything which is involved in setting
3774 up the frame (it's OK to skip more, just so long as we don't skip
3775 anything which might clobber the registers which are being saved.
3776 Currently we must not skip more on the alpha, but we might the lenient
3777 stuff some day. */
3778
3779 CORE_ADDR
3780 hppa_skip_prologue (CORE_ADDR pc)
3781 {
3782 unsigned long inst;
3783 int offset;
3784 CORE_ADDR post_prologue_pc;
3785 char buf[4];
3786
3787 /* See if we can determine the end of the prologue via the symbol table.
3788 If so, then return either PC, or the PC after the prologue, whichever
3789 is greater. */
3790
3791 post_prologue_pc = after_prologue (pc);
3792
3793 /* If after_prologue returned a useful address, then use it. Else
3794 fall back on the instruction skipping code.
3795
3796 Some folks have claimed this causes problems because the breakpoint
3797 may be the first instruction of the prologue. If that happens, then
3798 the instruction skipping code has a bug that needs to be fixed. */
3799 if (post_prologue_pc != 0)
3800 return max (pc, post_prologue_pc);
3801 else
3802 return (skip_prologue_hard_way (pc));
3803 }
3804
3805 /* Put here the code to store, into a struct frame_saved_regs,
3806 the addresses of the saved registers of frame described by FRAME_INFO.
3807 This includes special registers such as pc and fp saved in special
3808 ways in the stack frame. sp is even more special:
3809 the address we return for it IS the sp for the next frame. */
3810
3811 void
3812 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3813 struct frame_saved_regs *frame_saved_regs)
3814 {
3815 CORE_ADDR pc;
3816 struct unwind_table_entry *u;
3817 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3818 int status, i, reg;
3819 char buf[4];
3820 int fp_loc = -1;
3821 int final_iteration;
3822
3823 /* Zero out everything. */
3824 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3825
3826 /* Call dummy frames always look the same, so there's no need to
3827 examine the dummy code to determine locations of saved registers;
3828 instead, let find_dummy_frame_regs fill in the correct offsets
3829 for the saved registers. */
3830 if ((frame_info->pc >= frame_info->frame
3831 && frame_info->pc <= (frame_info->frame
3832 /* A call dummy is sized in words, but it is
3833 actually a series of instructions. Account
3834 for that scaling factor. */
3835 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3836 * CALL_DUMMY_LENGTH)
3837 /* Similarly we have to account for 64bit
3838 wide register saves. */
3839 + (32 * REGISTER_SIZE)
3840 /* We always consider FP regs 8 bytes long. */
3841 + (NUM_REGS - FP0_REGNUM) * 8
3842 /* Similarly we have to account for 64bit
3843 wide register saves. */
3844 + (6 * REGISTER_SIZE))))
3845 find_dummy_frame_regs (frame_info, frame_saved_regs);
3846
3847 /* Interrupt handlers are special too. They lay out the register
3848 state in the exact same order as the register numbers in GDB. */
3849 if (pc_in_interrupt_handler (frame_info->pc))
3850 {
3851 for (i = 0; i < NUM_REGS; i++)
3852 {
3853 /* SP is a little special. */
3854 if (i == SP_REGNUM)
3855 frame_saved_regs->regs[SP_REGNUM]
3856 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3857 TARGET_PTR_BIT / 8);
3858 else
3859 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3860 }
3861 return;
3862 }
3863
3864 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3865 /* Handle signal handler callers. */
3866 if (frame_info->signal_handler_caller)
3867 {
3868 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3869 return;
3870 }
3871 #endif
3872
3873 /* Get the starting address of the function referred to by the PC
3874 saved in frame. */
3875 pc = get_pc_function_start (frame_info->pc);
3876
3877 /* Yow! */
3878 u = find_unwind_entry (pc);
3879 if (!u)
3880 return;
3881
3882 /* This is how much of a frame adjustment we need to account for. */
3883 stack_remaining = u->Total_frame_size << 3;
3884
3885 /* Magic register saves we want to know about. */
3886 save_rp = u->Save_RP;
3887 save_sp = u->Save_SP;
3888
3889 /* Turn the Entry_GR field into a bitmask. */
3890 save_gr = 0;
3891 for (i = 3; i < u->Entry_GR + 3; i++)
3892 {
3893 /* Frame pointer gets saved into a special location. */
3894 if (u->Save_SP && i == FP_REGNUM)
3895 continue;
3896
3897 save_gr |= (1 << i);
3898 }
3899
3900 /* Turn the Entry_FR field into a bitmask too. */
3901 save_fr = 0;
3902 for (i = 12; i < u->Entry_FR + 12; i++)
3903 save_fr |= (1 << i);
3904
3905 /* The frame always represents the value of %sp at entry to the
3906 current function (and is thus equivalent to the "saved" stack
3907 pointer. */
3908 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3909
3910 /* Loop until we find everything of interest or hit a branch.
3911
3912 For unoptimized GCC code and for any HP CC code this will never ever
3913 examine any user instructions.
3914
3915 For optimized GCC code we're faced with problems. GCC will schedule
3916 its prologue and make prologue instructions available for delay slot
3917 filling. The end result is user code gets mixed in with the prologue
3918 and a prologue instruction may be in the delay slot of the first branch
3919 or call.
3920
3921 Some unexpected things are expected with debugging optimized code, so
3922 we allow this routine to walk past user instructions in optimized
3923 GCC code. */
3924 final_iteration = 0;
3925 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3926 && pc <= frame_info->pc)
3927 {
3928 status = target_read_memory (pc, buf, 4);
3929 inst = extract_unsigned_integer (buf, 4);
3930
3931 /* Yow! */
3932 if (status != 0)
3933 return;
3934
3935 /* Note the interesting effects of this instruction. */
3936 stack_remaining -= prologue_inst_adjust_sp (inst);
3937
3938 /* There are limited ways to store the return pointer into the
3939 stack. */
3940 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
3941 {
3942 save_rp = 0;
3943 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3944 }
3945 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3946 {
3947 save_rp = 0;
3948 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
3949 }
3950
3951 /* Note if we saved SP into the stack. This also happens to indicate
3952 the location of the saved frame pointer. */
3953 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
3954 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
3955 {
3956 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
3957 save_sp = 0;
3958 }
3959
3960 /* Account for general and floating-point register saves. */
3961 reg = inst_saves_gr (inst);
3962 if (reg >= 3 && reg <= 18
3963 && (!u->Save_SP || reg != FP_REGNUM))
3964 {
3965 save_gr &= ~(1 << reg);
3966
3967 /* stwm with a positive displacement is a *post modify*. */
3968 if ((inst >> 26) == 0x1b
3969 && extract_14 (inst) >= 0)
3970 frame_saved_regs->regs[reg] = frame_info->frame;
3971 /* A std has explicit post_modify forms. */
3972 else if ((inst & 0xfc00000c0) == 0x70000008)
3973 frame_saved_regs->regs[reg] = frame_info->frame;
3974 else
3975 {
3976 CORE_ADDR offset;
3977
3978 if ((inst >> 26) == 0x1c)
3979 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3980 else if ((inst >> 26) == 0x03)
3981 offset = low_sign_extend (inst & 0x1f, 5);
3982 else
3983 offset = extract_14 (inst);
3984
3985 /* Handle code with and without frame pointers. */
3986 if (u->Save_SP)
3987 frame_saved_regs->regs[reg]
3988 = frame_info->frame + offset;
3989 else
3990 frame_saved_regs->regs[reg]
3991 = (frame_info->frame + (u->Total_frame_size << 3)
3992 + offset);
3993 }
3994 }
3995
3996
3997 /* GCC handles callee saved FP regs a little differently.
3998
3999 It emits an instruction to put the value of the start of
4000 the FP store area into %r1. It then uses fstds,ma with
4001 a basereg of %r1 for the stores.
4002
4003 HP CC emits them at the current stack pointer modifying
4004 the stack pointer as it stores each register. */
4005
4006 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4007 if ((inst & 0xffffc000) == 0x34610000
4008 || (inst & 0xffffc000) == 0x37c10000)
4009 fp_loc = extract_14 (inst);
4010
4011 reg = inst_saves_fr (inst);
4012 if (reg >= 12 && reg <= 21)
4013 {
4014 /* Note +4 braindamage below is necessary because the FP status
4015 registers are internally 8 registers rather than the expected
4016 4 registers. */
4017 save_fr &= ~(1 << reg);
4018 if (fp_loc == -1)
4019 {
4020 /* 1st HP CC FP register store. After this instruction
4021 we've set enough state that the GCC and HPCC code are
4022 both handled in the same manner. */
4023 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4024 fp_loc = 8;
4025 }
4026 else
4027 {
4028 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4029 = frame_info->frame + fp_loc;
4030 fp_loc += 8;
4031 }
4032 }
4033
4034 /* Quit if we hit any kind of branch the previous iteration. */
4035 if (final_iteration)
4036 break;
4037
4038 /* We want to look precisely one instruction beyond the branch
4039 if we have not found everything yet. */
4040 if (is_branch (inst))
4041 final_iteration = 1;
4042
4043 /* Bump the PC. */
4044 pc += 4;
4045 }
4046 }
4047
4048
4049 /* Exception handling support for the HP-UX ANSI C++ compiler.
4050 The compiler (aCC) provides a callback for exception events;
4051 GDB can set a breakpoint on this callback and find out what
4052 exception event has occurred. */
4053
4054 /* The name of the hook to be set to point to the callback function */
4055 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4056 /* The name of the function to be used to set the hook value */
4057 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4058 /* The name of the callback function in end.o */
4059 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4060 /* Name of function in end.o on which a break is set (called by above) */
4061 static char HP_ACC_EH_break[] = "__d_eh_break";
4062 /* Name of flag (in end.o) that enables catching throws */
4063 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4064 /* Name of flag (in end.o) that enables catching catching */
4065 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4066 /* The enum used by aCC */
4067 typedef enum
4068 {
4069 __EH_NOTIFY_THROW,
4070 __EH_NOTIFY_CATCH
4071 }
4072 __eh_notification;
4073
4074 /* Is exception-handling support available with this executable? */
4075 static int hp_cxx_exception_support = 0;
4076 /* Has the initialize function been run? */
4077 int hp_cxx_exception_support_initialized = 0;
4078 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4079 extern int exception_support_initialized;
4080 /* Address of __eh_notify_hook */
4081 static CORE_ADDR eh_notify_hook_addr = 0;
4082 /* Address of __d_eh_notify_callback */
4083 static CORE_ADDR eh_notify_callback_addr = 0;
4084 /* Address of __d_eh_break */
4085 static CORE_ADDR eh_break_addr = 0;
4086 /* Address of __d_eh_catch_catch */
4087 static CORE_ADDR eh_catch_catch_addr = 0;
4088 /* Address of __d_eh_catch_throw */
4089 static CORE_ADDR eh_catch_throw_addr = 0;
4090 /* Sal for __d_eh_break */
4091 static struct symtab_and_line *break_callback_sal = 0;
4092
4093 /* Code in end.c expects __d_pid to be set in the inferior,
4094 otherwise __d_eh_notify_callback doesn't bother to call
4095 __d_eh_break! So we poke the pid into this symbol
4096 ourselves.
4097 0 => success
4098 1 => failure */
4099 int
4100 setup_d_pid_in_inferior (void)
4101 {
4102 CORE_ADDR anaddr;
4103 struct minimal_symbol *msymbol;
4104 char buf[4]; /* FIXME 32x64? */
4105
4106 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4107 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4108 if (msymbol == NULL)
4109 {
4110 warning ("Unable to find __d_pid symbol in object file.");
4111 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4112 return 1;
4113 }
4114
4115 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4116 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4117 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4118 {
4119 warning ("Unable to write __d_pid");
4120 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4121 return 1;
4122 }
4123 return 0;
4124 }
4125
4126 /* Initialize exception catchpoint support by looking for the
4127 necessary hooks/callbacks in end.o, etc., and set the hook value to
4128 point to the required debug function
4129
4130 Return 0 => failure
4131 1 => success */
4132
4133 static int
4134 initialize_hp_cxx_exception_support (void)
4135 {
4136 struct symtabs_and_lines sals;
4137 struct cleanup *old_chain;
4138 struct cleanup *canonical_strings_chain = NULL;
4139 int i;
4140 char *addr_start;
4141 char *addr_end = NULL;
4142 char **canonical = (char **) NULL;
4143 int thread = -1;
4144 struct symbol *sym = NULL;
4145 struct minimal_symbol *msym = NULL;
4146 struct objfile *objfile;
4147 asection *shlib_info;
4148
4149 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4150 recursion is a possibility because finding the hook for exception
4151 callbacks involves making a call in the inferior, which means
4152 re-inserting breakpoints which can re-invoke this code */
4153
4154 static int recurse = 0;
4155 if (recurse > 0)
4156 {
4157 hp_cxx_exception_support_initialized = 0;
4158 exception_support_initialized = 0;
4159 return 0;
4160 }
4161
4162 hp_cxx_exception_support = 0;
4163
4164 /* First check if we have seen any HP compiled objects; if not,
4165 it is very unlikely that HP's idiosyncratic callback mechanism
4166 for exception handling debug support will be available!
4167 This will percolate back up to breakpoint.c, where our callers
4168 will decide to try the g++ exception-handling support instead. */
4169 if (!hp_som_som_object_present)
4170 return 0;
4171
4172 /* We have a SOM executable with SOM debug info; find the hooks */
4173
4174 /* First look for the notify hook provided by aCC runtime libs */
4175 /* If we find this symbol, we conclude that the executable must
4176 have HP aCC exception support built in. If this symbol is not
4177 found, even though we're a HP SOM-SOM file, we may have been
4178 built with some other compiler (not aCC). This results percolates
4179 back up to our callers in breakpoint.c which can decide to
4180 try the g++ style of exception support instead.
4181 If this symbol is found but the other symbols we require are
4182 not found, there is something weird going on, and g++ support
4183 should *not* be tried as an alternative.
4184
4185 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4186 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4187
4188 /* libCsup has this hook; it'll usually be non-debuggable */
4189 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4190 if (msym)
4191 {
4192 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4193 hp_cxx_exception_support = 1;
4194 }
4195 else
4196 {
4197 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4198 warning ("Executable may not have been compiled debuggable with HP aCC.");
4199 warning ("GDB will be unable to intercept exception events.");
4200 eh_notify_hook_addr = 0;
4201 hp_cxx_exception_support = 0;
4202 return 0;
4203 }
4204
4205 /* Next look for the notify callback routine in end.o */
4206 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4207 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4208 if (msym)
4209 {
4210 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4211 hp_cxx_exception_support = 1;
4212 }
4213 else
4214 {
4215 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4216 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4217 warning ("GDB will be unable to intercept exception events.");
4218 eh_notify_callback_addr = 0;
4219 return 0;
4220 }
4221
4222 #ifndef GDB_TARGET_IS_HPPA_20W
4223 /* Check whether the executable is dynamically linked or archive bound */
4224 /* With an archive-bound executable we can use the raw addresses we find
4225 for the callback function, etc. without modification. For an executable
4226 with shared libraries, we have to do more work to find the plabel, which
4227 can be the target of a call through $$dyncall from the aCC runtime support
4228 library (libCsup) which is linked shared by default by aCC. */
4229 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4230 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4231 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4232 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4233 {
4234 /* The minsym we have has the local code address, but that's not the
4235 plabel that can be used by an inter-load-module call. */
4236 /* Find solib handle for main image (which has end.o), and use that
4237 and the min sym as arguments to __d_shl_get() (which does the equivalent
4238 of shl_findsym()) to find the plabel. */
4239
4240 args_for_find_stub args;
4241 static char message[] = "Error while finding exception callback hook:\n";
4242
4243 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4244 args.msym = msym;
4245 args.return_val = 0;
4246
4247 recurse++;
4248 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4249 RETURN_MASK_ALL);
4250 eh_notify_callback_addr = args.return_val;
4251 recurse--;
4252
4253 exception_catchpoints_are_fragile = 1;
4254
4255 if (!eh_notify_callback_addr)
4256 {
4257 /* We can get here either if there is no plabel in the export list
4258 for the main image, or if something strange happened (?) */
4259 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4260 warning ("GDB will not be able to intercept exception events.");
4261 return 0;
4262 }
4263 }
4264 else
4265 exception_catchpoints_are_fragile = 0;
4266 #endif
4267
4268 /* Now, look for the breakpointable routine in end.o */
4269 /* This should also be available in the SOM symbol dict. if end.o linked in */
4270 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4271 if (msym)
4272 {
4273 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4274 hp_cxx_exception_support = 1;
4275 }
4276 else
4277 {
4278 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4279 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4280 warning ("GDB will be unable to intercept exception events.");
4281 eh_break_addr = 0;
4282 return 0;
4283 }
4284
4285 /* Next look for the catch enable flag provided in end.o */
4286 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4287 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4288 if (sym) /* sometimes present in debug info */
4289 {
4290 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4291 hp_cxx_exception_support = 1;
4292 }
4293 else
4294 /* otherwise look in SOM symbol dict. */
4295 {
4296 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4297 if (msym)
4298 {
4299 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4300 hp_cxx_exception_support = 1;
4301 }
4302 else
4303 {
4304 warning ("Unable to enable interception of exception catches.");
4305 warning ("Executable may not have been compiled debuggable with HP aCC.");
4306 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4307 return 0;
4308 }
4309 }
4310
4311 /* Next look for the catch enable flag provided end.o */
4312 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4313 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4314 if (sym) /* sometimes present in debug info */
4315 {
4316 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4317 hp_cxx_exception_support = 1;
4318 }
4319 else
4320 /* otherwise look in SOM symbol dict. */
4321 {
4322 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4323 if (msym)
4324 {
4325 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4326 hp_cxx_exception_support = 1;
4327 }
4328 else
4329 {
4330 warning ("Unable to enable interception of exception throws.");
4331 warning ("Executable may not have been compiled debuggable with HP aCC.");
4332 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4333 return 0;
4334 }
4335 }
4336
4337 /* Set the flags */
4338 hp_cxx_exception_support = 2; /* everything worked so far */
4339 hp_cxx_exception_support_initialized = 1;
4340 exception_support_initialized = 1;
4341
4342 return 1;
4343 }
4344
4345 /* Target operation for enabling or disabling interception of
4346 exception events.
4347 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4348 ENABLE is either 0 (disable) or 1 (enable).
4349 Return value is NULL if no support found;
4350 -1 if something went wrong,
4351 or a pointer to a symtab/line struct if the breakpointable
4352 address was found. */
4353
4354 struct symtab_and_line *
4355 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4356 {
4357 char buf[4];
4358
4359 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4360 if (!initialize_hp_cxx_exception_support ())
4361 return NULL;
4362
4363 switch (hp_cxx_exception_support)
4364 {
4365 case 0:
4366 /* Assuming no HP support at all */
4367 return NULL;
4368 case 1:
4369 /* HP support should be present, but something went wrong */
4370 return (struct symtab_and_line *) -1; /* yuck! */
4371 /* there may be other cases in the future */
4372 }
4373
4374 /* Set the EH hook to point to the callback routine */
4375 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4376 /* pai: (temp) FIXME should there be a pack operation first? */
4377 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4378 {
4379 warning ("Could not write to target memory for exception event callback.");
4380 warning ("Interception of exception events may not work.");
4381 return (struct symtab_and_line *) -1;
4382 }
4383 if (enable)
4384 {
4385 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4386 if (PIDGET (inferior_ptid) > 0)
4387 {
4388 if (setup_d_pid_in_inferior ())
4389 return (struct symtab_and_line *) -1;
4390 }
4391 else
4392 {
4393 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4394 return (struct symtab_and_line *) -1;
4395 }
4396 }
4397
4398 switch (kind)
4399 {
4400 case EX_EVENT_THROW:
4401 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4402 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4403 {
4404 warning ("Couldn't enable exception throw interception.");
4405 return (struct symtab_and_line *) -1;
4406 }
4407 break;
4408 case EX_EVENT_CATCH:
4409 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4410 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4411 {
4412 warning ("Couldn't enable exception catch interception.");
4413 return (struct symtab_and_line *) -1;
4414 }
4415 break;
4416 default:
4417 error ("Request to enable unknown or unsupported exception event.");
4418 }
4419
4420 /* Copy break address into new sal struct, malloc'ing if needed. */
4421 if (!break_callback_sal)
4422 {
4423 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4424 }
4425 INIT_SAL (break_callback_sal);
4426 break_callback_sal->symtab = NULL;
4427 break_callback_sal->pc = eh_break_addr;
4428 break_callback_sal->line = 0;
4429 break_callback_sal->end = eh_break_addr;
4430
4431 return break_callback_sal;
4432 }
4433
4434 /* Record some information about the current exception event */
4435 static struct exception_event_record current_ex_event;
4436 /* Convenience struct */
4437 static struct symtab_and_line null_symtab_and_line =
4438 {NULL, 0, 0, 0};
4439
4440 /* Report current exception event. Returns a pointer to a record
4441 that describes the kind of the event, where it was thrown from,
4442 and where it will be caught. More information may be reported
4443 in the future */
4444 struct exception_event_record *
4445 child_get_current_exception_event (void)
4446 {
4447 CORE_ADDR event_kind;
4448 CORE_ADDR throw_addr;
4449 CORE_ADDR catch_addr;
4450 struct frame_info *fi, *curr_frame;
4451 int level = 1;
4452
4453 curr_frame = get_current_frame ();
4454 if (!curr_frame)
4455 return (struct exception_event_record *) NULL;
4456
4457 /* Go up one frame to __d_eh_notify_callback, because at the
4458 point when this code is executed, there's garbage in the
4459 arguments of __d_eh_break. */
4460 fi = find_relative_frame (curr_frame, &level);
4461 if (level != 0)
4462 return (struct exception_event_record *) NULL;
4463
4464 select_frame (fi, -1);
4465
4466 /* Read in the arguments */
4467 /* __d_eh_notify_callback() is called with 3 arguments:
4468 1. event kind catch or throw
4469 2. the target address if known
4470 3. a flag -- not sure what this is. pai/1997-07-17 */
4471 event_kind = read_register (ARG0_REGNUM);
4472 catch_addr = read_register (ARG1_REGNUM);
4473
4474 /* Now go down to a user frame */
4475 /* For a throw, __d_eh_break is called by
4476 __d_eh_notify_callback which is called by
4477 __notify_throw which is called
4478 from user code.
4479 For a catch, __d_eh_break is called by
4480 __d_eh_notify_callback which is called by
4481 <stackwalking stuff> which is called by
4482 __throw__<stuff> or __rethrow_<stuff> which is called
4483 from user code. */
4484 /* FIXME: Don't use such magic numbers; search for the frames */
4485 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4486 fi = find_relative_frame (curr_frame, &level);
4487 if (level != 0)
4488 return (struct exception_event_record *) NULL;
4489
4490 select_frame (fi, -1);
4491 throw_addr = fi->pc;
4492
4493 /* Go back to original (top) frame */
4494 select_frame (curr_frame, -1);
4495
4496 current_ex_event.kind = (enum exception_event_kind) event_kind;
4497 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4498 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4499
4500 return &current_ex_event;
4501 }
4502
4503 static void
4504 unwind_command (char *exp, int from_tty)
4505 {
4506 CORE_ADDR address;
4507 struct unwind_table_entry *u;
4508
4509 /* If we have an expression, evaluate it and use it as the address. */
4510
4511 if (exp != 0 && *exp != 0)
4512 address = parse_and_eval_address (exp);
4513 else
4514 return;
4515
4516 u = find_unwind_entry (address);
4517
4518 if (!u)
4519 {
4520 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4521 return;
4522 }
4523
4524 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4525 paddr_nz (host_pointer_to_address (u)));
4526
4527 printf_unfiltered ("\tregion_start = ");
4528 print_address (u->region_start, gdb_stdout);
4529
4530 printf_unfiltered ("\n\tregion_end = ");
4531 print_address (u->region_end, gdb_stdout);
4532
4533 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4534
4535 printf_unfiltered ("\n\tflags =");
4536 pif (Cannot_unwind);
4537 pif (Millicode);
4538 pif (Millicode_save_sr0);
4539 pif (Entry_SR);
4540 pif (Args_stored);
4541 pif (Variable_Frame);
4542 pif (Separate_Package_Body);
4543 pif (Frame_Extension_Millicode);
4544 pif (Stack_Overflow_Check);
4545 pif (Two_Instruction_SP_Increment);
4546 pif (Ada_Region);
4547 pif (Save_SP);
4548 pif (Save_RP);
4549 pif (Save_MRP_in_frame);
4550 pif (extn_ptr_defined);
4551 pif (Cleanup_defined);
4552 pif (MPE_XL_interrupt_marker);
4553 pif (HP_UX_interrupt_marker);
4554 pif (Large_frame);
4555
4556 putchar_unfiltered ('\n');
4557
4558 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4559
4560 pin (Region_description);
4561 pin (Entry_FR);
4562 pin (Entry_GR);
4563 pin (Total_frame_size);
4564 }
4565
4566 #ifdef PREPARE_TO_PROCEED
4567
4568 /* If the user has switched threads, and there is a breakpoint
4569 at the old thread's pc location, then switch to that thread
4570 and return TRUE, else return FALSE and don't do a thread
4571 switch (or rather, don't seem to have done a thread switch).
4572
4573 Ptrace-based gdb will always return FALSE to the thread-switch
4574 query, and thus also to PREPARE_TO_PROCEED.
4575
4576 The important thing is whether there is a BPT instruction,
4577 not how many user breakpoints there are. So we have to worry
4578 about things like these:
4579
4580 o Non-bp stop -- NO
4581
4582 o User hits bp, no switch -- NO
4583
4584 o User hits bp, switches threads -- YES
4585
4586 o User hits bp, deletes bp, switches threads -- NO
4587
4588 o User hits bp, deletes one of two or more bps
4589 at that PC, user switches threads -- YES
4590
4591 o Plus, since we're buffering events, the user may have hit a
4592 breakpoint, deleted the breakpoint and then gotten another
4593 hit on that same breakpoint on another thread which
4594 actually hit before the delete. (FIXME in breakpoint.c
4595 so that "dead" breakpoints are ignored?) -- NO
4596
4597 For these reasons, we have to violate information hiding and
4598 call "breakpoint_here_p". If core gdb thinks there is a bpt
4599 here, that's what counts, as core gdb is the one which is
4600 putting the BPT instruction in and taking it out.
4601
4602 Note that this implementation is potentially redundant now that
4603 default_prepare_to_proceed() has been added.
4604
4605 FIXME This may not support switching threads after Ctrl-C
4606 correctly. The default implementation does support this. */
4607 int
4608 hppa_prepare_to_proceed (void)
4609 {
4610 pid_t old_thread;
4611 pid_t current_thread;
4612
4613 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
4614 if (old_thread != 0)
4615 {
4616 /* Switched over from "old_thread". Try to do
4617 as little work as possible, 'cause mostly
4618 we're going to switch back. */
4619 CORE_ADDR new_pc;
4620 CORE_ADDR old_pc = read_pc ();
4621
4622 /* Yuk, shouldn't use global to specify current
4623 thread. But that's how gdb does it. */
4624 current_thread = PIDGET (inferior_ptid);
4625 inferior_ptid = pid_to_ptid (old_thread);
4626
4627 new_pc = read_pc ();
4628 if (new_pc != old_pc /* If at same pc, no need */
4629 && breakpoint_here_p (new_pc))
4630 {
4631 /* User hasn't deleted the BP.
4632 Return TRUE, finishing switch to "old_thread". */
4633 flush_cached_frames ();
4634 registers_changed ();
4635 #if 0
4636 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4637 current_thread, PIDGET (inferior_ptid));
4638 #endif
4639
4640 return 1;
4641 }
4642
4643 /* Otherwise switch back to the user-chosen thread. */
4644 inferior_ptid = pid_to_ptid (current_thread);
4645 new_pc = read_pc (); /* Re-prime register cache */
4646 }
4647
4648 return 0;
4649 }
4650 #endif /* PREPARE_TO_PROCEED */
4651
4652 void
4653 hppa_skip_permanent_breakpoint (void)
4654 {
4655 /* To step over a breakpoint instruction on the PA takes some
4656 fiddling with the instruction address queue.
4657
4658 When we stop at a breakpoint, the IA queue front (the instruction
4659 we're executing now) points at the breakpoint instruction, and
4660 the IA queue back (the next instruction to execute) points to
4661 whatever instruction we would execute after the breakpoint, if it
4662 were an ordinary instruction. This is the case even if the
4663 breakpoint is in the delay slot of a branch instruction.
4664
4665 Clearly, to step past the breakpoint, we need to set the queue
4666 front to the back. But what do we put in the back? What
4667 instruction comes after that one? Because of the branch delay
4668 slot, the next insn is always at the back + 4. */
4669 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4670 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4671
4672 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4673 /* We can leave the tail's space the same, since there's no jump. */
4674 }
4675
4676 void
4677 _initialize_hppa_tdep (void)
4678 {
4679 struct cmd_list_element *c;
4680 void break_at_finish_command (char *arg, int from_tty);
4681 void tbreak_at_finish_command (char *arg, int from_tty);
4682 void break_at_finish_at_depth_command (char *arg, int from_tty);
4683
4684 tm_print_insn = print_insn_hppa;
4685
4686 add_cmd ("unwind", class_maintenance, unwind_command,
4687 "Print unwind table entry at given address.",
4688 &maintenanceprintlist);
4689
4690 deprecate_cmd (add_com ("xbreak", class_breakpoint,
4691 break_at_finish_command,
4692 concat ("Set breakpoint at procedure exit. \n\
4693 Argument may be function name, or \"*\" and an address.\n\
4694 If function is specified, break at end of code for that function.\n\
4695 If an address is specified, break at the end of the function that contains \n\
4696 that exact address.\n",
4697 "With no arg, uses current execution address of selected stack frame.\n\
4698 This is useful for breaking on return to a stack frame.\n\
4699 \n\
4700 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
4701 \n\
4702 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
4703 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
4704 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
4705 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
4706 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
4707
4708 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
4709 tbreak_at_finish_command,
4710 "Set temporary breakpoint at procedure exit. Either there should\n\
4711 be no argument or the argument must be a depth.\n"), NULL);
4712 set_cmd_completer (c, location_completer);
4713
4714 if (xdb_commands)
4715 deprecate_cmd (add_com ("bx", class_breakpoint,
4716 break_at_finish_at_depth_command,
4717 "Set breakpoint at procedure exit. Either there should\n\
4718 be no argument or the argument must be a depth.\n"), NULL);
4719 }
4720
4721 /* Copy the function value from VALBUF into the proper location
4722 for a function return.
4723
4724 Called only in the context of the "return" command. */
4725
4726 void
4727 hppa_store_return_value (struct type *type, char *valbuf)
4728 {
4729 /* For software floating point, the return value goes into the
4730 integer registers. But we do not have any flag to key this on,
4731 so we always store the value into the integer registers.
4732
4733 If its a float value, then we also store it into the floating
4734 point registers. */
4735 write_register_bytes (REGISTER_BYTE (28)
4736 + (TYPE_LENGTH (type) > 4
4737 ? (8 - TYPE_LENGTH (type))
4738 : (4 - TYPE_LENGTH (type))),
4739 valbuf,
4740 TYPE_LENGTH (type));
4741 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4742 write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4743 valbuf,
4744 TYPE_LENGTH (type));
4745 }
4746
4747 /* Copy the function's return value into VALBUF.
4748
4749 This function is called only in the context of "target function calls",
4750 ie. when the debugger forces a function to be called in the child, and
4751 when the debugger forces a fucntion to return prematurely via the
4752 "return" command. */
4753
4754 void
4755 hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4756 {
4757 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4758 memcpy (valbuf,
4759 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4760 TYPE_LENGTH (type));
4761 else
4762 memcpy (valbuf,
4763 ((char *)regbuf
4764 + REGISTER_BYTE (28)
4765 + (TYPE_LENGTH (type) > 4
4766 ? (8 - TYPE_LENGTH (type))
4767 : (4 - TYPE_LENGTH (type)))),
4768 TYPE_LENGTH (type));
4769 }