]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
gdb: introduce displaced_debug_printf
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56
57 #include "ax.h"
58 #include "ax-gdb.h"
59
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67 #include <unordered_set>
68 #include "producer.h"
69
70 /* Register names. */
71
72 static const char * const i386_register_names[] =
73 {
74 "eax", "ecx", "edx", "ebx",
75 "esp", "ebp", "esi", "edi",
76 "eip", "eflags", "cs", "ss",
77 "ds", "es", "fs", "gs",
78 "st0", "st1", "st2", "st3",
79 "st4", "st5", "st6", "st7",
80 "fctrl", "fstat", "ftag", "fiseg",
81 "fioff", "foseg", "fooff", "fop",
82 "xmm0", "xmm1", "xmm2", "xmm3",
83 "xmm4", "xmm5", "xmm6", "xmm7",
84 "mxcsr"
85 };
86
87 static const char * const i386_zmm_names[] =
88 {
89 "zmm0", "zmm1", "zmm2", "zmm3",
90 "zmm4", "zmm5", "zmm6", "zmm7"
91 };
92
93 static const char * const i386_zmmh_names[] =
94 {
95 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
96 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
97 };
98
99 static const char * const i386_k_names[] =
100 {
101 "k0", "k1", "k2", "k3",
102 "k4", "k5", "k6", "k7"
103 };
104
105 static const char * const i386_ymm_names[] =
106 {
107 "ymm0", "ymm1", "ymm2", "ymm3",
108 "ymm4", "ymm5", "ymm6", "ymm7",
109 };
110
111 static const char * const i386_ymmh_names[] =
112 {
113 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
114 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
115 };
116
117 static const char * const i386_mpx_names[] =
118 {
119 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
120 };
121
122 static const char * const i386_pkeys_names[] =
123 {
124 "pkru"
125 };
126
127 /* Register names for MPX pseudo-registers. */
128
129 static const char * const i386_bnd_names[] =
130 {
131 "bnd0", "bnd1", "bnd2", "bnd3"
132 };
133
134 /* Register names for MMX pseudo-registers. */
135
136 static const char * const i386_mmx_names[] =
137 {
138 "mm0", "mm1", "mm2", "mm3",
139 "mm4", "mm5", "mm6", "mm7"
140 };
141
142 /* Register names for byte pseudo-registers. */
143
144 static const char * const i386_byte_names[] =
145 {
146 "al", "cl", "dl", "bl",
147 "ah", "ch", "dh", "bh"
148 };
149
150 /* Register names for word pseudo-registers. */
151
152 static const char * const i386_word_names[] =
153 {
154 "ax", "cx", "dx", "bx",
155 "", "bp", "si", "di"
156 };
157
158 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
159 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
160 we have 16 upper ZMM regs that have to be handled differently. */
161
162 const int num_lower_zmm_regs = 16;
163
164 /* MMX register? */
165
166 static int
167 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170 int mm0_regnum = tdep->mm0_regnum;
171
172 if (mm0_regnum < 0)
173 return 0;
174
175 regnum -= mm0_regnum;
176 return regnum >= 0 && regnum < tdep->num_mmx_regs;
177 }
178
179 /* Byte register? */
180
181 int
182 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
183 {
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185
186 regnum -= tdep->al_regnum;
187 return regnum >= 0 && regnum < tdep->num_byte_regs;
188 }
189
190 /* Word register? */
191
192 int
193 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
194 {
195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196
197 regnum -= tdep->ax_regnum;
198 return regnum >= 0 && regnum < tdep->num_word_regs;
199 }
200
201 /* Dword register? */
202
203 int
204 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
205 {
206 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
207 int eax_regnum = tdep->eax_regnum;
208
209 if (eax_regnum < 0)
210 return 0;
211
212 regnum -= eax_regnum;
213 return regnum >= 0 && regnum < tdep->num_dword_regs;
214 }
215
216 /* AVX512 register? */
217
218 int
219 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
220 {
221 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
222 int zmm0h_regnum = tdep->zmm0h_regnum;
223
224 if (zmm0h_regnum < 0)
225 return 0;
226
227 regnum -= zmm0h_regnum;
228 return regnum >= 0 && regnum < tdep->num_zmm_regs;
229 }
230
231 int
232 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
233 {
234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
235 int zmm0_regnum = tdep->zmm0_regnum;
236
237 if (zmm0_regnum < 0)
238 return 0;
239
240 regnum -= zmm0_regnum;
241 return regnum >= 0 && regnum < tdep->num_zmm_regs;
242 }
243
244 int
245 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248 int k0_regnum = tdep->k0_regnum;
249
250 if (k0_regnum < 0)
251 return 0;
252
253 regnum -= k0_regnum;
254 return regnum >= 0 && regnum < I387_NUM_K_REGS;
255 }
256
257 static int
258 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
259 {
260 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
261 int ymm0h_regnum = tdep->ymm0h_regnum;
262
263 if (ymm0h_regnum < 0)
264 return 0;
265
266 regnum -= ymm0h_regnum;
267 return regnum >= 0 && regnum < tdep->num_ymm_regs;
268 }
269
270 /* AVX register? */
271
272 int
273 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
274 {
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276 int ymm0_regnum = tdep->ymm0_regnum;
277
278 if (ymm0_regnum < 0)
279 return 0;
280
281 regnum -= ymm0_regnum;
282 return regnum >= 0 && regnum < tdep->num_ymm_regs;
283 }
284
285 static int
286 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
287 {
288 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
289 int ymm16h_regnum = tdep->ymm16h_regnum;
290
291 if (ymm16h_regnum < 0)
292 return 0;
293
294 regnum -= ymm16h_regnum;
295 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
296 }
297
298 int
299 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
300 {
301 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
302 int ymm16_regnum = tdep->ymm16_regnum;
303
304 if (ymm16_regnum < 0)
305 return 0;
306
307 regnum -= ymm16_regnum;
308 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
309 }
310
311 /* BND register? */
312
313 int
314 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
315 {
316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
317 int bnd0_regnum = tdep->bnd0_regnum;
318
319 if (bnd0_regnum < 0)
320 return 0;
321
322 regnum -= bnd0_regnum;
323 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
324 }
325
326 /* SSE register? */
327
328 int
329 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
333
334 if (num_xmm_regs == 0)
335 return 0;
336
337 regnum -= I387_XMM0_REGNUM (tdep);
338 return regnum >= 0 && regnum < num_xmm_regs;
339 }
340
341 /* XMM_512 register? */
342
343 int
344 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
345 {
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
347 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
348
349 if (num_xmm_avx512_regs == 0)
350 return 0;
351
352 regnum -= I387_XMM16_REGNUM (tdep);
353 return regnum >= 0 && regnum < num_xmm_avx512_regs;
354 }
355
356 static int
357 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
358 {
359 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
360
361 if (I387_NUM_XMM_REGS (tdep) == 0)
362 return 0;
363
364 return (regnum == I387_MXCSR_REGNUM (tdep));
365 }
366
367 /* FP register? */
368
369 int
370 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
371 {
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373
374 if (I387_ST0_REGNUM (tdep) < 0)
375 return 0;
376
377 return (I387_ST0_REGNUM (tdep) <= regnum
378 && regnum < I387_FCTRL_REGNUM (tdep));
379 }
380
381 int
382 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
383 {
384 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
385
386 if (I387_ST0_REGNUM (tdep) < 0)
387 return 0;
388
389 return (I387_FCTRL_REGNUM (tdep) <= regnum
390 && regnum < I387_XMM0_REGNUM (tdep));
391 }
392
393 /* BNDr (raw) register? */
394
395 static int
396 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
397 {
398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
399
400 if (I387_BND0R_REGNUM (tdep) < 0)
401 return 0;
402
403 regnum -= tdep->bnd0r_regnum;
404 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
405 }
406
407 /* BND control register? */
408
409 static int
410 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
411 {
412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
413
414 if (I387_BNDCFGU_REGNUM (tdep) < 0)
415 return 0;
416
417 regnum -= I387_BNDCFGU_REGNUM (tdep);
418 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
419 }
420
421 /* PKRU register? */
422
423 bool
424 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
425 {
426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
427 int pkru_regnum = tdep->pkru_regnum;
428
429 if (pkru_regnum < 0)
430 return false;
431
432 regnum -= pkru_regnum;
433 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
434 }
435
436 /* Return the name of register REGNUM, or the empty string if it is
437 an anonymous register. */
438
439 static const char *
440 i386_register_name (struct gdbarch *gdbarch, int regnum)
441 {
442 /* Hide the upper YMM registers. */
443 if (i386_ymmh_regnum_p (gdbarch, regnum))
444 return "";
445
446 /* Hide the upper YMM16-31 registers. */
447 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
448 return "";
449
450 /* Hide the upper ZMM registers. */
451 if (i386_zmmh_regnum_p (gdbarch, regnum))
452 return "";
453
454 return tdesc_register_name (gdbarch, regnum);
455 }
456
457 /* Return the name of register REGNUM. */
458
459 const char *
460 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
461 {
462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
463 if (i386_bnd_regnum_p (gdbarch, regnum))
464 return i386_bnd_names[regnum - tdep->bnd0_regnum];
465 if (i386_mmx_regnum_p (gdbarch, regnum))
466 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
467 else if (i386_ymm_regnum_p (gdbarch, regnum))
468 return i386_ymm_names[regnum - tdep->ymm0_regnum];
469 else if (i386_zmm_regnum_p (gdbarch, regnum))
470 return i386_zmm_names[regnum - tdep->zmm0_regnum];
471 else if (i386_byte_regnum_p (gdbarch, regnum))
472 return i386_byte_names[regnum - tdep->al_regnum];
473 else if (i386_word_regnum_p (gdbarch, regnum))
474 return i386_word_names[regnum - tdep->ax_regnum];
475
476 internal_error (__FILE__, __LINE__, _("invalid regnum"));
477 }
478
479 /* Convert a dbx register number REG to the appropriate register
480 number used by GDB. */
481
482 static int
483 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
484 {
485 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
486
487 /* This implements what GCC calls the "default" register map
488 (dbx_register_map[]). */
489
490 if (reg >= 0 && reg <= 7)
491 {
492 /* General-purpose registers. The debug info calls %ebp
493 register 4, and %esp register 5. */
494 if (reg == 4)
495 return 5;
496 else if (reg == 5)
497 return 4;
498 else return reg;
499 }
500 else if (reg >= 12 && reg <= 19)
501 {
502 /* Floating-point registers. */
503 return reg - 12 + I387_ST0_REGNUM (tdep);
504 }
505 else if (reg >= 21 && reg <= 28)
506 {
507 /* SSE registers. */
508 int ymm0_regnum = tdep->ymm0_regnum;
509
510 if (ymm0_regnum >= 0
511 && i386_xmm_regnum_p (gdbarch, reg))
512 return reg - 21 + ymm0_regnum;
513 else
514 return reg - 21 + I387_XMM0_REGNUM (tdep);
515 }
516 else if (reg >= 29 && reg <= 36)
517 {
518 /* MMX registers. */
519 return reg - 29 + I387_MM0_REGNUM (tdep);
520 }
521
522 /* This will hopefully provoke a warning. */
523 return gdbarch_num_cooked_regs (gdbarch);
524 }
525
526 /* Convert SVR4 DWARF register number REG to the appropriate register number
527 used by GDB. */
528
529 static int
530 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
531 {
532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
533
534 /* This implements the GCC register map that tries to be compatible
535 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
536
537 /* The SVR4 register numbering includes %eip and %eflags, and
538 numbers the floating point registers differently. */
539 if (reg >= 0 && reg <= 9)
540 {
541 /* General-purpose registers. */
542 return reg;
543 }
544 else if (reg >= 11 && reg <= 18)
545 {
546 /* Floating-point registers. */
547 return reg - 11 + I387_ST0_REGNUM (tdep);
548 }
549 else if (reg >= 21 && reg <= 36)
550 {
551 /* The SSE and MMX registers have the same numbers as with dbx. */
552 return i386_dbx_reg_to_regnum (gdbarch, reg);
553 }
554
555 switch (reg)
556 {
557 case 37: return I387_FCTRL_REGNUM (tdep);
558 case 38: return I387_FSTAT_REGNUM (tdep);
559 case 39: return I387_MXCSR_REGNUM (tdep);
560 case 40: return I386_ES_REGNUM;
561 case 41: return I386_CS_REGNUM;
562 case 42: return I386_SS_REGNUM;
563 case 43: return I386_DS_REGNUM;
564 case 44: return I386_FS_REGNUM;
565 case 45: return I386_GS_REGNUM;
566 }
567
568 return -1;
569 }
570
571 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
572 num_regs + num_pseudo_regs for other debug formats. */
573
574 int
575 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
576 {
577 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
578
579 if (regnum == -1)
580 return gdbarch_num_cooked_regs (gdbarch);
581 return regnum;
582 }
583
584 \f
585
586 /* This is the variable that is set with "set disassembly-flavor", and
587 its legitimate values. */
588 static const char att_flavor[] = "att";
589 static const char intel_flavor[] = "intel";
590 static const char *const valid_flavors[] =
591 {
592 att_flavor,
593 intel_flavor,
594 NULL
595 };
596 static const char *disassembly_flavor = att_flavor;
597 \f
598
599 /* Use the program counter to determine the contents and size of a
600 breakpoint instruction. Return a pointer to a string of bytes that
601 encode a breakpoint instruction, store the length of the string in
602 *LEN and optionally adjust *PC to point to the correct memory
603 location for inserting the breakpoint.
604
605 On the i386 we have a single breakpoint that fits in a single byte
606 and can be inserted anywhere.
607
608 This function is 64-bit safe. */
609
610 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
611
612 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
613
614 \f
615 /* Displaced instruction handling. */
616
617 /* Skip the legacy instruction prefixes in INSN.
618 Not all prefixes are valid for any particular insn
619 but we needn't care, the insn will fault if it's invalid.
620 The result is a pointer to the first opcode byte,
621 or NULL if we run off the end of the buffer. */
622
623 static gdb_byte *
624 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
625 {
626 gdb_byte *end = insn + max_len;
627
628 while (insn < end)
629 {
630 switch (*insn)
631 {
632 case DATA_PREFIX_OPCODE:
633 case ADDR_PREFIX_OPCODE:
634 case CS_PREFIX_OPCODE:
635 case DS_PREFIX_OPCODE:
636 case ES_PREFIX_OPCODE:
637 case FS_PREFIX_OPCODE:
638 case GS_PREFIX_OPCODE:
639 case SS_PREFIX_OPCODE:
640 case LOCK_PREFIX_OPCODE:
641 case REPE_PREFIX_OPCODE:
642 case REPNE_PREFIX_OPCODE:
643 ++insn;
644 continue;
645 default:
646 return insn;
647 }
648 }
649
650 return NULL;
651 }
652
653 static int
654 i386_absolute_jmp_p (const gdb_byte *insn)
655 {
656 /* jmp far (absolute address in operand). */
657 if (insn[0] == 0xea)
658 return 1;
659
660 if (insn[0] == 0xff)
661 {
662 /* jump near, absolute indirect (/4). */
663 if ((insn[1] & 0x38) == 0x20)
664 return 1;
665
666 /* jump far, absolute indirect (/5). */
667 if ((insn[1] & 0x38) == 0x28)
668 return 1;
669 }
670
671 return 0;
672 }
673
674 /* Return non-zero if INSN is a jump, zero otherwise. */
675
676 static int
677 i386_jmp_p (const gdb_byte *insn)
678 {
679 /* jump short, relative. */
680 if (insn[0] == 0xeb)
681 return 1;
682
683 /* jump near, relative. */
684 if (insn[0] == 0xe9)
685 return 1;
686
687 return i386_absolute_jmp_p (insn);
688 }
689
690 static int
691 i386_absolute_call_p (const gdb_byte *insn)
692 {
693 /* call far, absolute. */
694 if (insn[0] == 0x9a)
695 return 1;
696
697 if (insn[0] == 0xff)
698 {
699 /* Call near, absolute indirect (/2). */
700 if ((insn[1] & 0x38) == 0x10)
701 return 1;
702
703 /* Call far, absolute indirect (/3). */
704 if ((insn[1] & 0x38) == 0x18)
705 return 1;
706 }
707
708 return 0;
709 }
710
711 static int
712 i386_ret_p (const gdb_byte *insn)
713 {
714 switch (insn[0])
715 {
716 case 0xc2: /* ret near, pop N bytes. */
717 case 0xc3: /* ret near */
718 case 0xca: /* ret far, pop N bytes. */
719 case 0xcb: /* ret far */
720 case 0xcf: /* iret */
721 return 1;
722
723 default:
724 return 0;
725 }
726 }
727
728 static int
729 i386_call_p (const gdb_byte *insn)
730 {
731 if (i386_absolute_call_p (insn))
732 return 1;
733
734 /* call near, relative. */
735 if (insn[0] == 0xe8)
736 return 1;
737
738 return 0;
739 }
740
741 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
742 length in bytes. Otherwise, return zero. */
743
744 static int
745 i386_syscall_p (const gdb_byte *insn, int *lengthp)
746 {
747 /* Is it 'int $0x80'? */
748 if ((insn[0] == 0xcd && insn[1] == 0x80)
749 /* Or is it 'sysenter'? */
750 || (insn[0] == 0x0f && insn[1] == 0x34)
751 /* Or is it 'syscall'? */
752 || (insn[0] == 0x0f && insn[1] == 0x05))
753 {
754 *lengthp = 2;
755 return 1;
756 }
757
758 return 0;
759 }
760
761 /* The gdbarch insn_is_call method. */
762
763 static int
764 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
765 {
766 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767
768 read_code (addr, buf, I386_MAX_INSN_LEN);
769 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770
771 return i386_call_p (insn);
772 }
773
774 /* The gdbarch insn_is_ret method. */
775
776 static int
777 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
778 {
779 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
780
781 read_code (addr, buf, I386_MAX_INSN_LEN);
782 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
783
784 return i386_ret_p (insn);
785 }
786
787 /* The gdbarch insn_is_jump method. */
788
789 static int
790 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
791 {
792 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
793
794 read_code (addr, buf, I386_MAX_INSN_LEN);
795 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
796
797 return i386_jmp_p (insn);
798 }
799
800 /* Some kernels may run one past a syscall insn, so we have to cope. */
801
802 displaced_step_closure_up
803 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
804 CORE_ADDR from, CORE_ADDR to,
805 struct regcache *regs)
806 {
807 size_t len = gdbarch_max_insn_length (gdbarch);
808 std::unique_ptr<i386_displaced_step_closure> closure
809 (new i386_displaced_step_closure (len));
810 gdb_byte *buf = closure->buf.data ();
811
812 read_memory (from, buf, len);
813
814 /* GDB may get control back after the insn after the syscall.
815 Presumably this is a kernel bug.
816 If this is a syscall, make sure there's a nop afterwards. */
817 {
818 int syscall_length;
819 gdb_byte *insn;
820
821 insn = i386_skip_prefixes (buf, len);
822 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
823 insn[syscall_length] = NOP_OPCODE;
824 }
825
826 write_memory (to, buf, len);
827
828 displaced_debug_printf ("%s->%s: %s",
829 paddress (gdbarch, from), paddress (gdbarch, to),
830 displaced_step_dump_bytes (buf, len).c_str ());
831
832 /* This is a work around for a problem with g++ 4.8. */
833 return displaced_step_closure_up (closure.release ());
834 }
835
836 /* Fix up the state of registers and memory after having single-stepped
837 a displaced instruction. */
838
839 void
840 i386_displaced_step_fixup (struct gdbarch *gdbarch,
841 struct displaced_step_closure *closure_,
842 CORE_ADDR from, CORE_ADDR to,
843 struct regcache *regs)
844 {
845 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
846
847 /* The offset we applied to the instruction's address.
848 This could well be negative (when viewed as a signed 32-bit
849 value), but ULONGEST won't reflect that, so take care when
850 applying it. */
851 ULONGEST insn_offset = to - from;
852
853 i386_displaced_step_closure *closure
854 = (i386_displaced_step_closure *) closure_;
855 gdb_byte *insn = closure->buf.data ();
856 /* The start of the insn, needed in case we see some prefixes. */
857 gdb_byte *insn_start = insn;
858
859 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
860 paddress (gdbarch, from), paddress (gdbarch, to),
861 insn[0], insn[1]);
862
863 /* The list of issues to contend with here is taken from
864 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
865 Yay for Free Software! */
866
867 /* Relocate the %eip, if necessary. */
868
869 /* The instruction recognizers we use assume any leading prefixes
870 have been skipped. */
871 {
872 /* This is the size of the buffer in closure. */
873 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
874 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
875 /* If there are too many prefixes, just ignore the insn.
876 It will fault when run. */
877 if (opcode != NULL)
878 insn = opcode;
879 }
880
881 /* Except in the case of absolute or indirect jump or call
882 instructions, or a return instruction, the new eip is relative to
883 the displaced instruction; make it relative. Well, signal
884 handler returns don't need relocation either, but we use the
885 value of %eip to recognize those; see below. */
886 if (! i386_absolute_jmp_p (insn)
887 && ! i386_absolute_call_p (insn)
888 && ! i386_ret_p (insn))
889 {
890 ULONGEST orig_eip;
891 int insn_len;
892
893 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
894
895 /* A signal trampoline system call changes the %eip, resuming
896 execution of the main program after the signal handler has
897 returned. That makes them like 'return' instructions; we
898 shouldn't relocate %eip.
899
900 But most system calls don't, and we do need to relocate %eip.
901
902 Our heuristic for distinguishing these cases: if stepping
903 over the system call instruction left control directly after
904 the instruction, the we relocate --- control almost certainly
905 doesn't belong in the displaced copy. Otherwise, we assume
906 the instruction has put control where it belongs, and leave
907 it unrelocated. Goodness help us if there are PC-relative
908 system calls. */
909 if (i386_syscall_p (insn, &insn_len)
910 && orig_eip != to + (insn - insn_start) + insn_len
911 /* GDB can get control back after the insn after the syscall.
912 Presumably this is a kernel bug.
913 i386_displaced_step_copy_insn ensures its a nop,
914 we add one to the length for it. */
915 && orig_eip != to + (insn - insn_start) + insn_len + 1)
916 displaced_debug_printf ("syscall changed %%eip; not relocating");
917 else
918 {
919 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
920
921 /* If we just stepped over a breakpoint insn, we don't backup
922 the pc on purpose; this is to match behaviour without
923 stepping. */
924
925 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
926
927 displaced_debug_printf ("relocated %%eip from %s to %s",
928 paddress (gdbarch, orig_eip),
929 paddress (gdbarch, eip));
930 }
931 }
932
933 /* If the instruction was PUSHFL, then the TF bit will be set in the
934 pushed value, and should be cleared. We'll leave this for later,
935 since GDB already messes up the TF flag when stepping over a
936 pushfl. */
937
938 /* If the instruction was a call, the return address now atop the
939 stack is the address following the copied instruction. We need
940 to make it the address following the original instruction. */
941 if (i386_call_p (insn))
942 {
943 ULONGEST esp;
944 ULONGEST retaddr;
945 const ULONGEST retaddr_len = 4;
946
947 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
948 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
949 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
950 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
951
952 displaced_debug_printf ("relocated return addr at %s to %s",
953 paddress (gdbarch, esp),
954 paddress (gdbarch, retaddr));
955 }
956 }
957
958 static void
959 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
960 {
961 target_write_memory (*to, buf, len);
962 *to += len;
963 }
964
965 static void
966 i386_relocate_instruction (struct gdbarch *gdbarch,
967 CORE_ADDR *to, CORE_ADDR oldloc)
968 {
969 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
970 gdb_byte buf[I386_MAX_INSN_LEN];
971 int offset = 0, rel32, newrel;
972 int insn_length;
973 gdb_byte *insn = buf;
974
975 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
976
977 insn_length = gdb_buffered_insn_length (gdbarch, insn,
978 I386_MAX_INSN_LEN, oldloc);
979
980 /* Get past the prefixes. */
981 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
982
983 /* Adjust calls with 32-bit relative addresses as push/jump, with
984 the address pushed being the location where the original call in
985 the user program would return to. */
986 if (insn[0] == 0xe8)
987 {
988 gdb_byte push_buf[16];
989 unsigned int ret_addr;
990
991 /* Where "ret" in the original code will return to. */
992 ret_addr = oldloc + insn_length;
993 push_buf[0] = 0x68; /* pushq $... */
994 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
995 /* Push the push. */
996 append_insns (to, 5, push_buf);
997
998 /* Convert the relative call to a relative jump. */
999 insn[0] = 0xe9;
1000
1001 /* Adjust the destination offset. */
1002 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1003 newrel = (oldloc - *to) + rel32;
1004 store_signed_integer (insn + 1, 4, byte_order, newrel);
1005
1006 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1007 hex_string (rel32), paddress (gdbarch, oldloc),
1008 hex_string (newrel), paddress (gdbarch, *to));
1009
1010 /* Write the adjusted jump into its displaced location. */
1011 append_insns (to, 5, insn);
1012 return;
1013 }
1014
1015 /* Adjust jumps with 32-bit relative addresses. Calls are already
1016 handled above. */
1017 if (insn[0] == 0xe9)
1018 offset = 1;
1019 /* Adjust conditional jumps. */
1020 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1021 offset = 2;
1022
1023 if (offset)
1024 {
1025 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1026 newrel = (oldloc - *to) + rel32;
1027 store_signed_integer (insn + offset, 4, byte_order, newrel);
1028 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1029 hex_string (rel32), paddress (gdbarch, oldloc),
1030 hex_string (newrel), paddress (gdbarch, *to));
1031 }
1032
1033 /* Write the adjusted instructions into their displaced
1034 location. */
1035 append_insns (to, insn_length, buf);
1036 }
1037
1038 \f
1039 #ifdef I386_REGNO_TO_SYMMETRY
1040 #error "The Sequent Symmetry is no longer supported."
1041 #endif
1042
1043 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1044 and %esp "belong" to the calling function. Therefore these
1045 registers should be saved if they're going to be modified. */
1046
1047 /* The maximum number of saved registers. This should include all
1048 registers mentioned above, and %eip. */
1049 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1050
1051 struct i386_frame_cache
1052 {
1053 /* Base address. */
1054 CORE_ADDR base;
1055 int base_p;
1056 LONGEST sp_offset;
1057 CORE_ADDR pc;
1058
1059 /* Saved registers. */
1060 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1061 CORE_ADDR saved_sp;
1062 int saved_sp_reg;
1063 int pc_in_eax;
1064
1065 /* Stack space reserved for local variables. */
1066 long locals;
1067 };
1068
1069 /* Allocate and initialize a frame cache. */
1070
1071 static struct i386_frame_cache *
1072 i386_alloc_frame_cache (void)
1073 {
1074 struct i386_frame_cache *cache;
1075 int i;
1076
1077 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1078
1079 /* Base address. */
1080 cache->base_p = 0;
1081 cache->base = 0;
1082 cache->sp_offset = -4;
1083 cache->pc = 0;
1084
1085 /* Saved registers. We initialize these to -1 since zero is a valid
1086 offset (that's where %ebp is supposed to be stored). */
1087 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1088 cache->saved_regs[i] = -1;
1089 cache->saved_sp = 0;
1090 cache->saved_sp_reg = -1;
1091 cache->pc_in_eax = 0;
1092
1093 /* Frameless until proven otherwise. */
1094 cache->locals = -1;
1095
1096 return cache;
1097 }
1098
1099 /* If the instruction at PC is a jump, return the address of its
1100 target. Otherwise, return PC. */
1101
1102 static CORE_ADDR
1103 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1104 {
1105 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1106 gdb_byte op;
1107 long delta = 0;
1108 int data16 = 0;
1109
1110 if (target_read_code (pc, &op, 1))
1111 return pc;
1112
1113 if (op == 0x66)
1114 {
1115 data16 = 1;
1116
1117 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1118 }
1119
1120 switch (op)
1121 {
1122 case 0xe9:
1123 /* Relative jump: if data16 == 0, disp32, else disp16. */
1124 if (data16)
1125 {
1126 delta = read_memory_integer (pc + 2, 2, byte_order);
1127
1128 /* Include the size of the jmp instruction (including the
1129 0x66 prefix). */
1130 delta += 4;
1131 }
1132 else
1133 {
1134 delta = read_memory_integer (pc + 1, 4, byte_order);
1135
1136 /* Include the size of the jmp instruction. */
1137 delta += 5;
1138 }
1139 break;
1140 case 0xeb:
1141 /* Relative jump, disp8 (ignore data16). */
1142 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1143
1144 delta += data16 + 2;
1145 break;
1146 }
1147
1148 return pc + delta;
1149 }
1150
1151 /* Check whether PC points at a prologue for a function returning a
1152 structure or union. If so, it updates CACHE and returns the
1153 address of the first instruction after the code sequence that
1154 removes the "hidden" argument from the stack or CURRENT_PC,
1155 whichever is smaller. Otherwise, return PC. */
1156
1157 static CORE_ADDR
1158 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1159 struct i386_frame_cache *cache)
1160 {
1161 /* Functions that return a structure or union start with:
1162
1163 popl %eax 0x58
1164 xchgl %eax, (%esp) 0x87 0x04 0x24
1165 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1166
1167 (the System V compiler puts out the second `xchg' instruction,
1168 and the assembler doesn't try to optimize it, so the 'sib' form
1169 gets generated). This sequence is used to get the address of the
1170 return buffer for a function that returns a structure. */
1171 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1172 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1173 gdb_byte buf[4];
1174 gdb_byte op;
1175
1176 if (current_pc <= pc)
1177 return pc;
1178
1179 if (target_read_code (pc, &op, 1))
1180 return pc;
1181
1182 if (op != 0x58) /* popl %eax */
1183 return pc;
1184
1185 if (target_read_code (pc + 1, buf, 4))
1186 return pc;
1187
1188 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1189 return pc;
1190
1191 if (current_pc == pc)
1192 {
1193 cache->sp_offset += 4;
1194 return current_pc;
1195 }
1196
1197 if (current_pc == pc + 1)
1198 {
1199 cache->pc_in_eax = 1;
1200 return current_pc;
1201 }
1202
1203 if (buf[1] == proto1[1])
1204 return pc + 4;
1205 else
1206 return pc + 5;
1207 }
1208
1209 static CORE_ADDR
1210 i386_skip_probe (CORE_ADDR pc)
1211 {
1212 /* A function may start with
1213
1214 pushl constant
1215 call _probe
1216 addl $4, %esp
1217
1218 followed by
1219
1220 pushl %ebp
1221
1222 etc. */
1223 gdb_byte buf[8];
1224 gdb_byte op;
1225
1226 if (target_read_code (pc, &op, 1))
1227 return pc;
1228
1229 if (op == 0x68 || op == 0x6a)
1230 {
1231 int delta;
1232
1233 /* Skip past the `pushl' instruction; it has either a one-byte or a
1234 four-byte operand, depending on the opcode. */
1235 if (op == 0x68)
1236 delta = 5;
1237 else
1238 delta = 2;
1239
1240 /* Read the following 8 bytes, which should be `call _probe' (6
1241 bytes) followed by `addl $4,%esp' (2 bytes). */
1242 read_memory (pc + delta, buf, sizeof (buf));
1243 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1244 pc += delta + sizeof (buf);
1245 }
1246
1247 return pc;
1248 }
1249
1250 /* GCC 4.1 and later, can put code in the prologue to realign the
1251 stack pointer. Check whether PC points to such code, and update
1252 CACHE accordingly. Return the first instruction after the code
1253 sequence or CURRENT_PC, whichever is smaller. If we don't
1254 recognize the code, return PC. */
1255
1256 static CORE_ADDR
1257 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1258 struct i386_frame_cache *cache)
1259 {
1260 /* There are 2 code sequences to re-align stack before the frame
1261 gets set up:
1262
1263 1. Use a caller-saved saved register:
1264
1265 leal 4(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 2. Use a callee-saved saved register:
1270
1271 pushl %reg
1272 leal 8(%esp), %reg
1273 andl $-XXX, %esp
1274 pushl -4(%reg)
1275
1276 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1277
1278 0x83 0xe4 0xf0 andl $-16, %esp
1279 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1280 */
1281
1282 gdb_byte buf[14];
1283 int reg;
1284 int offset, offset_and;
1285 static int regnums[8] = {
1286 I386_EAX_REGNUM, /* %eax */
1287 I386_ECX_REGNUM, /* %ecx */
1288 I386_EDX_REGNUM, /* %edx */
1289 I386_EBX_REGNUM, /* %ebx */
1290 I386_ESP_REGNUM, /* %esp */
1291 I386_EBP_REGNUM, /* %ebp */
1292 I386_ESI_REGNUM, /* %esi */
1293 I386_EDI_REGNUM /* %edi */
1294 };
1295
1296 if (target_read_code (pc, buf, sizeof buf))
1297 return pc;
1298
1299 /* Check caller-saved saved register. The first instruction has
1300 to be "leal 4(%esp), %reg". */
1301 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1302 {
1303 /* MOD must be binary 10 and R/M must be binary 100. */
1304 if ((buf[1] & 0xc7) != 0x44)
1305 return pc;
1306
1307 /* REG has register number. */
1308 reg = (buf[1] >> 3) & 7;
1309 offset = 4;
1310 }
1311 else
1312 {
1313 /* Check callee-saved saved register. The first instruction
1314 has to be "pushl %reg". */
1315 if ((buf[0] & 0xf8) != 0x50)
1316 return pc;
1317
1318 /* Get register. */
1319 reg = buf[0] & 0x7;
1320
1321 /* The next instruction has to be "leal 8(%esp), %reg". */
1322 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1323 return pc;
1324
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[2] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. Registers in pushl and leal have to
1330 be the same. */
1331 if (reg != ((buf[2] >> 3) & 7))
1332 return pc;
1333
1334 offset = 5;
1335 }
1336
1337 /* Rigister can't be %esp nor %ebp. */
1338 if (reg == 4 || reg == 5)
1339 return pc;
1340
1341 /* The next instruction has to be "andl $-XXX, %esp". */
1342 if (buf[offset + 1] != 0xe4
1343 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1344 return pc;
1345
1346 offset_and = offset;
1347 offset += buf[offset] == 0x81 ? 6 : 3;
1348
1349 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1350 0xfc. REG must be binary 110 and MOD must be binary 01. */
1351 if (buf[offset] != 0xff
1352 || buf[offset + 2] != 0xfc
1353 || (buf[offset + 1] & 0xf8) != 0x70)
1354 return pc;
1355
1356 /* R/M has register. Registers in leal and pushl have to be the
1357 same. */
1358 if (reg != (buf[offset + 1] & 7))
1359 return pc;
1360
1361 if (current_pc > pc + offset_and)
1362 cache->saved_sp_reg = regnums[reg];
1363
1364 return std::min (pc + offset + 3, current_pc);
1365 }
1366
1367 /* Maximum instruction length we need to handle. */
1368 #define I386_MAX_MATCHED_INSN_LEN 6
1369
1370 /* Instruction description. */
1371 struct i386_insn
1372 {
1373 size_t len;
1374 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1375 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1376 };
1377
1378 /* Return whether instruction at PC matches PATTERN. */
1379
1380 static int
1381 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1382 {
1383 gdb_byte op;
1384
1385 if (target_read_code (pc, &op, 1))
1386 return 0;
1387
1388 if ((op & pattern.mask[0]) == pattern.insn[0])
1389 {
1390 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1391 int insn_matched = 1;
1392 size_t i;
1393
1394 gdb_assert (pattern.len > 1);
1395 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1396
1397 if (target_read_code (pc + 1, buf, pattern.len - 1))
1398 return 0;
1399
1400 for (i = 1; i < pattern.len; i++)
1401 {
1402 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1403 insn_matched = 0;
1404 }
1405 return insn_matched;
1406 }
1407 return 0;
1408 }
1409
1410 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1411 the first instruction description that matches. Otherwise, return
1412 NULL. */
1413
1414 static struct i386_insn *
1415 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1416 {
1417 struct i386_insn *pattern;
1418
1419 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1420 {
1421 if (i386_match_pattern (pc, *pattern))
1422 return pattern;
1423 }
1424
1425 return NULL;
1426 }
1427
1428 /* Return whether PC points inside a sequence of instructions that
1429 matches INSN_PATTERNS. */
1430
1431 static int
1432 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1433 {
1434 CORE_ADDR current_pc;
1435 int ix, i;
1436 struct i386_insn *insn;
1437
1438 insn = i386_match_insn (pc, insn_patterns);
1439 if (insn == NULL)
1440 return 0;
1441
1442 current_pc = pc;
1443 ix = insn - insn_patterns;
1444 for (i = ix - 1; i >= 0; i--)
1445 {
1446 current_pc -= insn_patterns[i].len;
1447
1448 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1449 return 0;
1450 }
1451
1452 current_pc = pc + insn->len;
1453 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1454 {
1455 if (!i386_match_pattern (current_pc, *insn))
1456 return 0;
1457
1458 current_pc += insn->len;
1459 }
1460
1461 return 1;
1462 }
1463
1464 /* Some special instructions that might be migrated by GCC into the
1465 part of the prologue that sets up the new stack frame. Because the
1466 stack frame hasn't been setup yet, no registers have been saved
1467 yet, and only the scratch registers %eax, %ecx and %edx can be
1468 touched. */
1469
1470 struct i386_insn i386_frame_setup_skip_insns[] =
1471 {
1472 /* Check for `movb imm8, r' and `movl imm32, r'.
1473
1474 ??? Should we handle 16-bit operand-sizes here? */
1475
1476 /* `movb imm8, %al' and `movb imm8, %ah' */
1477 /* `movb imm8, %cl' and `movb imm8, %ch' */
1478 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1479 /* `movb imm8, %dl' and `movb imm8, %dh' */
1480 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1481 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1482 { 5, { 0xb8 }, { 0xfe } },
1483 /* `movl imm32, %edx' */
1484 { 5, { 0xba }, { 0xff } },
1485
1486 /* Check for `mov imm32, r32'. Note that there is an alternative
1487 encoding for `mov m32, %eax'.
1488
1489 ??? Should we handle SIB addressing here?
1490 ??? Should we handle 16-bit operand-sizes here? */
1491
1492 /* `movl m32, %eax' */
1493 { 5, { 0xa1 }, { 0xff } },
1494 /* `movl m32, %eax' and `mov; m32, %ecx' */
1495 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1496 /* `movl m32, %edx' */
1497 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1498
1499 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1500 Because of the symmetry, there are actually two ways to encode
1501 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1502 opcode bytes 0x31 and 0x33 for `xorl'. */
1503
1504 /* `subl %eax, %eax' */
1505 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1506 /* `subl %ecx, %ecx' */
1507 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1508 /* `subl %edx, %edx' */
1509 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1510 /* `xorl %eax, %eax' */
1511 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1512 /* `xorl %ecx, %ecx' */
1513 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1514 /* `xorl %edx, %edx' */
1515 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1516 { 0 }
1517 };
1518
1519 /* Check whether PC points to an endbr32 instruction. */
1520 static CORE_ADDR
1521 i386_skip_endbr (CORE_ADDR pc)
1522 {
1523 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1524
1525 gdb_byte buf[sizeof (endbr32)];
1526
1527 /* Stop there if we can't read the code */
1528 if (target_read_code (pc, buf, sizeof (endbr32)))
1529 return pc;
1530
1531 /* If the instruction isn't an endbr32, stop */
1532 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1533 return pc;
1534
1535 return pc + sizeof (endbr32);
1536 }
1537
1538 /* Check whether PC points to a no-op instruction. */
1539 static CORE_ADDR
1540 i386_skip_noop (CORE_ADDR pc)
1541 {
1542 gdb_byte op;
1543 int check = 1;
1544
1545 if (target_read_code (pc, &op, 1))
1546 return pc;
1547
1548 while (check)
1549 {
1550 check = 0;
1551 /* Ignore `nop' instruction. */
1552 if (op == 0x90)
1553 {
1554 pc += 1;
1555 if (target_read_code (pc, &op, 1))
1556 return pc;
1557 check = 1;
1558 }
1559 /* Ignore no-op instruction `mov %edi, %edi'.
1560 Microsoft system dlls often start with
1561 a `mov %edi,%edi' instruction.
1562 The 5 bytes before the function start are
1563 filled with `nop' instructions.
1564 This pattern can be used for hot-patching:
1565 The `mov %edi, %edi' instruction can be replaced by a
1566 near jump to the location of the 5 `nop' instructions
1567 which can be replaced by a 32-bit jump to anywhere
1568 in the 32-bit address space. */
1569
1570 else if (op == 0x8b)
1571 {
1572 if (target_read_code (pc + 1, &op, 1))
1573 return pc;
1574
1575 if (op == 0xff)
1576 {
1577 pc += 2;
1578 if (target_read_code (pc, &op, 1))
1579 return pc;
1580
1581 check = 1;
1582 }
1583 }
1584 }
1585 return pc;
1586 }
1587
1588 /* Check whether PC points at a code that sets up a new stack frame.
1589 If so, it updates CACHE and returns the address of the first
1590 instruction after the sequence that sets up the frame or LIMIT,
1591 whichever is smaller. If we don't recognize the code, return PC. */
1592
1593 static CORE_ADDR
1594 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1595 CORE_ADDR pc, CORE_ADDR limit,
1596 struct i386_frame_cache *cache)
1597 {
1598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1599 struct i386_insn *insn;
1600 gdb_byte op;
1601 int skip = 0;
1602
1603 if (limit <= pc)
1604 return limit;
1605
1606 if (target_read_code (pc, &op, 1))
1607 return pc;
1608
1609 if (op == 0x55) /* pushl %ebp */
1610 {
1611 /* Take into account that we've executed the `pushl %ebp' that
1612 starts this instruction sequence. */
1613 cache->saved_regs[I386_EBP_REGNUM] = 0;
1614 cache->sp_offset += 4;
1615 pc++;
1616
1617 /* If that's all, return now. */
1618 if (limit <= pc)
1619 return limit;
1620
1621 /* Check for some special instructions that might be migrated by
1622 GCC into the prologue and skip them. At this point in the
1623 prologue, code should only touch the scratch registers %eax,
1624 %ecx and %edx, so while the number of possibilities is sheer,
1625 it is limited.
1626
1627 Make sure we only skip these instructions if we later see the
1628 `movl %esp, %ebp' that actually sets up the frame. */
1629 while (pc + skip < limit)
1630 {
1631 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1632 if (insn == NULL)
1633 break;
1634
1635 skip += insn->len;
1636 }
1637
1638 /* If that's all, return now. */
1639 if (limit <= pc + skip)
1640 return limit;
1641
1642 if (target_read_code (pc + skip, &op, 1))
1643 return pc + skip;
1644
1645 /* The i386 prologue looks like
1646
1647 push %ebp
1648 mov %esp,%ebp
1649 sub $0x10,%esp
1650
1651 and a different prologue can be generated for atom.
1652
1653 push %ebp
1654 lea (%esp),%ebp
1655 lea -0x10(%esp),%esp
1656
1657 We handle both of them here. */
1658
1659 switch (op)
1660 {
1661 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1662 case 0x8b:
1663 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1664 != 0xec)
1665 return pc;
1666 pc += (skip + 2);
1667 break;
1668 case 0x89:
1669 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1670 != 0xe5)
1671 return pc;
1672 pc += (skip + 2);
1673 break;
1674 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1675 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1676 != 0x242c)
1677 return pc;
1678 pc += (skip + 3);
1679 break;
1680 default:
1681 return pc;
1682 }
1683
1684 /* OK, we actually have a frame. We just don't know how large
1685 it is yet. Set its size to zero. We'll adjust it if
1686 necessary. We also now commit to skipping the special
1687 instructions mentioned before. */
1688 cache->locals = 0;
1689
1690 /* If that's all, return now. */
1691 if (limit <= pc)
1692 return limit;
1693
1694 /* Check for stack adjustment
1695
1696 subl $XXX, %esp
1697 or
1698 lea -XXX(%esp),%esp
1699
1700 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1701 reg, so we don't have to worry about a data16 prefix. */
1702 if (target_read_code (pc, &op, 1))
1703 return pc;
1704 if (op == 0x83)
1705 {
1706 /* `subl' with 8-bit immediate. */
1707 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1708 /* Some instruction starting with 0x83 other than `subl'. */
1709 return pc;
1710
1711 /* `subl' with signed 8-bit immediate (though it wouldn't
1712 make sense to be negative). */
1713 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1714 return pc + 3;
1715 }
1716 else if (op == 0x81)
1717 {
1718 /* Maybe it is `subl' with a 32-bit immediate. */
1719 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1720 /* Some instruction starting with 0x81 other than `subl'. */
1721 return pc;
1722
1723 /* It is `subl' with a 32-bit immediate. */
1724 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1725 return pc + 6;
1726 }
1727 else if (op == 0x8d)
1728 {
1729 /* The ModR/M byte is 0x64. */
1730 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1731 return pc;
1732 /* 'lea' with 8-bit displacement. */
1733 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1734 return pc + 4;
1735 }
1736 else
1737 {
1738 /* Some instruction other than `subl' nor 'lea'. */
1739 return pc;
1740 }
1741 }
1742 else if (op == 0xc8) /* enter */
1743 {
1744 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1745 return pc + 4;
1746 }
1747
1748 return pc;
1749 }
1750
1751 /* Check whether PC points at code that saves registers on the stack.
1752 If so, it updates CACHE and returns the address of the first
1753 instruction after the register saves or CURRENT_PC, whichever is
1754 smaller. Otherwise, return PC. */
1755
1756 static CORE_ADDR
1757 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1758 struct i386_frame_cache *cache)
1759 {
1760 CORE_ADDR offset = 0;
1761 gdb_byte op;
1762 int i;
1763
1764 if (cache->locals > 0)
1765 offset -= cache->locals;
1766 for (i = 0; i < 8 && pc < current_pc; i++)
1767 {
1768 if (target_read_code (pc, &op, 1))
1769 return pc;
1770 if (op < 0x50 || op > 0x57)
1771 break;
1772
1773 offset -= 4;
1774 cache->saved_regs[op - 0x50] = offset;
1775 cache->sp_offset += 4;
1776 pc++;
1777 }
1778
1779 return pc;
1780 }
1781
1782 /* Do a full analysis of the prologue at PC and update CACHE
1783 accordingly. Bail out early if CURRENT_PC is reached. Return the
1784 address where the analysis stopped.
1785
1786 We handle these cases:
1787
1788 The startup sequence can be at the start of the function, or the
1789 function can start with a branch to startup code at the end.
1790
1791 %ebp can be set up with either the 'enter' instruction, or "pushl
1792 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793 once used in the System V compiler).
1794
1795 Local space is allocated just below the saved %ebp by either the
1796 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1797 16-bit unsigned argument for space to allocate, and the 'addl'
1798 instruction could have either a signed byte, or 32-bit immediate.
1799
1800 Next, the registers used by this function are pushed. With the
1801 System V compiler they will always be in the order: %edi, %esi,
1802 %ebx (and sometimes a harmless bug causes it to also save but not
1803 restore %eax); however, the code below is willing to see the pushes
1804 in any order, and will handle up to 8 of them.
1805
1806 If the setup sequence is at the end of the function, then the next
1807 instruction will be a branch back to the start. */
1808
1809 static CORE_ADDR
1810 i386_analyze_prologue (struct gdbarch *gdbarch,
1811 CORE_ADDR pc, CORE_ADDR current_pc,
1812 struct i386_frame_cache *cache)
1813 {
1814 pc = i386_skip_endbr (pc);
1815 pc = i386_skip_noop (pc);
1816 pc = i386_follow_jump (gdbarch, pc);
1817 pc = i386_analyze_struct_return (pc, current_pc, cache);
1818 pc = i386_skip_probe (pc);
1819 pc = i386_analyze_stack_align (pc, current_pc, cache);
1820 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1821 return i386_analyze_register_saves (pc, current_pc, cache);
1822 }
1823
1824 /* Return PC of first real instruction. */
1825
1826 static CORE_ADDR
1827 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1828 {
1829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1830
1831 static gdb_byte pic_pat[6] =
1832 {
1833 0xe8, 0, 0, 0, 0, /* call 0x0 */
1834 0x5b, /* popl %ebx */
1835 };
1836 struct i386_frame_cache cache;
1837 CORE_ADDR pc;
1838 gdb_byte op;
1839 int i;
1840 CORE_ADDR func_addr;
1841
1842 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1843 {
1844 CORE_ADDR post_prologue_pc
1845 = skip_prologue_using_sal (gdbarch, func_addr);
1846 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1847
1848 /* LLVM backend (Clang/Flang) always emits a line note before the
1849 prologue and another one after. We trust clang to emit usable
1850 line notes. */
1851 if (post_prologue_pc
1852 && (cust != NULL
1853 && COMPUNIT_PRODUCER (cust) != NULL
1854 && producer_is_llvm (COMPUNIT_PRODUCER (cust))))
1855 return std::max (start_pc, post_prologue_pc);
1856 }
1857
1858 cache.locals = -1;
1859 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1860 if (cache.locals < 0)
1861 return start_pc;
1862
1863 /* Found valid frame setup. */
1864
1865 /* The native cc on SVR4 in -K PIC mode inserts the following code
1866 to get the address of the global offset table (GOT) into register
1867 %ebx:
1868
1869 call 0x0
1870 popl %ebx
1871 movl %ebx,x(%ebp) (optional)
1872 addl y,%ebx
1873
1874 This code is with the rest of the prologue (at the end of the
1875 function), so we have to skip it to get to the first real
1876 instruction at the start of the function. */
1877
1878 for (i = 0; i < 6; i++)
1879 {
1880 if (target_read_code (pc + i, &op, 1))
1881 return pc;
1882
1883 if (pic_pat[i] != op)
1884 break;
1885 }
1886 if (i == 6)
1887 {
1888 int delta = 6;
1889
1890 if (target_read_code (pc + delta, &op, 1))
1891 return pc;
1892
1893 if (op == 0x89) /* movl %ebx, x(%ebp) */
1894 {
1895 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1896
1897 if (op == 0x5d) /* One byte offset from %ebp. */
1898 delta += 3;
1899 else if (op == 0x9d) /* Four byte offset from %ebp. */
1900 delta += 6;
1901 else /* Unexpected instruction. */
1902 delta = 0;
1903
1904 if (target_read_code (pc + delta, &op, 1))
1905 return pc;
1906 }
1907
1908 /* addl y,%ebx */
1909 if (delta > 0 && op == 0x81
1910 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1911 == 0xc3)
1912 {
1913 pc += delta + 6;
1914 }
1915 }
1916
1917 /* If the function starts with a branch (to startup code at the end)
1918 the last instruction should bring us back to the first
1919 instruction of the real code. */
1920 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1921 pc = i386_follow_jump (gdbarch, pc);
1922
1923 return pc;
1924 }
1925
1926 /* Check that the code pointed to by PC corresponds to a call to
1927 __main, skip it if so. Return PC otherwise. */
1928
1929 CORE_ADDR
1930 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1931 {
1932 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1933 gdb_byte op;
1934
1935 if (target_read_code (pc, &op, 1))
1936 return pc;
1937 if (op == 0xe8)
1938 {
1939 gdb_byte buf[4];
1940
1941 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1942 {
1943 /* Make sure address is computed correctly as a 32bit
1944 integer even if CORE_ADDR is 64 bit wide. */
1945 struct bound_minimal_symbol s;
1946 CORE_ADDR call_dest;
1947
1948 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1949 call_dest = call_dest & 0xffffffffU;
1950 s = lookup_minimal_symbol_by_pc (call_dest);
1951 if (s.minsym != NULL
1952 && s.minsym->linkage_name () != NULL
1953 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1954 pc += 5;
1955 }
1956 }
1957
1958 return pc;
1959 }
1960
1961 /* This function is 64-bit safe. */
1962
1963 static CORE_ADDR
1964 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1965 {
1966 gdb_byte buf[8];
1967
1968 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1969 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1970 }
1971 \f
1972
1973 /* Normal frames. */
1974
1975 static void
1976 i386_frame_cache_1 (struct frame_info *this_frame,
1977 struct i386_frame_cache *cache)
1978 {
1979 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1980 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1981 gdb_byte buf[4];
1982 int i;
1983
1984 cache->pc = get_frame_func (this_frame);
1985
1986 /* In principle, for normal frames, %ebp holds the frame pointer,
1987 which holds the base address for the current stack frame.
1988 However, for functions that don't need it, the frame pointer is
1989 optional. For these "frameless" functions the frame pointer is
1990 actually the frame pointer of the calling frame. Signal
1991 trampolines are just a special case of a "frameless" function.
1992 They (usually) share their frame pointer with the frame that was
1993 in progress when the signal occurred. */
1994
1995 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1996 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1997 if (cache->base == 0)
1998 {
1999 cache->base_p = 1;
2000 return;
2001 }
2002
2003 /* For normal frames, %eip is stored at 4(%ebp). */
2004 cache->saved_regs[I386_EIP_REGNUM] = 4;
2005
2006 if (cache->pc != 0)
2007 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2008 cache);
2009
2010 if (cache->locals < 0)
2011 {
2012 /* We didn't find a valid frame, which means that CACHE->base
2013 currently holds the frame pointer for our calling frame. If
2014 we're at the start of a function, or somewhere half-way its
2015 prologue, the function's frame probably hasn't been fully
2016 setup yet. Try to reconstruct the base address for the stack
2017 frame by looking at the stack pointer. For truly "frameless"
2018 functions this might work too. */
2019
2020 if (cache->saved_sp_reg != -1)
2021 {
2022 /* Saved stack pointer has been saved. */
2023 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2024 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2025
2026 /* We're halfway aligning the stack. */
2027 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2028 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2029
2030 /* This will be added back below. */
2031 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2032 }
2033 else if (cache->pc != 0
2034 || target_read_code (get_frame_pc (this_frame), buf, 1))
2035 {
2036 /* We're in a known function, but did not find a frame
2037 setup. Assume that the function does not use %ebp.
2038 Alternatively, we may have jumped to an invalid
2039 address; in that case there is definitely no new
2040 frame in %ebp. */
2041 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2042 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2043 + cache->sp_offset;
2044 }
2045 else
2046 /* We're in an unknown function. We could not find the start
2047 of the function to analyze the prologue; our best option is
2048 to assume a typical frame layout with the caller's %ebp
2049 saved. */
2050 cache->saved_regs[I386_EBP_REGNUM] = 0;
2051 }
2052
2053 if (cache->saved_sp_reg != -1)
2054 {
2055 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2056 register may be unavailable). */
2057 if (cache->saved_sp == 0
2058 && deprecated_frame_register_read (this_frame,
2059 cache->saved_sp_reg, buf))
2060 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2061 }
2062 /* Now that we have the base address for the stack frame we can
2063 calculate the value of %esp in the calling frame. */
2064 else if (cache->saved_sp == 0)
2065 cache->saved_sp = cache->base + 8;
2066
2067 /* Adjust all the saved registers such that they contain addresses
2068 instead of offsets. */
2069 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2070 if (cache->saved_regs[i] != -1)
2071 cache->saved_regs[i] += cache->base;
2072
2073 cache->base_p = 1;
2074 }
2075
2076 static struct i386_frame_cache *
2077 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2078 {
2079 struct i386_frame_cache *cache;
2080
2081 if (*this_cache)
2082 return (struct i386_frame_cache *) *this_cache;
2083
2084 cache = i386_alloc_frame_cache ();
2085 *this_cache = cache;
2086
2087 try
2088 {
2089 i386_frame_cache_1 (this_frame, cache);
2090 }
2091 catch (const gdb_exception_error &ex)
2092 {
2093 if (ex.error != NOT_AVAILABLE_ERROR)
2094 throw;
2095 }
2096
2097 return cache;
2098 }
2099
2100 static void
2101 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2102 struct frame_id *this_id)
2103 {
2104 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2105
2106 if (!cache->base_p)
2107 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2108 else if (cache->base == 0)
2109 {
2110 /* This marks the outermost frame. */
2111 }
2112 else
2113 {
2114 /* See the end of i386_push_dummy_call. */
2115 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2116 }
2117 }
2118
2119 static enum unwind_stop_reason
2120 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2121 void **this_cache)
2122 {
2123 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2124
2125 if (!cache->base_p)
2126 return UNWIND_UNAVAILABLE;
2127
2128 /* This marks the outermost frame. */
2129 if (cache->base == 0)
2130 return UNWIND_OUTERMOST;
2131
2132 return UNWIND_NO_REASON;
2133 }
2134
2135 static struct value *
2136 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2137 int regnum)
2138 {
2139 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2140
2141 gdb_assert (regnum >= 0);
2142
2143 /* The System V ABI says that:
2144
2145 "The flags register contains the system flags, such as the
2146 direction flag and the carry flag. The direction flag must be
2147 set to the forward (that is, zero) direction before entry and
2148 upon exit from a function. Other user flags have no specified
2149 role in the standard calling sequence and are not preserved."
2150
2151 To guarantee the "upon exit" part of that statement we fake a
2152 saved flags register that has its direction flag cleared.
2153
2154 Note that GCC doesn't seem to rely on the fact that the direction
2155 flag is cleared after a function return; it always explicitly
2156 clears the flag before operations where it matters.
2157
2158 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2159 right thing to do. The way we fake the flags register here makes
2160 it impossible to change it. */
2161
2162 if (regnum == I386_EFLAGS_REGNUM)
2163 {
2164 ULONGEST val;
2165
2166 val = get_frame_register_unsigned (this_frame, regnum);
2167 val &= ~(1 << 10);
2168 return frame_unwind_got_constant (this_frame, regnum, val);
2169 }
2170
2171 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2172 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2173
2174 if (regnum == I386_ESP_REGNUM
2175 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2176 {
2177 /* If the SP has been saved, but we don't know where, then this
2178 means that SAVED_SP_REG register was found unavailable back
2179 when we built the cache. */
2180 if (cache->saved_sp == 0)
2181 return frame_unwind_got_register (this_frame, regnum,
2182 cache->saved_sp_reg);
2183 else
2184 return frame_unwind_got_constant (this_frame, regnum,
2185 cache->saved_sp);
2186 }
2187
2188 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2189 return frame_unwind_got_memory (this_frame, regnum,
2190 cache->saved_regs[regnum]);
2191
2192 return frame_unwind_got_register (this_frame, regnum, regnum);
2193 }
2194
2195 static const struct frame_unwind i386_frame_unwind =
2196 {
2197 NORMAL_FRAME,
2198 i386_frame_unwind_stop_reason,
2199 i386_frame_this_id,
2200 i386_frame_prev_register,
2201 NULL,
2202 default_frame_sniffer
2203 };
2204
2205 /* Normal frames, but in a function epilogue. */
2206
2207 /* Implement the stack_frame_destroyed_p gdbarch method.
2208
2209 The epilogue is defined here as the 'ret' instruction, which will
2210 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2211 the function's stack frame. */
2212
2213 static int
2214 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2215 {
2216 gdb_byte insn;
2217 struct compunit_symtab *cust;
2218
2219 cust = find_pc_compunit_symtab (pc);
2220 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2221 return 0;
2222
2223 if (target_read_memory (pc, &insn, 1))
2224 return 0; /* Can't read memory at pc. */
2225
2226 if (insn != 0xc3) /* 'ret' instruction. */
2227 return 0;
2228
2229 return 1;
2230 }
2231
2232 static int
2233 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2234 struct frame_info *this_frame,
2235 void **this_prologue_cache)
2236 {
2237 if (frame_relative_level (this_frame) == 0)
2238 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2239 get_frame_pc (this_frame));
2240 else
2241 return 0;
2242 }
2243
2244 static struct i386_frame_cache *
2245 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2246 {
2247 struct i386_frame_cache *cache;
2248 CORE_ADDR sp;
2249
2250 if (*this_cache)
2251 return (struct i386_frame_cache *) *this_cache;
2252
2253 cache = i386_alloc_frame_cache ();
2254 *this_cache = cache;
2255
2256 try
2257 {
2258 cache->pc = get_frame_func (this_frame);
2259
2260 /* At this point the stack looks as if we just entered the
2261 function, with the return address at the top of the
2262 stack. */
2263 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2264 cache->base = sp + cache->sp_offset;
2265 cache->saved_sp = cache->base + 8;
2266 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2267
2268 cache->base_p = 1;
2269 }
2270 catch (const gdb_exception_error &ex)
2271 {
2272 if (ex.error != NOT_AVAILABLE_ERROR)
2273 throw;
2274 }
2275
2276 return cache;
2277 }
2278
2279 static enum unwind_stop_reason
2280 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2281 void **this_cache)
2282 {
2283 struct i386_frame_cache *cache =
2284 i386_epilogue_frame_cache (this_frame, this_cache);
2285
2286 if (!cache->base_p)
2287 return UNWIND_UNAVAILABLE;
2288
2289 return UNWIND_NO_REASON;
2290 }
2291
2292 static void
2293 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2294 void **this_cache,
2295 struct frame_id *this_id)
2296 {
2297 struct i386_frame_cache *cache =
2298 i386_epilogue_frame_cache (this_frame, this_cache);
2299
2300 if (!cache->base_p)
2301 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2302 else
2303 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2304 }
2305
2306 static struct value *
2307 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2308 void **this_cache, int regnum)
2309 {
2310 /* Make sure we've initialized the cache. */
2311 i386_epilogue_frame_cache (this_frame, this_cache);
2312
2313 return i386_frame_prev_register (this_frame, this_cache, regnum);
2314 }
2315
2316 static const struct frame_unwind i386_epilogue_frame_unwind =
2317 {
2318 NORMAL_FRAME,
2319 i386_epilogue_frame_unwind_stop_reason,
2320 i386_epilogue_frame_this_id,
2321 i386_epilogue_frame_prev_register,
2322 NULL,
2323 i386_epilogue_frame_sniffer
2324 };
2325 \f
2326
2327 /* Stack-based trampolines. */
2328
2329 /* These trampolines are used on cross x86 targets, when taking the
2330 address of a nested function. When executing these trampolines,
2331 no stack frame is set up, so we are in a similar situation as in
2332 epilogues and i386_epilogue_frame_this_id can be re-used. */
2333
2334 /* Static chain passed in register. */
2335
2336 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2337 {
2338 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339 { 5, { 0xb8 }, { 0xfe } },
2340
2341 /* `jmp imm32' */
2342 { 5, { 0xe9 }, { 0xff } },
2343
2344 {0}
2345 };
2346
2347 /* Static chain passed on stack (when regparm=3). */
2348
2349 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2350 {
2351 /* `push imm32' */
2352 { 5, { 0x68 }, { 0xff } },
2353
2354 /* `jmp imm32' */
2355 { 5, { 0xe9 }, { 0xff } },
2356
2357 {0}
2358 };
2359
2360 /* Return whether PC points inside a stack trampoline. */
2361
2362 static int
2363 i386_in_stack_tramp_p (CORE_ADDR pc)
2364 {
2365 gdb_byte insn;
2366 const char *name;
2367
2368 /* A stack trampoline is detected if no name is associated
2369 to the current pc and if it points inside a trampoline
2370 sequence. */
2371
2372 find_pc_partial_function (pc, &name, NULL, NULL);
2373 if (name)
2374 return 0;
2375
2376 if (target_read_memory (pc, &insn, 1))
2377 return 0;
2378
2379 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2380 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2381 return 0;
2382
2383 return 1;
2384 }
2385
2386 static int
2387 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2388 struct frame_info *this_frame,
2389 void **this_cache)
2390 {
2391 if (frame_relative_level (this_frame) == 0)
2392 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2393 else
2394 return 0;
2395 }
2396
2397 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2398 {
2399 NORMAL_FRAME,
2400 i386_epilogue_frame_unwind_stop_reason,
2401 i386_epilogue_frame_this_id,
2402 i386_epilogue_frame_prev_register,
2403 NULL,
2404 i386_stack_tramp_frame_sniffer
2405 };
2406 \f
2407 /* Generate a bytecode expression to get the value of the saved PC. */
2408
2409 static void
2410 i386_gen_return_address (struct gdbarch *gdbarch,
2411 struct agent_expr *ax, struct axs_value *value,
2412 CORE_ADDR scope)
2413 {
2414 /* The following sequence assumes the traditional use of the base
2415 register. */
2416 ax_reg (ax, I386_EBP_REGNUM);
2417 ax_const_l (ax, 4);
2418 ax_simple (ax, aop_add);
2419 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2420 value->kind = axs_lvalue_memory;
2421 }
2422 \f
2423
2424 /* Signal trampolines. */
2425
2426 static struct i386_frame_cache *
2427 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2428 {
2429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2431 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2432 struct i386_frame_cache *cache;
2433 CORE_ADDR addr;
2434 gdb_byte buf[4];
2435
2436 if (*this_cache)
2437 return (struct i386_frame_cache *) *this_cache;
2438
2439 cache = i386_alloc_frame_cache ();
2440
2441 try
2442 {
2443 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2444 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2445
2446 addr = tdep->sigcontext_addr (this_frame);
2447 if (tdep->sc_reg_offset)
2448 {
2449 int i;
2450
2451 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2452
2453 for (i = 0; i < tdep->sc_num_regs; i++)
2454 if (tdep->sc_reg_offset[i] != -1)
2455 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2456 }
2457 else
2458 {
2459 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2460 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2461 }
2462
2463 cache->base_p = 1;
2464 }
2465 catch (const gdb_exception_error &ex)
2466 {
2467 if (ex.error != NOT_AVAILABLE_ERROR)
2468 throw;
2469 }
2470
2471 *this_cache = cache;
2472 return cache;
2473 }
2474
2475 static enum unwind_stop_reason
2476 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2477 void **this_cache)
2478 {
2479 struct i386_frame_cache *cache =
2480 i386_sigtramp_frame_cache (this_frame, this_cache);
2481
2482 if (!cache->base_p)
2483 return UNWIND_UNAVAILABLE;
2484
2485 return UNWIND_NO_REASON;
2486 }
2487
2488 static void
2489 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2490 struct frame_id *this_id)
2491 {
2492 struct i386_frame_cache *cache =
2493 i386_sigtramp_frame_cache (this_frame, this_cache);
2494
2495 if (!cache->base_p)
2496 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2497 else
2498 {
2499 /* See the end of i386_push_dummy_call. */
2500 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2501 }
2502 }
2503
2504 static struct value *
2505 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2506 void **this_cache, int regnum)
2507 {
2508 /* Make sure we've initialized the cache. */
2509 i386_sigtramp_frame_cache (this_frame, this_cache);
2510
2511 return i386_frame_prev_register (this_frame, this_cache, regnum);
2512 }
2513
2514 static int
2515 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2516 struct frame_info *this_frame,
2517 void **this_prologue_cache)
2518 {
2519 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2520
2521 /* We shouldn't even bother if we don't have a sigcontext_addr
2522 handler. */
2523 if (tdep->sigcontext_addr == NULL)
2524 return 0;
2525
2526 if (tdep->sigtramp_p != NULL)
2527 {
2528 if (tdep->sigtramp_p (this_frame))
2529 return 1;
2530 }
2531
2532 if (tdep->sigtramp_start != 0)
2533 {
2534 CORE_ADDR pc = get_frame_pc (this_frame);
2535
2536 gdb_assert (tdep->sigtramp_end != 0);
2537 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2538 return 1;
2539 }
2540
2541 return 0;
2542 }
2543
2544 static const struct frame_unwind i386_sigtramp_frame_unwind =
2545 {
2546 SIGTRAMP_FRAME,
2547 i386_sigtramp_frame_unwind_stop_reason,
2548 i386_sigtramp_frame_this_id,
2549 i386_sigtramp_frame_prev_register,
2550 NULL,
2551 i386_sigtramp_frame_sniffer
2552 };
2553 \f
2554
2555 static CORE_ADDR
2556 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2557 {
2558 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2559
2560 return cache->base;
2561 }
2562
2563 static const struct frame_base i386_frame_base =
2564 {
2565 &i386_frame_unwind,
2566 i386_frame_base_address,
2567 i386_frame_base_address,
2568 i386_frame_base_address
2569 };
2570
2571 static struct frame_id
2572 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2573 {
2574 CORE_ADDR fp;
2575
2576 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2577
2578 /* See the end of i386_push_dummy_call. */
2579 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2580 }
2581
2582 /* _Decimal128 function return values need 16-byte alignment on the
2583 stack. */
2584
2585 static CORE_ADDR
2586 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2587 {
2588 return sp & -(CORE_ADDR)16;
2589 }
2590 \f
2591
2592 /* Figure out where the longjmp will land. Slurp the args out of the
2593 stack. We expect the first arg to be a pointer to the jmp_buf
2594 structure from which we extract the address that we will land at.
2595 This address is copied into PC. This routine returns non-zero on
2596 success. */
2597
2598 static int
2599 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2600 {
2601 gdb_byte buf[4];
2602 CORE_ADDR sp, jb_addr;
2603 struct gdbarch *gdbarch = get_frame_arch (frame);
2604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2605 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2606
2607 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2608 longjmp will land. */
2609 if (jb_pc_offset == -1)
2610 return 0;
2611
2612 get_frame_register (frame, I386_ESP_REGNUM, buf);
2613 sp = extract_unsigned_integer (buf, 4, byte_order);
2614 if (target_read_memory (sp + 4, buf, 4))
2615 return 0;
2616
2617 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2618 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2619 return 0;
2620
2621 *pc = extract_unsigned_integer (buf, 4, byte_order);
2622 return 1;
2623 }
2624 \f
2625
2626 /* Check whether TYPE must be 16-byte-aligned when passed as a
2627 function argument. 16-byte vectors, _Decimal128 and structures or
2628 unions containing such types must be 16-byte-aligned; other
2629 arguments are 4-byte-aligned. */
2630
2631 static int
2632 i386_16_byte_align_p (struct type *type)
2633 {
2634 type = check_typedef (type);
2635 if ((type->code () == TYPE_CODE_DECFLOAT
2636 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2637 && TYPE_LENGTH (type) == 16)
2638 return 1;
2639 if (type->code () == TYPE_CODE_ARRAY)
2640 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2641 if (type->code () == TYPE_CODE_STRUCT
2642 || type->code () == TYPE_CODE_UNION)
2643 {
2644 int i;
2645 for (i = 0; i < type->num_fields (); i++)
2646 {
2647 if (i386_16_byte_align_p (type->field (i).type ()))
2648 return 1;
2649 }
2650 }
2651 return 0;
2652 }
2653
2654 /* Implementation for set_gdbarch_push_dummy_code. */
2655
2656 static CORE_ADDR
2657 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2658 struct value **args, int nargs, struct type *value_type,
2659 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2660 struct regcache *regcache)
2661 {
2662 /* Use 0xcc breakpoint - 1 byte. */
2663 *bp_addr = sp - 1;
2664 *real_pc = funaddr;
2665
2666 /* Keep the stack aligned. */
2667 return sp - 16;
2668 }
2669
2670 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2671 calling convention. */
2672
2673 CORE_ADDR
2674 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2675 struct regcache *regcache, CORE_ADDR bp_addr,
2676 int nargs, struct value **args, CORE_ADDR sp,
2677 function_call_return_method return_method,
2678 CORE_ADDR struct_addr, bool thiscall)
2679 {
2680 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2681 gdb_byte buf[4];
2682 int i;
2683 int write_pass;
2684 int args_space = 0;
2685
2686 /* BND registers can be in arbitrary values at the moment of the
2687 inferior call. This can cause boundary violations that are not
2688 due to a real bug or even desired by the user. The best to be done
2689 is set the BND registers to allow access to the whole memory, INIT
2690 state, before pushing the inferior call. */
2691 i387_reset_bnd_regs (gdbarch, regcache);
2692
2693 /* Determine the total space required for arguments and struct
2694 return address in a first pass (allowing for 16-byte-aligned
2695 arguments), then push arguments in a second pass. */
2696
2697 for (write_pass = 0; write_pass < 2; write_pass++)
2698 {
2699 int args_space_used = 0;
2700
2701 if (return_method == return_method_struct)
2702 {
2703 if (write_pass)
2704 {
2705 /* Push value address. */
2706 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2707 write_memory (sp, buf, 4);
2708 args_space_used += 4;
2709 }
2710 else
2711 args_space += 4;
2712 }
2713
2714 for (i = thiscall ? 1 : 0; i < nargs; i++)
2715 {
2716 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2717
2718 if (write_pass)
2719 {
2720 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2721 args_space_used = align_up (args_space_used, 16);
2722
2723 write_memory (sp + args_space_used,
2724 value_contents_all (args[i]), len);
2725 /* The System V ABI says that:
2726
2727 "An argument's size is increased, if necessary, to make it a
2728 multiple of [32-bit] words. This may require tail padding,
2729 depending on the size of the argument."
2730
2731 This makes sure the stack stays word-aligned. */
2732 args_space_used += align_up (len, 4);
2733 }
2734 else
2735 {
2736 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2737 args_space = align_up (args_space, 16);
2738 args_space += align_up (len, 4);
2739 }
2740 }
2741
2742 if (!write_pass)
2743 {
2744 sp -= args_space;
2745
2746 /* The original System V ABI only requires word alignment,
2747 but modern incarnations need 16-byte alignment in order
2748 to support SSE. Since wasting a few bytes here isn't
2749 harmful we unconditionally enforce 16-byte alignment. */
2750 sp &= ~0xf;
2751 }
2752 }
2753
2754 /* Store return address. */
2755 sp -= 4;
2756 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2757 write_memory (sp, buf, 4);
2758
2759 /* Finally, update the stack pointer... */
2760 store_unsigned_integer (buf, 4, byte_order, sp);
2761 regcache->cooked_write (I386_ESP_REGNUM, buf);
2762
2763 /* ...and fake a frame pointer. */
2764 regcache->cooked_write (I386_EBP_REGNUM, buf);
2765
2766 /* The 'this' pointer needs to be in ECX. */
2767 if (thiscall)
2768 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2769
2770 /* MarkK wrote: This "+ 8" is all over the place:
2771 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2772 i386_dummy_id). It's there, since all frame unwinders for
2773 a given target have to agree (within a certain margin) on the
2774 definition of the stack address of a frame. Otherwise frame id
2775 comparison might not work correctly. Since DWARF2/GCC uses the
2776 stack address *before* the function call as a frame's CFA. On
2777 the i386, when %ebp is used as a frame pointer, the offset
2778 between the contents %ebp and the CFA as defined by GCC. */
2779 return sp + 8;
2780 }
2781
2782 /* Implement the "push_dummy_call" gdbarch method. */
2783
2784 static CORE_ADDR
2785 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2786 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2787 struct value **args, CORE_ADDR sp,
2788 function_call_return_method return_method,
2789 CORE_ADDR struct_addr)
2790 {
2791 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2792 nargs, args, sp, return_method,
2793 struct_addr, false);
2794 }
2795
2796 /* These registers are used for returning integers (and on some
2797 targets also for returning `struct' and `union' values when their
2798 size and alignment match an integer type). */
2799 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2800 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2801
2802 /* Read, for architecture GDBARCH, a function return value of TYPE
2803 from REGCACHE, and copy that into VALBUF. */
2804
2805 static void
2806 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2807 struct regcache *regcache, gdb_byte *valbuf)
2808 {
2809 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2810 int len = TYPE_LENGTH (type);
2811 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2812
2813 if (type->code () == TYPE_CODE_FLT)
2814 {
2815 if (tdep->st0_regnum < 0)
2816 {
2817 warning (_("Cannot find floating-point return value."));
2818 memset (valbuf, 0, len);
2819 return;
2820 }
2821
2822 /* Floating-point return values can be found in %st(0). Convert
2823 its contents to the desired type. This is probably not
2824 exactly how it would happen on the target itself, but it is
2825 the best we can do. */
2826 regcache->raw_read (I386_ST0_REGNUM, buf);
2827 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2828 }
2829 else
2830 {
2831 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2832 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2833
2834 if (len <= low_size)
2835 {
2836 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2837 memcpy (valbuf, buf, len);
2838 }
2839 else if (len <= (low_size + high_size))
2840 {
2841 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2842 memcpy (valbuf, buf, low_size);
2843 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2844 memcpy (valbuf + low_size, buf, len - low_size);
2845 }
2846 else
2847 internal_error (__FILE__, __LINE__,
2848 _("Cannot extract return value of %d bytes long."),
2849 len);
2850 }
2851 }
2852
2853 /* Write, for architecture GDBARCH, a function return value of TYPE
2854 from VALBUF into REGCACHE. */
2855
2856 static void
2857 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2858 struct regcache *regcache, const gdb_byte *valbuf)
2859 {
2860 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2861 int len = TYPE_LENGTH (type);
2862
2863 if (type->code () == TYPE_CODE_FLT)
2864 {
2865 ULONGEST fstat;
2866 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2867
2868 if (tdep->st0_regnum < 0)
2869 {
2870 warning (_("Cannot set floating-point return value."));
2871 return;
2872 }
2873
2874 /* Returning floating-point values is a bit tricky. Apart from
2875 storing the return value in %st(0), we have to simulate the
2876 state of the FPU at function return point. */
2877
2878 /* Convert the value found in VALBUF to the extended
2879 floating-point format used by the FPU. This is probably
2880 not exactly how it would happen on the target itself, but
2881 it is the best we can do. */
2882 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2883 regcache->raw_write (I386_ST0_REGNUM, buf);
2884
2885 /* Set the top of the floating-point register stack to 7. The
2886 actual value doesn't really matter, but 7 is what a normal
2887 function return would end up with if the program started out
2888 with a freshly initialized FPU. */
2889 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2890 fstat |= (7 << 11);
2891 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2892
2893 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2894 the floating-point register stack to 7, the appropriate value
2895 for the tag word is 0x3fff. */
2896 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2897 }
2898 else
2899 {
2900 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2901 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2902
2903 if (len <= low_size)
2904 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2905 else if (len <= (low_size + high_size))
2906 {
2907 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2908 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2909 valbuf + low_size);
2910 }
2911 else
2912 internal_error (__FILE__, __LINE__,
2913 _("Cannot store return value of %d bytes long."), len);
2914 }
2915 }
2916 \f
2917
2918 /* This is the variable that is set with "set struct-convention", and
2919 its legitimate values. */
2920 static const char default_struct_convention[] = "default";
2921 static const char pcc_struct_convention[] = "pcc";
2922 static const char reg_struct_convention[] = "reg";
2923 static const char *const valid_conventions[] =
2924 {
2925 default_struct_convention,
2926 pcc_struct_convention,
2927 reg_struct_convention,
2928 NULL
2929 };
2930 static const char *struct_convention = default_struct_convention;
2931
2932 /* Return non-zero if TYPE, which is assumed to be a structure,
2933 a union type, or an array type, should be returned in registers
2934 for architecture GDBARCH. */
2935
2936 static int
2937 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2938 {
2939 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2940 enum type_code code = type->code ();
2941 int len = TYPE_LENGTH (type);
2942
2943 gdb_assert (code == TYPE_CODE_STRUCT
2944 || code == TYPE_CODE_UNION
2945 || code == TYPE_CODE_ARRAY);
2946
2947 if (struct_convention == pcc_struct_convention
2948 || (struct_convention == default_struct_convention
2949 && tdep->struct_return == pcc_struct_return))
2950 return 0;
2951
2952 /* Structures consisting of a single `float', `double' or 'long
2953 double' member are returned in %st(0). */
2954 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
2955 {
2956 type = check_typedef (type->field (0).type ());
2957 if (type->code () == TYPE_CODE_FLT)
2958 return (len == 4 || len == 8 || len == 12);
2959 }
2960
2961 return (len == 1 || len == 2 || len == 4 || len == 8);
2962 }
2963
2964 /* Determine, for architecture GDBARCH, how a return value of TYPE
2965 should be returned. If it is supposed to be returned in registers,
2966 and READBUF is non-zero, read the appropriate value from REGCACHE,
2967 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2968 from WRITEBUF into REGCACHE. */
2969
2970 static enum return_value_convention
2971 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2972 struct type *type, struct regcache *regcache,
2973 gdb_byte *readbuf, const gdb_byte *writebuf)
2974 {
2975 enum type_code code = type->code ();
2976
2977 if (((code == TYPE_CODE_STRUCT
2978 || code == TYPE_CODE_UNION
2979 || code == TYPE_CODE_ARRAY)
2980 && !i386_reg_struct_return_p (gdbarch, type))
2981 /* Complex double and long double uses the struct return convention. */
2982 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2983 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2984 /* 128-bit decimal float uses the struct return convention. */
2985 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2986 {
2987 /* The System V ABI says that:
2988
2989 "A function that returns a structure or union also sets %eax
2990 to the value of the original address of the caller's area
2991 before it returns. Thus when the caller receives control
2992 again, the address of the returned object resides in register
2993 %eax and can be used to access the object."
2994
2995 So the ABI guarantees that we can always find the return
2996 value just after the function has returned. */
2997
2998 /* Note that the ABI doesn't mention functions returning arrays,
2999 which is something possible in certain languages such as Ada.
3000 In this case, the value is returned as if it was wrapped in
3001 a record, so the convention applied to records also applies
3002 to arrays. */
3003
3004 if (readbuf)
3005 {
3006 ULONGEST addr;
3007
3008 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3009 read_memory (addr, readbuf, TYPE_LENGTH (type));
3010 }
3011
3012 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3013 }
3014
3015 /* This special case is for structures consisting of a single
3016 `float', `double' or 'long double' member. These structures are
3017 returned in %st(0). For these structures, we call ourselves
3018 recursively, changing TYPE into the type of the first member of
3019 the structure. Since that should work for all structures that
3020 have only one member, we don't bother to check the member's type
3021 here. */
3022 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3023 {
3024 type = check_typedef (type->field (0).type ());
3025 return i386_return_value (gdbarch, function, type, regcache,
3026 readbuf, writebuf);
3027 }
3028
3029 if (readbuf)
3030 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3031 if (writebuf)
3032 i386_store_return_value (gdbarch, type, regcache, writebuf);
3033
3034 return RETURN_VALUE_REGISTER_CONVENTION;
3035 }
3036 \f
3037
3038 struct type *
3039 i387_ext_type (struct gdbarch *gdbarch)
3040 {
3041 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3042
3043 if (!tdep->i387_ext_type)
3044 {
3045 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3046 gdb_assert (tdep->i387_ext_type != NULL);
3047 }
3048
3049 return tdep->i387_ext_type;
3050 }
3051
3052 /* Construct type for pseudo BND registers. We can't use
3053 tdesc_find_type since a complement of one value has to be used
3054 to describe the upper bound. */
3055
3056 static struct type *
3057 i386_bnd_type (struct gdbarch *gdbarch)
3058 {
3059 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3060
3061
3062 if (!tdep->i386_bnd_type)
3063 {
3064 struct type *t;
3065 const struct builtin_type *bt = builtin_type (gdbarch);
3066
3067 /* The type we're building is described bellow: */
3068 #if 0
3069 struct __bound128
3070 {
3071 void *lbound;
3072 void *ubound; /* One complement of raw ubound field. */
3073 };
3074 #endif
3075
3076 t = arch_composite_type (gdbarch,
3077 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3078
3079 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3080 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3081
3082 t->set_name ("builtin_type_bound128");
3083 tdep->i386_bnd_type = t;
3084 }
3085
3086 return tdep->i386_bnd_type;
3087 }
3088
3089 /* Construct vector type for pseudo ZMM registers. We can't use
3090 tdesc_find_type since ZMM isn't described in target description. */
3091
3092 static struct type *
3093 i386_zmm_type (struct gdbarch *gdbarch)
3094 {
3095 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3096
3097 if (!tdep->i386_zmm_type)
3098 {
3099 const struct builtin_type *bt = builtin_type (gdbarch);
3100
3101 /* The type we're building is this: */
3102 #if 0
3103 union __gdb_builtin_type_vec512i
3104 {
3105 int128_t v4_int128[4];
3106 int64_t v8_int64[8];
3107 int32_t v16_int32[16];
3108 int16_t v32_int16[32];
3109 int8_t v64_int8[64];
3110 double v8_double[8];
3111 float v16_float[16];
3112 bfloat16_t v32_bfloat16[32];
3113 };
3114 #endif
3115
3116 struct type *t;
3117
3118 t = arch_composite_type (gdbarch,
3119 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3120 append_composite_type_field (t, "v32_bfloat16",
3121 init_vector_type (bt->builtin_bfloat16, 32));
3122 append_composite_type_field (t, "v16_float",
3123 init_vector_type (bt->builtin_float, 16));
3124 append_composite_type_field (t, "v8_double",
3125 init_vector_type (bt->builtin_double, 8));
3126 append_composite_type_field (t, "v64_int8",
3127 init_vector_type (bt->builtin_int8, 64));
3128 append_composite_type_field (t, "v32_int16",
3129 init_vector_type (bt->builtin_int16, 32));
3130 append_composite_type_field (t, "v16_int32",
3131 init_vector_type (bt->builtin_int32, 16));
3132 append_composite_type_field (t, "v8_int64",
3133 init_vector_type (bt->builtin_int64, 8));
3134 append_composite_type_field (t, "v4_int128",
3135 init_vector_type (bt->builtin_int128, 4));
3136
3137 t->set_is_vector (true);
3138 t->set_name ("builtin_type_vec512i");
3139 tdep->i386_zmm_type = t;
3140 }
3141
3142 return tdep->i386_zmm_type;
3143 }
3144
3145 /* Construct vector type for pseudo YMM registers. We can't use
3146 tdesc_find_type since YMM isn't described in target description. */
3147
3148 static struct type *
3149 i386_ymm_type (struct gdbarch *gdbarch)
3150 {
3151 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3152
3153 if (!tdep->i386_ymm_type)
3154 {
3155 const struct builtin_type *bt = builtin_type (gdbarch);
3156
3157 /* The type we're building is this: */
3158 #if 0
3159 union __gdb_builtin_type_vec256i
3160 {
3161 int128_t v2_int128[2];
3162 int64_t v4_int64[4];
3163 int32_t v8_int32[8];
3164 int16_t v16_int16[16];
3165 int8_t v32_int8[32];
3166 double v4_double[4];
3167 float v8_float[8];
3168 bfloat16_t v16_bfloat16[16];
3169 };
3170 #endif
3171
3172 struct type *t;
3173
3174 t = arch_composite_type (gdbarch,
3175 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3176 append_composite_type_field (t, "v16_bfloat16",
3177 init_vector_type (bt->builtin_bfloat16, 16));
3178 append_composite_type_field (t, "v8_float",
3179 init_vector_type (bt->builtin_float, 8));
3180 append_composite_type_field (t, "v4_double",
3181 init_vector_type (bt->builtin_double, 4));
3182 append_composite_type_field (t, "v32_int8",
3183 init_vector_type (bt->builtin_int8, 32));
3184 append_composite_type_field (t, "v16_int16",
3185 init_vector_type (bt->builtin_int16, 16));
3186 append_composite_type_field (t, "v8_int32",
3187 init_vector_type (bt->builtin_int32, 8));
3188 append_composite_type_field (t, "v4_int64",
3189 init_vector_type (bt->builtin_int64, 4));
3190 append_composite_type_field (t, "v2_int128",
3191 init_vector_type (bt->builtin_int128, 2));
3192
3193 t->set_is_vector (true);
3194 t->set_name ("builtin_type_vec256i");
3195 tdep->i386_ymm_type = t;
3196 }
3197
3198 return tdep->i386_ymm_type;
3199 }
3200
3201 /* Construct vector type for MMX registers. */
3202 static struct type *
3203 i386_mmx_type (struct gdbarch *gdbarch)
3204 {
3205 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3206
3207 if (!tdep->i386_mmx_type)
3208 {
3209 const struct builtin_type *bt = builtin_type (gdbarch);
3210
3211 /* The type we're building is this: */
3212 #if 0
3213 union __gdb_builtin_type_vec64i
3214 {
3215 int64_t uint64;
3216 int32_t v2_int32[2];
3217 int16_t v4_int16[4];
3218 int8_t v8_int8[8];
3219 };
3220 #endif
3221
3222 struct type *t;
3223
3224 t = arch_composite_type (gdbarch,
3225 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3226
3227 append_composite_type_field (t, "uint64", bt->builtin_int64);
3228 append_composite_type_field (t, "v2_int32",
3229 init_vector_type (bt->builtin_int32, 2));
3230 append_composite_type_field (t, "v4_int16",
3231 init_vector_type (bt->builtin_int16, 4));
3232 append_composite_type_field (t, "v8_int8",
3233 init_vector_type (bt->builtin_int8, 8));
3234
3235 t->set_is_vector (true);
3236 t->set_name ("builtin_type_vec64i");
3237 tdep->i386_mmx_type = t;
3238 }
3239
3240 return tdep->i386_mmx_type;
3241 }
3242
3243 /* Return the GDB type object for the "standard" data type of data in
3244 register REGNUM. */
3245
3246 struct type *
3247 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3248 {
3249 if (i386_bnd_regnum_p (gdbarch, regnum))
3250 return i386_bnd_type (gdbarch);
3251 if (i386_mmx_regnum_p (gdbarch, regnum))
3252 return i386_mmx_type (gdbarch);
3253 else if (i386_ymm_regnum_p (gdbarch, regnum))
3254 return i386_ymm_type (gdbarch);
3255 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3256 return i386_ymm_type (gdbarch);
3257 else if (i386_zmm_regnum_p (gdbarch, regnum))
3258 return i386_zmm_type (gdbarch);
3259 else
3260 {
3261 const struct builtin_type *bt = builtin_type (gdbarch);
3262 if (i386_byte_regnum_p (gdbarch, regnum))
3263 return bt->builtin_int8;
3264 else if (i386_word_regnum_p (gdbarch, regnum))
3265 return bt->builtin_int16;
3266 else if (i386_dword_regnum_p (gdbarch, regnum))
3267 return bt->builtin_int32;
3268 else if (i386_k_regnum_p (gdbarch, regnum))
3269 return bt->builtin_int64;
3270 }
3271
3272 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3273 }
3274
3275 /* Map a cooked register onto a raw register or memory. For the i386,
3276 the MMX registers need to be mapped onto floating point registers. */
3277
3278 static int
3279 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3280 {
3281 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3282 int mmxreg, fpreg;
3283 ULONGEST fstat;
3284 int tos;
3285
3286 mmxreg = regnum - tdep->mm0_regnum;
3287 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3288 tos = (fstat >> 11) & 0x7;
3289 fpreg = (mmxreg + tos) % 8;
3290
3291 return (I387_ST0_REGNUM (tdep) + fpreg);
3292 }
3293
3294 /* A helper function for us by i386_pseudo_register_read_value and
3295 amd64_pseudo_register_read_value. It does all the work but reads
3296 the data into an already-allocated value. */
3297
3298 void
3299 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3300 readable_regcache *regcache,
3301 int regnum,
3302 struct value *result_value)
3303 {
3304 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3305 enum register_status status;
3306 gdb_byte *buf = value_contents_raw (result_value);
3307
3308 if (i386_mmx_regnum_p (gdbarch, regnum))
3309 {
3310 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3311
3312 /* Extract (always little endian). */
3313 status = regcache->raw_read (fpnum, raw_buf);
3314 if (status != REG_VALID)
3315 mark_value_bytes_unavailable (result_value, 0,
3316 TYPE_LENGTH (value_type (result_value)));
3317 else
3318 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3319 }
3320 else
3321 {
3322 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3323 if (i386_bnd_regnum_p (gdbarch, regnum))
3324 {
3325 regnum -= tdep->bnd0_regnum;
3326
3327 /* Extract (always little endian). Read lower 128bits. */
3328 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3329 raw_buf);
3330 if (status != REG_VALID)
3331 mark_value_bytes_unavailable (result_value, 0, 16);
3332 else
3333 {
3334 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3335 LONGEST upper, lower;
3336 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3337
3338 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3339 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3340 upper = ~upper;
3341
3342 memcpy (buf, &lower, size);
3343 memcpy (buf + size, &upper, size);
3344 }
3345 }
3346 else if (i386_k_regnum_p (gdbarch, regnum))
3347 {
3348 regnum -= tdep->k0_regnum;
3349
3350 /* Extract (always little endian). */
3351 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3352 if (status != REG_VALID)
3353 mark_value_bytes_unavailable (result_value, 0, 8);
3354 else
3355 memcpy (buf, raw_buf, 8);
3356 }
3357 else if (i386_zmm_regnum_p (gdbarch, regnum))
3358 {
3359 regnum -= tdep->zmm0_regnum;
3360
3361 if (regnum < num_lower_zmm_regs)
3362 {
3363 /* Extract (always little endian). Read lower 128bits. */
3364 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3365 raw_buf);
3366 if (status != REG_VALID)
3367 mark_value_bytes_unavailable (result_value, 0, 16);
3368 else
3369 memcpy (buf, raw_buf, 16);
3370
3371 /* Extract (always little endian). Read upper 128bits. */
3372 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3373 raw_buf);
3374 if (status != REG_VALID)
3375 mark_value_bytes_unavailable (result_value, 16, 16);
3376 else
3377 memcpy (buf + 16, raw_buf, 16);
3378 }
3379 else
3380 {
3381 /* Extract (always little endian). Read lower 128bits. */
3382 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3383 - num_lower_zmm_regs,
3384 raw_buf);
3385 if (status != REG_VALID)
3386 mark_value_bytes_unavailable (result_value, 0, 16);
3387 else
3388 memcpy (buf, raw_buf, 16);
3389
3390 /* Extract (always little endian). Read upper 128bits. */
3391 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3392 - num_lower_zmm_regs,
3393 raw_buf);
3394 if (status != REG_VALID)
3395 mark_value_bytes_unavailable (result_value, 16, 16);
3396 else
3397 memcpy (buf + 16, raw_buf, 16);
3398 }
3399
3400 /* Read upper 256bits. */
3401 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3402 raw_buf);
3403 if (status != REG_VALID)
3404 mark_value_bytes_unavailable (result_value, 32, 32);
3405 else
3406 memcpy (buf + 32, raw_buf, 32);
3407 }
3408 else if (i386_ymm_regnum_p (gdbarch, regnum))
3409 {
3410 regnum -= tdep->ymm0_regnum;
3411
3412 /* Extract (always little endian). Read lower 128bits. */
3413 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3414 raw_buf);
3415 if (status != REG_VALID)
3416 mark_value_bytes_unavailable (result_value, 0, 16);
3417 else
3418 memcpy (buf, raw_buf, 16);
3419 /* Read upper 128bits. */
3420 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3421 raw_buf);
3422 if (status != REG_VALID)
3423 mark_value_bytes_unavailable (result_value, 16, 32);
3424 else
3425 memcpy (buf + 16, raw_buf, 16);
3426 }
3427 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3428 {
3429 regnum -= tdep->ymm16_regnum;
3430 /* Extract (always little endian). Read lower 128bits. */
3431 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3432 raw_buf);
3433 if (status != REG_VALID)
3434 mark_value_bytes_unavailable (result_value, 0, 16);
3435 else
3436 memcpy (buf, raw_buf, 16);
3437 /* Read upper 128bits. */
3438 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3439 raw_buf);
3440 if (status != REG_VALID)
3441 mark_value_bytes_unavailable (result_value, 16, 16);
3442 else
3443 memcpy (buf + 16, raw_buf, 16);
3444 }
3445 else if (i386_word_regnum_p (gdbarch, regnum))
3446 {
3447 int gpnum = regnum - tdep->ax_regnum;
3448
3449 /* Extract (always little endian). */
3450 status = regcache->raw_read (gpnum, raw_buf);
3451 if (status != REG_VALID)
3452 mark_value_bytes_unavailable (result_value, 0,
3453 TYPE_LENGTH (value_type (result_value)));
3454 else
3455 memcpy (buf, raw_buf, 2);
3456 }
3457 else if (i386_byte_regnum_p (gdbarch, regnum))
3458 {
3459 int gpnum = regnum - tdep->al_regnum;
3460
3461 /* Extract (always little endian). We read both lower and
3462 upper registers. */
3463 status = regcache->raw_read (gpnum % 4, raw_buf);
3464 if (status != REG_VALID)
3465 mark_value_bytes_unavailable (result_value, 0,
3466 TYPE_LENGTH (value_type (result_value)));
3467 else if (gpnum >= 4)
3468 memcpy (buf, raw_buf + 1, 1);
3469 else
3470 memcpy (buf, raw_buf, 1);
3471 }
3472 else
3473 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3474 }
3475 }
3476
3477 static struct value *
3478 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3479 readable_regcache *regcache,
3480 int regnum)
3481 {
3482 struct value *result;
3483
3484 result = allocate_value (register_type (gdbarch, regnum));
3485 VALUE_LVAL (result) = lval_register;
3486 VALUE_REGNUM (result) = regnum;
3487
3488 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3489
3490 return result;
3491 }
3492
3493 void
3494 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3495 int regnum, const gdb_byte *buf)
3496 {
3497 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3498
3499 if (i386_mmx_regnum_p (gdbarch, regnum))
3500 {
3501 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3502
3503 /* Read ... */
3504 regcache->raw_read (fpnum, raw_buf);
3505 /* ... Modify ... (always little endian). */
3506 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3507 /* ... Write. */
3508 regcache->raw_write (fpnum, raw_buf);
3509 }
3510 else
3511 {
3512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3513
3514 if (i386_bnd_regnum_p (gdbarch, regnum))
3515 {
3516 ULONGEST upper, lower;
3517 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3518 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3519
3520 /* New values from input value. */
3521 regnum -= tdep->bnd0_regnum;
3522 lower = extract_unsigned_integer (buf, size, byte_order);
3523 upper = extract_unsigned_integer (buf + size, size, byte_order);
3524
3525 /* Fetching register buffer. */
3526 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3527 raw_buf);
3528
3529 upper = ~upper;
3530
3531 /* Set register bits. */
3532 memcpy (raw_buf, &lower, 8);
3533 memcpy (raw_buf + 8, &upper, 8);
3534
3535 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3536 }
3537 else if (i386_k_regnum_p (gdbarch, regnum))
3538 {
3539 regnum -= tdep->k0_regnum;
3540
3541 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3542 }
3543 else if (i386_zmm_regnum_p (gdbarch, regnum))
3544 {
3545 regnum -= tdep->zmm0_regnum;
3546
3547 if (regnum < num_lower_zmm_regs)
3548 {
3549 /* Write lower 128bits. */
3550 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3551 /* Write upper 128bits. */
3552 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3553 }
3554 else
3555 {
3556 /* Write lower 128bits. */
3557 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3558 - num_lower_zmm_regs, buf);
3559 /* Write upper 128bits. */
3560 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3561 - num_lower_zmm_regs, buf + 16);
3562 }
3563 /* Write upper 256bits. */
3564 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3565 }
3566 else if (i386_ymm_regnum_p (gdbarch, regnum))
3567 {
3568 regnum -= tdep->ymm0_regnum;
3569
3570 /* ... Write lower 128bits. */
3571 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3572 /* ... Write upper 128bits. */
3573 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3574 }
3575 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3576 {
3577 regnum -= tdep->ymm16_regnum;
3578
3579 /* ... Write lower 128bits. */
3580 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3581 /* ... Write upper 128bits. */
3582 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3583 }
3584 else if (i386_word_regnum_p (gdbarch, regnum))
3585 {
3586 int gpnum = regnum - tdep->ax_regnum;
3587
3588 /* Read ... */
3589 regcache->raw_read (gpnum, raw_buf);
3590 /* ... Modify ... (always little endian). */
3591 memcpy (raw_buf, buf, 2);
3592 /* ... Write. */
3593 regcache->raw_write (gpnum, raw_buf);
3594 }
3595 else if (i386_byte_regnum_p (gdbarch, regnum))
3596 {
3597 int gpnum = regnum - tdep->al_regnum;
3598
3599 /* Read ... We read both lower and upper registers. */
3600 regcache->raw_read (gpnum % 4, raw_buf);
3601 /* ... Modify ... (always little endian). */
3602 if (gpnum >= 4)
3603 memcpy (raw_buf + 1, buf, 1);
3604 else
3605 memcpy (raw_buf, buf, 1);
3606 /* ... Write. */
3607 regcache->raw_write (gpnum % 4, raw_buf);
3608 }
3609 else
3610 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3611 }
3612 }
3613
3614 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3615
3616 int
3617 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3618 struct agent_expr *ax, int regnum)
3619 {
3620 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3621
3622 if (i386_mmx_regnum_p (gdbarch, regnum))
3623 {
3624 /* MMX to FPU register mapping depends on current TOS. Let's just
3625 not care and collect everything... */
3626 int i;
3627
3628 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3629 for (i = 0; i < 8; i++)
3630 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3631 return 0;
3632 }
3633 else if (i386_bnd_regnum_p (gdbarch, regnum))
3634 {
3635 regnum -= tdep->bnd0_regnum;
3636 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3637 return 0;
3638 }
3639 else if (i386_k_regnum_p (gdbarch, regnum))
3640 {
3641 regnum -= tdep->k0_regnum;
3642 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3643 return 0;
3644 }
3645 else if (i386_zmm_regnum_p (gdbarch, regnum))
3646 {
3647 regnum -= tdep->zmm0_regnum;
3648 if (regnum < num_lower_zmm_regs)
3649 {
3650 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3651 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3652 }
3653 else
3654 {
3655 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3656 - num_lower_zmm_regs);
3657 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3658 - num_lower_zmm_regs);
3659 }
3660 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3661 return 0;
3662 }
3663 else if (i386_ymm_regnum_p (gdbarch, regnum))
3664 {
3665 regnum -= tdep->ymm0_regnum;
3666 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3667 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3668 return 0;
3669 }
3670 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3671 {
3672 regnum -= tdep->ymm16_regnum;
3673 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3674 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3675 return 0;
3676 }
3677 else if (i386_word_regnum_p (gdbarch, regnum))
3678 {
3679 int gpnum = regnum - tdep->ax_regnum;
3680
3681 ax_reg_mask (ax, gpnum);
3682 return 0;
3683 }
3684 else if (i386_byte_regnum_p (gdbarch, regnum))
3685 {
3686 int gpnum = regnum - tdep->al_regnum;
3687
3688 ax_reg_mask (ax, gpnum % 4);
3689 return 0;
3690 }
3691 else
3692 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3693 return 1;
3694 }
3695 \f
3696
3697 /* Return the register number of the register allocated by GCC after
3698 REGNUM, or -1 if there is no such register. */
3699
3700 static int
3701 i386_next_regnum (int regnum)
3702 {
3703 /* GCC allocates the registers in the order:
3704
3705 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3706
3707 Since storing a variable in %esp doesn't make any sense we return
3708 -1 for %ebp and for %esp itself. */
3709 static int next_regnum[] =
3710 {
3711 I386_EDX_REGNUM, /* Slot for %eax. */
3712 I386_EBX_REGNUM, /* Slot for %ecx. */
3713 I386_ECX_REGNUM, /* Slot for %edx. */
3714 I386_ESI_REGNUM, /* Slot for %ebx. */
3715 -1, -1, /* Slots for %esp and %ebp. */
3716 I386_EDI_REGNUM, /* Slot for %esi. */
3717 I386_EBP_REGNUM /* Slot for %edi. */
3718 };
3719
3720 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3721 return next_regnum[regnum];
3722
3723 return -1;
3724 }
3725
3726 /* Return nonzero if a value of type TYPE stored in register REGNUM
3727 needs any special handling. */
3728
3729 static int
3730 i386_convert_register_p (struct gdbarch *gdbarch,
3731 int regnum, struct type *type)
3732 {
3733 int len = TYPE_LENGTH (type);
3734
3735 /* Values may be spread across multiple registers. Most debugging
3736 formats aren't expressive enough to specify the locations, so
3737 some heuristics is involved. Right now we only handle types that
3738 have a length that is a multiple of the word size, since GCC
3739 doesn't seem to put any other types into registers. */
3740 if (len > 4 && len % 4 == 0)
3741 {
3742 int last_regnum = regnum;
3743
3744 while (len > 4)
3745 {
3746 last_regnum = i386_next_regnum (last_regnum);
3747 len -= 4;
3748 }
3749
3750 if (last_regnum != -1)
3751 return 1;
3752 }
3753
3754 return i387_convert_register_p (gdbarch, regnum, type);
3755 }
3756
3757 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3758 return its contents in TO. */
3759
3760 static int
3761 i386_register_to_value (struct frame_info *frame, int regnum,
3762 struct type *type, gdb_byte *to,
3763 int *optimizedp, int *unavailablep)
3764 {
3765 struct gdbarch *gdbarch = get_frame_arch (frame);
3766 int len = TYPE_LENGTH (type);
3767
3768 if (i386_fp_regnum_p (gdbarch, regnum))
3769 return i387_register_to_value (frame, regnum, type, to,
3770 optimizedp, unavailablep);
3771
3772 /* Read a value spread across multiple registers. */
3773
3774 gdb_assert (len > 4 && len % 4 == 0);
3775
3776 while (len > 0)
3777 {
3778 gdb_assert (regnum != -1);
3779 gdb_assert (register_size (gdbarch, regnum) == 4);
3780
3781 if (!get_frame_register_bytes (frame, regnum, 0,
3782 register_size (gdbarch, regnum),
3783 to, optimizedp, unavailablep))
3784 return 0;
3785
3786 regnum = i386_next_regnum (regnum);
3787 len -= 4;
3788 to += 4;
3789 }
3790
3791 *optimizedp = *unavailablep = 0;
3792 return 1;
3793 }
3794
3795 /* Write the contents FROM of a value of type TYPE into register
3796 REGNUM in frame FRAME. */
3797
3798 static void
3799 i386_value_to_register (struct frame_info *frame, int regnum,
3800 struct type *type, const gdb_byte *from)
3801 {
3802 int len = TYPE_LENGTH (type);
3803
3804 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3805 {
3806 i387_value_to_register (frame, regnum, type, from);
3807 return;
3808 }
3809
3810 /* Write a value spread across multiple registers. */
3811
3812 gdb_assert (len > 4 && len % 4 == 0);
3813
3814 while (len > 0)
3815 {
3816 gdb_assert (regnum != -1);
3817 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3818
3819 put_frame_register (frame, regnum, from);
3820 regnum = i386_next_regnum (regnum);
3821 len -= 4;
3822 from += 4;
3823 }
3824 }
3825 \f
3826 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3827 in the general-purpose register set REGSET to register cache
3828 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3829
3830 void
3831 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3832 int regnum, const void *gregs, size_t len)
3833 {
3834 struct gdbarch *gdbarch = regcache->arch ();
3835 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3836 const gdb_byte *regs = (const gdb_byte *) gregs;
3837 int i;
3838
3839 gdb_assert (len >= tdep->sizeof_gregset);
3840
3841 for (i = 0; i < tdep->gregset_num_regs; i++)
3842 {
3843 if ((regnum == i || regnum == -1)
3844 && tdep->gregset_reg_offset[i] != -1)
3845 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3846 }
3847 }
3848
3849 /* Collect register REGNUM from the register cache REGCACHE and store
3850 it in the buffer specified by GREGS and LEN as described by the
3851 general-purpose register set REGSET. If REGNUM is -1, do this for
3852 all registers in REGSET. */
3853
3854 static void
3855 i386_collect_gregset (const struct regset *regset,
3856 const struct regcache *regcache,
3857 int regnum, void *gregs, size_t len)
3858 {
3859 struct gdbarch *gdbarch = regcache->arch ();
3860 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3861 gdb_byte *regs = (gdb_byte *) gregs;
3862 int i;
3863
3864 gdb_assert (len >= tdep->sizeof_gregset);
3865
3866 for (i = 0; i < tdep->gregset_num_regs; i++)
3867 {
3868 if ((regnum == i || regnum == -1)
3869 && tdep->gregset_reg_offset[i] != -1)
3870 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3871 }
3872 }
3873
3874 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3875 in the floating-point register set REGSET to register cache
3876 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3877
3878 static void
3879 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3880 int regnum, const void *fpregs, size_t len)
3881 {
3882 struct gdbarch *gdbarch = regcache->arch ();
3883 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3884
3885 if (len == I387_SIZEOF_FXSAVE)
3886 {
3887 i387_supply_fxsave (regcache, regnum, fpregs);
3888 return;
3889 }
3890
3891 gdb_assert (len >= tdep->sizeof_fpregset);
3892 i387_supply_fsave (regcache, regnum, fpregs);
3893 }
3894
3895 /* Collect register REGNUM from the register cache REGCACHE and store
3896 it in the buffer specified by FPREGS and LEN as described by the
3897 floating-point register set REGSET. If REGNUM is -1, do this for
3898 all registers in REGSET. */
3899
3900 static void
3901 i386_collect_fpregset (const struct regset *regset,
3902 const struct regcache *regcache,
3903 int regnum, void *fpregs, size_t len)
3904 {
3905 struct gdbarch *gdbarch = regcache->arch ();
3906 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3907
3908 if (len == I387_SIZEOF_FXSAVE)
3909 {
3910 i387_collect_fxsave (regcache, regnum, fpregs);
3911 return;
3912 }
3913
3914 gdb_assert (len >= tdep->sizeof_fpregset);
3915 i387_collect_fsave (regcache, regnum, fpregs);
3916 }
3917
3918 /* Register set definitions. */
3919
3920 const struct regset i386_gregset =
3921 {
3922 NULL, i386_supply_gregset, i386_collect_gregset
3923 };
3924
3925 const struct regset i386_fpregset =
3926 {
3927 NULL, i386_supply_fpregset, i386_collect_fpregset
3928 };
3929
3930 /* Default iterator over core file register note sections. */
3931
3932 void
3933 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3934 iterate_over_regset_sections_cb *cb,
3935 void *cb_data,
3936 const struct regcache *regcache)
3937 {
3938 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3939
3940 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3941 cb_data);
3942 if (tdep->sizeof_fpregset)
3943 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3944 NULL, cb_data);
3945 }
3946 \f
3947
3948 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3949
3950 CORE_ADDR
3951 i386_pe_skip_trampoline_code (struct frame_info *frame,
3952 CORE_ADDR pc, char *name)
3953 {
3954 struct gdbarch *gdbarch = get_frame_arch (frame);
3955 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3956
3957 /* jmp *(dest) */
3958 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3959 {
3960 unsigned long indirect =
3961 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3962 struct minimal_symbol *indsym =
3963 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3964 const char *symname = indsym ? indsym->linkage_name () : 0;
3965
3966 if (symname)
3967 {
3968 if (startswith (symname, "__imp_")
3969 || startswith (symname, "_imp_"))
3970 return name ? 1 :
3971 read_memory_unsigned_integer (indirect, 4, byte_order);
3972 }
3973 }
3974 return 0; /* Not a trampoline. */
3975 }
3976 \f
3977
3978 /* Return whether the THIS_FRAME corresponds to a sigtramp
3979 routine. */
3980
3981 int
3982 i386_sigtramp_p (struct frame_info *this_frame)
3983 {
3984 CORE_ADDR pc = get_frame_pc (this_frame);
3985 const char *name;
3986
3987 find_pc_partial_function (pc, &name, NULL, NULL);
3988 return (name && strcmp ("_sigtramp", name) == 0);
3989 }
3990 \f
3991
3992 /* We have two flavours of disassembly. The machinery on this page
3993 deals with switching between those. */
3994
3995 static int
3996 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3997 {
3998 gdb_assert (disassembly_flavor == att_flavor
3999 || disassembly_flavor == intel_flavor);
4000
4001 info->disassembler_options = disassembly_flavor;
4002
4003 return default_print_insn (pc, info);
4004 }
4005 \f
4006
4007 /* There are a few i386 architecture variants that differ only
4008 slightly from the generic i386 target. For now, we don't give them
4009 their own source file, but include them here. As a consequence,
4010 they'll always be included. */
4011
4012 /* System V Release 4 (SVR4). */
4013
4014 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4015 routine. */
4016
4017 static int
4018 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4019 {
4020 CORE_ADDR pc = get_frame_pc (this_frame);
4021 const char *name;
4022
4023 /* The origin of these symbols is currently unknown. */
4024 find_pc_partial_function (pc, &name, NULL, NULL);
4025 return (name && (strcmp ("_sigreturn", name) == 0
4026 || strcmp ("sigvechandler", name) == 0));
4027 }
4028
4029 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4030 address of the associated sigcontext (ucontext) structure. */
4031
4032 static CORE_ADDR
4033 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4034 {
4035 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4036 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4037 gdb_byte buf[4];
4038 CORE_ADDR sp;
4039
4040 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4041 sp = extract_unsigned_integer (buf, 4, byte_order);
4042
4043 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4044 }
4045
4046 \f
4047
4048 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4049 gdbarch.h. */
4050
4051 int
4052 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4053 {
4054 return (*s == '$' /* Literal number. */
4055 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4056 || (*s == '(' && s[1] == '%') /* Register indirection. */
4057 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4058 }
4059
4060 /* Helper function for i386_stap_parse_special_token.
4061
4062 This function parses operands of the form `-8+3+1(%rbp)', which
4063 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4064
4065 Return true if the operand was parsed successfully, false
4066 otherwise. */
4067
4068 static bool
4069 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4070 struct stap_parse_info *p)
4071 {
4072 const char *s = p->arg;
4073
4074 if (isdigit (*s) || *s == '-' || *s == '+')
4075 {
4076 bool got_minus[3];
4077 int i;
4078 long displacements[3];
4079 const char *start;
4080 char *regname;
4081 int len;
4082 struct stoken str;
4083 char *endp;
4084
4085 got_minus[0] = false;
4086 if (*s == '+')
4087 ++s;
4088 else if (*s == '-')
4089 {
4090 ++s;
4091 got_minus[0] = true;
4092 }
4093
4094 if (!isdigit ((unsigned char) *s))
4095 return false;
4096
4097 displacements[0] = strtol (s, &endp, 10);
4098 s = endp;
4099
4100 if (*s != '+' && *s != '-')
4101 {
4102 /* We are not dealing with a triplet. */
4103 return false;
4104 }
4105
4106 got_minus[1] = false;
4107 if (*s == '+')
4108 ++s;
4109 else
4110 {
4111 ++s;
4112 got_minus[1] = true;
4113 }
4114
4115 if (!isdigit ((unsigned char) *s))
4116 return false;
4117
4118 displacements[1] = strtol (s, &endp, 10);
4119 s = endp;
4120
4121 if (*s != '+' && *s != '-')
4122 {
4123 /* We are not dealing with a triplet. */
4124 return false;
4125 }
4126
4127 got_minus[2] = false;
4128 if (*s == '+')
4129 ++s;
4130 else
4131 {
4132 ++s;
4133 got_minus[2] = true;
4134 }
4135
4136 if (!isdigit ((unsigned char) *s))
4137 return false;
4138
4139 displacements[2] = strtol (s, &endp, 10);
4140 s = endp;
4141
4142 if (*s != '(' || s[1] != '%')
4143 return false;
4144
4145 s += 2;
4146 start = s;
4147
4148 while (isalnum (*s))
4149 ++s;
4150
4151 if (*s++ != ')')
4152 return false;
4153
4154 len = s - start - 1;
4155 regname = (char *) alloca (len + 1);
4156
4157 strncpy (regname, start, len);
4158 regname[len] = '\0';
4159
4160 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4161 error (_("Invalid register name `%s' on expression `%s'."),
4162 regname, p->saved_arg);
4163
4164 for (i = 0; i < 3; i++)
4165 {
4166 write_exp_elt_opcode (&p->pstate, OP_LONG);
4167 write_exp_elt_type
4168 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4169 write_exp_elt_longcst (&p->pstate, displacements[i]);
4170 write_exp_elt_opcode (&p->pstate, OP_LONG);
4171 if (got_minus[i])
4172 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4173 }
4174
4175 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4176 str.ptr = regname;
4177 str.length = len;
4178 write_exp_string (&p->pstate, str);
4179 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4180
4181 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4182 write_exp_elt_type (&p->pstate,
4183 builtin_type (gdbarch)->builtin_data_ptr);
4184 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4185
4186 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4187 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4188 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4189
4190 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4191 write_exp_elt_type (&p->pstate,
4192 lookup_pointer_type (p->arg_type));
4193 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4194
4195 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4196
4197 p->arg = s;
4198
4199 return true;
4200 }
4201
4202 return false;
4203 }
4204
4205 /* Helper function for i386_stap_parse_special_token.
4206
4207 This function parses operands of the form `register base +
4208 (register index * size) + offset', as represented in
4209 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4210
4211 Return true if the operand was parsed successfully, false
4212 otherwise. */
4213
4214 static bool
4215 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4216 struct stap_parse_info *p)
4217 {
4218 const char *s = p->arg;
4219
4220 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4221 {
4222 bool offset_minus = false;
4223 long offset = 0;
4224 bool size_minus = false;
4225 long size = 0;
4226 const char *start;
4227 char *base;
4228 int len_base;
4229 char *index;
4230 int len_index;
4231 struct stoken base_token, index_token;
4232
4233 if (*s == '+')
4234 ++s;
4235 else if (*s == '-')
4236 {
4237 ++s;
4238 offset_minus = true;
4239 }
4240
4241 if (offset_minus && !isdigit (*s))
4242 return false;
4243
4244 if (isdigit (*s))
4245 {
4246 char *endp;
4247
4248 offset = strtol (s, &endp, 10);
4249 s = endp;
4250 }
4251
4252 if (*s != '(' || s[1] != '%')
4253 return false;
4254
4255 s += 2;
4256 start = s;
4257
4258 while (isalnum (*s))
4259 ++s;
4260
4261 if (*s != ',' || s[1] != '%')
4262 return false;
4263
4264 len_base = s - start;
4265 base = (char *) alloca (len_base + 1);
4266 strncpy (base, start, len_base);
4267 base[len_base] = '\0';
4268
4269 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4270 error (_("Invalid register name `%s' on expression `%s'."),
4271 base, p->saved_arg);
4272
4273 s += 2;
4274 start = s;
4275
4276 while (isalnum (*s))
4277 ++s;
4278
4279 len_index = s - start;
4280 index = (char *) alloca (len_index + 1);
4281 strncpy (index, start, len_index);
4282 index[len_index] = '\0';
4283
4284 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4285 error (_("Invalid register name `%s' on expression `%s'."),
4286 index, p->saved_arg);
4287
4288 if (*s != ',' && *s != ')')
4289 return false;
4290
4291 if (*s == ',')
4292 {
4293 char *endp;
4294
4295 ++s;
4296 if (*s == '+')
4297 ++s;
4298 else if (*s == '-')
4299 {
4300 ++s;
4301 size_minus = true;
4302 }
4303
4304 size = strtol (s, &endp, 10);
4305 s = endp;
4306
4307 if (*s != ')')
4308 return false;
4309 }
4310
4311 ++s;
4312
4313 if (offset)
4314 {
4315 write_exp_elt_opcode (&p->pstate, OP_LONG);
4316 write_exp_elt_type (&p->pstate,
4317 builtin_type (gdbarch)->builtin_long);
4318 write_exp_elt_longcst (&p->pstate, offset);
4319 write_exp_elt_opcode (&p->pstate, OP_LONG);
4320 if (offset_minus)
4321 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4322 }
4323
4324 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4325 base_token.ptr = base;
4326 base_token.length = len_base;
4327 write_exp_string (&p->pstate, base_token);
4328 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4329
4330 if (offset)
4331 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4332
4333 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4334 index_token.ptr = index;
4335 index_token.length = len_index;
4336 write_exp_string (&p->pstate, index_token);
4337 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4338
4339 if (size)
4340 {
4341 write_exp_elt_opcode (&p->pstate, OP_LONG);
4342 write_exp_elt_type (&p->pstate,
4343 builtin_type (gdbarch)->builtin_long);
4344 write_exp_elt_longcst (&p->pstate, size);
4345 write_exp_elt_opcode (&p->pstate, OP_LONG);
4346 if (size_minus)
4347 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4348 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4349 }
4350
4351 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4352
4353 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4354 write_exp_elt_type (&p->pstate,
4355 lookup_pointer_type (p->arg_type));
4356 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4357
4358 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4359
4360 p->arg = s;
4361
4362 return true;
4363 }
4364
4365 return false;
4366 }
4367
4368 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4369 gdbarch.h. */
4370
4371 int
4372 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4373 struct stap_parse_info *p)
4374 {
4375 /* In order to parse special tokens, we use a state-machine that go
4376 through every known token and try to get a match. */
4377 enum
4378 {
4379 TRIPLET,
4380 THREE_ARG_DISPLACEMENT,
4381 DONE
4382 };
4383 int current_state;
4384
4385 current_state = TRIPLET;
4386
4387 /* The special tokens to be parsed here are:
4388
4389 - `register base + (register index * size) + offset', as represented
4390 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4391
4392 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4393 `*(-8 + 3 - 1 + (void *) $eax)'. */
4394
4395 while (current_state != DONE)
4396 {
4397 switch (current_state)
4398 {
4399 case TRIPLET:
4400 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4401 return 1;
4402 break;
4403
4404 case THREE_ARG_DISPLACEMENT:
4405 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4406 return 1;
4407 break;
4408 }
4409
4410 /* Advancing to the next state. */
4411 ++current_state;
4412 }
4413
4414 return 0;
4415 }
4416
4417 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4418 gdbarch.h. */
4419
4420 static std::string
4421 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4422 const std::string &regname, int regnum)
4423 {
4424 static const std::unordered_set<std::string> reg_assoc
4425 = { "ax", "bx", "cx", "dx",
4426 "si", "di", "bp", "sp" };
4427
4428 /* If we are dealing with a register whose size is less than the size
4429 specified by the "[-]N@" prefix, and it is one of the registers that
4430 we know has an extended variant available, then use the extended
4431 version of the register instead. */
4432 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4433 && reg_assoc.find (regname) != reg_assoc.end ())
4434 return "e" + regname;
4435
4436 /* Otherwise, just use the requested register. */
4437 return regname;
4438 }
4439
4440 \f
4441
4442 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4443 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4444
4445 static const char *
4446 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4447 {
4448 return "(x86_64|i.86)";
4449 }
4450
4451 \f
4452
4453 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4454
4455 static bool
4456 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4457 {
4458 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4459 I386_EAX_REGNUM, I386_EIP_REGNUM);
4460 }
4461
4462 /* Generic ELF. */
4463
4464 void
4465 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4466 {
4467 static const char *const stap_integer_prefixes[] = { "$", NULL };
4468 static const char *const stap_register_prefixes[] = { "%", NULL };
4469 static const char *const stap_register_indirection_prefixes[] = { "(",
4470 NULL };
4471 static const char *const stap_register_indirection_suffixes[] = { ")",
4472 NULL };
4473
4474 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4475 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4476
4477 /* Registering SystemTap handlers. */
4478 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4479 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4480 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4481 stap_register_indirection_prefixes);
4482 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4483 stap_register_indirection_suffixes);
4484 set_gdbarch_stap_is_single_operand (gdbarch,
4485 i386_stap_is_single_operand);
4486 set_gdbarch_stap_parse_special_token (gdbarch,
4487 i386_stap_parse_special_token);
4488 set_gdbarch_stap_adjust_register (gdbarch,
4489 i386_stap_adjust_register);
4490
4491 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4492 i386_in_indirect_branch_thunk);
4493 }
4494
4495 /* System V Release 4 (SVR4). */
4496
4497 void
4498 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4499 {
4500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4501
4502 /* System V Release 4 uses ELF. */
4503 i386_elf_init_abi (info, gdbarch);
4504
4505 /* System V Release 4 has shared libraries. */
4506 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4507
4508 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4509 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4510 tdep->sc_pc_offset = 36 + 14 * 4;
4511 tdep->sc_sp_offset = 36 + 17 * 4;
4512
4513 tdep->jb_pc_offset = 20;
4514 }
4515
4516 \f
4517
4518 /* i386 register groups. In addition to the normal groups, add "mmx"
4519 and "sse". */
4520
4521 static struct reggroup *i386_sse_reggroup;
4522 static struct reggroup *i386_mmx_reggroup;
4523
4524 static void
4525 i386_init_reggroups (void)
4526 {
4527 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4528 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4529 }
4530
4531 static void
4532 i386_add_reggroups (struct gdbarch *gdbarch)
4533 {
4534 reggroup_add (gdbarch, i386_sse_reggroup);
4535 reggroup_add (gdbarch, i386_mmx_reggroup);
4536 reggroup_add (gdbarch, general_reggroup);
4537 reggroup_add (gdbarch, float_reggroup);
4538 reggroup_add (gdbarch, all_reggroup);
4539 reggroup_add (gdbarch, save_reggroup);
4540 reggroup_add (gdbarch, restore_reggroup);
4541 reggroup_add (gdbarch, vector_reggroup);
4542 reggroup_add (gdbarch, system_reggroup);
4543 }
4544
4545 int
4546 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4547 struct reggroup *group)
4548 {
4549 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4550 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4551 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4552 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4553 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4554 avx512_p, avx_p, sse_p, pkru_regnum_p;
4555
4556 /* Don't include pseudo registers, except for MMX, in any register
4557 groups. */
4558 if (i386_byte_regnum_p (gdbarch, regnum))
4559 return 0;
4560
4561 if (i386_word_regnum_p (gdbarch, regnum))
4562 return 0;
4563
4564 if (i386_dword_regnum_p (gdbarch, regnum))
4565 return 0;
4566
4567 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4568 if (group == i386_mmx_reggroup)
4569 return mmx_regnum_p;
4570
4571 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4572 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4573 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4574 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4575 if (group == i386_sse_reggroup)
4576 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4577
4578 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4579 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4580 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4581
4582 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4583 == X86_XSTATE_AVX_AVX512_MASK);
4584 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4585 == X86_XSTATE_AVX_MASK) && !avx512_p;
4586 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4587 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4588
4589 if (group == vector_reggroup)
4590 return (mmx_regnum_p
4591 || (zmm_regnum_p && avx512_p)
4592 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4593 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4594 || mxcsr_regnum_p);
4595
4596 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4597 || i386_fpc_regnum_p (gdbarch, regnum));
4598 if (group == float_reggroup)
4599 return fp_regnum_p;
4600
4601 /* For "info reg all", don't include upper YMM registers nor XMM
4602 registers when AVX is supported. */
4603 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4604 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4605 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4606 if (group == all_reggroup
4607 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4608 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4609 || ymmh_regnum_p
4610 || ymmh_avx512_regnum_p
4611 || zmmh_regnum_p))
4612 return 0;
4613
4614 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4615 if (group == all_reggroup
4616 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4617 return bnd_regnum_p;
4618
4619 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4620 if (group == all_reggroup
4621 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4622 return 0;
4623
4624 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4625 if (group == all_reggroup
4626 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4627 return mpx_ctrl_regnum_p;
4628
4629 if (group == general_reggroup)
4630 return (!fp_regnum_p
4631 && !mmx_regnum_p
4632 && !mxcsr_regnum_p
4633 && !xmm_regnum_p
4634 && !xmm_avx512_regnum_p
4635 && !ymm_regnum_p
4636 && !ymmh_regnum_p
4637 && !ymm_avx512_regnum_p
4638 && !ymmh_avx512_regnum_p
4639 && !bndr_regnum_p
4640 && !bnd_regnum_p
4641 && !mpx_ctrl_regnum_p
4642 && !zmm_regnum_p
4643 && !zmmh_regnum_p
4644 && !pkru_regnum_p);
4645
4646 return default_register_reggroup_p (gdbarch, regnum, group);
4647 }
4648 \f
4649
4650 /* Get the ARGIth function argument for the current function. */
4651
4652 static CORE_ADDR
4653 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4654 struct type *type)
4655 {
4656 struct gdbarch *gdbarch = get_frame_arch (frame);
4657 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4658 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4659 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4660 }
4661
4662 #define PREFIX_REPZ 0x01
4663 #define PREFIX_REPNZ 0x02
4664 #define PREFIX_LOCK 0x04
4665 #define PREFIX_DATA 0x08
4666 #define PREFIX_ADDR 0x10
4667
4668 /* operand size */
4669 enum
4670 {
4671 OT_BYTE = 0,
4672 OT_WORD,
4673 OT_LONG,
4674 OT_QUAD,
4675 OT_DQUAD,
4676 };
4677
4678 /* i386 arith/logic operations */
4679 enum
4680 {
4681 OP_ADDL,
4682 OP_ORL,
4683 OP_ADCL,
4684 OP_SBBL,
4685 OP_ANDL,
4686 OP_SUBL,
4687 OP_XORL,
4688 OP_CMPL,
4689 };
4690
4691 struct i386_record_s
4692 {
4693 struct gdbarch *gdbarch;
4694 struct regcache *regcache;
4695 CORE_ADDR orig_addr;
4696 CORE_ADDR addr;
4697 int aflag;
4698 int dflag;
4699 int override;
4700 uint8_t modrm;
4701 uint8_t mod, reg, rm;
4702 int ot;
4703 uint8_t rex_x;
4704 uint8_t rex_b;
4705 int rip_offset;
4706 int popl_esp_hack;
4707 const int *regmap;
4708 };
4709
4710 /* Parse the "modrm" part of the memory address irp->addr points at.
4711 Returns -1 if something goes wrong, 0 otherwise. */
4712
4713 static int
4714 i386_record_modrm (struct i386_record_s *irp)
4715 {
4716 struct gdbarch *gdbarch = irp->gdbarch;
4717
4718 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4719 return -1;
4720
4721 irp->addr++;
4722 irp->mod = (irp->modrm >> 6) & 3;
4723 irp->reg = (irp->modrm >> 3) & 7;
4724 irp->rm = irp->modrm & 7;
4725
4726 return 0;
4727 }
4728
4729 /* Extract the memory address that the current instruction writes to,
4730 and return it in *ADDR. Return -1 if something goes wrong. */
4731
4732 static int
4733 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4734 {
4735 struct gdbarch *gdbarch = irp->gdbarch;
4736 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4737 gdb_byte buf[4];
4738 ULONGEST offset64;
4739
4740 *addr = 0;
4741 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4742 {
4743 /* 32/64 bits */
4744 int havesib = 0;
4745 uint8_t scale = 0;
4746 uint8_t byte;
4747 uint8_t index = 0;
4748 uint8_t base = irp->rm;
4749
4750 if (base == 4)
4751 {
4752 havesib = 1;
4753 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4754 return -1;
4755 irp->addr++;
4756 scale = (byte >> 6) & 3;
4757 index = ((byte >> 3) & 7) | irp->rex_x;
4758 base = (byte & 7);
4759 }
4760 base |= irp->rex_b;
4761
4762 switch (irp->mod)
4763 {
4764 case 0:
4765 if ((base & 7) == 5)
4766 {
4767 base = 0xff;
4768 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4769 return -1;
4770 irp->addr += 4;
4771 *addr = extract_signed_integer (buf, 4, byte_order);
4772 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4773 *addr += irp->addr + irp->rip_offset;
4774 }
4775 break;
4776 case 1:
4777 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4778 return -1;
4779 irp->addr++;
4780 *addr = (int8_t) buf[0];
4781 break;
4782 case 2:
4783 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4784 return -1;
4785 *addr = extract_signed_integer (buf, 4, byte_order);
4786 irp->addr += 4;
4787 break;
4788 }
4789
4790 offset64 = 0;
4791 if (base != 0xff)
4792 {
4793 if (base == 4 && irp->popl_esp_hack)
4794 *addr += irp->popl_esp_hack;
4795 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4796 &offset64);
4797 }
4798 if (irp->aflag == 2)
4799 {
4800 *addr += offset64;
4801 }
4802 else
4803 *addr = (uint32_t) (offset64 + *addr);
4804
4805 if (havesib && (index != 4 || scale != 0))
4806 {
4807 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4808 &offset64);
4809 if (irp->aflag == 2)
4810 *addr += offset64 << scale;
4811 else
4812 *addr = (uint32_t) (*addr + (offset64 << scale));
4813 }
4814
4815 if (!irp->aflag)
4816 {
4817 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4818 address from 32-bit to 64-bit. */
4819 *addr = (uint32_t) *addr;
4820 }
4821 }
4822 else
4823 {
4824 /* 16 bits */
4825 switch (irp->mod)
4826 {
4827 case 0:
4828 if (irp->rm == 6)
4829 {
4830 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4831 return -1;
4832 irp->addr += 2;
4833 *addr = extract_signed_integer (buf, 2, byte_order);
4834 irp->rm = 0;
4835 goto no_rm;
4836 }
4837 break;
4838 case 1:
4839 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4840 return -1;
4841 irp->addr++;
4842 *addr = (int8_t) buf[0];
4843 break;
4844 case 2:
4845 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4846 return -1;
4847 irp->addr += 2;
4848 *addr = extract_signed_integer (buf, 2, byte_order);
4849 break;
4850 }
4851
4852 switch (irp->rm)
4853 {
4854 case 0:
4855 regcache_raw_read_unsigned (irp->regcache,
4856 irp->regmap[X86_RECORD_REBX_REGNUM],
4857 &offset64);
4858 *addr = (uint32_t) (*addr + offset64);
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_RESI_REGNUM],
4861 &offset64);
4862 *addr = (uint32_t) (*addr + offset64);
4863 break;
4864 case 1:
4865 regcache_raw_read_unsigned (irp->regcache,
4866 irp->regmap[X86_RECORD_REBX_REGNUM],
4867 &offset64);
4868 *addr = (uint32_t) (*addr + offset64);
4869 regcache_raw_read_unsigned (irp->regcache,
4870 irp->regmap[X86_RECORD_REDI_REGNUM],
4871 &offset64);
4872 *addr = (uint32_t) (*addr + offset64);
4873 break;
4874 case 2:
4875 regcache_raw_read_unsigned (irp->regcache,
4876 irp->regmap[X86_RECORD_REBP_REGNUM],
4877 &offset64);
4878 *addr = (uint32_t) (*addr + offset64);
4879 regcache_raw_read_unsigned (irp->regcache,
4880 irp->regmap[X86_RECORD_RESI_REGNUM],
4881 &offset64);
4882 *addr = (uint32_t) (*addr + offset64);
4883 break;
4884 case 3:
4885 regcache_raw_read_unsigned (irp->regcache,
4886 irp->regmap[X86_RECORD_REBP_REGNUM],
4887 &offset64);
4888 *addr = (uint32_t) (*addr + offset64);
4889 regcache_raw_read_unsigned (irp->regcache,
4890 irp->regmap[X86_RECORD_REDI_REGNUM],
4891 &offset64);
4892 *addr = (uint32_t) (*addr + offset64);
4893 break;
4894 case 4:
4895 regcache_raw_read_unsigned (irp->regcache,
4896 irp->regmap[X86_RECORD_RESI_REGNUM],
4897 &offset64);
4898 *addr = (uint32_t) (*addr + offset64);
4899 break;
4900 case 5:
4901 regcache_raw_read_unsigned (irp->regcache,
4902 irp->regmap[X86_RECORD_REDI_REGNUM],
4903 &offset64);
4904 *addr = (uint32_t) (*addr + offset64);
4905 break;
4906 case 6:
4907 regcache_raw_read_unsigned (irp->regcache,
4908 irp->regmap[X86_RECORD_REBP_REGNUM],
4909 &offset64);
4910 *addr = (uint32_t) (*addr + offset64);
4911 break;
4912 case 7:
4913 regcache_raw_read_unsigned (irp->regcache,
4914 irp->regmap[X86_RECORD_REBX_REGNUM],
4915 &offset64);
4916 *addr = (uint32_t) (*addr + offset64);
4917 break;
4918 }
4919 *addr &= 0xffff;
4920 }
4921
4922 no_rm:
4923 return 0;
4924 }
4925
4926 /* Record the address and contents of the memory that will be changed
4927 by the current instruction. Return -1 if something goes wrong, 0
4928 otherwise. */
4929
4930 static int
4931 i386_record_lea_modrm (struct i386_record_s *irp)
4932 {
4933 struct gdbarch *gdbarch = irp->gdbarch;
4934 uint64_t addr;
4935
4936 if (irp->override >= 0)
4937 {
4938 if (record_full_memory_query)
4939 {
4940 if (yquery (_("\
4941 Process record ignores the memory change of instruction at address %s\n\
4942 because it can't get the value of the segment register.\n\
4943 Do you want to stop the program?"),
4944 paddress (gdbarch, irp->orig_addr)))
4945 return -1;
4946 }
4947
4948 return 0;
4949 }
4950
4951 if (i386_record_lea_modrm_addr (irp, &addr))
4952 return -1;
4953
4954 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4955 return -1;
4956
4957 return 0;
4958 }
4959
4960 /* Record the effects of a push operation. Return -1 if something
4961 goes wrong, 0 otherwise. */
4962
4963 static int
4964 i386_record_push (struct i386_record_s *irp, int size)
4965 {
4966 ULONGEST addr;
4967
4968 if (record_full_arch_list_add_reg (irp->regcache,
4969 irp->regmap[X86_RECORD_RESP_REGNUM]))
4970 return -1;
4971 regcache_raw_read_unsigned (irp->regcache,
4972 irp->regmap[X86_RECORD_RESP_REGNUM],
4973 &addr);
4974 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4975 return -1;
4976
4977 return 0;
4978 }
4979
4980
4981 /* Defines contents to record. */
4982 #define I386_SAVE_FPU_REGS 0xfffd
4983 #define I386_SAVE_FPU_ENV 0xfffe
4984 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4985
4986 /* Record the values of the floating point registers which will be
4987 changed by the current instruction. Returns -1 if something is
4988 wrong, 0 otherwise. */
4989
4990 static int i386_record_floats (struct gdbarch *gdbarch,
4991 struct i386_record_s *ir,
4992 uint32_t iregnum)
4993 {
4994 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4995 int i;
4996
4997 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4998 happen. Currently we store st0-st7 registers, but we need not store all
4999 registers all the time, in future we use ftag register and record only
5000 those who are not marked as an empty. */
5001
5002 if (I386_SAVE_FPU_REGS == iregnum)
5003 {
5004 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5005 {
5006 if (record_full_arch_list_add_reg (ir->regcache, i))
5007 return -1;
5008 }
5009 }
5010 else if (I386_SAVE_FPU_ENV == iregnum)
5011 {
5012 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5013 {
5014 if (record_full_arch_list_add_reg (ir->regcache, i))
5015 return -1;
5016 }
5017 }
5018 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5019 {
5020 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5021 {
5022 if (record_full_arch_list_add_reg (ir->regcache, i))
5023 return -1;
5024 }
5025 }
5026 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5027 (iregnum <= I387_FOP_REGNUM (tdep)))
5028 {
5029 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5030 return -1;
5031 }
5032 else
5033 {
5034 /* Parameter error. */
5035 return -1;
5036 }
5037 if(I386_SAVE_FPU_ENV != iregnum)
5038 {
5039 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5040 {
5041 if (record_full_arch_list_add_reg (ir->regcache, i))
5042 return -1;
5043 }
5044 }
5045 return 0;
5046 }
5047
5048 /* Parse the current instruction, and record the values of the
5049 registers and memory that will be changed by the current
5050 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5051
5052 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5053 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5054
5055 int
5056 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5057 CORE_ADDR input_addr)
5058 {
5059 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5060 int prefixes = 0;
5061 int regnum = 0;
5062 uint32_t opcode;
5063 uint8_t opcode8;
5064 ULONGEST addr;
5065 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5066 struct i386_record_s ir;
5067 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5068 uint8_t rex_w = -1;
5069 uint8_t rex_r = 0;
5070
5071 memset (&ir, 0, sizeof (struct i386_record_s));
5072 ir.regcache = regcache;
5073 ir.addr = input_addr;
5074 ir.orig_addr = input_addr;
5075 ir.aflag = 1;
5076 ir.dflag = 1;
5077 ir.override = -1;
5078 ir.popl_esp_hack = 0;
5079 ir.regmap = tdep->record_regmap;
5080 ir.gdbarch = gdbarch;
5081
5082 if (record_debug > 1)
5083 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5084 "addr = %s\n",
5085 paddress (gdbarch, ir.addr));
5086
5087 /* prefixes */
5088 while (1)
5089 {
5090 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5091 return -1;
5092 ir.addr++;
5093 switch (opcode8) /* Instruction prefixes */
5094 {
5095 case REPE_PREFIX_OPCODE:
5096 prefixes |= PREFIX_REPZ;
5097 break;
5098 case REPNE_PREFIX_OPCODE:
5099 prefixes |= PREFIX_REPNZ;
5100 break;
5101 case LOCK_PREFIX_OPCODE:
5102 prefixes |= PREFIX_LOCK;
5103 break;
5104 case CS_PREFIX_OPCODE:
5105 ir.override = X86_RECORD_CS_REGNUM;
5106 break;
5107 case SS_PREFIX_OPCODE:
5108 ir.override = X86_RECORD_SS_REGNUM;
5109 break;
5110 case DS_PREFIX_OPCODE:
5111 ir.override = X86_RECORD_DS_REGNUM;
5112 break;
5113 case ES_PREFIX_OPCODE:
5114 ir.override = X86_RECORD_ES_REGNUM;
5115 break;
5116 case FS_PREFIX_OPCODE:
5117 ir.override = X86_RECORD_FS_REGNUM;
5118 break;
5119 case GS_PREFIX_OPCODE:
5120 ir.override = X86_RECORD_GS_REGNUM;
5121 break;
5122 case DATA_PREFIX_OPCODE:
5123 prefixes |= PREFIX_DATA;
5124 break;
5125 case ADDR_PREFIX_OPCODE:
5126 prefixes |= PREFIX_ADDR;
5127 break;
5128 case 0x40: /* i386 inc %eax */
5129 case 0x41: /* i386 inc %ecx */
5130 case 0x42: /* i386 inc %edx */
5131 case 0x43: /* i386 inc %ebx */
5132 case 0x44: /* i386 inc %esp */
5133 case 0x45: /* i386 inc %ebp */
5134 case 0x46: /* i386 inc %esi */
5135 case 0x47: /* i386 inc %edi */
5136 case 0x48: /* i386 dec %eax */
5137 case 0x49: /* i386 dec %ecx */
5138 case 0x4a: /* i386 dec %edx */
5139 case 0x4b: /* i386 dec %ebx */
5140 case 0x4c: /* i386 dec %esp */
5141 case 0x4d: /* i386 dec %ebp */
5142 case 0x4e: /* i386 dec %esi */
5143 case 0x4f: /* i386 dec %edi */
5144 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5145 {
5146 /* REX */
5147 rex_w = (opcode8 >> 3) & 1;
5148 rex_r = (opcode8 & 0x4) << 1;
5149 ir.rex_x = (opcode8 & 0x2) << 2;
5150 ir.rex_b = (opcode8 & 0x1) << 3;
5151 }
5152 else /* 32 bit target */
5153 goto out_prefixes;
5154 break;
5155 default:
5156 goto out_prefixes;
5157 break;
5158 }
5159 }
5160 out_prefixes:
5161 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5162 {
5163 ir.dflag = 2;
5164 }
5165 else
5166 {
5167 if (prefixes & PREFIX_DATA)
5168 ir.dflag ^= 1;
5169 }
5170 if (prefixes & PREFIX_ADDR)
5171 ir.aflag ^= 1;
5172 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5173 ir.aflag = 2;
5174
5175 /* Now check op code. */
5176 opcode = (uint32_t) opcode8;
5177 reswitch:
5178 switch (opcode)
5179 {
5180 case 0x0f:
5181 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5182 return -1;
5183 ir.addr++;
5184 opcode = (uint32_t) opcode8 | 0x0f00;
5185 goto reswitch;
5186 break;
5187
5188 case 0x00: /* arith & logic */
5189 case 0x01:
5190 case 0x02:
5191 case 0x03:
5192 case 0x04:
5193 case 0x05:
5194 case 0x08:
5195 case 0x09:
5196 case 0x0a:
5197 case 0x0b:
5198 case 0x0c:
5199 case 0x0d:
5200 case 0x10:
5201 case 0x11:
5202 case 0x12:
5203 case 0x13:
5204 case 0x14:
5205 case 0x15:
5206 case 0x18:
5207 case 0x19:
5208 case 0x1a:
5209 case 0x1b:
5210 case 0x1c:
5211 case 0x1d:
5212 case 0x20:
5213 case 0x21:
5214 case 0x22:
5215 case 0x23:
5216 case 0x24:
5217 case 0x25:
5218 case 0x28:
5219 case 0x29:
5220 case 0x2a:
5221 case 0x2b:
5222 case 0x2c:
5223 case 0x2d:
5224 case 0x30:
5225 case 0x31:
5226 case 0x32:
5227 case 0x33:
5228 case 0x34:
5229 case 0x35:
5230 case 0x38:
5231 case 0x39:
5232 case 0x3a:
5233 case 0x3b:
5234 case 0x3c:
5235 case 0x3d:
5236 if (((opcode >> 3) & 7) != OP_CMPL)
5237 {
5238 if ((opcode & 1) == 0)
5239 ir.ot = OT_BYTE;
5240 else
5241 ir.ot = ir.dflag + OT_WORD;
5242
5243 switch ((opcode >> 1) & 3)
5244 {
5245 case 0: /* OP Ev, Gv */
5246 if (i386_record_modrm (&ir))
5247 return -1;
5248 if (ir.mod != 3)
5249 {
5250 if (i386_record_lea_modrm (&ir))
5251 return -1;
5252 }
5253 else
5254 {
5255 ir.rm |= ir.rex_b;
5256 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5257 ir.rm &= 0x3;
5258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5259 }
5260 break;
5261 case 1: /* OP Gv, Ev */
5262 if (i386_record_modrm (&ir))
5263 return -1;
5264 ir.reg |= rex_r;
5265 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5266 ir.reg &= 0x3;
5267 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5268 break;
5269 case 2: /* OP A, Iv */
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5271 break;
5272 }
5273 }
5274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5275 break;
5276
5277 case 0x80: /* GRP1 */
5278 case 0x81:
5279 case 0x82:
5280 case 0x83:
5281 if (i386_record_modrm (&ir))
5282 return -1;
5283
5284 if (ir.reg != OP_CMPL)
5285 {
5286 if ((opcode & 1) == 0)
5287 ir.ot = OT_BYTE;
5288 else
5289 ir.ot = ir.dflag + OT_WORD;
5290
5291 if (ir.mod != 3)
5292 {
5293 if (opcode == 0x83)
5294 ir.rip_offset = 1;
5295 else
5296 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5297 if (i386_record_lea_modrm (&ir))
5298 return -1;
5299 }
5300 else
5301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5302 }
5303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5304 break;
5305
5306 case 0x40: /* inc */
5307 case 0x41:
5308 case 0x42:
5309 case 0x43:
5310 case 0x44:
5311 case 0x45:
5312 case 0x46:
5313 case 0x47:
5314
5315 case 0x48: /* dec */
5316 case 0x49:
5317 case 0x4a:
5318 case 0x4b:
5319 case 0x4c:
5320 case 0x4d:
5321 case 0x4e:
5322 case 0x4f:
5323
5324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5326 break;
5327
5328 case 0xf6: /* GRP3 */
5329 case 0xf7:
5330 if ((opcode & 1) == 0)
5331 ir.ot = OT_BYTE;
5332 else
5333 ir.ot = ir.dflag + OT_WORD;
5334 if (i386_record_modrm (&ir))
5335 return -1;
5336
5337 if (ir.mod != 3 && ir.reg == 0)
5338 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5339
5340 switch (ir.reg)
5341 {
5342 case 0: /* test */
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5344 break;
5345 case 2: /* not */
5346 case 3: /* neg */
5347 if (ir.mod != 3)
5348 {
5349 if (i386_record_lea_modrm (&ir))
5350 return -1;
5351 }
5352 else
5353 {
5354 ir.rm |= ir.rex_b;
5355 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5356 ir.rm &= 0x3;
5357 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5358 }
5359 if (ir.reg == 3) /* neg */
5360 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5361 break;
5362 case 4: /* mul */
5363 case 5: /* imul */
5364 case 6: /* div */
5365 case 7: /* idiv */
5366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5367 if (ir.ot != OT_BYTE)
5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5370 break;
5371 default:
5372 ir.addr -= 2;
5373 opcode = opcode << 8 | ir.modrm;
5374 goto no_support;
5375 break;
5376 }
5377 break;
5378
5379 case 0xfe: /* GRP4 */
5380 case 0xff: /* GRP5 */
5381 if (i386_record_modrm (&ir))
5382 return -1;
5383 if (ir.reg >= 2 && opcode == 0xfe)
5384 {
5385 ir.addr -= 2;
5386 opcode = opcode << 8 | ir.modrm;
5387 goto no_support;
5388 }
5389 switch (ir.reg)
5390 {
5391 case 0: /* inc */
5392 case 1: /* dec */
5393 if ((opcode & 1) == 0)
5394 ir.ot = OT_BYTE;
5395 else
5396 ir.ot = ir.dflag + OT_WORD;
5397 if (ir.mod != 3)
5398 {
5399 if (i386_record_lea_modrm (&ir))
5400 return -1;
5401 }
5402 else
5403 {
5404 ir.rm |= ir.rex_b;
5405 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5406 ir.rm &= 0x3;
5407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5408 }
5409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5410 break;
5411 case 2: /* call */
5412 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5413 ir.dflag = 2;
5414 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5415 return -1;
5416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5417 break;
5418 case 3: /* lcall */
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5420 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5421 return -1;
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5423 break;
5424 case 4: /* jmp */
5425 case 5: /* ljmp */
5426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5427 break;
5428 case 6: /* push */
5429 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5430 ir.dflag = 2;
5431 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5432 return -1;
5433 break;
5434 default:
5435 ir.addr -= 2;
5436 opcode = opcode << 8 | ir.modrm;
5437 goto no_support;
5438 break;
5439 }
5440 break;
5441
5442 case 0x84: /* test */
5443 case 0x85:
5444 case 0xa8:
5445 case 0xa9:
5446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5447 break;
5448
5449 case 0x98: /* CWDE/CBW */
5450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5451 break;
5452
5453 case 0x99: /* CDQ/CWD */
5454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5456 break;
5457
5458 case 0x0faf: /* imul */
5459 case 0x69:
5460 case 0x6b:
5461 ir.ot = ir.dflag + OT_WORD;
5462 if (i386_record_modrm (&ir))
5463 return -1;
5464 if (opcode == 0x69)
5465 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5466 else if (opcode == 0x6b)
5467 ir.rip_offset = 1;
5468 ir.reg |= rex_r;
5469 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5470 ir.reg &= 0x3;
5471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5473 break;
5474
5475 case 0x0fc0: /* xadd */
5476 case 0x0fc1:
5477 if ((opcode & 1) == 0)
5478 ir.ot = OT_BYTE;
5479 else
5480 ir.ot = ir.dflag + OT_WORD;
5481 if (i386_record_modrm (&ir))
5482 return -1;
5483 ir.reg |= rex_r;
5484 if (ir.mod == 3)
5485 {
5486 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5487 ir.reg &= 0x3;
5488 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5489 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5490 ir.rm &= 0x3;
5491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5492 }
5493 else
5494 {
5495 if (i386_record_lea_modrm (&ir))
5496 return -1;
5497 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5498 ir.reg &= 0x3;
5499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5500 }
5501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5502 break;
5503
5504 case 0x0fb0: /* cmpxchg */
5505 case 0x0fb1:
5506 if ((opcode & 1) == 0)
5507 ir.ot = OT_BYTE;
5508 else
5509 ir.ot = ir.dflag + OT_WORD;
5510 if (i386_record_modrm (&ir))
5511 return -1;
5512 if (ir.mod == 3)
5513 {
5514 ir.reg |= rex_r;
5515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5516 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5517 ir.reg &= 0x3;
5518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5519 }
5520 else
5521 {
5522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5523 if (i386_record_lea_modrm (&ir))
5524 return -1;
5525 }
5526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5527 break;
5528
5529 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5530 if (i386_record_modrm (&ir))
5531 return -1;
5532 if (ir.mod == 3)
5533 {
5534 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5535 an extended opcode. rdrand has bits 110 (/6) and rdseed
5536 has bits 111 (/7). */
5537 if (ir.reg == 6 || ir.reg == 7)
5538 {
5539 /* The storage register is described by the 3 R/M bits, but the
5540 REX.B prefix may be used to give access to registers
5541 R8~R15. In this case ir.rex_b + R/M will give us the register
5542 in the range R8~R15.
5543
5544 REX.W may also be used to access 64-bit registers, but we
5545 already record entire registers and not just partial bits
5546 of them. */
5547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5548 /* These instructions also set conditional bits. */
5549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5550 break;
5551 }
5552 else
5553 {
5554 /* We don't handle this particular instruction yet. */
5555 ir.addr -= 2;
5556 opcode = opcode << 8 | ir.modrm;
5557 goto no_support;
5558 }
5559 }
5560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5562 if (i386_record_lea_modrm (&ir))
5563 return -1;
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5565 break;
5566
5567 case 0x50: /* push */
5568 case 0x51:
5569 case 0x52:
5570 case 0x53:
5571 case 0x54:
5572 case 0x55:
5573 case 0x56:
5574 case 0x57:
5575 case 0x68:
5576 case 0x6a:
5577 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5578 ir.dflag = 2;
5579 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5580 return -1;
5581 break;
5582
5583 case 0x06: /* push es */
5584 case 0x0e: /* push cs */
5585 case 0x16: /* push ss */
5586 case 0x1e: /* push ds */
5587 if (ir.regmap[X86_RECORD_R8_REGNUM])
5588 {
5589 ir.addr -= 1;
5590 goto no_support;
5591 }
5592 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5593 return -1;
5594 break;
5595
5596 case 0x0fa0: /* push fs */
5597 case 0x0fa8: /* push gs */
5598 if (ir.regmap[X86_RECORD_R8_REGNUM])
5599 {
5600 ir.addr -= 2;
5601 goto no_support;
5602 }
5603 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5604 return -1;
5605 break;
5606
5607 case 0x60: /* pusha */
5608 if (ir.regmap[X86_RECORD_R8_REGNUM])
5609 {
5610 ir.addr -= 1;
5611 goto no_support;
5612 }
5613 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5614 return -1;
5615 break;
5616
5617 case 0x58: /* pop */
5618 case 0x59:
5619 case 0x5a:
5620 case 0x5b:
5621 case 0x5c:
5622 case 0x5d:
5623 case 0x5e:
5624 case 0x5f:
5625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5627 break;
5628
5629 case 0x61: /* popa */
5630 if (ir.regmap[X86_RECORD_R8_REGNUM])
5631 {
5632 ir.addr -= 1;
5633 goto no_support;
5634 }
5635 for (regnum = X86_RECORD_REAX_REGNUM;
5636 regnum <= X86_RECORD_REDI_REGNUM;
5637 regnum++)
5638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5639 break;
5640
5641 case 0x8f: /* pop */
5642 if (ir.regmap[X86_RECORD_R8_REGNUM])
5643 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5644 else
5645 ir.ot = ir.dflag + OT_WORD;
5646 if (i386_record_modrm (&ir))
5647 return -1;
5648 if (ir.mod == 3)
5649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5650 else
5651 {
5652 ir.popl_esp_hack = 1 << ir.ot;
5653 if (i386_record_lea_modrm (&ir))
5654 return -1;
5655 }
5656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5657 break;
5658
5659 case 0xc8: /* enter */
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5661 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5662 ir.dflag = 2;
5663 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5664 return -1;
5665 break;
5666
5667 case 0xc9: /* leave */
5668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5670 break;
5671
5672 case 0x07: /* pop es */
5673 if (ir.regmap[X86_RECORD_R8_REGNUM])
5674 {
5675 ir.addr -= 1;
5676 goto no_support;
5677 }
5678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5681 break;
5682
5683 case 0x17: /* pop ss */
5684 if (ir.regmap[X86_RECORD_R8_REGNUM])
5685 {
5686 ir.addr -= 1;
5687 goto no_support;
5688 }
5689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5692 break;
5693
5694 case 0x1f: /* pop ds */
5695 if (ir.regmap[X86_RECORD_R8_REGNUM])
5696 {
5697 ir.addr -= 1;
5698 goto no_support;
5699 }
5700 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5701 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5703 break;
5704
5705 case 0x0fa1: /* pop fs */
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5709 break;
5710
5711 case 0x0fa9: /* pop gs */
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5715 break;
5716
5717 case 0x88: /* mov */
5718 case 0x89:
5719 case 0xc6:
5720 case 0xc7:
5721 if ((opcode & 1) == 0)
5722 ir.ot = OT_BYTE;
5723 else
5724 ir.ot = ir.dflag + OT_WORD;
5725
5726 if (i386_record_modrm (&ir))
5727 return -1;
5728
5729 if (ir.mod != 3)
5730 {
5731 if (opcode == 0xc6 || opcode == 0xc7)
5732 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5733 if (i386_record_lea_modrm (&ir))
5734 return -1;
5735 }
5736 else
5737 {
5738 if (opcode == 0xc6 || opcode == 0xc7)
5739 ir.rm |= ir.rex_b;
5740 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5741 ir.rm &= 0x3;
5742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5743 }
5744 break;
5745
5746 case 0x8a: /* mov */
5747 case 0x8b:
5748 if ((opcode & 1) == 0)
5749 ir.ot = OT_BYTE;
5750 else
5751 ir.ot = ir.dflag + OT_WORD;
5752 if (i386_record_modrm (&ir))
5753 return -1;
5754 ir.reg |= rex_r;
5755 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5756 ir.reg &= 0x3;
5757 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5758 break;
5759
5760 case 0x8c: /* mov seg */
5761 if (i386_record_modrm (&ir))
5762 return -1;
5763 if (ir.reg > 5)
5764 {
5765 ir.addr -= 2;
5766 opcode = opcode << 8 | ir.modrm;
5767 goto no_support;
5768 }
5769
5770 if (ir.mod == 3)
5771 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5772 else
5773 {
5774 ir.ot = OT_WORD;
5775 if (i386_record_lea_modrm (&ir))
5776 return -1;
5777 }
5778 break;
5779
5780 case 0x8e: /* mov seg */
5781 if (i386_record_modrm (&ir))
5782 return -1;
5783 switch (ir.reg)
5784 {
5785 case 0:
5786 regnum = X86_RECORD_ES_REGNUM;
5787 break;
5788 case 2:
5789 regnum = X86_RECORD_SS_REGNUM;
5790 break;
5791 case 3:
5792 regnum = X86_RECORD_DS_REGNUM;
5793 break;
5794 case 4:
5795 regnum = X86_RECORD_FS_REGNUM;
5796 break;
5797 case 5:
5798 regnum = X86_RECORD_GS_REGNUM;
5799 break;
5800 default:
5801 ir.addr -= 2;
5802 opcode = opcode << 8 | ir.modrm;
5803 goto no_support;
5804 break;
5805 }
5806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5808 break;
5809
5810 case 0x0fb6: /* movzbS */
5811 case 0x0fb7: /* movzwS */
5812 case 0x0fbe: /* movsbS */
5813 case 0x0fbf: /* movswS */
5814 if (i386_record_modrm (&ir))
5815 return -1;
5816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5817 break;
5818
5819 case 0x8d: /* lea */
5820 if (i386_record_modrm (&ir))
5821 return -1;
5822 if (ir.mod == 3)
5823 {
5824 ir.addr -= 2;
5825 opcode = opcode << 8 | ir.modrm;
5826 goto no_support;
5827 }
5828 ir.ot = ir.dflag;
5829 ir.reg |= rex_r;
5830 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5831 ir.reg &= 0x3;
5832 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5833 break;
5834
5835 case 0xa0: /* mov EAX */
5836 case 0xa1:
5837
5838 case 0xd7: /* xlat */
5839 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5840 break;
5841
5842 case 0xa2: /* mov EAX */
5843 case 0xa3:
5844 if (ir.override >= 0)
5845 {
5846 if (record_full_memory_query)
5847 {
5848 if (yquery (_("\
5849 Process record ignores the memory change of instruction at address %s\n\
5850 because it can't get the value of the segment register.\n\
5851 Do you want to stop the program?"),
5852 paddress (gdbarch, ir.orig_addr)))
5853 return -1;
5854 }
5855 }
5856 else
5857 {
5858 if ((opcode & 1) == 0)
5859 ir.ot = OT_BYTE;
5860 else
5861 ir.ot = ir.dflag + OT_WORD;
5862 if (ir.aflag == 2)
5863 {
5864 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5865 return -1;
5866 ir.addr += 8;
5867 addr = extract_unsigned_integer (buf, 8, byte_order);
5868 }
5869 else if (ir.aflag)
5870 {
5871 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5872 return -1;
5873 ir.addr += 4;
5874 addr = extract_unsigned_integer (buf, 4, byte_order);
5875 }
5876 else
5877 {
5878 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5879 return -1;
5880 ir.addr += 2;
5881 addr = extract_unsigned_integer (buf, 2, byte_order);
5882 }
5883 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5884 return -1;
5885 }
5886 break;
5887
5888 case 0xb0: /* mov R, Ib */
5889 case 0xb1:
5890 case 0xb2:
5891 case 0xb3:
5892 case 0xb4:
5893 case 0xb5:
5894 case 0xb6:
5895 case 0xb7:
5896 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5897 ? ((opcode & 0x7) | ir.rex_b)
5898 : ((opcode & 0x7) & 0x3));
5899 break;
5900
5901 case 0xb8: /* mov R, Iv */
5902 case 0xb9:
5903 case 0xba:
5904 case 0xbb:
5905 case 0xbc:
5906 case 0xbd:
5907 case 0xbe:
5908 case 0xbf:
5909 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5910 break;
5911
5912 case 0x91: /* xchg R, EAX */
5913 case 0x92:
5914 case 0x93:
5915 case 0x94:
5916 case 0x95:
5917 case 0x96:
5918 case 0x97:
5919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5921 break;
5922
5923 case 0x86: /* xchg Ev, Gv */
5924 case 0x87:
5925 if ((opcode & 1) == 0)
5926 ir.ot = OT_BYTE;
5927 else
5928 ir.ot = ir.dflag + OT_WORD;
5929 if (i386_record_modrm (&ir))
5930 return -1;
5931 if (ir.mod == 3)
5932 {
5933 ir.rm |= ir.rex_b;
5934 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5935 ir.rm &= 0x3;
5936 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5937 }
5938 else
5939 {
5940 if (i386_record_lea_modrm (&ir))
5941 return -1;
5942 }
5943 ir.reg |= rex_r;
5944 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5945 ir.reg &= 0x3;
5946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5947 break;
5948
5949 case 0xc4: /* les Gv */
5950 case 0xc5: /* lds Gv */
5951 if (ir.regmap[X86_RECORD_R8_REGNUM])
5952 {
5953 ir.addr -= 1;
5954 goto no_support;
5955 }
5956 /* FALLTHROUGH */
5957 case 0x0fb2: /* lss Gv */
5958 case 0x0fb4: /* lfs Gv */
5959 case 0x0fb5: /* lgs Gv */
5960 if (i386_record_modrm (&ir))
5961 return -1;
5962 if (ir.mod == 3)
5963 {
5964 if (opcode > 0xff)
5965 ir.addr -= 3;
5966 else
5967 ir.addr -= 2;
5968 opcode = opcode << 8 | ir.modrm;
5969 goto no_support;
5970 }
5971 switch (opcode)
5972 {
5973 case 0xc4: /* les Gv */
5974 regnum = X86_RECORD_ES_REGNUM;
5975 break;
5976 case 0xc5: /* lds Gv */
5977 regnum = X86_RECORD_DS_REGNUM;
5978 break;
5979 case 0x0fb2: /* lss Gv */
5980 regnum = X86_RECORD_SS_REGNUM;
5981 break;
5982 case 0x0fb4: /* lfs Gv */
5983 regnum = X86_RECORD_FS_REGNUM;
5984 break;
5985 case 0x0fb5: /* lgs Gv */
5986 regnum = X86_RECORD_GS_REGNUM;
5987 break;
5988 }
5989 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5992 break;
5993
5994 case 0xc0: /* shifts */
5995 case 0xc1:
5996 case 0xd0:
5997 case 0xd1:
5998 case 0xd2:
5999 case 0xd3:
6000 if ((opcode & 1) == 0)
6001 ir.ot = OT_BYTE;
6002 else
6003 ir.ot = ir.dflag + OT_WORD;
6004 if (i386_record_modrm (&ir))
6005 return -1;
6006 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6007 {
6008 if (i386_record_lea_modrm (&ir))
6009 return -1;
6010 }
6011 else
6012 {
6013 ir.rm |= ir.rex_b;
6014 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6015 ir.rm &= 0x3;
6016 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6017 }
6018 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6019 break;
6020
6021 case 0x0fa4:
6022 case 0x0fa5:
6023 case 0x0fac:
6024 case 0x0fad:
6025 if (i386_record_modrm (&ir))
6026 return -1;
6027 if (ir.mod == 3)
6028 {
6029 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6030 return -1;
6031 }
6032 else
6033 {
6034 if (i386_record_lea_modrm (&ir))
6035 return -1;
6036 }
6037 break;
6038
6039 case 0xd8: /* Floats. */
6040 case 0xd9:
6041 case 0xda:
6042 case 0xdb:
6043 case 0xdc:
6044 case 0xdd:
6045 case 0xde:
6046 case 0xdf:
6047 if (i386_record_modrm (&ir))
6048 return -1;
6049 ir.reg |= ((opcode & 7) << 3);
6050 if (ir.mod != 3)
6051 {
6052 /* Memory. */
6053 uint64_t addr64;
6054
6055 if (i386_record_lea_modrm_addr (&ir, &addr64))
6056 return -1;
6057 switch (ir.reg)
6058 {
6059 case 0x02:
6060 case 0x12:
6061 case 0x22:
6062 case 0x32:
6063 /* For fcom, ficom nothing to do. */
6064 break;
6065 case 0x03:
6066 case 0x13:
6067 case 0x23:
6068 case 0x33:
6069 /* For fcomp, ficomp pop FPU stack, store all. */
6070 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6071 return -1;
6072 break;
6073 case 0x00:
6074 case 0x01:
6075 case 0x04:
6076 case 0x05:
6077 case 0x06:
6078 case 0x07:
6079 case 0x10:
6080 case 0x11:
6081 case 0x14:
6082 case 0x15:
6083 case 0x16:
6084 case 0x17:
6085 case 0x20:
6086 case 0x21:
6087 case 0x24:
6088 case 0x25:
6089 case 0x26:
6090 case 0x27:
6091 case 0x30:
6092 case 0x31:
6093 case 0x34:
6094 case 0x35:
6095 case 0x36:
6096 case 0x37:
6097 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6098 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6099 of code, always affects st(0) register. */
6100 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6101 return -1;
6102 break;
6103 case 0x08:
6104 case 0x0a:
6105 case 0x0b:
6106 case 0x18:
6107 case 0x19:
6108 case 0x1a:
6109 case 0x1b:
6110 case 0x1d:
6111 case 0x28:
6112 case 0x29:
6113 case 0x2a:
6114 case 0x2b:
6115 case 0x38:
6116 case 0x39:
6117 case 0x3a:
6118 case 0x3b:
6119 case 0x3c:
6120 case 0x3d:
6121 switch (ir.reg & 7)
6122 {
6123 case 0:
6124 /* Handling fld, fild. */
6125 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6126 return -1;
6127 break;
6128 case 1:
6129 switch (ir.reg >> 4)
6130 {
6131 case 0:
6132 if (record_full_arch_list_add_mem (addr64, 4))
6133 return -1;
6134 break;
6135 case 2:
6136 if (record_full_arch_list_add_mem (addr64, 8))
6137 return -1;
6138 break;
6139 case 3:
6140 break;
6141 default:
6142 if (record_full_arch_list_add_mem (addr64, 2))
6143 return -1;
6144 break;
6145 }
6146 break;
6147 default:
6148 switch (ir.reg >> 4)
6149 {
6150 case 0:
6151 if (record_full_arch_list_add_mem (addr64, 4))
6152 return -1;
6153 if (3 == (ir.reg & 7))
6154 {
6155 /* For fstp m32fp. */
6156 if (i386_record_floats (gdbarch, &ir,
6157 I386_SAVE_FPU_REGS))
6158 return -1;
6159 }
6160 break;
6161 case 1:
6162 if (record_full_arch_list_add_mem (addr64, 4))
6163 return -1;
6164 if ((3 == (ir.reg & 7))
6165 || (5 == (ir.reg & 7))
6166 || (7 == (ir.reg & 7)))
6167 {
6168 /* For fstp insn. */
6169 if (i386_record_floats (gdbarch, &ir,
6170 I386_SAVE_FPU_REGS))
6171 return -1;
6172 }
6173 break;
6174 case 2:
6175 if (record_full_arch_list_add_mem (addr64, 8))
6176 return -1;
6177 if (3 == (ir.reg & 7))
6178 {
6179 /* For fstp m64fp. */
6180 if (i386_record_floats (gdbarch, &ir,
6181 I386_SAVE_FPU_REGS))
6182 return -1;
6183 }
6184 break;
6185 case 3:
6186 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6187 {
6188 /* For fistp, fbld, fild, fbstp. */
6189 if (i386_record_floats (gdbarch, &ir,
6190 I386_SAVE_FPU_REGS))
6191 return -1;
6192 }
6193 /* Fall through */
6194 default:
6195 if (record_full_arch_list_add_mem (addr64, 2))
6196 return -1;
6197 break;
6198 }
6199 break;
6200 }
6201 break;
6202 case 0x0c:
6203 /* Insn fldenv. */
6204 if (i386_record_floats (gdbarch, &ir,
6205 I386_SAVE_FPU_ENV_REG_STACK))
6206 return -1;
6207 break;
6208 case 0x0d:
6209 /* Insn fldcw. */
6210 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6211 return -1;
6212 break;
6213 case 0x2c:
6214 /* Insn frstor. */
6215 if (i386_record_floats (gdbarch, &ir,
6216 I386_SAVE_FPU_ENV_REG_STACK))
6217 return -1;
6218 break;
6219 case 0x0e:
6220 if (ir.dflag)
6221 {
6222 if (record_full_arch_list_add_mem (addr64, 28))
6223 return -1;
6224 }
6225 else
6226 {
6227 if (record_full_arch_list_add_mem (addr64, 14))
6228 return -1;
6229 }
6230 break;
6231 case 0x0f:
6232 case 0x2f:
6233 if (record_full_arch_list_add_mem (addr64, 2))
6234 return -1;
6235 /* Insn fstp, fbstp. */
6236 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6237 return -1;
6238 break;
6239 case 0x1f:
6240 case 0x3e:
6241 if (record_full_arch_list_add_mem (addr64, 10))
6242 return -1;
6243 break;
6244 case 0x2e:
6245 if (ir.dflag)
6246 {
6247 if (record_full_arch_list_add_mem (addr64, 28))
6248 return -1;
6249 addr64 += 28;
6250 }
6251 else
6252 {
6253 if (record_full_arch_list_add_mem (addr64, 14))
6254 return -1;
6255 addr64 += 14;
6256 }
6257 if (record_full_arch_list_add_mem (addr64, 80))
6258 return -1;
6259 /* Insn fsave. */
6260 if (i386_record_floats (gdbarch, &ir,
6261 I386_SAVE_FPU_ENV_REG_STACK))
6262 return -1;
6263 break;
6264 case 0x3f:
6265 if (record_full_arch_list_add_mem (addr64, 8))
6266 return -1;
6267 /* Insn fistp. */
6268 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6269 return -1;
6270 break;
6271 default:
6272 ir.addr -= 2;
6273 opcode = opcode << 8 | ir.modrm;
6274 goto no_support;
6275 break;
6276 }
6277 }
6278 /* Opcode is an extension of modR/M byte. */
6279 else
6280 {
6281 switch (opcode)
6282 {
6283 case 0xd8:
6284 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6285 return -1;
6286 break;
6287 case 0xd9:
6288 if (0x0c == (ir.modrm >> 4))
6289 {
6290 if ((ir.modrm & 0x0f) <= 7)
6291 {
6292 if (i386_record_floats (gdbarch, &ir,
6293 I386_SAVE_FPU_REGS))
6294 return -1;
6295 }
6296 else
6297 {
6298 if (i386_record_floats (gdbarch, &ir,
6299 I387_ST0_REGNUM (tdep)))
6300 return -1;
6301 /* If only st(0) is changing, then we have already
6302 recorded. */
6303 if ((ir.modrm & 0x0f) - 0x08)
6304 {
6305 if (i386_record_floats (gdbarch, &ir,
6306 I387_ST0_REGNUM (tdep) +
6307 ((ir.modrm & 0x0f) - 0x08)))
6308 return -1;
6309 }
6310 }
6311 }
6312 else
6313 {
6314 switch (ir.modrm)
6315 {
6316 case 0xe0:
6317 case 0xe1:
6318 case 0xf0:
6319 case 0xf5:
6320 case 0xf8:
6321 case 0xfa:
6322 case 0xfc:
6323 case 0xfe:
6324 case 0xff:
6325 if (i386_record_floats (gdbarch, &ir,
6326 I387_ST0_REGNUM (tdep)))
6327 return -1;
6328 break;
6329 case 0xf1:
6330 case 0xf2:
6331 case 0xf3:
6332 case 0xf4:
6333 case 0xf6:
6334 case 0xf7:
6335 case 0xe8:
6336 case 0xe9:
6337 case 0xea:
6338 case 0xeb:
6339 case 0xec:
6340 case 0xed:
6341 case 0xee:
6342 case 0xf9:
6343 case 0xfb:
6344 if (i386_record_floats (gdbarch, &ir,
6345 I386_SAVE_FPU_REGS))
6346 return -1;
6347 break;
6348 case 0xfd:
6349 if (i386_record_floats (gdbarch, &ir,
6350 I387_ST0_REGNUM (tdep)))
6351 return -1;
6352 if (i386_record_floats (gdbarch, &ir,
6353 I387_ST0_REGNUM (tdep) + 1))
6354 return -1;
6355 break;
6356 }
6357 }
6358 break;
6359 case 0xda:
6360 if (0xe9 == ir.modrm)
6361 {
6362 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6363 return -1;
6364 }
6365 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6366 {
6367 if (i386_record_floats (gdbarch, &ir,
6368 I387_ST0_REGNUM (tdep)))
6369 return -1;
6370 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6371 {
6372 if (i386_record_floats (gdbarch, &ir,
6373 I387_ST0_REGNUM (tdep) +
6374 (ir.modrm & 0x0f)))
6375 return -1;
6376 }
6377 else if ((ir.modrm & 0x0f) - 0x08)
6378 {
6379 if (i386_record_floats (gdbarch, &ir,
6380 I387_ST0_REGNUM (tdep) +
6381 ((ir.modrm & 0x0f) - 0x08)))
6382 return -1;
6383 }
6384 }
6385 break;
6386 case 0xdb:
6387 if (0xe3 == ir.modrm)
6388 {
6389 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6390 return -1;
6391 }
6392 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6393 {
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_ST0_REGNUM (tdep)))
6396 return -1;
6397 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6398 {
6399 if (i386_record_floats (gdbarch, &ir,
6400 I387_ST0_REGNUM (tdep) +
6401 (ir.modrm & 0x0f)))
6402 return -1;
6403 }
6404 else if ((ir.modrm & 0x0f) - 0x08)
6405 {
6406 if (i386_record_floats (gdbarch, &ir,
6407 I387_ST0_REGNUM (tdep) +
6408 ((ir.modrm & 0x0f) - 0x08)))
6409 return -1;
6410 }
6411 }
6412 break;
6413 case 0xdc:
6414 if ((0x0c == ir.modrm >> 4)
6415 || (0x0d == ir.modrm >> 4)
6416 || (0x0f == ir.modrm >> 4))
6417 {
6418 if ((ir.modrm & 0x0f) <= 7)
6419 {
6420 if (i386_record_floats (gdbarch, &ir,
6421 I387_ST0_REGNUM (tdep) +
6422 (ir.modrm & 0x0f)))
6423 return -1;
6424 }
6425 else
6426 {
6427 if (i386_record_floats (gdbarch, &ir,
6428 I387_ST0_REGNUM (tdep) +
6429 ((ir.modrm & 0x0f) - 0x08)))
6430 return -1;
6431 }
6432 }
6433 break;
6434 case 0xdd:
6435 if (0x0c == ir.modrm >> 4)
6436 {
6437 if (i386_record_floats (gdbarch, &ir,
6438 I387_FTAG_REGNUM (tdep)))
6439 return -1;
6440 }
6441 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6442 {
6443 if ((ir.modrm & 0x0f) <= 7)
6444 {
6445 if (i386_record_floats (gdbarch, &ir,
6446 I387_ST0_REGNUM (tdep) +
6447 (ir.modrm & 0x0f)))
6448 return -1;
6449 }
6450 else
6451 {
6452 if (i386_record_floats (gdbarch, &ir,
6453 I386_SAVE_FPU_REGS))
6454 return -1;
6455 }
6456 }
6457 break;
6458 case 0xde:
6459 if ((0x0c == ir.modrm >> 4)
6460 || (0x0e == ir.modrm >> 4)
6461 || (0x0f == ir.modrm >> 4)
6462 || (0xd9 == ir.modrm))
6463 {
6464 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6465 return -1;
6466 }
6467 break;
6468 case 0xdf:
6469 if (0xe0 == ir.modrm)
6470 {
6471 if (record_full_arch_list_add_reg (ir.regcache,
6472 I386_EAX_REGNUM))
6473 return -1;
6474 }
6475 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6476 {
6477 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6478 return -1;
6479 }
6480 break;
6481 }
6482 }
6483 break;
6484 /* string ops */
6485 case 0xa4: /* movsS */
6486 case 0xa5:
6487 case 0xaa: /* stosS */
6488 case 0xab:
6489 case 0x6c: /* insS */
6490 case 0x6d:
6491 regcache_raw_read_unsigned (ir.regcache,
6492 ir.regmap[X86_RECORD_RECX_REGNUM],
6493 &addr);
6494 if (addr)
6495 {
6496 ULONGEST es, ds;
6497
6498 if ((opcode & 1) == 0)
6499 ir.ot = OT_BYTE;
6500 else
6501 ir.ot = ir.dflag + OT_WORD;
6502 regcache_raw_read_unsigned (ir.regcache,
6503 ir.regmap[X86_RECORD_REDI_REGNUM],
6504 &addr);
6505
6506 regcache_raw_read_unsigned (ir.regcache,
6507 ir.regmap[X86_RECORD_ES_REGNUM],
6508 &es);
6509 regcache_raw_read_unsigned (ir.regcache,
6510 ir.regmap[X86_RECORD_DS_REGNUM],
6511 &ds);
6512 if (ir.aflag && (es != ds))
6513 {
6514 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6515 if (record_full_memory_query)
6516 {
6517 if (yquery (_("\
6518 Process record ignores the memory change of instruction at address %s\n\
6519 because it can't get the value of the segment register.\n\
6520 Do you want to stop the program?"),
6521 paddress (gdbarch, ir.orig_addr)))
6522 return -1;
6523 }
6524 }
6525 else
6526 {
6527 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6528 return -1;
6529 }
6530
6531 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6533 if (opcode == 0xa4 || opcode == 0xa5)
6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6537 }
6538 break;
6539
6540 case 0xa6: /* cmpsS */
6541 case 0xa7:
6542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6544 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6547 break;
6548
6549 case 0xac: /* lodsS */
6550 case 0xad:
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6553 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6556 break;
6557
6558 case 0xae: /* scasS */
6559 case 0xaf:
6560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6561 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6564 break;
6565
6566 case 0x6e: /* outsS */
6567 case 0x6f:
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6569 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6572 break;
6573
6574 case 0xe4: /* port I/O */
6575 case 0xe5:
6576 case 0xec:
6577 case 0xed:
6578 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6579 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6580 break;
6581
6582 case 0xe6:
6583 case 0xe7:
6584 case 0xee:
6585 case 0xef:
6586 break;
6587
6588 /* control */
6589 case 0xc2: /* ret im */
6590 case 0xc3: /* ret */
6591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6592 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6593 break;
6594
6595 case 0xca: /* lret im */
6596 case 0xcb: /* lret */
6597 case 0xcf: /* iret */
6598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6600 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6601 break;
6602
6603 case 0xe8: /* call im */
6604 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6605 ir.dflag = 2;
6606 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6607 return -1;
6608 break;
6609
6610 case 0x9a: /* lcall im */
6611 if (ir.regmap[X86_RECORD_R8_REGNUM])
6612 {
6613 ir.addr -= 1;
6614 goto no_support;
6615 }
6616 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6617 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6618 return -1;
6619 break;
6620
6621 case 0xe9: /* jmp im */
6622 case 0xea: /* ljmp im */
6623 case 0xeb: /* jmp Jb */
6624 case 0x70: /* jcc Jb */
6625 case 0x71:
6626 case 0x72:
6627 case 0x73:
6628 case 0x74:
6629 case 0x75:
6630 case 0x76:
6631 case 0x77:
6632 case 0x78:
6633 case 0x79:
6634 case 0x7a:
6635 case 0x7b:
6636 case 0x7c:
6637 case 0x7d:
6638 case 0x7e:
6639 case 0x7f:
6640 case 0x0f80: /* jcc Jv */
6641 case 0x0f81:
6642 case 0x0f82:
6643 case 0x0f83:
6644 case 0x0f84:
6645 case 0x0f85:
6646 case 0x0f86:
6647 case 0x0f87:
6648 case 0x0f88:
6649 case 0x0f89:
6650 case 0x0f8a:
6651 case 0x0f8b:
6652 case 0x0f8c:
6653 case 0x0f8d:
6654 case 0x0f8e:
6655 case 0x0f8f:
6656 break;
6657
6658 case 0x0f90: /* setcc Gv */
6659 case 0x0f91:
6660 case 0x0f92:
6661 case 0x0f93:
6662 case 0x0f94:
6663 case 0x0f95:
6664 case 0x0f96:
6665 case 0x0f97:
6666 case 0x0f98:
6667 case 0x0f99:
6668 case 0x0f9a:
6669 case 0x0f9b:
6670 case 0x0f9c:
6671 case 0x0f9d:
6672 case 0x0f9e:
6673 case 0x0f9f:
6674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6675 ir.ot = OT_BYTE;
6676 if (i386_record_modrm (&ir))
6677 return -1;
6678 if (ir.mod == 3)
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6680 : (ir.rm & 0x3));
6681 else
6682 {
6683 if (i386_record_lea_modrm (&ir))
6684 return -1;
6685 }
6686 break;
6687
6688 case 0x0f40: /* cmov Gv, Ev */
6689 case 0x0f41:
6690 case 0x0f42:
6691 case 0x0f43:
6692 case 0x0f44:
6693 case 0x0f45:
6694 case 0x0f46:
6695 case 0x0f47:
6696 case 0x0f48:
6697 case 0x0f49:
6698 case 0x0f4a:
6699 case 0x0f4b:
6700 case 0x0f4c:
6701 case 0x0f4d:
6702 case 0x0f4e:
6703 case 0x0f4f:
6704 if (i386_record_modrm (&ir))
6705 return -1;
6706 ir.reg |= rex_r;
6707 if (ir.dflag == OT_BYTE)
6708 ir.reg &= 0x3;
6709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6710 break;
6711
6712 /* flags */
6713 case 0x9c: /* pushf */
6714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6715 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6716 ir.dflag = 2;
6717 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6718 return -1;
6719 break;
6720
6721 case 0x9d: /* popf */
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6724 break;
6725
6726 case 0x9e: /* sahf */
6727 if (ir.regmap[X86_RECORD_R8_REGNUM])
6728 {
6729 ir.addr -= 1;
6730 goto no_support;
6731 }
6732 /* FALLTHROUGH */
6733 case 0xf5: /* cmc */
6734 case 0xf8: /* clc */
6735 case 0xf9: /* stc */
6736 case 0xfc: /* cld */
6737 case 0xfd: /* std */
6738 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6739 break;
6740
6741 case 0x9f: /* lahf */
6742 if (ir.regmap[X86_RECORD_R8_REGNUM])
6743 {
6744 ir.addr -= 1;
6745 goto no_support;
6746 }
6747 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6748 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6749 break;
6750
6751 /* bit operations */
6752 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6753 ir.ot = ir.dflag + OT_WORD;
6754 if (i386_record_modrm (&ir))
6755 return -1;
6756 if (ir.reg < 4)
6757 {
6758 ir.addr -= 2;
6759 opcode = opcode << 8 | ir.modrm;
6760 goto no_support;
6761 }
6762 if (ir.reg != 4)
6763 {
6764 if (ir.mod == 3)
6765 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6766 else
6767 {
6768 if (i386_record_lea_modrm (&ir))
6769 return -1;
6770 }
6771 }
6772 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6773 break;
6774
6775 case 0x0fa3: /* bt Gv, Ev */
6776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6777 break;
6778
6779 case 0x0fab: /* bts */
6780 case 0x0fb3: /* btr */
6781 case 0x0fbb: /* btc */
6782 ir.ot = ir.dflag + OT_WORD;
6783 if (i386_record_modrm (&ir))
6784 return -1;
6785 if (ir.mod == 3)
6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6787 else
6788 {
6789 uint64_t addr64;
6790 if (i386_record_lea_modrm_addr (&ir, &addr64))
6791 return -1;
6792 regcache_raw_read_unsigned (ir.regcache,
6793 ir.regmap[ir.reg | rex_r],
6794 &addr);
6795 switch (ir.dflag)
6796 {
6797 case 0:
6798 addr64 += ((int16_t) addr >> 4) << 4;
6799 break;
6800 case 1:
6801 addr64 += ((int32_t) addr >> 5) << 5;
6802 break;
6803 case 2:
6804 addr64 += ((int64_t) addr >> 6) << 6;
6805 break;
6806 }
6807 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6808 return -1;
6809 if (i386_record_lea_modrm (&ir))
6810 return -1;
6811 }
6812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6813 break;
6814
6815 case 0x0fbc: /* bsf */
6816 case 0x0fbd: /* bsr */
6817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6819 break;
6820
6821 /* bcd */
6822 case 0x27: /* daa */
6823 case 0x2f: /* das */
6824 case 0x37: /* aaa */
6825 case 0x3f: /* aas */
6826 case 0xd4: /* aam */
6827 case 0xd5: /* aad */
6828 if (ir.regmap[X86_RECORD_R8_REGNUM])
6829 {
6830 ir.addr -= 1;
6831 goto no_support;
6832 }
6833 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6834 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6835 break;
6836
6837 /* misc */
6838 case 0x90: /* nop */
6839 if (prefixes & PREFIX_LOCK)
6840 {
6841 ir.addr -= 1;
6842 goto no_support;
6843 }
6844 break;
6845
6846 case 0x9b: /* fwait */
6847 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6848 return -1;
6849 opcode = (uint32_t) opcode8;
6850 ir.addr++;
6851 goto reswitch;
6852 break;
6853
6854 /* XXX */
6855 case 0xcc: /* int3 */
6856 printf_unfiltered (_("Process record does not support instruction "
6857 "int3.\n"));
6858 ir.addr -= 1;
6859 goto no_support;
6860 break;
6861
6862 /* XXX */
6863 case 0xcd: /* int */
6864 {
6865 int ret;
6866 uint8_t interrupt;
6867 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6868 return -1;
6869 ir.addr++;
6870 if (interrupt != 0x80
6871 || tdep->i386_intx80_record == NULL)
6872 {
6873 printf_unfiltered (_("Process record does not support "
6874 "instruction int 0x%02x.\n"),
6875 interrupt);
6876 ir.addr -= 2;
6877 goto no_support;
6878 }
6879 ret = tdep->i386_intx80_record (ir.regcache);
6880 if (ret)
6881 return ret;
6882 }
6883 break;
6884
6885 /* XXX */
6886 case 0xce: /* into */
6887 printf_unfiltered (_("Process record does not support "
6888 "instruction into.\n"));
6889 ir.addr -= 1;
6890 goto no_support;
6891 break;
6892
6893 case 0xfa: /* cli */
6894 case 0xfb: /* sti */
6895 break;
6896
6897 case 0x62: /* bound */
6898 printf_unfiltered (_("Process record does not support "
6899 "instruction bound.\n"));
6900 ir.addr -= 1;
6901 goto no_support;
6902 break;
6903
6904 case 0x0fc8: /* bswap reg */
6905 case 0x0fc9:
6906 case 0x0fca:
6907 case 0x0fcb:
6908 case 0x0fcc:
6909 case 0x0fcd:
6910 case 0x0fce:
6911 case 0x0fcf:
6912 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6913 break;
6914
6915 case 0xd6: /* salc */
6916 if (ir.regmap[X86_RECORD_R8_REGNUM])
6917 {
6918 ir.addr -= 1;
6919 goto no_support;
6920 }
6921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6923 break;
6924
6925 case 0xe0: /* loopnz */
6926 case 0xe1: /* loopz */
6927 case 0xe2: /* loop */
6928 case 0xe3: /* jecxz */
6929 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6930 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6931 break;
6932
6933 case 0x0f30: /* wrmsr */
6934 printf_unfiltered (_("Process record does not support "
6935 "instruction wrmsr.\n"));
6936 ir.addr -= 2;
6937 goto no_support;
6938 break;
6939
6940 case 0x0f32: /* rdmsr */
6941 printf_unfiltered (_("Process record does not support "
6942 "instruction rdmsr.\n"));
6943 ir.addr -= 2;
6944 goto no_support;
6945 break;
6946
6947 case 0x0f31: /* rdtsc */
6948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6949 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6950 break;
6951
6952 case 0x0f34: /* sysenter */
6953 {
6954 int ret;
6955 if (ir.regmap[X86_RECORD_R8_REGNUM])
6956 {
6957 ir.addr -= 2;
6958 goto no_support;
6959 }
6960 if (tdep->i386_sysenter_record == NULL)
6961 {
6962 printf_unfiltered (_("Process record does not support "
6963 "instruction sysenter.\n"));
6964 ir.addr -= 2;
6965 goto no_support;
6966 }
6967 ret = tdep->i386_sysenter_record (ir.regcache);
6968 if (ret)
6969 return ret;
6970 }
6971 break;
6972
6973 case 0x0f35: /* sysexit */
6974 printf_unfiltered (_("Process record does not support "
6975 "instruction sysexit.\n"));
6976 ir.addr -= 2;
6977 goto no_support;
6978 break;
6979
6980 case 0x0f05: /* syscall */
6981 {
6982 int ret;
6983 if (tdep->i386_syscall_record == NULL)
6984 {
6985 printf_unfiltered (_("Process record does not support "
6986 "instruction syscall.\n"));
6987 ir.addr -= 2;
6988 goto no_support;
6989 }
6990 ret = tdep->i386_syscall_record (ir.regcache);
6991 if (ret)
6992 return ret;
6993 }
6994 break;
6995
6996 case 0x0f07: /* sysret */
6997 printf_unfiltered (_("Process record does not support "
6998 "instruction sysret.\n"));
6999 ir.addr -= 2;
7000 goto no_support;
7001 break;
7002
7003 case 0x0fa2: /* cpuid */
7004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7005 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7006 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7007 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7008 break;
7009
7010 case 0xf4: /* hlt */
7011 printf_unfiltered (_("Process record does not support "
7012 "instruction hlt.\n"));
7013 ir.addr -= 1;
7014 goto no_support;
7015 break;
7016
7017 case 0x0f00:
7018 if (i386_record_modrm (&ir))
7019 return -1;
7020 switch (ir.reg)
7021 {
7022 case 0: /* sldt */
7023 case 1: /* str */
7024 if (ir.mod == 3)
7025 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7026 else
7027 {
7028 ir.ot = OT_WORD;
7029 if (i386_record_lea_modrm (&ir))
7030 return -1;
7031 }
7032 break;
7033 case 2: /* lldt */
7034 case 3: /* ltr */
7035 break;
7036 case 4: /* verr */
7037 case 5: /* verw */
7038 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7039 break;
7040 default:
7041 ir.addr -= 3;
7042 opcode = opcode << 8 | ir.modrm;
7043 goto no_support;
7044 break;
7045 }
7046 break;
7047
7048 case 0x0f01:
7049 if (i386_record_modrm (&ir))
7050 return -1;
7051 switch (ir.reg)
7052 {
7053 case 0: /* sgdt */
7054 {
7055 uint64_t addr64;
7056
7057 if (ir.mod == 3)
7058 {
7059 ir.addr -= 3;
7060 opcode = opcode << 8 | ir.modrm;
7061 goto no_support;
7062 }
7063 if (ir.override >= 0)
7064 {
7065 if (record_full_memory_query)
7066 {
7067 if (yquery (_("\
7068 Process record ignores the memory change of instruction at address %s\n\
7069 because it can't get the value of the segment register.\n\
7070 Do you want to stop the program?"),
7071 paddress (gdbarch, ir.orig_addr)))
7072 return -1;
7073 }
7074 }
7075 else
7076 {
7077 if (i386_record_lea_modrm_addr (&ir, &addr64))
7078 return -1;
7079 if (record_full_arch_list_add_mem (addr64, 2))
7080 return -1;
7081 addr64 += 2;
7082 if (ir.regmap[X86_RECORD_R8_REGNUM])
7083 {
7084 if (record_full_arch_list_add_mem (addr64, 8))
7085 return -1;
7086 }
7087 else
7088 {
7089 if (record_full_arch_list_add_mem (addr64, 4))
7090 return -1;
7091 }
7092 }
7093 }
7094 break;
7095 case 1:
7096 if (ir.mod == 3)
7097 {
7098 switch (ir.rm)
7099 {
7100 case 0: /* monitor */
7101 break;
7102 case 1: /* mwait */
7103 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7104 break;
7105 default:
7106 ir.addr -= 3;
7107 opcode = opcode << 8 | ir.modrm;
7108 goto no_support;
7109 break;
7110 }
7111 }
7112 else
7113 {
7114 /* sidt */
7115 if (ir.override >= 0)
7116 {
7117 if (record_full_memory_query)
7118 {
7119 if (yquery (_("\
7120 Process record ignores the memory change of instruction at address %s\n\
7121 because it can't get the value of the segment register.\n\
7122 Do you want to stop the program?"),
7123 paddress (gdbarch, ir.orig_addr)))
7124 return -1;
7125 }
7126 }
7127 else
7128 {
7129 uint64_t addr64;
7130
7131 if (i386_record_lea_modrm_addr (&ir, &addr64))
7132 return -1;
7133 if (record_full_arch_list_add_mem (addr64, 2))
7134 return -1;
7135 addr64 += 2;
7136 if (ir.regmap[X86_RECORD_R8_REGNUM])
7137 {
7138 if (record_full_arch_list_add_mem (addr64, 8))
7139 return -1;
7140 }
7141 else
7142 {
7143 if (record_full_arch_list_add_mem (addr64, 4))
7144 return -1;
7145 }
7146 }
7147 }
7148 break;
7149 case 2: /* lgdt */
7150 if (ir.mod == 3)
7151 {
7152 /* xgetbv */
7153 if (ir.rm == 0)
7154 {
7155 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7156 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7157 break;
7158 }
7159 /* xsetbv */
7160 else if (ir.rm == 1)
7161 break;
7162 }
7163 /* Fall through. */
7164 case 3: /* lidt */
7165 if (ir.mod == 3)
7166 {
7167 ir.addr -= 3;
7168 opcode = opcode << 8 | ir.modrm;
7169 goto no_support;
7170 }
7171 break;
7172 case 4: /* smsw */
7173 if (ir.mod == 3)
7174 {
7175 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7176 return -1;
7177 }
7178 else
7179 {
7180 ir.ot = OT_WORD;
7181 if (i386_record_lea_modrm (&ir))
7182 return -1;
7183 }
7184 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7185 break;
7186 case 6: /* lmsw */
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7188 break;
7189 case 7: /* invlpg */
7190 if (ir.mod == 3)
7191 {
7192 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7194 else
7195 {
7196 ir.addr -= 3;
7197 opcode = opcode << 8 | ir.modrm;
7198 goto no_support;
7199 }
7200 }
7201 else
7202 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7203 break;
7204 default:
7205 ir.addr -= 3;
7206 opcode = opcode << 8 | ir.modrm;
7207 goto no_support;
7208 break;
7209 }
7210 break;
7211
7212 case 0x0f08: /* invd */
7213 case 0x0f09: /* wbinvd */
7214 break;
7215
7216 case 0x63: /* arpl */
7217 if (i386_record_modrm (&ir))
7218 return -1;
7219 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7220 {
7221 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7222 ? (ir.reg | rex_r) : ir.rm);
7223 }
7224 else
7225 {
7226 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7227 if (i386_record_lea_modrm (&ir))
7228 return -1;
7229 }
7230 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7231 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7232 break;
7233
7234 case 0x0f02: /* lar */
7235 case 0x0f03: /* lsl */
7236 if (i386_record_modrm (&ir))
7237 return -1;
7238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7240 break;
7241
7242 case 0x0f18:
7243 if (i386_record_modrm (&ir))
7244 return -1;
7245 if (ir.mod == 3 && ir.reg == 3)
7246 {
7247 ir.addr -= 3;
7248 opcode = opcode << 8 | ir.modrm;
7249 goto no_support;
7250 }
7251 break;
7252
7253 case 0x0f19:
7254 case 0x0f1a:
7255 case 0x0f1b:
7256 case 0x0f1c:
7257 case 0x0f1d:
7258 case 0x0f1e:
7259 case 0x0f1f:
7260 /* nop (multi byte) */
7261 break;
7262
7263 case 0x0f20: /* mov reg, crN */
7264 case 0x0f22: /* mov crN, reg */
7265 if (i386_record_modrm (&ir))
7266 return -1;
7267 if ((ir.modrm & 0xc0) != 0xc0)
7268 {
7269 ir.addr -= 3;
7270 opcode = opcode << 8 | ir.modrm;
7271 goto no_support;
7272 }
7273 switch (ir.reg)
7274 {
7275 case 0:
7276 case 2:
7277 case 3:
7278 case 4:
7279 case 8:
7280 if (opcode & 2)
7281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7282 else
7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7284 break;
7285 default:
7286 ir.addr -= 3;
7287 opcode = opcode << 8 | ir.modrm;
7288 goto no_support;
7289 break;
7290 }
7291 break;
7292
7293 case 0x0f21: /* mov reg, drN */
7294 case 0x0f23: /* mov drN, reg */
7295 if (i386_record_modrm (&ir))
7296 return -1;
7297 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7298 || ir.reg == 5 || ir.reg >= 8)
7299 {
7300 ir.addr -= 3;
7301 opcode = opcode << 8 | ir.modrm;
7302 goto no_support;
7303 }
7304 if (opcode & 2)
7305 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7306 else
7307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7308 break;
7309
7310 case 0x0f06: /* clts */
7311 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7312 break;
7313
7314 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7315
7316 case 0x0f0d: /* 3DNow! prefetch */
7317 break;
7318
7319 case 0x0f0e: /* 3DNow! femms */
7320 case 0x0f77: /* emms */
7321 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7322 goto no_support;
7323 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7324 break;
7325
7326 case 0x0f0f: /* 3DNow! data */
7327 if (i386_record_modrm (&ir))
7328 return -1;
7329 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7330 return -1;
7331 ir.addr++;
7332 switch (opcode8)
7333 {
7334 case 0x0c: /* 3DNow! pi2fw */
7335 case 0x0d: /* 3DNow! pi2fd */
7336 case 0x1c: /* 3DNow! pf2iw */
7337 case 0x1d: /* 3DNow! pf2id */
7338 case 0x8a: /* 3DNow! pfnacc */
7339 case 0x8e: /* 3DNow! pfpnacc */
7340 case 0x90: /* 3DNow! pfcmpge */
7341 case 0x94: /* 3DNow! pfmin */
7342 case 0x96: /* 3DNow! pfrcp */
7343 case 0x97: /* 3DNow! pfrsqrt */
7344 case 0x9a: /* 3DNow! pfsub */
7345 case 0x9e: /* 3DNow! pfadd */
7346 case 0xa0: /* 3DNow! pfcmpgt */
7347 case 0xa4: /* 3DNow! pfmax */
7348 case 0xa6: /* 3DNow! pfrcpit1 */
7349 case 0xa7: /* 3DNow! pfrsqit1 */
7350 case 0xaa: /* 3DNow! pfsubr */
7351 case 0xae: /* 3DNow! pfacc */
7352 case 0xb0: /* 3DNow! pfcmpeq */
7353 case 0xb4: /* 3DNow! pfmul */
7354 case 0xb6: /* 3DNow! pfrcpit2 */
7355 case 0xb7: /* 3DNow! pmulhrw */
7356 case 0xbb: /* 3DNow! pswapd */
7357 case 0xbf: /* 3DNow! pavgusb */
7358 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7359 goto no_support_3dnow_data;
7360 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7361 break;
7362
7363 default:
7364 no_support_3dnow_data:
7365 opcode = (opcode << 8) | opcode8;
7366 goto no_support;
7367 break;
7368 }
7369 break;
7370
7371 case 0x0faa: /* rsm */
7372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7381 break;
7382
7383 case 0x0fae:
7384 if (i386_record_modrm (&ir))
7385 return -1;
7386 switch(ir.reg)
7387 {
7388 case 0: /* fxsave */
7389 {
7390 uint64_t tmpu64;
7391
7392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7393 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7394 return -1;
7395 if (record_full_arch_list_add_mem (tmpu64, 512))
7396 return -1;
7397 }
7398 break;
7399
7400 case 1: /* fxrstor */
7401 {
7402 int i;
7403
7404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7405
7406 for (i = I387_MM0_REGNUM (tdep);
7407 i386_mmx_regnum_p (gdbarch, i); i++)
7408 record_full_arch_list_add_reg (ir.regcache, i);
7409
7410 for (i = I387_XMM0_REGNUM (tdep);
7411 i386_xmm_regnum_p (gdbarch, i); i++)
7412 record_full_arch_list_add_reg (ir.regcache, i);
7413
7414 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7415 record_full_arch_list_add_reg (ir.regcache,
7416 I387_MXCSR_REGNUM(tdep));
7417
7418 for (i = I387_ST0_REGNUM (tdep);
7419 i386_fp_regnum_p (gdbarch, i); i++)
7420 record_full_arch_list_add_reg (ir.regcache, i);
7421
7422 for (i = I387_FCTRL_REGNUM (tdep);
7423 i386_fpc_regnum_p (gdbarch, i); i++)
7424 record_full_arch_list_add_reg (ir.regcache, i);
7425 }
7426 break;
7427
7428 case 2: /* ldmxcsr */
7429 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7430 goto no_support;
7431 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7432 break;
7433
7434 case 3: /* stmxcsr */
7435 ir.ot = OT_LONG;
7436 if (i386_record_lea_modrm (&ir))
7437 return -1;
7438 break;
7439
7440 case 5: /* lfence */
7441 case 6: /* mfence */
7442 case 7: /* sfence clflush */
7443 break;
7444
7445 default:
7446 opcode = (opcode << 8) | ir.modrm;
7447 goto no_support;
7448 break;
7449 }
7450 break;
7451
7452 case 0x0fc3: /* movnti */
7453 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7454 if (i386_record_modrm (&ir))
7455 return -1;
7456 if (ir.mod == 3)
7457 goto no_support;
7458 ir.reg |= rex_r;
7459 if (i386_record_lea_modrm (&ir))
7460 return -1;
7461 break;
7462
7463 /* Add prefix to opcode. */
7464 case 0x0f10:
7465 case 0x0f11:
7466 case 0x0f12:
7467 case 0x0f13:
7468 case 0x0f14:
7469 case 0x0f15:
7470 case 0x0f16:
7471 case 0x0f17:
7472 case 0x0f28:
7473 case 0x0f29:
7474 case 0x0f2a:
7475 case 0x0f2b:
7476 case 0x0f2c:
7477 case 0x0f2d:
7478 case 0x0f2e:
7479 case 0x0f2f:
7480 case 0x0f38:
7481 case 0x0f39:
7482 case 0x0f3a:
7483 case 0x0f50:
7484 case 0x0f51:
7485 case 0x0f52:
7486 case 0x0f53:
7487 case 0x0f54:
7488 case 0x0f55:
7489 case 0x0f56:
7490 case 0x0f57:
7491 case 0x0f58:
7492 case 0x0f59:
7493 case 0x0f5a:
7494 case 0x0f5b:
7495 case 0x0f5c:
7496 case 0x0f5d:
7497 case 0x0f5e:
7498 case 0x0f5f:
7499 case 0x0f60:
7500 case 0x0f61:
7501 case 0x0f62:
7502 case 0x0f63:
7503 case 0x0f64:
7504 case 0x0f65:
7505 case 0x0f66:
7506 case 0x0f67:
7507 case 0x0f68:
7508 case 0x0f69:
7509 case 0x0f6a:
7510 case 0x0f6b:
7511 case 0x0f6c:
7512 case 0x0f6d:
7513 case 0x0f6e:
7514 case 0x0f6f:
7515 case 0x0f70:
7516 case 0x0f71:
7517 case 0x0f72:
7518 case 0x0f73:
7519 case 0x0f74:
7520 case 0x0f75:
7521 case 0x0f76:
7522 case 0x0f7c:
7523 case 0x0f7d:
7524 case 0x0f7e:
7525 case 0x0f7f:
7526 case 0x0fb8:
7527 case 0x0fc2:
7528 case 0x0fc4:
7529 case 0x0fc5:
7530 case 0x0fc6:
7531 case 0x0fd0:
7532 case 0x0fd1:
7533 case 0x0fd2:
7534 case 0x0fd3:
7535 case 0x0fd4:
7536 case 0x0fd5:
7537 case 0x0fd6:
7538 case 0x0fd7:
7539 case 0x0fd8:
7540 case 0x0fd9:
7541 case 0x0fda:
7542 case 0x0fdb:
7543 case 0x0fdc:
7544 case 0x0fdd:
7545 case 0x0fde:
7546 case 0x0fdf:
7547 case 0x0fe0:
7548 case 0x0fe1:
7549 case 0x0fe2:
7550 case 0x0fe3:
7551 case 0x0fe4:
7552 case 0x0fe5:
7553 case 0x0fe6:
7554 case 0x0fe7:
7555 case 0x0fe8:
7556 case 0x0fe9:
7557 case 0x0fea:
7558 case 0x0feb:
7559 case 0x0fec:
7560 case 0x0fed:
7561 case 0x0fee:
7562 case 0x0fef:
7563 case 0x0ff0:
7564 case 0x0ff1:
7565 case 0x0ff2:
7566 case 0x0ff3:
7567 case 0x0ff4:
7568 case 0x0ff5:
7569 case 0x0ff6:
7570 case 0x0ff7:
7571 case 0x0ff8:
7572 case 0x0ff9:
7573 case 0x0ffa:
7574 case 0x0ffb:
7575 case 0x0ffc:
7576 case 0x0ffd:
7577 case 0x0ffe:
7578 /* Mask out PREFIX_ADDR. */
7579 switch ((prefixes & ~PREFIX_ADDR))
7580 {
7581 case PREFIX_REPNZ:
7582 opcode |= 0xf20000;
7583 break;
7584 case PREFIX_DATA:
7585 opcode |= 0x660000;
7586 break;
7587 case PREFIX_REPZ:
7588 opcode |= 0xf30000;
7589 break;
7590 }
7591 reswitch_prefix_add:
7592 switch (opcode)
7593 {
7594 case 0x0f38:
7595 case 0x660f38:
7596 case 0xf20f38:
7597 case 0x0f3a:
7598 case 0x660f3a:
7599 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7600 return -1;
7601 ir.addr++;
7602 opcode = (uint32_t) opcode8 | opcode << 8;
7603 goto reswitch_prefix_add;
7604 break;
7605
7606 case 0x0f10: /* movups */
7607 case 0x660f10: /* movupd */
7608 case 0xf30f10: /* movss */
7609 case 0xf20f10: /* movsd */
7610 case 0x0f12: /* movlps */
7611 case 0x660f12: /* movlpd */
7612 case 0xf30f12: /* movsldup */
7613 case 0xf20f12: /* movddup */
7614 case 0x0f14: /* unpcklps */
7615 case 0x660f14: /* unpcklpd */
7616 case 0x0f15: /* unpckhps */
7617 case 0x660f15: /* unpckhpd */
7618 case 0x0f16: /* movhps */
7619 case 0x660f16: /* movhpd */
7620 case 0xf30f16: /* movshdup */
7621 case 0x0f28: /* movaps */
7622 case 0x660f28: /* movapd */
7623 case 0x0f2a: /* cvtpi2ps */
7624 case 0x660f2a: /* cvtpi2pd */
7625 case 0xf30f2a: /* cvtsi2ss */
7626 case 0xf20f2a: /* cvtsi2sd */
7627 case 0x0f2c: /* cvttps2pi */
7628 case 0x660f2c: /* cvttpd2pi */
7629 case 0x0f2d: /* cvtps2pi */
7630 case 0x660f2d: /* cvtpd2pi */
7631 case 0x660f3800: /* pshufb */
7632 case 0x660f3801: /* phaddw */
7633 case 0x660f3802: /* phaddd */
7634 case 0x660f3803: /* phaddsw */
7635 case 0x660f3804: /* pmaddubsw */
7636 case 0x660f3805: /* phsubw */
7637 case 0x660f3806: /* phsubd */
7638 case 0x660f3807: /* phsubsw */
7639 case 0x660f3808: /* psignb */
7640 case 0x660f3809: /* psignw */
7641 case 0x660f380a: /* psignd */
7642 case 0x660f380b: /* pmulhrsw */
7643 case 0x660f3810: /* pblendvb */
7644 case 0x660f3814: /* blendvps */
7645 case 0x660f3815: /* blendvpd */
7646 case 0x660f381c: /* pabsb */
7647 case 0x660f381d: /* pabsw */
7648 case 0x660f381e: /* pabsd */
7649 case 0x660f3820: /* pmovsxbw */
7650 case 0x660f3821: /* pmovsxbd */
7651 case 0x660f3822: /* pmovsxbq */
7652 case 0x660f3823: /* pmovsxwd */
7653 case 0x660f3824: /* pmovsxwq */
7654 case 0x660f3825: /* pmovsxdq */
7655 case 0x660f3828: /* pmuldq */
7656 case 0x660f3829: /* pcmpeqq */
7657 case 0x660f382a: /* movntdqa */
7658 case 0x660f3a08: /* roundps */
7659 case 0x660f3a09: /* roundpd */
7660 case 0x660f3a0a: /* roundss */
7661 case 0x660f3a0b: /* roundsd */
7662 case 0x660f3a0c: /* blendps */
7663 case 0x660f3a0d: /* blendpd */
7664 case 0x660f3a0e: /* pblendw */
7665 case 0x660f3a0f: /* palignr */
7666 case 0x660f3a20: /* pinsrb */
7667 case 0x660f3a21: /* insertps */
7668 case 0x660f3a22: /* pinsrd pinsrq */
7669 case 0x660f3a40: /* dpps */
7670 case 0x660f3a41: /* dppd */
7671 case 0x660f3a42: /* mpsadbw */
7672 case 0x660f3a60: /* pcmpestrm */
7673 case 0x660f3a61: /* pcmpestri */
7674 case 0x660f3a62: /* pcmpistrm */
7675 case 0x660f3a63: /* pcmpistri */
7676 case 0x0f51: /* sqrtps */
7677 case 0x660f51: /* sqrtpd */
7678 case 0xf20f51: /* sqrtsd */
7679 case 0xf30f51: /* sqrtss */
7680 case 0x0f52: /* rsqrtps */
7681 case 0xf30f52: /* rsqrtss */
7682 case 0x0f53: /* rcpps */
7683 case 0xf30f53: /* rcpss */
7684 case 0x0f54: /* andps */
7685 case 0x660f54: /* andpd */
7686 case 0x0f55: /* andnps */
7687 case 0x660f55: /* andnpd */
7688 case 0x0f56: /* orps */
7689 case 0x660f56: /* orpd */
7690 case 0x0f57: /* xorps */
7691 case 0x660f57: /* xorpd */
7692 case 0x0f58: /* addps */
7693 case 0x660f58: /* addpd */
7694 case 0xf20f58: /* addsd */
7695 case 0xf30f58: /* addss */
7696 case 0x0f59: /* mulps */
7697 case 0x660f59: /* mulpd */
7698 case 0xf20f59: /* mulsd */
7699 case 0xf30f59: /* mulss */
7700 case 0x0f5a: /* cvtps2pd */
7701 case 0x660f5a: /* cvtpd2ps */
7702 case 0xf20f5a: /* cvtsd2ss */
7703 case 0xf30f5a: /* cvtss2sd */
7704 case 0x0f5b: /* cvtdq2ps */
7705 case 0x660f5b: /* cvtps2dq */
7706 case 0xf30f5b: /* cvttps2dq */
7707 case 0x0f5c: /* subps */
7708 case 0x660f5c: /* subpd */
7709 case 0xf20f5c: /* subsd */
7710 case 0xf30f5c: /* subss */
7711 case 0x0f5d: /* minps */
7712 case 0x660f5d: /* minpd */
7713 case 0xf20f5d: /* minsd */
7714 case 0xf30f5d: /* minss */
7715 case 0x0f5e: /* divps */
7716 case 0x660f5e: /* divpd */
7717 case 0xf20f5e: /* divsd */
7718 case 0xf30f5e: /* divss */
7719 case 0x0f5f: /* maxps */
7720 case 0x660f5f: /* maxpd */
7721 case 0xf20f5f: /* maxsd */
7722 case 0xf30f5f: /* maxss */
7723 case 0x660f60: /* punpcklbw */
7724 case 0x660f61: /* punpcklwd */
7725 case 0x660f62: /* punpckldq */
7726 case 0x660f63: /* packsswb */
7727 case 0x660f64: /* pcmpgtb */
7728 case 0x660f65: /* pcmpgtw */
7729 case 0x660f66: /* pcmpgtd */
7730 case 0x660f67: /* packuswb */
7731 case 0x660f68: /* punpckhbw */
7732 case 0x660f69: /* punpckhwd */
7733 case 0x660f6a: /* punpckhdq */
7734 case 0x660f6b: /* packssdw */
7735 case 0x660f6c: /* punpcklqdq */
7736 case 0x660f6d: /* punpckhqdq */
7737 case 0x660f6e: /* movd */
7738 case 0x660f6f: /* movdqa */
7739 case 0xf30f6f: /* movdqu */
7740 case 0x660f70: /* pshufd */
7741 case 0xf20f70: /* pshuflw */
7742 case 0xf30f70: /* pshufhw */
7743 case 0x660f74: /* pcmpeqb */
7744 case 0x660f75: /* pcmpeqw */
7745 case 0x660f76: /* pcmpeqd */
7746 case 0x660f7c: /* haddpd */
7747 case 0xf20f7c: /* haddps */
7748 case 0x660f7d: /* hsubpd */
7749 case 0xf20f7d: /* hsubps */
7750 case 0xf30f7e: /* movq */
7751 case 0x0fc2: /* cmpps */
7752 case 0x660fc2: /* cmppd */
7753 case 0xf20fc2: /* cmpsd */
7754 case 0xf30fc2: /* cmpss */
7755 case 0x660fc4: /* pinsrw */
7756 case 0x0fc6: /* shufps */
7757 case 0x660fc6: /* shufpd */
7758 case 0x660fd0: /* addsubpd */
7759 case 0xf20fd0: /* addsubps */
7760 case 0x660fd1: /* psrlw */
7761 case 0x660fd2: /* psrld */
7762 case 0x660fd3: /* psrlq */
7763 case 0x660fd4: /* paddq */
7764 case 0x660fd5: /* pmullw */
7765 case 0xf30fd6: /* movq2dq */
7766 case 0x660fd8: /* psubusb */
7767 case 0x660fd9: /* psubusw */
7768 case 0x660fda: /* pminub */
7769 case 0x660fdb: /* pand */
7770 case 0x660fdc: /* paddusb */
7771 case 0x660fdd: /* paddusw */
7772 case 0x660fde: /* pmaxub */
7773 case 0x660fdf: /* pandn */
7774 case 0x660fe0: /* pavgb */
7775 case 0x660fe1: /* psraw */
7776 case 0x660fe2: /* psrad */
7777 case 0x660fe3: /* pavgw */
7778 case 0x660fe4: /* pmulhuw */
7779 case 0x660fe5: /* pmulhw */
7780 case 0x660fe6: /* cvttpd2dq */
7781 case 0xf20fe6: /* cvtpd2dq */
7782 case 0xf30fe6: /* cvtdq2pd */
7783 case 0x660fe8: /* psubsb */
7784 case 0x660fe9: /* psubsw */
7785 case 0x660fea: /* pminsw */
7786 case 0x660feb: /* por */
7787 case 0x660fec: /* paddsb */
7788 case 0x660fed: /* paddsw */
7789 case 0x660fee: /* pmaxsw */
7790 case 0x660fef: /* pxor */
7791 case 0xf20ff0: /* lddqu */
7792 case 0x660ff1: /* psllw */
7793 case 0x660ff2: /* pslld */
7794 case 0x660ff3: /* psllq */
7795 case 0x660ff4: /* pmuludq */
7796 case 0x660ff5: /* pmaddwd */
7797 case 0x660ff6: /* psadbw */
7798 case 0x660ff8: /* psubb */
7799 case 0x660ff9: /* psubw */
7800 case 0x660ffa: /* psubd */
7801 case 0x660ffb: /* psubq */
7802 case 0x660ffc: /* paddb */
7803 case 0x660ffd: /* paddw */
7804 case 0x660ffe: /* paddd */
7805 if (i386_record_modrm (&ir))
7806 return -1;
7807 ir.reg |= rex_r;
7808 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7809 goto no_support;
7810 record_full_arch_list_add_reg (ir.regcache,
7811 I387_XMM0_REGNUM (tdep) + ir.reg);
7812 if ((opcode & 0xfffffffc) == 0x660f3a60)
7813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7814 break;
7815
7816 case 0x0f11: /* movups */
7817 case 0x660f11: /* movupd */
7818 case 0xf30f11: /* movss */
7819 case 0xf20f11: /* movsd */
7820 case 0x0f13: /* movlps */
7821 case 0x660f13: /* movlpd */
7822 case 0x0f17: /* movhps */
7823 case 0x660f17: /* movhpd */
7824 case 0x0f29: /* movaps */
7825 case 0x660f29: /* movapd */
7826 case 0x660f3a14: /* pextrb */
7827 case 0x660f3a15: /* pextrw */
7828 case 0x660f3a16: /* pextrd pextrq */
7829 case 0x660f3a17: /* extractps */
7830 case 0x660f7f: /* movdqa */
7831 case 0xf30f7f: /* movdqu */
7832 if (i386_record_modrm (&ir))
7833 return -1;
7834 if (ir.mod == 3)
7835 {
7836 if (opcode == 0x0f13 || opcode == 0x660f13
7837 || opcode == 0x0f17 || opcode == 0x660f17)
7838 goto no_support;
7839 ir.rm |= ir.rex_b;
7840 if (!i386_xmm_regnum_p (gdbarch,
7841 I387_XMM0_REGNUM (tdep) + ir.rm))
7842 goto no_support;
7843 record_full_arch_list_add_reg (ir.regcache,
7844 I387_XMM0_REGNUM (tdep) + ir.rm);
7845 }
7846 else
7847 {
7848 switch (opcode)
7849 {
7850 case 0x660f3a14:
7851 ir.ot = OT_BYTE;
7852 break;
7853 case 0x660f3a15:
7854 ir.ot = OT_WORD;
7855 break;
7856 case 0x660f3a16:
7857 ir.ot = OT_LONG;
7858 break;
7859 case 0x660f3a17:
7860 ir.ot = OT_QUAD;
7861 break;
7862 default:
7863 ir.ot = OT_DQUAD;
7864 break;
7865 }
7866 if (i386_record_lea_modrm (&ir))
7867 return -1;
7868 }
7869 break;
7870
7871 case 0x0f2b: /* movntps */
7872 case 0x660f2b: /* movntpd */
7873 case 0x0fe7: /* movntq */
7874 case 0x660fe7: /* movntdq */
7875 if (ir.mod == 3)
7876 goto no_support;
7877 if (opcode == 0x0fe7)
7878 ir.ot = OT_QUAD;
7879 else
7880 ir.ot = OT_DQUAD;
7881 if (i386_record_lea_modrm (&ir))
7882 return -1;
7883 break;
7884
7885 case 0xf30f2c: /* cvttss2si */
7886 case 0xf20f2c: /* cvttsd2si */
7887 case 0xf30f2d: /* cvtss2si */
7888 case 0xf20f2d: /* cvtsd2si */
7889 case 0xf20f38f0: /* crc32 */
7890 case 0xf20f38f1: /* crc32 */
7891 case 0x0f50: /* movmskps */
7892 case 0x660f50: /* movmskpd */
7893 case 0x0fc5: /* pextrw */
7894 case 0x660fc5: /* pextrw */
7895 case 0x0fd7: /* pmovmskb */
7896 case 0x660fd7: /* pmovmskb */
7897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7898 break;
7899
7900 case 0x0f3800: /* pshufb */
7901 case 0x0f3801: /* phaddw */
7902 case 0x0f3802: /* phaddd */
7903 case 0x0f3803: /* phaddsw */
7904 case 0x0f3804: /* pmaddubsw */
7905 case 0x0f3805: /* phsubw */
7906 case 0x0f3806: /* phsubd */
7907 case 0x0f3807: /* phsubsw */
7908 case 0x0f3808: /* psignb */
7909 case 0x0f3809: /* psignw */
7910 case 0x0f380a: /* psignd */
7911 case 0x0f380b: /* pmulhrsw */
7912 case 0x0f381c: /* pabsb */
7913 case 0x0f381d: /* pabsw */
7914 case 0x0f381e: /* pabsd */
7915 case 0x0f382b: /* packusdw */
7916 case 0x0f3830: /* pmovzxbw */
7917 case 0x0f3831: /* pmovzxbd */
7918 case 0x0f3832: /* pmovzxbq */
7919 case 0x0f3833: /* pmovzxwd */
7920 case 0x0f3834: /* pmovzxwq */
7921 case 0x0f3835: /* pmovzxdq */
7922 case 0x0f3837: /* pcmpgtq */
7923 case 0x0f3838: /* pminsb */
7924 case 0x0f3839: /* pminsd */
7925 case 0x0f383a: /* pminuw */
7926 case 0x0f383b: /* pminud */
7927 case 0x0f383c: /* pmaxsb */
7928 case 0x0f383d: /* pmaxsd */
7929 case 0x0f383e: /* pmaxuw */
7930 case 0x0f383f: /* pmaxud */
7931 case 0x0f3840: /* pmulld */
7932 case 0x0f3841: /* phminposuw */
7933 case 0x0f3a0f: /* palignr */
7934 case 0x0f60: /* punpcklbw */
7935 case 0x0f61: /* punpcklwd */
7936 case 0x0f62: /* punpckldq */
7937 case 0x0f63: /* packsswb */
7938 case 0x0f64: /* pcmpgtb */
7939 case 0x0f65: /* pcmpgtw */
7940 case 0x0f66: /* pcmpgtd */
7941 case 0x0f67: /* packuswb */
7942 case 0x0f68: /* punpckhbw */
7943 case 0x0f69: /* punpckhwd */
7944 case 0x0f6a: /* punpckhdq */
7945 case 0x0f6b: /* packssdw */
7946 case 0x0f6e: /* movd */
7947 case 0x0f6f: /* movq */
7948 case 0x0f70: /* pshufw */
7949 case 0x0f74: /* pcmpeqb */
7950 case 0x0f75: /* pcmpeqw */
7951 case 0x0f76: /* pcmpeqd */
7952 case 0x0fc4: /* pinsrw */
7953 case 0x0fd1: /* psrlw */
7954 case 0x0fd2: /* psrld */
7955 case 0x0fd3: /* psrlq */
7956 case 0x0fd4: /* paddq */
7957 case 0x0fd5: /* pmullw */
7958 case 0xf20fd6: /* movdq2q */
7959 case 0x0fd8: /* psubusb */
7960 case 0x0fd9: /* psubusw */
7961 case 0x0fda: /* pminub */
7962 case 0x0fdb: /* pand */
7963 case 0x0fdc: /* paddusb */
7964 case 0x0fdd: /* paddusw */
7965 case 0x0fde: /* pmaxub */
7966 case 0x0fdf: /* pandn */
7967 case 0x0fe0: /* pavgb */
7968 case 0x0fe1: /* psraw */
7969 case 0x0fe2: /* psrad */
7970 case 0x0fe3: /* pavgw */
7971 case 0x0fe4: /* pmulhuw */
7972 case 0x0fe5: /* pmulhw */
7973 case 0x0fe8: /* psubsb */
7974 case 0x0fe9: /* psubsw */
7975 case 0x0fea: /* pminsw */
7976 case 0x0feb: /* por */
7977 case 0x0fec: /* paddsb */
7978 case 0x0fed: /* paddsw */
7979 case 0x0fee: /* pmaxsw */
7980 case 0x0fef: /* pxor */
7981 case 0x0ff1: /* psllw */
7982 case 0x0ff2: /* pslld */
7983 case 0x0ff3: /* psllq */
7984 case 0x0ff4: /* pmuludq */
7985 case 0x0ff5: /* pmaddwd */
7986 case 0x0ff6: /* psadbw */
7987 case 0x0ff8: /* psubb */
7988 case 0x0ff9: /* psubw */
7989 case 0x0ffa: /* psubd */
7990 case 0x0ffb: /* psubq */
7991 case 0x0ffc: /* paddb */
7992 case 0x0ffd: /* paddw */
7993 case 0x0ffe: /* paddd */
7994 if (i386_record_modrm (&ir))
7995 return -1;
7996 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7997 goto no_support;
7998 record_full_arch_list_add_reg (ir.regcache,
7999 I387_MM0_REGNUM (tdep) + ir.reg);
8000 break;
8001
8002 case 0x0f71: /* psllw */
8003 case 0x0f72: /* pslld */
8004 case 0x0f73: /* psllq */
8005 if (i386_record_modrm (&ir))
8006 return -1;
8007 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8008 goto no_support;
8009 record_full_arch_list_add_reg (ir.regcache,
8010 I387_MM0_REGNUM (tdep) + ir.rm);
8011 break;
8012
8013 case 0x660f71: /* psllw */
8014 case 0x660f72: /* pslld */
8015 case 0x660f73: /* psllq */
8016 if (i386_record_modrm (&ir))
8017 return -1;
8018 ir.rm |= ir.rex_b;
8019 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8020 goto no_support;
8021 record_full_arch_list_add_reg (ir.regcache,
8022 I387_XMM0_REGNUM (tdep) + ir.rm);
8023 break;
8024
8025 case 0x0f7e: /* movd */
8026 case 0x660f7e: /* movd */
8027 if (i386_record_modrm (&ir))
8028 return -1;
8029 if (ir.mod == 3)
8030 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8031 else
8032 {
8033 if (ir.dflag == 2)
8034 ir.ot = OT_QUAD;
8035 else
8036 ir.ot = OT_LONG;
8037 if (i386_record_lea_modrm (&ir))
8038 return -1;
8039 }
8040 break;
8041
8042 case 0x0f7f: /* movq */
8043 if (i386_record_modrm (&ir))
8044 return -1;
8045 if (ir.mod == 3)
8046 {
8047 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8048 goto no_support;
8049 record_full_arch_list_add_reg (ir.regcache,
8050 I387_MM0_REGNUM (tdep) + ir.rm);
8051 }
8052 else
8053 {
8054 ir.ot = OT_QUAD;
8055 if (i386_record_lea_modrm (&ir))
8056 return -1;
8057 }
8058 break;
8059
8060 case 0xf30fb8: /* popcnt */
8061 if (i386_record_modrm (&ir))
8062 return -1;
8063 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8064 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8065 break;
8066
8067 case 0x660fd6: /* movq */
8068 if (i386_record_modrm (&ir))
8069 return -1;
8070 if (ir.mod == 3)
8071 {
8072 ir.rm |= ir.rex_b;
8073 if (!i386_xmm_regnum_p (gdbarch,
8074 I387_XMM0_REGNUM (tdep) + ir.rm))
8075 goto no_support;
8076 record_full_arch_list_add_reg (ir.regcache,
8077 I387_XMM0_REGNUM (tdep) + ir.rm);
8078 }
8079 else
8080 {
8081 ir.ot = OT_QUAD;
8082 if (i386_record_lea_modrm (&ir))
8083 return -1;
8084 }
8085 break;
8086
8087 case 0x660f3817: /* ptest */
8088 case 0x0f2e: /* ucomiss */
8089 case 0x660f2e: /* ucomisd */
8090 case 0x0f2f: /* comiss */
8091 case 0x660f2f: /* comisd */
8092 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8093 break;
8094
8095 case 0x0ff7: /* maskmovq */
8096 regcache_raw_read_unsigned (ir.regcache,
8097 ir.regmap[X86_RECORD_REDI_REGNUM],
8098 &addr);
8099 if (record_full_arch_list_add_mem (addr, 64))
8100 return -1;
8101 break;
8102
8103 case 0x660ff7: /* maskmovdqu */
8104 regcache_raw_read_unsigned (ir.regcache,
8105 ir.regmap[X86_RECORD_REDI_REGNUM],
8106 &addr);
8107 if (record_full_arch_list_add_mem (addr, 128))
8108 return -1;
8109 break;
8110
8111 default:
8112 goto no_support;
8113 break;
8114 }
8115 break;
8116
8117 default:
8118 goto no_support;
8119 break;
8120 }
8121
8122 /* In the future, maybe still need to deal with need_dasm. */
8123 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8124 if (record_full_arch_list_add_end ())
8125 return -1;
8126
8127 return 0;
8128
8129 no_support:
8130 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8131 "at address %s.\n"),
8132 (unsigned int) (opcode),
8133 paddress (gdbarch, ir.orig_addr));
8134 return -1;
8135 }
8136
8137 static const int i386_record_regmap[] =
8138 {
8139 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8140 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8141 0, 0, 0, 0, 0, 0, 0, 0,
8142 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8143 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8144 };
8145
8146 /* Check that the given address appears suitable for a fast
8147 tracepoint, which on x86-64 means that we need an instruction of at
8148 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8149 jump and not have to worry about program jumps to an address in the
8150 middle of the tracepoint jump. On x86, it may be possible to use
8151 4-byte jumps with a 2-byte offset to a trampoline located in the
8152 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8153 of instruction to replace, and 0 if not, plus an explanatory
8154 string. */
8155
8156 static int
8157 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8158 std::string *msg)
8159 {
8160 int len, jumplen;
8161
8162 /* Ask the target for the minimum instruction length supported. */
8163 jumplen = target_get_min_fast_tracepoint_insn_len ();
8164
8165 if (jumplen < 0)
8166 {
8167 /* If the target does not support the get_min_fast_tracepoint_insn_len
8168 operation, assume that fast tracepoints will always be implemented
8169 using 4-byte relative jumps on both x86 and x86-64. */
8170 jumplen = 5;
8171 }
8172 else if (jumplen == 0)
8173 {
8174 /* If the target does support get_min_fast_tracepoint_insn_len but
8175 returns zero, then the IPA has not loaded yet. In this case,
8176 we optimistically assume that truncated 2-byte relative jumps
8177 will be available on x86, and compensate later if this assumption
8178 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8179 jumps will always be used. */
8180 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8181 }
8182
8183 /* Check for fit. */
8184 len = gdb_insn_length (gdbarch, addr);
8185
8186 if (len < jumplen)
8187 {
8188 /* Return a bit of target-specific detail to add to the caller's
8189 generic failure message. */
8190 if (msg)
8191 *msg = string_printf (_("; instruction is only %d bytes long, "
8192 "need at least %d bytes for the jump"),
8193 len, jumplen);
8194 return 0;
8195 }
8196 else
8197 {
8198 if (msg)
8199 msg->clear ();
8200 return 1;
8201 }
8202 }
8203
8204 /* Return a floating-point format for a floating-point variable of
8205 length LEN in bits. If non-NULL, NAME is the name of its type.
8206 If no suitable type is found, return NULL. */
8207
8208 static const struct floatformat **
8209 i386_floatformat_for_type (struct gdbarch *gdbarch,
8210 const char *name, int len)
8211 {
8212 if (len == 128 && name)
8213 if (strcmp (name, "__float128") == 0
8214 || strcmp (name, "_Float128") == 0
8215 || strcmp (name, "complex _Float128") == 0
8216 || strcmp (name, "complex(kind=16)") == 0
8217 || strcmp (name, "quad complex") == 0
8218 || strcmp (name, "real(kind=16)") == 0
8219 || strcmp (name, "real*16") == 0)
8220 return floatformats_ia64_quad;
8221
8222 return default_floatformat_for_type (gdbarch, name, len);
8223 }
8224
8225 static int
8226 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8227 struct tdesc_arch_data *tdesc_data)
8228 {
8229 const struct target_desc *tdesc = tdep->tdesc;
8230 const struct tdesc_feature *feature_core;
8231
8232 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8233 *feature_avx512, *feature_pkeys, *feature_segments;
8234 int i, num_regs, valid_p;
8235
8236 if (! tdesc_has_registers (tdesc))
8237 return 0;
8238
8239 /* Get core registers. */
8240 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8241 if (feature_core == NULL)
8242 return 0;
8243
8244 /* Get SSE registers. */
8245 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8246
8247 /* Try AVX registers. */
8248 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8249
8250 /* Try MPX registers. */
8251 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8252
8253 /* Try AVX512 registers. */
8254 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8255
8256 /* Try segment base registers. */
8257 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8258
8259 /* Try PKEYS */
8260 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8261
8262 valid_p = 1;
8263
8264 /* The XCR0 bits. */
8265 if (feature_avx512)
8266 {
8267 /* AVX512 register description requires AVX register description. */
8268 if (!feature_avx)
8269 return 0;
8270
8271 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8272
8273 /* It may have been set by OSABI initialization function. */
8274 if (tdep->k0_regnum < 0)
8275 {
8276 tdep->k_register_names = i386_k_names;
8277 tdep->k0_regnum = I386_K0_REGNUM;
8278 }
8279
8280 for (i = 0; i < I387_NUM_K_REGS; i++)
8281 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8282 tdep->k0_regnum + i,
8283 i386_k_names[i]);
8284
8285 if (tdep->num_zmm_regs == 0)
8286 {
8287 tdep->zmmh_register_names = i386_zmmh_names;
8288 tdep->num_zmm_regs = 8;
8289 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8290 }
8291
8292 for (i = 0; i < tdep->num_zmm_regs; i++)
8293 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8294 tdep->zmm0h_regnum + i,
8295 tdep->zmmh_register_names[i]);
8296
8297 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8298 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8299 tdep->xmm16_regnum + i,
8300 tdep->xmm_avx512_register_names[i]);
8301
8302 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8303 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8304 tdep->ymm16h_regnum + i,
8305 tdep->ymm16h_register_names[i]);
8306 }
8307 if (feature_avx)
8308 {
8309 /* AVX register description requires SSE register description. */
8310 if (!feature_sse)
8311 return 0;
8312
8313 if (!feature_avx512)
8314 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8315
8316 /* It may have been set by OSABI initialization function. */
8317 if (tdep->num_ymm_regs == 0)
8318 {
8319 tdep->ymmh_register_names = i386_ymmh_names;
8320 tdep->num_ymm_regs = 8;
8321 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8322 }
8323
8324 for (i = 0; i < tdep->num_ymm_regs; i++)
8325 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8326 tdep->ymm0h_regnum + i,
8327 tdep->ymmh_register_names[i]);
8328 }
8329 else if (feature_sse)
8330 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8331 else
8332 {
8333 tdep->xcr0 = X86_XSTATE_X87_MASK;
8334 tdep->num_xmm_regs = 0;
8335 }
8336
8337 num_regs = tdep->num_core_regs;
8338 for (i = 0; i < num_regs; i++)
8339 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8340 tdep->register_names[i]);
8341
8342 if (feature_sse)
8343 {
8344 /* Need to include %mxcsr, so add one. */
8345 num_regs += tdep->num_xmm_regs + 1;
8346 for (; i < num_regs; i++)
8347 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8348 tdep->register_names[i]);
8349 }
8350
8351 if (feature_mpx)
8352 {
8353 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8354
8355 if (tdep->bnd0r_regnum < 0)
8356 {
8357 tdep->mpx_register_names = i386_mpx_names;
8358 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8359 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8360 }
8361
8362 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8363 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8364 I387_BND0R_REGNUM (tdep) + i,
8365 tdep->mpx_register_names[i]);
8366 }
8367
8368 if (feature_segments)
8369 {
8370 if (tdep->fsbase_regnum < 0)
8371 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8372 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8373 tdep->fsbase_regnum, "fs_base");
8374 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8375 tdep->fsbase_regnum + 1, "gs_base");
8376 }
8377
8378 if (feature_pkeys)
8379 {
8380 tdep->xcr0 |= X86_XSTATE_PKRU;
8381 if (tdep->pkru_regnum < 0)
8382 {
8383 tdep->pkeys_register_names = i386_pkeys_names;
8384 tdep->pkru_regnum = I386_PKRU_REGNUM;
8385 tdep->num_pkeys_regs = 1;
8386 }
8387
8388 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8389 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8390 I387_PKRU_REGNUM (tdep) + i,
8391 tdep->pkeys_register_names[i]);
8392 }
8393
8394 return valid_p;
8395 }
8396
8397 \f
8398
8399 /* Implement the type_align gdbarch function. */
8400
8401 static ULONGEST
8402 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8403 {
8404 type = check_typedef (type);
8405
8406 if (gdbarch_ptr_bit (gdbarch) == 32)
8407 {
8408 if ((type->code () == TYPE_CODE_INT
8409 || type->code () == TYPE_CODE_FLT)
8410 && TYPE_LENGTH (type) > 4)
8411 return 4;
8412
8413 /* Handle x86's funny long double. */
8414 if (type->code () == TYPE_CODE_FLT
8415 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8416 return 4;
8417 }
8418
8419 return 0;
8420 }
8421
8422 \f
8423 /* Note: This is called for both i386 and amd64. */
8424
8425 static struct gdbarch *
8426 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8427 {
8428 struct gdbarch_tdep *tdep;
8429 struct gdbarch *gdbarch;
8430 const struct target_desc *tdesc;
8431 int mm0_regnum;
8432 int ymm0_regnum;
8433 int bnd0_regnum;
8434 int num_bnd_cooked;
8435
8436 /* If there is already a candidate, use it. */
8437 arches = gdbarch_list_lookup_by_info (arches, &info);
8438 if (arches != NULL)
8439 return arches->gdbarch;
8440
8441 /* Allocate space for the new architecture. Assume i386 for now. */
8442 tdep = XCNEW (struct gdbarch_tdep);
8443 gdbarch = gdbarch_alloc (&info, tdep);
8444
8445 /* General-purpose registers. */
8446 tdep->gregset_reg_offset = NULL;
8447 tdep->gregset_num_regs = I386_NUM_GREGS;
8448 tdep->sizeof_gregset = 0;
8449
8450 /* Floating-point registers. */
8451 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8452 tdep->fpregset = &i386_fpregset;
8453
8454 /* The default settings include the FPU registers, the MMX registers
8455 and the SSE registers. This can be overridden for a specific ABI
8456 by adjusting the members `st0_regnum', `mm0_regnum' and
8457 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8458 will show up in the output of "info all-registers". */
8459
8460 tdep->st0_regnum = I386_ST0_REGNUM;
8461
8462 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8463 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8464
8465 tdep->jb_pc_offset = -1;
8466 tdep->struct_return = pcc_struct_return;
8467 tdep->sigtramp_start = 0;
8468 tdep->sigtramp_end = 0;
8469 tdep->sigtramp_p = i386_sigtramp_p;
8470 tdep->sigcontext_addr = NULL;
8471 tdep->sc_reg_offset = NULL;
8472 tdep->sc_pc_offset = -1;
8473 tdep->sc_sp_offset = -1;
8474
8475 tdep->xsave_xcr0_offset = -1;
8476
8477 tdep->record_regmap = i386_record_regmap;
8478
8479 set_gdbarch_type_align (gdbarch, i386_type_align);
8480
8481 /* The format used for `long double' on almost all i386 targets is
8482 the i387 extended floating-point format. In fact, of all targets
8483 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8484 on having a `long double' that's not `long' at all. */
8485 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8486
8487 /* Although the i387 extended floating-point has only 80 significant
8488 bits, a `long double' actually takes up 96, probably to enforce
8489 alignment. */
8490 set_gdbarch_long_double_bit (gdbarch, 96);
8491
8492 /* Support of bfloat16 format. */
8493 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8494
8495 /* Support for floating-point data type variants. */
8496 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8497
8498 /* Register numbers of various important registers. */
8499 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8500 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8501 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8502 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8503
8504 /* NOTE: kettenis/20040418: GCC does have two possible register
8505 numbering schemes on the i386: dbx and SVR4. These schemes
8506 differ in how they number %ebp, %esp, %eflags, and the
8507 floating-point registers, and are implemented by the arrays
8508 dbx_register_map[] and svr4_dbx_register_map in
8509 gcc/config/i386.c. GCC also defines a third numbering scheme in
8510 gcc/config/i386.c, which it designates as the "default" register
8511 map used in 64bit mode. This last register numbering scheme is
8512 implemented in dbx64_register_map, and is used for AMD64; see
8513 amd64-tdep.c.
8514
8515 Currently, each GCC i386 target always uses the same register
8516 numbering scheme across all its supported debugging formats
8517 i.e. SDB (COFF), stabs and DWARF 2. This is because
8518 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8519 DBX_REGISTER_NUMBER macro which is defined by each target's
8520 respective config header in a manner independent of the requested
8521 output debugging format.
8522
8523 This does not match the arrangement below, which presumes that
8524 the SDB and stabs numbering schemes differ from the DWARF and
8525 DWARF 2 ones. The reason for this arrangement is that it is
8526 likely to get the numbering scheme for the target's
8527 default/native debug format right. For targets where GCC is the
8528 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8529 targets where the native toolchain uses a different numbering
8530 scheme for a particular debug format (stabs-in-ELF on Solaris)
8531 the defaults below will have to be overridden, like
8532 i386_elf_init_abi() does. */
8533
8534 /* Use the dbx register numbering scheme for stabs and COFF. */
8535 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8536 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8537
8538 /* Use the SVR4 register numbering scheme for DWARF 2. */
8539 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8540
8541 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8542 be in use on any of the supported i386 targets. */
8543
8544 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8545
8546 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8547
8548 /* Call dummy code. */
8549 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8550 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8551 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8552 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8553
8554 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8555 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8556 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8557
8558 set_gdbarch_return_value (gdbarch, i386_return_value);
8559
8560 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8561
8562 /* Stack grows downward. */
8563 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8564
8565 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8566 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8567
8568 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8569 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8570
8571 set_gdbarch_frame_args_skip (gdbarch, 8);
8572
8573 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8574
8575 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8576
8577 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8578
8579 /* Add the i386 register groups. */
8580 i386_add_reggroups (gdbarch);
8581 tdep->register_reggroup_p = i386_register_reggroup_p;
8582
8583 /* Helper for function argument information. */
8584 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8585
8586 /* Hook the function epilogue frame unwinder. This unwinder is
8587 appended to the list first, so that it supercedes the DWARF
8588 unwinder in function epilogues (where the DWARF unwinder
8589 currently fails). */
8590 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8591
8592 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8593 to the list before the prologue-based unwinders, so that DWARF
8594 CFI info will be used if it is available. */
8595 dwarf2_append_unwinders (gdbarch);
8596
8597 frame_base_set_default (gdbarch, &i386_frame_base);
8598
8599 /* Pseudo registers may be changed by amd64_init_abi. */
8600 set_gdbarch_pseudo_register_read_value (gdbarch,
8601 i386_pseudo_register_read_value);
8602 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8603 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8604 i386_ax_pseudo_register_collect);
8605
8606 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8607 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8608
8609 /* Override the normal target description method to make the AVX
8610 upper halves anonymous. */
8611 set_gdbarch_register_name (gdbarch, i386_register_name);
8612
8613 /* Even though the default ABI only includes general-purpose registers,
8614 floating-point registers and the SSE registers, we have to leave a
8615 gap for the upper AVX, MPX and AVX512 registers. */
8616 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8617
8618 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8619
8620 /* Get the x86 target description from INFO. */
8621 tdesc = info.target_desc;
8622 if (! tdesc_has_registers (tdesc))
8623 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8624 tdep->tdesc = tdesc;
8625
8626 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8627 tdep->register_names = i386_register_names;
8628
8629 /* No upper YMM registers. */
8630 tdep->ymmh_register_names = NULL;
8631 tdep->ymm0h_regnum = -1;
8632
8633 /* No upper ZMM registers. */
8634 tdep->zmmh_register_names = NULL;
8635 tdep->zmm0h_regnum = -1;
8636
8637 /* No high XMM registers. */
8638 tdep->xmm_avx512_register_names = NULL;
8639 tdep->xmm16_regnum = -1;
8640
8641 /* No upper YMM16-31 registers. */
8642 tdep->ymm16h_register_names = NULL;
8643 tdep->ymm16h_regnum = -1;
8644
8645 tdep->num_byte_regs = 8;
8646 tdep->num_word_regs = 8;
8647 tdep->num_dword_regs = 0;
8648 tdep->num_mmx_regs = 8;
8649 tdep->num_ymm_regs = 0;
8650
8651 /* No MPX registers. */
8652 tdep->bnd0r_regnum = -1;
8653 tdep->bndcfgu_regnum = -1;
8654
8655 /* No AVX512 registers. */
8656 tdep->k0_regnum = -1;
8657 tdep->num_zmm_regs = 0;
8658 tdep->num_ymm_avx512_regs = 0;
8659 tdep->num_xmm_avx512_regs = 0;
8660
8661 /* No PKEYS registers */
8662 tdep->pkru_regnum = -1;
8663 tdep->num_pkeys_regs = 0;
8664
8665 /* No segment base registers. */
8666 tdep->fsbase_regnum = -1;
8667
8668 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8669
8670 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8671
8672 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8673
8674 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8675 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8676 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8677
8678 /* Hook in ABI-specific overrides, if they have been registered.
8679 Note: If INFO specifies a 64 bit arch, this is where we turn
8680 a 32-bit i386 into a 64-bit amd64. */
8681 info.tdesc_data = tdesc_data.get ();
8682 gdbarch_init_osabi (info, gdbarch);
8683
8684 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8685 {
8686 xfree (tdep);
8687 gdbarch_free (gdbarch);
8688 return NULL;
8689 }
8690
8691 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8692
8693 /* Wire in pseudo registers. Number of pseudo registers may be
8694 changed. */
8695 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8696 + tdep->num_word_regs
8697 + tdep->num_dword_regs
8698 + tdep->num_mmx_regs
8699 + tdep->num_ymm_regs
8700 + num_bnd_cooked
8701 + tdep->num_ymm_avx512_regs
8702 + tdep->num_zmm_regs));
8703
8704 /* Target description may be changed. */
8705 tdesc = tdep->tdesc;
8706
8707 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8708
8709 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8710 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8711
8712 /* Make %al the first pseudo-register. */
8713 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8714 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8715
8716 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8717 if (tdep->num_dword_regs)
8718 {
8719 /* Support dword pseudo-register if it hasn't been disabled. */
8720 tdep->eax_regnum = ymm0_regnum;
8721 ymm0_regnum += tdep->num_dword_regs;
8722 }
8723 else
8724 tdep->eax_regnum = -1;
8725
8726 mm0_regnum = ymm0_regnum;
8727 if (tdep->num_ymm_regs)
8728 {
8729 /* Support YMM pseudo-register if it is available. */
8730 tdep->ymm0_regnum = ymm0_regnum;
8731 mm0_regnum += tdep->num_ymm_regs;
8732 }
8733 else
8734 tdep->ymm0_regnum = -1;
8735
8736 if (tdep->num_ymm_avx512_regs)
8737 {
8738 /* Support YMM16-31 pseudo registers if available. */
8739 tdep->ymm16_regnum = mm0_regnum;
8740 mm0_regnum += tdep->num_ymm_avx512_regs;
8741 }
8742 else
8743 tdep->ymm16_regnum = -1;
8744
8745 if (tdep->num_zmm_regs)
8746 {
8747 /* Support ZMM pseudo-register if it is available. */
8748 tdep->zmm0_regnum = mm0_regnum;
8749 mm0_regnum += tdep->num_zmm_regs;
8750 }
8751 else
8752 tdep->zmm0_regnum = -1;
8753
8754 bnd0_regnum = mm0_regnum;
8755 if (tdep->num_mmx_regs != 0)
8756 {
8757 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8758 tdep->mm0_regnum = mm0_regnum;
8759 bnd0_regnum += tdep->num_mmx_regs;
8760 }
8761 else
8762 tdep->mm0_regnum = -1;
8763
8764 if (tdep->bnd0r_regnum > 0)
8765 tdep->bnd0_regnum = bnd0_regnum;
8766 else
8767 tdep-> bnd0_regnum = -1;
8768
8769 /* Hook in the legacy prologue-based unwinders last (fallback). */
8770 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8771 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8772 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8773
8774 /* If we have a register mapping, enable the generic core file
8775 support, unless it has already been enabled. */
8776 if (tdep->gregset_reg_offset
8777 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8778 set_gdbarch_iterate_over_regset_sections
8779 (gdbarch, i386_iterate_over_regset_sections);
8780
8781 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8782 i386_fast_tracepoint_valid_at);
8783
8784 return gdbarch;
8785 }
8786
8787 \f
8788
8789 /* Return the target description for a specified XSAVE feature mask. */
8790
8791 const struct target_desc *
8792 i386_target_description (uint64_t xcr0, bool segments)
8793 {
8794 static target_desc *i386_tdescs \
8795 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8796 target_desc **tdesc;
8797
8798 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8799 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8800 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8801 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8802 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8803 [segments ? 1 : 0];
8804
8805 if (*tdesc == NULL)
8806 *tdesc = i386_create_target_description (xcr0, false, segments);
8807
8808 return *tdesc;
8809 }
8810
8811 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8812
8813 /* Find the bound directory base address. */
8814
8815 static unsigned long
8816 i386_mpx_bd_base (void)
8817 {
8818 struct regcache *rcache;
8819 struct gdbarch_tdep *tdep;
8820 ULONGEST ret;
8821 enum register_status regstatus;
8822
8823 rcache = get_current_regcache ();
8824 tdep = gdbarch_tdep (rcache->arch ());
8825
8826 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8827
8828 if (regstatus != REG_VALID)
8829 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8830
8831 return ret & MPX_BASE_MASK;
8832 }
8833
8834 int
8835 i386_mpx_enabled (void)
8836 {
8837 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8838 const struct target_desc *tdesc = tdep->tdesc;
8839
8840 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8841 }
8842
8843 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8844 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8845 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8846 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8847
8848 /* Find the bound table entry given the pointer location and the base
8849 address of the table. */
8850
8851 static CORE_ADDR
8852 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8853 {
8854 CORE_ADDR offset1;
8855 CORE_ADDR offset2;
8856 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8857 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8858 CORE_ADDR bd_entry_addr;
8859 CORE_ADDR bt_addr;
8860 CORE_ADDR bd_entry;
8861 struct gdbarch *gdbarch = get_current_arch ();
8862 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8863
8864
8865 if (gdbarch_ptr_bit (gdbarch) == 64)
8866 {
8867 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8868 bd_ptr_r_shift = 20;
8869 bd_ptr_l_shift = 3;
8870 bt_select_r_shift = 3;
8871 bt_select_l_shift = 5;
8872 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8873
8874 if ( sizeof (CORE_ADDR) == 4)
8875 error (_("bound table examination not supported\
8876 for 64-bit process with 32-bit GDB"));
8877 }
8878 else
8879 {
8880 mpx_bd_mask = MPX_BD_MASK_32;
8881 bd_ptr_r_shift = 12;
8882 bd_ptr_l_shift = 2;
8883 bt_select_r_shift = 2;
8884 bt_select_l_shift = 4;
8885 bt_mask = MPX_BT_MASK_32;
8886 }
8887
8888 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8889 bd_entry_addr = bd_base + offset1;
8890 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8891
8892 if ((bd_entry & 0x1) == 0)
8893 error (_("Invalid bounds directory entry at %s."),
8894 paddress (get_current_arch (), bd_entry_addr));
8895
8896 /* Clearing status bit. */
8897 bd_entry--;
8898 bt_addr = bd_entry & ~bt_select_r_shift;
8899 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8900
8901 return bt_addr + offset2;
8902 }
8903
8904 /* Print routine for the mpx bounds. */
8905
8906 static void
8907 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8908 {
8909 struct ui_out *uiout = current_uiout;
8910 LONGEST size;
8911 struct gdbarch *gdbarch = get_current_arch ();
8912 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8913 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8914
8915 if (bounds_in_map == 1)
8916 {
8917 uiout->text ("Null bounds on map:");
8918 uiout->text (" pointer value = ");
8919 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8920 uiout->text (".");
8921 uiout->text ("\n");
8922 }
8923 else
8924 {
8925 uiout->text ("{lbound = ");
8926 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8927 uiout->text (", ubound = ");
8928
8929 /* The upper bound is stored in 1's complement. */
8930 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8931 uiout->text ("}: pointer value = ");
8932 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8933
8934 if (gdbarch_ptr_bit (gdbarch) == 64)
8935 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8936 else
8937 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8938
8939 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8940 -1 represents in this sense full memory access, and there is no need
8941 one to the size. */
8942
8943 size = (size > -1 ? size + 1 : size);
8944 uiout->text (", size = ");
8945 uiout->field_string ("size", plongest (size));
8946
8947 uiout->text (", metadata = ");
8948 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8949 uiout->text ("\n");
8950 }
8951 }
8952
8953 /* Implement the command "show mpx bound". */
8954
8955 static void
8956 i386_mpx_info_bounds (const char *args, int from_tty)
8957 {
8958 CORE_ADDR bd_base = 0;
8959 CORE_ADDR addr;
8960 CORE_ADDR bt_entry_addr = 0;
8961 CORE_ADDR bt_entry[4];
8962 int i;
8963 struct gdbarch *gdbarch = get_current_arch ();
8964 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8965
8966 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8967 || !i386_mpx_enabled ())
8968 {
8969 printf_unfiltered (_("Intel Memory Protection Extensions not "
8970 "supported on this target.\n"));
8971 return;
8972 }
8973
8974 if (args == NULL)
8975 {
8976 printf_unfiltered (_("Address of pointer variable expected.\n"));
8977 return;
8978 }
8979
8980 addr = parse_and_eval_address (args);
8981
8982 bd_base = i386_mpx_bd_base ();
8983 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8984
8985 memset (bt_entry, 0, sizeof (bt_entry));
8986
8987 for (i = 0; i < 4; i++)
8988 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8989 + i * TYPE_LENGTH (data_ptr_type),
8990 data_ptr_type);
8991
8992 i386_mpx_print_bounds (bt_entry);
8993 }
8994
8995 /* Implement the command "set mpx bound". */
8996
8997 static void
8998 i386_mpx_set_bounds (const char *args, int from_tty)
8999 {
9000 CORE_ADDR bd_base = 0;
9001 CORE_ADDR addr, lower, upper;
9002 CORE_ADDR bt_entry_addr = 0;
9003 CORE_ADDR bt_entry[2];
9004 const char *input = args;
9005 int i;
9006 struct gdbarch *gdbarch = get_current_arch ();
9007 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9008 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9009
9010 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9011 || !i386_mpx_enabled ())
9012 error (_("Intel Memory Protection Extensions not supported\
9013 on this target."));
9014
9015 if (args == NULL)
9016 error (_("Pointer value expected."));
9017
9018 addr = value_as_address (parse_to_comma_and_eval (&input));
9019
9020 if (input[0] == ',')
9021 ++input;
9022 if (input[0] == '\0')
9023 error (_("wrong number of arguments: missing lower and upper bound."));
9024 lower = value_as_address (parse_to_comma_and_eval (&input));
9025
9026 if (input[0] == ',')
9027 ++input;
9028 if (input[0] == '\0')
9029 error (_("Wrong number of arguments; Missing upper bound."));
9030 upper = value_as_address (parse_to_comma_and_eval (&input));
9031
9032 bd_base = i386_mpx_bd_base ();
9033 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9034 for (i = 0; i < 2; i++)
9035 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9036 + i * TYPE_LENGTH (data_ptr_type),
9037 data_ptr_type);
9038 bt_entry[0] = (uint64_t) lower;
9039 bt_entry[1] = ~(uint64_t) upper;
9040
9041 for (i = 0; i < 2; i++)
9042 write_memory_unsigned_integer (bt_entry_addr
9043 + i * TYPE_LENGTH (data_ptr_type),
9044 TYPE_LENGTH (data_ptr_type), byte_order,
9045 bt_entry[i]);
9046 }
9047
9048 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9049
9050 void _initialize_i386_tdep ();
9051 void
9052 _initialize_i386_tdep ()
9053 {
9054 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9055
9056 /* Add the variable that controls the disassembly flavor. */
9057 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9058 &disassembly_flavor, _("\
9059 Set the disassembly flavor."), _("\
9060 Show the disassembly flavor."), _("\
9061 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9062 NULL,
9063 NULL, /* FIXME: i18n: */
9064 &setlist, &showlist);
9065
9066 /* Add the variable that controls the convention for returning
9067 structs. */
9068 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9069 &struct_convention, _("\
9070 Set the convention for returning small structs."), _("\
9071 Show the convention for returning small structs."), _("\
9072 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9073 is \"default\"."),
9074 NULL,
9075 NULL, /* FIXME: i18n: */
9076 &setlist, &showlist);
9077
9078 /* Add "mpx" prefix for the set commands. */
9079
9080 add_basic_prefix_cmd ("mpx", class_support, _("\
9081 Set Intel Memory Protection Extensions specific variables."),
9082 &mpx_set_cmdlist, "set mpx ",
9083 0 /* allow-unknown */, &setlist);
9084
9085 /* Add "mpx" prefix for the show commands. */
9086
9087 add_show_prefix_cmd ("mpx", class_support, _("\
9088 Show Intel Memory Protection Extensions specific variables."),
9089 &mpx_show_cmdlist, "show mpx ",
9090 0 /* allow-unknown */, &showlist);
9091
9092 /* Add "bound" command for the show mpx commands list. */
9093
9094 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9095 "Show the memory bounds for a given array/pointer storage\
9096 in the bound table.",
9097 &mpx_show_cmdlist);
9098
9099 /* Add "bound" command for the set mpx commands list. */
9100
9101 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9102 "Set the memory bounds for a given array/pointer storage\
9103 in the bound table.",
9104 &mpx_set_cmdlist);
9105
9106 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9107 i386_svr4_init_abi);
9108
9109 /* Initialize the i386-specific register groups. */
9110 i386_init_reggroups ();
9111
9112 /* Tell remote stub that we support XML target description. */
9113 register_remote_support_xml ("i386");
9114 }