]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-linux-nat.c
* i386-linux-nat.c (i386_linux_dr_get): Change type of return
[thirdparty/binutils-gdb.git] / gdb / i386-linux-nat.c
1 /* Native-dependent code for Linux/x86.
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "regcache.h"
25
26 #include "gdb_assert.h"
27 #include <sys/ptrace.h>
28 #include <sys/user.h>
29 #include <sys/procfs.h>
30
31 #ifdef HAVE_SYS_REG_H
32 #include <sys/reg.h>
33 #endif
34
35 #ifdef HAVE_SYS_DEBUGREG_H
36 #include <sys/debugreg.h>
37 #endif
38
39 #ifndef DR_FIRSTADDR
40 #define DR_FIRSTADDR 0
41 #endif
42
43 #ifndef DR_LASTADDR
44 #define DR_LASTADDR 3
45 #endif
46
47 #ifndef DR_STATUS
48 #define DR_STATUS 6
49 #endif
50
51 #ifndef DR_CONTROL
52 #define DR_CONTROL 7
53 #endif
54
55 /* Prototypes for supply_gregset etc. */
56 #include "gregset.h"
57
58 /* Prototypes for i387_supply_fsave etc. */
59 #include "i387-nat.h"
60
61 /* Prototypes for local functions. */
62 static void dummy_sse_values (void);
63
64 /* On Linux, threads are implemented as pseudo-processes, in which
65 case we may be tracing more than one process at a time. In that
66 case, inferior_pid will contain the main process ID and the
67 individual thread (process) ID mashed together. These macros are
68 used to separate them out. These definitions should be overridden
69 if thread support is included. */
70
71 #if !defined (PIDGET) /* Default definition for PIDGET/TIDGET. */
72 #define PIDGET(PID) PID
73 #define TIDGET(PID) 0
74 #endif
75 \f
76
77 /* The register sets used in Linux ELF core-dumps are identical to the
78 register sets in `struct user' that is used for a.out core-dumps,
79 and is also used by `ptrace'. The corresponding types are
80 `elf_gregset_t' for the general-purpose registers (with
81 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
82 for the floating-point registers.
83
84 Those types used to be available under the names `gregset_t' and
85 `fpregset_t' too, and this file used those names in the past. But
86 those names are now used for the register sets used in the
87 `mcontext_t' type, and have a different size and layout. */
88
89 /* Mapping between the general-purpose registers in `struct user'
90 format and GDB's register array layout. */
91 static int regmap[] =
92 {
93 EAX, ECX, EDX, EBX,
94 UESP, EBP, ESI, EDI,
95 EIP, EFL, CS, SS,
96 DS, ES, FS, GS
97 };
98
99 /* Which ptrace request retrieves which registers?
100 These apply to the corresponding SET requests as well. */
101 #define GETREGS_SUPPLIES(regno) \
102 (0 <= (regno) && (regno) <= 15)
103 #define GETFPREGS_SUPPLIES(regno) \
104 (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
105 #define GETFPXREGS_SUPPLIES(regno) \
106 (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
107
108 /* Does the current host support the GETREGS request? */
109 int have_ptrace_getregs =
110 #ifdef HAVE_PTRACE_GETREGS
111 1
112 #else
113 0
114 #endif
115 ;
116
117 /* Does the current host support the GETFPXREGS request? The header
118 file may or may not define it, and even if it is defined, the
119 kernel will return EIO if it's running on a pre-SSE processor.
120
121 My instinct is to attach this to some architecture- or
122 target-specific data structure, but really, a particular GDB
123 process can only run on top of one kernel at a time. So it's okay
124 for this to be a simple variable. */
125 int have_ptrace_getfpxregs =
126 #ifdef HAVE_PTRACE_GETFPXREGS
127 1
128 #else
129 0
130 #endif
131 ;
132 \f
133
134 /* Support for the user struct. */
135
136 /* Return the address of register REGNUM. BLOCKEND is the value of
137 u.u_ar0, which should point to the registers. */
138
139 CORE_ADDR
140 register_u_addr (CORE_ADDR blockend, int regnum)
141 {
142 return (blockend + 4 * regmap[regnum]);
143 }
144
145 /* Return the size of the user struct. */
146
147 int
148 kernel_u_size (void)
149 {
150 return (sizeof (struct user));
151 }
152 \f
153
154 /* Fetching registers directly from the U area, one at a time. */
155
156 /* FIXME: kettenis/2000-03-05: This duplicates code from `inptrace.c'.
157 The problem is that we define FETCH_INFERIOR_REGISTERS since we
158 want to use our own versions of {fetch,store}_inferior_registers
159 that use the GETREGS request. This means that the code in
160 `infptrace.c' is #ifdef'd out. But we need to fall back on that
161 code when GDB is running on top of a kernel that doesn't support
162 the GETREGS request. I want to avoid changing `infptrace.c' right
163 now. */
164
165 #ifndef PT_READ_U
166 #define PT_READ_U PTRACE_PEEKUSR
167 #endif
168 #ifndef PT_WRITE_U
169 #define PT_WRITE_U PTRACE_POKEUSR
170 #endif
171
172 /* Default the type of the ptrace transfer to int. */
173 #ifndef PTRACE_XFER_TYPE
174 #define PTRACE_XFER_TYPE int
175 #endif
176
177 /* Registers we shouldn't try to fetch. */
178 #define OLD_CANNOT_FETCH_REGISTER(regno) ((regno) >= NUM_GREGS)
179
180 /* Fetch one register. */
181
182 static void
183 fetch_register (int regno)
184 {
185 /* This isn't really an address. But ptrace thinks of it as one. */
186 CORE_ADDR regaddr;
187 char mess[128]; /* For messages */
188 register int i;
189 unsigned int offset; /* Offset of registers within the u area. */
190 char buf[MAX_REGISTER_RAW_SIZE];
191 int tid;
192
193 if (OLD_CANNOT_FETCH_REGISTER (regno))
194 {
195 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
196 supply_register (regno, buf);
197 return;
198 }
199
200 /* Overload thread id onto process id */
201 if ((tid = TIDGET (inferior_pid)) == 0)
202 tid = inferior_pid; /* no thread id, just use process id */
203
204 offset = U_REGS_OFFSET;
205
206 regaddr = register_addr (regno, offset);
207 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
208 {
209 errno = 0;
210 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
211 (PTRACE_ARG3_TYPE) regaddr, 0);
212 regaddr += sizeof (PTRACE_XFER_TYPE);
213 if (errno != 0)
214 {
215 sprintf (mess, "reading register %s (#%d)",
216 REGISTER_NAME (regno), regno);
217 perror_with_name (mess);
218 }
219 }
220 supply_register (regno, buf);
221 }
222
223 /* Fetch register values from the inferior.
224 If REGNO is negative, do this for all registers.
225 Otherwise, REGNO specifies which register (so we can save time). */
226
227 void
228 old_fetch_inferior_registers (int regno)
229 {
230 if (regno >= 0)
231 {
232 fetch_register (regno);
233 }
234 else
235 {
236 for (regno = 0; regno < NUM_REGS; regno++)
237 {
238 fetch_register (regno);
239 }
240 }
241 }
242
243 /* Registers we shouldn't try to store. */
244 #define OLD_CANNOT_STORE_REGISTER(regno) ((regno) >= NUM_GREGS)
245
246 /* Store one register. */
247
248 static void
249 store_register (int regno)
250 {
251 /* This isn't really an address. But ptrace thinks of it as one. */
252 CORE_ADDR regaddr;
253 char mess[128]; /* For messages */
254 register int i;
255 unsigned int offset; /* Offset of registers within the u area. */
256 int tid;
257
258 if (OLD_CANNOT_STORE_REGISTER (regno))
259 {
260 return;
261 }
262
263 /* Overload thread id onto process id */
264 if ((tid = TIDGET (inferior_pid)) == 0)
265 tid = inferior_pid; /* no thread id, just use process id */
266
267 offset = U_REGS_OFFSET;
268
269 regaddr = register_addr (regno, offset);
270 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
271 {
272 errno = 0;
273 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
274 *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
275 regaddr += sizeof (PTRACE_XFER_TYPE);
276 if (errno != 0)
277 {
278 sprintf (mess, "writing register %s (#%d)",
279 REGISTER_NAME (regno), regno);
280 perror_with_name (mess);
281 }
282 }
283 }
284
285 /* Store our register values back into the inferior.
286 If REGNO is negative, do this for all registers.
287 Otherwise, REGNO specifies which register (so we can save time). */
288
289 void
290 old_store_inferior_registers (int regno)
291 {
292 if (regno >= 0)
293 {
294 store_register (regno);
295 }
296 else
297 {
298 for (regno = 0; regno < NUM_REGS; regno++)
299 {
300 store_register (regno);
301 }
302 }
303 }
304 \f
305
306 /* Transfering the general-purpose registers between GDB, inferiors
307 and core files. */
308
309 /* Fill GDB's register array with the general-purpose register values
310 in *GREGSETP. */
311
312 void
313 supply_gregset (elf_gregset_t *gregsetp)
314 {
315 elf_greg_t *regp = (elf_greg_t *) gregsetp;
316 int i;
317
318 for (i = 0; i < NUM_GREGS; i++)
319 supply_register (i, (char *) (regp + regmap[i]));
320 }
321
322 /* Fill register REGNO (if it is a general-purpose register) in
323 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
324 do this for all registers. */
325
326 void
327 fill_gregset (elf_gregset_t *gregsetp, int regno)
328 {
329 elf_greg_t *regp = (elf_greg_t *) gregsetp;
330 int i;
331
332 for (i = 0; i < NUM_GREGS; i++)
333 if ((regno == -1 || regno == i))
334 *(regp + regmap[i]) = *(elf_greg_t *) &registers[REGISTER_BYTE (i)];
335 }
336
337 #ifdef HAVE_PTRACE_GETREGS
338
339 /* Fetch all general-purpose registers from process/thread TID and
340 store their values in GDB's register array. */
341
342 static void
343 fetch_regs (int tid)
344 {
345 elf_gregset_t regs;
346
347 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
348 {
349 if (errno == EIO)
350 {
351 /* The kernel we're running on doesn't support the GETREGS
352 request. Reset `have_ptrace_getregs'. */
353 have_ptrace_getregs = 0;
354 return;
355 }
356
357 perror_with_name ("Couldn't get registers");
358 }
359
360 supply_gregset (&regs);
361 }
362
363 /* Store all valid general-purpose registers in GDB's register array
364 into the process/thread specified by TID. */
365
366 static void
367 store_regs (int tid, int regno)
368 {
369 elf_gregset_t regs;
370
371 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
372 perror_with_name ("Couldn't get registers");
373
374 fill_gregset (&regs, regno);
375
376 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
377 perror_with_name ("Couldn't write registers");
378 }
379
380 #else
381
382 static void fetch_regs (int tid) {}
383 static void store_regs (int tid, int regno) {}
384
385 #endif
386 \f
387
388 /* Transfering floating-point registers between GDB, inferiors and cores. */
389
390 /* Fill GDB's register array with the floating-point register values in
391 *FPREGSETP. */
392
393 void
394 supply_fpregset (elf_fpregset_t *fpregsetp)
395 {
396 i387_supply_fsave ((char *) fpregsetp);
397 dummy_sse_values ();
398 }
399
400 /* Fill register REGNO (if it is a floating-point register) in
401 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
402 do this for all registers. */
403
404 void
405 fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
406 {
407 i387_fill_fsave ((char *) fpregsetp, regno);
408 }
409
410 #ifdef HAVE_PTRACE_GETREGS
411
412 /* Fetch all floating-point registers from process/thread TID and store
413 thier values in GDB's register array. */
414
415 static void
416 fetch_fpregs (int tid)
417 {
418 elf_fpregset_t fpregs;
419
420 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
421 perror_with_name ("Couldn't get floating point status");
422
423 supply_fpregset (&fpregs);
424 }
425
426 /* Store all valid floating-point registers in GDB's register array
427 into the process/thread specified by TID. */
428
429 static void
430 store_fpregs (int tid, int regno)
431 {
432 elf_fpregset_t fpregs;
433
434 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
435 perror_with_name ("Couldn't get floating point status");
436
437 fill_fpregset (&fpregs, regno);
438
439 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
440 perror_with_name ("Couldn't write floating point status");
441 }
442
443 #else
444
445 static void fetch_fpregs (int tid) {}
446 static void store_fpregs (int tid, int regno) {}
447
448 #endif
449 \f
450
451 /* Transfering floating-point and SSE registers to and from GDB. */
452
453 #ifdef HAVE_PTRACE_GETFPXREGS
454
455 /* Fill GDB's register array with the floating-point and SSE register
456 values in *FPXREGSETP. */
457
458 static void
459 supply_fpxregset (elf_fpxregset_t *fpxregsetp)
460 {
461 i387_supply_fxsave ((char *) fpxregsetp);
462 }
463
464 /* Fill register REGNO (if it is a floating-point or SSE register) in
465 *FPXREGSETP with the value in GDB's register array. If REGNO is
466 -1, do this for all registers. */
467
468 static void
469 fill_fpxregset (elf_fpxregset_t *fpxregsetp, int regno)
470 {
471 i387_fill_fxsave ((char *) fpxregsetp, regno);
472 }
473
474 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from
475 process/thread TID and store their values in GDB's register array.
476 Return non-zero if successful, zero otherwise. */
477
478 static int
479 fetch_fpxregs (int tid)
480 {
481 elf_fpxregset_t fpxregs;
482
483 if (! have_ptrace_getfpxregs)
484 return 0;
485
486 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
487 {
488 if (errno == EIO)
489 {
490 have_ptrace_getfpxregs = 0;
491 return 0;
492 }
493
494 perror_with_name ("Couldn't read floating-point and SSE registers");
495 }
496
497 supply_fpxregset (&fpxregs);
498 return 1;
499 }
500
501 /* Store all valid registers in GDB's register array covered by the
502 PTRACE_SETFPXREGS request into the process/thread specified by TID.
503 Return non-zero if successful, zero otherwise. */
504
505 static int
506 store_fpxregs (int tid, int regno)
507 {
508 elf_fpxregset_t fpxregs;
509
510 if (! have_ptrace_getfpxregs)
511 return 0;
512
513 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
514 {
515 if (errno == EIO)
516 {
517 have_ptrace_getfpxregs = 0;
518 return 0;
519 }
520
521 perror_with_name ("Couldn't read floating-point and SSE registers");
522 }
523
524 fill_fpxregset (&fpxregs, regno);
525
526 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
527 perror_with_name ("Couldn't write floating-point and SSE registers");
528
529 return 1;
530 }
531
532 /* Fill the XMM registers in the register array with dummy values. For
533 cases where we don't have access to the XMM registers. I think
534 this is cleaner than printing a warning. For a cleaner solution,
535 we should gdbarchify the i386 family. */
536
537 static void
538 dummy_sse_values (void)
539 {
540 /* C doesn't have a syntax for NaN's, so write it out as an array of
541 longs. */
542 static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
543 static long mxcsr = 0x1f80;
544 int reg;
545
546 for (reg = 0; reg < 8; reg++)
547 supply_register (XMM0_REGNUM + reg, (char *) dummy);
548 supply_register (MXCSR_REGNUM, (char *) &mxcsr);
549 }
550
551 #else
552
553 static int fetch_fpxregs (int tid) { return 0; }
554 static int store_fpxregs (int tid, int regno) { return 0; }
555 static void dummy_sse_values (void) {}
556
557 #endif /* HAVE_PTRACE_GETFPXREGS */
558 \f
559
560 /* Transferring arbitrary registers between GDB and inferior. */
561
562 /* Check if register REGNO in the child process is accessible.
563 If we are accessing registers directly via the U area, only the
564 general-purpose registers are available.
565 All registers should be accessible if we have GETREGS support. */
566
567 int
568 cannot_fetch_register (int regno)
569 {
570 if (! have_ptrace_getregs)
571 return OLD_CANNOT_FETCH_REGISTER (regno);
572 return 0;
573 }
574 int
575 cannot_store_register (int regno)
576 {
577 if (! have_ptrace_getregs)
578 return OLD_CANNOT_STORE_REGISTER (regno);
579 return 0;
580 }
581
582 /* Fetch register REGNO from the child process. If REGNO is -1, do
583 this for all registers (including the floating point and SSE
584 registers). */
585
586 void
587 fetch_inferior_registers (int regno)
588 {
589 int tid;
590
591 /* Use the old method of peeking around in `struct user' if the
592 GETREGS request isn't available. */
593 if (! have_ptrace_getregs)
594 {
595 old_fetch_inferior_registers (regno);
596 return;
597 }
598
599 /* Linux LWP ID's are process ID's. */
600 if ((tid = TIDGET (inferior_pid)) == 0)
601 tid = inferior_pid; /* Not a threaded program. */
602
603 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
604 transfers more registers in one system call, and we'll cache the
605 results. But remember that fetch_fpxregs can fail, and return
606 zero. */
607 if (regno == -1)
608 {
609 fetch_regs (tid);
610
611 /* The call above might reset `have_ptrace_getregs'. */
612 if (! have_ptrace_getregs)
613 {
614 old_fetch_inferior_registers (-1);
615 return;
616 }
617
618 if (fetch_fpxregs (tid))
619 return;
620 fetch_fpregs (tid);
621 return;
622 }
623
624 if (GETREGS_SUPPLIES (regno))
625 {
626 fetch_regs (tid);
627 return;
628 }
629
630 if (GETFPXREGS_SUPPLIES (regno))
631 {
632 if (fetch_fpxregs (tid))
633 return;
634
635 /* Either our processor or our kernel doesn't support the SSE
636 registers, so read the FP registers in the traditional way,
637 and fill the SSE registers with dummy values. It would be
638 more graceful to handle differences in the register set using
639 gdbarch. Until then, this will at least make things work
640 plausibly. */
641 fetch_fpregs (tid);
642 return;
643 }
644
645 internal_error (__FILE__, __LINE__,
646 "Got request for bad register number %d.", regno);
647 }
648
649 /* Store register REGNO back into the child process. If REGNO is -1,
650 do this for all registers (including the floating point and SSE
651 registers). */
652 void
653 store_inferior_registers (int regno)
654 {
655 int tid;
656
657 /* Use the old method of poking around in `struct user' if the
658 SETREGS request isn't available. */
659 if (! have_ptrace_getregs)
660 {
661 old_store_inferior_registers (regno);
662 return;
663 }
664
665 /* Linux LWP ID's are process ID's. */
666 if ((tid = TIDGET (inferior_pid)) == 0)
667 tid = inferior_pid; /* Not a threaded program. */
668
669 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
670 transfers more registers in one system call. But remember that
671 store_fpxregs can fail, and return zero. */
672 if (regno == -1)
673 {
674 store_regs (tid, regno);
675 if (store_fpxregs (tid, regno))
676 return;
677 store_fpregs (tid, regno);
678 return;
679 }
680
681 if (GETREGS_SUPPLIES (regno))
682 {
683 store_regs (tid, regno);
684 return;
685 }
686
687 if (GETFPXREGS_SUPPLIES (regno))
688 {
689 if (store_fpxregs (tid, regno))
690 return;
691
692 /* Either our processor or our kernel doesn't support the SSE
693 registers, so just write the FP registers in the traditional
694 way. */
695 store_fpregs (tid, regno);
696 return;
697 }
698
699 internal_error (__FILE__, __LINE__,
700 "Got request to store bad register number %d.", regno);
701 }
702 \f
703
704 static unsigned long
705 i386_linux_dr_get (int regnum)
706 {
707 int tid;
708 unsigned long value;
709
710 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
711 multi-threaded processes here. For now, pretend there is just
712 one thread. */
713 tid = PIDGET (inferior_pid);
714
715 /* FIXME: kettenis/2001-03-27: Calling perror_with_name if the
716 ptrace call fails breaks debugging remote targets. The correct
717 way to fix this is to add the hardware breakpoint and watchpoint
718 stuff to the target vectore. For now, just return zero if the
719 ptrace call fails. */
720 errno = 0;
721 value = ptrace (PT_READ_U, tid,
722 offsetof (struct user, u_debugreg[regnum]), 0);
723 if (errno != 0)
724 #if 0
725 perror_with_name ("Couldn't read debug register");
726 #else
727 return 0;
728 #endif
729
730 return value;
731 }
732
733 static void
734 i386_linux_dr_set (int regnum, unsigned long value)
735 {
736 int tid;
737
738 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
739 multi-threaded processes here. For now, pretend there is just
740 one thread. */
741 tid = PIDGET (inferior_pid);
742
743 errno = 0;
744 ptrace (PT_WRITE_U, tid,
745 offsetof (struct user, u_debugreg[regnum]), value);
746 if (errno != 0)
747 perror_with_name ("Couldn't write debug register");
748 }
749
750 void
751 i386_linux_dr_set_control (unsigned long control)
752 {
753 i386_linux_dr_set (DR_CONTROL, control);
754 }
755
756 void
757 i386_linux_dr_set_addr (int regnum, CORE_ADDR addr)
758 {
759 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
760
761 i386_linux_dr_set (DR_FIRSTADDR + regnum, addr);
762 }
763
764 void
765 i386_linux_dr_reset_addr (int regnum)
766 {
767 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
768
769 i386_linux_dr_set (DR_FIRSTADDR + regnum, 0L);
770 }
771
772 unsigned long
773 i386_linux_dr_get_status (void)
774 {
775 return i386_linux_dr_get (DR_STATUS);
776 }
777 \f
778
779 /* Interpreting register set info found in core files. */
780
781 /* Provide registers to GDB from a core file.
782
783 (We can't use the generic version of this function in
784 core-regset.c, because Linux has *three* different kinds of
785 register set notes. core-regset.c would have to call
786 supply_fpxregset, which most platforms don't have.)
787
788 CORE_REG_SECT points to an array of bytes, which are the contents
789 of a `note' from a core file which BFD thinks might contain
790 register contents. CORE_REG_SIZE is its size.
791
792 WHICH says which register set corelow suspects this is:
793 0 --- the general-purpose register set, in elf_gregset_t format
794 2 --- the floating-point register set, in elf_fpregset_t format
795 3 --- the extended floating-point register set, in elf_fpxregset_t format
796
797 REG_ADDR isn't used on Linux. */
798
799 static void
800 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
801 int which, CORE_ADDR reg_addr)
802 {
803 elf_gregset_t gregset;
804 elf_fpregset_t fpregset;
805
806 switch (which)
807 {
808 case 0:
809 if (core_reg_size != sizeof (gregset))
810 warning ("Wrong size gregset in core file.");
811 else
812 {
813 memcpy (&gregset, core_reg_sect, sizeof (gregset));
814 supply_gregset (&gregset);
815 }
816 break;
817
818 case 2:
819 if (core_reg_size != sizeof (fpregset))
820 warning ("Wrong size fpregset in core file.");
821 else
822 {
823 memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
824 supply_fpregset (&fpregset);
825 }
826 break;
827
828 #ifdef HAVE_PTRACE_GETFPXREGS
829 {
830 elf_fpxregset_t fpxregset;
831
832 case 3:
833 if (core_reg_size != sizeof (fpxregset))
834 warning ("Wrong size fpxregset in core file.");
835 else
836 {
837 memcpy (&fpxregset, core_reg_sect, sizeof (fpxregset));
838 supply_fpxregset (&fpxregset);
839 }
840 break;
841 }
842 #endif
843
844 default:
845 /* We've covered all the kinds of registers we know about here,
846 so this must be something we wouldn't know what to do with
847 anyway. Just ignore it. */
848 break;
849 }
850 }
851 \f
852
853 /* The instruction for a Linux system call is:
854 int $0x80
855 or 0xcd 0x80. */
856
857 static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
858
859 #define LINUX_SYSCALL_LEN (sizeof linux_syscall)
860
861 /* The system call number is stored in the %eax register. */
862 #define LINUX_SYSCALL_REGNUM 0 /* %eax */
863
864 /* We are specifically interested in the sigreturn and rt_sigreturn
865 system calls. */
866
867 #ifndef SYS_sigreturn
868 #define SYS_sigreturn 0x77
869 #endif
870 #ifndef SYS_rt_sigreturn
871 #define SYS_rt_sigreturn 0xad
872 #endif
873
874 /* Offset to saved processor flags, from <asm/sigcontext.h>. */
875 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
876
877 /* Resume execution of the inferior process.
878 If STEP is nonzero, single-step it.
879 If SIGNAL is nonzero, give it that signal. */
880
881 void
882 child_resume (int pid, int step, enum target_signal signal)
883 {
884 int request = PTRACE_CONT;
885
886 if (pid == -1)
887 /* Resume all threads. */
888 /* I think this only gets used in the non-threaded case, where "resume
889 all threads" and "resume inferior_pid" are the same. */
890 pid = inferior_pid;
891
892 if (step)
893 {
894 CORE_ADDR pc = read_pc_pid (pid);
895 unsigned char buf[LINUX_SYSCALL_LEN];
896
897 request = PTRACE_SINGLESTEP;
898
899 /* Returning from a signal trampoline is done by calling a
900 special system call (sigreturn or rt_sigreturn, see
901 i386-linux-tdep.c for more information). This system call
902 restores the registers that were saved when the signal was
903 raised, including %eflags. That means that single-stepping
904 won't work. Instead, we'll have to modify the signal context
905 that's about to be restored, and set the trace flag there. */
906
907 /* First check if PC is at a system call. */
908 if (read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0
909 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
910 {
911 int syscall = read_register_pid (LINUX_SYSCALL_REGNUM, pid);
912
913 /* Then check the system call number. */
914 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
915 {
916 CORE_ADDR sp = read_register (SP_REGNUM);
917 CORE_ADDR addr = sp;
918 unsigned long int eflags;
919
920 if (syscall == SYS_rt_sigreturn)
921 addr = read_memory_integer (sp + 8, 4) + 20;
922
923 /* Set the trace flag in the context that's about to be
924 restored. */
925 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
926 read_memory (addr, (char *) &eflags, 4);
927 eflags |= 0x0100;
928 write_memory (addr, (char *) &eflags, 4);
929 }
930 }
931 }
932
933 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
934 perror_with_name ("ptrace");
935 }
936 \f
937
938 /* Register that we are able to handle Linux ELF core file formats. */
939
940 static struct core_fns linux_elf_core_fns =
941 {
942 bfd_target_elf_flavour, /* core_flavour */
943 default_check_format, /* check_format */
944 default_core_sniffer, /* core_sniffer */
945 fetch_core_registers, /* core_read_registers */
946 NULL /* next */
947 };
948
949 void
950 _initialize_i386_linux_nat (void)
951 {
952 add_core_fns (&linux_elf_core_fns);
953 }