]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
2003-09-14 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "value.h"
31 #include "regcache.h"
32 #include "completer.h"
33 #include "language.h"
34 #include "osabi.h"
35 #include "gdb_assert.h"
36 #include "infttrace.h"
37 /* For argument passing to the inferior */
38 #include "symtab.h"
39 #include "infcall.h"
40 #include "dis-asm.h"
41
42 #ifdef USG
43 #include <sys/types.h>
44 #endif
45
46 #include <dl.h>
47 #include <sys/param.h>
48 #include <signal.h>
49
50 #include <sys/ptrace.h>
51 #include <machine/save_state.h>
52
53 #ifdef COFF_ENCAPSULATE
54 #include "a.out.encap.h"
55 #else
56 #endif
57
58 /*#include <sys/user.h> After a.out.h */
59 #include <sys/file.h>
60 #include "gdb_stat.h"
61 #include "gdb_wait.h"
62
63 #include "gdbcore.h"
64 #include "gdbcmd.h"
65 #include "target.h"
66 #include "symfile.h"
67 #include "objfiles.h"
68 #include "hppa-tdep.h"
69
70 /* Some local constants. */
71 static const int hppa32_num_regs = 128;
72 static const int hppa64_num_regs = 96;
73
74 static const int hppa64_call_dummy_breakpoint_offset = 22 * 4;
75
76 /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
77 word on the target machine, not the size of an instruction. Since
78 a word on this target holds two instructions we have to divide the
79 instruction size by two to get the word size of the dummy. */
80 static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28;
81 static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2;
82
83 /* Get at various relevent fields of an instruction word. */
84 #define MASK_5 0x1f
85 #define MASK_11 0x7ff
86 #define MASK_14 0x3fff
87 #define MASK_21 0x1fffff
88
89 /* Define offsets into the call dummy for the target function address.
90 See comments related to CALL_DUMMY for more info. */
91 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
92 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
93
94 /* Define offsets into the call dummy for the _sr4export address.
95 See comments related to CALL_DUMMY for more info. */
96 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
97 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
98
99 /* To support detection of the pseudo-initial frame
100 that threads have. */
101 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
102 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
103
104 /* Sizes (in bytes) of the native unwind entries. */
105 #define UNWIND_ENTRY_SIZE 16
106 #define STUB_UNWIND_ENTRY_SIZE 8
107
108 static int get_field (unsigned word, int from, int to);
109
110 static int extract_5_load (unsigned int);
111
112 static unsigned extract_5R_store (unsigned int);
113
114 static unsigned extract_5r_store (unsigned int);
115
116 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
117
118 static int find_proc_framesize (CORE_ADDR);
119
120 static int find_return_regnum (CORE_ADDR);
121
122 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
123
124 static int extract_17 (unsigned int);
125
126 static unsigned deposit_21 (unsigned int, unsigned int);
127
128 static int extract_21 (unsigned);
129
130 static unsigned deposit_14 (int, unsigned int);
131
132 static int extract_14 (unsigned);
133
134 static void unwind_command (char *, int);
135
136 static int low_sign_extend (unsigned int, unsigned int);
137
138 static int sign_extend (unsigned int, unsigned int);
139
140 static int restore_pc_queue (CORE_ADDR *);
141
142 static int hppa_alignof (struct type *);
143
144 static int prologue_inst_adjust_sp (unsigned long);
145
146 static int is_branch (unsigned long);
147
148 static int inst_saves_gr (unsigned long);
149
150 static int inst_saves_fr (unsigned long);
151
152 static int pc_in_interrupt_handler (CORE_ADDR);
153
154 static int pc_in_linker_stub (CORE_ADDR);
155
156 static int compare_unwind_entries (const void *, const void *);
157
158 static void read_unwind_info (struct objfile *);
159
160 static void internalize_unwinds (struct objfile *,
161 struct unwind_table_entry *,
162 asection *, unsigned int,
163 unsigned int, CORE_ADDR);
164 static void pa_print_registers (char *, int, int);
165 static void pa_strcat_registers (char *, int, int, struct ui_file *);
166 static void pa_register_look_aside (char *, int, long *);
167 static void pa_print_fp_reg (int);
168 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
169 static void record_text_segment_lowaddr (bfd *, asection *, void *);
170 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
171 following functions static, once we hppa is partially multiarched. */
172 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
173 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
174 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
175 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
176 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
177 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
178 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
179 CORE_ADDR hppa32_stack_align (CORE_ADDR sp);
180 CORE_ADDR hppa64_stack_align (CORE_ADDR sp);
181 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
182 int hppa_instruction_nullified (void);
183 int hppa_register_raw_size (int reg_nr);
184 int hppa_register_byte (int reg_nr);
185 struct type * hppa32_register_virtual_type (int reg_nr);
186 struct type * hppa64_register_virtual_type (int reg_nr);
187 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
188 void hppa32_extract_return_value (struct type *type, char *regbuf,
189 char *valbuf);
190 void hppa64_extract_return_value (struct type *type, char *regbuf,
191 char *valbuf);
192 int hppa32_use_struct_convention (int gcc_p, struct type *type);
193 int hppa64_use_struct_convention (int gcc_p, struct type *type);
194 void hppa32_store_return_value (struct type *type, char *valbuf);
195 void hppa64_store_return_value (struct type *type, char *valbuf);
196 CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
197 int hppa_cannot_store_register (int regnum);
198 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
199 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
200 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
201 int hppa_frameless_function_invocation (struct frame_info *frame);
202 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
203 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
204 int hppa_frame_num_args (struct frame_info *frame);
205 void hppa_push_dummy_frame (void);
206 void hppa_pop_frame (void);
207 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
208 int nargs, struct value **args,
209 struct type *type, int gcc_p);
210 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
211 int struct_return, CORE_ADDR struct_addr);
212 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
213 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
214 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
215 CORE_ADDR hppa_target_read_fp (void);
216
217 typedef struct
218 {
219 struct minimal_symbol *msym;
220 CORE_ADDR solib_handle;
221 CORE_ADDR return_val;
222 }
223 args_for_find_stub;
224
225 static int cover_find_stub_with_shl_get (void *);
226
227 static int is_pa_2 = 0; /* False */
228
229 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
230 extern int hp_som_som_object_present;
231
232 /* In breakpoint.c */
233 extern int exception_catchpoints_are_fragile;
234
235 /* Should call_function allocate stack space for a struct return? */
236
237 int
238 hppa32_use_struct_convention (int gcc_p, struct type *type)
239 {
240 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
241 }
242
243 /* Same as hppa32_use_struct_convention() for the PA64 ABI. */
244
245 int
246 hppa64_use_struct_convention (int gcc_p, struct type *type)
247 {
248 /* RM: struct upto 128 bits are returned in registers */
249 return TYPE_LENGTH (type) > 16;
250 }
251
252 /* Routines to extract various sized constants out of hppa
253 instructions. */
254
255 /* This assumes that no garbage lies outside of the lower bits of
256 value. */
257
258 static int
259 sign_extend (unsigned val, unsigned bits)
260 {
261 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
262 }
263
264 /* For many immediate values the sign bit is the low bit! */
265
266 static int
267 low_sign_extend (unsigned val, unsigned bits)
268 {
269 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
270 }
271
272 /* Extract the bits at positions between FROM and TO, using HP's numbering
273 (MSB = 0). */
274
275 static int
276 get_field (unsigned word, int from, int to)
277 {
278 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
279 }
280
281 /* extract the immediate field from a ld{bhw}s instruction */
282
283 static int
284 extract_5_load (unsigned word)
285 {
286 return low_sign_extend (word >> 16 & MASK_5, 5);
287 }
288
289 /* extract the immediate field from a break instruction */
290
291 static unsigned
292 extract_5r_store (unsigned word)
293 {
294 return (word & MASK_5);
295 }
296
297 /* extract the immediate field from a {sr}sm instruction */
298
299 static unsigned
300 extract_5R_store (unsigned word)
301 {
302 return (word >> 16 & MASK_5);
303 }
304
305 /* extract a 14 bit immediate field */
306
307 static int
308 extract_14 (unsigned word)
309 {
310 return low_sign_extend (word & MASK_14, 14);
311 }
312
313 /* deposit a 14 bit constant in a word */
314
315 static unsigned
316 deposit_14 (int opnd, unsigned word)
317 {
318 unsigned sign = (opnd < 0 ? 1 : 0);
319
320 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
321 }
322
323 /* extract a 21 bit constant */
324
325 static int
326 extract_21 (unsigned word)
327 {
328 int val;
329
330 word &= MASK_21;
331 word <<= 11;
332 val = get_field (word, 20, 20);
333 val <<= 11;
334 val |= get_field (word, 9, 19);
335 val <<= 2;
336 val |= get_field (word, 5, 6);
337 val <<= 5;
338 val |= get_field (word, 0, 4);
339 val <<= 2;
340 val |= get_field (word, 7, 8);
341 return sign_extend (val, 21) << 11;
342 }
343
344 /* deposit a 21 bit constant in a word. Although 21 bit constants are
345 usually the top 21 bits of a 32 bit constant, we assume that only
346 the low 21 bits of opnd are relevant */
347
348 static unsigned
349 deposit_21 (unsigned opnd, unsigned word)
350 {
351 unsigned val = 0;
352
353 val |= get_field (opnd, 11 + 14, 11 + 18);
354 val <<= 2;
355 val |= get_field (opnd, 11 + 12, 11 + 13);
356 val <<= 2;
357 val |= get_field (opnd, 11 + 19, 11 + 20);
358 val <<= 11;
359 val |= get_field (opnd, 11 + 1, 11 + 11);
360 val <<= 1;
361 val |= get_field (opnd, 11 + 0, 11 + 0);
362 return word | val;
363 }
364
365 /* extract a 17 bit constant from branch instructions, returning the
366 19 bit signed value. */
367
368 static int
369 extract_17 (unsigned word)
370 {
371 return sign_extend (get_field (word, 19, 28) |
372 get_field (word, 29, 29) << 10 |
373 get_field (word, 11, 15) << 11 |
374 (word & 0x1) << 16, 17) << 2;
375 }
376 \f
377
378 /* Compare the start address for two unwind entries returning 1 if
379 the first address is larger than the second, -1 if the second is
380 larger than the first, and zero if they are equal. */
381
382 static int
383 compare_unwind_entries (const void *arg1, const void *arg2)
384 {
385 const struct unwind_table_entry *a = arg1;
386 const struct unwind_table_entry *b = arg2;
387
388 if (a->region_start > b->region_start)
389 return 1;
390 else if (a->region_start < b->region_start)
391 return -1;
392 else
393 return 0;
394 }
395
396 static CORE_ADDR low_text_segment_address;
397
398 static void
399 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
400 {
401 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
402 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
403 && section->vma < low_text_segment_address)
404 low_text_segment_address = section->vma;
405 }
406
407 static void
408 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
409 asection *section, unsigned int entries, unsigned int size,
410 CORE_ADDR text_offset)
411 {
412 /* We will read the unwind entries into temporary memory, then
413 fill in the actual unwind table. */
414 if (size > 0)
415 {
416 unsigned long tmp;
417 unsigned i;
418 char *buf = alloca (size);
419
420 low_text_segment_address = -1;
421
422 /* If addresses are 64 bits wide, then unwinds are supposed to
423 be segment relative offsets instead of absolute addresses.
424
425 Note that when loading a shared library (text_offset != 0) the
426 unwinds are already relative to the text_offset that will be
427 passed in. */
428 if (TARGET_PTR_BIT == 64 && text_offset == 0)
429 {
430 bfd_map_over_sections (objfile->obfd,
431 record_text_segment_lowaddr, NULL);
432
433 /* ?!? Mask off some low bits. Should this instead subtract
434 out the lowest section's filepos or something like that?
435 This looks very hokey to me. */
436 low_text_segment_address &= ~0xfff;
437 text_offset += low_text_segment_address;
438 }
439
440 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
441
442 /* Now internalize the information being careful to handle host/target
443 endian issues. */
444 for (i = 0; i < entries; i++)
445 {
446 table[i].region_start = bfd_get_32 (objfile->obfd,
447 (bfd_byte *) buf);
448 table[i].region_start += text_offset;
449 buf += 4;
450 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
451 table[i].region_end += text_offset;
452 buf += 4;
453 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
454 buf += 4;
455 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
456 table[i].Millicode = (tmp >> 30) & 0x1;
457 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
458 table[i].Region_description = (tmp >> 27) & 0x3;
459 table[i].reserved1 = (tmp >> 26) & 0x1;
460 table[i].Entry_SR = (tmp >> 25) & 0x1;
461 table[i].Entry_FR = (tmp >> 21) & 0xf;
462 table[i].Entry_GR = (tmp >> 16) & 0x1f;
463 table[i].Args_stored = (tmp >> 15) & 0x1;
464 table[i].Variable_Frame = (tmp >> 14) & 0x1;
465 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
466 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
467 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
468 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
469 table[i].Ada_Region = (tmp >> 9) & 0x1;
470 table[i].cxx_info = (tmp >> 8) & 0x1;
471 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
472 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
473 table[i].reserved2 = (tmp >> 5) & 0x1;
474 table[i].Save_SP = (tmp >> 4) & 0x1;
475 table[i].Save_RP = (tmp >> 3) & 0x1;
476 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
477 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
478 table[i].Cleanup_defined = tmp & 0x1;
479 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
480 buf += 4;
481 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
482 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
483 table[i].Large_frame = (tmp >> 29) & 0x1;
484 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
485 table[i].reserved4 = (tmp >> 27) & 0x1;
486 table[i].Total_frame_size = tmp & 0x7ffffff;
487
488 /* Stub unwinds are handled elsewhere. */
489 table[i].stub_unwind.stub_type = 0;
490 table[i].stub_unwind.padding = 0;
491 }
492 }
493 }
494
495 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
496 the object file. This info is used mainly by find_unwind_entry() to find
497 out the stack frame size and frame pointer used by procedures. We put
498 everything on the psymbol obstack in the objfile so that it automatically
499 gets freed when the objfile is destroyed. */
500
501 static void
502 read_unwind_info (struct objfile *objfile)
503 {
504 asection *unwind_sec, *stub_unwind_sec;
505 unsigned unwind_size, stub_unwind_size, total_size;
506 unsigned index, unwind_entries;
507 unsigned stub_entries, total_entries;
508 CORE_ADDR text_offset;
509 struct obj_unwind_info *ui;
510 obj_private_data_t *obj_private;
511
512 text_offset = ANOFFSET (objfile->section_offsets, 0);
513 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
514 sizeof (struct obj_unwind_info));
515
516 ui->table = NULL;
517 ui->cache = NULL;
518 ui->last = -1;
519
520 /* For reasons unknown the HP PA64 tools generate multiple unwinder
521 sections in a single executable. So we just iterate over every
522 section in the BFD looking for unwinder sections intead of trying
523 to do a lookup with bfd_get_section_by_name.
524
525 First determine the total size of the unwind tables so that we
526 can allocate memory in a nice big hunk. */
527 total_entries = 0;
528 for (unwind_sec = objfile->obfd->sections;
529 unwind_sec;
530 unwind_sec = unwind_sec->next)
531 {
532 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
533 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
534 {
535 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
536 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
537
538 total_entries += unwind_entries;
539 }
540 }
541
542 /* Now compute the size of the stub unwinds. Note the ELF tools do not
543 use stub unwinds at the curren time. */
544 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
545
546 if (stub_unwind_sec)
547 {
548 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
549 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
550 }
551 else
552 {
553 stub_unwind_size = 0;
554 stub_entries = 0;
555 }
556
557 /* Compute total number of unwind entries and their total size. */
558 total_entries += stub_entries;
559 total_size = total_entries * sizeof (struct unwind_table_entry);
560
561 /* Allocate memory for the unwind table. */
562 ui->table = (struct unwind_table_entry *)
563 obstack_alloc (&objfile->psymbol_obstack, total_size);
564 ui->last = total_entries - 1;
565
566 /* Now read in each unwind section and internalize the standard unwind
567 entries. */
568 index = 0;
569 for (unwind_sec = objfile->obfd->sections;
570 unwind_sec;
571 unwind_sec = unwind_sec->next)
572 {
573 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
574 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
575 {
576 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
577 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
578
579 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
580 unwind_entries, unwind_size, text_offset);
581 index += unwind_entries;
582 }
583 }
584
585 /* Now read in and internalize the stub unwind entries. */
586 if (stub_unwind_size > 0)
587 {
588 unsigned int i;
589 char *buf = alloca (stub_unwind_size);
590
591 /* Read in the stub unwind entries. */
592 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
593 0, stub_unwind_size);
594
595 /* Now convert them into regular unwind entries. */
596 for (i = 0; i < stub_entries; i++, index++)
597 {
598 /* Clear out the next unwind entry. */
599 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
600
601 /* Convert offset & size into region_start and region_end.
602 Stuff away the stub type into "reserved" fields. */
603 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
604 (bfd_byte *) buf);
605 ui->table[index].region_start += text_offset;
606 buf += 4;
607 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
608 (bfd_byte *) buf);
609 buf += 2;
610 ui->table[index].region_end
611 = ui->table[index].region_start + 4 *
612 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
613 buf += 2;
614 }
615
616 }
617
618 /* Unwind table needs to be kept sorted. */
619 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
620 compare_unwind_entries);
621
622 /* Keep a pointer to the unwind information. */
623 if (objfile->obj_private == NULL)
624 {
625 obj_private = (obj_private_data_t *)
626 obstack_alloc (&objfile->psymbol_obstack,
627 sizeof (obj_private_data_t));
628 obj_private->unwind_info = NULL;
629 obj_private->so_info = NULL;
630 obj_private->dp = 0;
631
632 objfile->obj_private = obj_private;
633 }
634 obj_private = (obj_private_data_t *) objfile->obj_private;
635 obj_private->unwind_info = ui;
636 }
637
638 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
639 of the objfiles seeking the unwind table entry for this PC. Each objfile
640 contains a sorted list of struct unwind_table_entry. Since we do a binary
641 search of the unwind tables, we depend upon them to be sorted. */
642
643 struct unwind_table_entry *
644 find_unwind_entry (CORE_ADDR pc)
645 {
646 int first, middle, last;
647 struct objfile *objfile;
648
649 /* A function at address 0? Not in HP-UX! */
650 if (pc == (CORE_ADDR) 0)
651 return NULL;
652
653 ALL_OBJFILES (objfile)
654 {
655 struct obj_unwind_info *ui;
656 ui = NULL;
657 if (objfile->obj_private)
658 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
659
660 if (!ui)
661 {
662 read_unwind_info (objfile);
663 if (objfile->obj_private == NULL)
664 error ("Internal error reading unwind information.");
665 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
666 }
667
668 /* First, check the cache */
669
670 if (ui->cache
671 && pc >= ui->cache->region_start
672 && pc <= ui->cache->region_end)
673 return ui->cache;
674
675 /* Not in the cache, do a binary search */
676
677 first = 0;
678 last = ui->last;
679
680 while (first <= last)
681 {
682 middle = (first + last) / 2;
683 if (pc >= ui->table[middle].region_start
684 && pc <= ui->table[middle].region_end)
685 {
686 ui->cache = &ui->table[middle];
687 return &ui->table[middle];
688 }
689
690 if (pc < ui->table[middle].region_start)
691 last = middle - 1;
692 else
693 first = middle + 1;
694 }
695 } /* ALL_OBJFILES() */
696 return NULL;
697 }
698
699 const unsigned char *
700 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
701 {
702 static const char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
703 (*len) = sizeof (breakpoint);
704 return breakpoint;
705 }
706
707 /* Return the name of a register. */
708
709 const char *
710 hppa32_register_name (int i)
711 {
712 static char *names[] = {
713 "flags", "r1", "rp", "r3",
714 "r4", "r5", "r6", "r7",
715 "r8", "r9", "r10", "r11",
716 "r12", "r13", "r14", "r15",
717 "r16", "r17", "r18", "r19",
718 "r20", "r21", "r22", "r23",
719 "r24", "r25", "r26", "dp",
720 "ret0", "ret1", "sp", "r31",
721 "sar", "pcoqh", "pcsqh", "pcoqt",
722 "pcsqt", "eiem", "iir", "isr",
723 "ior", "ipsw", "goto", "sr4",
724 "sr0", "sr1", "sr2", "sr3",
725 "sr5", "sr6", "sr7", "cr0",
726 "cr8", "cr9", "ccr", "cr12",
727 "cr13", "cr24", "cr25", "cr26",
728 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
729 "fpsr", "fpe1", "fpe2", "fpe3",
730 "fpe4", "fpe5", "fpe6", "fpe7",
731 "fr4", "fr4R", "fr5", "fr5R",
732 "fr6", "fr6R", "fr7", "fr7R",
733 "fr8", "fr8R", "fr9", "fr9R",
734 "fr10", "fr10R", "fr11", "fr11R",
735 "fr12", "fr12R", "fr13", "fr13R",
736 "fr14", "fr14R", "fr15", "fr15R",
737 "fr16", "fr16R", "fr17", "fr17R",
738 "fr18", "fr18R", "fr19", "fr19R",
739 "fr20", "fr20R", "fr21", "fr21R",
740 "fr22", "fr22R", "fr23", "fr23R",
741 "fr24", "fr24R", "fr25", "fr25R",
742 "fr26", "fr26R", "fr27", "fr27R",
743 "fr28", "fr28R", "fr29", "fr29R",
744 "fr30", "fr30R", "fr31", "fr31R"
745 };
746 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
747 return NULL;
748 else
749 return names[i];
750 }
751
752 const char *
753 hppa64_register_name (int i)
754 {
755 static char *names[] = {
756 "flags", "r1", "rp", "r3",
757 "r4", "r5", "r6", "r7",
758 "r8", "r9", "r10", "r11",
759 "r12", "r13", "r14", "r15",
760 "r16", "r17", "r18", "r19",
761 "r20", "r21", "r22", "r23",
762 "r24", "r25", "r26", "dp",
763 "ret0", "ret1", "sp", "r31",
764 "sar", "pcoqh", "pcsqh", "pcoqt",
765 "pcsqt", "eiem", "iir", "isr",
766 "ior", "ipsw", "goto", "sr4",
767 "sr0", "sr1", "sr2", "sr3",
768 "sr5", "sr6", "sr7", "cr0",
769 "cr8", "cr9", "ccr", "cr12",
770 "cr13", "cr24", "cr25", "cr26",
771 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
772 "fpsr", "fpe1", "fpe2", "fpe3",
773 "fr4", "fr5", "fr6", "fr7",
774 "fr8", "fr9", "fr10", "fr11",
775 "fr12", "fr13", "fr14", "fr15",
776 "fr16", "fr17", "fr18", "fr19",
777 "fr20", "fr21", "fr22", "fr23",
778 "fr24", "fr25", "fr26", "fr27",
779 "fr28", "fr29", "fr30", "fr31"
780 };
781 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
782 return NULL;
783 else
784 return names[i];
785 }
786
787
788
789 /* Return the adjustment necessary to make for addresses on the stack
790 as presented by hpread.c.
791
792 This is necessary because of the stack direction on the PA and the
793 bizarre way in which someone (?) decided they wanted to handle
794 frame pointerless code in GDB. */
795 int
796 hpread_adjust_stack_address (CORE_ADDR func_addr)
797 {
798 struct unwind_table_entry *u;
799
800 u = find_unwind_entry (func_addr);
801 if (!u)
802 return 0;
803 else
804 return u->Total_frame_size << 3;
805 }
806
807 /* Called to determine if PC is in an interrupt handler of some
808 kind. */
809
810 static int
811 pc_in_interrupt_handler (CORE_ADDR pc)
812 {
813 struct unwind_table_entry *u;
814 struct minimal_symbol *msym_us;
815
816 u = find_unwind_entry (pc);
817 if (!u)
818 return 0;
819
820 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
821 its frame isn't a pure interrupt frame. Deal with this. */
822 msym_us = lookup_minimal_symbol_by_pc (pc);
823
824 return (u->HP_UX_interrupt_marker
825 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
826 }
827
828 /* Called when no unwind descriptor was found for PC. Returns 1 if it
829 appears that PC is in a linker stub.
830
831 ?!? Need to handle stubs which appear in PA64 code. */
832
833 static int
834 pc_in_linker_stub (CORE_ADDR pc)
835 {
836 int found_magic_instruction = 0;
837 int i;
838 char buf[4];
839
840 /* If unable to read memory, assume pc is not in a linker stub. */
841 if (target_read_memory (pc, buf, 4) != 0)
842 return 0;
843
844 /* We are looking for something like
845
846 ; $$dyncall jams RP into this special spot in the frame (RP')
847 ; before calling the "call stub"
848 ldw -18(sp),rp
849
850 ldsid (rp),r1 ; Get space associated with RP into r1
851 mtsp r1,sp ; Move it into space register 0
852 be,n 0(sr0),rp) ; back to your regularly scheduled program */
853
854 /* Maximum known linker stub size is 4 instructions. Search forward
855 from the given PC, then backward. */
856 for (i = 0; i < 4; i++)
857 {
858 /* If we hit something with an unwind, stop searching this direction. */
859
860 if (find_unwind_entry (pc + i * 4) != 0)
861 break;
862
863 /* Check for ldsid (rp),r1 which is the magic instruction for a
864 return from a cross-space function call. */
865 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
866 {
867 found_magic_instruction = 1;
868 break;
869 }
870 /* Add code to handle long call/branch and argument relocation stubs
871 here. */
872 }
873
874 if (found_magic_instruction != 0)
875 return 1;
876
877 /* Now look backward. */
878 for (i = 0; i < 4; i++)
879 {
880 /* If we hit something with an unwind, stop searching this direction. */
881
882 if (find_unwind_entry (pc - i * 4) != 0)
883 break;
884
885 /* Check for ldsid (rp),r1 which is the magic instruction for a
886 return from a cross-space function call. */
887 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
888 {
889 found_magic_instruction = 1;
890 break;
891 }
892 /* Add code to handle long call/branch and argument relocation stubs
893 here. */
894 }
895 return found_magic_instruction;
896 }
897
898 static int
899 find_return_regnum (CORE_ADDR pc)
900 {
901 struct unwind_table_entry *u;
902
903 u = find_unwind_entry (pc);
904
905 if (!u)
906 return RP_REGNUM;
907
908 if (u->Millicode)
909 return 31;
910
911 return RP_REGNUM;
912 }
913
914 /* Return size of frame, or -1 if we should use a frame pointer. */
915 static int
916 find_proc_framesize (CORE_ADDR pc)
917 {
918 struct unwind_table_entry *u;
919 struct minimal_symbol *msym_us;
920
921 /* This may indicate a bug in our callers... */
922 if (pc == (CORE_ADDR) 0)
923 return -1;
924
925 u = find_unwind_entry (pc);
926
927 if (!u)
928 {
929 if (pc_in_linker_stub (pc))
930 /* Linker stubs have a zero size frame. */
931 return 0;
932 else
933 return -1;
934 }
935
936 msym_us = lookup_minimal_symbol_by_pc (pc);
937
938 /* If Save_SP is set, and we're not in an interrupt or signal caller,
939 then we have a frame pointer. Use it. */
940 if (u->Save_SP
941 && !pc_in_interrupt_handler (pc)
942 && msym_us
943 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
944 return -1;
945
946 return u->Total_frame_size << 3;
947 }
948
949 /* Return offset from sp at which rp is saved, or 0 if not saved. */
950 static int rp_saved (CORE_ADDR);
951
952 static int
953 rp_saved (CORE_ADDR pc)
954 {
955 struct unwind_table_entry *u;
956
957 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
958 if (pc == (CORE_ADDR) 0)
959 return 0;
960
961 u = find_unwind_entry (pc);
962
963 if (!u)
964 {
965 if (pc_in_linker_stub (pc))
966 /* This is the so-called RP'. */
967 return -24;
968 else
969 return 0;
970 }
971
972 if (u->Save_RP)
973 return (TARGET_PTR_BIT == 64 ? -16 : -20);
974 else if (u->stub_unwind.stub_type != 0)
975 {
976 switch (u->stub_unwind.stub_type)
977 {
978 case EXPORT:
979 case IMPORT:
980 return -24;
981 case PARAMETER_RELOCATION:
982 return -8;
983 default:
984 return 0;
985 }
986 }
987 else
988 return 0;
989 }
990 \f
991 int
992 hppa_frameless_function_invocation (struct frame_info *frame)
993 {
994 struct unwind_table_entry *u;
995
996 u = find_unwind_entry (get_frame_pc (frame));
997
998 if (u == 0)
999 return 0;
1000
1001 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
1002 }
1003
1004 /* Immediately after a function call, return the saved pc.
1005 Can't go through the frames for this because on some machines
1006 the new frame is not set up until the new function executes
1007 some instructions. */
1008
1009 CORE_ADDR
1010 hppa_saved_pc_after_call (struct frame_info *frame)
1011 {
1012 int ret_regnum;
1013 CORE_ADDR pc;
1014 struct unwind_table_entry *u;
1015
1016 ret_regnum = find_return_regnum (get_frame_pc (frame));
1017 pc = read_register (ret_regnum) & ~0x3;
1018
1019 /* If PC is in a linker stub, then we need to dig the address
1020 the stub will return to out of the stack. */
1021 u = find_unwind_entry (pc);
1022 if (u && u->stub_unwind.stub_type != 0)
1023 return DEPRECATED_FRAME_SAVED_PC (frame);
1024 else
1025 return pc;
1026 }
1027 \f
1028 CORE_ADDR
1029 hppa_frame_saved_pc (struct frame_info *frame)
1030 {
1031 CORE_ADDR pc = get_frame_pc (frame);
1032 struct unwind_table_entry *u;
1033 CORE_ADDR old_pc = 0;
1034 int spun_around_loop = 0;
1035 int rp_offset = 0;
1036
1037 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1038 at the base of the frame in an interrupt handler. Registers within
1039 are saved in the exact same order as GDB numbers registers. How
1040 convienent. */
1041 if (pc_in_interrupt_handler (pc))
1042 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
1043 TARGET_PTR_BIT / 8) & ~0x3;
1044
1045 if ((get_frame_pc (frame) >= get_frame_base (frame)
1046 && (get_frame_pc (frame)
1047 <= (get_frame_base (frame)
1048 /* A call dummy is sized in words, but it is actually a
1049 series of instructions. Account for that scaling
1050 factor. */
1051 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1052 * DEPRECATED_CALL_DUMMY_LENGTH)
1053 /* Similarly we have to account for 64bit wide register
1054 saves. */
1055 + (32 * DEPRECATED_REGISTER_SIZE)
1056 /* We always consider FP regs 8 bytes long. */
1057 + (NUM_REGS - FP0_REGNUM) * 8
1058 /* Similarly we have to account for 64bit wide register
1059 saves. */
1060 + (6 * DEPRECATED_REGISTER_SIZE)))))
1061 {
1062 return read_memory_integer ((get_frame_base (frame)
1063 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1064 TARGET_PTR_BIT / 8) & ~0x3;
1065 }
1066
1067 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1068 /* Deal with signal handler caller frames too. */
1069 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1070 {
1071 CORE_ADDR rp;
1072 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1073 return rp & ~0x3;
1074 }
1075 #endif
1076
1077 if (hppa_frameless_function_invocation (frame))
1078 {
1079 int ret_regnum;
1080
1081 ret_regnum = find_return_regnum (pc);
1082
1083 /* If the next frame is an interrupt frame or a signal
1084 handler caller, then we need to look in the saved
1085 register area to get the return pointer (the values
1086 in the registers may not correspond to anything useful). */
1087 if (get_next_frame (frame)
1088 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1089 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1090 {
1091 CORE_ADDR *saved_regs;
1092 hppa_frame_init_saved_regs (get_next_frame (frame));
1093 saved_regs = get_frame_saved_regs (get_next_frame (frame));
1094 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1095 TARGET_PTR_BIT / 8) & 0x2)
1096 {
1097 pc = read_memory_integer (saved_regs[31],
1098 TARGET_PTR_BIT / 8) & ~0x3;
1099
1100 /* Syscalls are really two frames. The syscall stub itself
1101 with a return pointer in %rp and the kernel call with
1102 a return pointer in %r31. We return the %rp variant
1103 if %r31 is the same as frame->pc. */
1104 if (pc == get_frame_pc (frame))
1105 pc = read_memory_integer (saved_regs[RP_REGNUM],
1106 TARGET_PTR_BIT / 8) & ~0x3;
1107 }
1108 else
1109 pc = read_memory_integer (saved_regs[RP_REGNUM],
1110 TARGET_PTR_BIT / 8) & ~0x3;
1111 }
1112 else
1113 pc = read_register (ret_regnum) & ~0x3;
1114 }
1115 else
1116 {
1117 spun_around_loop = 0;
1118 old_pc = pc;
1119
1120 restart:
1121 rp_offset = rp_saved (pc);
1122
1123 /* Similar to code in frameless function case. If the next
1124 frame is a signal or interrupt handler, then dig the right
1125 information out of the saved register info. */
1126 if (rp_offset == 0
1127 && get_next_frame (frame)
1128 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1129 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1130 {
1131 CORE_ADDR *saved_regs;
1132 hppa_frame_init_saved_regs (get_next_frame (frame));
1133 saved_regs = get_frame_saved_regs (get_next_frame (frame));
1134 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1135 TARGET_PTR_BIT / 8) & 0x2)
1136 {
1137 pc = read_memory_integer (saved_regs[31],
1138 TARGET_PTR_BIT / 8) & ~0x3;
1139
1140 /* Syscalls are really two frames. The syscall stub itself
1141 with a return pointer in %rp and the kernel call with
1142 a return pointer in %r31. We return the %rp variant
1143 if %r31 is the same as frame->pc. */
1144 if (pc == get_frame_pc (frame))
1145 pc = read_memory_integer (saved_regs[RP_REGNUM],
1146 TARGET_PTR_BIT / 8) & ~0x3;
1147 }
1148 else
1149 pc = read_memory_integer (saved_regs[RP_REGNUM],
1150 TARGET_PTR_BIT / 8) & ~0x3;
1151 }
1152 else if (rp_offset == 0)
1153 {
1154 old_pc = pc;
1155 pc = read_register (RP_REGNUM) & ~0x3;
1156 }
1157 else
1158 {
1159 old_pc = pc;
1160 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1161 TARGET_PTR_BIT / 8) & ~0x3;
1162 }
1163 }
1164
1165 /* If PC is inside a linker stub, then dig out the address the stub
1166 will return to.
1167
1168 Don't do this for long branch stubs. Why? For some unknown reason
1169 _start is marked as a long branch stub in hpux10. */
1170 u = find_unwind_entry (pc);
1171 if (u && u->stub_unwind.stub_type != 0
1172 && u->stub_unwind.stub_type != LONG_BRANCH)
1173 {
1174 unsigned int insn;
1175
1176 /* If this is a dynamic executable, and we're in a signal handler,
1177 then the call chain will eventually point us into the stub for
1178 _sigreturn. Unlike most cases, we'll be pointed to the branch
1179 to the real sigreturn rather than the code after the real branch!.
1180
1181 Else, try to dig the address the stub will return to in the normal
1182 fashion. */
1183 insn = read_memory_integer (pc, 4);
1184 if ((insn & 0xfc00e000) == 0xe8000000)
1185 return (pc + extract_17 (insn) + 8) & ~0x3;
1186 else
1187 {
1188 if (old_pc == pc)
1189 spun_around_loop++;
1190
1191 if (spun_around_loop > 1)
1192 {
1193 /* We're just about to go around the loop again with
1194 no more hope of success. Die. */
1195 error ("Unable to find return pc for this frame");
1196 }
1197 else
1198 goto restart;
1199 }
1200 }
1201
1202 return pc;
1203 }
1204 \f
1205 /* We need to correct the PC and the FP for the outermost frame when we are
1206 in a system call. */
1207
1208 void
1209 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1210 {
1211 int flags;
1212 int framesize;
1213
1214 if (get_next_frame (frame) && !fromleaf)
1215 return;
1216
1217 /* If the next frame represents a frameless function invocation then
1218 we have to do some adjustments that are normally done by
1219 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1220 this case.) */
1221 if (fromleaf)
1222 {
1223 /* Find the framesize of *this* frame without peeking at the PC
1224 in the current frame structure (it isn't set yet). */
1225 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1226
1227 /* Now adjust our base frame accordingly. If we have a frame pointer
1228 use it, else subtract the size of this frame from the current
1229 frame. (we always want frame->frame to point at the lowest address
1230 in the frame). */
1231 if (framesize == -1)
1232 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1233 else
1234 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1235 return;
1236 }
1237
1238 flags = read_register (FLAGS_REGNUM);
1239 if (flags & 2) /* In system call? */
1240 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1241
1242 /* The outermost frame is always derived from PC-framesize
1243
1244 One might think frameless innermost frames should have
1245 a frame->frame that is the same as the parent's frame->frame.
1246 That is wrong; frame->frame in that case should be the *high*
1247 address of the parent's frame. It's complicated as hell to
1248 explain, but the parent *always* creates some stack space for
1249 the child. So the child actually does have a frame of some
1250 sorts, and its base is the high address in its parent's frame. */
1251 framesize = find_proc_framesize (get_frame_pc (frame));
1252 if (framesize == -1)
1253 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1254 else
1255 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1256 }
1257 \f
1258 /* Given a GDB frame, determine the address of the calling function's
1259 frame. This will be used to create a new GDB frame struct, and
1260 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1261 will be called for the new frame.
1262
1263 This may involve searching through prologues for several functions
1264 at boundaries where GCC calls HP C code, or where code which has
1265 a frame pointer calls code without a frame pointer. */
1266
1267 CORE_ADDR
1268 hppa_frame_chain (struct frame_info *frame)
1269 {
1270 int my_framesize, caller_framesize;
1271 struct unwind_table_entry *u;
1272 CORE_ADDR frame_base;
1273 struct frame_info *tmp_frame;
1274
1275 /* A frame in the current frame list, or zero. */
1276 struct frame_info *saved_regs_frame = 0;
1277 /* Where the registers were saved in saved_regs_frame. If
1278 saved_regs_frame is zero, this is garbage. */
1279 CORE_ADDR *saved_regs = NULL;
1280
1281 CORE_ADDR caller_pc;
1282
1283 struct minimal_symbol *min_frame_symbol;
1284 struct symbol *frame_symbol;
1285 char *frame_symbol_name;
1286
1287 /* If this is a threaded application, and we see the
1288 routine "__pthread_exit", treat it as the stack root
1289 for this thread. */
1290 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1291 frame_symbol = find_pc_function (get_frame_pc (frame));
1292
1293 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1294 {
1295 /* The test above for "no user function name" would defend
1296 against the slim likelihood that a user might define a
1297 routine named "__pthread_exit" and then try to debug it.
1298
1299 If it weren't commented out, and you tried to debug the
1300 pthread library itself, you'd get errors.
1301
1302 So for today, we don't make that check. */
1303 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1304 if (frame_symbol_name != 0)
1305 {
1306 if (0 == strncmp (frame_symbol_name,
1307 THREAD_INITIAL_FRAME_SYMBOL,
1308 THREAD_INITIAL_FRAME_SYM_LEN))
1309 {
1310 /* Pretend we've reached the bottom of the stack. */
1311 return (CORE_ADDR) 0;
1312 }
1313 }
1314 } /* End of hacky code for threads. */
1315
1316 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1317 are easy; at *sp we have a full save state strucutre which we can
1318 pull the old stack pointer from. Also see frame_saved_pc for
1319 code to dig a saved PC out of the save state structure. */
1320 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1321 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1322 TARGET_PTR_BIT / 8);
1323 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1324 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1325 {
1326 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1327 }
1328 #endif
1329 else
1330 frame_base = get_frame_base (frame);
1331
1332 /* Get frame sizes for the current frame and the frame of the
1333 caller. */
1334 my_framesize = find_proc_framesize (get_frame_pc (frame));
1335 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1336
1337 /* If we can't determine the caller's PC, then it's not likely we can
1338 really determine anything meaningful about its frame. We'll consider
1339 this to be stack bottom. */
1340 if (caller_pc == (CORE_ADDR) 0)
1341 return (CORE_ADDR) 0;
1342
1343 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1344
1345 /* If caller does not have a frame pointer, then its frame
1346 can be found at current_frame - caller_framesize. */
1347 if (caller_framesize != -1)
1348 {
1349 return frame_base - caller_framesize;
1350 }
1351 /* Both caller and callee have frame pointers and are GCC compiled
1352 (SAVE_SP bit in unwind descriptor is on for both functions.
1353 The previous frame pointer is found at the top of the current frame. */
1354 if (caller_framesize == -1 && my_framesize == -1)
1355 {
1356 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1357 }
1358 /* Caller has a frame pointer, but callee does not. This is a little
1359 more difficult as GCC and HP C lay out locals and callee register save
1360 areas very differently.
1361
1362 The previous frame pointer could be in a register, or in one of
1363 several areas on the stack.
1364
1365 Walk from the current frame to the innermost frame examining
1366 unwind descriptors to determine if %r3 ever gets saved into the
1367 stack. If so return whatever value got saved into the stack.
1368 If it was never saved in the stack, then the value in %r3 is still
1369 valid, so use it.
1370
1371 We use information from unwind descriptors to determine if %r3
1372 is saved into the stack (Entry_GR field has this information). */
1373
1374 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1375 {
1376 u = find_unwind_entry (get_frame_pc (tmp_frame));
1377
1378 if (!u)
1379 {
1380 /* We could find this information by examining prologues. I don't
1381 think anyone has actually written any tools (not even "strip")
1382 which leave them out of an executable, so maybe this is a moot
1383 point. */
1384 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1385 code that doesn't have unwind entries. For example, stepping into
1386 the dynamic linker will give you a PC that has none. Thus, I've
1387 disabled this warning. */
1388 #if 0
1389 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1390 #endif
1391 return (CORE_ADDR) 0;
1392 }
1393
1394 if (u->Save_SP
1395 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1396 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1397 break;
1398
1399 /* Entry_GR specifies the number of callee-saved general registers
1400 saved in the stack. It starts at %r3, so %r3 would be 1. */
1401 if (u->Entry_GR >= 1)
1402 {
1403 /* The unwind entry claims that r3 is saved here. However,
1404 in optimized code, GCC often doesn't actually save r3.
1405 We'll discover this if we look at the prologue. */
1406 hppa_frame_init_saved_regs (tmp_frame);
1407 saved_regs = get_frame_saved_regs (tmp_frame);
1408 saved_regs_frame = tmp_frame;
1409
1410 /* If we have an address for r3, that's good. */
1411 if (saved_regs[DEPRECATED_FP_REGNUM])
1412 break;
1413 }
1414 }
1415
1416 if (tmp_frame)
1417 {
1418 /* We may have walked down the chain into a function with a frame
1419 pointer. */
1420 if (u->Save_SP
1421 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1422 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1423 {
1424 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1425 }
1426 /* %r3 was saved somewhere in the stack. Dig it out. */
1427 else
1428 {
1429 /* Sick.
1430
1431 For optimization purposes many kernels don't have the
1432 callee saved registers into the save_state structure upon
1433 entry into the kernel for a syscall; the optimization
1434 is usually turned off if the process is being traced so
1435 that the debugger can get full register state for the
1436 process.
1437
1438 This scheme works well except for two cases:
1439
1440 * Attaching to a process when the process is in the
1441 kernel performing a system call (debugger can't get
1442 full register state for the inferior process since
1443 the process wasn't being traced when it entered the
1444 system call).
1445
1446 * Register state is not complete if the system call
1447 causes the process to core dump.
1448
1449
1450 The following heinous code is an attempt to deal with
1451 the lack of register state in a core dump. It will
1452 fail miserably if the function which performs the
1453 system call has a variable sized stack frame. */
1454
1455 if (tmp_frame != saved_regs_frame)
1456 {
1457 hppa_frame_init_saved_regs (tmp_frame);
1458 saved_regs = get_frame_saved_regs (tmp_frame);
1459 }
1460
1461 /* Abominable hack. */
1462 if (current_target.to_has_execution == 0
1463 && ((saved_regs[FLAGS_REGNUM]
1464 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1465 TARGET_PTR_BIT / 8)
1466 & 0x2))
1467 || (saved_regs[FLAGS_REGNUM] == 0
1468 && read_register (FLAGS_REGNUM) & 0x2)))
1469 {
1470 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1471 if (!u)
1472 {
1473 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1474 TARGET_PTR_BIT / 8);
1475 }
1476 else
1477 {
1478 return frame_base - (u->Total_frame_size << 3);
1479 }
1480 }
1481
1482 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1483 TARGET_PTR_BIT / 8);
1484 }
1485 }
1486 else
1487 {
1488 /* Get the innermost frame. */
1489 tmp_frame = frame;
1490 while (get_next_frame (tmp_frame) != NULL)
1491 tmp_frame = get_next_frame (tmp_frame);
1492
1493 if (tmp_frame != saved_regs_frame)
1494 {
1495 hppa_frame_init_saved_regs (tmp_frame);
1496 saved_regs = get_frame_saved_regs (tmp_frame);
1497 }
1498
1499 /* Abominable hack. See above. */
1500 if (current_target.to_has_execution == 0
1501 && ((saved_regs[FLAGS_REGNUM]
1502 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1503 TARGET_PTR_BIT / 8)
1504 & 0x2))
1505 || (saved_regs[FLAGS_REGNUM] == 0
1506 && read_register (FLAGS_REGNUM) & 0x2)))
1507 {
1508 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1509 if (!u)
1510 {
1511 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1512 TARGET_PTR_BIT / 8);
1513 }
1514 else
1515 {
1516 return frame_base - (u->Total_frame_size << 3);
1517 }
1518 }
1519
1520 /* The value in %r3 was never saved into the stack (thus %r3 still
1521 holds the value of the previous frame pointer). */
1522 return deprecated_read_fp ();
1523 }
1524 }
1525 \f
1526
1527 /* To see if a frame chain is valid, see if the caller looks like it
1528 was compiled with gcc. */
1529
1530 int
1531 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1532 {
1533 struct minimal_symbol *msym_us;
1534 struct minimal_symbol *msym_start;
1535 struct unwind_table_entry *u, *next_u = NULL;
1536 struct frame_info *next;
1537
1538 u = find_unwind_entry (get_frame_pc (thisframe));
1539
1540 if (u == NULL)
1541 return 1;
1542
1543 /* We can't just check that the same of msym_us is "_start", because
1544 someone idiotically decided that they were going to make a Ltext_end
1545 symbol with the same address. This Ltext_end symbol is totally
1546 indistinguishable (as nearly as I can tell) from the symbol for a function
1547 which is (legitimately, since it is in the user's namespace)
1548 named Ltext_end, so we can't just ignore it. */
1549 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1550 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1551 if (msym_us
1552 && msym_start
1553 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1554 return 0;
1555
1556 /* Grrrr. Some new idiot decided that they don't want _start for the
1557 PRO configurations; $START$ calls main directly.... Deal with it. */
1558 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1559 if (msym_us
1560 && msym_start
1561 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1562 return 0;
1563
1564 next = get_next_frame (thisframe);
1565 if (next)
1566 next_u = find_unwind_entry (get_frame_pc (next));
1567
1568 /* If this frame does not save SP, has no stack, isn't a stub,
1569 and doesn't "call" an interrupt routine or signal handler caller,
1570 then its not valid. */
1571 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1572 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1573 || (next_u && next_u->HP_UX_interrupt_marker))
1574 return 1;
1575
1576 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1577 return 1;
1578
1579 return 0;
1580 }
1581
1582 /* These functions deal with saving and restoring register state
1583 around a function call in the inferior. They keep the stack
1584 double-word aligned; eventually, on an hp700, the stack will have
1585 to be aligned to a 64-byte boundary. */
1586
1587 void
1588 hppa_push_dummy_frame (void)
1589 {
1590 CORE_ADDR sp, pc, pcspace;
1591 int regnum;
1592 CORE_ADDR int_buffer;
1593 double freg_buffer;
1594
1595 pc = hppa_target_read_pc (inferior_ptid);
1596 int_buffer = read_register (FLAGS_REGNUM);
1597 if (int_buffer & 0x2)
1598 {
1599 const unsigned int sid = (pc >> 30) & 0x3;
1600 if (sid == 0)
1601 pcspace = read_register (SR4_REGNUM);
1602 else
1603 pcspace = read_register (SR4_REGNUM + 4 + sid);
1604 }
1605 else
1606 pcspace = read_register (PCSQ_HEAD_REGNUM);
1607
1608 /* Space for "arguments"; the RP goes in here. */
1609 sp = read_register (SP_REGNUM) + 48;
1610 int_buffer = read_register (RP_REGNUM) | 0x3;
1611
1612 /* The 32bit and 64bit ABIs save the return pointer into different
1613 stack slots. */
1614 if (DEPRECATED_REGISTER_SIZE == 8)
1615 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1616 else
1617 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1618
1619 int_buffer = deprecated_read_fp ();
1620 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1621
1622 write_register (DEPRECATED_FP_REGNUM, sp);
1623
1624 sp += 2 * DEPRECATED_REGISTER_SIZE;
1625
1626 for (regnum = 1; regnum < 32; regnum++)
1627 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1628 sp = push_word (sp, read_register (regnum));
1629
1630 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1631 if (DEPRECATED_REGISTER_SIZE != 8)
1632 sp += 4;
1633
1634 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1635 {
1636 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1637 (char *) &freg_buffer, 8);
1638 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1639 }
1640 sp = push_word (sp, read_register (IPSW_REGNUM));
1641 sp = push_word (sp, read_register (SAR_REGNUM));
1642 sp = push_word (sp, pc);
1643 sp = push_word (sp, pcspace);
1644 sp = push_word (sp, pc + 4);
1645 sp = push_word (sp, pcspace);
1646 write_register (SP_REGNUM, sp);
1647 }
1648
1649 static void
1650 find_dummy_frame_regs (struct frame_info *frame,
1651 CORE_ADDR frame_saved_regs[])
1652 {
1653 CORE_ADDR fp = get_frame_base (frame);
1654 int i;
1655
1656 /* The 32bit and 64bit ABIs save RP into different locations. */
1657 if (DEPRECATED_REGISTER_SIZE == 8)
1658 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1659 else
1660 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1661
1662 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1663
1664 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1665
1666 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1667 {
1668 if (i != DEPRECATED_FP_REGNUM)
1669 {
1670 frame_saved_regs[i] = fp;
1671 fp += DEPRECATED_REGISTER_SIZE;
1672 }
1673 }
1674
1675 /* This is not necessary or desirable for the 64bit ABI. */
1676 if (DEPRECATED_REGISTER_SIZE != 8)
1677 fp += 4;
1678
1679 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1680 frame_saved_regs[i] = fp;
1681
1682 frame_saved_regs[IPSW_REGNUM] = fp;
1683 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1684 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1685 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1686 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1687 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1688 }
1689
1690 void
1691 hppa_pop_frame (void)
1692 {
1693 struct frame_info *frame = get_current_frame ();
1694 CORE_ADDR fp, npc, target_pc;
1695 int regnum;
1696 CORE_ADDR *fsr;
1697 double freg_buffer;
1698
1699 fp = get_frame_base (frame);
1700 hppa_frame_init_saved_regs (frame);
1701 fsr = get_frame_saved_regs (frame);
1702
1703 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1704 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1705 restore_pc_queue (fsr);
1706 #endif
1707
1708 for (regnum = 31; regnum > 0; regnum--)
1709 if (fsr[regnum])
1710 write_register (regnum, read_memory_integer (fsr[regnum],
1711 DEPRECATED_REGISTER_SIZE));
1712
1713 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1714 if (fsr[regnum])
1715 {
1716 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1717 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1718 (char *) &freg_buffer, 8);
1719 }
1720
1721 if (fsr[IPSW_REGNUM])
1722 write_register (IPSW_REGNUM,
1723 read_memory_integer (fsr[IPSW_REGNUM],
1724 DEPRECATED_REGISTER_SIZE));
1725
1726 if (fsr[SAR_REGNUM])
1727 write_register (SAR_REGNUM,
1728 read_memory_integer (fsr[SAR_REGNUM],
1729 DEPRECATED_REGISTER_SIZE));
1730
1731 /* If the PC was explicitly saved, then just restore it. */
1732 if (fsr[PCOQ_TAIL_REGNUM])
1733 {
1734 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1735 DEPRECATED_REGISTER_SIZE);
1736 write_register (PCOQ_TAIL_REGNUM, npc);
1737 }
1738 /* Else use the value in %rp to set the new PC. */
1739 else
1740 {
1741 npc = read_register (RP_REGNUM);
1742 write_pc (npc);
1743 }
1744
1745 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1746
1747 if (fsr[IPSW_REGNUM]) /* call dummy */
1748 write_register (SP_REGNUM, fp - 48);
1749 else
1750 write_register (SP_REGNUM, fp);
1751
1752 /* The PC we just restored may be inside a return trampoline. If so
1753 we want to restart the inferior and run it through the trampoline.
1754
1755 Do this by setting a momentary breakpoint at the location the
1756 trampoline returns to.
1757
1758 Don't skip through the trampoline if we're popping a dummy frame. */
1759 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1760 if (target_pc && !fsr[IPSW_REGNUM])
1761 {
1762 struct symtab_and_line sal;
1763 struct breakpoint *breakpoint;
1764 struct cleanup *old_chain;
1765
1766 /* Set up our breakpoint. Set it to be silent as the MI code
1767 for "return_command" will print the frame we returned to. */
1768 sal = find_pc_line (target_pc, 0);
1769 sal.pc = target_pc;
1770 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1771 breakpoint->silent = 1;
1772
1773 /* So we can clean things up. */
1774 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1775
1776 /* Start up the inferior. */
1777 clear_proceed_status ();
1778 proceed_to_finish = 1;
1779 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1780
1781 /* Perform our cleanups. */
1782 do_cleanups (old_chain);
1783 }
1784 flush_cached_frames ();
1785 }
1786
1787 /* After returning to a dummy on the stack, restore the instruction
1788 queue space registers. */
1789
1790 static int
1791 restore_pc_queue (CORE_ADDR *fsr)
1792 {
1793 CORE_ADDR pc = read_pc ();
1794 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1795 TARGET_PTR_BIT / 8);
1796 struct target_waitstatus w;
1797 int insn_count;
1798
1799 /* Advance past break instruction in the call dummy. */
1800 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1801 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1802
1803 /* HPUX doesn't let us set the space registers or the space
1804 registers of the PC queue through ptrace. Boo, hiss.
1805 Conveniently, the call dummy has this sequence of instructions
1806 after the break:
1807 mtsp r21, sr0
1808 ble,n 0(sr0, r22)
1809
1810 So, load up the registers and single step until we are in the
1811 right place. */
1812
1813 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1814 DEPRECATED_REGISTER_SIZE));
1815 write_register (22, new_pc);
1816
1817 for (insn_count = 0; insn_count < 3; insn_count++)
1818 {
1819 /* FIXME: What if the inferior gets a signal right now? Want to
1820 merge this into wait_for_inferior (as a special kind of
1821 watchpoint? By setting a breakpoint at the end? Is there
1822 any other choice? Is there *any* way to do this stuff with
1823 ptrace() or some equivalent?). */
1824 resume (1, 0);
1825 target_wait (inferior_ptid, &w);
1826
1827 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1828 {
1829 stop_signal = w.value.sig;
1830 terminal_ours_for_output ();
1831 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1832 target_signal_to_name (stop_signal),
1833 target_signal_to_string (stop_signal));
1834 gdb_flush (gdb_stdout);
1835 return 0;
1836 }
1837 }
1838 target_terminal_ours ();
1839 target_fetch_registers (-1);
1840 return 1;
1841 }
1842
1843
1844 #ifdef PA20W_CALLING_CONVENTIONS
1845
1846 /* This function pushes a stack frame with arguments as part of the
1847 inferior function calling mechanism.
1848
1849 This is the version for the PA64, in which later arguments appear
1850 at higher addresses. (The stack always grows towards higher
1851 addresses.)
1852
1853 We simply allocate the appropriate amount of stack space and put
1854 arguments into their proper slots. The call dummy code will copy
1855 arguments into registers as needed by the ABI.
1856
1857 This ABI also requires that the caller provide an argument pointer
1858 to the callee, so we do that too. */
1859
1860 CORE_ADDR
1861 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1862 int struct_return, CORE_ADDR struct_addr)
1863 {
1864 /* array of arguments' offsets */
1865 int *offset = (int *) alloca (nargs * sizeof (int));
1866
1867 /* array of arguments' lengths: real lengths in bytes, not aligned to
1868 word size */
1869 int *lengths = (int *) alloca (nargs * sizeof (int));
1870
1871 /* The value of SP as it was passed into this function after
1872 aligning. */
1873 CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp);
1874
1875 /* The number of stack bytes occupied by the current argument. */
1876 int bytes_reserved;
1877
1878 /* The total number of bytes reserved for the arguments. */
1879 int cum_bytes_reserved = 0;
1880
1881 /* Similarly, but aligned. */
1882 int cum_bytes_aligned = 0;
1883 int i;
1884
1885 /* Iterate over each argument provided by the user. */
1886 for (i = 0; i < nargs; i++)
1887 {
1888 struct type *arg_type = VALUE_TYPE (args[i]);
1889
1890 /* Integral scalar values smaller than a register are padded on
1891 the left. We do this by promoting them to full-width,
1892 although the ABI says to pad them with garbage. */
1893 if (is_integral_type (arg_type)
1894 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1895 {
1896 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1897 ? builtin_type_unsigned_long
1898 : builtin_type_long),
1899 args[i]);
1900 arg_type = VALUE_TYPE (args[i]);
1901 }
1902
1903 lengths[i] = TYPE_LENGTH (arg_type);
1904
1905 /* Align the size of the argument to the word size for this
1906 target. */
1907 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1908
1909 offset[i] = cum_bytes_reserved;
1910
1911 /* Aggregates larger than eight bytes (the only types larger
1912 than eight bytes we have) are aligned on a 16-byte boundary,
1913 possibly padded on the right with garbage. This may leave an
1914 empty word on the stack, and thus an unused register, as per
1915 the ABI. */
1916 if (bytes_reserved > 8)
1917 {
1918 /* Round up the offset to a multiple of two slots. */
1919 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1920 & -(2*DEPRECATED_REGISTER_SIZE));
1921
1922 /* Note the space we've wasted, if any. */
1923 bytes_reserved += new_offset - offset[i];
1924 offset[i] = new_offset;
1925 }
1926
1927 cum_bytes_reserved += bytes_reserved;
1928 }
1929
1930 /* CUM_BYTES_RESERVED already accounts for all the arguments
1931 passed by the user. However, the ABIs mandate minimum stack space
1932 allocations for outgoing arguments.
1933
1934 The ABIs also mandate minimum stack alignments which we must
1935 preserve. */
1936 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
1937 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1938
1939 /* Now write each of the args at the proper offset down the stack. */
1940 for (i = 0; i < nargs; i++)
1941 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1942
1943 /* If a structure has to be returned, set up register 28 to hold its
1944 address */
1945 if (struct_return)
1946 write_register (28, struct_addr);
1947
1948 /* For the PA64 we must pass a pointer to the outgoing argument list.
1949 The ABI mandates that the pointer should point to the first byte of
1950 storage beyond the register flushback area.
1951
1952 However, the call dummy expects the outgoing argument pointer to
1953 be passed in register %r4. */
1954 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1955
1956 /* ?!? This needs further work. We need to set up the global data
1957 pointer for this procedure. This assumes the same global pointer
1958 for every procedure. The call dummy expects the dp value to
1959 be passed in register %r6. */
1960 write_register (6, read_register (27));
1961
1962 /* The stack will have 64 bytes of additional space for a frame marker. */
1963 return sp + 64;
1964 }
1965
1966 #else
1967
1968 /* This function pushes a stack frame with arguments as part of the
1969 inferior function calling mechanism.
1970
1971 This is the version of the function for the 32-bit PA machines, in
1972 which later arguments appear at lower addresses. (The stack always
1973 grows towards higher addresses.)
1974
1975 We simply allocate the appropriate amount of stack space and put
1976 arguments into their proper slots. The call dummy code will copy
1977 arguments into registers as needed by the ABI. */
1978
1979 CORE_ADDR
1980 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1981 int struct_return, CORE_ADDR struct_addr)
1982 {
1983 /* array of arguments' offsets */
1984 int *offset = (int *) alloca (nargs * sizeof (int));
1985
1986 /* array of arguments' lengths: real lengths in bytes, not aligned to
1987 word size */
1988 int *lengths = (int *) alloca (nargs * sizeof (int));
1989
1990 /* The number of stack bytes occupied by the current argument. */
1991 int bytes_reserved;
1992
1993 /* The total number of bytes reserved for the arguments. */
1994 int cum_bytes_reserved = 0;
1995
1996 /* Similarly, but aligned. */
1997 int cum_bytes_aligned = 0;
1998 int i;
1999
2000 /* Iterate over each argument provided by the user. */
2001 for (i = 0; i < nargs; i++)
2002 {
2003 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2004
2005 /* Align the size of the argument to the word size for this
2006 target. */
2007 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2008
2009 offset[i] = (cum_bytes_reserved
2010 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
2011
2012 /* If the argument is a double word argument, then it needs to be
2013 double word aligned. */
2014 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
2015 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
2016 {
2017 int new_offset = 0;
2018 /* BYTES_RESERVED is already aligned to the word, so we put
2019 the argument at one word more down the stack.
2020
2021 This will leave one empty word on the stack, and one unused
2022 register as mandated by the ABI. */
2023 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
2024 & -(2 * DEPRECATED_REGISTER_SIZE));
2025
2026 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
2027 {
2028 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2029 offset[i] += DEPRECATED_REGISTER_SIZE;
2030 }
2031 }
2032
2033 cum_bytes_reserved += bytes_reserved;
2034
2035 }
2036
2037 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2038 by the user. However, the ABI mandates minimum stack space
2039 allocations for outgoing arguments.
2040
2041 The ABI also mandates minimum stack alignments which we must
2042 preserve. */
2043 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
2044 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2045
2046 /* Now write each of the args at the proper offset down the stack.
2047 ?!? We need to promote values to a full register instead of skipping
2048 words in the stack. */
2049 for (i = 0; i < nargs; i++)
2050 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2051
2052 /* If a structure has to be returned, set up register 28 to hold its
2053 address */
2054 if (struct_return)
2055 write_register (28, struct_addr);
2056
2057 /* The stack will have 32 bytes of additional space for a frame marker. */
2058 return sp + 32;
2059 }
2060
2061 #endif
2062
2063 /* elz: this function returns a value which is built looking at the given address.
2064 It is called from call_function_by_hand, in case we need to return a
2065 value which is larger than 64 bits, and it is stored in the stack rather than
2066 in the registers r28 and r29 or fr4.
2067 This function does the same stuff as value_being_returned in values.c, but
2068 gets the value from the stack rather than from the buffer where all the
2069 registers were saved when the function called completed. */
2070 struct value *
2071 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
2072 {
2073 struct value *val;
2074
2075 val = allocate_value (valtype);
2076 CHECK_TYPEDEF (valtype);
2077 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
2078
2079 return val;
2080 }
2081
2082
2083
2084 /* elz: Used to lookup a symbol in the shared libraries.
2085 This function calls shl_findsym, indirectly through a
2086 call to __d_shl_get. __d_shl_get is in end.c, which is always
2087 linked in by the hp compilers/linkers.
2088 The call to shl_findsym cannot be made directly because it needs
2089 to be active in target address space.
2090 inputs: - minimal symbol pointer for the function we want to look up
2091 - address in target space of the descriptor for the library
2092 where we want to look the symbol up.
2093 This address is retrieved using the
2094 som_solib_get_solib_by_pc function (somsolib.c).
2095 output: - real address in the library of the function.
2096 note: the handle can be null, in which case shl_findsym will look for
2097 the symbol in all the loaded shared libraries.
2098 files to look at if you need reference on this stuff:
2099 dld.c, dld_shl_findsym.c
2100 end.c
2101 man entry for shl_findsym */
2102
2103 CORE_ADDR
2104 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
2105 {
2106 struct symbol *get_sym, *symbol2;
2107 struct minimal_symbol *buff_minsym, *msymbol;
2108 struct type *ftype;
2109 struct value **args;
2110 struct value *funcval;
2111 struct value *val;
2112
2113 int x, namelen, err_value, tmp = -1;
2114 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2115 CORE_ADDR stub_addr;
2116
2117
2118 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
2119 funcval = find_function_in_inferior ("__d_shl_get");
2120 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
2121 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2122 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
2123 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
2124 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
2125 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
2126 value_return_addr = endo_buff_addr + namelen;
2127 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2128
2129 /* do alignment */
2130 if ((x = value_return_addr % 64) != 0)
2131 value_return_addr = value_return_addr + 64 - x;
2132
2133 errno_return_addr = value_return_addr + 64;
2134
2135
2136 /* set up stuff needed by __d_shl_get in buffer in end.o */
2137
2138 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
2139
2140 target_write_memory (value_return_addr, (char *) &tmp, 4);
2141
2142 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2143
2144 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2145 (char *) &handle, 4);
2146
2147 /* now prepare the arguments for the call */
2148
2149 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2150 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2151 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2152 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2153 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2154 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2155
2156 /* now call the function */
2157
2158 val = call_function_by_hand (funcval, 6, args);
2159
2160 /* now get the results */
2161
2162 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2163
2164 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2165 if (stub_addr <= 0)
2166 error ("call to __d_shl_get failed, error code is %d", err_value);
2167
2168 return (stub_addr);
2169 }
2170
2171 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2172 static int
2173 cover_find_stub_with_shl_get (void *args_untyped)
2174 {
2175 args_for_find_stub *args = args_untyped;
2176 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2177 return 0;
2178 }
2179
2180 /* Insert the specified number of args and function address
2181 into a call sequence of the above form stored at DUMMYNAME.
2182
2183 On the hppa we need to call the stack dummy through $$dyncall.
2184 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2185 argument, real_pc, which is the location where gdb should start up
2186 the inferior to do the function call.
2187
2188 This has to work across several versions of hpux, bsd, osf1. It has to
2189 work regardless of what compiler was used to build the inferior program.
2190 It should work regardless of whether or not end.o is available. It has
2191 to work even if gdb can not call into the dynamic loader in the inferior
2192 to query it for symbol names and addresses.
2193
2194 Yes, all those cases should work. Luckily code exists to handle most
2195 of them. The complexity is in selecting exactly what scheme should
2196 be used to perform the inferior call.
2197
2198 At the current time this routine is known not to handle cases where
2199 the program was linked with HP's compiler without including end.o.
2200
2201 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2202
2203 CORE_ADDR
2204 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2205 struct value **args, struct type *type, int gcc_p)
2206 {
2207 CORE_ADDR dyncall_addr;
2208 struct minimal_symbol *msymbol;
2209 struct minimal_symbol *trampoline;
2210 int flags = read_register (FLAGS_REGNUM);
2211 struct unwind_table_entry *u = NULL;
2212 CORE_ADDR new_stub = 0;
2213 CORE_ADDR solib_handle = 0;
2214
2215 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2216 passed an import stub, not a PLABEL. It is also necessary to set %r19
2217 (the PIC register) before performing the call.
2218
2219 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2220 are calling the target directly. When using __d_plt_call we want to
2221 use a PLABEL instead of an import stub. */
2222 int using_gcc_plt_call = 1;
2223
2224 #ifdef GDB_TARGET_IS_HPPA_20W
2225 /* We currently use completely different code for the PA2.0W inferior
2226 function call sequences. This needs to be cleaned up. */
2227 {
2228 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2229 struct target_waitstatus w;
2230 int inst1, inst2;
2231 char buf[4];
2232 int status;
2233 struct objfile *objfile;
2234
2235 /* We can not modify the PC space queues directly, so we start
2236 up the inferior and execute a couple instructions to set the
2237 space queues so that they point to the call dummy in the stack. */
2238 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2239 sr5 = read_register (SR5_REGNUM);
2240 if (1)
2241 {
2242 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2243 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2244 if (target_read_memory (pcoqh, buf, 4) != 0)
2245 error ("Couldn't modify space queue\n");
2246 inst1 = extract_unsigned_integer (buf, 4);
2247
2248 if (target_read_memory (pcoqt, buf, 4) != 0)
2249 error ("Couldn't modify space queue\n");
2250 inst2 = extract_unsigned_integer (buf, 4);
2251
2252 /* BVE (r1) */
2253 *((int *) buf) = 0xe820d000;
2254 if (target_write_memory (pcoqh, buf, 4) != 0)
2255 error ("Couldn't modify space queue\n");
2256
2257 /* NOP */
2258 *((int *) buf) = 0x08000240;
2259 if (target_write_memory (pcoqt, buf, 4) != 0)
2260 {
2261 *((int *) buf) = inst1;
2262 target_write_memory (pcoqh, buf, 4);
2263 error ("Couldn't modify space queue\n");
2264 }
2265
2266 write_register (1, pc);
2267
2268 /* Single step twice, the BVE instruction will set the space queue
2269 such that it points to the PC value written immediately above
2270 (ie the call dummy). */
2271 resume (1, 0);
2272 target_wait (inferior_ptid, &w);
2273 resume (1, 0);
2274 target_wait (inferior_ptid, &w);
2275
2276 /* Restore the two instructions at the old PC locations. */
2277 *((int *) buf) = inst1;
2278 target_write_memory (pcoqh, buf, 4);
2279 *((int *) buf) = inst2;
2280 target_write_memory (pcoqt, buf, 4);
2281 }
2282
2283 /* The call dummy wants the ultimate destination address initially
2284 in register %r5. */
2285 write_register (5, fun);
2286
2287 /* We need to see if this objfile has a different DP value than our
2288 own (it could be a shared library for example). */
2289 ALL_OBJFILES (objfile)
2290 {
2291 struct obj_section *s;
2292 obj_private_data_t *obj_private;
2293
2294 /* See if FUN is in any section within this shared library. */
2295 for (s = objfile->sections; s < objfile->sections_end; s++)
2296 if (s->addr <= fun && fun < s->endaddr)
2297 break;
2298
2299 if (s >= objfile->sections_end)
2300 continue;
2301
2302 obj_private = (obj_private_data_t *) objfile->obj_private;
2303
2304 /* The DP value may be different for each objfile. But within an
2305 objfile each function uses the same dp value. Thus we do not need
2306 to grope around the opd section looking for dp values.
2307
2308 ?!? This is not strictly correct since we may be in a shared library
2309 and want to call back into the main program. To make that case
2310 work correctly we need to set obj_private->dp for the main program's
2311 objfile, then remove this conditional. */
2312 if (obj_private->dp)
2313 write_register (27, obj_private->dp);
2314 break;
2315 }
2316 return pc;
2317 }
2318 #endif
2319
2320 #ifndef GDB_TARGET_IS_HPPA_20W
2321 /* Prefer __gcc_plt_call over the HP supplied routine because
2322 __gcc_plt_call works for any number of arguments. */
2323 trampoline = NULL;
2324 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2325 using_gcc_plt_call = 0;
2326
2327 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2328 if (msymbol == NULL)
2329 error ("Can't find an address for $$dyncall trampoline");
2330
2331 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2332
2333 /* FUN could be a procedure label, in which case we have to get
2334 its real address and the value of its GOT/DP if we plan to
2335 call the routine via gcc_plt_call. */
2336 if ((fun & 0x2) && using_gcc_plt_call)
2337 {
2338 /* Get the GOT/DP value for the target function. It's
2339 at *(fun+4). Note the call dummy is *NOT* allowed to
2340 trash %r19 before calling the target function. */
2341 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2342 DEPRECATED_REGISTER_SIZE));
2343
2344 /* Now get the real address for the function we are calling, it's
2345 at *fun. */
2346 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2347 TARGET_PTR_BIT / 8);
2348 }
2349 else
2350 {
2351
2352 #ifndef GDB_TARGET_IS_PA_ELF
2353 /* FUN could be an export stub, the real address of a function, or
2354 a PLABEL. When using gcc's PLT call routine we must call an import
2355 stub rather than the export stub or real function for lazy binding
2356 to work correctly
2357
2358 If we are using the gcc PLT call routine, then we need to
2359 get the import stub for the target function. */
2360 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2361 {
2362 struct objfile *objfile;
2363 struct minimal_symbol *funsymbol, *stub_symbol;
2364 CORE_ADDR newfun = 0;
2365
2366 funsymbol = lookup_minimal_symbol_by_pc (fun);
2367 if (!funsymbol)
2368 error ("Unable to find minimal symbol for target function.\n");
2369
2370 /* Search all the object files for an import symbol with the
2371 right name. */
2372 ALL_OBJFILES (objfile)
2373 {
2374 stub_symbol
2375 = lookup_minimal_symbol_solib_trampoline
2376 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
2377
2378 if (!stub_symbol)
2379 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2380 NULL, objfile);
2381
2382 /* Found a symbol with the right name. */
2383 if (stub_symbol)
2384 {
2385 struct unwind_table_entry *u;
2386 /* It must be a shared library trampoline. */
2387 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2388 continue;
2389
2390 /* It must also be an import stub. */
2391 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2392 if (u == NULL
2393 || (u->stub_unwind.stub_type != IMPORT
2394 #ifdef GDB_NATIVE_HPUX_11
2395 /* Sigh. The hpux 10.20 dynamic linker will blow
2396 chunks if we perform a call to an unbound function
2397 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2398 linker will blow chunks if we do not call the
2399 unbound function via the IMPORT_SHLIB stub.
2400
2401 We currently have no way to select bevahior on just
2402 the target. However, we only support HPUX/SOM in
2403 native mode. So we conditinalize on a native
2404 #ifdef. Ugly. Ugly. Ugly */
2405 && u->stub_unwind.stub_type != IMPORT_SHLIB
2406 #endif
2407 ))
2408 continue;
2409
2410 /* OK. Looks like the correct import stub. */
2411 newfun = SYMBOL_VALUE (stub_symbol);
2412 fun = newfun;
2413
2414 /* If we found an IMPORT stub, then we want to stop
2415 searching now. If we found an IMPORT_SHLIB, we want
2416 to continue the search in the hopes that we will find
2417 an IMPORT stub. */
2418 if (u->stub_unwind.stub_type == IMPORT)
2419 break;
2420 }
2421 }
2422
2423 /* Ouch. We did not find an import stub. Make an attempt to
2424 do the right thing instead of just croaking. Most of the
2425 time this will actually work. */
2426 if (newfun == 0)
2427 write_register (19, som_solib_get_got_by_pc (fun));
2428
2429 u = find_unwind_entry (fun);
2430 if (u
2431 && (u->stub_unwind.stub_type == IMPORT
2432 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2433 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2434
2435 /* If we found the import stub in the shared library, then we have
2436 to set %r19 before we call the stub. */
2437 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2438 write_register (19, som_solib_get_got_by_pc (fun));
2439 }
2440 #endif
2441 }
2442
2443 /* If we are calling into another load module then have sr4export call the
2444 magic __d_plt_call routine which is linked in from end.o.
2445
2446 You can't use _sr4export to make the call as the value in sp-24 will get
2447 fried and you end up returning to the wrong location. You can't call the
2448 target as the code to bind the PLT entry to a function can't return to a
2449 stack address.
2450
2451 Also, query the dynamic linker in the inferior to provide a suitable
2452 PLABEL for the target function. */
2453 if (!using_gcc_plt_call)
2454 {
2455 CORE_ADDR new_fun;
2456
2457 /* Get a handle for the shared library containing FUN. Given the
2458 handle we can query the shared library for a PLABEL. */
2459 solib_handle = som_solib_get_solib_by_pc (fun);
2460
2461 if (solib_handle)
2462 {
2463 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2464
2465 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2466
2467 if (trampoline == NULL)
2468 {
2469 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2470 }
2471
2472 /* This is where sr4export will jump to. */
2473 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2474
2475 /* If the function is in a shared library, then call __d_shl_get to
2476 get a PLABEL for the target function. */
2477 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2478
2479 if (new_stub == 0)
2480 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2481
2482 /* We have to store the address of the stub in __shlib_funcptr. */
2483 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2484 (struct objfile *) NULL);
2485
2486 if (msymbol == NULL)
2487 error ("Can't find an address for __shlib_funcptr");
2488 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2489 (char *) &new_stub, 4);
2490
2491 /* We want sr4export to call __d_plt_call, so we claim it is
2492 the final target. Clear trampoline. */
2493 fun = new_fun;
2494 trampoline = NULL;
2495 }
2496 }
2497
2498 /* Store upper 21 bits of function address into ldil. fun will either be
2499 the final target (most cases) or __d_plt_call when calling into a shared
2500 library and __gcc_plt_call is not available. */
2501 store_unsigned_integer
2502 (&dummy[FUNC_LDIL_OFFSET],
2503 INSTRUCTION_SIZE,
2504 deposit_21 (fun >> 11,
2505 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2506 INSTRUCTION_SIZE)));
2507
2508 /* Store lower 11 bits of function address into ldo */
2509 store_unsigned_integer
2510 (&dummy[FUNC_LDO_OFFSET],
2511 INSTRUCTION_SIZE,
2512 deposit_14 (fun & MASK_11,
2513 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2514 INSTRUCTION_SIZE)));
2515 #ifdef SR4EXPORT_LDIL_OFFSET
2516
2517 {
2518 CORE_ADDR trampoline_addr;
2519
2520 /* We may still need sr4export's address too. */
2521
2522 if (trampoline == NULL)
2523 {
2524 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2525 if (msymbol == NULL)
2526 error ("Can't find an address for _sr4export trampoline");
2527
2528 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2529 }
2530 else
2531 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2532
2533
2534 /* Store upper 21 bits of trampoline's address into ldil */
2535 store_unsigned_integer
2536 (&dummy[SR4EXPORT_LDIL_OFFSET],
2537 INSTRUCTION_SIZE,
2538 deposit_21 (trampoline_addr >> 11,
2539 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2540 INSTRUCTION_SIZE)));
2541
2542 /* Store lower 11 bits of trampoline's address into ldo */
2543 store_unsigned_integer
2544 (&dummy[SR4EXPORT_LDO_OFFSET],
2545 INSTRUCTION_SIZE,
2546 deposit_14 (trampoline_addr & MASK_11,
2547 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2548 INSTRUCTION_SIZE)));
2549 }
2550 #endif
2551
2552 write_register (22, pc);
2553
2554 /* If we are in a syscall, then we should call the stack dummy
2555 directly. $$dyncall is not needed as the kernel sets up the
2556 space id registers properly based on the value in %r31. In
2557 fact calling $$dyncall will not work because the value in %r22
2558 will be clobbered on the syscall exit path.
2559
2560 Similarly if the current PC is in a shared library. Note however,
2561 this scheme won't work if the shared library isn't mapped into
2562 the same space as the stack. */
2563 if (flags & 2)
2564 return pc;
2565 #ifndef GDB_TARGET_IS_PA_ELF
2566 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2567 return pc;
2568 #endif
2569 else
2570 return dyncall_addr;
2571 #endif
2572 }
2573
2574 /* If the pid is in a syscall, then the FP register is not readable.
2575 We'll return zero in that case, rather than attempting to read it
2576 and cause a warning. */
2577
2578 CORE_ADDR
2579 hppa_read_fp (int pid)
2580 {
2581 int flags = read_register (FLAGS_REGNUM);
2582
2583 if (flags & 2)
2584 {
2585 return (CORE_ADDR) 0;
2586 }
2587
2588 /* This is the only site that may directly read_register () the FP
2589 register. All others must use deprecated_read_fp (). */
2590 return read_register (DEPRECATED_FP_REGNUM);
2591 }
2592
2593 CORE_ADDR
2594 hppa_target_read_fp (void)
2595 {
2596 return hppa_read_fp (PIDGET (inferior_ptid));
2597 }
2598
2599 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2600 bits. */
2601
2602 CORE_ADDR
2603 hppa_target_read_pc (ptid_t ptid)
2604 {
2605 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2606
2607 /* The following test does not belong here. It is OS-specific, and belongs
2608 in native code. */
2609 /* Test SS_INSYSCALL */
2610 if (flags & 2)
2611 return read_register_pid (31, ptid) & ~0x3;
2612
2613 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2614 }
2615
2616 /* Write out the PC. If currently in a syscall, then also write the new
2617 PC value into %r31. */
2618
2619 void
2620 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2621 {
2622 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2623
2624 /* The following test does not belong here. It is OS-specific, and belongs
2625 in native code. */
2626 /* If in a syscall, then set %r31. Also make sure to get the
2627 privilege bits set correctly. */
2628 /* Test SS_INSYSCALL */
2629 if (flags & 2)
2630 write_register_pid (31, v | 0x3, ptid);
2631
2632 write_register_pid (PC_REGNUM, v, ptid);
2633 write_register_pid (NPC_REGNUM, v + 4, ptid);
2634 }
2635
2636 /* return the alignment of a type in bytes. Structures have the maximum
2637 alignment required by their fields. */
2638
2639 static int
2640 hppa_alignof (struct type *type)
2641 {
2642 int max_align, align, i;
2643 CHECK_TYPEDEF (type);
2644 switch (TYPE_CODE (type))
2645 {
2646 case TYPE_CODE_PTR:
2647 case TYPE_CODE_INT:
2648 case TYPE_CODE_FLT:
2649 return TYPE_LENGTH (type);
2650 case TYPE_CODE_ARRAY:
2651 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2652 case TYPE_CODE_STRUCT:
2653 case TYPE_CODE_UNION:
2654 max_align = 1;
2655 for (i = 0; i < TYPE_NFIELDS (type); i++)
2656 {
2657 /* Bit fields have no real alignment. */
2658 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2659 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2660 {
2661 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2662 max_align = max (max_align, align);
2663 }
2664 }
2665 return max_align;
2666 default:
2667 return 4;
2668 }
2669 }
2670
2671 /* Print the register regnum, or all registers if regnum is -1 */
2672
2673 void
2674 pa_do_registers_info (int regnum, int fpregs)
2675 {
2676 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2677 int i;
2678
2679 /* Make a copy of gdb's save area (may cause actual
2680 reads from the target). */
2681 for (i = 0; i < NUM_REGS; i++)
2682 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2683
2684 if (regnum == -1)
2685 pa_print_registers (raw_regs, regnum, fpregs);
2686 else if (regnum < FP4_REGNUM)
2687 {
2688 long reg_val[2];
2689
2690 /* Why is the value not passed through "extract_signed_integer"
2691 as in "pa_print_registers" below? */
2692 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2693
2694 if (!is_pa_2)
2695 {
2696 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2697 }
2698 else
2699 {
2700 /* Fancy % formats to prevent leading zeros. */
2701 if (reg_val[0] == 0)
2702 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2703 else
2704 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2705 reg_val[0], reg_val[1]);
2706 }
2707 }
2708 else
2709 /* Note that real floating point values only start at
2710 FP4_REGNUM. FP0 and up are just status and error
2711 registers, which have integral (bit) values. */
2712 pa_print_fp_reg (regnum);
2713 }
2714
2715 /********** new function ********************/
2716 void
2717 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2718 enum precision_type precision)
2719 {
2720 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2721 int i;
2722
2723 /* Make a copy of gdb's save area (may cause actual
2724 reads from the target). */
2725 for (i = 0; i < NUM_REGS; i++)
2726 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2727
2728 if (regnum == -1)
2729 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2730
2731 else if (regnum < FP4_REGNUM)
2732 {
2733 long reg_val[2];
2734
2735 /* Why is the value not passed through "extract_signed_integer"
2736 as in "pa_print_registers" below? */
2737 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2738
2739 if (!is_pa_2)
2740 {
2741 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2742 }
2743 else
2744 {
2745 /* Fancy % formats to prevent leading zeros. */
2746 if (reg_val[0] == 0)
2747 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2748 reg_val[1]);
2749 else
2750 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2751 reg_val[0], reg_val[1]);
2752 }
2753 }
2754 else
2755 /* Note that real floating point values only start at
2756 FP4_REGNUM. FP0 and up are just status and error
2757 registers, which have integral (bit) values. */
2758 pa_strcat_fp_reg (regnum, stream, precision);
2759 }
2760
2761 /* If this is a PA2.0 machine, fetch the real 64-bit register
2762 value. Otherwise use the info from gdb's saved register area.
2763
2764 Note that reg_val is really expected to be an array of longs,
2765 with two elements. */
2766 static void
2767 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2768 {
2769 static int know_which = 0; /* False */
2770
2771 int regaddr;
2772 unsigned int offset;
2773 int i;
2774 int start;
2775
2776
2777 char buf[MAX_REGISTER_SIZE];
2778 long long reg_val;
2779
2780 if (!know_which)
2781 {
2782 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2783 {
2784 is_pa_2 = (1 == 1);
2785 }
2786
2787 know_which = 1; /* True */
2788 }
2789
2790 raw_val[0] = 0;
2791 raw_val[1] = 0;
2792
2793 if (!is_pa_2)
2794 {
2795 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2796 return;
2797 }
2798
2799 /* Code below copied from hppah-nat.c, with fixes for wide
2800 registers, using different area of save_state, etc. */
2801 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2802 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2803 {
2804 /* Use narrow regs area of save_state and default macro. */
2805 offset = U_REGS_OFFSET;
2806 regaddr = register_addr (regnum, offset);
2807 start = 1;
2808 }
2809 else
2810 {
2811 /* Use wide regs area, and calculate registers as 8 bytes wide.
2812
2813 We'd like to do this, but current version of "C" doesn't
2814 permit "offsetof":
2815
2816 offset = offsetof(save_state_t, ss_wide);
2817
2818 Note that to avoid "C" doing typed pointer arithmetic, we
2819 have to cast away the type in our offset calculation:
2820 otherwise we get an offset of 1! */
2821
2822 /* NB: save_state_t is not available before HPUX 9.
2823 The ss_wide field is not available previous to HPUX 10.20,
2824 so to avoid compile-time warnings, we only compile this for
2825 PA 2.0 processors. This control path should only be followed
2826 if we're debugging a PA 2.0 processor, so this should not cause
2827 problems. */
2828
2829 /* #if the following code out so that this file can still be
2830 compiled on older HPUX boxes (< 10.20) which don't have
2831 this structure/structure member. */
2832 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2833 save_state_t temp;
2834
2835 offset = ((int) &temp.ss_wide) - ((int) &temp);
2836 regaddr = offset + regnum * 8;
2837 start = 0;
2838 #endif
2839 }
2840
2841 for (i = start; i < 2; i++)
2842 {
2843 errno = 0;
2844 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2845 (PTRACE_ARG3_TYPE) regaddr, 0);
2846 if (errno != 0)
2847 {
2848 /* Warning, not error, in case we are attached; sometimes the
2849 kernel doesn't let us at the registers. */
2850 char *err = safe_strerror (errno);
2851 char *msg = alloca (strlen (err) + 128);
2852 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2853 warning (msg);
2854 goto error_exit;
2855 }
2856
2857 regaddr += sizeof (long);
2858 }
2859
2860 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2861 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2862
2863 error_exit:
2864 ;
2865 }
2866
2867 /* "Info all-reg" command */
2868
2869 static void
2870 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2871 {
2872 int i, j;
2873 /* Alas, we are compiled so that "long long" is 32 bits */
2874 long raw_val[2];
2875 long long_val;
2876 int rows = 48, columns = 2;
2877
2878 for (i = 0; i < rows; i++)
2879 {
2880 for (j = 0; j < columns; j++)
2881 {
2882 /* We display registers in column-major order. */
2883 int regnum = i + j * rows;
2884
2885 /* Q: Why is the value passed through "extract_signed_integer",
2886 while above, in "pa_do_registers_info" it isn't?
2887 A: ? */
2888 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2889
2890 /* Even fancier % formats to prevent leading zeros
2891 and still maintain the output in columns. */
2892 if (!is_pa_2)
2893 {
2894 /* Being big-endian, on this machine the low bits
2895 (the ones we want to look at) are in the second longword. */
2896 long_val = extract_signed_integer (&raw_val[1], 4);
2897 printf_filtered ("%10.10s: %8lx ",
2898 REGISTER_NAME (regnum), long_val);
2899 }
2900 else
2901 {
2902 /* raw_val = extract_signed_integer(&raw_val, 8); */
2903 if (raw_val[0] == 0)
2904 printf_filtered ("%10.10s: %8lx ",
2905 REGISTER_NAME (regnum), raw_val[1]);
2906 else
2907 printf_filtered ("%10.10s: %8lx%8.8lx ",
2908 REGISTER_NAME (regnum),
2909 raw_val[0], raw_val[1]);
2910 }
2911 }
2912 printf_unfiltered ("\n");
2913 }
2914
2915 if (fpregs)
2916 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2917 pa_print_fp_reg (i);
2918 }
2919
2920 /************* new function ******************/
2921 static void
2922 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2923 struct ui_file *stream)
2924 {
2925 int i, j;
2926 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2927 long long_val;
2928 enum precision_type precision;
2929
2930 precision = unspecified_precision;
2931
2932 for (i = 0; i < 18; i++)
2933 {
2934 for (j = 0; j < 4; j++)
2935 {
2936 /* Q: Why is the value passed through "extract_signed_integer",
2937 while above, in "pa_do_registers_info" it isn't?
2938 A: ? */
2939 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2940
2941 /* Even fancier % formats to prevent leading zeros
2942 and still maintain the output in columns. */
2943 if (!is_pa_2)
2944 {
2945 /* Being big-endian, on this machine the low bits
2946 (the ones we want to look at) are in the second longword. */
2947 long_val = extract_signed_integer (&raw_val[1], 4);
2948 fprintf_filtered (stream, "%8.8s: %8lx ",
2949 REGISTER_NAME (i + (j * 18)), long_val);
2950 }
2951 else
2952 {
2953 /* raw_val = extract_signed_integer(&raw_val, 8); */
2954 if (raw_val[0] == 0)
2955 fprintf_filtered (stream, "%8.8s: %8lx ",
2956 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2957 else
2958 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2959 REGISTER_NAME (i + (j * 18)), raw_val[0],
2960 raw_val[1]);
2961 }
2962 }
2963 fprintf_unfiltered (stream, "\n");
2964 }
2965
2966 if (fpregs)
2967 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2968 pa_strcat_fp_reg (i, stream, precision);
2969 }
2970
2971 static void
2972 pa_print_fp_reg (int i)
2973 {
2974 char raw_buffer[MAX_REGISTER_SIZE];
2975 char virtual_buffer[MAX_REGISTER_SIZE];
2976
2977 /* Get 32bits of data. */
2978 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2979
2980 /* Put it in the buffer. No conversions are ever necessary. */
2981 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2982
2983 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2984 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2985 fputs_filtered ("(single precision) ", gdb_stdout);
2986
2987 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2988 1, 0, Val_pretty_default);
2989 printf_filtered ("\n");
2990
2991 /* If "i" is even, then this register can also be a double-precision
2992 FP register. Dump it out as such. */
2993 if ((i % 2) == 0)
2994 {
2995 /* Get the data in raw format for the 2nd half. */
2996 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
2997
2998 /* Copy it into the appropriate part of the virtual buffer. */
2999 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
3000 REGISTER_RAW_SIZE (i));
3001
3002 /* Dump it as a double. */
3003 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3004 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3005 fputs_filtered ("(double precision) ", gdb_stdout);
3006
3007 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
3008 1, 0, Val_pretty_default);
3009 printf_filtered ("\n");
3010 }
3011 }
3012
3013 /*************** new function ***********************/
3014 static void
3015 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
3016 {
3017 char raw_buffer[MAX_REGISTER_SIZE];
3018 char virtual_buffer[MAX_REGISTER_SIZE];
3019
3020 fputs_filtered (REGISTER_NAME (i), stream);
3021 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
3022
3023 /* Get 32bits of data. */
3024 frame_register_read (deprecated_selected_frame, i, raw_buffer);
3025
3026 /* Put it in the buffer. No conversions are ever necessary. */
3027 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
3028
3029 if (precision == double_precision && (i % 2) == 0)
3030 {
3031
3032 char raw_buf[MAX_REGISTER_SIZE];
3033
3034 /* Get the data in raw format for the 2nd half. */
3035 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
3036
3037 /* Copy it into the appropriate part of the virtual buffer. */
3038 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
3039
3040 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3041 1, 0, Val_pretty_default);
3042
3043 }
3044 else
3045 {
3046 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
3047 1, 0, Val_pretty_default);
3048 }
3049
3050 }
3051
3052 /* Return one if PC is in the call path of a trampoline, else return zero.
3053
3054 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3055 just shared library trampolines (import, export). */
3056
3057 int
3058 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
3059 {
3060 struct minimal_symbol *minsym;
3061 struct unwind_table_entry *u;
3062 static CORE_ADDR dyncall = 0;
3063 static CORE_ADDR sr4export = 0;
3064
3065 #ifdef GDB_TARGET_IS_HPPA_20W
3066 /* PA64 has a completely different stub/trampoline scheme. Is it
3067 better? Maybe. It's certainly harder to determine with any
3068 certainty that we are in a stub because we can not refer to the
3069 unwinders to help.
3070
3071 The heuristic is simple. Try to lookup the current PC value in th
3072 minimal symbol table. If that fails, then assume we are not in a
3073 stub and return.
3074
3075 Then see if the PC value falls within the section bounds for the
3076 section containing the minimal symbol we found in the first
3077 step. If it does, then assume we are not in a stub and return.
3078
3079 Finally peek at the instructions to see if they look like a stub. */
3080 {
3081 struct minimal_symbol *minsym;
3082 asection *sec;
3083 CORE_ADDR addr;
3084 int insn, i;
3085
3086 minsym = lookup_minimal_symbol_by_pc (pc);
3087 if (! minsym)
3088 return 0;
3089
3090 sec = SYMBOL_BFD_SECTION (minsym);
3091
3092 if (sec->vma <= pc
3093 && sec->vma + sec->_cooked_size < pc)
3094 return 0;
3095
3096 /* We might be in a stub. Peek at the instructions. Stubs are 3
3097 instructions long. */
3098 insn = read_memory_integer (pc, 4);
3099
3100 /* Find out where we think we are within the stub. */
3101 if ((insn & 0xffffc00e) == 0x53610000)
3102 addr = pc;
3103 else if ((insn & 0xffffffff) == 0xe820d000)
3104 addr = pc - 4;
3105 else if ((insn & 0xffffc00e) == 0x537b0000)
3106 addr = pc - 8;
3107 else
3108 return 0;
3109
3110 /* Now verify each insn in the range looks like a stub instruction. */
3111 insn = read_memory_integer (addr, 4);
3112 if ((insn & 0xffffc00e) != 0x53610000)
3113 return 0;
3114
3115 /* Now verify each insn in the range looks like a stub instruction. */
3116 insn = read_memory_integer (addr + 4, 4);
3117 if ((insn & 0xffffffff) != 0xe820d000)
3118 return 0;
3119
3120 /* Now verify each insn in the range looks like a stub instruction. */
3121 insn = read_memory_integer (addr + 8, 4);
3122 if ((insn & 0xffffc00e) != 0x537b0000)
3123 return 0;
3124
3125 /* Looks like a stub. */
3126 return 1;
3127 }
3128 #endif
3129
3130 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3131 new exec file */
3132
3133 /* First see if PC is in one of the two C-library trampolines. */
3134 if (!dyncall)
3135 {
3136 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3137 if (minsym)
3138 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3139 else
3140 dyncall = -1;
3141 }
3142
3143 if (!sr4export)
3144 {
3145 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3146 if (minsym)
3147 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3148 else
3149 sr4export = -1;
3150 }
3151
3152 if (pc == dyncall || pc == sr4export)
3153 return 1;
3154
3155 minsym = lookup_minimal_symbol_by_pc (pc);
3156 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3157 return 1;
3158
3159 /* Get the unwind descriptor corresponding to PC, return zero
3160 if no unwind was found. */
3161 u = find_unwind_entry (pc);
3162 if (!u)
3163 return 0;
3164
3165 /* If this isn't a linker stub, then return now. */
3166 if (u->stub_unwind.stub_type == 0)
3167 return 0;
3168
3169 /* By definition a long-branch stub is a call stub. */
3170 if (u->stub_unwind.stub_type == LONG_BRANCH)
3171 return 1;
3172
3173 /* The call and return path execute the same instructions within
3174 an IMPORT stub! So an IMPORT stub is both a call and return
3175 trampoline. */
3176 if (u->stub_unwind.stub_type == IMPORT)
3177 return 1;
3178
3179 /* Parameter relocation stubs always have a call path and may have a
3180 return path. */
3181 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3182 || u->stub_unwind.stub_type == EXPORT)
3183 {
3184 CORE_ADDR addr;
3185
3186 /* Search forward from the current PC until we hit a branch
3187 or the end of the stub. */
3188 for (addr = pc; addr <= u->region_end; addr += 4)
3189 {
3190 unsigned long insn;
3191
3192 insn = read_memory_integer (addr, 4);
3193
3194 /* Does it look like a bl? If so then it's the call path, if
3195 we find a bv or be first, then we're on the return path. */
3196 if ((insn & 0xfc00e000) == 0xe8000000)
3197 return 1;
3198 else if ((insn & 0xfc00e001) == 0xe800c000
3199 || (insn & 0xfc000000) == 0xe0000000)
3200 return 0;
3201 }
3202
3203 /* Should never happen. */
3204 warning ("Unable to find branch in parameter relocation stub.\n");
3205 return 0;
3206 }
3207
3208 /* Unknown stub type. For now, just return zero. */
3209 return 0;
3210 }
3211
3212 /* Return one if PC is in the return path of a trampoline, else return zero.
3213
3214 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3215 just shared library trampolines (import, export). */
3216
3217 int
3218 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3219 {
3220 struct unwind_table_entry *u;
3221
3222 /* Get the unwind descriptor corresponding to PC, return zero
3223 if no unwind was found. */
3224 u = find_unwind_entry (pc);
3225 if (!u)
3226 return 0;
3227
3228 /* If this isn't a linker stub or it's just a long branch stub, then
3229 return zero. */
3230 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3231 return 0;
3232
3233 /* The call and return path execute the same instructions within
3234 an IMPORT stub! So an IMPORT stub is both a call and return
3235 trampoline. */
3236 if (u->stub_unwind.stub_type == IMPORT)
3237 return 1;
3238
3239 /* Parameter relocation stubs always have a call path and may have a
3240 return path. */
3241 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3242 || u->stub_unwind.stub_type == EXPORT)
3243 {
3244 CORE_ADDR addr;
3245
3246 /* Search forward from the current PC until we hit a branch
3247 or the end of the stub. */
3248 for (addr = pc; addr <= u->region_end; addr += 4)
3249 {
3250 unsigned long insn;
3251
3252 insn = read_memory_integer (addr, 4);
3253
3254 /* Does it look like a bl? If so then it's the call path, if
3255 we find a bv or be first, then we're on the return path. */
3256 if ((insn & 0xfc00e000) == 0xe8000000)
3257 return 0;
3258 else if ((insn & 0xfc00e001) == 0xe800c000
3259 || (insn & 0xfc000000) == 0xe0000000)
3260 return 1;
3261 }
3262
3263 /* Should never happen. */
3264 warning ("Unable to find branch in parameter relocation stub.\n");
3265 return 0;
3266 }
3267
3268 /* Unknown stub type. For now, just return zero. */
3269 return 0;
3270
3271 }
3272
3273 /* Figure out if PC is in a trampoline, and if so find out where
3274 the trampoline will jump to. If not in a trampoline, return zero.
3275
3276 Simple code examination probably is not a good idea since the code
3277 sequences in trampolines can also appear in user code.
3278
3279 We use unwinds and information from the minimal symbol table to
3280 determine when we're in a trampoline. This won't work for ELF
3281 (yet) since it doesn't create stub unwind entries. Whether or
3282 not ELF will create stub unwinds or normal unwinds for linker
3283 stubs is still being debated.
3284
3285 This should handle simple calls through dyncall or sr4export,
3286 long calls, argument relocation stubs, and dyncall/sr4export
3287 calling an argument relocation stub. It even handles some stubs
3288 used in dynamic executables. */
3289
3290 CORE_ADDR
3291 hppa_skip_trampoline_code (CORE_ADDR pc)
3292 {
3293 long orig_pc = pc;
3294 long prev_inst, curr_inst, loc;
3295 static CORE_ADDR dyncall = 0;
3296 static CORE_ADDR dyncall_external = 0;
3297 static CORE_ADDR sr4export = 0;
3298 struct minimal_symbol *msym;
3299 struct unwind_table_entry *u;
3300
3301 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3302 new exec file */
3303
3304 if (!dyncall)
3305 {
3306 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3307 if (msym)
3308 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3309 else
3310 dyncall = -1;
3311 }
3312
3313 if (!dyncall_external)
3314 {
3315 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3316 if (msym)
3317 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3318 else
3319 dyncall_external = -1;
3320 }
3321
3322 if (!sr4export)
3323 {
3324 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3325 if (msym)
3326 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3327 else
3328 sr4export = -1;
3329 }
3330
3331 /* Addresses passed to dyncall may *NOT* be the actual address
3332 of the function. So we may have to do something special. */
3333 if (pc == dyncall)
3334 {
3335 pc = (CORE_ADDR) read_register (22);
3336
3337 /* If bit 30 (counting from the left) is on, then pc is the address of
3338 the PLT entry for this function, not the address of the function
3339 itself. Bit 31 has meaning too, but only for MPE. */
3340 if (pc & 0x2)
3341 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3342 }
3343 if (pc == dyncall_external)
3344 {
3345 pc = (CORE_ADDR) read_register (22);
3346 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3347 }
3348 else if (pc == sr4export)
3349 pc = (CORE_ADDR) (read_register (22));
3350
3351 /* Get the unwind descriptor corresponding to PC, return zero
3352 if no unwind was found. */
3353 u = find_unwind_entry (pc);
3354 if (!u)
3355 return 0;
3356
3357 /* If this isn't a linker stub, then return now. */
3358 /* elz: attention here! (FIXME) because of a compiler/linker
3359 error, some stubs which should have a non zero stub_unwind.stub_type
3360 have unfortunately a value of zero. So this function would return here
3361 as if we were not in a trampoline. To fix this, we go look at the partial
3362 symbol information, which reports this guy as a stub.
3363 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3364 partial symbol information is also wrong sometimes. This is because
3365 when it is entered (somread.c::som_symtab_read()) it can happen that
3366 if the type of the symbol (from the som) is Entry, and the symbol is
3367 in a shared library, then it can also be a trampoline. This would
3368 be OK, except that I believe the way they decide if we are ina shared library
3369 does not work. SOOOO..., even if we have a regular function w/o trampolines
3370 its minimal symbol can be assigned type mst_solib_trampoline.
3371 Also, if we find that the symbol is a real stub, then we fix the unwind
3372 descriptor, and define the stub type to be EXPORT.
3373 Hopefully this is correct most of the times. */
3374 if (u->stub_unwind.stub_type == 0)
3375 {
3376
3377 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3378 we can delete all the code which appears between the lines */
3379 /*--------------------------------------------------------------------------*/
3380 msym = lookup_minimal_symbol_by_pc (pc);
3381
3382 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3383 return orig_pc == pc ? 0 : pc & ~0x3;
3384
3385 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3386 {
3387 struct objfile *objfile;
3388 struct minimal_symbol *msymbol;
3389 int function_found = 0;
3390
3391 /* go look if there is another minimal symbol with the same name as
3392 this one, but with type mst_text. This would happen if the msym
3393 is an actual trampoline, in which case there would be another
3394 symbol with the same name corresponding to the real function */
3395
3396 ALL_MSYMBOLS (objfile, msymbol)
3397 {
3398 if (MSYMBOL_TYPE (msymbol) == mst_text
3399 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3400 {
3401 function_found = 1;
3402 break;
3403 }
3404 }
3405
3406 if (function_found)
3407 /* the type of msym is correct (mst_solib_trampoline), but
3408 the unwind info is wrong, so set it to the correct value */
3409 u->stub_unwind.stub_type = EXPORT;
3410 else
3411 /* the stub type info in the unwind is correct (this is not a
3412 trampoline), but the msym type information is wrong, it
3413 should be mst_text. So we need to fix the msym, and also
3414 get out of this function */
3415 {
3416 MSYMBOL_TYPE (msym) = mst_text;
3417 return orig_pc == pc ? 0 : pc & ~0x3;
3418 }
3419 }
3420
3421 /*--------------------------------------------------------------------------*/
3422 }
3423
3424 /* It's a stub. Search for a branch and figure out where it goes.
3425 Note we have to handle multi insn branch sequences like ldil;ble.
3426 Most (all?) other branches can be determined by examining the contents
3427 of certain registers and the stack. */
3428
3429 loc = pc;
3430 curr_inst = 0;
3431 prev_inst = 0;
3432 while (1)
3433 {
3434 /* Make sure we haven't walked outside the range of this stub. */
3435 if (u != find_unwind_entry (loc))
3436 {
3437 warning ("Unable to find branch in linker stub");
3438 return orig_pc == pc ? 0 : pc & ~0x3;
3439 }
3440
3441 prev_inst = curr_inst;
3442 curr_inst = read_memory_integer (loc, 4);
3443
3444 /* Does it look like a branch external using %r1? Then it's the
3445 branch from the stub to the actual function. */
3446 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3447 {
3448 /* Yup. See if the previous instruction loaded
3449 a value into %r1. If so compute and return the jump address. */
3450 if ((prev_inst & 0xffe00000) == 0x20200000)
3451 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3452 else
3453 {
3454 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3455 return orig_pc == pc ? 0 : pc & ~0x3;
3456 }
3457 }
3458
3459 /* Does it look like a be 0(sr0,%r21)? OR
3460 Does it look like a be, n 0(sr0,%r21)? OR
3461 Does it look like a bve (r21)? (this is on PA2.0)
3462 Does it look like a bve, n(r21)? (this is also on PA2.0)
3463 That's the branch from an
3464 import stub to an export stub.
3465
3466 It is impossible to determine the target of the branch via
3467 simple examination of instructions and/or data (consider
3468 that the address in the plabel may be the address of the
3469 bind-on-reference routine in the dynamic loader).
3470
3471 So we have try an alternative approach.
3472
3473 Get the name of the symbol at our current location; it should
3474 be a stub symbol with the same name as the symbol in the
3475 shared library.
3476
3477 Then lookup a minimal symbol with the same name; we should
3478 get the minimal symbol for the target routine in the shared
3479 library as those take precedence of import/export stubs. */
3480 if ((curr_inst == 0xe2a00000) ||
3481 (curr_inst == 0xe2a00002) ||
3482 (curr_inst == 0xeaa0d000) ||
3483 (curr_inst == 0xeaa0d002))
3484 {
3485 struct minimal_symbol *stubsym, *libsym;
3486
3487 stubsym = lookup_minimal_symbol_by_pc (loc);
3488 if (stubsym == NULL)
3489 {
3490 warning ("Unable to find symbol for 0x%lx", loc);
3491 return orig_pc == pc ? 0 : pc & ~0x3;
3492 }
3493
3494 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3495 if (libsym == NULL)
3496 {
3497 warning ("Unable to find library symbol for %s\n",
3498 DEPRECATED_SYMBOL_NAME (stubsym));
3499 return orig_pc == pc ? 0 : pc & ~0x3;
3500 }
3501
3502 return SYMBOL_VALUE (libsym);
3503 }
3504
3505 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3506 branch from the stub to the actual function. */
3507 /*elz */
3508 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3509 || (curr_inst & 0xffe0e000) == 0xe8000000
3510 || (curr_inst & 0xffe0e000) == 0xe800A000)
3511 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3512
3513 /* Does it look like bv (rp)? Note this depends on the
3514 current stack pointer being the same as the stack
3515 pointer in the stub itself! This is a branch on from the
3516 stub back to the original caller. */
3517 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3518 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3519 {
3520 /* Yup. See if the previous instruction loaded
3521 rp from sp - 8. */
3522 if (prev_inst == 0x4bc23ff1)
3523 return (read_memory_integer
3524 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3525 else
3526 {
3527 warning ("Unable to find restore of %%rp before bv (%%rp).");
3528 return orig_pc == pc ? 0 : pc & ~0x3;
3529 }
3530 }
3531
3532 /* elz: added this case to capture the new instruction
3533 at the end of the return part of an export stub used by
3534 the PA2.0: BVE, n (rp) */
3535 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3536 {
3537 return (read_memory_integer
3538 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3539 }
3540
3541 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3542 the original caller from the stub. Used in dynamic executables. */
3543 else if (curr_inst == 0xe0400002)
3544 {
3545 /* The value we jump to is sitting in sp - 24. But that's
3546 loaded several instructions before the be instruction.
3547 I guess we could check for the previous instruction being
3548 mtsp %r1,%sr0 if we want to do sanity checking. */
3549 return (read_memory_integer
3550 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3551 }
3552
3553 /* Haven't found the branch yet, but we're still in the stub.
3554 Keep looking. */
3555 loc += 4;
3556 }
3557 }
3558
3559
3560 /* For the given instruction (INST), return any adjustment it makes
3561 to the stack pointer or zero for no adjustment.
3562
3563 This only handles instructions commonly found in prologues. */
3564
3565 static int
3566 prologue_inst_adjust_sp (unsigned long inst)
3567 {
3568 /* This must persist across calls. */
3569 static int save_high21;
3570
3571 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3572 if ((inst & 0xffffc000) == 0x37de0000)
3573 return extract_14 (inst);
3574
3575 /* stwm X,D(sp) */
3576 if ((inst & 0xffe00000) == 0x6fc00000)
3577 return extract_14 (inst);
3578
3579 /* std,ma X,D(sp) */
3580 if ((inst & 0xffe00008) == 0x73c00008)
3581 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3582
3583 /* addil high21,%r1; ldo low11,(%r1),%r30)
3584 save high bits in save_high21 for later use. */
3585 if ((inst & 0xffe00000) == 0x28200000)
3586 {
3587 save_high21 = extract_21 (inst);
3588 return 0;
3589 }
3590
3591 if ((inst & 0xffff0000) == 0x343e0000)
3592 return save_high21 + extract_14 (inst);
3593
3594 /* fstws as used by the HP compilers. */
3595 if ((inst & 0xffffffe0) == 0x2fd01220)
3596 return extract_5_load (inst);
3597
3598 /* No adjustment. */
3599 return 0;
3600 }
3601
3602 /* Return nonzero if INST is a branch of some kind, else return zero. */
3603
3604 static int
3605 is_branch (unsigned long inst)
3606 {
3607 switch (inst >> 26)
3608 {
3609 case 0x20:
3610 case 0x21:
3611 case 0x22:
3612 case 0x23:
3613 case 0x27:
3614 case 0x28:
3615 case 0x29:
3616 case 0x2a:
3617 case 0x2b:
3618 case 0x2f:
3619 case 0x30:
3620 case 0x31:
3621 case 0x32:
3622 case 0x33:
3623 case 0x38:
3624 case 0x39:
3625 case 0x3a:
3626 case 0x3b:
3627 return 1;
3628
3629 default:
3630 return 0;
3631 }
3632 }
3633
3634 /* Return the register number for a GR which is saved by INST or
3635 zero it INST does not save a GR. */
3636
3637 static int
3638 inst_saves_gr (unsigned long inst)
3639 {
3640 /* Does it look like a stw? */
3641 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3642 || (inst >> 26) == 0x1f
3643 || ((inst >> 26) == 0x1f
3644 && ((inst >> 6) == 0xa)))
3645 return extract_5R_store (inst);
3646
3647 /* Does it look like a std? */
3648 if ((inst >> 26) == 0x1c
3649 || ((inst >> 26) == 0x03
3650 && ((inst >> 6) & 0xf) == 0xb))
3651 return extract_5R_store (inst);
3652
3653 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3654 if ((inst >> 26) == 0x1b)
3655 return extract_5R_store (inst);
3656
3657 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3658 too. */
3659 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3660 || ((inst >> 26) == 0x3
3661 && (((inst >> 6) & 0xf) == 0x8
3662 || (inst >> 6) & 0xf) == 0x9))
3663 return extract_5R_store (inst);
3664
3665 return 0;
3666 }
3667
3668 /* Return the register number for a FR which is saved by INST or
3669 zero it INST does not save a FR.
3670
3671 Note we only care about full 64bit register stores (that's the only
3672 kind of stores the prologue will use).
3673
3674 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3675
3676 static int
3677 inst_saves_fr (unsigned long inst)
3678 {
3679 /* is this an FSTD ? */
3680 if ((inst & 0xfc00dfc0) == 0x2c001200)
3681 return extract_5r_store (inst);
3682 if ((inst & 0xfc000002) == 0x70000002)
3683 return extract_5R_store (inst);
3684 /* is this an FSTW ? */
3685 if ((inst & 0xfc00df80) == 0x24001200)
3686 return extract_5r_store (inst);
3687 if ((inst & 0xfc000002) == 0x7c000000)
3688 return extract_5R_store (inst);
3689 return 0;
3690 }
3691
3692 /* Advance PC across any function entry prologue instructions
3693 to reach some "real" code.
3694
3695 Use information in the unwind table to determine what exactly should
3696 be in the prologue. */
3697
3698
3699 CORE_ADDR
3700 skip_prologue_hard_way (CORE_ADDR pc)
3701 {
3702 char buf[4];
3703 CORE_ADDR orig_pc = pc;
3704 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3705 unsigned long args_stored, status, i, restart_gr, restart_fr;
3706 struct unwind_table_entry *u;
3707
3708 restart_gr = 0;
3709 restart_fr = 0;
3710
3711 restart:
3712 u = find_unwind_entry (pc);
3713 if (!u)
3714 return pc;
3715
3716 /* If we are not at the beginning of a function, then return now. */
3717 if ((pc & ~0x3) != u->region_start)
3718 return pc;
3719
3720 /* This is how much of a frame adjustment we need to account for. */
3721 stack_remaining = u->Total_frame_size << 3;
3722
3723 /* Magic register saves we want to know about. */
3724 save_rp = u->Save_RP;
3725 save_sp = u->Save_SP;
3726
3727 /* An indication that args may be stored into the stack. Unfortunately
3728 the HPUX compilers tend to set this in cases where no args were
3729 stored too!. */
3730 args_stored = 1;
3731
3732 /* Turn the Entry_GR field into a bitmask. */
3733 save_gr = 0;
3734 for (i = 3; i < u->Entry_GR + 3; i++)
3735 {
3736 /* Frame pointer gets saved into a special location. */
3737 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3738 continue;
3739
3740 save_gr |= (1 << i);
3741 }
3742 save_gr &= ~restart_gr;
3743
3744 /* Turn the Entry_FR field into a bitmask too. */
3745 save_fr = 0;
3746 for (i = 12; i < u->Entry_FR + 12; i++)
3747 save_fr |= (1 << i);
3748 save_fr &= ~restart_fr;
3749
3750 /* Loop until we find everything of interest or hit a branch.
3751
3752 For unoptimized GCC code and for any HP CC code this will never ever
3753 examine any user instructions.
3754
3755 For optimzied GCC code we're faced with problems. GCC will schedule
3756 its prologue and make prologue instructions available for delay slot
3757 filling. The end result is user code gets mixed in with the prologue
3758 and a prologue instruction may be in the delay slot of the first branch
3759 or call.
3760
3761 Some unexpected things are expected with debugging optimized code, so
3762 we allow this routine to walk past user instructions in optimized
3763 GCC code. */
3764 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3765 || args_stored)
3766 {
3767 unsigned int reg_num;
3768 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3769 unsigned long old_save_rp, old_save_sp, next_inst;
3770
3771 /* Save copies of all the triggers so we can compare them later
3772 (only for HPC). */
3773 old_save_gr = save_gr;
3774 old_save_fr = save_fr;
3775 old_save_rp = save_rp;
3776 old_save_sp = save_sp;
3777 old_stack_remaining = stack_remaining;
3778
3779 status = target_read_memory (pc, buf, 4);
3780 inst = extract_unsigned_integer (buf, 4);
3781
3782 /* Yow! */
3783 if (status != 0)
3784 return pc;
3785
3786 /* Note the interesting effects of this instruction. */
3787 stack_remaining -= prologue_inst_adjust_sp (inst);
3788
3789 /* There are limited ways to store the return pointer into the
3790 stack. */
3791 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3792 save_rp = 0;
3793
3794 /* These are the only ways we save SP into the stack. At this time
3795 the HP compilers never bother to save SP into the stack. */
3796 if ((inst & 0xffffc000) == 0x6fc10000
3797 || (inst & 0xffffc00c) == 0x73c10008)
3798 save_sp = 0;
3799
3800 /* Are we loading some register with an offset from the argument
3801 pointer? */
3802 if ((inst & 0xffe00000) == 0x37a00000
3803 || (inst & 0xffffffe0) == 0x081d0240)
3804 {
3805 pc += 4;
3806 continue;
3807 }
3808
3809 /* Account for general and floating-point register saves. */
3810 reg_num = inst_saves_gr (inst);
3811 save_gr &= ~(1 << reg_num);
3812
3813 /* Ugh. Also account for argument stores into the stack.
3814 Unfortunately args_stored only tells us that some arguments
3815 where stored into the stack. Not how many or what kind!
3816
3817 This is a kludge as on the HP compiler sets this bit and it
3818 never does prologue scheduling. So once we see one, skip past
3819 all of them. We have similar code for the fp arg stores below.
3820
3821 FIXME. Can still die if we have a mix of GR and FR argument
3822 stores! */
3823 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3824 {
3825 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3826 {
3827 pc += 4;
3828 status = target_read_memory (pc, buf, 4);
3829 inst = extract_unsigned_integer (buf, 4);
3830 if (status != 0)
3831 return pc;
3832 reg_num = inst_saves_gr (inst);
3833 }
3834 args_stored = 0;
3835 continue;
3836 }
3837
3838 reg_num = inst_saves_fr (inst);
3839 save_fr &= ~(1 << reg_num);
3840
3841 status = target_read_memory (pc + 4, buf, 4);
3842 next_inst = extract_unsigned_integer (buf, 4);
3843
3844 /* Yow! */
3845 if (status != 0)
3846 return pc;
3847
3848 /* We've got to be read to handle the ldo before the fp register
3849 save. */
3850 if ((inst & 0xfc000000) == 0x34000000
3851 && inst_saves_fr (next_inst) >= 4
3852 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3853 {
3854 /* So we drop into the code below in a reasonable state. */
3855 reg_num = inst_saves_fr (next_inst);
3856 pc -= 4;
3857 }
3858
3859 /* Ugh. Also account for argument stores into the stack.
3860 This is a kludge as on the HP compiler sets this bit and it
3861 never does prologue scheduling. So once we see one, skip past
3862 all of them. */
3863 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3864 {
3865 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3866 {
3867 pc += 8;
3868 status = target_read_memory (pc, buf, 4);
3869 inst = extract_unsigned_integer (buf, 4);
3870 if (status != 0)
3871 return pc;
3872 if ((inst & 0xfc000000) != 0x34000000)
3873 break;
3874 status = target_read_memory (pc + 4, buf, 4);
3875 next_inst = extract_unsigned_integer (buf, 4);
3876 if (status != 0)
3877 return pc;
3878 reg_num = inst_saves_fr (next_inst);
3879 }
3880 args_stored = 0;
3881 continue;
3882 }
3883
3884 /* Quit if we hit any kind of branch. This can happen if a prologue
3885 instruction is in the delay slot of the first call/branch. */
3886 if (is_branch (inst))
3887 break;
3888
3889 /* What a crock. The HP compilers set args_stored even if no
3890 arguments were stored into the stack (boo hiss). This could
3891 cause this code to then skip a bunch of user insns (up to the
3892 first branch).
3893
3894 To combat this we try to identify when args_stored was bogusly
3895 set and clear it. We only do this when args_stored is nonzero,
3896 all other resources are accounted for, and nothing changed on
3897 this pass. */
3898 if (args_stored
3899 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3900 && old_save_gr == save_gr && old_save_fr == save_fr
3901 && old_save_rp == save_rp && old_save_sp == save_sp
3902 && old_stack_remaining == stack_remaining)
3903 break;
3904
3905 /* Bump the PC. */
3906 pc += 4;
3907 }
3908
3909 /* We've got a tenative location for the end of the prologue. However
3910 because of limitations in the unwind descriptor mechanism we may
3911 have went too far into user code looking for the save of a register
3912 that does not exist. So, if there registers we expected to be saved
3913 but never were, mask them out and restart.
3914
3915 This should only happen in optimized code, and should be very rare. */
3916 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3917 {
3918 pc = orig_pc;
3919 restart_gr = save_gr;
3920 restart_fr = save_fr;
3921 goto restart;
3922 }
3923
3924 return pc;
3925 }
3926
3927
3928 /* Return the address of the PC after the last prologue instruction if
3929 we can determine it from the debug symbols. Else return zero. */
3930
3931 static CORE_ADDR
3932 after_prologue (CORE_ADDR pc)
3933 {
3934 struct symtab_and_line sal;
3935 CORE_ADDR func_addr, func_end;
3936 struct symbol *f;
3937
3938 /* If we can not find the symbol in the partial symbol table, then
3939 there is no hope we can determine the function's start address
3940 with this code. */
3941 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3942 return 0;
3943
3944 /* Get the line associated with FUNC_ADDR. */
3945 sal = find_pc_line (func_addr, 0);
3946
3947 /* There are only two cases to consider. First, the end of the source line
3948 is within the function bounds. In that case we return the end of the
3949 source line. Second is the end of the source line extends beyond the
3950 bounds of the current function. We need to use the slow code to
3951 examine instructions in that case.
3952
3953 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3954 the wrong thing to do. In fact, it should be entirely possible for this
3955 function to always return zero since the slow instruction scanning code
3956 is supposed to *always* work. If it does not, then it is a bug. */
3957 if (sal.end < func_end)
3958 return sal.end;
3959 else
3960 return 0;
3961 }
3962
3963 /* To skip prologues, I use this predicate. Returns either PC itself
3964 if the code at PC does not look like a function prologue; otherwise
3965 returns an address that (if we're lucky) follows the prologue. If
3966 LENIENT, then we must skip everything which is involved in setting
3967 up the frame (it's OK to skip more, just so long as we don't skip
3968 anything which might clobber the registers which are being saved.
3969 Currently we must not skip more on the alpha, but we might the lenient
3970 stuff some day. */
3971
3972 CORE_ADDR
3973 hppa_skip_prologue (CORE_ADDR pc)
3974 {
3975 unsigned long inst;
3976 int offset;
3977 CORE_ADDR post_prologue_pc;
3978 char buf[4];
3979
3980 /* See if we can determine the end of the prologue via the symbol table.
3981 If so, then return either PC, or the PC after the prologue, whichever
3982 is greater. */
3983
3984 post_prologue_pc = after_prologue (pc);
3985
3986 /* If after_prologue returned a useful address, then use it. Else
3987 fall back on the instruction skipping code.
3988
3989 Some folks have claimed this causes problems because the breakpoint
3990 may be the first instruction of the prologue. If that happens, then
3991 the instruction skipping code has a bug that needs to be fixed. */
3992 if (post_prologue_pc != 0)
3993 return max (pc, post_prologue_pc);
3994 else
3995 return (skip_prologue_hard_way (pc));
3996 }
3997
3998 /* Put here the code to store, into the SAVED_REGS, the addresses of
3999 the saved registers of frame described by FRAME_INFO. This
4000 includes special registers such as pc and fp saved in special ways
4001 in the stack frame. sp is even more special: the address we return
4002 for it IS the sp for the next frame. */
4003
4004 void
4005 hppa_frame_find_saved_regs (struct frame_info *frame_info,
4006 CORE_ADDR frame_saved_regs[])
4007 {
4008 CORE_ADDR pc;
4009 struct unwind_table_entry *u;
4010 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4011 int status, i, reg;
4012 char buf[4];
4013 int fp_loc = -1;
4014 int final_iteration;
4015
4016 /* Zero out everything. */
4017 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
4018
4019 /* Call dummy frames always look the same, so there's no need to
4020 examine the dummy code to determine locations of saved registers;
4021 instead, let find_dummy_frame_regs fill in the correct offsets
4022 for the saved registers. */
4023 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
4024 && (get_frame_pc (frame_info)
4025 <= (get_frame_base (frame_info)
4026 /* A call dummy is sized in words, but it is actually a
4027 series of instructions. Account for that scaling
4028 factor. */
4029 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4030 * DEPRECATED_CALL_DUMMY_LENGTH)
4031 /* Similarly we have to account for 64bit wide register
4032 saves. */
4033 + (32 * DEPRECATED_REGISTER_SIZE)
4034 /* We always consider FP regs 8 bytes long. */
4035 + (NUM_REGS - FP0_REGNUM) * 8
4036 /* Similarly we have to account for 64bit wide register
4037 saves. */
4038 + (6 * DEPRECATED_REGISTER_SIZE)))))
4039 find_dummy_frame_regs (frame_info, frame_saved_regs);
4040
4041 /* Interrupt handlers are special too. They lay out the register
4042 state in the exact same order as the register numbers in GDB. */
4043 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
4044 {
4045 for (i = 0; i < NUM_REGS; i++)
4046 {
4047 /* SP is a little special. */
4048 if (i == SP_REGNUM)
4049 frame_saved_regs[SP_REGNUM]
4050 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
4051 TARGET_PTR_BIT / 8);
4052 else
4053 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
4054 }
4055 return;
4056 }
4057
4058 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4059 /* Handle signal handler callers. */
4060 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
4061 {
4062 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4063 return;
4064 }
4065 #endif
4066
4067 /* Get the starting address of the function referred to by the PC
4068 saved in frame. */
4069 pc = get_frame_func (frame_info);
4070
4071 /* Yow! */
4072 u = find_unwind_entry (pc);
4073 if (!u)
4074 return;
4075
4076 /* This is how much of a frame adjustment we need to account for. */
4077 stack_remaining = u->Total_frame_size << 3;
4078
4079 /* Magic register saves we want to know about. */
4080 save_rp = u->Save_RP;
4081 save_sp = u->Save_SP;
4082
4083 /* Turn the Entry_GR field into a bitmask. */
4084 save_gr = 0;
4085 for (i = 3; i < u->Entry_GR + 3; i++)
4086 {
4087 /* Frame pointer gets saved into a special location. */
4088 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4089 continue;
4090
4091 save_gr |= (1 << i);
4092 }
4093
4094 /* Turn the Entry_FR field into a bitmask too. */
4095 save_fr = 0;
4096 for (i = 12; i < u->Entry_FR + 12; i++)
4097 save_fr |= (1 << i);
4098
4099 /* The frame always represents the value of %sp at entry to the
4100 current function (and is thus equivalent to the "saved" stack
4101 pointer. */
4102 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
4103
4104 /* Loop until we find everything of interest or hit a branch.
4105
4106 For unoptimized GCC code and for any HP CC code this will never ever
4107 examine any user instructions.
4108
4109 For optimized GCC code we're faced with problems. GCC will schedule
4110 its prologue and make prologue instructions available for delay slot
4111 filling. The end result is user code gets mixed in with the prologue
4112 and a prologue instruction may be in the delay slot of the first branch
4113 or call.
4114
4115 Some unexpected things are expected with debugging optimized code, so
4116 we allow this routine to walk past user instructions in optimized
4117 GCC code. */
4118 final_iteration = 0;
4119 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4120 && pc <= get_frame_pc (frame_info))
4121 {
4122 status = target_read_memory (pc, buf, 4);
4123 inst = extract_unsigned_integer (buf, 4);
4124
4125 /* Yow! */
4126 if (status != 0)
4127 return;
4128
4129 /* Note the interesting effects of this instruction. */
4130 stack_remaining -= prologue_inst_adjust_sp (inst);
4131
4132 /* There are limited ways to store the return pointer into the
4133 stack. */
4134 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4135 {
4136 save_rp = 0;
4137 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
4138 }
4139 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4140 {
4141 save_rp = 0;
4142 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4143 }
4144
4145 /* Note if we saved SP into the stack. This also happens to indicate
4146 the location of the saved frame pointer. */
4147 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4148 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4149 {
4150 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4151 save_sp = 0;
4152 }
4153
4154 /* Account for general and floating-point register saves. */
4155 reg = inst_saves_gr (inst);
4156 if (reg >= 3 && reg <= 18
4157 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4158 {
4159 save_gr &= ~(1 << reg);
4160
4161 /* stwm with a positive displacement is a *post modify*. */
4162 if ((inst >> 26) == 0x1b
4163 && extract_14 (inst) >= 0)
4164 frame_saved_regs[reg] = get_frame_base (frame_info);
4165 /* A std has explicit post_modify forms. */
4166 else if ((inst & 0xfc00000c0) == 0x70000008)
4167 frame_saved_regs[reg] = get_frame_base (frame_info);
4168 else
4169 {
4170 CORE_ADDR offset;
4171
4172 if ((inst >> 26) == 0x1c)
4173 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4174 else if ((inst >> 26) == 0x03)
4175 offset = low_sign_extend (inst & 0x1f, 5);
4176 else
4177 offset = extract_14 (inst);
4178
4179 /* Handle code with and without frame pointers. */
4180 if (u->Save_SP)
4181 frame_saved_regs[reg]
4182 = get_frame_base (frame_info) + offset;
4183 else
4184 frame_saved_regs[reg]
4185 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4186 + offset);
4187 }
4188 }
4189
4190
4191 /* GCC handles callee saved FP regs a little differently.
4192
4193 It emits an instruction to put the value of the start of
4194 the FP store area into %r1. It then uses fstds,ma with
4195 a basereg of %r1 for the stores.
4196
4197 HP CC emits them at the current stack pointer modifying
4198 the stack pointer as it stores each register. */
4199
4200 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4201 if ((inst & 0xffffc000) == 0x34610000
4202 || (inst & 0xffffc000) == 0x37c10000)
4203 fp_loc = extract_14 (inst);
4204
4205 reg = inst_saves_fr (inst);
4206 if (reg >= 12 && reg <= 21)
4207 {
4208 /* Note +4 braindamage below is necessary because the FP status
4209 registers are internally 8 registers rather than the expected
4210 4 registers. */
4211 save_fr &= ~(1 << reg);
4212 if (fp_loc == -1)
4213 {
4214 /* 1st HP CC FP register store. After this instruction
4215 we've set enough state that the GCC and HPCC code are
4216 both handled in the same manner. */
4217 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4218 fp_loc = 8;
4219 }
4220 else
4221 {
4222 frame_saved_regs[reg + FP0_REGNUM + 4]
4223 = get_frame_base (frame_info) + fp_loc;
4224 fp_loc += 8;
4225 }
4226 }
4227
4228 /* Quit if we hit any kind of branch the previous iteration. */
4229 if (final_iteration)
4230 break;
4231
4232 /* We want to look precisely one instruction beyond the branch
4233 if we have not found everything yet. */
4234 if (is_branch (inst))
4235 final_iteration = 1;
4236
4237 /* Bump the PC. */
4238 pc += 4;
4239 }
4240 }
4241
4242 /* XXX - deprecated. This is a compatibility function for targets
4243 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4244 /* Find the addresses in which registers are saved in FRAME. */
4245
4246 void
4247 hppa_frame_init_saved_regs (struct frame_info *frame)
4248 {
4249 if (get_frame_saved_regs (frame) == NULL)
4250 frame_saved_regs_zalloc (frame);
4251 hppa_frame_find_saved_regs (frame, get_frame_saved_regs (frame));
4252 }
4253
4254 /* Exception handling support for the HP-UX ANSI C++ compiler.
4255 The compiler (aCC) provides a callback for exception events;
4256 GDB can set a breakpoint on this callback and find out what
4257 exception event has occurred. */
4258
4259 /* The name of the hook to be set to point to the callback function */
4260 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4261 /* The name of the function to be used to set the hook value */
4262 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4263 /* The name of the callback function in end.o */
4264 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4265 /* Name of function in end.o on which a break is set (called by above) */
4266 static char HP_ACC_EH_break[] = "__d_eh_break";
4267 /* Name of flag (in end.o) that enables catching throws */
4268 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4269 /* Name of flag (in end.o) that enables catching catching */
4270 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4271 /* The enum used by aCC */
4272 typedef enum
4273 {
4274 __EH_NOTIFY_THROW,
4275 __EH_NOTIFY_CATCH
4276 }
4277 __eh_notification;
4278
4279 /* Is exception-handling support available with this executable? */
4280 static int hp_cxx_exception_support = 0;
4281 /* Has the initialize function been run? */
4282 int hp_cxx_exception_support_initialized = 0;
4283 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4284 extern int exception_support_initialized;
4285 /* Address of __eh_notify_hook */
4286 static CORE_ADDR eh_notify_hook_addr = 0;
4287 /* Address of __d_eh_notify_callback */
4288 static CORE_ADDR eh_notify_callback_addr = 0;
4289 /* Address of __d_eh_break */
4290 static CORE_ADDR eh_break_addr = 0;
4291 /* Address of __d_eh_catch_catch */
4292 static CORE_ADDR eh_catch_catch_addr = 0;
4293 /* Address of __d_eh_catch_throw */
4294 static CORE_ADDR eh_catch_throw_addr = 0;
4295 /* Sal for __d_eh_break */
4296 static struct symtab_and_line *break_callback_sal = 0;
4297
4298 /* Code in end.c expects __d_pid to be set in the inferior,
4299 otherwise __d_eh_notify_callback doesn't bother to call
4300 __d_eh_break! So we poke the pid into this symbol
4301 ourselves.
4302 0 => success
4303 1 => failure */
4304 int
4305 setup_d_pid_in_inferior (void)
4306 {
4307 CORE_ADDR anaddr;
4308 struct minimal_symbol *msymbol;
4309 char buf[4]; /* FIXME 32x64? */
4310
4311 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4312 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4313 if (msymbol == NULL)
4314 {
4315 warning ("Unable to find __d_pid symbol in object file.");
4316 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4317 return 1;
4318 }
4319
4320 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4321 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4322 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4323 {
4324 warning ("Unable to write __d_pid");
4325 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4326 return 1;
4327 }
4328 return 0;
4329 }
4330
4331 /* Initialize exception catchpoint support by looking for the
4332 necessary hooks/callbacks in end.o, etc., and set the hook value to
4333 point to the required debug function
4334
4335 Return 0 => failure
4336 1 => success */
4337
4338 static int
4339 initialize_hp_cxx_exception_support (void)
4340 {
4341 struct symtabs_and_lines sals;
4342 struct cleanup *old_chain;
4343 struct cleanup *canonical_strings_chain = NULL;
4344 int i;
4345 char *addr_start;
4346 char *addr_end = NULL;
4347 char **canonical = (char **) NULL;
4348 int thread = -1;
4349 struct symbol *sym = NULL;
4350 struct minimal_symbol *msym = NULL;
4351 struct objfile *objfile;
4352 asection *shlib_info;
4353
4354 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4355 recursion is a possibility because finding the hook for exception
4356 callbacks involves making a call in the inferior, which means
4357 re-inserting breakpoints which can re-invoke this code */
4358
4359 static int recurse = 0;
4360 if (recurse > 0)
4361 {
4362 hp_cxx_exception_support_initialized = 0;
4363 exception_support_initialized = 0;
4364 return 0;
4365 }
4366
4367 hp_cxx_exception_support = 0;
4368
4369 /* First check if we have seen any HP compiled objects; if not,
4370 it is very unlikely that HP's idiosyncratic callback mechanism
4371 for exception handling debug support will be available!
4372 This will percolate back up to breakpoint.c, where our callers
4373 will decide to try the g++ exception-handling support instead. */
4374 if (!hp_som_som_object_present)
4375 return 0;
4376
4377 /* We have a SOM executable with SOM debug info; find the hooks */
4378
4379 /* First look for the notify hook provided by aCC runtime libs */
4380 /* If we find this symbol, we conclude that the executable must
4381 have HP aCC exception support built in. If this symbol is not
4382 found, even though we're a HP SOM-SOM file, we may have been
4383 built with some other compiler (not aCC). This results percolates
4384 back up to our callers in breakpoint.c which can decide to
4385 try the g++ style of exception support instead.
4386 If this symbol is found but the other symbols we require are
4387 not found, there is something weird going on, and g++ support
4388 should *not* be tried as an alternative.
4389
4390 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4391 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4392
4393 /* libCsup has this hook; it'll usually be non-debuggable */
4394 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4395 if (msym)
4396 {
4397 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4398 hp_cxx_exception_support = 1;
4399 }
4400 else
4401 {
4402 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4403 warning ("Executable may not have been compiled debuggable with HP aCC.");
4404 warning ("GDB will be unable to intercept exception events.");
4405 eh_notify_hook_addr = 0;
4406 hp_cxx_exception_support = 0;
4407 return 0;
4408 }
4409
4410 /* Next look for the notify callback routine in end.o */
4411 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4412 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4413 if (msym)
4414 {
4415 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4416 hp_cxx_exception_support = 1;
4417 }
4418 else
4419 {
4420 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4421 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4422 warning ("GDB will be unable to intercept exception events.");
4423 eh_notify_callback_addr = 0;
4424 return 0;
4425 }
4426
4427 #ifndef GDB_TARGET_IS_HPPA_20W
4428 /* Check whether the executable is dynamically linked or archive bound */
4429 /* With an archive-bound executable we can use the raw addresses we find
4430 for the callback function, etc. without modification. For an executable
4431 with shared libraries, we have to do more work to find the plabel, which
4432 can be the target of a call through $$dyncall from the aCC runtime support
4433 library (libCsup) which is linked shared by default by aCC. */
4434 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4435 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4436 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4437 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4438 {
4439 /* The minsym we have has the local code address, but that's not the
4440 plabel that can be used by an inter-load-module call. */
4441 /* Find solib handle for main image (which has end.o), and use that
4442 and the min sym as arguments to __d_shl_get() (which does the equivalent
4443 of shl_findsym()) to find the plabel. */
4444
4445 args_for_find_stub args;
4446 static char message[] = "Error while finding exception callback hook:\n";
4447
4448 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4449 args.msym = msym;
4450 args.return_val = 0;
4451
4452 recurse++;
4453 catch_errors (cover_find_stub_with_shl_get, &args, message,
4454 RETURN_MASK_ALL);
4455 eh_notify_callback_addr = args.return_val;
4456 recurse--;
4457
4458 exception_catchpoints_are_fragile = 1;
4459
4460 if (!eh_notify_callback_addr)
4461 {
4462 /* We can get here either if there is no plabel in the export list
4463 for the main image, or if something strange happened (?) */
4464 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4465 warning ("GDB will not be able to intercept exception events.");
4466 return 0;
4467 }
4468 }
4469 else
4470 exception_catchpoints_are_fragile = 0;
4471 #endif
4472
4473 /* Now, look for the breakpointable routine in end.o */
4474 /* This should also be available in the SOM symbol dict. if end.o linked in */
4475 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4476 if (msym)
4477 {
4478 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4479 hp_cxx_exception_support = 1;
4480 }
4481 else
4482 {
4483 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4484 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4485 warning ("GDB will be unable to intercept exception events.");
4486 eh_break_addr = 0;
4487 return 0;
4488 }
4489
4490 /* Next look for the catch enable flag provided in end.o */
4491 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4492 VAR_DOMAIN, 0, (struct symtab **) NULL);
4493 if (sym) /* sometimes present in debug info */
4494 {
4495 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4496 hp_cxx_exception_support = 1;
4497 }
4498 else
4499 /* otherwise look in SOM symbol dict. */
4500 {
4501 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4502 if (msym)
4503 {
4504 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4505 hp_cxx_exception_support = 1;
4506 }
4507 else
4508 {
4509 warning ("Unable to enable interception of exception catches.");
4510 warning ("Executable may not have been compiled debuggable with HP aCC.");
4511 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4512 return 0;
4513 }
4514 }
4515
4516 /* Next look for the catch enable flag provided end.o */
4517 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4518 VAR_DOMAIN, 0, (struct symtab **) NULL);
4519 if (sym) /* sometimes present in debug info */
4520 {
4521 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4522 hp_cxx_exception_support = 1;
4523 }
4524 else
4525 /* otherwise look in SOM symbol dict. */
4526 {
4527 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4528 if (msym)
4529 {
4530 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4531 hp_cxx_exception_support = 1;
4532 }
4533 else
4534 {
4535 warning ("Unable to enable interception of exception throws.");
4536 warning ("Executable may not have been compiled debuggable with HP aCC.");
4537 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4538 return 0;
4539 }
4540 }
4541
4542 /* Set the flags */
4543 hp_cxx_exception_support = 2; /* everything worked so far */
4544 hp_cxx_exception_support_initialized = 1;
4545 exception_support_initialized = 1;
4546
4547 return 1;
4548 }
4549
4550 /* Target operation for enabling or disabling interception of
4551 exception events.
4552 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4553 ENABLE is either 0 (disable) or 1 (enable).
4554 Return value is NULL if no support found;
4555 -1 if something went wrong,
4556 or a pointer to a symtab/line struct if the breakpointable
4557 address was found. */
4558
4559 struct symtab_and_line *
4560 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4561 {
4562 char buf[4];
4563
4564 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4565 if (!initialize_hp_cxx_exception_support ())
4566 return NULL;
4567
4568 switch (hp_cxx_exception_support)
4569 {
4570 case 0:
4571 /* Assuming no HP support at all */
4572 return NULL;
4573 case 1:
4574 /* HP support should be present, but something went wrong */
4575 return (struct symtab_and_line *) -1; /* yuck! */
4576 /* there may be other cases in the future */
4577 }
4578
4579 /* Set the EH hook to point to the callback routine */
4580 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4581 /* pai: (temp) FIXME should there be a pack operation first? */
4582 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4583 {
4584 warning ("Could not write to target memory for exception event callback.");
4585 warning ("Interception of exception events may not work.");
4586 return (struct symtab_and_line *) -1;
4587 }
4588 if (enable)
4589 {
4590 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4591 if (PIDGET (inferior_ptid) > 0)
4592 {
4593 if (setup_d_pid_in_inferior ())
4594 return (struct symtab_and_line *) -1;
4595 }
4596 else
4597 {
4598 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4599 return (struct symtab_and_line *) -1;
4600 }
4601 }
4602
4603 switch (kind)
4604 {
4605 case EX_EVENT_THROW:
4606 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4607 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4608 {
4609 warning ("Couldn't enable exception throw interception.");
4610 return (struct symtab_and_line *) -1;
4611 }
4612 break;
4613 case EX_EVENT_CATCH:
4614 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4615 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4616 {
4617 warning ("Couldn't enable exception catch interception.");
4618 return (struct symtab_and_line *) -1;
4619 }
4620 break;
4621 default:
4622 error ("Request to enable unknown or unsupported exception event.");
4623 }
4624
4625 /* Copy break address into new sal struct, malloc'ing if needed. */
4626 if (!break_callback_sal)
4627 {
4628 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4629 }
4630 init_sal (break_callback_sal);
4631 break_callback_sal->symtab = NULL;
4632 break_callback_sal->pc = eh_break_addr;
4633 break_callback_sal->line = 0;
4634 break_callback_sal->end = eh_break_addr;
4635
4636 return break_callback_sal;
4637 }
4638
4639 /* Record some information about the current exception event */
4640 static struct exception_event_record current_ex_event;
4641 /* Convenience struct */
4642 static struct symtab_and_line null_symtab_and_line =
4643 {NULL, 0, 0, 0};
4644
4645 /* Report current exception event. Returns a pointer to a record
4646 that describes the kind of the event, where it was thrown from,
4647 and where it will be caught. More information may be reported
4648 in the future */
4649 struct exception_event_record *
4650 child_get_current_exception_event (void)
4651 {
4652 CORE_ADDR event_kind;
4653 CORE_ADDR throw_addr;
4654 CORE_ADDR catch_addr;
4655 struct frame_info *fi, *curr_frame;
4656 int level = 1;
4657
4658 curr_frame = get_current_frame ();
4659 if (!curr_frame)
4660 return (struct exception_event_record *) NULL;
4661
4662 /* Go up one frame to __d_eh_notify_callback, because at the
4663 point when this code is executed, there's garbage in the
4664 arguments of __d_eh_break. */
4665 fi = find_relative_frame (curr_frame, &level);
4666 if (level != 0)
4667 return (struct exception_event_record *) NULL;
4668
4669 select_frame (fi);
4670
4671 /* Read in the arguments */
4672 /* __d_eh_notify_callback() is called with 3 arguments:
4673 1. event kind catch or throw
4674 2. the target address if known
4675 3. a flag -- not sure what this is. pai/1997-07-17 */
4676 event_kind = read_register (ARG0_REGNUM);
4677 catch_addr = read_register (ARG1_REGNUM);
4678
4679 /* Now go down to a user frame */
4680 /* For a throw, __d_eh_break is called by
4681 __d_eh_notify_callback which is called by
4682 __notify_throw which is called
4683 from user code.
4684 For a catch, __d_eh_break is called by
4685 __d_eh_notify_callback which is called by
4686 <stackwalking stuff> which is called by
4687 __throw__<stuff> or __rethrow_<stuff> which is called
4688 from user code. */
4689 /* FIXME: Don't use such magic numbers; search for the frames */
4690 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4691 fi = find_relative_frame (curr_frame, &level);
4692 if (level != 0)
4693 return (struct exception_event_record *) NULL;
4694
4695 select_frame (fi);
4696 throw_addr = get_frame_pc (fi);
4697
4698 /* Go back to original (top) frame */
4699 select_frame (curr_frame);
4700
4701 current_ex_event.kind = (enum exception_event_kind) event_kind;
4702 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4703 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4704
4705 return &current_ex_event;
4706 }
4707
4708 /* Instead of this nasty cast, add a method pvoid() that prints out a
4709 host VOID data type (remember %p isn't portable). */
4710
4711 static CORE_ADDR
4712 hppa_pointer_to_address_hack (void *ptr)
4713 {
4714 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4715 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4716 }
4717
4718 static void
4719 unwind_command (char *exp, int from_tty)
4720 {
4721 CORE_ADDR address;
4722 struct unwind_table_entry *u;
4723
4724 /* If we have an expression, evaluate it and use it as the address. */
4725
4726 if (exp != 0 && *exp != 0)
4727 address = parse_and_eval_address (exp);
4728 else
4729 return;
4730
4731 u = find_unwind_entry (address);
4732
4733 if (!u)
4734 {
4735 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4736 return;
4737 }
4738
4739 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4740 paddr_nz (hppa_pointer_to_address_hack (u)));
4741
4742 printf_unfiltered ("\tregion_start = ");
4743 print_address (u->region_start, gdb_stdout);
4744
4745 printf_unfiltered ("\n\tregion_end = ");
4746 print_address (u->region_end, gdb_stdout);
4747
4748 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4749
4750 printf_unfiltered ("\n\tflags =");
4751 pif (Cannot_unwind);
4752 pif (Millicode);
4753 pif (Millicode_save_sr0);
4754 pif (Entry_SR);
4755 pif (Args_stored);
4756 pif (Variable_Frame);
4757 pif (Separate_Package_Body);
4758 pif (Frame_Extension_Millicode);
4759 pif (Stack_Overflow_Check);
4760 pif (Two_Instruction_SP_Increment);
4761 pif (Ada_Region);
4762 pif (Save_SP);
4763 pif (Save_RP);
4764 pif (Save_MRP_in_frame);
4765 pif (extn_ptr_defined);
4766 pif (Cleanup_defined);
4767 pif (MPE_XL_interrupt_marker);
4768 pif (HP_UX_interrupt_marker);
4769 pif (Large_frame);
4770
4771 putchar_unfiltered ('\n');
4772
4773 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4774
4775 pin (Region_description);
4776 pin (Entry_FR);
4777 pin (Entry_GR);
4778 pin (Total_frame_size);
4779 }
4780
4781 void
4782 hppa_skip_permanent_breakpoint (void)
4783 {
4784 /* To step over a breakpoint instruction on the PA takes some
4785 fiddling with the instruction address queue.
4786
4787 When we stop at a breakpoint, the IA queue front (the instruction
4788 we're executing now) points at the breakpoint instruction, and
4789 the IA queue back (the next instruction to execute) points to
4790 whatever instruction we would execute after the breakpoint, if it
4791 were an ordinary instruction. This is the case even if the
4792 breakpoint is in the delay slot of a branch instruction.
4793
4794 Clearly, to step past the breakpoint, we need to set the queue
4795 front to the back. But what do we put in the back? What
4796 instruction comes after that one? Because of the branch delay
4797 slot, the next insn is always at the back + 4. */
4798 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4799 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4800
4801 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4802 /* We can leave the tail's space the same, since there's no jump. */
4803 }
4804
4805 /* Copy the function value from VALBUF into the proper location
4806 for a function return.
4807
4808 Called only in the context of the "return" command. */
4809
4810 void
4811 hppa32_store_return_value (struct type *type, char *valbuf)
4812 {
4813 /* For software floating point, the return value goes into the
4814 integer registers. But we do not have any flag to key this on,
4815 so we always store the value into the integer registers.
4816
4817 If its a float value, then we also store it into the floating
4818 point registers. */
4819 deprecated_write_register_bytes (REGISTER_BYTE (28)
4820 + (TYPE_LENGTH (type) > 4
4821 ? (8 - TYPE_LENGTH (type))
4822 : (4 - TYPE_LENGTH (type))),
4823 valbuf, TYPE_LENGTH (type));
4824 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4825 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4826 valbuf, TYPE_LENGTH (type));
4827 }
4828
4829 /* Same as hppa32_store_return_value(), but for the PA64 ABI. */
4830
4831 void
4832 hppa64_store_return_value (struct type *type, char *valbuf)
4833 {
4834 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4835 deprecated_write_register_bytes
4836 (REGISTER_BYTE (FP4_REGNUM)
4837 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4838 valbuf, TYPE_LENGTH (type));
4839 else if (is_integral_type(type))
4840 deprecated_write_register_bytes
4841 (REGISTER_BYTE (28)
4842 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4843 valbuf, TYPE_LENGTH (type));
4844 else if (TYPE_LENGTH (type) <= 8)
4845 deprecated_write_register_bytes
4846 (REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type));
4847 else if (TYPE_LENGTH (type) <= 16)
4848 {
4849 deprecated_write_register_bytes (REGISTER_BYTE (28),valbuf, 8);
4850 deprecated_write_register_bytes
4851 (REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8);
4852 }
4853 }
4854
4855 /* Copy the function's return value into VALBUF.
4856
4857 This function is called only in the context of "target function calls",
4858 ie. when the debugger forces a function to be called in the child, and
4859 when the debugger forces a fucntion to return prematurely via the
4860 "return" command. */
4861
4862 void
4863 hppa32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4864 {
4865 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4866 memcpy (valbuf, regbuf + REGISTER_BYTE (FP4_REGNUM), TYPE_LENGTH (type));
4867 else
4868 memcpy (valbuf,
4869 (regbuf
4870 + REGISTER_BYTE (28)
4871 + (TYPE_LENGTH (type) > 4
4872 ? (8 - TYPE_LENGTH (type))
4873 : (4 - TYPE_LENGTH (type)))),
4874 TYPE_LENGTH (type));
4875 }
4876
4877 /* Same as hppa32_extract_return_value but for the PA64 ABI case. */
4878
4879 void
4880 hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4881 {
4882 /* RM: Floats are returned in FR4R, doubles in FR4.
4883 Integral values are in r28, padded on the left.
4884 Aggregates less that 65 bits are in r28, right padded.
4885 Aggregates upto 128 bits are in r28 and r29, right padded. */
4886 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4887 memcpy (valbuf,
4888 regbuf + REGISTER_BYTE (FP4_REGNUM)
4889 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4890 TYPE_LENGTH (type));
4891 else if (is_integral_type(type))
4892 memcpy (valbuf,
4893 regbuf + REGISTER_BYTE (28)
4894 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4895 TYPE_LENGTH (type));
4896 else if (TYPE_LENGTH (type) <= 8)
4897 memcpy (valbuf, regbuf + REGISTER_BYTE (28), TYPE_LENGTH (type));
4898 else if (TYPE_LENGTH (type) <= 16)
4899 {
4900 memcpy (valbuf, regbuf + REGISTER_BYTE (28), 8);
4901 memcpy (valbuf + 8, regbuf + REGISTER_BYTE (29), TYPE_LENGTH (type) - 8);
4902 }
4903 }
4904
4905 int
4906 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4907 {
4908 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4909 via a pointer regardless of its type or the compiler used. */
4910 return (TYPE_LENGTH (type) > 8);
4911 }
4912
4913 int
4914 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4915 {
4916 /* Stack grows upward */
4917 return (lhs > rhs);
4918 }
4919
4920 CORE_ADDR
4921 hppa32_stack_align (CORE_ADDR sp)
4922 {
4923 /* elz: adjust the quantity to the next highest value which is
4924 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4925 On hppa the sp must always be kept 64-bit aligned */
4926 return ((sp % 8) ? (sp + 7) & -8 : sp);
4927 }
4928
4929 CORE_ADDR
4930 hppa64_stack_align (CORE_ADDR sp)
4931 {
4932 /* The PA64 ABI mandates a 16 byte stack alignment. */
4933 return ((sp % 16) ? (sp + 15) & -16 : sp);
4934 }
4935
4936 int
4937 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4938 {
4939 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4940
4941 An example of this occurs when an a.out is linked against a foo.sl.
4942 The foo.sl defines a global bar(), and the a.out declares a signature
4943 for bar(). However, the a.out doesn't directly call bar(), but passes
4944 its address in another call.
4945
4946 If you have this scenario and attempt to "break bar" before running,
4947 gdb will find a minimal symbol for bar() in the a.out. But that
4948 symbol's address will be negative. What this appears to denote is
4949 an index backwards from the base of the procedure linkage table (PLT)
4950 into the data linkage table (DLT), the end of which is contiguous
4951 with the start of the PLT. This is clearly not a valid address for
4952 us to set a breakpoint on.
4953
4954 Note that one must be careful in how one checks for a negative address.
4955 0xc0000000 is a legitimate address of something in a shared text
4956 segment, for example. Since I don't know what the possible range
4957 is of these "really, truly negative" addresses that come from the
4958 minimal symbols, I'm resorting to the gross hack of checking the
4959 top byte of the address for all 1's. Sigh. */
4960
4961 return (!target_has_stack && (pc & 0xFF000000));
4962 }
4963
4964 int
4965 hppa_instruction_nullified (void)
4966 {
4967 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4968 avoid the type cast. I'm leaving it as is for now as I'm doing
4969 semi-mechanical multiarching-related changes. */
4970 const int ipsw = (int) read_register (IPSW_REGNUM);
4971 const int flags = (int) read_register (FLAGS_REGNUM);
4972
4973 return ((ipsw & 0x00200000) && !(flags & 0x2));
4974 }
4975
4976 int
4977 hppa_register_raw_size (int reg_nr)
4978 {
4979 /* All registers have the same size. */
4980 return DEPRECATED_REGISTER_SIZE;
4981 }
4982
4983 /* Index within the register vector of the first byte of the space i
4984 used for register REG_NR. */
4985
4986 int
4987 hppa_register_byte (int reg_nr)
4988 {
4989 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4990
4991 return reg_nr * tdep->bytes_per_address;
4992 }
4993
4994 /* Return the GDB type object for the "standard" data type of data
4995 in register N. */
4996
4997 struct type *
4998 hppa32_register_virtual_type (int reg_nr)
4999 {
5000 if (reg_nr < FP4_REGNUM)
5001 return builtin_type_int;
5002 else
5003 return builtin_type_float;
5004 }
5005
5006 /* Return the GDB type object for the "standard" data type of data
5007 in register N. hppa64 version. */
5008
5009 struct type *
5010 hppa64_register_virtual_type (int reg_nr)
5011 {
5012 if (reg_nr < FP4_REGNUM)
5013 return builtin_type_unsigned_long_long;
5014 else
5015 return builtin_type_double;
5016 }
5017
5018 /* Store the address of the place in which to copy the structure the
5019 subroutine will return. This is called from call_function. */
5020
5021 void
5022 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5023 {
5024 write_register (28, addr);
5025 }
5026
5027 CORE_ADDR
5028 hppa_extract_struct_value_address (char *regbuf)
5029 {
5030 /* Extract from an array REGBUF containing the (raw) register state
5031 the address in which a function should return its structure value,
5032 as a CORE_ADDR (or an expression that can be used as one). */
5033 /* FIXME: brobecker 2002-12-26.
5034 The current implementation is historical, but we should eventually
5035 implement it in a more robust manner as it relies on the fact that
5036 the address size is equal to the size of an int* _on the host_...
5037 One possible implementation that crossed my mind is to use
5038 extract_address. */
5039 return (*(int *)(regbuf + REGISTER_BYTE (28)));
5040 }
5041
5042 /* Return True if REGNUM is not a register available to the user
5043 through ptrace(). */
5044
5045 int
5046 hppa_cannot_store_register (int regnum)
5047 {
5048 return (regnum == 0
5049 || regnum == PCSQ_HEAD_REGNUM
5050 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
5051 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
5052
5053 }
5054
5055 CORE_ADDR
5056 hppa_smash_text_address (CORE_ADDR addr)
5057 {
5058 /* The low two bits of the PC on the PA contain the privilege level.
5059 Some genius implementing a (non-GCC) compiler apparently decided
5060 this means that "addresses" in a text section therefore include a
5061 privilege level, and thus symbol tables should contain these bits.
5062 This seems like a bonehead thing to do--anyway, it seems to work
5063 for our purposes to just ignore those bits. */
5064
5065 return (addr &= ~0x3);
5066 }
5067
5068 /* Get the ith function argument for the current function. */
5069 CORE_ADDR
5070 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
5071 struct type *type)
5072 {
5073 CORE_ADDR addr;
5074 frame_read_register (frame, R0_REGNUM + 26 - argi, &addr);
5075 return addr;
5076 }
5077
5078 static struct gdbarch *
5079 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5080 {
5081 struct gdbarch_tdep *tdep;
5082 struct gdbarch *gdbarch;
5083
5084 /* Try to determine the ABI of the object we are loading. */
5085 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
5086 {
5087 /* If it's a SOM file, assume it's HP/UX SOM. */
5088 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5089 info.osabi = GDB_OSABI_HPUX_SOM;
5090 }
5091
5092 /* find a candidate among the list of pre-declared architectures. */
5093 arches = gdbarch_list_lookup_by_info (arches, &info);
5094 if (arches != NULL)
5095 return (arches->gdbarch);
5096
5097 /* If none found, then allocate and initialize one. */
5098 tdep = XMALLOC (struct gdbarch_tdep);
5099 gdbarch = gdbarch_alloc (&info, tdep);
5100
5101 /* Determine from the bfd_arch_info structure if we are dealing with
5102 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5103 then default to a 32bit machine. */
5104 if (info.bfd_arch_info != NULL)
5105 tdep->bytes_per_address =
5106 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
5107 else
5108 tdep->bytes_per_address = 4;
5109
5110 /* Some parts of the gdbarch vector depend on whether we are running
5111 on a 32 bits or 64 bits target. */
5112 switch (tdep->bytes_per_address)
5113 {
5114 case 4:
5115 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
5116 set_gdbarch_register_name (gdbarch, hppa32_register_name);
5117 set_gdbarch_deprecated_register_virtual_type
5118 (gdbarch, hppa32_register_virtual_type);
5119 set_gdbarch_deprecated_call_dummy_length
5120 (gdbarch, hppa32_call_dummy_length);
5121 set_gdbarch_deprecated_stack_align (gdbarch, hppa32_stack_align);
5122 set_gdbarch_deprecated_reg_struct_has_addr
5123 (gdbarch, hppa_reg_struct_has_addr);
5124 set_gdbarch_deprecated_extract_return_value
5125 (gdbarch, hppa32_extract_return_value);
5126 set_gdbarch_use_struct_convention
5127 (gdbarch, hppa32_use_struct_convention);
5128 set_gdbarch_deprecated_store_return_value
5129 (gdbarch, hppa32_store_return_value);
5130 break;
5131 case 8:
5132 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
5133 set_gdbarch_register_name (gdbarch, hppa64_register_name);
5134 set_gdbarch_deprecated_register_virtual_type
5135 (gdbarch, hppa64_register_virtual_type);
5136 set_gdbarch_deprecated_call_dummy_breakpoint_offset
5137 (gdbarch, hppa64_call_dummy_breakpoint_offset);
5138 set_gdbarch_deprecated_call_dummy_length
5139 (gdbarch, hppa64_call_dummy_length);
5140 set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align);
5141 set_gdbarch_deprecated_extract_return_value
5142 (gdbarch, hppa64_extract_return_value);
5143 set_gdbarch_use_struct_convention
5144 (gdbarch, hppa64_use_struct_convention);
5145 set_gdbarch_deprecated_store_return_value
5146 (gdbarch, hppa64_store_return_value);
5147 break;
5148 default:
5149 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
5150 tdep->bytes_per_address);
5151 }
5152
5153 /* The following gdbarch vector elements depend on other parts of this
5154 vector which have been set above, depending on the ABI. */
5155 set_gdbarch_deprecated_register_bytes
5156 (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address);
5157 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5158 set_gdbarch_long_long_bit (gdbarch, 64);
5159 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5160
5161 /* The following gdbarch vector elements do not depend on the address
5162 size, or in any other gdbarch element previously set. */
5163 set_gdbarch_function_start_offset (gdbarch, 0);
5164 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5165 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5166 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5167 set_gdbarch_in_solib_return_trampoline (gdbarch,
5168 hppa_in_solib_return_trampoline);
5169 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
5170 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
5171 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5172 set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address);
5173 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
5174 set_gdbarch_sp_regnum (gdbarch, 30);
5175 set_gdbarch_fp0_regnum (gdbarch, 64);
5176 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
5177 set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
5178 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
5179 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5180 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
5181 set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address);
5182 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5183 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5184 set_gdbarch_deprecated_extract_struct_value_address
5185 (gdbarch, hppa_extract_struct_value_address);
5186 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5187 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5188 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5189 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5190 set_gdbarch_frameless_function_invocation
5191 (gdbarch, hppa_frameless_function_invocation);
5192 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5193 set_gdbarch_frame_args_skip (gdbarch, 0);
5194 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5195 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5196 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5197 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5198 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
5199 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5200 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5201 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5202 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5203 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5204
5205 /* Helper for function argument information. */
5206 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5207
5208 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
5209
5210 /* When a hardware watchpoint triggers, we'll move the inferior past
5211 it by removing all eventpoints; stepping past the instruction
5212 that caused the trigger; reinserting eventpoints; and checking
5213 whether any watched location changed. */
5214 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5215
5216 /* Hook in ABI-specific overrides, if they have been registered. */
5217 gdbarch_init_osabi (info, gdbarch);
5218
5219 return gdbarch;
5220 }
5221
5222 static void
5223 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5224 {
5225 /* Nothing to print for the moment. */
5226 }
5227
5228 void
5229 _initialize_hppa_tdep (void)
5230 {
5231 struct cmd_list_element *c;
5232 void break_at_finish_command (char *arg, int from_tty);
5233 void tbreak_at_finish_command (char *arg, int from_tty);
5234 void break_at_finish_at_depth_command (char *arg, int from_tty);
5235
5236 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5237
5238 add_cmd ("unwind", class_maintenance, unwind_command,
5239 "Print unwind table entry at given address.",
5240 &maintenanceprintlist);
5241
5242 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5243 break_at_finish_command,
5244 concat ("Set breakpoint at procedure exit. \n\
5245 Argument may be function name, or \"*\" and an address.\n\
5246 If function is specified, break at end of code for that function.\n\
5247 If an address is specified, break at the end of the function that contains \n\
5248 that exact address.\n",
5249 "With no arg, uses current execution address of selected stack frame.\n\
5250 This is useful for breaking on return to a stack frame.\n\
5251 \n\
5252 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5253 \n\
5254 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5255 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5256 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5257 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5258 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5259
5260 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5261 tbreak_at_finish_command,
5262 "Set temporary breakpoint at procedure exit. Either there should\n\
5263 be no argument or the argument must be a depth.\n"), NULL);
5264 set_cmd_completer (c, location_completer);
5265
5266 if (xdb_commands)
5267 deprecate_cmd (add_com ("bx", class_breakpoint,
5268 break_at_finish_at_depth_command,
5269 "Set breakpoint at procedure exit. Either there should\n\
5270 be no argument or the argument must be a depth.\n"), NULL);
5271 }
5272