]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-linux-tdep.c
Unify gdb printf functions
[thirdparty/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux i386.
2
3 Copyright (C) 2000-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "frame.h"
23 #include "value.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "inferior.h"
27 #include "osabi.h"
28 #include "reggroups.h"
29 #include "dwarf2/frame.h"
30 #include "i386-tdep.h"
31 #include "i386-linux-tdep.h"
32 #include "linux-tdep.h"
33 #include "utils.h"
34 #include "glibc-tdep.h"
35 #include "solib-svr4.h"
36 #include "symtab.h"
37 #include "arch-utils.h"
38 #include "xml-syscall.h"
39 #include "infrun.h"
40
41 #include "i387-tdep.h"
42 #include "gdbsupport/x86-xstate.h"
43
44 /* The syscall's XML filename for i386. */
45 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
46
47 #include "record-full.h"
48 #include "linux-record.h"
49
50 #include "arch/i386.h"
51 #include "target-descriptions.h"
52
53 /* Return non-zero, when the register is in the corresponding register
54 group. Put the LINUX_ORIG_EAX register in the system group. */
55 static int
56 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
57 struct reggroup *group)
58 {
59 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
60 return (group == system_reggroup
61 || group == save_reggroup
62 || group == restore_reggroup);
63 return i386_register_reggroup_p (gdbarch, regnum, group);
64 }
65
66 \f
67 /* Recognizing signal handler frames. */
68
69 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
70 "realtime" (RT) signals. The RT signals can provide additional
71 information to the signal handler if the SA_SIGINFO flag is set
72 when establishing a signal handler using `sigaction'. It is not
73 unlikely that future versions of GNU/Linux will support SA_SIGINFO
74 for normal signals too. */
75
76 /* When the i386 Linux kernel calls a signal handler and the
77 SA_RESTORER flag isn't set, the return address points to a bit of
78 code on the stack. This function returns whether the PC appears to
79 be within this bit of code.
80
81 The instruction sequence for normal signals is
82 pop %eax
83 mov $0x77, %eax
84 int $0x80
85 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
86
87 Checking for the code sequence should be somewhat reliable, because
88 the effect is to call the system call sigreturn. This is unlikely
89 to occur anywhere other than in a signal trampoline.
90
91 It kind of sucks that we have to read memory from the process in
92 order to identify a signal trampoline, but there doesn't seem to be
93 any other way. Therefore we only do the memory reads if no
94 function name could be identified, which should be the case since
95 the code is on the stack.
96
97 Detection of signal trampolines for handlers that set the
98 SA_RESTORER flag is in general not possible. Unfortunately this is
99 what the GNU C Library has been doing for quite some time now.
100 However, as of version 2.1.2, the GNU C Library uses signal
101 trampolines (named __restore and __restore_rt) that are identical
102 to the ones used by the kernel. Therefore, these trampolines are
103 supported too. */
104
105 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
106 #define LINUX_SIGTRAMP_OFFSET0 0
107 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
108 #define LINUX_SIGTRAMP_OFFSET1 1
109 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
110 #define LINUX_SIGTRAMP_OFFSET2 6
111
112 static const gdb_byte linux_sigtramp_code[] =
113 {
114 LINUX_SIGTRAMP_INSN0, /* pop %eax */
115 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
116 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
117 };
118
119 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
120
121 /* If THIS_FRAME is a sigtramp routine, return the address of the
122 start of the routine. Otherwise, return 0. */
123
124 static CORE_ADDR
125 i386_linux_sigtramp_start (struct frame_info *this_frame)
126 {
127 CORE_ADDR pc = get_frame_pc (this_frame);
128 gdb_byte buf[LINUX_SIGTRAMP_LEN];
129
130 /* We only recognize a signal trampoline if PC is at the start of
131 one of the three instructions. We optimize for finding the PC at
132 the start, as will be the case when the trampoline is not the
133 first frame on the stack. We assume that in the case where the
134 PC is not at the start of the instruction sequence, there will be
135 a few trailing readable bytes on the stack. */
136
137 if (!safe_frame_unwind_memory (this_frame, pc, buf))
138 return 0;
139
140 if (buf[0] != LINUX_SIGTRAMP_INSN0)
141 {
142 int adjust;
143
144 switch (buf[0])
145 {
146 case LINUX_SIGTRAMP_INSN1:
147 adjust = LINUX_SIGTRAMP_OFFSET1;
148 break;
149 case LINUX_SIGTRAMP_INSN2:
150 adjust = LINUX_SIGTRAMP_OFFSET2;
151 break;
152 default:
153 return 0;
154 }
155
156 pc -= adjust;
157
158 if (!safe_frame_unwind_memory (this_frame, pc, buf))
159 return 0;
160 }
161
162 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
163 return 0;
164
165 return pc;
166 }
167
168 /* This function does the same for RT signals. Here the instruction
169 sequence is
170 mov $0xad, %eax
171 int $0x80
172 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
173
174 The effect is to call the system call rt_sigreturn. */
175
176 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
177 #define LINUX_RT_SIGTRAMP_OFFSET0 0
178 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
179 #define LINUX_RT_SIGTRAMP_OFFSET1 5
180
181 static const gdb_byte linux_rt_sigtramp_code[] =
182 {
183 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
184 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
185 };
186
187 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
188
189 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
190 start of the routine. Otherwise, return 0. */
191
192 static CORE_ADDR
193 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
194 {
195 CORE_ADDR pc = get_frame_pc (this_frame);
196 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
197
198 /* We only recognize a signal trampoline if PC is at the start of
199 one of the two instructions. We optimize for finding the PC at
200 the start, as will be the case when the trampoline is not the
201 first frame on the stack. We assume that in the case where the
202 PC is not at the start of the instruction sequence, there will be
203 a few trailing readable bytes on the stack. */
204
205 if (!safe_frame_unwind_memory (this_frame, pc, buf))
206 return 0;
207
208 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
209 {
210 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
211 return 0;
212
213 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
214
215 if (!safe_frame_unwind_memory (this_frame, pc,
216 buf))
217 return 0;
218 }
219
220 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
221 return 0;
222
223 return pc;
224 }
225
226 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
227 routine. */
228
229 static int
230 i386_linux_sigtramp_p (struct frame_info *this_frame)
231 {
232 CORE_ADDR pc = get_frame_pc (this_frame);
233 const char *name;
234
235 find_pc_partial_function (pc, &name, NULL, NULL);
236
237 /* If we have NAME, we can optimize the search. The trampolines are
238 named __restore and __restore_rt. However, they aren't dynamically
239 exported from the shared C library, so the trampoline may appear to
240 be part of the preceding function. This should always be sigaction,
241 __sigaction, or __libc_sigaction (all aliases to the same function). */
242 if (name == NULL || strstr (name, "sigaction") != NULL)
243 return (i386_linux_sigtramp_start (this_frame) != 0
244 || i386_linux_rt_sigtramp_start (this_frame) != 0);
245
246 return (strcmp ("__restore", name) == 0
247 || strcmp ("__restore_rt", name) == 0);
248 }
249
250 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
251 may have DWARF-2 CFI. */
252
253 static int
254 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
255 struct frame_info *this_frame)
256 {
257 CORE_ADDR pc = get_frame_pc (this_frame);
258 const char *name;
259
260 find_pc_partial_function (pc, &name, NULL, NULL);
261
262 /* If a vsyscall DSO is in use, the signal trampolines may have these
263 names. */
264 if (name && (strcmp (name, "__kernel_sigreturn") == 0
265 || strcmp (name, "__kernel_rt_sigreturn") == 0))
266 return 1;
267
268 return 0;
269 }
270
271 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
272 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
273
274 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
275 address of the associated sigcontext structure. */
276
277 static CORE_ADDR
278 i386_linux_sigcontext_addr (struct frame_info *this_frame)
279 {
280 struct gdbarch *gdbarch = get_frame_arch (this_frame);
281 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
282 CORE_ADDR pc;
283 CORE_ADDR sp;
284 gdb_byte buf[4];
285
286 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
287 sp = extract_unsigned_integer (buf, 4, byte_order);
288
289 pc = i386_linux_sigtramp_start (this_frame);
290 if (pc)
291 {
292 /* The sigcontext structure lives on the stack, right after
293 the signum argument. We determine the address of the
294 sigcontext structure by looking at the frame's stack
295 pointer. Keep in mind that the first instruction of the
296 sigtramp code is "pop %eax". If the PC is after this
297 instruction, adjust the returned value accordingly. */
298 if (pc == get_frame_pc (this_frame))
299 return sp + 4;
300 return sp;
301 }
302
303 pc = i386_linux_rt_sigtramp_start (this_frame);
304 if (pc)
305 {
306 CORE_ADDR ucontext_addr;
307
308 /* The sigcontext structure is part of the user context. A
309 pointer to the user context is passed as the third argument
310 to the signal handler. */
311 read_memory (sp + 8, buf, 4);
312 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
313 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
314 }
315
316 error (_("Couldn't recognize signal trampoline."));
317 return 0;
318 }
319
320 /* Set the program counter for process PTID to PC. */
321
322 static void
323 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
324 {
325 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
326
327 /* We must be careful with modifying the program counter. If we
328 just interrupted a system call, the kernel might try to restart
329 it when we resume the inferior. On restarting the system call,
330 the kernel will try backing up the program counter even though it
331 no longer points at the system call. This typically results in a
332 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
333 "orig_eax" pseudo-register.
334
335 Note that "orig_eax" is saved when setting up a dummy call frame.
336 This means that it is properly restored when that frame is
337 popped, and that the interrupted system call will be restarted
338 when we resume the inferior on return from a function call from
339 within GDB. In all other cases the system call will not be
340 restarted. */
341 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
342 }
343
344 /* Record all registers but IP register for process-record. */
345
346 static int
347 i386_all_but_ip_registers_record (struct regcache *regcache)
348 {
349 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
350 return -1;
351 if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
352 return -1;
353 if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
354 return -1;
355 if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
356 return -1;
357 if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
358 return -1;
359 if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
360 return -1;
361 if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
362 return -1;
363 if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
364 return -1;
365 if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
366 return -1;
367
368 return 0;
369 }
370
371 /* i386_canonicalize_syscall maps from the native i386 Linux set
372 of syscall ids into a canonical set of syscall ids used by
373 process record (a mostly trivial mapping, since the canonical
374 set was originally taken from the i386 set). */
375
376 static enum gdb_syscall
377 i386_canonicalize_syscall (int syscall)
378 {
379 enum { i386_syscall_max = 499 };
380
381 if (syscall <= i386_syscall_max)
382 return (enum gdb_syscall) syscall;
383 else
384 return gdb_sys_no_syscall;
385 }
386
387 /* Value of the sigcode in case of a boundary fault. */
388
389 #define SIG_CODE_BONDARY_FAULT 3
390
391 /* i386 GNU/Linux implementation of the report_signal_info
392 gdbarch hook. Displays information related to MPX bound
393 violations. */
394 void
395 i386_linux_report_signal_info (struct gdbarch *gdbarch, struct ui_out *uiout,
396 enum gdb_signal siggnal)
397 {
398 /* -Wmaybe-uninitialized */
399 CORE_ADDR lower_bound = 0, upper_bound = 0, access = 0;
400 int is_upper;
401 long sig_code = 0;
402
403 if (!i386_mpx_enabled () || siggnal != GDB_SIGNAL_SEGV)
404 return;
405
406 try
407 {
408 /* Sigcode evaluates if the actual segfault is a boundary violation. */
409 sig_code = parse_and_eval_long ("$_siginfo.si_code\n");
410
411 lower_bound
412 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._lower");
413 upper_bound
414 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._upper");
415 access
416 = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
417 }
418 catch (const gdb_exception &exception)
419 {
420 return;
421 }
422
423 /* If this is not a boundary violation just return. */
424 if (sig_code != SIG_CODE_BONDARY_FAULT)
425 return;
426
427 is_upper = (access > upper_bound ? 1 : 0);
428
429 uiout->text ("\n");
430 if (is_upper)
431 uiout->field_string ("sigcode-meaning", _("Upper bound violation"));
432 else
433 uiout->field_string ("sigcode-meaning", _("Lower bound violation"));
434
435 uiout->text (_(" while accessing address "));
436 uiout->field_core_addr ("bound-access", gdbarch, access);
437
438 uiout->text (_("\nBounds: [lower = "));
439 uiout->field_core_addr ("lower-bound", gdbarch, lower_bound);
440
441 uiout->text (_(", upper = "));
442 uiout->field_core_addr ("upper-bound", gdbarch, upper_bound);
443
444 uiout->text (_("]"));
445 }
446
447 /* Parse the arguments of current system call instruction and record
448 the values of the registers and memory that will be changed into
449 "record_arch_list". This instruction is "int 0x80" (Linux
450 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
451
452 Return -1 if something wrong. */
453
454 static struct linux_record_tdep i386_linux_record_tdep;
455
456 static int
457 i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
458 {
459 int ret;
460 LONGEST syscall_native;
461 enum gdb_syscall syscall_gdb;
462
463 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
464
465 syscall_gdb = i386_canonicalize_syscall (syscall_native);
466
467 if (syscall_gdb < 0)
468 {
469 gdb_printf (gdb_stderr,
470 _("Process record and replay target doesn't "
471 "support syscall number %s\n"),
472 plongest (syscall_native));
473 return -1;
474 }
475
476 if (syscall_gdb == gdb_sys_sigreturn
477 || syscall_gdb == gdb_sys_rt_sigreturn)
478 {
479 if (i386_all_but_ip_registers_record (regcache))
480 return -1;
481 return 0;
482 }
483
484 ret = record_linux_system_call (syscall_gdb, regcache,
485 &i386_linux_record_tdep);
486 if (ret)
487 return ret;
488
489 /* Record the return value of the system call. */
490 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
491 return -1;
492
493 return 0;
494 }
495
496 #define I386_LINUX_xstate 270
497 #define I386_LINUX_frame_size 732
498
499 static int
500 i386_linux_record_signal (struct gdbarch *gdbarch,
501 struct regcache *regcache,
502 enum gdb_signal signal)
503 {
504 ULONGEST esp;
505
506 if (i386_all_but_ip_registers_record (regcache))
507 return -1;
508
509 if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
510 return -1;
511
512 /* Record the change in the stack. */
513 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
514 /* This is for xstate.
515 sp -= sizeof (struct _fpstate); */
516 esp -= I386_LINUX_xstate;
517 /* This is for frame_size.
518 sp -= sizeof (struct rt_sigframe); */
519 esp -= I386_LINUX_frame_size;
520 if (record_full_arch_list_add_mem (esp,
521 I386_LINUX_xstate + I386_LINUX_frame_size))
522 return -1;
523
524 if (record_full_arch_list_add_end ())
525 return -1;
526
527 return 0;
528 }
529 \f
530
531 /* Core of the implementation for gdbarch get_syscall_number. Get pending
532 syscall number from REGCACHE. If there is no pending syscall -1 will be
533 returned. Pending syscall means ptrace has stepped into the syscall but
534 another ptrace call will step out. PC is right after the int $0x80
535 / syscall / sysenter instruction in both cases, PC does not change during
536 the second ptrace step. */
537
538 static LONGEST
539 i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
540 {
541 struct gdbarch *gdbarch = regcache->arch ();
542 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
543 /* The content of a register. */
544 gdb_byte buf[4];
545 /* The result. */
546 LONGEST ret;
547
548 /* Getting the system call number from the register.
549 When dealing with x86 architecture, this information
550 is stored at %eax register. */
551 regcache->cooked_read (I386_LINUX_ORIG_EAX_REGNUM, buf);
552
553 ret = extract_signed_integer (buf, byte_order);
554
555 return ret;
556 }
557
558 /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
559 compatible with gdbarch get_syscall_number method prototype. */
560
561 static LONGEST
562 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
563 thread_info *thread)
564 {
565 struct regcache *regcache = get_thread_regcache (thread);
566
567 return i386_linux_get_syscall_number_from_regcache (regcache);
568 }
569
570 /* The register sets used in GNU/Linux ELF core-dumps are identical to
571 the register sets in `struct user' that are used for a.out
572 core-dumps. These are also used by ptrace(2). The corresponding
573 types are `elf_gregset_t' for the general-purpose registers (with
574 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
575 for the floating-point registers.
576
577 Those types used to be available under the names `gregset_t' and
578 `fpregset_t' too, and GDB used those names in the past. But those
579 names are now used for the register sets used in the `mcontext_t'
580 type, which have a different size and layout. */
581
582 /* Mapping between the general-purpose registers in `struct user'
583 format and GDB's register cache layout. */
584
585 /* From <sys/reg.h>. */
586 int i386_linux_gregset_reg_offset[] =
587 {
588 6 * 4, /* %eax */
589 1 * 4, /* %ecx */
590 2 * 4, /* %edx */
591 0 * 4, /* %ebx */
592 15 * 4, /* %esp */
593 5 * 4, /* %ebp */
594 3 * 4, /* %esi */
595 4 * 4, /* %edi */
596 12 * 4, /* %eip */
597 14 * 4, /* %eflags */
598 13 * 4, /* %cs */
599 16 * 4, /* %ss */
600 7 * 4, /* %ds */
601 8 * 4, /* %es */
602 9 * 4, /* %fs */
603 10 * 4, /* %gs */
604 -1, -1, -1, -1, -1, -1, -1, -1,
605 -1, -1, -1, -1, -1, -1, -1, -1,
606 -1, -1, -1, -1, -1, -1, -1, -1,
607 -1,
608 -1, -1, -1, -1, -1, -1, -1, -1,
609 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
610 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
611 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
612 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
613 -1, /* PKRU register */
614 11 * 4, /* "orig_eax" */
615 };
616
617 /* Mapping between the general-purpose registers in `struct
618 sigcontext' format and GDB's register cache layout. */
619
620 /* From <asm/sigcontext.h>. */
621 static int i386_linux_sc_reg_offset[] =
622 {
623 11 * 4, /* %eax */
624 10 * 4, /* %ecx */
625 9 * 4, /* %edx */
626 8 * 4, /* %ebx */
627 7 * 4, /* %esp */
628 6 * 4, /* %ebp */
629 5 * 4, /* %esi */
630 4 * 4, /* %edi */
631 14 * 4, /* %eip */
632 16 * 4, /* %eflags */
633 15 * 4, /* %cs */
634 18 * 4, /* %ss */
635 3 * 4, /* %ds */
636 2 * 4, /* %es */
637 1 * 4, /* %fs */
638 0 * 4 /* %gs */
639 };
640
641 /* Get XSAVE extended state xcr0 from core dump. */
642
643 uint64_t
644 i386_linux_core_read_xcr0 (bfd *abfd)
645 {
646 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
647 uint64_t xcr0;
648
649 if (xstate)
650 {
651 size_t size = bfd_section_size (xstate);
652
653 /* Check extended state size. */
654 if (size < X86_XSTATE_AVX_SIZE)
655 xcr0 = X86_XSTATE_SSE_MASK;
656 else
657 {
658 char contents[8];
659
660 if (! bfd_get_section_contents (abfd, xstate, contents,
661 I386_LINUX_XSAVE_XCR0_OFFSET,
662 8))
663 {
664 warning (_("Couldn't read `xcr0' bytes from "
665 "`.reg-xstate' section in core file."));
666 return 0;
667 }
668
669 xcr0 = bfd_get_64 (abfd, contents);
670 }
671 }
672 else
673 xcr0 = 0;
674
675 return xcr0;
676 }
677
678 /* See i386-linux-tdep.h. */
679
680 const struct target_desc *
681 i386_linux_read_description (uint64_t xcr0)
682 {
683 if (xcr0 == 0)
684 return NULL;
685
686 static struct target_desc *i386_linux_tdescs \
687 [2/*X87*/][2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
688 struct target_desc **tdesc;
689
690 tdesc = &i386_linux_tdescs[(xcr0 & X86_XSTATE_X87) ? 1 : 0]
691 [(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
692 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
693 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
694 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
695 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
696
697 if (*tdesc == NULL)
698 *tdesc = i386_create_target_description (xcr0, true, false);
699
700 return *tdesc;
701 }
702
703 /* Get Linux/x86 target description from core dump. */
704
705 static const struct target_desc *
706 i386_linux_core_read_description (struct gdbarch *gdbarch,
707 struct target_ops *target,
708 bfd *abfd)
709 {
710 /* Linux/i386. */
711 uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd);
712 const struct target_desc *tdesc = i386_linux_read_description (xcr0);
713
714 if (tdesc != NULL)
715 return tdesc;
716
717 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
718 return i386_linux_read_description (X86_XSTATE_SSE_MASK);
719 else
720 return i386_linux_read_description (X86_XSTATE_X87_MASK);
721 }
722
723 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
724
725 static void
726 i386_linux_supply_xstateregset (const struct regset *regset,
727 struct regcache *regcache, int regnum,
728 const void *xstateregs, size_t len)
729 {
730 i387_supply_xsave (regcache, regnum, xstateregs);
731 }
732
733 struct type *
734 x86_linux_get_siginfo_type (struct gdbarch *gdbarch)
735 {
736 return linux_get_siginfo_type_with_fields (gdbarch, LINUX_SIGINFO_FIELD_ADDR_BND);
737 }
738
739 /* Similar to i386_collect_fpregset, but use XSAVE extended state. */
740
741 static void
742 i386_linux_collect_xstateregset (const struct regset *regset,
743 const struct regcache *regcache,
744 int regnum, void *xstateregs, size_t len)
745 {
746 i387_collect_xsave (regcache, regnum, xstateregs, 1);
747 }
748
749 /* Register set definitions. */
750
751 static const struct regset i386_linux_xstateregset =
752 {
753 NULL,
754 i386_linux_supply_xstateregset,
755 i386_linux_collect_xstateregset
756 };
757
758 /* Iterate over core file register note sections. */
759
760 static void
761 i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
762 iterate_over_regset_sections_cb *cb,
763 void *cb_data,
764 const struct regcache *regcache)
765 {
766 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
767
768 cb (".reg", 68, 68, &i386_gregset, NULL, cb_data);
769
770 if (tdep->xcr0 & X86_XSTATE_AVX)
771 cb (".reg-xstate", X86_XSTATE_SIZE (tdep->xcr0),
772 X86_XSTATE_SIZE (tdep->xcr0), &i386_linux_xstateregset,
773 "XSAVE extended state", cb_data);
774 else if (tdep->xcr0 & X86_XSTATE_SSE)
775 cb (".reg-xfp", 512, 512, &i386_fpregset, "extended floating-point",
776 cb_data);
777 else
778 cb (".reg2", 108, 108, &i386_fpregset, NULL, cb_data);
779 }
780
781 /* Linux kernel shows PC value after the 'int $0x80' instruction even if
782 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
783 finish the syscall but PC will not change.
784
785 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
786 i386_displaced_step_fixup would keep PC at the displaced pad location.
787 As PC is pointing to the 'ret' instruction before the step
788 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
789 and PC should not be adjusted. In reality it finished syscall instead and
790 PC should get relocated back to its vDSO address. Hide the 'ret'
791 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
792
793 It is not fully correct as the bytes in struct
794 displaced_step_copy_insn_closure will not match the inferior code. But we
795 would need some new flag in displaced_step_copy_insn_closure otherwise to
796 keep the state that syscall is finishing for the later
797 i386_displaced_step_fixup execution as the syscall execution is already no
798 longer detectable there. The new flag field would mean i386-linux-tdep.c
799 needs to wrap all the displacement methods of i386-tdep.c which does not seem
800 worth it. The same effect is achieved by patching that 'nop' instruction
801 there instead. */
802
803 static displaced_step_copy_insn_closure_up
804 i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
805 CORE_ADDR from, CORE_ADDR to,
806 struct regcache *regs)
807 {
808 displaced_step_copy_insn_closure_up closure_
809 = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
810
811 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
812 {
813 /* The closure returned by i386_displaced_step_copy_insn is simply a
814 buffer with a copy of the instruction. */
815 i386_displaced_step_copy_insn_closure *closure
816 = (i386_displaced_step_copy_insn_closure *) closure_.get ();
817
818 /* Fake nop. */
819 closure->buf[0] = 0x90;
820 }
821
822 return closure_;
823 }
824
825 static void
826 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
827 {
828 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
829 const struct target_desc *tdesc = info.target_desc;
830 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
831 const struct tdesc_feature *feature;
832 int valid_p;
833
834 gdb_assert (tdesc_data);
835
836 linux_init_abi (info, gdbarch, 1);
837
838 /* GNU/Linux uses ELF. */
839 i386_elf_init_abi (info, gdbarch);
840
841 /* Reserve a number for orig_eax. */
842 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
843
844 if (! tdesc_has_registers (tdesc))
845 tdesc = i386_linux_read_description (X86_XSTATE_SSE_MASK);
846 tdep->tdesc = tdesc;
847
848 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
849 if (feature == NULL)
850 return;
851
852 valid_p = tdesc_numbered_register (feature, tdesc_data,
853 I386_LINUX_ORIG_EAX_REGNUM,
854 "orig_eax");
855 if (!valid_p)
856 return;
857
858 /* Add the %orig_eax register used for syscall restarting. */
859 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
860
861 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
862
863 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
864 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
865 tdep->sizeof_gregset = 17 * 4;
866
867 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
868
869 tdep->sigtramp_p = i386_linux_sigtramp_p;
870 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
871 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
872 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
873
874 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
875
876 set_gdbarch_process_record (gdbarch, i386_process_record);
877 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
878
879 /* Initialize the i386_linux_record_tdep. */
880 /* These values are the size of the type that will be used in a system
881 call. They are obtained from Linux Kernel source. */
882 i386_linux_record_tdep.size_pointer
883 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
884 i386_linux_record_tdep.size__old_kernel_stat = 32;
885 i386_linux_record_tdep.size_tms = 16;
886 i386_linux_record_tdep.size_loff_t = 8;
887 i386_linux_record_tdep.size_flock = 16;
888 i386_linux_record_tdep.size_oldold_utsname = 45;
889 i386_linux_record_tdep.size_ustat = 20;
890 i386_linux_record_tdep.size_old_sigaction = 16;
891 i386_linux_record_tdep.size_old_sigset_t = 4;
892 i386_linux_record_tdep.size_rlimit = 8;
893 i386_linux_record_tdep.size_rusage = 72;
894 i386_linux_record_tdep.size_timeval = 8;
895 i386_linux_record_tdep.size_timezone = 8;
896 i386_linux_record_tdep.size_old_gid_t = 2;
897 i386_linux_record_tdep.size_old_uid_t = 2;
898 i386_linux_record_tdep.size_fd_set = 128;
899 i386_linux_record_tdep.size_old_dirent = 268;
900 i386_linux_record_tdep.size_statfs = 64;
901 i386_linux_record_tdep.size_statfs64 = 84;
902 i386_linux_record_tdep.size_sockaddr = 16;
903 i386_linux_record_tdep.size_int
904 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
905 i386_linux_record_tdep.size_long
906 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
907 i386_linux_record_tdep.size_ulong
908 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
909 i386_linux_record_tdep.size_msghdr = 28;
910 i386_linux_record_tdep.size_itimerval = 16;
911 i386_linux_record_tdep.size_stat = 88;
912 i386_linux_record_tdep.size_old_utsname = 325;
913 i386_linux_record_tdep.size_sysinfo = 64;
914 i386_linux_record_tdep.size_msqid_ds = 88;
915 i386_linux_record_tdep.size_shmid_ds = 84;
916 i386_linux_record_tdep.size_new_utsname = 390;
917 i386_linux_record_tdep.size_timex = 128;
918 i386_linux_record_tdep.size_mem_dqinfo = 24;
919 i386_linux_record_tdep.size_if_dqblk = 68;
920 i386_linux_record_tdep.size_fs_quota_stat = 68;
921 i386_linux_record_tdep.size_timespec = 8;
922 i386_linux_record_tdep.size_pollfd = 8;
923 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
924 i386_linux_record_tdep.size_knfsd_fh = 132;
925 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
926 i386_linux_record_tdep.size_sigaction = 20;
927 i386_linux_record_tdep.size_sigset_t = 8;
928 i386_linux_record_tdep.size_siginfo_t = 128;
929 i386_linux_record_tdep.size_cap_user_data_t = 12;
930 i386_linux_record_tdep.size_stack_t = 12;
931 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
932 i386_linux_record_tdep.size_stat64 = 96;
933 i386_linux_record_tdep.size_gid_t = 4;
934 i386_linux_record_tdep.size_uid_t = 4;
935 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
936 i386_linux_record_tdep.size_flock64 = 24;
937 i386_linux_record_tdep.size_user_desc = 16;
938 i386_linux_record_tdep.size_io_event = 32;
939 i386_linux_record_tdep.size_iocb = 64;
940 i386_linux_record_tdep.size_epoll_event = 12;
941 i386_linux_record_tdep.size_itimerspec
942 = i386_linux_record_tdep.size_timespec * 2;
943 i386_linux_record_tdep.size_mq_attr = 32;
944 i386_linux_record_tdep.size_termios = 36;
945 i386_linux_record_tdep.size_termios2 = 44;
946 i386_linux_record_tdep.size_pid_t = 4;
947 i386_linux_record_tdep.size_winsize = 8;
948 i386_linux_record_tdep.size_serial_struct = 60;
949 i386_linux_record_tdep.size_serial_icounter_struct = 80;
950 i386_linux_record_tdep.size_hayes_esp_config = 12;
951 i386_linux_record_tdep.size_size_t = 4;
952 i386_linux_record_tdep.size_iovec = 8;
953 i386_linux_record_tdep.size_time_t = 4;
954
955 /* These values are the second argument of system call "sys_ioctl".
956 They are obtained from Linux Kernel source. */
957 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
958 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
959 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
960 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
961 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
962 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
963 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
964 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
965 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
966 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
967 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
968 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
969 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
970 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
971 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
972 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
973 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
974 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
975 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
976 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
977 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
978 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
979 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
980 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
981 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
982 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
983 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
984 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
985 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
986 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
987 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
988 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
989 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
990 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
991 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
992 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
993 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
994 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
995 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
996 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
997 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
998 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
999 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1000 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1001 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1002 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1003 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1004 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1005 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1006 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1007 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1008 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1009 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1010 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1011 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1012 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1013 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1014 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1015 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
1016 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
1017 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
1018 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
1019 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
1020 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
1021 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1022
1023 /* These values are the second argument of system call "sys_fcntl"
1024 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1025 i386_linux_record_tdep.fcntl_F_GETLK = 5;
1026 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
1027 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
1028 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1029
1030 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
1031 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
1032 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
1033 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
1034 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
1035 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
1036
1037 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
1038 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
1039 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
1040
1041 /* N_FUN symbols in shared libraries have 0 for their values and need
1042 to be relocated. */
1043 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
1044
1045 /* GNU/Linux uses SVR4-style shared libraries. */
1046 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1047 set_solib_svr4_fetch_link_map_offsets
1048 (gdbarch, linux_ilp32_fetch_link_map_offsets);
1049
1050 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
1051 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1052
1053 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
1054
1055 /* Enable TLS support. */
1056 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1057 svr4_fetch_objfile_link_map);
1058
1059 /* Core file support. */
1060 set_gdbarch_iterate_over_regset_sections
1061 (gdbarch, i386_linux_iterate_over_regset_sections);
1062 set_gdbarch_core_read_description (gdbarch,
1063 i386_linux_core_read_description);
1064
1065 /* Displaced stepping. */
1066 set_gdbarch_displaced_step_copy_insn (gdbarch,
1067 i386_linux_displaced_step_copy_insn);
1068 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
1069
1070 /* Functions for 'catch syscall'. */
1071 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
1072 set_gdbarch_get_syscall_number (gdbarch,
1073 i386_linux_get_syscall_number);
1074
1075 set_gdbarch_get_siginfo_type (gdbarch, x86_linux_get_siginfo_type);
1076 set_gdbarch_report_signal_info (gdbarch, i386_linux_report_signal_info);
1077 }
1078
1079 void _initialize_i386_linux_tdep ();
1080 void
1081 _initialize_i386_linux_tdep ()
1082 {
1083 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
1084 i386_linux_init_abi);
1085 }