]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
Rename target descriptions to reflect actual content of description.
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx-mpx.c"
57 #include "features/i386/i386-avx-mpx-avx512.c"
58 #include "features/i386/i386-mmx.c"
59
60 #include "ax.h"
61 #include "ax-gdb.h"
62
63 #include "stap-probe.h"
64 #include "user-regs.h"
65 #include "cli/cli-utils.h"
66 #include "expression.h"
67 #include "parser-defs.h"
68 #include <ctype.h>
69 #include <algorithm>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_zmm_names[] =
89 {
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92 };
93
94 static const char *i386_zmmh_names[] =
95 {
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 };
99
100 static const char *i386_k_names[] =
101 {
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104 };
105
106 static const char *i386_ymm_names[] =
107 {
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110 };
111
112 static const char *i386_ymmh_names[] =
113 {
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 };
117
118 static const char *i386_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 /* Register names for MPX pseudo-registers. */
124
125 static const char *i386_bnd_names[] =
126 {
127 "bnd0", "bnd1", "bnd2", "bnd3"
128 };
129
130 /* Register names for MMX pseudo-registers. */
131
132 static const char *i386_mmx_names[] =
133 {
134 "mm0", "mm1", "mm2", "mm3",
135 "mm4", "mm5", "mm6", "mm7"
136 };
137
138 /* Register names for byte pseudo-registers. */
139
140 static const char *i386_byte_names[] =
141 {
142 "al", "cl", "dl", "bl",
143 "ah", "ch", "dh", "bh"
144 };
145
146 /* Register names for word pseudo-registers. */
147
148 static const char *i386_word_names[] =
149 {
150 "ax", "cx", "dx", "bx",
151 "", "bp", "si", "di"
152 };
153
154 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
155 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
156 we have 16 upper ZMM regs that have to be handled differently. */
157
158 const int num_lower_zmm_regs = 16;
159
160 /* MMX register? */
161
162 static int
163 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
164 {
165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
166 int mm0_regnum = tdep->mm0_regnum;
167
168 if (mm0_regnum < 0)
169 return 0;
170
171 regnum -= mm0_regnum;
172 return regnum >= 0 && regnum < tdep->num_mmx_regs;
173 }
174
175 /* Byte register? */
176
177 int
178 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 regnum -= tdep->al_regnum;
183 return regnum >= 0 && regnum < tdep->num_byte_regs;
184 }
185
186 /* Word register? */
187
188 int
189 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
190 {
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 regnum -= tdep->ax_regnum;
194 return regnum >= 0 && regnum < tdep->num_word_regs;
195 }
196
197 /* Dword register? */
198
199 int
200 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
201 {
202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
203 int eax_regnum = tdep->eax_regnum;
204
205 if (eax_regnum < 0)
206 return 0;
207
208 regnum -= eax_regnum;
209 return regnum >= 0 && regnum < tdep->num_dword_regs;
210 }
211
212 /* AVX512 register? */
213
214 int
215 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
216 {
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218 int zmm0h_regnum = tdep->zmm0h_regnum;
219
220 if (zmm0h_regnum < 0)
221 return 0;
222
223 regnum -= zmm0h_regnum;
224 return regnum >= 0 && regnum < tdep->num_zmm_regs;
225 }
226
227 int
228 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
229 {
230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
231 int zmm0_regnum = tdep->zmm0_regnum;
232
233 if (zmm0_regnum < 0)
234 return 0;
235
236 regnum -= zmm0_regnum;
237 return regnum >= 0 && regnum < tdep->num_zmm_regs;
238 }
239
240 int
241 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
242 {
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 int k0_regnum = tdep->k0_regnum;
245
246 if (k0_regnum < 0)
247 return 0;
248
249 regnum -= k0_regnum;
250 return regnum >= 0 && regnum < I387_NUM_K_REGS;
251 }
252
253 static int
254 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
255 {
256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257 int ymm0h_regnum = tdep->ymm0h_regnum;
258
259 if (ymm0h_regnum < 0)
260 return 0;
261
262 regnum -= ymm0h_regnum;
263 return regnum >= 0 && regnum < tdep->num_ymm_regs;
264 }
265
266 /* AVX register? */
267
268 int
269 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
270 {
271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272 int ymm0_regnum = tdep->ymm0_regnum;
273
274 if (ymm0_regnum < 0)
275 return 0;
276
277 regnum -= ymm0_regnum;
278 return regnum >= 0 && regnum < tdep->num_ymm_regs;
279 }
280
281 static int
282 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
283 {
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 int ymm16h_regnum = tdep->ymm16h_regnum;
286
287 if (ymm16h_regnum < 0)
288 return 0;
289
290 regnum -= ymm16h_regnum;
291 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
292 }
293
294 int
295 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
296 {
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 int ymm16_regnum = tdep->ymm16_regnum;
299
300 if (ymm16_regnum < 0)
301 return 0;
302
303 regnum -= ymm16_regnum;
304 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
305 }
306
307 /* BND register? */
308
309 int
310 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
311 {
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
313 int bnd0_regnum = tdep->bnd0_regnum;
314
315 if (bnd0_regnum < 0)
316 return 0;
317
318 regnum -= bnd0_regnum;
319 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
320 }
321
322 /* SSE register? */
323
324 int
325 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
326 {
327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
328 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
329
330 if (num_xmm_regs == 0)
331 return 0;
332
333 regnum -= I387_XMM0_REGNUM (tdep);
334 return regnum >= 0 && regnum < num_xmm_regs;
335 }
336
337 /* XMM_512 register? */
338
339 int
340 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
341 {
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
344
345 if (num_xmm_avx512_regs == 0)
346 return 0;
347
348 regnum -= I387_XMM16_REGNUM (tdep);
349 return regnum >= 0 && regnum < num_xmm_avx512_regs;
350 }
351
352 static int
353 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 if (I387_NUM_XMM_REGS (tdep) == 0)
358 return 0;
359
360 return (regnum == I387_MXCSR_REGNUM (tdep));
361 }
362
363 /* FP register? */
364
365 int
366 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
367 {
368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
369
370 if (I387_ST0_REGNUM (tdep) < 0)
371 return 0;
372
373 return (I387_ST0_REGNUM (tdep) <= regnum
374 && regnum < I387_FCTRL_REGNUM (tdep));
375 }
376
377 int
378 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
379 {
380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
381
382 if (I387_ST0_REGNUM (tdep) < 0)
383 return 0;
384
385 return (I387_FCTRL_REGNUM (tdep) <= regnum
386 && regnum < I387_XMM0_REGNUM (tdep));
387 }
388
389 /* BNDr (raw) register? */
390
391 static int
392 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
393 {
394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
395
396 if (I387_BND0R_REGNUM (tdep) < 0)
397 return 0;
398
399 regnum -= tdep->bnd0r_regnum;
400 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
401 }
402
403 /* BND control register? */
404
405 static int
406 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
407 {
408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409
410 if (I387_BNDCFGU_REGNUM (tdep) < 0)
411 return 0;
412
413 regnum -= I387_BNDCFGU_REGNUM (tdep);
414 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
415 }
416
417 /* Return the name of register REGNUM, or the empty string if it is
418 an anonymous register. */
419
420 static const char *
421 i386_register_name (struct gdbarch *gdbarch, int regnum)
422 {
423 /* Hide the upper YMM registers. */
424 if (i386_ymmh_regnum_p (gdbarch, regnum))
425 return "";
426
427 /* Hide the upper YMM16-31 registers. */
428 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
429 return "";
430
431 /* Hide the upper ZMM registers. */
432 if (i386_zmmh_regnum_p (gdbarch, regnum))
433 return "";
434
435 return tdesc_register_name (gdbarch, regnum);
436 }
437
438 /* Return the name of register REGNUM. */
439
440 const char *
441 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
442 {
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 if (i386_bnd_regnum_p (gdbarch, regnum))
445 return i386_bnd_names[regnum - tdep->bnd0_regnum];
446 if (i386_mmx_regnum_p (gdbarch, regnum))
447 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
448 else if (i386_ymm_regnum_p (gdbarch, regnum))
449 return i386_ymm_names[regnum - tdep->ymm0_regnum];
450 else if (i386_zmm_regnum_p (gdbarch, regnum))
451 return i386_zmm_names[regnum - tdep->zmm0_regnum];
452 else if (i386_byte_regnum_p (gdbarch, regnum))
453 return i386_byte_names[regnum - tdep->al_regnum];
454 else if (i386_word_regnum_p (gdbarch, regnum))
455 return i386_word_names[regnum - tdep->ax_regnum];
456
457 internal_error (__FILE__, __LINE__, _("invalid regnum"));
458 }
459
460 /* Convert a dbx register number REG to the appropriate register
461 number used by GDB. */
462
463 static int
464 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
465 {
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
468 /* This implements what GCC calls the "default" register map
469 (dbx_register_map[]). */
470
471 if (reg >= 0 && reg <= 7)
472 {
473 /* General-purpose registers. The debug info calls %ebp
474 register 4, and %esp register 5. */
475 if (reg == 4)
476 return 5;
477 else if (reg == 5)
478 return 4;
479 else return reg;
480 }
481 else if (reg >= 12 && reg <= 19)
482 {
483 /* Floating-point registers. */
484 return reg - 12 + I387_ST0_REGNUM (tdep);
485 }
486 else if (reg >= 21 && reg <= 28)
487 {
488 /* SSE registers. */
489 int ymm0_regnum = tdep->ymm0_regnum;
490
491 if (ymm0_regnum >= 0
492 && i386_xmm_regnum_p (gdbarch, reg))
493 return reg - 21 + ymm0_regnum;
494 else
495 return reg - 21 + I387_XMM0_REGNUM (tdep);
496 }
497 else if (reg >= 29 && reg <= 36)
498 {
499 /* MMX registers. */
500 return reg - 29 + I387_MM0_REGNUM (tdep);
501 }
502
503 /* This will hopefully provoke a warning. */
504 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
505 }
506
507 /* Convert SVR4 DWARF register number REG to the appropriate register number
508 used by GDB. */
509
510 static int
511 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
512 {
513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
514
515 /* This implements the GCC register map that tries to be compatible
516 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
517
518 /* The SVR4 register numbering includes %eip and %eflags, and
519 numbers the floating point registers differently. */
520 if (reg >= 0 && reg <= 9)
521 {
522 /* General-purpose registers. */
523 return reg;
524 }
525 else if (reg >= 11 && reg <= 18)
526 {
527 /* Floating-point registers. */
528 return reg - 11 + I387_ST0_REGNUM (tdep);
529 }
530 else if (reg >= 21 && reg <= 36)
531 {
532 /* The SSE and MMX registers have the same numbers as with dbx. */
533 return i386_dbx_reg_to_regnum (gdbarch, reg);
534 }
535
536 switch (reg)
537 {
538 case 37: return I387_FCTRL_REGNUM (tdep);
539 case 38: return I387_FSTAT_REGNUM (tdep);
540 case 39: return I387_MXCSR_REGNUM (tdep);
541 case 40: return I386_ES_REGNUM;
542 case 41: return I386_CS_REGNUM;
543 case 42: return I386_SS_REGNUM;
544 case 43: return I386_DS_REGNUM;
545 case 44: return I386_FS_REGNUM;
546 case 45: return I386_GS_REGNUM;
547 }
548
549 return -1;
550 }
551
552 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
553 num_regs + num_pseudo_regs for other debug formats. */
554
555 static int
556 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
557 {
558 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
559
560 if (regnum == -1)
561 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
562 return regnum;
563 }
564
565 \f
566
567 /* This is the variable that is set with "set disassembly-flavor", and
568 its legitimate values. */
569 static const char att_flavor[] = "att";
570 static const char intel_flavor[] = "intel";
571 static const char *const valid_flavors[] =
572 {
573 att_flavor,
574 intel_flavor,
575 NULL
576 };
577 static const char *disassembly_flavor = att_flavor;
578 \f
579
580 /* Use the program counter to determine the contents and size of a
581 breakpoint instruction. Return a pointer to a string of bytes that
582 encode a breakpoint instruction, store the length of the string in
583 *LEN and optionally adjust *PC to point to the correct memory
584 location for inserting the breakpoint.
585
586 On the i386 we have a single breakpoint that fits in a single byte
587 and can be inserted anywhere.
588
589 This function is 64-bit safe. */
590
591 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
592
593 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
594
595 \f
596 /* Displaced instruction handling. */
597
598 /* Skip the legacy instruction prefixes in INSN.
599 Not all prefixes are valid for any particular insn
600 but we needn't care, the insn will fault if it's invalid.
601 The result is a pointer to the first opcode byte,
602 or NULL if we run off the end of the buffer. */
603
604 static gdb_byte *
605 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
606 {
607 gdb_byte *end = insn + max_len;
608
609 while (insn < end)
610 {
611 switch (*insn)
612 {
613 case DATA_PREFIX_OPCODE:
614 case ADDR_PREFIX_OPCODE:
615 case CS_PREFIX_OPCODE:
616 case DS_PREFIX_OPCODE:
617 case ES_PREFIX_OPCODE:
618 case FS_PREFIX_OPCODE:
619 case GS_PREFIX_OPCODE:
620 case SS_PREFIX_OPCODE:
621 case LOCK_PREFIX_OPCODE:
622 case REPE_PREFIX_OPCODE:
623 case REPNE_PREFIX_OPCODE:
624 ++insn;
625 continue;
626 default:
627 return insn;
628 }
629 }
630
631 return NULL;
632 }
633
634 static int
635 i386_absolute_jmp_p (const gdb_byte *insn)
636 {
637 /* jmp far (absolute address in operand). */
638 if (insn[0] == 0xea)
639 return 1;
640
641 if (insn[0] == 0xff)
642 {
643 /* jump near, absolute indirect (/4). */
644 if ((insn[1] & 0x38) == 0x20)
645 return 1;
646
647 /* jump far, absolute indirect (/5). */
648 if ((insn[1] & 0x38) == 0x28)
649 return 1;
650 }
651
652 return 0;
653 }
654
655 /* Return non-zero if INSN is a jump, zero otherwise. */
656
657 static int
658 i386_jmp_p (const gdb_byte *insn)
659 {
660 /* jump short, relative. */
661 if (insn[0] == 0xeb)
662 return 1;
663
664 /* jump near, relative. */
665 if (insn[0] == 0xe9)
666 return 1;
667
668 return i386_absolute_jmp_p (insn);
669 }
670
671 static int
672 i386_absolute_call_p (const gdb_byte *insn)
673 {
674 /* call far, absolute. */
675 if (insn[0] == 0x9a)
676 return 1;
677
678 if (insn[0] == 0xff)
679 {
680 /* Call near, absolute indirect (/2). */
681 if ((insn[1] & 0x38) == 0x10)
682 return 1;
683
684 /* Call far, absolute indirect (/3). */
685 if ((insn[1] & 0x38) == 0x18)
686 return 1;
687 }
688
689 return 0;
690 }
691
692 static int
693 i386_ret_p (const gdb_byte *insn)
694 {
695 switch (insn[0])
696 {
697 case 0xc2: /* ret near, pop N bytes. */
698 case 0xc3: /* ret near */
699 case 0xca: /* ret far, pop N bytes. */
700 case 0xcb: /* ret far */
701 case 0xcf: /* iret */
702 return 1;
703
704 default:
705 return 0;
706 }
707 }
708
709 static int
710 i386_call_p (const gdb_byte *insn)
711 {
712 if (i386_absolute_call_p (insn))
713 return 1;
714
715 /* call near, relative. */
716 if (insn[0] == 0xe8)
717 return 1;
718
719 return 0;
720 }
721
722 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
723 length in bytes. Otherwise, return zero. */
724
725 static int
726 i386_syscall_p (const gdb_byte *insn, int *lengthp)
727 {
728 /* Is it 'int $0x80'? */
729 if ((insn[0] == 0xcd && insn[1] == 0x80)
730 /* Or is it 'sysenter'? */
731 || (insn[0] == 0x0f && insn[1] == 0x34)
732 /* Or is it 'syscall'? */
733 || (insn[0] == 0x0f && insn[1] == 0x05))
734 {
735 *lengthp = 2;
736 return 1;
737 }
738
739 return 0;
740 }
741
742 /* The gdbarch insn_is_call method. */
743
744 static int
745 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
746 {
747 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
748
749 read_code (addr, buf, I386_MAX_INSN_LEN);
750 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
751
752 return i386_call_p (insn);
753 }
754
755 /* The gdbarch insn_is_ret method. */
756
757 static int
758 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
759 {
760 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
761
762 read_code (addr, buf, I386_MAX_INSN_LEN);
763 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
764
765 return i386_ret_p (insn);
766 }
767
768 /* The gdbarch insn_is_jump method. */
769
770 static int
771 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
772 {
773 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
774
775 read_code (addr, buf, I386_MAX_INSN_LEN);
776 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
777
778 return i386_jmp_p (insn);
779 }
780
781 /* Some kernels may run one past a syscall insn, so we have to cope.
782 Otherwise this is just simple_displaced_step_copy_insn. */
783
784 struct displaced_step_closure *
785 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
786 CORE_ADDR from, CORE_ADDR to,
787 struct regcache *regs)
788 {
789 size_t len = gdbarch_max_insn_length (gdbarch);
790 gdb_byte *buf = (gdb_byte *) xmalloc (len);
791
792 read_memory (from, buf, len);
793
794 /* GDB may get control back after the insn after the syscall.
795 Presumably this is a kernel bug.
796 If this is a syscall, make sure there's a nop afterwards. */
797 {
798 int syscall_length;
799 gdb_byte *insn;
800
801 insn = i386_skip_prefixes (buf, len);
802 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
803 insn[syscall_length] = NOP_OPCODE;
804 }
805
806 write_memory (to, buf, len);
807
808 if (debug_displaced)
809 {
810 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
811 paddress (gdbarch, from), paddress (gdbarch, to));
812 displaced_step_dump_bytes (gdb_stdlog, buf, len);
813 }
814
815 return (struct displaced_step_closure *) buf;
816 }
817
818 /* Fix up the state of registers and memory after having single-stepped
819 a displaced instruction. */
820
821 void
822 i386_displaced_step_fixup (struct gdbarch *gdbarch,
823 struct displaced_step_closure *closure,
824 CORE_ADDR from, CORE_ADDR to,
825 struct regcache *regs)
826 {
827 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
828
829 /* The offset we applied to the instruction's address.
830 This could well be negative (when viewed as a signed 32-bit
831 value), but ULONGEST won't reflect that, so take care when
832 applying it. */
833 ULONGEST insn_offset = to - from;
834
835 /* Since we use simple_displaced_step_copy_insn, our closure is a
836 copy of the instruction. */
837 gdb_byte *insn = (gdb_byte *) closure;
838 /* The start of the insn, needed in case we see some prefixes. */
839 gdb_byte *insn_start = insn;
840
841 if (debug_displaced)
842 fprintf_unfiltered (gdb_stdlog,
843 "displaced: fixup (%s, %s), "
844 "insn = 0x%02x 0x%02x ...\n",
845 paddress (gdbarch, from), paddress (gdbarch, to),
846 insn[0], insn[1]);
847
848 /* The list of issues to contend with here is taken from
849 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
850 Yay for Free Software! */
851
852 /* Relocate the %eip, if necessary. */
853
854 /* The instruction recognizers we use assume any leading prefixes
855 have been skipped. */
856 {
857 /* This is the size of the buffer in closure. */
858 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
859 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
860 /* If there are too many prefixes, just ignore the insn.
861 It will fault when run. */
862 if (opcode != NULL)
863 insn = opcode;
864 }
865
866 /* Except in the case of absolute or indirect jump or call
867 instructions, or a return instruction, the new eip is relative to
868 the displaced instruction; make it relative. Well, signal
869 handler returns don't need relocation either, but we use the
870 value of %eip to recognize those; see below. */
871 if (! i386_absolute_jmp_p (insn)
872 && ! i386_absolute_call_p (insn)
873 && ! i386_ret_p (insn))
874 {
875 ULONGEST orig_eip;
876 int insn_len;
877
878 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
879
880 /* A signal trampoline system call changes the %eip, resuming
881 execution of the main program after the signal handler has
882 returned. That makes them like 'return' instructions; we
883 shouldn't relocate %eip.
884
885 But most system calls don't, and we do need to relocate %eip.
886
887 Our heuristic for distinguishing these cases: if stepping
888 over the system call instruction left control directly after
889 the instruction, the we relocate --- control almost certainly
890 doesn't belong in the displaced copy. Otherwise, we assume
891 the instruction has put control where it belongs, and leave
892 it unrelocated. Goodness help us if there are PC-relative
893 system calls. */
894 if (i386_syscall_p (insn, &insn_len)
895 && orig_eip != to + (insn - insn_start) + insn_len
896 /* GDB can get control back after the insn after the syscall.
897 Presumably this is a kernel bug.
898 i386_displaced_step_copy_insn ensures its a nop,
899 we add one to the length for it. */
900 && orig_eip != to + (insn - insn_start) + insn_len + 1)
901 {
902 if (debug_displaced)
903 fprintf_unfiltered (gdb_stdlog,
904 "displaced: syscall changed %%eip; "
905 "not relocating\n");
906 }
907 else
908 {
909 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
910
911 /* If we just stepped over a breakpoint insn, we don't backup
912 the pc on purpose; this is to match behaviour without
913 stepping. */
914
915 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
916
917 if (debug_displaced)
918 fprintf_unfiltered (gdb_stdlog,
919 "displaced: "
920 "relocated %%eip from %s to %s\n",
921 paddress (gdbarch, orig_eip),
922 paddress (gdbarch, eip));
923 }
924 }
925
926 /* If the instruction was PUSHFL, then the TF bit will be set in the
927 pushed value, and should be cleared. We'll leave this for later,
928 since GDB already messes up the TF flag when stepping over a
929 pushfl. */
930
931 /* If the instruction was a call, the return address now atop the
932 stack is the address following the copied instruction. We need
933 to make it the address following the original instruction. */
934 if (i386_call_p (insn))
935 {
936 ULONGEST esp;
937 ULONGEST retaddr;
938 const ULONGEST retaddr_len = 4;
939
940 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
941 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
942 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
943 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
944
945 if (debug_displaced)
946 fprintf_unfiltered (gdb_stdlog,
947 "displaced: relocated return addr at %s to %s\n",
948 paddress (gdbarch, esp),
949 paddress (gdbarch, retaddr));
950 }
951 }
952
953 static void
954 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
955 {
956 target_write_memory (*to, buf, len);
957 *to += len;
958 }
959
960 static void
961 i386_relocate_instruction (struct gdbarch *gdbarch,
962 CORE_ADDR *to, CORE_ADDR oldloc)
963 {
964 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
965 gdb_byte buf[I386_MAX_INSN_LEN];
966 int offset = 0, rel32, newrel;
967 int insn_length;
968 gdb_byte *insn = buf;
969
970 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
971
972 insn_length = gdb_buffered_insn_length (gdbarch, insn,
973 I386_MAX_INSN_LEN, oldloc);
974
975 /* Get past the prefixes. */
976 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
977
978 /* Adjust calls with 32-bit relative addresses as push/jump, with
979 the address pushed being the location where the original call in
980 the user program would return to. */
981 if (insn[0] == 0xe8)
982 {
983 gdb_byte push_buf[16];
984 unsigned int ret_addr;
985
986 /* Where "ret" in the original code will return to. */
987 ret_addr = oldloc + insn_length;
988 push_buf[0] = 0x68; /* pushq $... */
989 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
990 /* Push the push. */
991 append_insns (to, 5, push_buf);
992
993 /* Convert the relative call to a relative jump. */
994 insn[0] = 0xe9;
995
996 /* Adjust the destination offset. */
997 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
998 newrel = (oldloc - *to) + rel32;
999 store_signed_integer (insn + 1, 4, byte_order, newrel);
1000
1001 if (debug_displaced)
1002 fprintf_unfiltered (gdb_stdlog,
1003 "Adjusted insn rel32=%s at %s to"
1004 " rel32=%s at %s\n",
1005 hex_string (rel32), paddress (gdbarch, oldloc),
1006 hex_string (newrel), paddress (gdbarch, *to));
1007
1008 /* Write the adjusted jump into its displaced location. */
1009 append_insns (to, 5, insn);
1010 return;
1011 }
1012
1013 /* Adjust jumps with 32-bit relative addresses. Calls are already
1014 handled above. */
1015 if (insn[0] == 0xe9)
1016 offset = 1;
1017 /* Adjust conditional jumps. */
1018 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1019 offset = 2;
1020
1021 if (offset)
1022 {
1023 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1024 newrel = (oldloc - *to) + rel32;
1025 store_signed_integer (insn + offset, 4, byte_order, newrel);
1026 if (debug_displaced)
1027 fprintf_unfiltered (gdb_stdlog,
1028 "Adjusted insn rel32=%s at %s to"
1029 " rel32=%s at %s\n",
1030 hex_string (rel32), paddress (gdbarch, oldloc),
1031 hex_string (newrel), paddress (gdbarch, *to));
1032 }
1033
1034 /* Write the adjusted instructions into their displaced
1035 location. */
1036 append_insns (to, insn_length, buf);
1037 }
1038
1039 \f
1040 #ifdef I386_REGNO_TO_SYMMETRY
1041 #error "The Sequent Symmetry is no longer supported."
1042 #endif
1043
1044 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1045 and %esp "belong" to the calling function. Therefore these
1046 registers should be saved if they're going to be modified. */
1047
1048 /* The maximum number of saved registers. This should include all
1049 registers mentioned above, and %eip. */
1050 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1051
1052 struct i386_frame_cache
1053 {
1054 /* Base address. */
1055 CORE_ADDR base;
1056 int base_p;
1057 LONGEST sp_offset;
1058 CORE_ADDR pc;
1059
1060 /* Saved registers. */
1061 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1062 CORE_ADDR saved_sp;
1063 int saved_sp_reg;
1064 int pc_in_eax;
1065
1066 /* Stack space reserved for local variables. */
1067 long locals;
1068 };
1069
1070 /* Allocate and initialize a frame cache. */
1071
1072 static struct i386_frame_cache *
1073 i386_alloc_frame_cache (void)
1074 {
1075 struct i386_frame_cache *cache;
1076 int i;
1077
1078 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1079
1080 /* Base address. */
1081 cache->base_p = 0;
1082 cache->base = 0;
1083 cache->sp_offset = -4;
1084 cache->pc = 0;
1085
1086 /* Saved registers. We initialize these to -1 since zero is a valid
1087 offset (that's where %ebp is supposed to be stored). */
1088 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1089 cache->saved_regs[i] = -1;
1090 cache->saved_sp = 0;
1091 cache->saved_sp_reg = -1;
1092 cache->pc_in_eax = 0;
1093
1094 /* Frameless until proven otherwise. */
1095 cache->locals = -1;
1096
1097 return cache;
1098 }
1099
1100 /* If the instruction at PC is a jump, return the address of its
1101 target. Otherwise, return PC. */
1102
1103 static CORE_ADDR
1104 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1105 {
1106 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1107 gdb_byte op;
1108 long delta = 0;
1109 int data16 = 0;
1110
1111 if (target_read_code (pc, &op, 1))
1112 return pc;
1113
1114 if (op == 0x66)
1115 {
1116 data16 = 1;
1117
1118 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1119 }
1120
1121 switch (op)
1122 {
1123 case 0xe9:
1124 /* Relative jump: if data16 == 0, disp32, else disp16. */
1125 if (data16)
1126 {
1127 delta = read_memory_integer (pc + 2, 2, byte_order);
1128
1129 /* Include the size of the jmp instruction (including the
1130 0x66 prefix). */
1131 delta += 4;
1132 }
1133 else
1134 {
1135 delta = read_memory_integer (pc + 1, 4, byte_order);
1136
1137 /* Include the size of the jmp instruction. */
1138 delta += 5;
1139 }
1140 break;
1141 case 0xeb:
1142 /* Relative jump, disp8 (ignore data16). */
1143 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1144
1145 delta += data16 + 2;
1146 break;
1147 }
1148
1149 return pc + delta;
1150 }
1151
1152 /* Check whether PC points at a prologue for a function returning a
1153 structure or union. If so, it updates CACHE and returns the
1154 address of the first instruction after the code sequence that
1155 removes the "hidden" argument from the stack or CURRENT_PC,
1156 whichever is smaller. Otherwise, return PC. */
1157
1158 static CORE_ADDR
1159 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1160 struct i386_frame_cache *cache)
1161 {
1162 /* Functions that return a structure or union start with:
1163
1164 popl %eax 0x58
1165 xchgl %eax, (%esp) 0x87 0x04 0x24
1166 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1167
1168 (the System V compiler puts out the second `xchg' instruction,
1169 and the assembler doesn't try to optimize it, so the 'sib' form
1170 gets generated). This sequence is used to get the address of the
1171 return buffer for a function that returns a structure. */
1172 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1173 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1174 gdb_byte buf[4];
1175 gdb_byte op;
1176
1177 if (current_pc <= pc)
1178 return pc;
1179
1180 if (target_read_code (pc, &op, 1))
1181 return pc;
1182
1183 if (op != 0x58) /* popl %eax */
1184 return pc;
1185
1186 if (target_read_code (pc + 1, buf, 4))
1187 return pc;
1188
1189 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1190 return pc;
1191
1192 if (current_pc == pc)
1193 {
1194 cache->sp_offset += 4;
1195 return current_pc;
1196 }
1197
1198 if (current_pc == pc + 1)
1199 {
1200 cache->pc_in_eax = 1;
1201 return current_pc;
1202 }
1203
1204 if (buf[1] == proto1[1])
1205 return pc + 4;
1206 else
1207 return pc + 5;
1208 }
1209
1210 static CORE_ADDR
1211 i386_skip_probe (CORE_ADDR pc)
1212 {
1213 /* A function may start with
1214
1215 pushl constant
1216 call _probe
1217 addl $4, %esp
1218
1219 followed by
1220
1221 pushl %ebp
1222
1223 etc. */
1224 gdb_byte buf[8];
1225 gdb_byte op;
1226
1227 if (target_read_code (pc, &op, 1))
1228 return pc;
1229
1230 if (op == 0x68 || op == 0x6a)
1231 {
1232 int delta;
1233
1234 /* Skip past the `pushl' instruction; it has either a one-byte or a
1235 four-byte operand, depending on the opcode. */
1236 if (op == 0x68)
1237 delta = 5;
1238 else
1239 delta = 2;
1240
1241 /* Read the following 8 bytes, which should be `call _probe' (6
1242 bytes) followed by `addl $4,%esp' (2 bytes). */
1243 read_memory (pc + delta, buf, sizeof (buf));
1244 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1245 pc += delta + sizeof (buf);
1246 }
1247
1248 return pc;
1249 }
1250
1251 /* GCC 4.1 and later, can put code in the prologue to realign the
1252 stack pointer. Check whether PC points to such code, and update
1253 CACHE accordingly. Return the first instruction after the code
1254 sequence or CURRENT_PC, whichever is smaller. If we don't
1255 recognize the code, return PC. */
1256
1257 static CORE_ADDR
1258 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1259 struct i386_frame_cache *cache)
1260 {
1261 /* There are 2 code sequences to re-align stack before the frame
1262 gets set up:
1263
1264 1. Use a caller-saved saved register:
1265
1266 leal 4(%esp), %reg
1267 andl $-XXX, %esp
1268 pushl -4(%reg)
1269
1270 2. Use a callee-saved saved register:
1271
1272 pushl %reg
1273 leal 8(%esp), %reg
1274 andl $-XXX, %esp
1275 pushl -4(%reg)
1276
1277 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1278
1279 0x83 0xe4 0xf0 andl $-16, %esp
1280 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1281 */
1282
1283 gdb_byte buf[14];
1284 int reg;
1285 int offset, offset_and;
1286 static int regnums[8] = {
1287 I386_EAX_REGNUM, /* %eax */
1288 I386_ECX_REGNUM, /* %ecx */
1289 I386_EDX_REGNUM, /* %edx */
1290 I386_EBX_REGNUM, /* %ebx */
1291 I386_ESP_REGNUM, /* %esp */
1292 I386_EBP_REGNUM, /* %ebp */
1293 I386_ESI_REGNUM, /* %esi */
1294 I386_EDI_REGNUM /* %edi */
1295 };
1296
1297 if (target_read_code (pc, buf, sizeof buf))
1298 return pc;
1299
1300 /* Check caller-saved saved register. The first instruction has
1301 to be "leal 4(%esp), %reg". */
1302 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1303 {
1304 /* MOD must be binary 10 and R/M must be binary 100. */
1305 if ((buf[1] & 0xc7) != 0x44)
1306 return pc;
1307
1308 /* REG has register number. */
1309 reg = (buf[1] >> 3) & 7;
1310 offset = 4;
1311 }
1312 else
1313 {
1314 /* Check callee-saved saved register. The first instruction
1315 has to be "pushl %reg". */
1316 if ((buf[0] & 0xf8) != 0x50)
1317 return pc;
1318
1319 /* Get register. */
1320 reg = buf[0] & 0x7;
1321
1322 /* The next instruction has to be "leal 8(%esp), %reg". */
1323 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1324 return pc;
1325
1326 /* MOD must be binary 10 and R/M must be binary 100. */
1327 if ((buf[2] & 0xc7) != 0x44)
1328 return pc;
1329
1330 /* REG has register number. Registers in pushl and leal have to
1331 be the same. */
1332 if (reg != ((buf[2] >> 3) & 7))
1333 return pc;
1334
1335 offset = 5;
1336 }
1337
1338 /* Rigister can't be %esp nor %ebp. */
1339 if (reg == 4 || reg == 5)
1340 return pc;
1341
1342 /* The next instruction has to be "andl $-XXX, %esp". */
1343 if (buf[offset + 1] != 0xe4
1344 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1345 return pc;
1346
1347 offset_and = offset;
1348 offset += buf[offset] == 0x81 ? 6 : 3;
1349
1350 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1351 0xfc. REG must be binary 110 and MOD must be binary 01. */
1352 if (buf[offset] != 0xff
1353 || buf[offset + 2] != 0xfc
1354 || (buf[offset + 1] & 0xf8) != 0x70)
1355 return pc;
1356
1357 /* R/M has register. Registers in leal and pushl have to be the
1358 same. */
1359 if (reg != (buf[offset + 1] & 7))
1360 return pc;
1361
1362 if (current_pc > pc + offset_and)
1363 cache->saved_sp_reg = regnums[reg];
1364
1365 return std::min (pc + offset + 3, current_pc);
1366 }
1367
1368 /* Maximum instruction length we need to handle. */
1369 #define I386_MAX_MATCHED_INSN_LEN 6
1370
1371 /* Instruction description. */
1372 struct i386_insn
1373 {
1374 size_t len;
1375 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1376 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1377 };
1378
1379 /* Return whether instruction at PC matches PATTERN. */
1380
1381 static int
1382 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1383 {
1384 gdb_byte op;
1385
1386 if (target_read_code (pc, &op, 1))
1387 return 0;
1388
1389 if ((op & pattern.mask[0]) == pattern.insn[0])
1390 {
1391 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1392 int insn_matched = 1;
1393 size_t i;
1394
1395 gdb_assert (pattern.len > 1);
1396 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1397
1398 if (target_read_code (pc + 1, buf, pattern.len - 1))
1399 return 0;
1400
1401 for (i = 1; i < pattern.len; i++)
1402 {
1403 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1404 insn_matched = 0;
1405 }
1406 return insn_matched;
1407 }
1408 return 0;
1409 }
1410
1411 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1412 the first instruction description that matches. Otherwise, return
1413 NULL. */
1414
1415 static struct i386_insn *
1416 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1417 {
1418 struct i386_insn *pattern;
1419
1420 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1421 {
1422 if (i386_match_pattern (pc, *pattern))
1423 return pattern;
1424 }
1425
1426 return NULL;
1427 }
1428
1429 /* Return whether PC points inside a sequence of instructions that
1430 matches INSN_PATTERNS. */
1431
1432 static int
1433 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1434 {
1435 CORE_ADDR current_pc;
1436 int ix, i;
1437 struct i386_insn *insn;
1438
1439 insn = i386_match_insn (pc, insn_patterns);
1440 if (insn == NULL)
1441 return 0;
1442
1443 current_pc = pc;
1444 ix = insn - insn_patterns;
1445 for (i = ix - 1; i >= 0; i--)
1446 {
1447 current_pc -= insn_patterns[i].len;
1448
1449 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1450 return 0;
1451 }
1452
1453 current_pc = pc + insn->len;
1454 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1455 {
1456 if (!i386_match_pattern (current_pc, *insn))
1457 return 0;
1458
1459 current_pc += insn->len;
1460 }
1461
1462 return 1;
1463 }
1464
1465 /* Some special instructions that might be migrated by GCC into the
1466 part of the prologue that sets up the new stack frame. Because the
1467 stack frame hasn't been setup yet, no registers have been saved
1468 yet, and only the scratch registers %eax, %ecx and %edx can be
1469 touched. */
1470
1471 struct i386_insn i386_frame_setup_skip_insns[] =
1472 {
1473 /* Check for `movb imm8, r' and `movl imm32, r'.
1474
1475 ??? Should we handle 16-bit operand-sizes here? */
1476
1477 /* `movb imm8, %al' and `movb imm8, %ah' */
1478 /* `movb imm8, %cl' and `movb imm8, %ch' */
1479 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1480 /* `movb imm8, %dl' and `movb imm8, %dh' */
1481 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1482 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1483 { 5, { 0xb8 }, { 0xfe } },
1484 /* `movl imm32, %edx' */
1485 { 5, { 0xba }, { 0xff } },
1486
1487 /* Check for `mov imm32, r32'. Note that there is an alternative
1488 encoding for `mov m32, %eax'.
1489
1490 ??? Should we handle SIB adressing here?
1491 ??? Should we handle 16-bit operand-sizes here? */
1492
1493 /* `movl m32, %eax' */
1494 { 5, { 0xa1 }, { 0xff } },
1495 /* `movl m32, %eax' and `mov; m32, %ecx' */
1496 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1497 /* `movl m32, %edx' */
1498 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1499
1500 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1501 Because of the symmetry, there are actually two ways to encode
1502 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1503 opcode bytes 0x31 and 0x33 for `xorl'. */
1504
1505 /* `subl %eax, %eax' */
1506 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1507 /* `subl %ecx, %ecx' */
1508 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1509 /* `subl %edx, %edx' */
1510 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1511 /* `xorl %eax, %eax' */
1512 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1513 /* `xorl %ecx, %ecx' */
1514 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1515 /* `xorl %edx, %edx' */
1516 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1517 { 0 }
1518 };
1519
1520
1521 /* Check whether PC points to a no-op instruction. */
1522 static CORE_ADDR
1523 i386_skip_noop (CORE_ADDR pc)
1524 {
1525 gdb_byte op;
1526 int check = 1;
1527
1528 if (target_read_code (pc, &op, 1))
1529 return pc;
1530
1531 while (check)
1532 {
1533 check = 0;
1534 /* Ignore `nop' instruction. */
1535 if (op == 0x90)
1536 {
1537 pc += 1;
1538 if (target_read_code (pc, &op, 1))
1539 return pc;
1540 check = 1;
1541 }
1542 /* Ignore no-op instruction `mov %edi, %edi'.
1543 Microsoft system dlls often start with
1544 a `mov %edi,%edi' instruction.
1545 The 5 bytes before the function start are
1546 filled with `nop' instructions.
1547 This pattern can be used for hot-patching:
1548 The `mov %edi, %edi' instruction can be replaced by a
1549 near jump to the location of the 5 `nop' instructions
1550 which can be replaced by a 32-bit jump to anywhere
1551 in the 32-bit address space. */
1552
1553 else if (op == 0x8b)
1554 {
1555 if (target_read_code (pc + 1, &op, 1))
1556 return pc;
1557
1558 if (op == 0xff)
1559 {
1560 pc += 2;
1561 if (target_read_code (pc, &op, 1))
1562 return pc;
1563
1564 check = 1;
1565 }
1566 }
1567 }
1568 return pc;
1569 }
1570
1571 /* Check whether PC points at a code that sets up a new stack frame.
1572 If so, it updates CACHE and returns the address of the first
1573 instruction after the sequence that sets up the frame or LIMIT,
1574 whichever is smaller. If we don't recognize the code, return PC. */
1575
1576 static CORE_ADDR
1577 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1578 CORE_ADDR pc, CORE_ADDR limit,
1579 struct i386_frame_cache *cache)
1580 {
1581 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1582 struct i386_insn *insn;
1583 gdb_byte op;
1584 int skip = 0;
1585
1586 if (limit <= pc)
1587 return limit;
1588
1589 if (target_read_code (pc, &op, 1))
1590 return pc;
1591
1592 if (op == 0x55) /* pushl %ebp */
1593 {
1594 /* Take into account that we've executed the `pushl %ebp' that
1595 starts this instruction sequence. */
1596 cache->saved_regs[I386_EBP_REGNUM] = 0;
1597 cache->sp_offset += 4;
1598 pc++;
1599
1600 /* If that's all, return now. */
1601 if (limit <= pc)
1602 return limit;
1603
1604 /* Check for some special instructions that might be migrated by
1605 GCC into the prologue and skip them. At this point in the
1606 prologue, code should only touch the scratch registers %eax,
1607 %ecx and %edx, so while the number of posibilities is sheer,
1608 it is limited.
1609
1610 Make sure we only skip these instructions if we later see the
1611 `movl %esp, %ebp' that actually sets up the frame. */
1612 while (pc + skip < limit)
1613 {
1614 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1615 if (insn == NULL)
1616 break;
1617
1618 skip += insn->len;
1619 }
1620
1621 /* If that's all, return now. */
1622 if (limit <= pc + skip)
1623 return limit;
1624
1625 if (target_read_code (pc + skip, &op, 1))
1626 return pc + skip;
1627
1628 /* The i386 prologue looks like
1629
1630 push %ebp
1631 mov %esp,%ebp
1632 sub $0x10,%esp
1633
1634 and a different prologue can be generated for atom.
1635
1636 push %ebp
1637 lea (%esp),%ebp
1638 lea -0x10(%esp),%esp
1639
1640 We handle both of them here. */
1641
1642 switch (op)
1643 {
1644 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1645 case 0x8b:
1646 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1647 != 0xec)
1648 return pc;
1649 pc += (skip + 2);
1650 break;
1651 case 0x89:
1652 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1653 != 0xe5)
1654 return pc;
1655 pc += (skip + 2);
1656 break;
1657 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1658 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1659 != 0x242c)
1660 return pc;
1661 pc += (skip + 3);
1662 break;
1663 default:
1664 return pc;
1665 }
1666
1667 /* OK, we actually have a frame. We just don't know how large
1668 it is yet. Set its size to zero. We'll adjust it if
1669 necessary. We also now commit to skipping the special
1670 instructions mentioned before. */
1671 cache->locals = 0;
1672
1673 /* If that's all, return now. */
1674 if (limit <= pc)
1675 return limit;
1676
1677 /* Check for stack adjustment
1678
1679 subl $XXX, %esp
1680 or
1681 lea -XXX(%esp),%esp
1682
1683 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1684 reg, so we don't have to worry about a data16 prefix. */
1685 if (target_read_code (pc, &op, 1))
1686 return pc;
1687 if (op == 0x83)
1688 {
1689 /* `subl' with 8-bit immediate. */
1690 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1691 /* Some instruction starting with 0x83 other than `subl'. */
1692 return pc;
1693
1694 /* `subl' with signed 8-bit immediate (though it wouldn't
1695 make sense to be negative). */
1696 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1697 return pc + 3;
1698 }
1699 else if (op == 0x81)
1700 {
1701 /* Maybe it is `subl' with a 32-bit immediate. */
1702 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1703 /* Some instruction starting with 0x81 other than `subl'. */
1704 return pc;
1705
1706 /* It is `subl' with a 32-bit immediate. */
1707 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1708 return pc + 6;
1709 }
1710 else if (op == 0x8d)
1711 {
1712 /* The ModR/M byte is 0x64. */
1713 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1714 return pc;
1715 /* 'lea' with 8-bit displacement. */
1716 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1717 return pc + 4;
1718 }
1719 else
1720 {
1721 /* Some instruction other than `subl' nor 'lea'. */
1722 return pc;
1723 }
1724 }
1725 else if (op == 0xc8) /* enter */
1726 {
1727 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1728 return pc + 4;
1729 }
1730
1731 return pc;
1732 }
1733
1734 /* Check whether PC points at code that saves registers on the stack.
1735 If so, it updates CACHE and returns the address of the first
1736 instruction after the register saves or CURRENT_PC, whichever is
1737 smaller. Otherwise, return PC. */
1738
1739 static CORE_ADDR
1740 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1741 struct i386_frame_cache *cache)
1742 {
1743 CORE_ADDR offset = 0;
1744 gdb_byte op;
1745 int i;
1746
1747 if (cache->locals > 0)
1748 offset -= cache->locals;
1749 for (i = 0; i < 8 && pc < current_pc; i++)
1750 {
1751 if (target_read_code (pc, &op, 1))
1752 return pc;
1753 if (op < 0x50 || op > 0x57)
1754 break;
1755
1756 offset -= 4;
1757 cache->saved_regs[op - 0x50] = offset;
1758 cache->sp_offset += 4;
1759 pc++;
1760 }
1761
1762 return pc;
1763 }
1764
1765 /* Do a full analysis of the prologue at PC and update CACHE
1766 accordingly. Bail out early if CURRENT_PC is reached. Return the
1767 address where the analysis stopped.
1768
1769 We handle these cases:
1770
1771 The startup sequence can be at the start of the function, or the
1772 function can start with a branch to startup code at the end.
1773
1774 %ebp can be set up with either the 'enter' instruction, or "pushl
1775 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1776 once used in the System V compiler).
1777
1778 Local space is allocated just below the saved %ebp by either the
1779 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1780 16-bit unsigned argument for space to allocate, and the 'addl'
1781 instruction could have either a signed byte, or 32-bit immediate.
1782
1783 Next, the registers used by this function are pushed. With the
1784 System V compiler they will always be in the order: %edi, %esi,
1785 %ebx (and sometimes a harmless bug causes it to also save but not
1786 restore %eax); however, the code below is willing to see the pushes
1787 in any order, and will handle up to 8 of them.
1788
1789 If the setup sequence is at the end of the function, then the next
1790 instruction will be a branch back to the start. */
1791
1792 static CORE_ADDR
1793 i386_analyze_prologue (struct gdbarch *gdbarch,
1794 CORE_ADDR pc, CORE_ADDR current_pc,
1795 struct i386_frame_cache *cache)
1796 {
1797 pc = i386_skip_noop (pc);
1798 pc = i386_follow_jump (gdbarch, pc);
1799 pc = i386_analyze_struct_return (pc, current_pc, cache);
1800 pc = i386_skip_probe (pc);
1801 pc = i386_analyze_stack_align (pc, current_pc, cache);
1802 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1803 return i386_analyze_register_saves (pc, current_pc, cache);
1804 }
1805
1806 /* Return PC of first real instruction. */
1807
1808 static CORE_ADDR
1809 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1810 {
1811 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1812
1813 static gdb_byte pic_pat[6] =
1814 {
1815 0xe8, 0, 0, 0, 0, /* call 0x0 */
1816 0x5b, /* popl %ebx */
1817 };
1818 struct i386_frame_cache cache;
1819 CORE_ADDR pc;
1820 gdb_byte op;
1821 int i;
1822 CORE_ADDR func_addr;
1823
1824 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1825 {
1826 CORE_ADDR post_prologue_pc
1827 = skip_prologue_using_sal (gdbarch, func_addr);
1828 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1829
1830 /* Clang always emits a line note before the prologue and another
1831 one after. We trust clang to emit usable line notes. */
1832 if (post_prologue_pc
1833 && (cust != NULL
1834 && COMPUNIT_PRODUCER (cust) != NULL
1835 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1836 return std::max (start_pc, post_prologue_pc);
1837 }
1838
1839 cache.locals = -1;
1840 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1841 if (cache.locals < 0)
1842 return start_pc;
1843
1844 /* Found valid frame setup. */
1845
1846 /* The native cc on SVR4 in -K PIC mode inserts the following code
1847 to get the address of the global offset table (GOT) into register
1848 %ebx:
1849
1850 call 0x0
1851 popl %ebx
1852 movl %ebx,x(%ebp) (optional)
1853 addl y,%ebx
1854
1855 This code is with the rest of the prologue (at the end of the
1856 function), so we have to skip it to get to the first real
1857 instruction at the start of the function. */
1858
1859 for (i = 0; i < 6; i++)
1860 {
1861 if (target_read_code (pc + i, &op, 1))
1862 return pc;
1863
1864 if (pic_pat[i] != op)
1865 break;
1866 }
1867 if (i == 6)
1868 {
1869 int delta = 6;
1870
1871 if (target_read_code (pc + delta, &op, 1))
1872 return pc;
1873
1874 if (op == 0x89) /* movl %ebx, x(%ebp) */
1875 {
1876 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1877
1878 if (op == 0x5d) /* One byte offset from %ebp. */
1879 delta += 3;
1880 else if (op == 0x9d) /* Four byte offset from %ebp. */
1881 delta += 6;
1882 else /* Unexpected instruction. */
1883 delta = 0;
1884
1885 if (target_read_code (pc + delta, &op, 1))
1886 return pc;
1887 }
1888
1889 /* addl y,%ebx */
1890 if (delta > 0 && op == 0x81
1891 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1892 == 0xc3)
1893 {
1894 pc += delta + 6;
1895 }
1896 }
1897
1898 /* If the function starts with a branch (to startup code at the end)
1899 the last instruction should bring us back to the first
1900 instruction of the real code. */
1901 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1902 pc = i386_follow_jump (gdbarch, pc);
1903
1904 return pc;
1905 }
1906
1907 /* Check that the code pointed to by PC corresponds to a call to
1908 __main, skip it if so. Return PC otherwise. */
1909
1910 CORE_ADDR
1911 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1912 {
1913 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1914 gdb_byte op;
1915
1916 if (target_read_code (pc, &op, 1))
1917 return pc;
1918 if (op == 0xe8)
1919 {
1920 gdb_byte buf[4];
1921
1922 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1923 {
1924 /* Make sure address is computed correctly as a 32bit
1925 integer even if CORE_ADDR is 64 bit wide. */
1926 struct bound_minimal_symbol s;
1927 CORE_ADDR call_dest;
1928
1929 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1930 call_dest = call_dest & 0xffffffffU;
1931 s = lookup_minimal_symbol_by_pc (call_dest);
1932 if (s.minsym != NULL
1933 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1934 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1935 pc += 5;
1936 }
1937 }
1938
1939 return pc;
1940 }
1941
1942 /* This function is 64-bit safe. */
1943
1944 static CORE_ADDR
1945 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1946 {
1947 gdb_byte buf[8];
1948
1949 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1950 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1951 }
1952 \f
1953
1954 /* Normal frames. */
1955
1956 static void
1957 i386_frame_cache_1 (struct frame_info *this_frame,
1958 struct i386_frame_cache *cache)
1959 {
1960 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1961 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1962 gdb_byte buf[4];
1963 int i;
1964
1965 cache->pc = get_frame_func (this_frame);
1966
1967 /* In principle, for normal frames, %ebp holds the frame pointer,
1968 which holds the base address for the current stack frame.
1969 However, for functions that don't need it, the frame pointer is
1970 optional. For these "frameless" functions the frame pointer is
1971 actually the frame pointer of the calling frame. Signal
1972 trampolines are just a special case of a "frameless" function.
1973 They (usually) share their frame pointer with the frame that was
1974 in progress when the signal occurred. */
1975
1976 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1977 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1978 if (cache->base == 0)
1979 {
1980 cache->base_p = 1;
1981 return;
1982 }
1983
1984 /* For normal frames, %eip is stored at 4(%ebp). */
1985 cache->saved_regs[I386_EIP_REGNUM] = 4;
1986
1987 if (cache->pc != 0)
1988 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1989 cache);
1990
1991 if (cache->locals < 0)
1992 {
1993 /* We didn't find a valid frame, which means that CACHE->base
1994 currently holds the frame pointer for our calling frame. If
1995 we're at the start of a function, or somewhere half-way its
1996 prologue, the function's frame probably hasn't been fully
1997 setup yet. Try to reconstruct the base address for the stack
1998 frame by looking at the stack pointer. For truly "frameless"
1999 functions this might work too. */
2000
2001 if (cache->saved_sp_reg != -1)
2002 {
2003 /* Saved stack pointer has been saved. */
2004 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2005 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2006
2007 /* We're halfway aligning the stack. */
2008 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2009 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2010
2011 /* This will be added back below. */
2012 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2013 }
2014 else if (cache->pc != 0
2015 || target_read_code (get_frame_pc (this_frame), buf, 1))
2016 {
2017 /* We're in a known function, but did not find a frame
2018 setup. Assume that the function does not use %ebp.
2019 Alternatively, we may have jumped to an invalid
2020 address; in that case there is definitely no new
2021 frame in %ebp. */
2022 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2023 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2024 + cache->sp_offset;
2025 }
2026 else
2027 /* We're in an unknown function. We could not find the start
2028 of the function to analyze the prologue; our best option is
2029 to assume a typical frame layout with the caller's %ebp
2030 saved. */
2031 cache->saved_regs[I386_EBP_REGNUM] = 0;
2032 }
2033
2034 if (cache->saved_sp_reg != -1)
2035 {
2036 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2037 register may be unavailable). */
2038 if (cache->saved_sp == 0
2039 && deprecated_frame_register_read (this_frame,
2040 cache->saved_sp_reg, buf))
2041 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2042 }
2043 /* Now that we have the base address for the stack frame we can
2044 calculate the value of %esp in the calling frame. */
2045 else if (cache->saved_sp == 0)
2046 cache->saved_sp = cache->base + 8;
2047
2048 /* Adjust all the saved registers such that they contain addresses
2049 instead of offsets. */
2050 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2051 if (cache->saved_regs[i] != -1)
2052 cache->saved_regs[i] += cache->base;
2053
2054 cache->base_p = 1;
2055 }
2056
2057 static struct i386_frame_cache *
2058 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2059 {
2060 struct i386_frame_cache *cache;
2061
2062 if (*this_cache)
2063 return (struct i386_frame_cache *) *this_cache;
2064
2065 cache = i386_alloc_frame_cache ();
2066 *this_cache = cache;
2067
2068 TRY
2069 {
2070 i386_frame_cache_1 (this_frame, cache);
2071 }
2072 CATCH (ex, RETURN_MASK_ERROR)
2073 {
2074 if (ex.error != NOT_AVAILABLE_ERROR)
2075 throw_exception (ex);
2076 }
2077 END_CATCH
2078
2079 return cache;
2080 }
2081
2082 static void
2083 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2084 struct frame_id *this_id)
2085 {
2086 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2087
2088 if (!cache->base_p)
2089 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2090 else if (cache->base == 0)
2091 {
2092 /* This marks the outermost frame. */
2093 }
2094 else
2095 {
2096 /* See the end of i386_push_dummy_call. */
2097 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2098 }
2099 }
2100
2101 static enum unwind_stop_reason
2102 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2103 void **this_cache)
2104 {
2105 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2106
2107 if (!cache->base_p)
2108 return UNWIND_UNAVAILABLE;
2109
2110 /* This marks the outermost frame. */
2111 if (cache->base == 0)
2112 return UNWIND_OUTERMOST;
2113
2114 return UNWIND_NO_REASON;
2115 }
2116
2117 static struct value *
2118 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2119 int regnum)
2120 {
2121 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2122
2123 gdb_assert (regnum >= 0);
2124
2125 /* The System V ABI says that:
2126
2127 "The flags register contains the system flags, such as the
2128 direction flag and the carry flag. The direction flag must be
2129 set to the forward (that is, zero) direction before entry and
2130 upon exit from a function. Other user flags have no specified
2131 role in the standard calling sequence and are not preserved."
2132
2133 To guarantee the "upon exit" part of that statement we fake a
2134 saved flags register that has its direction flag cleared.
2135
2136 Note that GCC doesn't seem to rely on the fact that the direction
2137 flag is cleared after a function return; it always explicitly
2138 clears the flag before operations where it matters.
2139
2140 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2141 right thing to do. The way we fake the flags register here makes
2142 it impossible to change it. */
2143
2144 if (regnum == I386_EFLAGS_REGNUM)
2145 {
2146 ULONGEST val;
2147
2148 val = get_frame_register_unsigned (this_frame, regnum);
2149 val &= ~(1 << 10);
2150 return frame_unwind_got_constant (this_frame, regnum, val);
2151 }
2152
2153 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2154 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2155
2156 if (regnum == I386_ESP_REGNUM
2157 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2158 {
2159 /* If the SP has been saved, but we don't know where, then this
2160 means that SAVED_SP_REG register was found unavailable back
2161 when we built the cache. */
2162 if (cache->saved_sp == 0)
2163 return frame_unwind_got_register (this_frame, regnum,
2164 cache->saved_sp_reg);
2165 else
2166 return frame_unwind_got_constant (this_frame, regnum,
2167 cache->saved_sp);
2168 }
2169
2170 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2171 return frame_unwind_got_memory (this_frame, regnum,
2172 cache->saved_regs[regnum]);
2173
2174 return frame_unwind_got_register (this_frame, regnum, regnum);
2175 }
2176
2177 static const struct frame_unwind i386_frame_unwind =
2178 {
2179 NORMAL_FRAME,
2180 i386_frame_unwind_stop_reason,
2181 i386_frame_this_id,
2182 i386_frame_prev_register,
2183 NULL,
2184 default_frame_sniffer
2185 };
2186
2187 /* Normal frames, but in a function epilogue. */
2188
2189 /* Implement the stack_frame_destroyed_p gdbarch method.
2190
2191 The epilogue is defined here as the 'ret' instruction, which will
2192 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2193 the function's stack frame. */
2194
2195 static int
2196 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2197 {
2198 gdb_byte insn;
2199 struct compunit_symtab *cust;
2200
2201 cust = find_pc_compunit_symtab (pc);
2202 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2203 return 0;
2204
2205 if (target_read_memory (pc, &insn, 1))
2206 return 0; /* Can't read memory at pc. */
2207
2208 if (insn != 0xc3) /* 'ret' instruction. */
2209 return 0;
2210
2211 return 1;
2212 }
2213
2214 static int
2215 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2216 struct frame_info *this_frame,
2217 void **this_prologue_cache)
2218 {
2219 if (frame_relative_level (this_frame) == 0)
2220 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2221 get_frame_pc (this_frame));
2222 else
2223 return 0;
2224 }
2225
2226 static struct i386_frame_cache *
2227 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2228 {
2229 struct i386_frame_cache *cache;
2230 CORE_ADDR sp;
2231
2232 if (*this_cache)
2233 return (struct i386_frame_cache *) *this_cache;
2234
2235 cache = i386_alloc_frame_cache ();
2236 *this_cache = cache;
2237
2238 TRY
2239 {
2240 cache->pc = get_frame_func (this_frame);
2241
2242 /* At this point the stack looks as if we just entered the
2243 function, with the return address at the top of the
2244 stack. */
2245 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2246 cache->base = sp + cache->sp_offset;
2247 cache->saved_sp = cache->base + 8;
2248 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2249
2250 cache->base_p = 1;
2251 }
2252 CATCH (ex, RETURN_MASK_ERROR)
2253 {
2254 if (ex.error != NOT_AVAILABLE_ERROR)
2255 throw_exception (ex);
2256 }
2257 END_CATCH
2258
2259 return cache;
2260 }
2261
2262 static enum unwind_stop_reason
2263 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2264 void **this_cache)
2265 {
2266 struct i386_frame_cache *cache =
2267 i386_epilogue_frame_cache (this_frame, this_cache);
2268
2269 if (!cache->base_p)
2270 return UNWIND_UNAVAILABLE;
2271
2272 return UNWIND_NO_REASON;
2273 }
2274
2275 static void
2276 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2277 void **this_cache,
2278 struct frame_id *this_id)
2279 {
2280 struct i386_frame_cache *cache =
2281 i386_epilogue_frame_cache (this_frame, this_cache);
2282
2283 if (!cache->base_p)
2284 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2285 else
2286 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2287 }
2288
2289 static struct value *
2290 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2291 void **this_cache, int regnum)
2292 {
2293 /* Make sure we've initialized the cache. */
2294 i386_epilogue_frame_cache (this_frame, this_cache);
2295
2296 return i386_frame_prev_register (this_frame, this_cache, regnum);
2297 }
2298
2299 static const struct frame_unwind i386_epilogue_frame_unwind =
2300 {
2301 NORMAL_FRAME,
2302 i386_epilogue_frame_unwind_stop_reason,
2303 i386_epilogue_frame_this_id,
2304 i386_epilogue_frame_prev_register,
2305 NULL,
2306 i386_epilogue_frame_sniffer
2307 };
2308 \f
2309
2310 /* Stack-based trampolines. */
2311
2312 /* These trampolines are used on cross x86 targets, when taking the
2313 address of a nested function. When executing these trampolines,
2314 no stack frame is set up, so we are in a similar situation as in
2315 epilogues and i386_epilogue_frame_this_id can be re-used. */
2316
2317 /* Static chain passed in register. */
2318
2319 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2320 {
2321 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2322 { 5, { 0xb8 }, { 0xfe } },
2323
2324 /* `jmp imm32' */
2325 { 5, { 0xe9 }, { 0xff } },
2326
2327 {0}
2328 };
2329
2330 /* Static chain passed on stack (when regparm=3). */
2331
2332 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2333 {
2334 /* `push imm32' */
2335 { 5, { 0x68 }, { 0xff } },
2336
2337 /* `jmp imm32' */
2338 { 5, { 0xe9 }, { 0xff } },
2339
2340 {0}
2341 };
2342
2343 /* Return whether PC points inside a stack trampoline. */
2344
2345 static int
2346 i386_in_stack_tramp_p (CORE_ADDR pc)
2347 {
2348 gdb_byte insn;
2349 const char *name;
2350
2351 /* A stack trampoline is detected if no name is associated
2352 to the current pc and if it points inside a trampoline
2353 sequence. */
2354
2355 find_pc_partial_function (pc, &name, NULL, NULL);
2356 if (name)
2357 return 0;
2358
2359 if (target_read_memory (pc, &insn, 1))
2360 return 0;
2361
2362 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2363 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2364 return 0;
2365
2366 return 1;
2367 }
2368
2369 static int
2370 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2371 struct frame_info *this_frame,
2372 void **this_cache)
2373 {
2374 if (frame_relative_level (this_frame) == 0)
2375 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2376 else
2377 return 0;
2378 }
2379
2380 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2381 {
2382 NORMAL_FRAME,
2383 i386_epilogue_frame_unwind_stop_reason,
2384 i386_epilogue_frame_this_id,
2385 i386_epilogue_frame_prev_register,
2386 NULL,
2387 i386_stack_tramp_frame_sniffer
2388 };
2389 \f
2390 /* Generate a bytecode expression to get the value of the saved PC. */
2391
2392 static void
2393 i386_gen_return_address (struct gdbarch *gdbarch,
2394 struct agent_expr *ax, struct axs_value *value,
2395 CORE_ADDR scope)
2396 {
2397 /* The following sequence assumes the traditional use of the base
2398 register. */
2399 ax_reg (ax, I386_EBP_REGNUM);
2400 ax_const_l (ax, 4);
2401 ax_simple (ax, aop_add);
2402 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2403 value->kind = axs_lvalue_memory;
2404 }
2405 \f
2406
2407 /* Signal trampolines. */
2408
2409 static struct i386_frame_cache *
2410 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2411 {
2412 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2415 struct i386_frame_cache *cache;
2416 CORE_ADDR addr;
2417 gdb_byte buf[4];
2418
2419 if (*this_cache)
2420 return (struct i386_frame_cache *) *this_cache;
2421
2422 cache = i386_alloc_frame_cache ();
2423
2424 TRY
2425 {
2426 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2427 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2428
2429 addr = tdep->sigcontext_addr (this_frame);
2430 if (tdep->sc_reg_offset)
2431 {
2432 int i;
2433
2434 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2435
2436 for (i = 0; i < tdep->sc_num_regs; i++)
2437 if (tdep->sc_reg_offset[i] != -1)
2438 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2439 }
2440 else
2441 {
2442 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2443 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2444 }
2445
2446 cache->base_p = 1;
2447 }
2448 CATCH (ex, RETURN_MASK_ERROR)
2449 {
2450 if (ex.error != NOT_AVAILABLE_ERROR)
2451 throw_exception (ex);
2452 }
2453 END_CATCH
2454
2455 *this_cache = cache;
2456 return cache;
2457 }
2458
2459 static enum unwind_stop_reason
2460 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2461 void **this_cache)
2462 {
2463 struct i386_frame_cache *cache =
2464 i386_sigtramp_frame_cache (this_frame, this_cache);
2465
2466 if (!cache->base_p)
2467 return UNWIND_UNAVAILABLE;
2468
2469 return UNWIND_NO_REASON;
2470 }
2471
2472 static void
2473 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2474 struct frame_id *this_id)
2475 {
2476 struct i386_frame_cache *cache =
2477 i386_sigtramp_frame_cache (this_frame, this_cache);
2478
2479 if (!cache->base_p)
2480 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2481 else
2482 {
2483 /* See the end of i386_push_dummy_call. */
2484 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2485 }
2486 }
2487
2488 static struct value *
2489 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2490 void **this_cache, int regnum)
2491 {
2492 /* Make sure we've initialized the cache. */
2493 i386_sigtramp_frame_cache (this_frame, this_cache);
2494
2495 return i386_frame_prev_register (this_frame, this_cache, regnum);
2496 }
2497
2498 static int
2499 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2500 struct frame_info *this_frame,
2501 void **this_prologue_cache)
2502 {
2503 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2504
2505 /* We shouldn't even bother if we don't have a sigcontext_addr
2506 handler. */
2507 if (tdep->sigcontext_addr == NULL)
2508 return 0;
2509
2510 if (tdep->sigtramp_p != NULL)
2511 {
2512 if (tdep->sigtramp_p (this_frame))
2513 return 1;
2514 }
2515
2516 if (tdep->sigtramp_start != 0)
2517 {
2518 CORE_ADDR pc = get_frame_pc (this_frame);
2519
2520 gdb_assert (tdep->sigtramp_end != 0);
2521 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2522 return 1;
2523 }
2524
2525 return 0;
2526 }
2527
2528 static const struct frame_unwind i386_sigtramp_frame_unwind =
2529 {
2530 SIGTRAMP_FRAME,
2531 i386_sigtramp_frame_unwind_stop_reason,
2532 i386_sigtramp_frame_this_id,
2533 i386_sigtramp_frame_prev_register,
2534 NULL,
2535 i386_sigtramp_frame_sniffer
2536 };
2537 \f
2538
2539 static CORE_ADDR
2540 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2541 {
2542 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2543
2544 return cache->base;
2545 }
2546
2547 static const struct frame_base i386_frame_base =
2548 {
2549 &i386_frame_unwind,
2550 i386_frame_base_address,
2551 i386_frame_base_address,
2552 i386_frame_base_address
2553 };
2554
2555 static struct frame_id
2556 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2557 {
2558 CORE_ADDR fp;
2559
2560 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2561
2562 /* See the end of i386_push_dummy_call. */
2563 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2564 }
2565
2566 /* _Decimal128 function return values need 16-byte alignment on the
2567 stack. */
2568
2569 static CORE_ADDR
2570 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2571 {
2572 return sp & -(CORE_ADDR)16;
2573 }
2574 \f
2575
2576 /* Figure out where the longjmp will land. Slurp the args out of the
2577 stack. We expect the first arg to be a pointer to the jmp_buf
2578 structure from which we extract the address that we will land at.
2579 This address is copied into PC. This routine returns non-zero on
2580 success. */
2581
2582 static int
2583 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2584 {
2585 gdb_byte buf[4];
2586 CORE_ADDR sp, jb_addr;
2587 struct gdbarch *gdbarch = get_frame_arch (frame);
2588 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2589 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2590
2591 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2592 longjmp will land. */
2593 if (jb_pc_offset == -1)
2594 return 0;
2595
2596 get_frame_register (frame, I386_ESP_REGNUM, buf);
2597 sp = extract_unsigned_integer (buf, 4, byte_order);
2598 if (target_read_memory (sp + 4, buf, 4))
2599 return 0;
2600
2601 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2602 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2603 return 0;
2604
2605 *pc = extract_unsigned_integer (buf, 4, byte_order);
2606 return 1;
2607 }
2608 \f
2609
2610 /* Check whether TYPE must be 16-byte-aligned when passed as a
2611 function argument. 16-byte vectors, _Decimal128 and structures or
2612 unions containing such types must be 16-byte-aligned; other
2613 arguments are 4-byte-aligned. */
2614
2615 static int
2616 i386_16_byte_align_p (struct type *type)
2617 {
2618 type = check_typedef (type);
2619 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2620 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2621 && TYPE_LENGTH (type) == 16)
2622 return 1;
2623 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2624 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2625 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2626 || TYPE_CODE (type) == TYPE_CODE_UNION)
2627 {
2628 int i;
2629 for (i = 0; i < TYPE_NFIELDS (type); i++)
2630 {
2631 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2632 return 1;
2633 }
2634 }
2635 return 0;
2636 }
2637
2638 /* Implementation for set_gdbarch_push_dummy_code. */
2639
2640 static CORE_ADDR
2641 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2642 struct value **args, int nargs, struct type *value_type,
2643 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2644 struct regcache *regcache)
2645 {
2646 /* Use 0xcc breakpoint - 1 byte. */
2647 *bp_addr = sp - 1;
2648 *real_pc = funaddr;
2649
2650 /* Keep the stack aligned. */
2651 return sp - 16;
2652 }
2653
2654 static CORE_ADDR
2655 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2656 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2657 struct value **args, CORE_ADDR sp, int struct_return,
2658 CORE_ADDR struct_addr)
2659 {
2660 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2661 gdb_byte buf[4];
2662 int i;
2663 int write_pass;
2664 int args_space = 0;
2665
2666 /* Determine the total space required for arguments and struct
2667 return address in a first pass (allowing for 16-byte-aligned
2668 arguments), then push arguments in a second pass. */
2669
2670 for (write_pass = 0; write_pass < 2; write_pass++)
2671 {
2672 int args_space_used = 0;
2673
2674 if (struct_return)
2675 {
2676 if (write_pass)
2677 {
2678 /* Push value address. */
2679 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2680 write_memory (sp, buf, 4);
2681 args_space_used += 4;
2682 }
2683 else
2684 args_space += 4;
2685 }
2686
2687 for (i = 0; i < nargs; i++)
2688 {
2689 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2690
2691 if (write_pass)
2692 {
2693 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2694 args_space_used = align_up (args_space_used, 16);
2695
2696 write_memory (sp + args_space_used,
2697 value_contents_all (args[i]), len);
2698 /* The System V ABI says that:
2699
2700 "An argument's size is increased, if necessary, to make it a
2701 multiple of [32-bit] words. This may require tail padding,
2702 depending on the size of the argument."
2703
2704 This makes sure the stack stays word-aligned. */
2705 args_space_used += align_up (len, 4);
2706 }
2707 else
2708 {
2709 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2710 args_space = align_up (args_space, 16);
2711 args_space += align_up (len, 4);
2712 }
2713 }
2714
2715 if (!write_pass)
2716 {
2717 sp -= args_space;
2718
2719 /* The original System V ABI only requires word alignment,
2720 but modern incarnations need 16-byte alignment in order
2721 to support SSE. Since wasting a few bytes here isn't
2722 harmful we unconditionally enforce 16-byte alignment. */
2723 sp &= ~0xf;
2724 }
2725 }
2726
2727 /* Store return address. */
2728 sp -= 4;
2729 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2730 write_memory (sp, buf, 4);
2731
2732 /* Finally, update the stack pointer... */
2733 store_unsigned_integer (buf, 4, byte_order, sp);
2734 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2735
2736 /* ...and fake a frame pointer. */
2737 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2738
2739 /* MarkK wrote: This "+ 8" is all over the place:
2740 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2741 i386_dummy_id). It's there, since all frame unwinders for
2742 a given target have to agree (within a certain margin) on the
2743 definition of the stack address of a frame. Otherwise frame id
2744 comparison might not work correctly. Since DWARF2/GCC uses the
2745 stack address *before* the function call as a frame's CFA. On
2746 the i386, when %ebp is used as a frame pointer, the offset
2747 between the contents %ebp and the CFA as defined by GCC. */
2748 return sp + 8;
2749 }
2750
2751 /* These registers are used for returning integers (and on some
2752 targets also for returning `struct' and `union' values when their
2753 size and alignment match an integer type). */
2754 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2755 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2756
2757 /* Read, for architecture GDBARCH, a function return value of TYPE
2758 from REGCACHE, and copy that into VALBUF. */
2759
2760 static void
2761 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2762 struct regcache *regcache, gdb_byte *valbuf)
2763 {
2764 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2765 int len = TYPE_LENGTH (type);
2766 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2767
2768 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2769 {
2770 if (tdep->st0_regnum < 0)
2771 {
2772 warning (_("Cannot find floating-point return value."));
2773 memset (valbuf, 0, len);
2774 return;
2775 }
2776
2777 /* Floating-point return values can be found in %st(0). Convert
2778 its contents to the desired type. This is probably not
2779 exactly how it would happen on the target itself, but it is
2780 the best we can do. */
2781 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2782 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2783 }
2784 else
2785 {
2786 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2787 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2788
2789 if (len <= low_size)
2790 {
2791 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2792 memcpy (valbuf, buf, len);
2793 }
2794 else if (len <= (low_size + high_size))
2795 {
2796 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2797 memcpy (valbuf, buf, low_size);
2798 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2799 memcpy (valbuf + low_size, buf, len - low_size);
2800 }
2801 else
2802 internal_error (__FILE__, __LINE__,
2803 _("Cannot extract return value of %d bytes long."),
2804 len);
2805 }
2806 }
2807
2808 /* Write, for architecture GDBARCH, a function return value of TYPE
2809 from VALBUF into REGCACHE. */
2810
2811 static void
2812 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2813 struct regcache *regcache, const gdb_byte *valbuf)
2814 {
2815 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2816 int len = TYPE_LENGTH (type);
2817
2818 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2819 {
2820 ULONGEST fstat;
2821 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2822
2823 if (tdep->st0_regnum < 0)
2824 {
2825 warning (_("Cannot set floating-point return value."));
2826 return;
2827 }
2828
2829 /* Returning floating-point values is a bit tricky. Apart from
2830 storing the return value in %st(0), we have to simulate the
2831 state of the FPU at function return point. */
2832
2833 /* Convert the value found in VALBUF to the extended
2834 floating-point format used by the FPU. This is probably
2835 not exactly how it would happen on the target itself, but
2836 it is the best we can do. */
2837 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2838 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2839
2840 /* Set the top of the floating-point register stack to 7. The
2841 actual value doesn't really matter, but 7 is what a normal
2842 function return would end up with if the program started out
2843 with a freshly initialized FPU. */
2844 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2845 fstat |= (7 << 11);
2846 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2847
2848 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2849 the floating-point register stack to 7, the appropriate value
2850 for the tag word is 0x3fff. */
2851 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2852 }
2853 else
2854 {
2855 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2856 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2857
2858 if (len <= low_size)
2859 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2860 else if (len <= (low_size + high_size))
2861 {
2862 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2863 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2864 len - low_size, valbuf + low_size);
2865 }
2866 else
2867 internal_error (__FILE__, __LINE__,
2868 _("Cannot store return value of %d bytes long."), len);
2869 }
2870 }
2871 \f
2872
2873 /* This is the variable that is set with "set struct-convention", and
2874 its legitimate values. */
2875 static const char default_struct_convention[] = "default";
2876 static const char pcc_struct_convention[] = "pcc";
2877 static const char reg_struct_convention[] = "reg";
2878 static const char *const valid_conventions[] =
2879 {
2880 default_struct_convention,
2881 pcc_struct_convention,
2882 reg_struct_convention,
2883 NULL
2884 };
2885 static const char *struct_convention = default_struct_convention;
2886
2887 /* Return non-zero if TYPE, which is assumed to be a structure,
2888 a union type, or an array type, should be returned in registers
2889 for architecture GDBARCH. */
2890
2891 static int
2892 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2893 {
2894 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2895 enum type_code code = TYPE_CODE (type);
2896 int len = TYPE_LENGTH (type);
2897
2898 gdb_assert (code == TYPE_CODE_STRUCT
2899 || code == TYPE_CODE_UNION
2900 || code == TYPE_CODE_ARRAY);
2901
2902 if (struct_convention == pcc_struct_convention
2903 || (struct_convention == default_struct_convention
2904 && tdep->struct_return == pcc_struct_return))
2905 return 0;
2906
2907 /* Structures consisting of a single `float', `double' or 'long
2908 double' member are returned in %st(0). */
2909 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2910 {
2911 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2912 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2913 return (len == 4 || len == 8 || len == 12);
2914 }
2915
2916 return (len == 1 || len == 2 || len == 4 || len == 8);
2917 }
2918
2919 /* Determine, for architecture GDBARCH, how a return value of TYPE
2920 should be returned. If it is supposed to be returned in registers,
2921 and READBUF is non-zero, read the appropriate value from REGCACHE,
2922 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2923 from WRITEBUF into REGCACHE. */
2924
2925 static enum return_value_convention
2926 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2927 struct type *type, struct regcache *regcache,
2928 gdb_byte *readbuf, const gdb_byte *writebuf)
2929 {
2930 enum type_code code = TYPE_CODE (type);
2931
2932 if (((code == TYPE_CODE_STRUCT
2933 || code == TYPE_CODE_UNION
2934 || code == TYPE_CODE_ARRAY)
2935 && !i386_reg_struct_return_p (gdbarch, type))
2936 /* Complex double and long double uses the struct return covention. */
2937 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2938 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2939 /* 128-bit decimal float uses the struct return convention. */
2940 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2941 {
2942 /* The System V ABI says that:
2943
2944 "A function that returns a structure or union also sets %eax
2945 to the value of the original address of the caller's area
2946 before it returns. Thus when the caller receives control
2947 again, the address of the returned object resides in register
2948 %eax and can be used to access the object."
2949
2950 So the ABI guarantees that we can always find the return
2951 value just after the function has returned. */
2952
2953 /* Note that the ABI doesn't mention functions returning arrays,
2954 which is something possible in certain languages such as Ada.
2955 In this case, the value is returned as if it was wrapped in
2956 a record, so the convention applied to records also applies
2957 to arrays. */
2958
2959 if (readbuf)
2960 {
2961 ULONGEST addr;
2962
2963 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2964 read_memory (addr, readbuf, TYPE_LENGTH (type));
2965 }
2966
2967 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2968 }
2969
2970 /* This special case is for structures consisting of a single
2971 `float', `double' or 'long double' member. These structures are
2972 returned in %st(0). For these structures, we call ourselves
2973 recursively, changing TYPE into the type of the first member of
2974 the structure. Since that should work for all structures that
2975 have only one member, we don't bother to check the member's type
2976 here. */
2977 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2978 {
2979 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2980 return i386_return_value (gdbarch, function, type, regcache,
2981 readbuf, writebuf);
2982 }
2983
2984 if (readbuf)
2985 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2986 if (writebuf)
2987 i386_store_return_value (gdbarch, type, regcache, writebuf);
2988
2989 return RETURN_VALUE_REGISTER_CONVENTION;
2990 }
2991 \f
2992
2993 struct type *
2994 i387_ext_type (struct gdbarch *gdbarch)
2995 {
2996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2997
2998 if (!tdep->i387_ext_type)
2999 {
3000 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3001 gdb_assert (tdep->i387_ext_type != NULL);
3002 }
3003
3004 return tdep->i387_ext_type;
3005 }
3006
3007 /* Construct type for pseudo BND registers. We can't use
3008 tdesc_find_type since a complement of one value has to be used
3009 to describe the upper bound. */
3010
3011 static struct type *
3012 i386_bnd_type (struct gdbarch *gdbarch)
3013 {
3014 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3015
3016
3017 if (!tdep->i386_bnd_type)
3018 {
3019 struct type *t;
3020 const struct builtin_type *bt = builtin_type (gdbarch);
3021
3022 /* The type we're building is described bellow: */
3023 #if 0
3024 struct __bound128
3025 {
3026 void *lbound;
3027 void *ubound; /* One complement of raw ubound field. */
3028 };
3029 #endif
3030
3031 t = arch_composite_type (gdbarch,
3032 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3033
3034 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3035 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3036
3037 TYPE_NAME (t) = "builtin_type_bound128";
3038 tdep->i386_bnd_type = t;
3039 }
3040
3041 return tdep->i386_bnd_type;
3042 }
3043
3044 /* Construct vector type for pseudo ZMM registers. We can't use
3045 tdesc_find_type since ZMM isn't described in target description. */
3046
3047 static struct type *
3048 i386_zmm_type (struct gdbarch *gdbarch)
3049 {
3050 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3051
3052 if (!tdep->i386_zmm_type)
3053 {
3054 const struct builtin_type *bt = builtin_type (gdbarch);
3055
3056 /* The type we're building is this: */
3057 #if 0
3058 union __gdb_builtin_type_vec512i
3059 {
3060 int128_t uint128[4];
3061 int64_t v4_int64[8];
3062 int32_t v8_int32[16];
3063 int16_t v16_int16[32];
3064 int8_t v32_int8[64];
3065 double v4_double[8];
3066 float v8_float[16];
3067 };
3068 #endif
3069
3070 struct type *t;
3071
3072 t = arch_composite_type (gdbarch,
3073 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3074 append_composite_type_field (t, "v16_float",
3075 init_vector_type (bt->builtin_float, 16));
3076 append_composite_type_field (t, "v8_double",
3077 init_vector_type (bt->builtin_double, 8));
3078 append_composite_type_field (t, "v64_int8",
3079 init_vector_type (bt->builtin_int8, 64));
3080 append_composite_type_field (t, "v32_int16",
3081 init_vector_type (bt->builtin_int16, 32));
3082 append_composite_type_field (t, "v16_int32",
3083 init_vector_type (bt->builtin_int32, 16));
3084 append_composite_type_field (t, "v8_int64",
3085 init_vector_type (bt->builtin_int64, 8));
3086 append_composite_type_field (t, "v4_int128",
3087 init_vector_type (bt->builtin_int128, 4));
3088
3089 TYPE_VECTOR (t) = 1;
3090 TYPE_NAME (t) = "builtin_type_vec512i";
3091 tdep->i386_zmm_type = t;
3092 }
3093
3094 return tdep->i386_zmm_type;
3095 }
3096
3097 /* Construct vector type for pseudo YMM registers. We can't use
3098 tdesc_find_type since YMM isn't described in target description. */
3099
3100 static struct type *
3101 i386_ymm_type (struct gdbarch *gdbarch)
3102 {
3103 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3104
3105 if (!tdep->i386_ymm_type)
3106 {
3107 const struct builtin_type *bt = builtin_type (gdbarch);
3108
3109 /* The type we're building is this: */
3110 #if 0
3111 union __gdb_builtin_type_vec256i
3112 {
3113 int128_t uint128[2];
3114 int64_t v2_int64[4];
3115 int32_t v4_int32[8];
3116 int16_t v8_int16[16];
3117 int8_t v16_int8[32];
3118 double v2_double[4];
3119 float v4_float[8];
3120 };
3121 #endif
3122
3123 struct type *t;
3124
3125 t = arch_composite_type (gdbarch,
3126 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3127 append_composite_type_field (t, "v8_float",
3128 init_vector_type (bt->builtin_float, 8));
3129 append_composite_type_field (t, "v4_double",
3130 init_vector_type (bt->builtin_double, 4));
3131 append_composite_type_field (t, "v32_int8",
3132 init_vector_type (bt->builtin_int8, 32));
3133 append_composite_type_field (t, "v16_int16",
3134 init_vector_type (bt->builtin_int16, 16));
3135 append_composite_type_field (t, "v8_int32",
3136 init_vector_type (bt->builtin_int32, 8));
3137 append_composite_type_field (t, "v4_int64",
3138 init_vector_type (bt->builtin_int64, 4));
3139 append_composite_type_field (t, "v2_int128",
3140 init_vector_type (bt->builtin_int128, 2));
3141
3142 TYPE_VECTOR (t) = 1;
3143 TYPE_NAME (t) = "builtin_type_vec256i";
3144 tdep->i386_ymm_type = t;
3145 }
3146
3147 return tdep->i386_ymm_type;
3148 }
3149
3150 /* Construct vector type for MMX registers. */
3151 static struct type *
3152 i386_mmx_type (struct gdbarch *gdbarch)
3153 {
3154 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3155
3156 if (!tdep->i386_mmx_type)
3157 {
3158 const struct builtin_type *bt = builtin_type (gdbarch);
3159
3160 /* The type we're building is this: */
3161 #if 0
3162 union __gdb_builtin_type_vec64i
3163 {
3164 int64_t uint64;
3165 int32_t v2_int32[2];
3166 int16_t v4_int16[4];
3167 int8_t v8_int8[8];
3168 };
3169 #endif
3170
3171 struct type *t;
3172
3173 t = arch_composite_type (gdbarch,
3174 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3175
3176 append_composite_type_field (t, "uint64", bt->builtin_int64);
3177 append_composite_type_field (t, "v2_int32",
3178 init_vector_type (bt->builtin_int32, 2));
3179 append_composite_type_field (t, "v4_int16",
3180 init_vector_type (bt->builtin_int16, 4));
3181 append_composite_type_field (t, "v8_int8",
3182 init_vector_type (bt->builtin_int8, 8));
3183
3184 TYPE_VECTOR (t) = 1;
3185 TYPE_NAME (t) = "builtin_type_vec64i";
3186 tdep->i386_mmx_type = t;
3187 }
3188
3189 return tdep->i386_mmx_type;
3190 }
3191
3192 /* Return the GDB type object for the "standard" data type of data in
3193 register REGNUM. */
3194
3195 struct type *
3196 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3197 {
3198 if (i386_bnd_regnum_p (gdbarch, regnum))
3199 return i386_bnd_type (gdbarch);
3200 if (i386_mmx_regnum_p (gdbarch, regnum))
3201 return i386_mmx_type (gdbarch);
3202 else if (i386_ymm_regnum_p (gdbarch, regnum))
3203 return i386_ymm_type (gdbarch);
3204 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3205 return i386_ymm_type (gdbarch);
3206 else if (i386_zmm_regnum_p (gdbarch, regnum))
3207 return i386_zmm_type (gdbarch);
3208 else
3209 {
3210 const struct builtin_type *bt = builtin_type (gdbarch);
3211 if (i386_byte_regnum_p (gdbarch, regnum))
3212 return bt->builtin_int8;
3213 else if (i386_word_regnum_p (gdbarch, regnum))
3214 return bt->builtin_int16;
3215 else if (i386_dword_regnum_p (gdbarch, regnum))
3216 return bt->builtin_int32;
3217 else if (i386_k_regnum_p (gdbarch, regnum))
3218 return bt->builtin_int64;
3219 }
3220
3221 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3222 }
3223
3224 /* Map a cooked register onto a raw register or memory. For the i386,
3225 the MMX registers need to be mapped onto floating point registers. */
3226
3227 static int
3228 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3229 {
3230 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3231 int mmxreg, fpreg;
3232 ULONGEST fstat;
3233 int tos;
3234
3235 mmxreg = regnum - tdep->mm0_regnum;
3236 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3237 tos = (fstat >> 11) & 0x7;
3238 fpreg = (mmxreg + tos) % 8;
3239
3240 return (I387_ST0_REGNUM (tdep) + fpreg);
3241 }
3242
3243 /* A helper function for us by i386_pseudo_register_read_value and
3244 amd64_pseudo_register_read_value. It does all the work but reads
3245 the data into an already-allocated value. */
3246
3247 void
3248 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3249 struct regcache *regcache,
3250 int regnum,
3251 struct value *result_value)
3252 {
3253 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3254 enum register_status status;
3255 gdb_byte *buf = value_contents_raw (result_value);
3256
3257 if (i386_mmx_regnum_p (gdbarch, regnum))
3258 {
3259 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3260
3261 /* Extract (always little endian). */
3262 status = regcache_raw_read (regcache, fpnum, raw_buf);
3263 if (status != REG_VALID)
3264 mark_value_bytes_unavailable (result_value, 0,
3265 TYPE_LENGTH (value_type (result_value)));
3266 else
3267 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3268 }
3269 else
3270 {
3271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3272 if (i386_bnd_regnum_p (gdbarch, regnum))
3273 {
3274 regnum -= tdep->bnd0_regnum;
3275
3276 /* Extract (always little endian). Read lower 128bits. */
3277 status = regcache_raw_read (regcache,
3278 I387_BND0R_REGNUM (tdep) + regnum,
3279 raw_buf);
3280 if (status != REG_VALID)
3281 mark_value_bytes_unavailable (result_value, 0, 16);
3282 else
3283 {
3284 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3285 LONGEST upper, lower;
3286 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3287
3288 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3289 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3290 upper = ~upper;
3291
3292 memcpy (buf, &lower, size);
3293 memcpy (buf + size, &upper, size);
3294 }
3295 }
3296 else if (i386_k_regnum_p (gdbarch, regnum))
3297 {
3298 regnum -= tdep->k0_regnum;
3299
3300 /* Extract (always little endian). */
3301 status = regcache_raw_read (regcache,
3302 tdep->k0_regnum + regnum,
3303 raw_buf);
3304 if (status != REG_VALID)
3305 mark_value_bytes_unavailable (result_value, 0, 8);
3306 else
3307 memcpy (buf, raw_buf, 8);
3308 }
3309 else if (i386_zmm_regnum_p (gdbarch, regnum))
3310 {
3311 regnum -= tdep->zmm0_regnum;
3312
3313 if (regnum < num_lower_zmm_regs)
3314 {
3315 /* Extract (always little endian). Read lower 128bits. */
3316 status = regcache_raw_read (regcache,
3317 I387_XMM0_REGNUM (tdep) + regnum,
3318 raw_buf);
3319 if (status != REG_VALID)
3320 mark_value_bytes_unavailable (result_value, 0, 16);
3321 else
3322 memcpy (buf, raw_buf, 16);
3323
3324 /* Extract (always little endian). Read upper 128bits. */
3325 status = regcache_raw_read (regcache,
3326 tdep->ymm0h_regnum + regnum,
3327 raw_buf);
3328 if (status != REG_VALID)
3329 mark_value_bytes_unavailable (result_value, 16, 16);
3330 else
3331 memcpy (buf + 16, raw_buf, 16);
3332 }
3333 else
3334 {
3335 /* Extract (always little endian). Read lower 128bits. */
3336 status = regcache_raw_read (regcache,
3337 I387_XMM16_REGNUM (tdep) + regnum
3338 - num_lower_zmm_regs,
3339 raw_buf);
3340 if (status != REG_VALID)
3341 mark_value_bytes_unavailable (result_value, 0, 16);
3342 else
3343 memcpy (buf, raw_buf, 16);
3344
3345 /* Extract (always little endian). Read upper 128bits. */
3346 status = regcache_raw_read (regcache,
3347 I387_YMM16H_REGNUM (tdep) + regnum
3348 - num_lower_zmm_regs,
3349 raw_buf);
3350 if (status != REG_VALID)
3351 mark_value_bytes_unavailable (result_value, 16, 16);
3352 else
3353 memcpy (buf + 16, raw_buf, 16);
3354 }
3355
3356 /* Read upper 256bits. */
3357 status = regcache_raw_read (regcache,
3358 tdep->zmm0h_regnum + regnum,
3359 raw_buf);
3360 if (status != REG_VALID)
3361 mark_value_bytes_unavailable (result_value, 32, 32);
3362 else
3363 memcpy (buf + 32, raw_buf, 32);
3364 }
3365 else if (i386_ymm_regnum_p (gdbarch, regnum))
3366 {
3367 regnum -= tdep->ymm0_regnum;
3368
3369 /* Extract (always little endian). Read lower 128bits. */
3370 status = regcache_raw_read (regcache,
3371 I387_XMM0_REGNUM (tdep) + regnum,
3372 raw_buf);
3373 if (status != REG_VALID)
3374 mark_value_bytes_unavailable (result_value, 0, 16);
3375 else
3376 memcpy (buf, raw_buf, 16);
3377 /* Read upper 128bits. */
3378 status = regcache_raw_read (regcache,
3379 tdep->ymm0h_regnum + regnum,
3380 raw_buf);
3381 if (status != REG_VALID)
3382 mark_value_bytes_unavailable (result_value, 16, 32);
3383 else
3384 memcpy (buf + 16, raw_buf, 16);
3385 }
3386 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3387 {
3388 regnum -= tdep->ymm16_regnum;
3389 /* Extract (always little endian). Read lower 128bits. */
3390 status = regcache_raw_read (regcache,
3391 I387_XMM16_REGNUM (tdep) + regnum,
3392 raw_buf);
3393 if (status != REG_VALID)
3394 mark_value_bytes_unavailable (result_value, 0, 16);
3395 else
3396 memcpy (buf, raw_buf, 16);
3397 /* Read upper 128bits. */
3398 status = regcache_raw_read (regcache,
3399 tdep->ymm16h_regnum + regnum,
3400 raw_buf);
3401 if (status != REG_VALID)
3402 mark_value_bytes_unavailable (result_value, 16, 16);
3403 else
3404 memcpy (buf + 16, raw_buf, 16);
3405 }
3406 else if (i386_word_regnum_p (gdbarch, regnum))
3407 {
3408 int gpnum = regnum - tdep->ax_regnum;
3409
3410 /* Extract (always little endian). */
3411 status = regcache_raw_read (regcache, gpnum, raw_buf);
3412 if (status != REG_VALID)
3413 mark_value_bytes_unavailable (result_value, 0,
3414 TYPE_LENGTH (value_type (result_value)));
3415 else
3416 memcpy (buf, raw_buf, 2);
3417 }
3418 else if (i386_byte_regnum_p (gdbarch, regnum))
3419 {
3420 int gpnum = regnum - tdep->al_regnum;
3421
3422 /* Extract (always little endian). We read both lower and
3423 upper registers. */
3424 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3425 if (status != REG_VALID)
3426 mark_value_bytes_unavailable (result_value, 0,
3427 TYPE_LENGTH (value_type (result_value)));
3428 else if (gpnum >= 4)
3429 memcpy (buf, raw_buf + 1, 1);
3430 else
3431 memcpy (buf, raw_buf, 1);
3432 }
3433 else
3434 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3435 }
3436 }
3437
3438 static struct value *
3439 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3440 struct regcache *regcache,
3441 int regnum)
3442 {
3443 struct value *result;
3444
3445 result = allocate_value (register_type (gdbarch, regnum));
3446 VALUE_LVAL (result) = lval_register;
3447 VALUE_REGNUM (result) = regnum;
3448
3449 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3450
3451 return result;
3452 }
3453
3454 void
3455 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3456 int regnum, const gdb_byte *buf)
3457 {
3458 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3459
3460 if (i386_mmx_regnum_p (gdbarch, regnum))
3461 {
3462 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3463
3464 /* Read ... */
3465 regcache_raw_read (regcache, fpnum, raw_buf);
3466 /* ... Modify ... (always little endian). */
3467 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3468 /* ... Write. */
3469 regcache_raw_write (regcache, fpnum, raw_buf);
3470 }
3471 else
3472 {
3473 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3474
3475 if (i386_bnd_regnum_p (gdbarch, regnum))
3476 {
3477 ULONGEST upper, lower;
3478 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3479 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3480
3481 /* New values from input value. */
3482 regnum -= tdep->bnd0_regnum;
3483 lower = extract_unsigned_integer (buf, size, byte_order);
3484 upper = extract_unsigned_integer (buf + size, size, byte_order);
3485
3486 /* Fetching register buffer. */
3487 regcache_raw_read (regcache,
3488 I387_BND0R_REGNUM (tdep) + regnum,
3489 raw_buf);
3490
3491 upper = ~upper;
3492
3493 /* Set register bits. */
3494 memcpy (raw_buf, &lower, 8);
3495 memcpy (raw_buf + 8, &upper, 8);
3496
3497
3498 regcache_raw_write (regcache,
3499 I387_BND0R_REGNUM (tdep) + regnum,
3500 raw_buf);
3501 }
3502 else if (i386_k_regnum_p (gdbarch, regnum))
3503 {
3504 regnum -= tdep->k0_regnum;
3505
3506 regcache_raw_write (regcache,
3507 tdep->k0_regnum + regnum,
3508 buf);
3509 }
3510 else if (i386_zmm_regnum_p (gdbarch, regnum))
3511 {
3512 regnum -= tdep->zmm0_regnum;
3513
3514 if (regnum < num_lower_zmm_regs)
3515 {
3516 /* Write lower 128bits. */
3517 regcache_raw_write (regcache,
3518 I387_XMM0_REGNUM (tdep) + regnum,
3519 buf);
3520 /* Write upper 128bits. */
3521 regcache_raw_write (regcache,
3522 I387_YMM0_REGNUM (tdep) + regnum,
3523 buf + 16);
3524 }
3525 else
3526 {
3527 /* Write lower 128bits. */
3528 regcache_raw_write (regcache,
3529 I387_XMM16_REGNUM (tdep) + regnum
3530 - num_lower_zmm_regs,
3531 buf);
3532 /* Write upper 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_YMM16H_REGNUM (tdep) + regnum
3535 - num_lower_zmm_regs,
3536 buf + 16);
3537 }
3538 /* Write upper 256bits. */
3539 regcache_raw_write (regcache,
3540 tdep->zmm0h_regnum + regnum,
3541 buf + 32);
3542 }
3543 else if (i386_ymm_regnum_p (gdbarch, regnum))
3544 {
3545 regnum -= tdep->ymm0_regnum;
3546
3547 /* ... Write lower 128bits. */
3548 regcache_raw_write (regcache,
3549 I387_XMM0_REGNUM (tdep) + regnum,
3550 buf);
3551 /* ... Write upper 128bits. */
3552 regcache_raw_write (regcache,
3553 tdep->ymm0h_regnum + regnum,
3554 buf + 16);
3555 }
3556 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3557 {
3558 regnum -= tdep->ymm16_regnum;
3559
3560 /* ... Write lower 128bits. */
3561 regcache_raw_write (regcache,
3562 I387_XMM16_REGNUM (tdep) + regnum,
3563 buf);
3564 /* ... Write upper 128bits. */
3565 regcache_raw_write (regcache,
3566 tdep->ymm16h_regnum + regnum,
3567 buf + 16);
3568 }
3569 else if (i386_word_regnum_p (gdbarch, regnum))
3570 {
3571 int gpnum = regnum - tdep->ax_regnum;
3572
3573 /* Read ... */
3574 regcache_raw_read (regcache, gpnum, raw_buf);
3575 /* ... Modify ... (always little endian). */
3576 memcpy (raw_buf, buf, 2);
3577 /* ... Write. */
3578 regcache_raw_write (regcache, gpnum, raw_buf);
3579 }
3580 else if (i386_byte_regnum_p (gdbarch, regnum))
3581 {
3582 int gpnum = regnum - tdep->al_regnum;
3583
3584 /* Read ... We read both lower and upper registers. */
3585 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3586 /* ... Modify ... (always little endian). */
3587 if (gpnum >= 4)
3588 memcpy (raw_buf + 1, buf, 1);
3589 else
3590 memcpy (raw_buf, buf, 1);
3591 /* ... Write. */
3592 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3593 }
3594 else
3595 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3596 }
3597 }
3598
3599 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3600
3601 int
3602 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3603 struct agent_expr *ax, int regnum)
3604 {
3605 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3606
3607 if (i386_mmx_regnum_p (gdbarch, regnum))
3608 {
3609 /* MMX to FPU register mapping depends on current TOS. Let's just
3610 not care and collect everything... */
3611 int i;
3612
3613 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3614 for (i = 0; i < 8; i++)
3615 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3616 return 0;
3617 }
3618 else if (i386_bnd_regnum_p (gdbarch, regnum))
3619 {
3620 regnum -= tdep->bnd0_regnum;
3621 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3622 return 0;
3623 }
3624 else if (i386_k_regnum_p (gdbarch, regnum))
3625 {
3626 regnum -= tdep->k0_regnum;
3627 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3628 return 0;
3629 }
3630 else if (i386_zmm_regnum_p (gdbarch, regnum))
3631 {
3632 regnum -= tdep->zmm0_regnum;
3633 if (regnum < num_lower_zmm_regs)
3634 {
3635 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3636 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3637 }
3638 else
3639 {
3640 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3641 - num_lower_zmm_regs);
3642 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3643 - num_lower_zmm_regs);
3644 }
3645 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3646 return 0;
3647 }
3648 else if (i386_ymm_regnum_p (gdbarch, regnum))
3649 {
3650 regnum -= tdep->ymm0_regnum;
3651 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3652 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3653 return 0;
3654 }
3655 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3656 {
3657 regnum -= tdep->ymm16_regnum;
3658 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3659 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3660 return 0;
3661 }
3662 else if (i386_word_regnum_p (gdbarch, regnum))
3663 {
3664 int gpnum = regnum - tdep->ax_regnum;
3665
3666 ax_reg_mask (ax, gpnum);
3667 return 0;
3668 }
3669 else if (i386_byte_regnum_p (gdbarch, regnum))
3670 {
3671 int gpnum = regnum - tdep->al_regnum;
3672
3673 ax_reg_mask (ax, gpnum % 4);
3674 return 0;
3675 }
3676 else
3677 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3678 return 1;
3679 }
3680 \f
3681
3682 /* Return the register number of the register allocated by GCC after
3683 REGNUM, or -1 if there is no such register. */
3684
3685 static int
3686 i386_next_regnum (int regnum)
3687 {
3688 /* GCC allocates the registers in the order:
3689
3690 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3691
3692 Since storing a variable in %esp doesn't make any sense we return
3693 -1 for %ebp and for %esp itself. */
3694 static int next_regnum[] =
3695 {
3696 I386_EDX_REGNUM, /* Slot for %eax. */
3697 I386_EBX_REGNUM, /* Slot for %ecx. */
3698 I386_ECX_REGNUM, /* Slot for %edx. */
3699 I386_ESI_REGNUM, /* Slot for %ebx. */
3700 -1, -1, /* Slots for %esp and %ebp. */
3701 I386_EDI_REGNUM, /* Slot for %esi. */
3702 I386_EBP_REGNUM /* Slot for %edi. */
3703 };
3704
3705 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3706 return next_regnum[regnum];
3707
3708 return -1;
3709 }
3710
3711 /* Return nonzero if a value of type TYPE stored in register REGNUM
3712 needs any special handling. */
3713
3714 static int
3715 i386_convert_register_p (struct gdbarch *gdbarch,
3716 int regnum, struct type *type)
3717 {
3718 int len = TYPE_LENGTH (type);
3719
3720 /* Values may be spread across multiple registers. Most debugging
3721 formats aren't expressive enough to specify the locations, so
3722 some heuristics is involved. Right now we only handle types that
3723 have a length that is a multiple of the word size, since GCC
3724 doesn't seem to put any other types into registers. */
3725 if (len > 4 && len % 4 == 0)
3726 {
3727 int last_regnum = regnum;
3728
3729 while (len > 4)
3730 {
3731 last_regnum = i386_next_regnum (last_regnum);
3732 len -= 4;
3733 }
3734
3735 if (last_regnum != -1)
3736 return 1;
3737 }
3738
3739 return i387_convert_register_p (gdbarch, regnum, type);
3740 }
3741
3742 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3743 return its contents in TO. */
3744
3745 static int
3746 i386_register_to_value (struct frame_info *frame, int regnum,
3747 struct type *type, gdb_byte *to,
3748 int *optimizedp, int *unavailablep)
3749 {
3750 struct gdbarch *gdbarch = get_frame_arch (frame);
3751 int len = TYPE_LENGTH (type);
3752
3753 if (i386_fp_regnum_p (gdbarch, regnum))
3754 return i387_register_to_value (frame, regnum, type, to,
3755 optimizedp, unavailablep);
3756
3757 /* Read a value spread across multiple registers. */
3758
3759 gdb_assert (len > 4 && len % 4 == 0);
3760
3761 while (len > 0)
3762 {
3763 gdb_assert (regnum != -1);
3764 gdb_assert (register_size (gdbarch, regnum) == 4);
3765
3766 if (!get_frame_register_bytes (frame, regnum, 0,
3767 register_size (gdbarch, regnum),
3768 to, optimizedp, unavailablep))
3769 return 0;
3770
3771 regnum = i386_next_regnum (regnum);
3772 len -= 4;
3773 to += 4;
3774 }
3775
3776 *optimizedp = *unavailablep = 0;
3777 return 1;
3778 }
3779
3780 /* Write the contents FROM of a value of type TYPE into register
3781 REGNUM in frame FRAME. */
3782
3783 static void
3784 i386_value_to_register (struct frame_info *frame, int regnum,
3785 struct type *type, const gdb_byte *from)
3786 {
3787 int len = TYPE_LENGTH (type);
3788
3789 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3790 {
3791 i387_value_to_register (frame, regnum, type, from);
3792 return;
3793 }
3794
3795 /* Write a value spread across multiple registers. */
3796
3797 gdb_assert (len > 4 && len % 4 == 0);
3798
3799 while (len > 0)
3800 {
3801 gdb_assert (regnum != -1);
3802 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3803
3804 put_frame_register (frame, regnum, from);
3805 regnum = i386_next_regnum (regnum);
3806 len -= 4;
3807 from += 4;
3808 }
3809 }
3810 \f
3811 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3812 in the general-purpose register set REGSET to register cache
3813 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3814
3815 void
3816 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3817 int regnum, const void *gregs, size_t len)
3818 {
3819 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3820 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3821 const gdb_byte *regs = (const gdb_byte *) gregs;
3822 int i;
3823
3824 gdb_assert (len >= tdep->sizeof_gregset);
3825
3826 for (i = 0; i < tdep->gregset_num_regs; i++)
3827 {
3828 if ((regnum == i || regnum == -1)
3829 && tdep->gregset_reg_offset[i] != -1)
3830 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3831 }
3832 }
3833
3834 /* Collect register REGNUM from the register cache REGCACHE and store
3835 it in the buffer specified by GREGS and LEN as described by the
3836 general-purpose register set REGSET. If REGNUM is -1, do this for
3837 all registers in REGSET. */
3838
3839 static void
3840 i386_collect_gregset (const struct regset *regset,
3841 const struct regcache *regcache,
3842 int regnum, void *gregs, size_t len)
3843 {
3844 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3845 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3846 gdb_byte *regs = (gdb_byte *) gregs;
3847 int i;
3848
3849 gdb_assert (len >= tdep->sizeof_gregset);
3850
3851 for (i = 0; i < tdep->gregset_num_regs; i++)
3852 {
3853 if ((regnum == i || regnum == -1)
3854 && tdep->gregset_reg_offset[i] != -1)
3855 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3856 }
3857 }
3858
3859 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3860 in the floating-point register set REGSET to register cache
3861 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3862
3863 static void
3864 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3865 int regnum, const void *fpregs, size_t len)
3866 {
3867 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3868 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3869
3870 if (len == I387_SIZEOF_FXSAVE)
3871 {
3872 i387_supply_fxsave (regcache, regnum, fpregs);
3873 return;
3874 }
3875
3876 gdb_assert (len >= tdep->sizeof_fpregset);
3877 i387_supply_fsave (regcache, regnum, fpregs);
3878 }
3879
3880 /* Collect register REGNUM from the register cache REGCACHE and store
3881 it in the buffer specified by FPREGS and LEN as described by the
3882 floating-point register set REGSET. If REGNUM is -1, do this for
3883 all registers in REGSET. */
3884
3885 static void
3886 i386_collect_fpregset (const struct regset *regset,
3887 const struct regcache *regcache,
3888 int regnum, void *fpregs, size_t len)
3889 {
3890 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3891 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3892
3893 if (len == I387_SIZEOF_FXSAVE)
3894 {
3895 i387_collect_fxsave (regcache, regnum, fpregs);
3896 return;
3897 }
3898
3899 gdb_assert (len >= tdep->sizeof_fpregset);
3900 i387_collect_fsave (regcache, regnum, fpregs);
3901 }
3902
3903 /* Register set definitions. */
3904
3905 const struct regset i386_gregset =
3906 {
3907 NULL, i386_supply_gregset, i386_collect_gregset
3908 };
3909
3910 const struct regset i386_fpregset =
3911 {
3912 NULL, i386_supply_fpregset, i386_collect_fpregset
3913 };
3914
3915 /* Default iterator over core file register note sections. */
3916
3917 void
3918 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3919 iterate_over_regset_sections_cb *cb,
3920 void *cb_data,
3921 const struct regcache *regcache)
3922 {
3923 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3924
3925 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3926 if (tdep->sizeof_fpregset)
3927 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3928 }
3929 \f
3930
3931 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3932
3933 CORE_ADDR
3934 i386_pe_skip_trampoline_code (struct frame_info *frame,
3935 CORE_ADDR pc, char *name)
3936 {
3937 struct gdbarch *gdbarch = get_frame_arch (frame);
3938 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3939
3940 /* jmp *(dest) */
3941 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3942 {
3943 unsigned long indirect =
3944 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3945 struct minimal_symbol *indsym =
3946 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3947 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3948
3949 if (symname)
3950 {
3951 if (startswith (symname, "__imp_")
3952 || startswith (symname, "_imp_"))
3953 return name ? 1 :
3954 read_memory_unsigned_integer (indirect, 4, byte_order);
3955 }
3956 }
3957 return 0; /* Not a trampoline. */
3958 }
3959 \f
3960
3961 /* Return whether the THIS_FRAME corresponds to a sigtramp
3962 routine. */
3963
3964 int
3965 i386_sigtramp_p (struct frame_info *this_frame)
3966 {
3967 CORE_ADDR pc = get_frame_pc (this_frame);
3968 const char *name;
3969
3970 find_pc_partial_function (pc, &name, NULL, NULL);
3971 return (name && strcmp ("_sigtramp", name) == 0);
3972 }
3973 \f
3974
3975 /* We have two flavours of disassembly. The machinery on this page
3976 deals with switching between those. */
3977
3978 static int
3979 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3980 {
3981 gdb_assert (disassembly_flavor == att_flavor
3982 || disassembly_flavor == intel_flavor);
3983
3984 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3985 constified, cast to prevent a compiler warning. */
3986 info->disassembler_options = (char *) disassembly_flavor;
3987
3988 return print_insn_i386 (pc, info);
3989 }
3990 \f
3991
3992 /* There are a few i386 architecture variants that differ only
3993 slightly from the generic i386 target. For now, we don't give them
3994 their own source file, but include them here. As a consequence,
3995 they'll always be included. */
3996
3997 /* System V Release 4 (SVR4). */
3998
3999 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4000 routine. */
4001
4002 static int
4003 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4004 {
4005 CORE_ADDR pc = get_frame_pc (this_frame);
4006 const char *name;
4007
4008 /* The origin of these symbols is currently unknown. */
4009 find_pc_partial_function (pc, &name, NULL, NULL);
4010 return (name && (strcmp ("_sigreturn", name) == 0
4011 || strcmp ("sigvechandler", name) == 0));
4012 }
4013
4014 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4015 address of the associated sigcontext (ucontext) structure. */
4016
4017 static CORE_ADDR
4018 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4019 {
4020 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4022 gdb_byte buf[4];
4023 CORE_ADDR sp;
4024
4025 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4026 sp = extract_unsigned_integer (buf, 4, byte_order);
4027
4028 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4029 }
4030
4031 \f
4032
4033 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4034 gdbarch.h. */
4035
4036 int
4037 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4038 {
4039 return (*s == '$' /* Literal number. */
4040 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4041 || (*s == '(' && s[1] == '%') /* Register indirection. */
4042 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4043 }
4044
4045 /* Helper function for i386_stap_parse_special_token.
4046
4047 This function parses operands of the form `-8+3+1(%rbp)', which
4048 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4049
4050 Return 1 if the operand was parsed successfully, zero
4051 otherwise. */
4052
4053 static int
4054 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4055 struct stap_parse_info *p)
4056 {
4057 const char *s = p->arg;
4058
4059 if (isdigit (*s) || *s == '-' || *s == '+')
4060 {
4061 int got_minus[3];
4062 int i;
4063 long displacements[3];
4064 const char *start;
4065 char *regname;
4066 int len;
4067 struct stoken str;
4068 char *endp;
4069
4070 got_minus[0] = 0;
4071 if (*s == '+')
4072 ++s;
4073 else if (*s == '-')
4074 {
4075 ++s;
4076 got_minus[0] = 1;
4077 }
4078
4079 if (!isdigit ((unsigned char) *s))
4080 return 0;
4081
4082 displacements[0] = strtol (s, &endp, 10);
4083 s = endp;
4084
4085 if (*s != '+' && *s != '-')
4086 {
4087 /* We are not dealing with a triplet. */
4088 return 0;
4089 }
4090
4091 got_minus[1] = 0;
4092 if (*s == '+')
4093 ++s;
4094 else
4095 {
4096 ++s;
4097 got_minus[1] = 1;
4098 }
4099
4100 if (!isdigit ((unsigned char) *s))
4101 return 0;
4102
4103 displacements[1] = strtol (s, &endp, 10);
4104 s = endp;
4105
4106 if (*s != '+' && *s != '-')
4107 {
4108 /* We are not dealing with a triplet. */
4109 return 0;
4110 }
4111
4112 got_minus[2] = 0;
4113 if (*s == '+')
4114 ++s;
4115 else
4116 {
4117 ++s;
4118 got_minus[2] = 1;
4119 }
4120
4121 if (!isdigit ((unsigned char) *s))
4122 return 0;
4123
4124 displacements[2] = strtol (s, &endp, 10);
4125 s = endp;
4126
4127 if (*s != '(' || s[1] != '%')
4128 return 0;
4129
4130 s += 2;
4131 start = s;
4132
4133 while (isalnum (*s))
4134 ++s;
4135
4136 if (*s++ != ')')
4137 return 0;
4138
4139 len = s - start - 1;
4140 regname = (char *) alloca (len + 1);
4141
4142 strncpy (regname, start, len);
4143 regname[len] = '\0';
4144
4145 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4146 error (_("Invalid register name `%s' on expression `%s'."),
4147 regname, p->saved_arg);
4148
4149 for (i = 0; i < 3; i++)
4150 {
4151 write_exp_elt_opcode (&p->pstate, OP_LONG);
4152 write_exp_elt_type
4153 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4154 write_exp_elt_longcst (&p->pstate, displacements[i]);
4155 write_exp_elt_opcode (&p->pstate, OP_LONG);
4156 if (got_minus[i])
4157 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4158 }
4159
4160 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4161 str.ptr = regname;
4162 str.length = len;
4163 write_exp_string (&p->pstate, str);
4164 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4165
4166 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4167 write_exp_elt_type (&p->pstate,
4168 builtin_type (gdbarch)->builtin_data_ptr);
4169 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4170
4171 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4172 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4173 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4174
4175 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4176 write_exp_elt_type (&p->pstate,
4177 lookup_pointer_type (p->arg_type));
4178 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4179
4180 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4181
4182 p->arg = s;
4183
4184 return 1;
4185 }
4186
4187 return 0;
4188 }
4189
4190 /* Helper function for i386_stap_parse_special_token.
4191
4192 This function parses operands of the form `register base +
4193 (register index * size) + offset', as represented in
4194 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4195
4196 Return 1 if the operand was parsed successfully, zero
4197 otherwise. */
4198
4199 static int
4200 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4201 struct stap_parse_info *p)
4202 {
4203 const char *s = p->arg;
4204
4205 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4206 {
4207 int offset_minus = 0;
4208 long offset = 0;
4209 int size_minus = 0;
4210 long size = 0;
4211 const char *start;
4212 char *base;
4213 int len_base;
4214 char *index;
4215 int len_index;
4216 struct stoken base_token, index_token;
4217
4218 if (*s == '+')
4219 ++s;
4220 else if (*s == '-')
4221 {
4222 ++s;
4223 offset_minus = 1;
4224 }
4225
4226 if (offset_minus && !isdigit (*s))
4227 return 0;
4228
4229 if (isdigit (*s))
4230 {
4231 char *endp;
4232
4233 offset = strtol (s, &endp, 10);
4234 s = endp;
4235 }
4236
4237 if (*s != '(' || s[1] != '%')
4238 return 0;
4239
4240 s += 2;
4241 start = s;
4242
4243 while (isalnum (*s))
4244 ++s;
4245
4246 if (*s != ',' || s[1] != '%')
4247 return 0;
4248
4249 len_base = s - start;
4250 base = (char *) alloca (len_base + 1);
4251 strncpy (base, start, len_base);
4252 base[len_base] = '\0';
4253
4254 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4255 error (_("Invalid register name `%s' on expression `%s'."),
4256 base, p->saved_arg);
4257
4258 s += 2;
4259 start = s;
4260
4261 while (isalnum (*s))
4262 ++s;
4263
4264 len_index = s - start;
4265 index = (char *) alloca (len_index + 1);
4266 strncpy (index, start, len_index);
4267 index[len_index] = '\0';
4268
4269 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4270 error (_("Invalid register name `%s' on expression `%s'."),
4271 index, p->saved_arg);
4272
4273 if (*s != ',' && *s != ')')
4274 return 0;
4275
4276 if (*s == ',')
4277 {
4278 char *endp;
4279
4280 ++s;
4281 if (*s == '+')
4282 ++s;
4283 else if (*s == '-')
4284 {
4285 ++s;
4286 size_minus = 1;
4287 }
4288
4289 size = strtol (s, &endp, 10);
4290 s = endp;
4291
4292 if (*s != ')')
4293 return 0;
4294 }
4295
4296 ++s;
4297
4298 if (offset)
4299 {
4300 write_exp_elt_opcode (&p->pstate, OP_LONG);
4301 write_exp_elt_type (&p->pstate,
4302 builtin_type (gdbarch)->builtin_long);
4303 write_exp_elt_longcst (&p->pstate, offset);
4304 write_exp_elt_opcode (&p->pstate, OP_LONG);
4305 if (offset_minus)
4306 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4307 }
4308
4309 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4310 base_token.ptr = base;
4311 base_token.length = len_base;
4312 write_exp_string (&p->pstate, base_token);
4313 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4314
4315 if (offset)
4316 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4317
4318 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4319 index_token.ptr = index;
4320 index_token.length = len_index;
4321 write_exp_string (&p->pstate, index_token);
4322 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4323
4324 if (size)
4325 {
4326 write_exp_elt_opcode (&p->pstate, OP_LONG);
4327 write_exp_elt_type (&p->pstate,
4328 builtin_type (gdbarch)->builtin_long);
4329 write_exp_elt_longcst (&p->pstate, size);
4330 write_exp_elt_opcode (&p->pstate, OP_LONG);
4331 if (size_minus)
4332 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4333 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4334 }
4335
4336 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4337
4338 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4339 write_exp_elt_type (&p->pstate,
4340 lookup_pointer_type (p->arg_type));
4341 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4342
4343 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4344
4345 p->arg = s;
4346
4347 return 1;
4348 }
4349
4350 return 0;
4351 }
4352
4353 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4354 gdbarch.h. */
4355
4356 int
4357 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4358 struct stap_parse_info *p)
4359 {
4360 /* In order to parse special tokens, we use a state-machine that go
4361 through every known token and try to get a match. */
4362 enum
4363 {
4364 TRIPLET,
4365 THREE_ARG_DISPLACEMENT,
4366 DONE
4367 };
4368 int current_state;
4369
4370 current_state = TRIPLET;
4371
4372 /* The special tokens to be parsed here are:
4373
4374 - `register base + (register index * size) + offset', as represented
4375 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4376
4377 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4378 `*(-8 + 3 - 1 + (void *) $eax)'. */
4379
4380 while (current_state != DONE)
4381 {
4382 switch (current_state)
4383 {
4384 case TRIPLET:
4385 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4386 return 1;
4387 break;
4388
4389 case THREE_ARG_DISPLACEMENT:
4390 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4391 return 1;
4392 break;
4393 }
4394
4395 /* Advancing to the next state. */
4396 ++current_state;
4397 }
4398
4399 return 0;
4400 }
4401
4402 \f
4403
4404 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4405 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4406
4407 static const char *
4408 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4409 {
4410 return "(x86_64|i.86)";
4411 }
4412
4413 \f
4414
4415 /* Generic ELF. */
4416
4417 void
4418 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4419 {
4420 static const char *const stap_integer_prefixes[] = { "$", NULL };
4421 static const char *const stap_register_prefixes[] = { "%", NULL };
4422 static const char *const stap_register_indirection_prefixes[] = { "(",
4423 NULL };
4424 static const char *const stap_register_indirection_suffixes[] = { ")",
4425 NULL };
4426
4427 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4428 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4429
4430 /* Registering SystemTap handlers. */
4431 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4432 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4433 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4434 stap_register_indirection_prefixes);
4435 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4436 stap_register_indirection_suffixes);
4437 set_gdbarch_stap_is_single_operand (gdbarch,
4438 i386_stap_is_single_operand);
4439 set_gdbarch_stap_parse_special_token (gdbarch,
4440 i386_stap_parse_special_token);
4441
4442 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4443 }
4444
4445 /* System V Release 4 (SVR4). */
4446
4447 void
4448 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4449 {
4450 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4451
4452 /* System V Release 4 uses ELF. */
4453 i386_elf_init_abi (info, gdbarch);
4454
4455 /* System V Release 4 has shared libraries. */
4456 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4457
4458 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4459 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4460 tdep->sc_pc_offset = 36 + 14 * 4;
4461 tdep->sc_sp_offset = 36 + 17 * 4;
4462
4463 tdep->jb_pc_offset = 20;
4464 }
4465
4466 /* DJGPP. */
4467
4468 static void
4469 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4470 {
4471 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4472
4473 /* DJGPP doesn't have any special frames for signal handlers. */
4474 tdep->sigtramp_p = NULL;
4475
4476 tdep->jb_pc_offset = 36;
4477
4478 /* DJGPP does not support the SSE registers. */
4479 if (! tdesc_has_registers (info.target_desc))
4480 tdep->tdesc = tdesc_i386_mmx;
4481
4482 /* Native compiler is GCC, which uses the SVR4 register numbering
4483 even in COFF and STABS. See the comment in i386_gdbarch_init,
4484 before the calls to set_gdbarch_stab_reg_to_regnum and
4485 set_gdbarch_sdb_reg_to_regnum. */
4486 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4487 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4488
4489 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4490
4491 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4492 }
4493 \f
4494
4495 /* i386 register groups. In addition to the normal groups, add "mmx"
4496 and "sse". */
4497
4498 static struct reggroup *i386_sse_reggroup;
4499 static struct reggroup *i386_mmx_reggroup;
4500
4501 static void
4502 i386_init_reggroups (void)
4503 {
4504 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4505 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4506 }
4507
4508 static void
4509 i386_add_reggroups (struct gdbarch *gdbarch)
4510 {
4511 reggroup_add (gdbarch, i386_sse_reggroup);
4512 reggroup_add (gdbarch, i386_mmx_reggroup);
4513 reggroup_add (gdbarch, general_reggroup);
4514 reggroup_add (gdbarch, float_reggroup);
4515 reggroup_add (gdbarch, all_reggroup);
4516 reggroup_add (gdbarch, save_reggroup);
4517 reggroup_add (gdbarch, restore_reggroup);
4518 reggroup_add (gdbarch, vector_reggroup);
4519 reggroup_add (gdbarch, system_reggroup);
4520 }
4521
4522 int
4523 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4524 struct reggroup *group)
4525 {
4526 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4527 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4528 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4529 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4530 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4531 avx512_p, avx_p, sse_p;
4532
4533 /* Don't include pseudo registers, except for MMX, in any register
4534 groups. */
4535 if (i386_byte_regnum_p (gdbarch, regnum))
4536 return 0;
4537
4538 if (i386_word_regnum_p (gdbarch, regnum))
4539 return 0;
4540
4541 if (i386_dword_regnum_p (gdbarch, regnum))
4542 return 0;
4543
4544 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4545 if (group == i386_mmx_reggroup)
4546 return mmx_regnum_p;
4547
4548 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4549 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4550 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4551 if (group == i386_sse_reggroup)
4552 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4553
4554 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4555 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4556 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4557
4558 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4559 == X86_XSTATE_AVX_AVX512_MASK);
4560 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4561 == X86_XSTATE_AVX_MASK) && !avx512_p;
4562 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4563 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4564
4565 if (group == vector_reggroup)
4566 return (mmx_regnum_p
4567 || (zmm_regnum_p && avx512_p)
4568 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4569 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4570 || mxcsr_regnum_p);
4571
4572 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4573 || i386_fpc_regnum_p (gdbarch, regnum));
4574 if (group == float_reggroup)
4575 return fp_regnum_p;
4576
4577 /* For "info reg all", don't include upper YMM registers nor XMM
4578 registers when AVX is supported. */
4579 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4580 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4581 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4582 if (group == all_reggroup
4583 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4584 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4585 || ymmh_regnum_p
4586 || ymmh_avx512_regnum_p
4587 || zmmh_regnum_p))
4588 return 0;
4589
4590 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4591 if (group == all_reggroup
4592 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4593 return bnd_regnum_p;
4594
4595 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4596 if (group == all_reggroup
4597 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4598 return 0;
4599
4600 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4601 if (group == all_reggroup
4602 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4603 return mpx_ctrl_regnum_p;
4604
4605 if (group == general_reggroup)
4606 return (!fp_regnum_p
4607 && !mmx_regnum_p
4608 && !mxcsr_regnum_p
4609 && !xmm_regnum_p
4610 && !xmm_avx512_regnum_p
4611 && !ymm_regnum_p
4612 && !ymmh_regnum_p
4613 && !ymm_avx512_regnum_p
4614 && !ymmh_avx512_regnum_p
4615 && !bndr_regnum_p
4616 && !bnd_regnum_p
4617 && !mpx_ctrl_regnum_p
4618 && !zmm_regnum_p
4619 && !zmmh_regnum_p);
4620
4621 return default_register_reggroup_p (gdbarch, regnum, group);
4622 }
4623 \f
4624
4625 /* Get the ARGIth function argument for the current function. */
4626
4627 static CORE_ADDR
4628 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4629 struct type *type)
4630 {
4631 struct gdbarch *gdbarch = get_frame_arch (frame);
4632 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4633 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4634 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4635 }
4636
4637 #define PREFIX_REPZ 0x01
4638 #define PREFIX_REPNZ 0x02
4639 #define PREFIX_LOCK 0x04
4640 #define PREFIX_DATA 0x08
4641 #define PREFIX_ADDR 0x10
4642
4643 /* operand size */
4644 enum
4645 {
4646 OT_BYTE = 0,
4647 OT_WORD,
4648 OT_LONG,
4649 OT_QUAD,
4650 OT_DQUAD,
4651 };
4652
4653 /* i386 arith/logic operations */
4654 enum
4655 {
4656 OP_ADDL,
4657 OP_ORL,
4658 OP_ADCL,
4659 OP_SBBL,
4660 OP_ANDL,
4661 OP_SUBL,
4662 OP_XORL,
4663 OP_CMPL,
4664 };
4665
4666 struct i386_record_s
4667 {
4668 struct gdbarch *gdbarch;
4669 struct regcache *regcache;
4670 CORE_ADDR orig_addr;
4671 CORE_ADDR addr;
4672 int aflag;
4673 int dflag;
4674 int override;
4675 uint8_t modrm;
4676 uint8_t mod, reg, rm;
4677 int ot;
4678 uint8_t rex_x;
4679 uint8_t rex_b;
4680 int rip_offset;
4681 int popl_esp_hack;
4682 const int *regmap;
4683 };
4684
4685 /* Parse the "modrm" part of the memory address irp->addr points at.
4686 Returns -1 if something goes wrong, 0 otherwise. */
4687
4688 static int
4689 i386_record_modrm (struct i386_record_s *irp)
4690 {
4691 struct gdbarch *gdbarch = irp->gdbarch;
4692
4693 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4694 return -1;
4695
4696 irp->addr++;
4697 irp->mod = (irp->modrm >> 6) & 3;
4698 irp->reg = (irp->modrm >> 3) & 7;
4699 irp->rm = irp->modrm & 7;
4700
4701 return 0;
4702 }
4703
4704 /* Extract the memory address that the current instruction writes to,
4705 and return it in *ADDR. Return -1 if something goes wrong. */
4706
4707 static int
4708 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4709 {
4710 struct gdbarch *gdbarch = irp->gdbarch;
4711 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4712 gdb_byte buf[4];
4713 ULONGEST offset64;
4714
4715 *addr = 0;
4716 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4717 {
4718 /* 32/64 bits */
4719 int havesib = 0;
4720 uint8_t scale = 0;
4721 uint8_t byte;
4722 uint8_t index = 0;
4723 uint8_t base = irp->rm;
4724
4725 if (base == 4)
4726 {
4727 havesib = 1;
4728 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4729 return -1;
4730 irp->addr++;
4731 scale = (byte >> 6) & 3;
4732 index = ((byte >> 3) & 7) | irp->rex_x;
4733 base = (byte & 7);
4734 }
4735 base |= irp->rex_b;
4736
4737 switch (irp->mod)
4738 {
4739 case 0:
4740 if ((base & 7) == 5)
4741 {
4742 base = 0xff;
4743 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4744 return -1;
4745 irp->addr += 4;
4746 *addr = extract_signed_integer (buf, 4, byte_order);
4747 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4748 *addr += irp->addr + irp->rip_offset;
4749 }
4750 break;
4751 case 1:
4752 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4753 return -1;
4754 irp->addr++;
4755 *addr = (int8_t) buf[0];
4756 break;
4757 case 2:
4758 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4759 return -1;
4760 *addr = extract_signed_integer (buf, 4, byte_order);
4761 irp->addr += 4;
4762 break;
4763 }
4764
4765 offset64 = 0;
4766 if (base != 0xff)
4767 {
4768 if (base == 4 && irp->popl_esp_hack)
4769 *addr += irp->popl_esp_hack;
4770 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4771 &offset64);
4772 }
4773 if (irp->aflag == 2)
4774 {
4775 *addr += offset64;
4776 }
4777 else
4778 *addr = (uint32_t) (offset64 + *addr);
4779
4780 if (havesib && (index != 4 || scale != 0))
4781 {
4782 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4783 &offset64);
4784 if (irp->aflag == 2)
4785 *addr += offset64 << scale;
4786 else
4787 *addr = (uint32_t) (*addr + (offset64 << scale));
4788 }
4789
4790 if (!irp->aflag)
4791 {
4792 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4793 address from 32-bit to 64-bit. */
4794 *addr = (uint32_t) *addr;
4795 }
4796 }
4797 else
4798 {
4799 /* 16 bits */
4800 switch (irp->mod)
4801 {
4802 case 0:
4803 if (irp->rm == 6)
4804 {
4805 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4806 return -1;
4807 irp->addr += 2;
4808 *addr = extract_signed_integer (buf, 2, byte_order);
4809 irp->rm = 0;
4810 goto no_rm;
4811 }
4812 break;
4813 case 1:
4814 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4815 return -1;
4816 irp->addr++;
4817 *addr = (int8_t) buf[0];
4818 break;
4819 case 2:
4820 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4821 return -1;
4822 irp->addr += 2;
4823 *addr = extract_signed_integer (buf, 2, byte_order);
4824 break;
4825 }
4826
4827 switch (irp->rm)
4828 {
4829 case 0:
4830 regcache_raw_read_unsigned (irp->regcache,
4831 irp->regmap[X86_RECORD_REBX_REGNUM],
4832 &offset64);
4833 *addr = (uint32_t) (*addr + offset64);
4834 regcache_raw_read_unsigned (irp->regcache,
4835 irp->regmap[X86_RECORD_RESI_REGNUM],
4836 &offset64);
4837 *addr = (uint32_t) (*addr + offset64);
4838 break;
4839 case 1:
4840 regcache_raw_read_unsigned (irp->regcache,
4841 irp->regmap[X86_RECORD_REBX_REGNUM],
4842 &offset64);
4843 *addr = (uint32_t) (*addr + offset64);
4844 regcache_raw_read_unsigned (irp->regcache,
4845 irp->regmap[X86_RECORD_REDI_REGNUM],
4846 &offset64);
4847 *addr = (uint32_t) (*addr + offset64);
4848 break;
4849 case 2:
4850 regcache_raw_read_unsigned (irp->regcache,
4851 irp->regmap[X86_RECORD_REBP_REGNUM],
4852 &offset64);
4853 *addr = (uint32_t) (*addr + offset64);
4854 regcache_raw_read_unsigned (irp->regcache,
4855 irp->regmap[X86_RECORD_RESI_REGNUM],
4856 &offset64);
4857 *addr = (uint32_t) (*addr + offset64);
4858 break;
4859 case 3:
4860 regcache_raw_read_unsigned (irp->regcache,
4861 irp->regmap[X86_RECORD_REBP_REGNUM],
4862 &offset64);
4863 *addr = (uint32_t) (*addr + offset64);
4864 regcache_raw_read_unsigned (irp->regcache,
4865 irp->regmap[X86_RECORD_REDI_REGNUM],
4866 &offset64);
4867 *addr = (uint32_t) (*addr + offset64);
4868 break;
4869 case 4:
4870 regcache_raw_read_unsigned (irp->regcache,
4871 irp->regmap[X86_RECORD_RESI_REGNUM],
4872 &offset64);
4873 *addr = (uint32_t) (*addr + offset64);
4874 break;
4875 case 5:
4876 regcache_raw_read_unsigned (irp->regcache,
4877 irp->regmap[X86_RECORD_REDI_REGNUM],
4878 &offset64);
4879 *addr = (uint32_t) (*addr + offset64);
4880 break;
4881 case 6:
4882 regcache_raw_read_unsigned (irp->regcache,
4883 irp->regmap[X86_RECORD_REBP_REGNUM],
4884 &offset64);
4885 *addr = (uint32_t) (*addr + offset64);
4886 break;
4887 case 7:
4888 regcache_raw_read_unsigned (irp->regcache,
4889 irp->regmap[X86_RECORD_REBX_REGNUM],
4890 &offset64);
4891 *addr = (uint32_t) (*addr + offset64);
4892 break;
4893 }
4894 *addr &= 0xffff;
4895 }
4896
4897 no_rm:
4898 return 0;
4899 }
4900
4901 /* Record the address and contents of the memory that will be changed
4902 by the current instruction. Return -1 if something goes wrong, 0
4903 otherwise. */
4904
4905 static int
4906 i386_record_lea_modrm (struct i386_record_s *irp)
4907 {
4908 struct gdbarch *gdbarch = irp->gdbarch;
4909 uint64_t addr;
4910
4911 if (irp->override >= 0)
4912 {
4913 if (record_full_memory_query)
4914 {
4915 if (yquery (_("\
4916 Process record ignores the memory change of instruction at address %s\n\
4917 because it can't get the value of the segment register.\n\
4918 Do you want to stop the program?"),
4919 paddress (gdbarch, irp->orig_addr)))
4920 return -1;
4921 }
4922
4923 return 0;
4924 }
4925
4926 if (i386_record_lea_modrm_addr (irp, &addr))
4927 return -1;
4928
4929 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4930 return -1;
4931
4932 return 0;
4933 }
4934
4935 /* Record the effects of a push operation. Return -1 if something
4936 goes wrong, 0 otherwise. */
4937
4938 static int
4939 i386_record_push (struct i386_record_s *irp, int size)
4940 {
4941 ULONGEST addr;
4942
4943 if (record_full_arch_list_add_reg (irp->regcache,
4944 irp->regmap[X86_RECORD_RESP_REGNUM]))
4945 return -1;
4946 regcache_raw_read_unsigned (irp->regcache,
4947 irp->regmap[X86_RECORD_RESP_REGNUM],
4948 &addr);
4949 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4950 return -1;
4951
4952 return 0;
4953 }
4954
4955
4956 /* Defines contents to record. */
4957 #define I386_SAVE_FPU_REGS 0xfffd
4958 #define I386_SAVE_FPU_ENV 0xfffe
4959 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4960
4961 /* Record the values of the floating point registers which will be
4962 changed by the current instruction. Returns -1 if something is
4963 wrong, 0 otherwise. */
4964
4965 static int i386_record_floats (struct gdbarch *gdbarch,
4966 struct i386_record_s *ir,
4967 uint32_t iregnum)
4968 {
4969 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4970 int i;
4971
4972 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4973 happen. Currently we store st0-st7 registers, but we need not store all
4974 registers all the time, in future we use ftag register and record only
4975 those who are not marked as an empty. */
4976
4977 if (I386_SAVE_FPU_REGS == iregnum)
4978 {
4979 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4980 {
4981 if (record_full_arch_list_add_reg (ir->regcache, i))
4982 return -1;
4983 }
4984 }
4985 else if (I386_SAVE_FPU_ENV == iregnum)
4986 {
4987 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4988 {
4989 if (record_full_arch_list_add_reg (ir->regcache, i))
4990 return -1;
4991 }
4992 }
4993 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4994 {
4995 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4996 {
4997 if (record_full_arch_list_add_reg (ir->regcache, i))
4998 return -1;
4999 }
5000 }
5001 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5002 (iregnum <= I387_FOP_REGNUM (tdep)))
5003 {
5004 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5005 return -1;
5006 }
5007 else
5008 {
5009 /* Parameter error. */
5010 return -1;
5011 }
5012 if(I386_SAVE_FPU_ENV != iregnum)
5013 {
5014 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5015 {
5016 if (record_full_arch_list_add_reg (ir->regcache, i))
5017 return -1;
5018 }
5019 }
5020 return 0;
5021 }
5022
5023 /* Parse the current instruction, and record the values of the
5024 registers and memory that will be changed by the current
5025 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5026
5027 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5028 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5029
5030 int
5031 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5032 CORE_ADDR input_addr)
5033 {
5034 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5035 int prefixes = 0;
5036 int regnum = 0;
5037 uint32_t opcode;
5038 uint8_t opcode8;
5039 ULONGEST addr;
5040 gdb_byte buf[MAX_REGISTER_SIZE];
5041 struct i386_record_s ir;
5042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5043 uint8_t rex_w = -1;
5044 uint8_t rex_r = 0;
5045
5046 memset (&ir, 0, sizeof (struct i386_record_s));
5047 ir.regcache = regcache;
5048 ir.addr = input_addr;
5049 ir.orig_addr = input_addr;
5050 ir.aflag = 1;
5051 ir.dflag = 1;
5052 ir.override = -1;
5053 ir.popl_esp_hack = 0;
5054 ir.regmap = tdep->record_regmap;
5055 ir.gdbarch = gdbarch;
5056
5057 if (record_debug > 1)
5058 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5059 "addr = %s\n",
5060 paddress (gdbarch, ir.addr));
5061
5062 /* prefixes */
5063 while (1)
5064 {
5065 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5066 return -1;
5067 ir.addr++;
5068 switch (opcode8) /* Instruction prefixes */
5069 {
5070 case REPE_PREFIX_OPCODE:
5071 prefixes |= PREFIX_REPZ;
5072 break;
5073 case REPNE_PREFIX_OPCODE:
5074 prefixes |= PREFIX_REPNZ;
5075 break;
5076 case LOCK_PREFIX_OPCODE:
5077 prefixes |= PREFIX_LOCK;
5078 break;
5079 case CS_PREFIX_OPCODE:
5080 ir.override = X86_RECORD_CS_REGNUM;
5081 break;
5082 case SS_PREFIX_OPCODE:
5083 ir.override = X86_RECORD_SS_REGNUM;
5084 break;
5085 case DS_PREFIX_OPCODE:
5086 ir.override = X86_RECORD_DS_REGNUM;
5087 break;
5088 case ES_PREFIX_OPCODE:
5089 ir.override = X86_RECORD_ES_REGNUM;
5090 break;
5091 case FS_PREFIX_OPCODE:
5092 ir.override = X86_RECORD_FS_REGNUM;
5093 break;
5094 case GS_PREFIX_OPCODE:
5095 ir.override = X86_RECORD_GS_REGNUM;
5096 break;
5097 case DATA_PREFIX_OPCODE:
5098 prefixes |= PREFIX_DATA;
5099 break;
5100 case ADDR_PREFIX_OPCODE:
5101 prefixes |= PREFIX_ADDR;
5102 break;
5103 case 0x40: /* i386 inc %eax */
5104 case 0x41: /* i386 inc %ecx */
5105 case 0x42: /* i386 inc %edx */
5106 case 0x43: /* i386 inc %ebx */
5107 case 0x44: /* i386 inc %esp */
5108 case 0x45: /* i386 inc %ebp */
5109 case 0x46: /* i386 inc %esi */
5110 case 0x47: /* i386 inc %edi */
5111 case 0x48: /* i386 dec %eax */
5112 case 0x49: /* i386 dec %ecx */
5113 case 0x4a: /* i386 dec %edx */
5114 case 0x4b: /* i386 dec %ebx */
5115 case 0x4c: /* i386 dec %esp */
5116 case 0x4d: /* i386 dec %ebp */
5117 case 0x4e: /* i386 dec %esi */
5118 case 0x4f: /* i386 dec %edi */
5119 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5120 {
5121 /* REX */
5122 rex_w = (opcode8 >> 3) & 1;
5123 rex_r = (opcode8 & 0x4) << 1;
5124 ir.rex_x = (opcode8 & 0x2) << 2;
5125 ir.rex_b = (opcode8 & 0x1) << 3;
5126 }
5127 else /* 32 bit target */
5128 goto out_prefixes;
5129 break;
5130 default:
5131 goto out_prefixes;
5132 break;
5133 }
5134 }
5135 out_prefixes:
5136 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5137 {
5138 ir.dflag = 2;
5139 }
5140 else
5141 {
5142 if (prefixes & PREFIX_DATA)
5143 ir.dflag ^= 1;
5144 }
5145 if (prefixes & PREFIX_ADDR)
5146 ir.aflag ^= 1;
5147 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5148 ir.aflag = 2;
5149
5150 /* Now check op code. */
5151 opcode = (uint32_t) opcode8;
5152 reswitch:
5153 switch (opcode)
5154 {
5155 case 0x0f:
5156 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5157 return -1;
5158 ir.addr++;
5159 opcode = (uint32_t) opcode8 | 0x0f00;
5160 goto reswitch;
5161 break;
5162
5163 case 0x00: /* arith & logic */
5164 case 0x01:
5165 case 0x02:
5166 case 0x03:
5167 case 0x04:
5168 case 0x05:
5169 case 0x08:
5170 case 0x09:
5171 case 0x0a:
5172 case 0x0b:
5173 case 0x0c:
5174 case 0x0d:
5175 case 0x10:
5176 case 0x11:
5177 case 0x12:
5178 case 0x13:
5179 case 0x14:
5180 case 0x15:
5181 case 0x18:
5182 case 0x19:
5183 case 0x1a:
5184 case 0x1b:
5185 case 0x1c:
5186 case 0x1d:
5187 case 0x20:
5188 case 0x21:
5189 case 0x22:
5190 case 0x23:
5191 case 0x24:
5192 case 0x25:
5193 case 0x28:
5194 case 0x29:
5195 case 0x2a:
5196 case 0x2b:
5197 case 0x2c:
5198 case 0x2d:
5199 case 0x30:
5200 case 0x31:
5201 case 0x32:
5202 case 0x33:
5203 case 0x34:
5204 case 0x35:
5205 case 0x38:
5206 case 0x39:
5207 case 0x3a:
5208 case 0x3b:
5209 case 0x3c:
5210 case 0x3d:
5211 if (((opcode >> 3) & 7) != OP_CMPL)
5212 {
5213 if ((opcode & 1) == 0)
5214 ir.ot = OT_BYTE;
5215 else
5216 ir.ot = ir.dflag + OT_WORD;
5217
5218 switch ((opcode >> 1) & 3)
5219 {
5220 case 0: /* OP Ev, Gv */
5221 if (i386_record_modrm (&ir))
5222 return -1;
5223 if (ir.mod != 3)
5224 {
5225 if (i386_record_lea_modrm (&ir))
5226 return -1;
5227 }
5228 else
5229 {
5230 ir.rm |= ir.rex_b;
5231 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5232 ir.rm &= 0x3;
5233 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5234 }
5235 break;
5236 case 1: /* OP Gv, Ev */
5237 if (i386_record_modrm (&ir))
5238 return -1;
5239 ir.reg |= rex_r;
5240 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5241 ir.reg &= 0x3;
5242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5243 break;
5244 case 2: /* OP A, Iv */
5245 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5246 break;
5247 }
5248 }
5249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5250 break;
5251
5252 case 0x80: /* GRP1 */
5253 case 0x81:
5254 case 0x82:
5255 case 0x83:
5256 if (i386_record_modrm (&ir))
5257 return -1;
5258
5259 if (ir.reg != OP_CMPL)
5260 {
5261 if ((opcode & 1) == 0)
5262 ir.ot = OT_BYTE;
5263 else
5264 ir.ot = ir.dflag + OT_WORD;
5265
5266 if (ir.mod != 3)
5267 {
5268 if (opcode == 0x83)
5269 ir.rip_offset = 1;
5270 else
5271 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5272 if (i386_record_lea_modrm (&ir))
5273 return -1;
5274 }
5275 else
5276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5277 }
5278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5279 break;
5280
5281 case 0x40: /* inc */
5282 case 0x41:
5283 case 0x42:
5284 case 0x43:
5285 case 0x44:
5286 case 0x45:
5287 case 0x46:
5288 case 0x47:
5289
5290 case 0x48: /* dec */
5291 case 0x49:
5292 case 0x4a:
5293 case 0x4b:
5294 case 0x4c:
5295 case 0x4d:
5296 case 0x4e:
5297 case 0x4f:
5298
5299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5301 break;
5302
5303 case 0xf6: /* GRP3 */
5304 case 0xf7:
5305 if ((opcode & 1) == 0)
5306 ir.ot = OT_BYTE;
5307 else
5308 ir.ot = ir.dflag + OT_WORD;
5309 if (i386_record_modrm (&ir))
5310 return -1;
5311
5312 if (ir.mod != 3 && ir.reg == 0)
5313 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5314
5315 switch (ir.reg)
5316 {
5317 case 0: /* test */
5318 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5319 break;
5320 case 2: /* not */
5321 case 3: /* neg */
5322 if (ir.mod != 3)
5323 {
5324 if (i386_record_lea_modrm (&ir))
5325 return -1;
5326 }
5327 else
5328 {
5329 ir.rm |= ir.rex_b;
5330 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5331 ir.rm &= 0x3;
5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5333 }
5334 if (ir.reg == 3) /* neg */
5335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5336 break;
5337 case 4: /* mul */
5338 case 5: /* imul */
5339 case 6: /* div */
5340 case 7: /* idiv */
5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5342 if (ir.ot != OT_BYTE)
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5345 break;
5346 default:
5347 ir.addr -= 2;
5348 opcode = opcode << 8 | ir.modrm;
5349 goto no_support;
5350 break;
5351 }
5352 break;
5353
5354 case 0xfe: /* GRP4 */
5355 case 0xff: /* GRP5 */
5356 if (i386_record_modrm (&ir))
5357 return -1;
5358 if (ir.reg >= 2 && opcode == 0xfe)
5359 {
5360 ir.addr -= 2;
5361 opcode = opcode << 8 | ir.modrm;
5362 goto no_support;
5363 }
5364 switch (ir.reg)
5365 {
5366 case 0: /* inc */
5367 case 1: /* dec */
5368 if ((opcode & 1) == 0)
5369 ir.ot = OT_BYTE;
5370 else
5371 ir.ot = ir.dflag + OT_WORD;
5372 if (ir.mod != 3)
5373 {
5374 if (i386_record_lea_modrm (&ir))
5375 return -1;
5376 }
5377 else
5378 {
5379 ir.rm |= ir.rex_b;
5380 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5381 ir.rm &= 0x3;
5382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5383 }
5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5385 break;
5386 case 2: /* call */
5387 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5388 ir.dflag = 2;
5389 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5390 return -1;
5391 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5392 break;
5393 case 3: /* lcall */
5394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5395 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5396 return -1;
5397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5398 break;
5399 case 4: /* jmp */
5400 case 5: /* ljmp */
5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5402 break;
5403 case 6: /* push */
5404 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5405 ir.dflag = 2;
5406 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5407 return -1;
5408 break;
5409 default:
5410 ir.addr -= 2;
5411 opcode = opcode << 8 | ir.modrm;
5412 goto no_support;
5413 break;
5414 }
5415 break;
5416
5417 case 0x84: /* test */
5418 case 0x85:
5419 case 0xa8:
5420 case 0xa9:
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5422 break;
5423
5424 case 0x98: /* CWDE/CBW */
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5426 break;
5427
5428 case 0x99: /* CDQ/CWD */
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5431 break;
5432
5433 case 0x0faf: /* imul */
5434 case 0x69:
5435 case 0x6b:
5436 ir.ot = ir.dflag + OT_WORD;
5437 if (i386_record_modrm (&ir))
5438 return -1;
5439 if (opcode == 0x69)
5440 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5441 else if (opcode == 0x6b)
5442 ir.rip_offset = 1;
5443 ir.reg |= rex_r;
5444 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5445 ir.reg &= 0x3;
5446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5448 break;
5449
5450 case 0x0fc0: /* xadd */
5451 case 0x0fc1:
5452 if ((opcode & 1) == 0)
5453 ir.ot = OT_BYTE;
5454 else
5455 ir.ot = ir.dflag + OT_WORD;
5456 if (i386_record_modrm (&ir))
5457 return -1;
5458 ir.reg |= rex_r;
5459 if (ir.mod == 3)
5460 {
5461 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5462 ir.reg &= 0x3;
5463 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5464 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5465 ir.rm &= 0x3;
5466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5467 }
5468 else
5469 {
5470 if (i386_record_lea_modrm (&ir))
5471 return -1;
5472 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5473 ir.reg &= 0x3;
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5475 }
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5477 break;
5478
5479 case 0x0fb0: /* cmpxchg */
5480 case 0x0fb1:
5481 if ((opcode & 1) == 0)
5482 ir.ot = OT_BYTE;
5483 else
5484 ir.ot = ir.dflag + OT_WORD;
5485 if (i386_record_modrm (&ir))
5486 return -1;
5487 if (ir.mod == 3)
5488 {
5489 ir.reg |= rex_r;
5490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5491 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5492 ir.reg &= 0x3;
5493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5494 }
5495 else
5496 {
5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5498 if (i386_record_lea_modrm (&ir))
5499 return -1;
5500 }
5501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5502 break;
5503
5504 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5505 if (i386_record_modrm (&ir))
5506 return -1;
5507 if (ir.mod == 3)
5508 {
5509 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5510 an extended opcode. rdrand has bits 110 (/6) and rdseed
5511 has bits 111 (/7). */
5512 if (ir.reg == 6 || ir.reg == 7)
5513 {
5514 /* The storage register is described by the 3 R/M bits, but the
5515 REX.B prefix may be used to give access to registers
5516 R8~R15. In this case ir.rex_b + R/M will give us the register
5517 in the range R8~R15.
5518
5519 REX.W may also be used to access 64-bit registers, but we
5520 already record entire registers and not just partial bits
5521 of them. */
5522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5523 /* These instructions also set conditional bits. */
5524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5525 break;
5526 }
5527 else
5528 {
5529 /* We don't handle this particular instruction yet. */
5530 ir.addr -= 2;
5531 opcode = opcode << 8 | ir.modrm;
5532 goto no_support;
5533 }
5534 }
5535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5537 if (i386_record_lea_modrm (&ir))
5538 return -1;
5539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5540 break;
5541
5542 case 0x50: /* push */
5543 case 0x51:
5544 case 0x52:
5545 case 0x53:
5546 case 0x54:
5547 case 0x55:
5548 case 0x56:
5549 case 0x57:
5550 case 0x68:
5551 case 0x6a:
5552 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5553 ir.dflag = 2;
5554 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5555 return -1;
5556 break;
5557
5558 case 0x06: /* push es */
5559 case 0x0e: /* push cs */
5560 case 0x16: /* push ss */
5561 case 0x1e: /* push ds */
5562 if (ir.regmap[X86_RECORD_R8_REGNUM])
5563 {
5564 ir.addr -= 1;
5565 goto no_support;
5566 }
5567 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5568 return -1;
5569 break;
5570
5571 case 0x0fa0: /* push fs */
5572 case 0x0fa8: /* push gs */
5573 if (ir.regmap[X86_RECORD_R8_REGNUM])
5574 {
5575 ir.addr -= 2;
5576 goto no_support;
5577 }
5578 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5579 return -1;
5580 break;
5581
5582 case 0x60: /* pusha */
5583 if (ir.regmap[X86_RECORD_R8_REGNUM])
5584 {
5585 ir.addr -= 1;
5586 goto no_support;
5587 }
5588 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5589 return -1;
5590 break;
5591
5592 case 0x58: /* pop */
5593 case 0x59:
5594 case 0x5a:
5595 case 0x5b:
5596 case 0x5c:
5597 case 0x5d:
5598 case 0x5e:
5599 case 0x5f:
5600 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5601 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5602 break;
5603
5604 case 0x61: /* popa */
5605 if (ir.regmap[X86_RECORD_R8_REGNUM])
5606 {
5607 ir.addr -= 1;
5608 goto no_support;
5609 }
5610 for (regnum = X86_RECORD_REAX_REGNUM;
5611 regnum <= X86_RECORD_REDI_REGNUM;
5612 regnum++)
5613 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5614 break;
5615
5616 case 0x8f: /* pop */
5617 if (ir.regmap[X86_RECORD_R8_REGNUM])
5618 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5619 else
5620 ir.ot = ir.dflag + OT_WORD;
5621 if (i386_record_modrm (&ir))
5622 return -1;
5623 if (ir.mod == 3)
5624 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5625 else
5626 {
5627 ir.popl_esp_hack = 1 << ir.ot;
5628 if (i386_record_lea_modrm (&ir))
5629 return -1;
5630 }
5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5632 break;
5633
5634 case 0xc8: /* enter */
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5636 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5637 ir.dflag = 2;
5638 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5639 return -1;
5640 break;
5641
5642 case 0xc9: /* leave */
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5645 break;
5646
5647 case 0x07: /* pop es */
5648 if (ir.regmap[X86_RECORD_R8_REGNUM])
5649 {
5650 ir.addr -= 1;
5651 goto no_support;
5652 }
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5656 break;
5657
5658 case 0x17: /* pop ss */
5659 if (ir.regmap[X86_RECORD_R8_REGNUM])
5660 {
5661 ir.addr -= 1;
5662 goto no_support;
5663 }
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5667 break;
5668
5669 case 0x1f: /* pop ds */
5670 if (ir.regmap[X86_RECORD_R8_REGNUM])
5671 {
5672 ir.addr -= 1;
5673 goto no_support;
5674 }
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5678 break;
5679
5680 case 0x0fa1: /* pop fs */
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5684 break;
5685
5686 case 0x0fa9: /* pop gs */
5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5690 break;
5691
5692 case 0x88: /* mov */
5693 case 0x89:
5694 case 0xc6:
5695 case 0xc7:
5696 if ((opcode & 1) == 0)
5697 ir.ot = OT_BYTE;
5698 else
5699 ir.ot = ir.dflag + OT_WORD;
5700
5701 if (i386_record_modrm (&ir))
5702 return -1;
5703
5704 if (ir.mod != 3)
5705 {
5706 if (opcode == 0xc6 || opcode == 0xc7)
5707 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5708 if (i386_record_lea_modrm (&ir))
5709 return -1;
5710 }
5711 else
5712 {
5713 if (opcode == 0xc6 || opcode == 0xc7)
5714 ir.rm |= ir.rex_b;
5715 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5716 ir.rm &= 0x3;
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5718 }
5719 break;
5720
5721 case 0x8a: /* mov */
5722 case 0x8b:
5723 if ((opcode & 1) == 0)
5724 ir.ot = OT_BYTE;
5725 else
5726 ir.ot = ir.dflag + OT_WORD;
5727 if (i386_record_modrm (&ir))
5728 return -1;
5729 ir.reg |= rex_r;
5730 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5731 ir.reg &= 0x3;
5732 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5733 break;
5734
5735 case 0x8c: /* mov seg */
5736 if (i386_record_modrm (&ir))
5737 return -1;
5738 if (ir.reg > 5)
5739 {
5740 ir.addr -= 2;
5741 opcode = opcode << 8 | ir.modrm;
5742 goto no_support;
5743 }
5744
5745 if (ir.mod == 3)
5746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5747 else
5748 {
5749 ir.ot = OT_WORD;
5750 if (i386_record_lea_modrm (&ir))
5751 return -1;
5752 }
5753 break;
5754
5755 case 0x8e: /* mov seg */
5756 if (i386_record_modrm (&ir))
5757 return -1;
5758 switch (ir.reg)
5759 {
5760 case 0:
5761 regnum = X86_RECORD_ES_REGNUM;
5762 break;
5763 case 2:
5764 regnum = X86_RECORD_SS_REGNUM;
5765 break;
5766 case 3:
5767 regnum = X86_RECORD_DS_REGNUM;
5768 break;
5769 case 4:
5770 regnum = X86_RECORD_FS_REGNUM;
5771 break;
5772 case 5:
5773 regnum = X86_RECORD_GS_REGNUM;
5774 break;
5775 default:
5776 ir.addr -= 2;
5777 opcode = opcode << 8 | ir.modrm;
5778 goto no_support;
5779 break;
5780 }
5781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5783 break;
5784
5785 case 0x0fb6: /* movzbS */
5786 case 0x0fb7: /* movzwS */
5787 case 0x0fbe: /* movsbS */
5788 case 0x0fbf: /* movswS */
5789 if (i386_record_modrm (&ir))
5790 return -1;
5791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5792 break;
5793
5794 case 0x8d: /* lea */
5795 if (i386_record_modrm (&ir))
5796 return -1;
5797 if (ir.mod == 3)
5798 {
5799 ir.addr -= 2;
5800 opcode = opcode << 8 | ir.modrm;
5801 goto no_support;
5802 }
5803 ir.ot = ir.dflag;
5804 ir.reg |= rex_r;
5805 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5806 ir.reg &= 0x3;
5807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5808 break;
5809
5810 case 0xa0: /* mov EAX */
5811 case 0xa1:
5812
5813 case 0xd7: /* xlat */
5814 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5815 break;
5816
5817 case 0xa2: /* mov EAX */
5818 case 0xa3:
5819 if (ir.override >= 0)
5820 {
5821 if (record_full_memory_query)
5822 {
5823 if (yquery (_("\
5824 Process record ignores the memory change of instruction at address %s\n\
5825 because it can't get the value of the segment register.\n\
5826 Do you want to stop the program?"),
5827 paddress (gdbarch, ir.orig_addr)))
5828 return -1;
5829 }
5830 }
5831 else
5832 {
5833 if ((opcode & 1) == 0)
5834 ir.ot = OT_BYTE;
5835 else
5836 ir.ot = ir.dflag + OT_WORD;
5837 if (ir.aflag == 2)
5838 {
5839 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5840 return -1;
5841 ir.addr += 8;
5842 addr = extract_unsigned_integer (buf, 8, byte_order);
5843 }
5844 else if (ir.aflag)
5845 {
5846 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5847 return -1;
5848 ir.addr += 4;
5849 addr = extract_unsigned_integer (buf, 4, byte_order);
5850 }
5851 else
5852 {
5853 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5854 return -1;
5855 ir.addr += 2;
5856 addr = extract_unsigned_integer (buf, 2, byte_order);
5857 }
5858 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5859 return -1;
5860 }
5861 break;
5862
5863 case 0xb0: /* mov R, Ib */
5864 case 0xb1:
5865 case 0xb2:
5866 case 0xb3:
5867 case 0xb4:
5868 case 0xb5:
5869 case 0xb6:
5870 case 0xb7:
5871 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5872 ? ((opcode & 0x7) | ir.rex_b)
5873 : ((opcode & 0x7) & 0x3));
5874 break;
5875
5876 case 0xb8: /* mov R, Iv */
5877 case 0xb9:
5878 case 0xba:
5879 case 0xbb:
5880 case 0xbc:
5881 case 0xbd:
5882 case 0xbe:
5883 case 0xbf:
5884 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5885 break;
5886
5887 case 0x91: /* xchg R, EAX */
5888 case 0x92:
5889 case 0x93:
5890 case 0x94:
5891 case 0x95:
5892 case 0x96:
5893 case 0x97:
5894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5896 break;
5897
5898 case 0x86: /* xchg Ev, Gv */
5899 case 0x87:
5900 if ((opcode & 1) == 0)
5901 ir.ot = OT_BYTE;
5902 else
5903 ir.ot = ir.dflag + OT_WORD;
5904 if (i386_record_modrm (&ir))
5905 return -1;
5906 if (ir.mod == 3)
5907 {
5908 ir.rm |= ir.rex_b;
5909 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5910 ir.rm &= 0x3;
5911 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5912 }
5913 else
5914 {
5915 if (i386_record_lea_modrm (&ir))
5916 return -1;
5917 }
5918 ir.reg |= rex_r;
5919 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5920 ir.reg &= 0x3;
5921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5922 break;
5923
5924 case 0xc4: /* les Gv */
5925 case 0xc5: /* lds Gv */
5926 if (ir.regmap[X86_RECORD_R8_REGNUM])
5927 {
5928 ir.addr -= 1;
5929 goto no_support;
5930 }
5931 /* FALLTHROUGH */
5932 case 0x0fb2: /* lss Gv */
5933 case 0x0fb4: /* lfs Gv */
5934 case 0x0fb5: /* lgs Gv */
5935 if (i386_record_modrm (&ir))
5936 return -1;
5937 if (ir.mod == 3)
5938 {
5939 if (opcode > 0xff)
5940 ir.addr -= 3;
5941 else
5942 ir.addr -= 2;
5943 opcode = opcode << 8 | ir.modrm;
5944 goto no_support;
5945 }
5946 switch (opcode)
5947 {
5948 case 0xc4: /* les Gv */
5949 regnum = X86_RECORD_ES_REGNUM;
5950 break;
5951 case 0xc5: /* lds Gv */
5952 regnum = X86_RECORD_DS_REGNUM;
5953 break;
5954 case 0x0fb2: /* lss Gv */
5955 regnum = X86_RECORD_SS_REGNUM;
5956 break;
5957 case 0x0fb4: /* lfs Gv */
5958 regnum = X86_RECORD_FS_REGNUM;
5959 break;
5960 case 0x0fb5: /* lgs Gv */
5961 regnum = X86_RECORD_GS_REGNUM;
5962 break;
5963 }
5964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5967 break;
5968
5969 case 0xc0: /* shifts */
5970 case 0xc1:
5971 case 0xd0:
5972 case 0xd1:
5973 case 0xd2:
5974 case 0xd3:
5975 if ((opcode & 1) == 0)
5976 ir.ot = OT_BYTE;
5977 else
5978 ir.ot = ir.dflag + OT_WORD;
5979 if (i386_record_modrm (&ir))
5980 return -1;
5981 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5982 {
5983 if (i386_record_lea_modrm (&ir))
5984 return -1;
5985 }
5986 else
5987 {
5988 ir.rm |= ir.rex_b;
5989 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5990 ir.rm &= 0x3;
5991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5992 }
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5994 break;
5995
5996 case 0x0fa4:
5997 case 0x0fa5:
5998 case 0x0fac:
5999 case 0x0fad:
6000 if (i386_record_modrm (&ir))
6001 return -1;
6002 if (ir.mod == 3)
6003 {
6004 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6005 return -1;
6006 }
6007 else
6008 {
6009 if (i386_record_lea_modrm (&ir))
6010 return -1;
6011 }
6012 break;
6013
6014 case 0xd8: /* Floats. */
6015 case 0xd9:
6016 case 0xda:
6017 case 0xdb:
6018 case 0xdc:
6019 case 0xdd:
6020 case 0xde:
6021 case 0xdf:
6022 if (i386_record_modrm (&ir))
6023 return -1;
6024 ir.reg |= ((opcode & 7) << 3);
6025 if (ir.mod != 3)
6026 {
6027 /* Memory. */
6028 uint64_t addr64;
6029
6030 if (i386_record_lea_modrm_addr (&ir, &addr64))
6031 return -1;
6032 switch (ir.reg)
6033 {
6034 case 0x02:
6035 case 0x12:
6036 case 0x22:
6037 case 0x32:
6038 /* For fcom, ficom nothing to do. */
6039 break;
6040 case 0x03:
6041 case 0x13:
6042 case 0x23:
6043 case 0x33:
6044 /* For fcomp, ficomp pop FPU stack, store all. */
6045 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6046 return -1;
6047 break;
6048 case 0x00:
6049 case 0x01:
6050 case 0x04:
6051 case 0x05:
6052 case 0x06:
6053 case 0x07:
6054 case 0x10:
6055 case 0x11:
6056 case 0x14:
6057 case 0x15:
6058 case 0x16:
6059 case 0x17:
6060 case 0x20:
6061 case 0x21:
6062 case 0x24:
6063 case 0x25:
6064 case 0x26:
6065 case 0x27:
6066 case 0x30:
6067 case 0x31:
6068 case 0x34:
6069 case 0x35:
6070 case 0x36:
6071 case 0x37:
6072 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6073 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6074 of code, always affects st(0) register. */
6075 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6076 return -1;
6077 break;
6078 case 0x08:
6079 case 0x0a:
6080 case 0x0b:
6081 case 0x18:
6082 case 0x19:
6083 case 0x1a:
6084 case 0x1b:
6085 case 0x1d:
6086 case 0x28:
6087 case 0x29:
6088 case 0x2a:
6089 case 0x2b:
6090 case 0x38:
6091 case 0x39:
6092 case 0x3a:
6093 case 0x3b:
6094 case 0x3c:
6095 case 0x3d:
6096 switch (ir.reg & 7)
6097 {
6098 case 0:
6099 /* Handling fld, fild. */
6100 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6101 return -1;
6102 break;
6103 case 1:
6104 switch (ir.reg >> 4)
6105 {
6106 case 0:
6107 if (record_full_arch_list_add_mem (addr64, 4))
6108 return -1;
6109 break;
6110 case 2:
6111 if (record_full_arch_list_add_mem (addr64, 8))
6112 return -1;
6113 break;
6114 case 3:
6115 break;
6116 default:
6117 if (record_full_arch_list_add_mem (addr64, 2))
6118 return -1;
6119 break;
6120 }
6121 break;
6122 default:
6123 switch (ir.reg >> 4)
6124 {
6125 case 0:
6126 if (record_full_arch_list_add_mem (addr64, 4))
6127 return -1;
6128 if (3 == (ir.reg & 7))
6129 {
6130 /* For fstp m32fp. */
6131 if (i386_record_floats (gdbarch, &ir,
6132 I386_SAVE_FPU_REGS))
6133 return -1;
6134 }
6135 break;
6136 case 1:
6137 if (record_full_arch_list_add_mem (addr64, 4))
6138 return -1;
6139 if ((3 == (ir.reg & 7))
6140 || (5 == (ir.reg & 7))
6141 || (7 == (ir.reg & 7)))
6142 {
6143 /* For fstp insn. */
6144 if (i386_record_floats (gdbarch, &ir,
6145 I386_SAVE_FPU_REGS))
6146 return -1;
6147 }
6148 break;
6149 case 2:
6150 if (record_full_arch_list_add_mem (addr64, 8))
6151 return -1;
6152 if (3 == (ir.reg & 7))
6153 {
6154 /* For fstp m64fp. */
6155 if (i386_record_floats (gdbarch, &ir,
6156 I386_SAVE_FPU_REGS))
6157 return -1;
6158 }
6159 break;
6160 case 3:
6161 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6162 {
6163 /* For fistp, fbld, fild, fbstp. */
6164 if (i386_record_floats (gdbarch, &ir,
6165 I386_SAVE_FPU_REGS))
6166 return -1;
6167 }
6168 /* Fall through */
6169 default:
6170 if (record_full_arch_list_add_mem (addr64, 2))
6171 return -1;
6172 break;
6173 }
6174 break;
6175 }
6176 break;
6177 case 0x0c:
6178 /* Insn fldenv. */
6179 if (i386_record_floats (gdbarch, &ir,
6180 I386_SAVE_FPU_ENV_REG_STACK))
6181 return -1;
6182 break;
6183 case 0x0d:
6184 /* Insn fldcw. */
6185 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6186 return -1;
6187 break;
6188 case 0x2c:
6189 /* Insn frstor. */
6190 if (i386_record_floats (gdbarch, &ir,
6191 I386_SAVE_FPU_ENV_REG_STACK))
6192 return -1;
6193 break;
6194 case 0x0e:
6195 if (ir.dflag)
6196 {
6197 if (record_full_arch_list_add_mem (addr64, 28))
6198 return -1;
6199 }
6200 else
6201 {
6202 if (record_full_arch_list_add_mem (addr64, 14))
6203 return -1;
6204 }
6205 break;
6206 case 0x0f:
6207 case 0x2f:
6208 if (record_full_arch_list_add_mem (addr64, 2))
6209 return -1;
6210 /* Insn fstp, fbstp. */
6211 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6212 return -1;
6213 break;
6214 case 0x1f:
6215 case 0x3e:
6216 if (record_full_arch_list_add_mem (addr64, 10))
6217 return -1;
6218 break;
6219 case 0x2e:
6220 if (ir.dflag)
6221 {
6222 if (record_full_arch_list_add_mem (addr64, 28))
6223 return -1;
6224 addr64 += 28;
6225 }
6226 else
6227 {
6228 if (record_full_arch_list_add_mem (addr64, 14))
6229 return -1;
6230 addr64 += 14;
6231 }
6232 if (record_full_arch_list_add_mem (addr64, 80))
6233 return -1;
6234 /* Insn fsave. */
6235 if (i386_record_floats (gdbarch, &ir,
6236 I386_SAVE_FPU_ENV_REG_STACK))
6237 return -1;
6238 break;
6239 case 0x3f:
6240 if (record_full_arch_list_add_mem (addr64, 8))
6241 return -1;
6242 /* Insn fistp. */
6243 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6244 return -1;
6245 break;
6246 default:
6247 ir.addr -= 2;
6248 opcode = opcode << 8 | ir.modrm;
6249 goto no_support;
6250 break;
6251 }
6252 }
6253 /* Opcode is an extension of modR/M byte. */
6254 else
6255 {
6256 switch (opcode)
6257 {
6258 case 0xd8:
6259 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6260 return -1;
6261 break;
6262 case 0xd9:
6263 if (0x0c == (ir.modrm >> 4))
6264 {
6265 if ((ir.modrm & 0x0f) <= 7)
6266 {
6267 if (i386_record_floats (gdbarch, &ir,
6268 I386_SAVE_FPU_REGS))
6269 return -1;
6270 }
6271 else
6272 {
6273 if (i386_record_floats (gdbarch, &ir,
6274 I387_ST0_REGNUM (tdep)))
6275 return -1;
6276 /* If only st(0) is changing, then we have already
6277 recorded. */
6278 if ((ir.modrm & 0x0f) - 0x08)
6279 {
6280 if (i386_record_floats (gdbarch, &ir,
6281 I387_ST0_REGNUM (tdep) +
6282 ((ir.modrm & 0x0f) - 0x08)))
6283 return -1;
6284 }
6285 }
6286 }
6287 else
6288 {
6289 switch (ir.modrm)
6290 {
6291 case 0xe0:
6292 case 0xe1:
6293 case 0xf0:
6294 case 0xf5:
6295 case 0xf8:
6296 case 0xfa:
6297 case 0xfc:
6298 case 0xfe:
6299 case 0xff:
6300 if (i386_record_floats (gdbarch, &ir,
6301 I387_ST0_REGNUM (tdep)))
6302 return -1;
6303 break;
6304 case 0xf1:
6305 case 0xf2:
6306 case 0xf3:
6307 case 0xf4:
6308 case 0xf6:
6309 case 0xf7:
6310 case 0xe8:
6311 case 0xe9:
6312 case 0xea:
6313 case 0xeb:
6314 case 0xec:
6315 case 0xed:
6316 case 0xee:
6317 case 0xf9:
6318 case 0xfb:
6319 if (i386_record_floats (gdbarch, &ir,
6320 I386_SAVE_FPU_REGS))
6321 return -1;
6322 break;
6323 case 0xfd:
6324 if (i386_record_floats (gdbarch, &ir,
6325 I387_ST0_REGNUM (tdep)))
6326 return -1;
6327 if (i386_record_floats (gdbarch, &ir,
6328 I387_ST0_REGNUM (tdep) + 1))
6329 return -1;
6330 break;
6331 }
6332 }
6333 break;
6334 case 0xda:
6335 if (0xe9 == ir.modrm)
6336 {
6337 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6338 return -1;
6339 }
6340 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6341 {
6342 if (i386_record_floats (gdbarch, &ir,
6343 I387_ST0_REGNUM (tdep)))
6344 return -1;
6345 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6346 {
6347 if (i386_record_floats (gdbarch, &ir,
6348 I387_ST0_REGNUM (tdep) +
6349 (ir.modrm & 0x0f)))
6350 return -1;
6351 }
6352 else if ((ir.modrm & 0x0f) - 0x08)
6353 {
6354 if (i386_record_floats (gdbarch, &ir,
6355 I387_ST0_REGNUM (tdep) +
6356 ((ir.modrm & 0x0f) - 0x08)))
6357 return -1;
6358 }
6359 }
6360 break;
6361 case 0xdb:
6362 if (0xe3 == ir.modrm)
6363 {
6364 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6365 return -1;
6366 }
6367 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6368 {
6369 if (i386_record_floats (gdbarch, &ir,
6370 I387_ST0_REGNUM (tdep)))
6371 return -1;
6372 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6373 {
6374 if (i386_record_floats (gdbarch, &ir,
6375 I387_ST0_REGNUM (tdep) +
6376 (ir.modrm & 0x0f)))
6377 return -1;
6378 }
6379 else if ((ir.modrm & 0x0f) - 0x08)
6380 {
6381 if (i386_record_floats (gdbarch, &ir,
6382 I387_ST0_REGNUM (tdep) +
6383 ((ir.modrm & 0x0f) - 0x08)))
6384 return -1;
6385 }
6386 }
6387 break;
6388 case 0xdc:
6389 if ((0x0c == ir.modrm >> 4)
6390 || (0x0d == ir.modrm >> 4)
6391 || (0x0f == ir.modrm >> 4))
6392 {
6393 if ((ir.modrm & 0x0f) <= 7)
6394 {
6395 if (i386_record_floats (gdbarch, &ir,
6396 I387_ST0_REGNUM (tdep) +
6397 (ir.modrm & 0x0f)))
6398 return -1;
6399 }
6400 else
6401 {
6402 if (i386_record_floats (gdbarch, &ir,
6403 I387_ST0_REGNUM (tdep) +
6404 ((ir.modrm & 0x0f) - 0x08)))
6405 return -1;
6406 }
6407 }
6408 break;
6409 case 0xdd:
6410 if (0x0c == ir.modrm >> 4)
6411 {
6412 if (i386_record_floats (gdbarch, &ir,
6413 I387_FTAG_REGNUM (tdep)))
6414 return -1;
6415 }
6416 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6417 {
6418 if ((ir.modrm & 0x0f) <= 7)
6419 {
6420 if (i386_record_floats (gdbarch, &ir,
6421 I387_ST0_REGNUM (tdep) +
6422 (ir.modrm & 0x0f)))
6423 return -1;
6424 }
6425 else
6426 {
6427 if (i386_record_floats (gdbarch, &ir,
6428 I386_SAVE_FPU_REGS))
6429 return -1;
6430 }
6431 }
6432 break;
6433 case 0xde:
6434 if ((0x0c == ir.modrm >> 4)
6435 || (0x0e == ir.modrm >> 4)
6436 || (0x0f == ir.modrm >> 4)
6437 || (0xd9 == ir.modrm))
6438 {
6439 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6440 return -1;
6441 }
6442 break;
6443 case 0xdf:
6444 if (0xe0 == ir.modrm)
6445 {
6446 if (record_full_arch_list_add_reg (ir.regcache,
6447 I386_EAX_REGNUM))
6448 return -1;
6449 }
6450 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6451 {
6452 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6453 return -1;
6454 }
6455 break;
6456 }
6457 }
6458 break;
6459 /* string ops */
6460 case 0xa4: /* movsS */
6461 case 0xa5:
6462 case 0xaa: /* stosS */
6463 case 0xab:
6464 case 0x6c: /* insS */
6465 case 0x6d:
6466 regcache_raw_read_unsigned (ir.regcache,
6467 ir.regmap[X86_RECORD_RECX_REGNUM],
6468 &addr);
6469 if (addr)
6470 {
6471 ULONGEST es, ds;
6472
6473 if ((opcode & 1) == 0)
6474 ir.ot = OT_BYTE;
6475 else
6476 ir.ot = ir.dflag + OT_WORD;
6477 regcache_raw_read_unsigned (ir.regcache,
6478 ir.regmap[X86_RECORD_REDI_REGNUM],
6479 &addr);
6480
6481 regcache_raw_read_unsigned (ir.regcache,
6482 ir.regmap[X86_RECORD_ES_REGNUM],
6483 &es);
6484 regcache_raw_read_unsigned (ir.regcache,
6485 ir.regmap[X86_RECORD_DS_REGNUM],
6486 &ds);
6487 if (ir.aflag && (es != ds))
6488 {
6489 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6490 if (record_full_memory_query)
6491 {
6492 if (yquery (_("\
6493 Process record ignores the memory change of instruction at address %s\n\
6494 because it can't get the value of the segment register.\n\
6495 Do you want to stop the program?"),
6496 paddress (gdbarch, ir.orig_addr)))
6497 return -1;
6498 }
6499 }
6500 else
6501 {
6502 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6503 return -1;
6504 }
6505
6506 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6508 if (opcode == 0xa4 || opcode == 0xa5)
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6512 }
6513 break;
6514
6515 case 0xa6: /* cmpsS */
6516 case 0xa7:
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6519 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6522 break;
6523
6524 case 0xac: /* lodsS */
6525 case 0xad:
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6528 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6531 break;
6532
6533 case 0xae: /* scasS */
6534 case 0xaf:
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6536 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6539 break;
6540
6541 case 0x6e: /* outsS */
6542 case 0x6f:
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6544 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6547 break;
6548
6549 case 0xe4: /* port I/O */
6550 case 0xe5:
6551 case 0xec:
6552 case 0xed:
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6555 break;
6556
6557 case 0xe6:
6558 case 0xe7:
6559 case 0xee:
6560 case 0xef:
6561 break;
6562
6563 /* control */
6564 case 0xc2: /* ret im */
6565 case 0xc3: /* ret */
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6568 break;
6569
6570 case 0xca: /* lret im */
6571 case 0xcb: /* lret */
6572 case 0xcf: /* iret */
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6576 break;
6577
6578 case 0xe8: /* call im */
6579 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6580 ir.dflag = 2;
6581 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6582 return -1;
6583 break;
6584
6585 case 0x9a: /* lcall im */
6586 if (ir.regmap[X86_RECORD_R8_REGNUM])
6587 {
6588 ir.addr -= 1;
6589 goto no_support;
6590 }
6591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6592 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6593 return -1;
6594 break;
6595
6596 case 0xe9: /* jmp im */
6597 case 0xea: /* ljmp im */
6598 case 0xeb: /* jmp Jb */
6599 case 0x70: /* jcc Jb */
6600 case 0x71:
6601 case 0x72:
6602 case 0x73:
6603 case 0x74:
6604 case 0x75:
6605 case 0x76:
6606 case 0x77:
6607 case 0x78:
6608 case 0x79:
6609 case 0x7a:
6610 case 0x7b:
6611 case 0x7c:
6612 case 0x7d:
6613 case 0x7e:
6614 case 0x7f:
6615 case 0x0f80: /* jcc Jv */
6616 case 0x0f81:
6617 case 0x0f82:
6618 case 0x0f83:
6619 case 0x0f84:
6620 case 0x0f85:
6621 case 0x0f86:
6622 case 0x0f87:
6623 case 0x0f88:
6624 case 0x0f89:
6625 case 0x0f8a:
6626 case 0x0f8b:
6627 case 0x0f8c:
6628 case 0x0f8d:
6629 case 0x0f8e:
6630 case 0x0f8f:
6631 break;
6632
6633 case 0x0f90: /* setcc Gv */
6634 case 0x0f91:
6635 case 0x0f92:
6636 case 0x0f93:
6637 case 0x0f94:
6638 case 0x0f95:
6639 case 0x0f96:
6640 case 0x0f97:
6641 case 0x0f98:
6642 case 0x0f99:
6643 case 0x0f9a:
6644 case 0x0f9b:
6645 case 0x0f9c:
6646 case 0x0f9d:
6647 case 0x0f9e:
6648 case 0x0f9f:
6649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6650 ir.ot = OT_BYTE;
6651 if (i386_record_modrm (&ir))
6652 return -1;
6653 if (ir.mod == 3)
6654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6655 : (ir.rm & 0x3));
6656 else
6657 {
6658 if (i386_record_lea_modrm (&ir))
6659 return -1;
6660 }
6661 break;
6662
6663 case 0x0f40: /* cmov Gv, Ev */
6664 case 0x0f41:
6665 case 0x0f42:
6666 case 0x0f43:
6667 case 0x0f44:
6668 case 0x0f45:
6669 case 0x0f46:
6670 case 0x0f47:
6671 case 0x0f48:
6672 case 0x0f49:
6673 case 0x0f4a:
6674 case 0x0f4b:
6675 case 0x0f4c:
6676 case 0x0f4d:
6677 case 0x0f4e:
6678 case 0x0f4f:
6679 if (i386_record_modrm (&ir))
6680 return -1;
6681 ir.reg |= rex_r;
6682 if (ir.dflag == OT_BYTE)
6683 ir.reg &= 0x3;
6684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6685 break;
6686
6687 /* flags */
6688 case 0x9c: /* pushf */
6689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6690 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6691 ir.dflag = 2;
6692 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6693 return -1;
6694 break;
6695
6696 case 0x9d: /* popf */
6697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6698 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6699 break;
6700
6701 case 0x9e: /* sahf */
6702 if (ir.regmap[X86_RECORD_R8_REGNUM])
6703 {
6704 ir.addr -= 1;
6705 goto no_support;
6706 }
6707 /* FALLTHROUGH */
6708 case 0xf5: /* cmc */
6709 case 0xf8: /* clc */
6710 case 0xf9: /* stc */
6711 case 0xfc: /* cld */
6712 case 0xfd: /* std */
6713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6714 break;
6715
6716 case 0x9f: /* lahf */
6717 if (ir.regmap[X86_RECORD_R8_REGNUM])
6718 {
6719 ir.addr -= 1;
6720 goto no_support;
6721 }
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6724 break;
6725
6726 /* bit operations */
6727 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6728 ir.ot = ir.dflag + OT_WORD;
6729 if (i386_record_modrm (&ir))
6730 return -1;
6731 if (ir.reg < 4)
6732 {
6733 ir.addr -= 2;
6734 opcode = opcode << 8 | ir.modrm;
6735 goto no_support;
6736 }
6737 if (ir.reg != 4)
6738 {
6739 if (ir.mod == 3)
6740 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6741 else
6742 {
6743 if (i386_record_lea_modrm (&ir))
6744 return -1;
6745 }
6746 }
6747 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6748 break;
6749
6750 case 0x0fa3: /* bt Gv, Ev */
6751 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6752 break;
6753
6754 case 0x0fab: /* bts */
6755 case 0x0fb3: /* btr */
6756 case 0x0fbb: /* btc */
6757 ir.ot = ir.dflag + OT_WORD;
6758 if (i386_record_modrm (&ir))
6759 return -1;
6760 if (ir.mod == 3)
6761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6762 else
6763 {
6764 uint64_t addr64;
6765 if (i386_record_lea_modrm_addr (&ir, &addr64))
6766 return -1;
6767 regcache_raw_read_unsigned (ir.regcache,
6768 ir.regmap[ir.reg | rex_r],
6769 &addr);
6770 switch (ir.dflag)
6771 {
6772 case 0:
6773 addr64 += ((int16_t) addr >> 4) << 4;
6774 break;
6775 case 1:
6776 addr64 += ((int32_t) addr >> 5) << 5;
6777 break;
6778 case 2:
6779 addr64 += ((int64_t) addr >> 6) << 6;
6780 break;
6781 }
6782 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6783 return -1;
6784 if (i386_record_lea_modrm (&ir))
6785 return -1;
6786 }
6787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6788 break;
6789
6790 case 0x0fbc: /* bsf */
6791 case 0x0fbd: /* bsr */
6792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6793 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6794 break;
6795
6796 /* bcd */
6797 case 0x27: /* daa */
6798 case 0x2f: /* das */
6799 case 0x37: /* aaa */
6800 case 0x3f: /* aas */
6801 case 0xd4: /* aam */
6802 case 0xd5: /* aad */
6803 if (ir.regmap[X86_RECORD_R8_REGNUM])
6804 {
6805 ir.addr -= 1;
6806 goto no_support;
6807 }
6808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6810 break;
6811
6812 /* misc */
6813 case 0x90: /* nop */
6814 if (prefixes & PREFIX_LOCK)
6815 {
6816 ir.addr -= 1;
6817 goto no_support;
6818 }
6819 break;
6820
6821 case 0x9b: /* fwait */
6822 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6823 return -1;
6824 opcode = (uint32_t) opcode8;
6825 ir.addr++;
6826 goto reswitch;
6827 break;
6828
6829 /* XXX */
6830 case 0xcc: /* int3 */
6831 printf_unfiltered (_("Process record does not support instruction "
6832 "int3.\n"));
6833 ir.addr -= 1;
6834 goto no_support;
6835 break;
6836
6837 /* XXX */
6838 case 0xcd: /* int */
6839 {
6840 int ret;
6841 uint8_t interrupt;
6842 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6843 return -1;
6844 ir.addr++;
6845 if (interrupt != 0x80
6846 || tdep->i386_intx80_record == NULL)
6847 {
6848 printf_unfiltered (_("Process record does not support "
6849 "instruction int 0x%02x.\n"),
6850 interrupt);
6851 ir.addr -= 2;
6852 goto no_support;
6853 }
6854 ret = tdep->i386_intx80_record (ir.regcache);
6855 if (ret)
6856 return ret;
6857 }
6858 break;
6859
6860 /* XXX */
6861 case 0xce: /* into */
6862 printf_unfiltered (_("Process record does not support "
6863 "instruction into.\n"));
6864 ir.addr -= 1;
6865 goto no_support;
6866 break;
6867
6868 case 0xfa: /* cli */
6869 case 0xfb: /* sti */
6870 break;
6871
6872 case 0x62: /* bound */
6873 printf_unfiltered (_("Process record does not support "
6874 "instruction bound.\n"));
6875 ir.addr -= 1;
6876 goto no_support;
6877 break;
6878
6879 case 0x0fc8: /* bswap reg */
6880 case 0x0fc9:
6881 case 0x0fca:
6882 case 0x0fcb:
6883 case 0x0fcc:
6884 case 0x0fcd:
6885 case 0x0fce:
6886 case 0x0fcf:
6887 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6888 break;
6889
6890 case 0xd6: /* salc */
6891 if (ir.regmap[X86_RECORD_R8_REGNUM])
6892 {
6893 ir.addr -= 1;
6894 goto no_support;
6895 }
6896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6898 break;
6899
6900 case 0xe0: /* loopnz */
6901 case 0xe1: /* loopz */
6902 case 0xe2: /* loop */
6903 case 0xe3: /* jecxz */
6904 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6905 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6906 break;
6907
6908 case 0x0f30: /* wrmsr */
6909 printf_unfiltered (_("Process record does not support "
6910 "instruction wrmsr.\n"));
6911 ir.addr -= 2;
6912 goto no_support;
6913 break;
6914
6915 case 0x0f32: /* rdmsr */
6916 printf_unfiltered (_("Process record does not support "
6917 "instruction rdmsr.\n"));
6918 ir.addr -= 2;
6919 goto no_support;
6920 break;
6921
6922 case 0x0f31: /* rdtsc */
6923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6925 break;
6926
6927 case 0x0f34: /* sysenter */
6928 {
6929 int ret;
6930 if (ir.regmap[X86_RECORD_R8_REGNUM])
6931 {
6932 ir.addr -= 2;
6933 goto no_support;
6934 }
6935 if (tdep->i386_sysenter_record == NULL)
6936 {
6937 printf_unfiltered (_("Process record does not support "
6938 "instruction sysenter.\n"));
6939 ir.addr -= 2;
6940 goto no_support;
6941 }
6942 ret = tdep->i386_sysenter_record (ir.regcache);
6943 if (ret)
6944 return ret;
6945 }
6946 break;
6947
6948 case 0x0f35: /* sysexit */
6949 printf_unfiltered (_("Process record does not support "
6950 "instruction sysexit.\n"));
6951 ir.addr -= 2;
6952 goto no_support;
6953 break;
6954
6955 case 0x0f05: /* syscall */
6956 {
6957 int ret;
6958 if (tdep->i386_syscall_record == NULL)
6959 {
6960 printf_unfiltered (_("Process record does not support "
6961 "instruction syscall.\n"));
6962 ir.addr -= 2;
6963 goto no_support;
6964 }
6965 ret = tdep->i386_syscall_record (ir.regcache);
6966 if (ret)
6967 return ret;
6968 }
6969 break;
6970
6971 case 0x0f07: /* sysret */
6972 printf_unfiltered (_("Process record does not support "
6973 "instruction sysret.\n"));
6974 ir.addr -= 2;
6975 goto no_support;
6976 break;
6977
6978 case 0x0fa2: /* cpuid */
6979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6981 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6983 break;
6984
6985 case 0xf4: /* hlt */
6986 printf_unfiltered (_("Process record does not support "
6987 "instruction hlt.\n"));
6988 ir.addr -= 1;
6989 goto no_support;
6990 break;
6991
6992 case 0x0f00:
6993 if (i386_record_modrm (&ir))
6994 return -1;
6995 switch (ir.reg)
6996 {
6997 case 0: /* sldt */
6998 case 1: /* str */
6999 if (ir.mod == 3)
7000 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7001 else
7002 {
7003 ir.ot = OT_WORD;
7004 if (i386_record_lea_modrm (&ir))
7005 return -1;
7006 }
7007 break;
7008 case 2: /* lldt */
7009 case 3: /* ltr */
7010 break;
7011 case 4: /* verr */
7012 case 5: /* verw */
7013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7014 break;
7015 default:
7016 ir.addr -= 3;
7017 opcode = opcode << 8 | ir.modrm;
7018 goto no_support;
7019 break;
7020 }
7021 break;
7022
7023 case 0x0f01:
7024 if (i386_record_modrm (&ir))
7025 return -1;
7026 switch (ir.reg)
7027 {
7028 case 0: /* sgdt */
7029 {
7030 uint64_t addr64;
7031
7032 if (ir.mod == 3)
7033 {
7034 ir.addr -= 3;
7035 opcode = opcode << 8 | ir.modrm;
7036 goto no_support;
7037 }
7038 if (ir.override >= 0)
7039 {
7040 if (record_full_memory_query)
7041 {
7042 if (yquery (_("\
7043 Process record ignores the memory change of instruction at address %s\n\
7044 because it can't get the value of the segment register.\n\
7045 Do you want to stop the program?"),
7046 paddress (gdbarch, ir.orig_addr)))
7047 return -1;
7048 }
7049 }
7050 else
7051 {
7052 if (i386_record_lea_modrm_addr (&ir, &addr64))
7053 return -1;
7054 if (record_full_arch_list_add_mem (addr64, 2))
7055 return -1;
7056 addr64 += 2;
7057 if (ir.regmap[X86_RECORD_R8_REGNUM])
7058 {
7059 if (record_full_arch_list_add_mem (addr64, 8))
7060 return -1;
7061 }
7062 else
7063 {
7064 if (record_full_arch_list_add_mem (addr64, 4))
7065 return -1;
7066 }
7067 }
7068 }
7069 break;
7070 case 1:
7071 if (ir.mod == 3)
7072 {
7073 switch (ir.rm)
7074 {
7075 case 0: /* monitor */
7076 break;
7077 case 1: /* mwait */
7078 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7079 break;
7080 default:
7081 ir.addr -= 3;
7082 opcode = opcode << 8 | ir.modrm;
7083 goto no_support;
7084 break;
7085 }
7086 }
7087 else
7088 {
7089 /* sidt */
7090 if (ir.override >= 0)
7091 {
7092 if (record_full_memory_query)
7093 {
7094 if (yquery (_("\
7095 Process record ignores the memory change of instruction at address %s\n\
7096 because it can't get the value of the segment register.\n\
7097 Do you want to stop the program?"),
7098 paddress (gdbarch, ir.orig_addr)))
7099 return -1;
7100 }
7101 }
7102 else
7103 {
7104 uint64_t addr64;
7105
7106 if (i386_record_lea_modrm_addr (&ir, &addr64))
7107 return -1;
7108 if (record_full_arch_list_add_mem (addr64, 2))
7109 return -1;
7110 addr64 += 2;
7111 if (ir.regmap[X86_RECORD_R8_REGNUM])
7112 {
7113 if (record_full_arch_list_add_mem (addr64, 8))
7114 return -1;
7115 }
7116 else
7117 {
7118 if (record_full_arch_list_add_mem (addr64, 4))
7119 return -1;
7120 }
7121 }
7122 }
7123 break;
7124 case 2: /* lgdt */
7125 if (ir.mod == 3)
7126 {
7127 /* xgetbv */
7128 if (ir.rm == 0)
7129 {
7130 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7131 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7132 break;
7133 }
7134 /* xsetbv */
7135 else if (ir.rm == 1)
7136 break;
7137 }
7138 case 3: /* lidt */
7139 if (ir.mod == 3)
7140 {
7141 ir.addr -= 3;
7142 opcode = opcode << 8 | ir.modrm;
7143 goto no_support;
7144 }
7145 break;
7146 case 4: /* smsw */
7147 if (ir.mod == 3)
7148 {
7149 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7150 return -1;
7151 }
7152 else
7153 {
7154 ir.ot = OT_WORD;
7155 if (i386_record_lea_modrm (&ir))
7156 return -1;
7157 }
7158 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7159 break;
7160 case 6: /* lmsw */
7161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7162 break;
7163 case 7: /* invlpg */
7164 if (ir.mod == 3)
7165 {
7166 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7167 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7168 else
7169 {
7170 ir.addr -= 3;
7171 opcode = opcode << 8 | ir.modrm;
7172 goto no_support;
7173 }
7174 }
7175 else
7176 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7177 break;
7178 default:
7179 ir.addr -= 3;
7180 opcode = opcode << 8 | ir.modrm;
7181 goto no_support;
7182 break;
7183 }
7184 break;
7185
7186 case 0x0f08: /* invd */
7187 case 0x0f09: /* wbinvd */
7188 break;
7189
7190 case 0x63: /* arpl */
7191 if (i386_record_modrm (&ir))
7192 return -1;
7193 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7194 {
7195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7196 ? (ir.reg | rex_r) : ir.rm);
7197 }
7198 else
7199 {
7200 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7201 if (i386_record_lea_modrm (&ir))
7202 return -1;
7203 }
7204 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7206 break;
7207
7208 case 0x0f02: /* lar */
7209 case 0x0f03: /* lsl */
7210 if (i386_record_modrm (&ir))
7211 return -1;
7212 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7213 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7214 break;
7215
7216 case 0x0f18:
7217 if (i386_record_modrm (&ir))
7218 return -1;
7219 if (ir.mod == 3 && ir.reg == 3)
7220 {
7221 ir.addr -= 3;
7222 opcode = opcode << 8 | ir.modrm;
7223 goto no_support;
7224 }
7225 break;
7226
7227 case 0x0f19:
7228 case 0x0f1a:
7229 case 0x0f1b:
7230 case 0x0f1c:
7231 case 0x0f1d:
7232 case 0x0f1e:
7233 case 0x0f1f:
7234 /* nop (multi byte) */
7235 break;
7236
7237 case 0x0f20: /* mov reg, crN */
7238 case 0x0f22: /* mov crN, reg */
7239 if (i386_record_modrm (&ir))
7240 return -1;
7241 if ((ir.modrm & 0xc0) != 0xc0)
7242 {
7243 ir.addr -= 3;
7244 opcode = opcode << 8 | ir.modrm;
7245 goto no_support;
7246 }
7247 switch (ir.reg)
7248 {
7249 case 0:
7250 case 2:
7251 case 3:
7252 case 4:
7253 case 8:
7254 if (opcode & 2)
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7256 else
7257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7258 break;
7259 default:
7260 ir.addr -= 3;
7261 opcode = opcode << 8 | ir.modrm;
7262 goto no_support;
7263 break;
7264 }
7265 break;
7266
7267 case 0x0f21: /* mov reg, drN */
7268 case 0x0f23: /* mov drN, reg */
7269 if (i386_record_modrm (&ir))
7270 return -1;
7271 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7272 || ir.reg == 5 || ir.reg >= 8)
7273 {
7274 ir.addr -= 3;
7275 opcode = opcode << 8 | ir.modrm;
7276 goto no_support;
7277 }
7278 if (opcode & 2)
7279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7280 else
7281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7282 break;
7283
7284 case 0x0f06: /* clts */
7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7286 break;
7287
7288 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7289
7290 case 0x0f0d: /* 3DNow! prefetch */
7291 break;
7292
7293 case 0x0f0e: /* 3DNow! femms */
7294 case 0x0f77: /* emms */
7295 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7296 goto no_support;
7297 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7298 break;
7299
7300 case 0x0f0f: /* 3DNow! data */
7301 if (i386_record_modrm (&ir))
7302 return -1;
7303 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7304 return -1;
7305 ir.addr++;
7306 switch (opcode8)
7307 {
7308 case 0x0c: /* 3DNow! pi2fw */
7309 case 0x0d: /* 3DNow! pi2fd */
7310 case 0x1c: /* 3DNow! pf2iw */
7311 case 0x1d: /* 3DNow! pf2id */
7312 case 0x8a: /* 3DNow! pfnacc */
7313 case 0x8e: /* 3DNow! pfpnacc */
7314 case 0x90: /* 3DNow! pfcmpge */
7315 case 0x94: /* 3DNow! pfmin */
7316 case 0x96: /* 3DNow! pfrcp */
7317 case 0x97: /* 3DNow! pfrsqrt */
7318 case 0x9a: /* 3DNow! pfsub */
7319 case 0x9e: /* 3DNow! pfadd */
7320 case 0xa0: /* 3DNow! pfcmpgt */
7321 case 0xa4: /* 3DNow! pfmax */
7322 case 0xa6: /* 3DNow! pfrcpit1 */
7323 case 0xa7: /* 3DNow! pfrsqit1 */
7324 case 0xaa: /* 3DNow! pfsubr */
7325 case 0xae: /* 3DNow! pfacc */
7326 case 0xb0: /* 3DNow! pfcmpeq */
7327 case 0xb4: /* 3DNow! pfmul */
7328 case 0xb6: /* 3DNow! pfrcpit2 */
7329 case 0xb7: /* 3DNow! pmulhrw */
7330 case 0xbb: /* 3DNow! pswapd */
7331 case 0xbf: /* 3DNow! pavgusb */
7332 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7333 goto no_support_3dnow_data;
7334 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7335 break;
7336
7337 default:
7338 no_support_3dnow_data:
7339 opcode = (opcode << 8) | opcode8;
7340 goto no_support;
7341 break;
7342 }
7343 break;
7344
7345 case 0x0faa: /* rsm */
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7354 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7355 break;
7356
7357 case 0x0fae:
7358 if (i386_record_modrm (&ir))
7359 return -1;
7360 switch(ir.reg)
7361 {
7362 case 0: /* fxsave */
7363 {
7364 uint64_t tmpu64;
7365
7366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7367 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7368 return -1;
7369 if (record_full_arch_list_add_mem (tmpu64, 512))
7370 return -1;
7371 }
7372 break;
7373
7374 case 1: /* fxrstor */
7375 {
7376 int i;
7377
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7379
7380 for (i = I387_MM0_REGNUM (tdep);
7381 i386_mmx_regnum_p (gdbarch, i); i++)
7382 record_full_arch_list_add_reg (ir.regcache, i);
7383
7384 for (i = I387_XMM0_REGNUM (tdep);
7385 i386_xmm_regnum_p (gdbarch, i); i++)
7386 record_full_arch_list_add_reg (ir.regcache, i);
7387
7388 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7389 record_full_arch_list_add_reg (ir.regcache,
7390 I387_MXCSR_REGNUM(tdep));
7391
7392 for (i = I387_ST0_REGNUM (tdep);
7393 i386_fp_regnum_p (gdbarch, i); i++)
7394 record_full_arch_list_add_reg (ir.regcache, i);
7395
7396 for (i = I387_FCTRL_REGNUM (tdep);
7397 i386_fpc_regnum_p (gdbarch, i); i++)
7398 record_full_arch_list_add_reg (ir.regcache, i);
7399 }
7400 break;
7401
7402 case 2: /* ldmxcsr */
7403 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7404 goto no_support;
7405 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7406 break;
7407
7408 case 3: /* stmxcsr */
7409 ir.ot = OT_LONG;
7410 if (i386_record_lea_modrm (&ir))
7411 return -1;
7412 break;
7413
7414 case 5: /* lfence */
7415 case 6: /* mfence */
7416 case 7: /* sfence clflush */
7417 break;
7418
7419 default:
7420 opcode = (opcode << 8) | ir.modrm;
7421 goto no_support;
7422 break;
7423 }
7424 break;
7425
7426 case 0x0fc3: /* movnti */
7427 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7428 if (i386_record_modrm (&ir))
7429 return -1;
7430 if (ir.mod == 3)
7431 goto no_support;
7432 ir.reg |= rex_r;
7433 if (i386_record_lea_modrm (&ir))
7434 return -1;
7435 break;
7436
7437 /* Add prefix to opcode. */
7438 case 0x0f10:
7439 case 0x0f11:
7440 case 0x0f12:
7441 case 0x0f13:
7442 case 0x0f14:
7443 case 0x0f15:
7444 case 0x0f16:
7445 case 0x0f17:
7446 case 0x0f28:
7447 case 0x0f29:
7448 case 0x0f2a:
7449 case 0x0f2b:
7450 case 0x0f2c:
7451 case 0x0f2d:
7452 case 0x0f2e:
7453 case 0x0f2f:
7454 case 0x0f38:
7455 case 0x0f39:
7456 case 0x0f3a:
7457 case 0x0f50:
7458 case 0x0f51:
7459 case 0x0f52:
7460 case 0x0f53:
7461 case 0x0f54:
7462 case 0x0f55:
7463 case 0x0f56:
7464 case 0x0f57:
7465 case 0x0f58:
7466 case 0x0f59:
7467 case 0x0f5a:
7468 case 0x0f5b:
7469 case 0x0f5c:
7470 case 0x0f5d:
7471 case 0x0f5e:
7472 case 0x0f5f:
7473 case 0x0f60:
7474 case 0x0f61:
7475 case 0x0f62:
7476 case 0x0f63:
7477 case 0x0f64:
7478 case 0x0f65:
7479 case 0x0f66:
7480 case 0x0f67:
7481 case 0x0f68:
7482 case 0x0f69:
7483 case 0x0f6a:
7484 case 0x0f6b:
7485 case 0x0f6c:
7486 case 0x0f6d:
7487 case 0x0f6e:
7488 case 0x0f6f:
7489 case 0x0f70:
7490 case 0x0f71:
7491 case 0x0f72:
7492 case 0x0f73:
7493 case 0x0f74:
7494 case 0x0f75:
7495 case 0x0f76:
7496 case 0x0f7c:
7497 case 0x0f7d:
7498 case 0x0f7e:
7499 case 0x0f7f:
7500 case 0x0fb8:
7501 case 0x0fc2:
7502 case 0x0fc4:
7503 case 0x0fc5:
7504 case 0x0fc6:
7505 case 0x0fd0:
7506 case 0x0fd1:
7507 case 0x0fd2:
7508 case 0x0fd3:
7509 case 0x0fd4:
7510 case 0x0fd5:
7511 case 0x0fd6:
7512 case 0x0fd7:
7513 case 0x0fd8:
7514 case 0x0fd9:
7515 case 0x0fda:
7516 case 0x0fdb:
7517 case 0x0fdc:
7518 case 0x0fdd:
7519 case 0x0fde:
7520 case 0x0fdf:
7521 case 0x0fe0:
7522 case 0x0fe1:
7523 case 0x0fe2:
7524 case 0x0fe3:
7525 case 0x0fe4:
7526 case 0x0fe5:
7527 case 0x0fe6:
7528 case 0x0fe7:
7529 case 0x0fe8:
7530 case 0x0fe9:
7531 case 0x0fea:
7532 case 0x0feb:
7533 case 0x0fec:
7534 case 0x0fed:
7535 case 0x0fee:
7536 case 0x0fef:
7537 case 0x0ff0:
7538 case 0x0ff1:
7539 case 0x0ff2:
7540 case 0x0ff3:
7541 case 0x0ff4:
7542 case 0x0ff5:
7543 case 0x0ff6:
7544 case 0x0ff7:
7545 case 0x0ff8:
7546 case 0x0ff9:
7547 case 0x0ffa:
7548 case 0x0ffb:
7549 case 0x0ffc:
7550 case 0x0ffd:
7551 case 0x0ffe:
7552 /* Mask out PREFIX_ADDR. */
7553 switch ((prefixes & ~PREFIX_ADDR))
7554 {
7555 case PREFIX_REPNZ:
7556 opcode |= 0xf20000;
7557 break;
7558 case PREFIX_DATA:
7559 opcode |= 0x660000;
7560 break;
7561 case PREFIX_REPZ:
7562 opcode |= 0xf30000;
7563 break;
7564 }
7565 reswitch_prefix_add:
7566 switch (opcode)
7567 {
7568 case 0x0f38:
7569 case 0x660f38:
7570 case 0xf20f38:
7571 case 0x0f3a:
7572 case 0x660f3a:
7573 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7574 return -1;
7575 ir.addr++;
7576 opcode = (uint32_t) opcode8 | opcode << 8;
7577 goto reswitch_prefix_add;
7578 break;
7579
7580 case 0x0f10: /* movups */
7581 case 0x660f10: /* movupd */
7582 case 0xf30f10: /* movss */
7583 case 0xf20f10: /* movsd */
7584 case 0x0f12: /* movlps */
7585 case 0x660f12: /* movlpd */
7586 case 0xf30f12: /* movsldup */
7587 case 0xf20f12: /* movddup */
7588 case 0x0f14: /* unpcklps */
7589 case 0x660f14: /* unpcklpd */
7590 case 0x0f15: /* unpckhps */
7591 case 0x660f15: /* unpckhpd */
7592 case 0x0f16: /* movhps */
7593 case 0x660f16: /* movhpd */
7594 case 0xf30f16: /* movshdup */
7595 case 0x0f28: /* movaps */
7596 case 0x660f28: /* movapd */
7597 case 0x0f2a: /* cvtpi2ps */
7598 case 0x660f2a: /* cvtpi2pd */
7599 case 0xf30f2a: /* cvtsi2ss */
7600 case 0xf20f2a: /* cvtsi2sd */
7601 case 0x0f2c: /* cvttps2pi */
7602 case 0x660f2c: /* cvttpd2pi */
7603 case 0x0f2d: /* cvtps2pi */
7604 case 0x660f2d: /* cvtpd2pi */
7605 case 0x660f3800: /* pshufb */
7606 case 0x660f3801: /* phaddw */
7607 case 0x660f3802: /* phaddd */
7608 case 0x660f3803: /* phaddsw */
7609 case 0x660f3804: /* pmaddubsw */
7610 case 0x660f3805: /* phsubw */
7611 case 0x660f3806: /* phsubd */
7612 case 0x660f3807: /* phsubsw */
7613 case 0x660f3808: /* psignb */
7614 case 0x660f3809: /* psignw */
7615 case 0x660f380a: /* psignd */
7616 case 0x660f380b: /* pmulhrsw */
7617 case 0x660f3810: /* pblendvb */
7618 case 0x660f3814: /* blendvps */
7619 case 0x660f3815: /* blendvpd */
7620 case 0x660f381c: /* pabsb */
7621 case 0x660f381d: /* pabsw */
7622 case 0x660f381e: /* pabsd */
7623 case 0x660f3820: /* pmovsxbw */
7624 case 0x660f3821: /* pmovsxbd */
7625 case 0x660f3822: /* pmovsxbq */
7626 case 0x660f3823: /* pmovsxwd */
7627 case 0x660f3824: /* pmovsxwq */
7628 case 0x660f3825: /* pmovsxdq */
7629 case 0x660f3828: /* pmuldq */
7630 case 0x660f3829: /* pcmpeqq */
7631 case 0x660f382a: /* movntdqa */
7632 case 0x660f3a08: /* roundps */
7633 case 0x660f3a09: /* roundpd */
7634 case 0x660f3a0a: /* roundss */
7635 case 0x660f3a0b: /* roundsd */
7636 case 0x660f3a0c: /* blendps */
7637 case 0x660f3a0d: /* blendpd */
7638 case 0x660f3a0e: /* pblendw */
7639 case 0x660f3a0f: /* palignr */
7640 case 0x660f3a20: /* pinsrb */
7641 case 0x660f3a21: /* insertps */
7642 case 0x660f3a22: /* pinsrd pinsrq */
7643 case 0x660f3a40: /* dpps */
7644 case 0x660f3a41: /* dppd */
7645 case 0x660f3a42: /* mpsadbw */
7646 case 0x660f3a60: /* pcmpestrm */
7647 case 0x660f3a61: /* pcmpestri */
7648 case 0x660f3a62: /* pcmpistrm */
7649 case 0x660f3a63: /* pcmpistri */
7650 case 0x0f51: /* sqrtps */
7651 case 0x660f51: /* sqrtpd */
7652 case 0xf20f51: /* sqrtsd */
7653 case 0xf30f51: /* sqrtss */
7654 case 0x0f52: /* rsqrtps */
7655 case 0xf30f52: /* rsqrtss */
7656 case 0x0f53: /* rcpps */
7657 case 0xf30f53: /* rcpss */
7658 case 0x0f54: /* andps */
7659 case 0x660f54: /* andpd */
7660 case 0x0f55: /* andnps */
7661 case 0x660f55: /* andnpd */
7662 case 0x0f56: /* orps */
7663 case 0x660f56: /* orpd */
7664 case 0x0f57: /* xorps */
7665 case 0x660f57: /* xorpd */
7666 case 0x0f58: /* addps */
7667 case 0x660f58: /* addpd */
7668 case 0xf20f58: /* addsd */
7669 case 0xf30f58: /* addss */
7670 case 0x0f59: /* mulps */
7671 case 0x660f59: /* mulpd */
7672 case 0xf20f59: /* mulsd */
7673 case 0xf30f59: /* mulss */
7674 case 0x0f5a: /* cvtps2pd */
7675 case 0x660f5a: /* cvtpd2ps */
7676 case 0xf20f5a: /* cvtsd2ss */
7677 case 0xf30f5a: /* cvtss2sd */
7678 case 0x0f5b: /* cvtdq2ps */
7679 case 0x660f5b: /* cvtps2dq */
7680 case 0xf30f5b: /* cvttps2dq */
7681 case 0x0f5c: /* subps */
7682 case 0x660f5c: /* subpd */
7683 case 0xf20f5c: /* subsd */
7684 case 0xf30f5c: /* subss */
7685 case 0x0f5d: /* minps */
7686 case 0x660f5d: /* minpd */
7687 case 0xf20f5d: /* minsd */
7688 case 0xf30f5d: /* minss */
7689 case 0x0f5e: /* divps */
7690 case 0x660f5e: /* divpd */
7691 case 0xf20f5e: /* divsd */
7692 case 0xf30f5e: /* divss */
7693 case 0x0f5f: /* maxps */
7694 case 0x660f5f: /* maxpd */
7695 case 0xf20f5f: /* maxsd */
7696 case 0xf30f5f: /* maxss */
7697 case 0x660f60: /* punpcklbw */
7698 case 0x660f61: /* punpcklwd */
7699 case 0x660f62: /* punpckldq */
7700 case 0x660f63: /* packsswb */
7701 case 0x660f64: /* pcmpgtb */
7702 case 0x660f65: /* pcmpgtw */
7703 case 0x660f66: /* pcmpgtd */
7704 case 0x660f67: /* packuswb */
7705 case 0x660f68: /* punpckhbw */
7706 case 0x660f69: /* punpckhwd */
7707 case 0x660f6a: /* punpckhdq */
7708 case 0x660f6b: /* packssdw */
7709 case 0x660f6c: /* punpcklqdq */
7710 case 0x660f6d: /* punpckhqdq */
7711 case 0x660f6e: /* movd */
7712 case 0x660f6f: /* movdqa */
7713 case 0xf30f6f: /* movdqu */
7714 case 0x660f70: /* pshufd */
7715 case 0xf20f70: /* pshuflw */
7716 case 0xf30f70: /* pshufhw */
7717 case 0x660f74: /* pcmpeqb */
7718 case 0x660f75: /* pcmpeqw */
7719 case 0x660f76: /* pcmpeqd */
7720 case 0x660f7c: /* haddpd */
7721 case 0xf20f7c: /* haddps */
7722 case 0x660f7d: /* hsubpd */
7723 case 0xf20f7d: /* hsubps */
7724 case 0xf30f7e: /* movq */
7725 case 0x0fc2: /* cmpps */
7726 case 0x660fc2: /* cmppd */
7727 case 0xf20fc2: /* cmpsd */
7728 case 0xf30fc2: /* cmpss */
7729 case 0x660fc4: /* pinsrw */
7730 case 0x0fc6: /* shufps */
7731 case 0x660fc6: /* shufpd */
7732 case 0x660fd0: /* addsubpd */
7733 case 0xf20fd0: /* addsubps */
7734 case 0x660fd1: /* psrlw */
7735 case 0x660fd2: /* psrld */
7736 case 0x660fd3: /* psrlq */
7737 case 0x660fd4: /* paddq */
7738 case 0x660fd5: /* pmullw */
7739 case 0xf30fd6: /* movq2dq */
7740 case 0x660fd8: /* psubusb */
7741 case 0x660fd9: /* psubusw */
7742 case 0x660fda: /* pminub */
7743 case 0x660fdb: /* pand */
7744 case 0x660fdc: /* paddusb */
7745 case 0x660fdd: /* paddusw */
7746 case 0x660fde: /* pmaxub */
7747 case 0x660fdf: /* pandn */
7748 case 0x660fe0: /* pavgb */
7749 case 0x660fe1: /* psraw */
7750 case 0x660fe2: /* psrad */
7751 case 0x660fe3: /* pavgw */
7752 case 0x660fe4: /* pmulhuw */
7753 case 0x660fe5: /* pmulhw */
7754 case 0x660fe6: /* cvttpd2dq */
7755 case 0xf20fe6: /* cvtpd2dq */
7756 case 0xf30fe6: /* cvtdq2pd */
7757 case 0x660fe8: /* psubsb */
7758 case 0x660fe9: /* psubsw */
7759 case 0x660fea: /* pminsw */
7760 case 0x660feb: /* por */
7761 case 0x660fec: /* paddsb */
7762 case 0x660fed: /* paddsw */
7763 case 0x660fee: /* pmaxsw */
7764 case 0x660fef: /* pxor */
7765 case 0xf20ff0: /* lddqu */
7766 case 0x660ff1: /* psllw */
7767 case 0x660ff2: /* pslld */
7768 case 0x660ff3: /* psllq */
7769 case 0x660ff4: /* pmuludq */
7770 case 0x660ff5: /* pmaddwd */
7771 case 0x660ff6: /* psadbw */
7772 case 0x660ff8: /* psubb */
7773 case 0x660ff9: /* psubw */
7774 case 0x660ffa: /* psubd */
7775 case 0x660ffb: /* psubq */
7776 case 0x660ffc: /* paddb */
7777 case 0x660ffd: /* paddw */
7778 case 0x660ffe: /* paddd */
7779 if (i386_record_modrm (&ir))
7780 return -1;
7781 ir.reg |= rex_r;
7782 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7783 goto no_support;
7784 record_full_arch_list_add_reg (ir.regcache,
7785 I387_XMM0_REGNUM (tdep) + ir.reg);
7786 if ((opcode & 0xfffffffc) == 0x660f3a60)
7787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7788 break;
7789
7790 case 0x0f11: /* movups */
7791 case 0x660f11: /* movupd */
7792 case 0xf30f11: /* movss */
7793 case 0xf20f11: /* movsd */
7794 case 0x0f13: /* movlps */
7795 case 0x660f13: /* movlpd */
7796 case 0x0f17: /* movhps */
7797 case 0x660f17: /* movhpd */
7798 case 0x0f29: /* movaps */
7799 case 0x660f29: /* movapd */
7800 case 0x660f3a14: /* pextrb */
7801 case 0x660f3a15: /* pextrw */
7802 case 0x660f3a16: /* pextrd pextrq */
7803 case 0x660f3a17: /* extractps */
7804 case 0x660f7f: /* movdqa */
7805 case 0xf30f7f: /* movdqu */
7806 if (i386_record_modrm (&ir))
7807 return -1;
7808 if (ir.mod == 3)
7809 {
7810 if (opcode == 0x0f13 || opcode == 0x660f13
7811 || opcode == 0x0f17 || opcode == 0x660f17)
7812 goto no_support;
7813 ir.rm |= ir.rex_b;
7814 if (!i386_xmm_regnum_p (gdbarch,
7815 I387_XMM0_REGNUM (tdep) + ir.rm))
7816 goto no_support;
7817 record_full_arch_list_add_reg (ir.regcache,
7818 I387_XMM0_REGNUM (tdep) + ir.rm);
7819 }
7820 else
7821 {
7822 switch (opcode)
7823 {
7824 case 0x660f3a14:
7825 ir.ot = OT_BYTE;
7826 break;
7827 case 0x660f3a15:
7828 ir.ot = OT_WORD;
7829 break;
7830 case 0x660f3a16:
7831 ir.ot = OT_LONG;
7832 break;
7833 case 0x660f3a17:
7834 ir.ot = OT_QUAD;
7835 break;
7836 default:
7837 ir.ot = OT_DQUAD;
7838 break;
7839 }
7840 if (i386_record_lea_modrm (&ir))
7841 return -1;
7842 }
7843 break;
7844
7845 case 0x0f2b: /* movntps */
7846 case 0x660f2b: /* movntpd */
7847 case 0x0fe7: /* movntq */
7848 case 0x660fe7: /* movntdq */
7849 if (ir.mod == 3)
7850 goto no_support;
7851 if (opcode == 0x0fe7)
7852 ir.ot = OT_QUAD;
7853 else
7854 ir.ot = OT_DQUAD;
7855 if (i386_record_lea_modrm (&ir))
7856 return -1;
7857 break;
7858
7859 case 0xf30f2c: /* cvttss2si */
7860 case 0xf20f2c: /* cvttsd2si */
7861 case 0xf30f2d: /* cvtss2si */
7862 case 0xf20f2d: /* cvtsd2si */
7863 case 0xf20f38f0: /* crc32 */
7864 case 0xf20f38f1: /* crc32 */
7865 case 0x0f50: /* movmskps */
7866 case 0x660f50: /* movmskpd */
7867 case 0x0fc5: /* pextrw */
7868 case 0x660fc5: /* pextrw */
7869 case 0x0fd7: /* pmovmskb */
7870 case 0x660fd7: /* pmovmskb */
7871 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7872 break;
7873
7874 case 0x0f3800: /* pshufb */
7875 case 0x0f3801: /* phaddw */
7876 case 0x0f3802: /* phaddd */
7877 case 0x0f3803: /* phaddsw */
7878 case 0x0f3804: /* pmaddubsw */
7879 case 0x0f3805: /* phsubw */
7880 case 0x0f3806: /* phsubd */
7881 case 0x0f3807: /* phsubsw */
7882 case 0x0f3808: /* psignb */
7883 case 0x0f3809: /* psignw */
7884 case 0x0f380a: /* psignd */
7885 case 0x0f380b: /* pmulhrsw */
7886 case 0x0f381c: /* pabsb */
7887 case 0x0f381d: /* pabsw */
7888 case 0x0f381e: /* pabsd */
7889 case 0x0f382b: /* packusdw */
7890 case 0x0f3830: /* pmovzxbw */
7891 case 0x0f3831: /* pmovzxbd */
7892 case 0x0f3832: /* pmovzxbq */
7893 case 0x0f3833: /* pmovzxwd */
7894 case 0x0f3834: /* pmovzxwq */
7895 case 0x0f3835: /* pmovzxdq */
7896 case 0x0f3837: /* pcmpgtq */
7897 case 0x0f3838: /* pminsb */
7898 case 0x0f3839: /* pminsd */
7899 case 0x0f383a: /* pminuw */
7900 case 0x0f383b: /* pminud */
7901 case 0x0f383c: /* pmaxsb */
7902 case 0x0f383d: /* pmaxsd */
7903 case 0x0f383e: /* pmaxuw */
7904 case 0x0f383f: /* pmaxud */
7905 case 0x0f3840: /* pmulld */
7906 case 0x0f3841: /* phminposuw */
7907 case 0x0f3a0f: /* palignr */
7908 case 0x0f60: /* punpcklbw */
7909 case 0x0f61: /* punpcklwd */
7910 case 0x0f62: /* punpckldq */
7911 case 0x0f63: /* packsswb */
7912 case 0x0f64: /* pcmpgtb */
7913 case 0x0f65: /* pcmpgtw */
7914 case 0x0f66: /* pcmpgtd */
7915 case 0x0f67: /* packuswb */
7916 case 0x0f68: /* punpckhbw */
7917 case 0x0f69: /* punpckhwd */
7918 case 0x0f6a: /* punpckhdq */
7919 case 0x0f6b: /* packssdw */
7920 case 0x0f6e: /* movd */
7921 case 0x0f6f: /* movq */
7922 case 0x0f70: /* pshufw */
7923 case 0x0f74: /* pcmpeqb */
7924 case 0x0f75: /* pcmpeqw */
7925 case 0x0f76: /* pcmpeqd */
7926 case 0x0fc4: /* pinsrw */
7927 case 0x0fd1: /* psrlw */
7928 case 0x0fd2: /* psrld */
7929 case 0x0fd3: /* psrlq */
7930 case 0x0fd4: /* paddq */
7931 case 0x0fd5: /* pmullw */
7932 case 0xf20fd6: /* movdq2q */
7933 case 0x0fd8: /* psubusb */
7934 case 0x0fd9: /* psubusw */
7935 case 0x0fda: /* pminub */
7936 case 0x0fdb: /* pand */
7937 case 0x0fdc: /* paddusb */
7938 case 0x0fdd: /* paddusw */
7939 case 0x0fde: /* pmaxub */
7940 case 0x0fdf: /* pandn */
7941 case 0x0fe0: /* pavgb */
7942 case 0x0fe1: /* psraw */
7943 case 0x0fe2: /* psrad */
7944 case 0x0fe3: /* pavgw */
7945 case 0x0fe4: /* pmulhuw */
7946 case 0x0fe5: /* pmulhw */
7947 case 0x0fe8: /* psubsb */
7948 case 0x0fe9: /* psubsw */
7949 case 0x0fea: /* pminsw */
7950 case 0x0feb: /* por */
7951 case 0x0fec: /* paddsb */
7952 case 0x0fed: /* paddsw */
7953 case 0x0fee: /* pmaxsw */
7954 case 0x0fef: /* pxor */
7955 case 0x0ff1: /* psllw */
7956 case 0x0ff2: /* pslld */
7957 case 0x0ff3: /* psllq */
7958 case 0x0ff4: /* pmuludq */
7959 case 0x0ff5: /* pmaddwd */
7960 case 0x0ff6: /* psadbw */
7961 case 0x0ff8: /* psubb */
7962 case 0x0ff9: /* psubw */
7963 case 0x0ffa: /* psubd */
7964 case 0x0ffb: /* psubq */
7965 case 0x0ffc: /* paddb */
7966 case 0x0ffd: /* paddw */
7967 case 0x0ffe: /* paddd */
7968 if (i386_record_modrm (&ir))
7969 return -1;
7970 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7971 goto no_support;
7972 record_full_arch_list_add_reg (ir.regcache,
7973 I387_MM0_REGNUM (tdep) + ir.reg);
7974 break;
7975
7976 case 0x0f71: /* psllw */
7977 case 0x0f72: /* pslld */
7978 case 0x0f73: /* psllq */
7979 if (i386_record_modrm (&ir))
7980 return -1;
7981 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7982 goto no_support;
7983 record_full_arch_list_add_reg (ir.regcache,
7984 I387_MM0_REGNUM (tdep) + ir.rm);
7985 break;
7986
7987 case 0x660f71: /* psllw */
7988 case 0x660f72: /* pslld */
7989 case 0x660f73: /* psllq */
7990 if (i386_record_modrm (&ir))
7991 return -1;
7992 ir.rm |= ir.rex_b;
7993 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7994 goto no_support;
7995 record_full_arch_list_add_reg (ir.regcache,
7996 I387_XMM0_REGNUM (tdep) + ir.rm);
7997 break;
7998
7999 case 0x0f7e: /* movd */
8000 case 0x660f7e: /* movd */
8001 if (i386_record_modrm (&ir))
8002 return -1;
8003 if (ir.mod == 3)
8004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8005 else
8006 {
8007 if (ir.dflag == 2)
8008 ir.ot = OT_QUAD;
8009 else
8010 ir.ot = OT_LONG;
8011 if (i386_record_lea_modrm (&ir))
8012 return -1;
8013 }
8014 break;
8015
8016 case 0x0f7f: /* movq */
8017 if (i386_record_modrm (&ir))
8018 return -1;
8019 if (ir.mod == 3)
8020 {
8021 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8022 goto no_support;
8023 record_full_arch_list_add_reg (ir.regcache,
8024 I387_MM0_REGNUM (tdep) + ir.rm);
8025 }
8026 else
8027 {
8028 ir.ot = OT_QUAD;
8029 if (i386_record_lea_modrm (&ir))
8030 return -1;
8031 }
8032 break;
8033
8034 case 0xf30fb8: /* popcnt */
8035 if (i386_record_modrm (&ir))
8036 return -1;
8037 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8038 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8039 break;
8040
8041 case 0x660fd6: /* movq */
8042 if (i386_record_modrm (&ir))
8043 return -1;
8044 if (ir.mod == 3)
8045 {
8046 ir.rm |= ir.rex_b;
8047 if (!i386_xmm_regnum_p (gdbarch,
8048 I387_XMM0_REGNUM (tdep) + ir.rm))
8049 goto no_support;
8050 record_full_arch_list_add_reg (ir.regcache,
8051 I387_XMM0_REGNUM (tdep) + ir.rm);
8052 }
8053 else
8054 {
8055 ir.ot = OT_QUAD;
8056 if (i386_record_lea_modrm (&ir))
8057 return -1;
8058 }
8059 break;
8060
8061 case 0x660f3817: /* ptest */
8062 case 0x0f2e: /* ucomiss */
8063 case 0x660f2e: /* ucomisd */
8064 case 0x0f2f: /* comiss */
8065 case 0x660f2f: /* comisd */
8066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8067 break;
8068
8069 case 0x0ff7: /* maskmovq */
8070 regcache_raw_read_unsigned (ir.regcache,
8071 ir.regmap[X86_RECORD_REDI_REGNUM],
8072 &addr);
8073 if (record_full_arch_list_add_mem (addr, 64))
8074 return -1;
8075 break;
8076
8077 case 0x660ff7: /* maskmovdqu */
8078 regcache_raw_read_unsigned (ir.regcache,
8079 ir.regmap[X86_RECORD_REDI_REGNUM],
8080 &addr);
8081 if (record_full_arch_list_add_mem (addr, 128))
8082 return -1;
8083 break;
8084
8085 default:
8086 goto no_support;
8087 break;
8088 }
8089 break;
8090
8091 default:
8092 goto no_support;
8093 break;
8094 }
8095
8096 /* In the future, maybe still need to deal with need_dasm. */
8097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8098 if (record_full_arch_list_add_end ())
8099 return -1;
8100
8101 return 0;
8102
8103 no_support:
8104 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8105 "at address %s.\n"),
8106 (unsigned int) (opcode),
8107 paddress (gdbarch, ir.orig_addr));
8108 return -1;
8109 }
8110
8111 static const int i386_record_regmap[] =
8112 {
8113 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8114 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8115 0, 0, 0, 0, 0, 0, 0, 0,
8116 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8117 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8118 };
8119
8120 /* Check that the given address appears suitable for a fast
8121 tracepoint, which on x86-64 means that we need an instruction of at
8122 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8123 jump and not have to worry about program jumps to an address in the
8124 middle of the tracepoint jump. On x86, it may be possible to use
8125 4-byte jumps with a 2-byte offset to a trampoline located in the
8126 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8127 of instruction to replace, and 0 if not, plus an explanatory
8128 string. */
8129
8130 static int
8131 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8132 char **msg)
8133 {
8134 int len, jumplen;
8135
8136 /* Ask the target for the minimum instruction length supported. */
8137 jumplen = target_get_min_fast_tracepoint_insn_len ();
8138
8139 if (jumplen < 0)
8140 {
8141 /* If the target does not support the get_min_fast_tracepoint_insn_len
8142 operation, assume that fast tracepoints will always be implemented
8143 using 4-byte relative jumps on both x86 and x86-64. */
8144 jumplen = 5;
8145 }
8146 else if (jumplen == 0)
8147 {
8148 /* If the target does support get_min_fast_tracepoint_insn_len but
8149 returns zero, then the IPA has not loaded yet. In this case,
8150 we optimistically assume that truncated 2-byte relative jumps
8151 will be available on x86, and compensate later if this assumption
8152 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8153 jumps will always be used. */
8154 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8155 }
8156
8157 /* Check for fit. */
8158 len = gdb_insn_length (gdbarch, addr);
8159
8160 if (len < jumplen)
8161 {
8162 /* Return a bit of target-specific detail to add to the caller's
8163 generic failure message. */
8164 if (msg)
8165 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8166 "need at least %d bytes for the jump"),
8167 len, jumplen);
8168 return 0;
8169 }
8170 else
8171 {
8172 if (msg)
8173 *msg = NULL;
8174 return 1;
8175 }
8176 }
8177
8178 /* Return a floating-point format for a floating-point variable of
8179 length LEN in bits. If non-NULL, NAME is the name of its type.
8180 If no suitable type is found, return NULL. */
8181
8182 const struct floatformat **
8183 i386_floatformat_for_type (struct gdbarch *gdbarch,
8184 const char *name, int len)
8185 {
8186 if (len == 128 && name)
8187 if (strcmp (name, "__float128") == 0
8188 || strcmp (name, "_Float128") == 0
8189 || strcmp (name, "complex _Float128") == 0)
8190 return floatformats_ia64_quad;
8191
8192 return default_floatformat_for_type (gdbarch, name, len);
8193 }
8194
8195 static int
8196 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8197 struct tdesc_arch_data *tdesc_data)
8198 {
8199 const struct target_desc *tdesc = tdep->tdesc;
8200 const struct tdesc_feature *feature_core;
8201
8202 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8203 *feature_avx512;
8204 int i, num_regs, valid_p;
8205
8206 if (! tdesc_has_registers (tdesc))
8207 return 0;
8208
8209 /* Get core registers. */
8210 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8211 if (feature_core == NULL)
8212 return 0;
8213
8214 /* Get SSE registers. */
8215 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8216
8217 /* Try AVX registers. */
8218 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8219
8220 /* Try MPX registers. */
8221 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8222
8223 /* Try AVX512 registers. */
8224 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8225
8226 valid_p = 1;
8227
8228 /* The XCR0 bits. */
8229 if (feature_avx512)
8230 {
8231 /* AVX512 register description requires AVX register description. */
8232 if (!feature_avx)
8233 return 0;
8234
8235 tdep->xcr0 = X86_XSTATE_AVX_MPX_AVX512_MASK;
8236
8237 /* It may have been set by OSABI initialization function. */
8238 if (tdep->k0_regnum < 0)
8239 {
8240 tdep->k_register_names = i386_k_names;
8241 tdep->k0_regnum = I386_K0_REGNUM;
8242 }
8243
8244 for (i = 0; i < I387_NUM_K_REGS; i++)
8245 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8246 tdep->k0_regnum + i,
8247 i386_k_names[i]);
8248
8249 if (tdep->num_zmm_regs == 0)
8250 {
8251 tdep->zmmh_register_names = i386_zmmh_names;
8252 tdep->num_zmm_regs = 8;
8253 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8254 }
8255
8256 for (i = 0; i < tdep->num_zmm_regs; i++)
8257 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8258 tdep->zmm0h_regnum + i,
8259 tdep->zmmh_register_names[i]);
8260
8261 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8262 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8263 tdep->xmm16_regnum + i,
8264 tdep->xmm_avx512_register_names[i]);
8265
8266 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8267 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8268 tdep->ymm16h_regnum + i,
8269 tdep->ymm16h_register_names[i]);
8270 }
8271 if (feature_avx)
8272 {
8273 /* AVX register description requires SSE register description. */
8274 if (!feature_sse)
8275 return 0;
8276
8277 if (!feature_avx512)
8278 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8279
8280 /* It may have been set by OSABI initialization function. */
8281 if (tdep->num_ymm_regs == 0)
8282 {
8283 tdep->ymmh_register_names = i386_ymmh_names;
8284 tdep->num_ymm_regs = 8;
8285 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8286 }
8287
8288 for (i = 0; i < tdep->num_ymm_regs; i++)
8289 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8290 tdep->ymm0h_regnum + i,
8291 tdep->ymmh_register_names[i]);
8292 }
8293 else if (feature_sse)
8294 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8295 else
8296 {
8297 tdep->xcr0 = X86_XSTATE_X87_MASK;
8298 tdep->num_xmm_regs = 0;
8299 }
8300
8301 num_regs = tdep->num_core_regs;
8302 for (i = 0; i < num_regs; i++)
8303 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8304 tdep->register_names[i]);
8305
8306 if (feature_sse)
8307 {
8308 /* Need to include %mxcsr, so add one. */
8309 num_regs += tdep->num_xmm_regs + 1;
8310 for (; i < num_regs; i++)
8311 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8312 tdep->register_names[i]);
8313 }
8314
8315 if (feature_mpx)
8316 {
8317 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8318
8319 if (tdep->bnd0r_regnum < 0)
8320 {
8321 tdep->mpx_register_names = i386_mpx_names;
8322 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8323 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8324 }
8325
8326 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8327 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8328 I387_BND0R_REGNUM (tdep) + i,
8329 tdep->mpx_register_names[i]);
8330 }
8331
8332 return valid_p;
8333 }
8334
8335 \f
8336 /* Note: This is called for both i386 and amd64. */
8337
8338 static struct gdbarch *
8339 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8340 {
8341 struct gdbarch_tdep *tdep;
8342 struct gdbarch *gdbarch;
8343 struct tdesc_arch_data *tdesc_data;
8344 const struct target_desc *tdesc;
8345 int mm0_regnum;
8346 int ymm0_regnum;
8347 int bnd0_regnum;
8348 int num_bnd_cooked;
8349
8350 /* If there is already a candidate, use it. */
8351 arches = gdbarch_list_lookup_by_info (arches, &info);
8352 if (arches != NULL)
8353 return arches->gdbarch;
8354
8355 /* Allocate space for the new architecture. Assume i386 for now. */
8356 tdep = XCNEW (struct gdbarch_tdep);
8357 gdbarch = gdbarch_alloc (&info, tdep);
8358
8359 /* General-purpose registers. */
8360 tdep->gregset_reg_offset = NULL;
8361 tdep->gregset_num_regs = I386_NUM_GREGS;
8362 tdep->sizeof_gregset = 0;
8363
8364 /* Floating-point registers. */
8365 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8366 tdep->fpregset = &i386_fpregset;
8367
8368 /* The default settings include the FPU registers, the MMX registers
8369 and the SSE registers. This can be overridden for a specific ABI
8370 by adjusting the members `st0_regnum', `mm0_regnum' and
8371 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8372 will show up in the output of "info all-registers". */
8373
8374 tdep->st0_regnum = I386_ST0_REGNUM;
8375
8376 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8377 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8378
8379 tdep->jb_pc_offset = -1;
8380 tdep->struct_return = pcc_struct_return;
8381 tdep->sigtramp_start = 0;
8382 tdep->sigtramp_end = 0;
8383 tdep->sigtramp_p = i386_sigtramp_p;
8384 tdep->sigcontext_addr = NULL;
8385 tdep->sc_reg_offset = NULL;
8386 tdep->sc_pc_offset = -1;
8387 tdep->sc_sp_offset = -1;
8388
8389 tdep->xsave_xcr0_offset = -1;
8390
8391 tdep->record_regmap = i386_record_regmap;
8392
8393 set_gdbarch_long_long_align_bit (gdbarch, 32);
8394
8395 /* The format used for `long double' on almost all i386 targets is
8396 the i387 extended floating-point format. In fact, of all targets
8397 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8398 on having a `long double' that's not `long' at all. */
8399 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8400
8401 /* Although the i387 extended floating-point has only 80 significant
8402 bits, a `long double' actually takes up 96, probably to enforce
8403 alignment. */
8404 set_gdbarch_long_double_bit (gdbarch, 96);
8405
8406 /* Support for floating-point data type variants. */
8407 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8408
8409 /* Register numbers of various important registers. */
8410 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8411 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8412 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8413 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8414
8415 /* NOTE: kettenis/20040418: GCC does have two possible register
8416 numbering schemes on the i386: dbx and SVR4. These schemes
8417 differ in how they number %ebp, %esp, %eflags, and the
8418 floating-point registers, and are implemented by the arrays
8419 dbx_register_map[] and svr4_dbx_register_map in
8420 gcc/config/i386.c. GCC also defines a third numbering scheme in
8421 gcc/config/i386.c, which it designates as the "default" register
8422 map used in 64bit mode. This last register numbering scheme is
8423 implemented in dbx64_register_map, and is used for AMD64; see
8424 amd64-tdep.c.
8425
8426 Currently, each GCC i386 target always uses the same register
8427 numbering scheme across all its supported debugging formats
8428 i.e. SDB (COFF), stabs and DWARF 2. This is because
8429 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8430 DBX_REGISTER_NUMBER macro which is defined by each target's
8431 respective config header in a manner independent of the requested
8432 output debugging format.
8433
8434 This does not match the arrangement below, which presumes that
8435 the SDB and stabs numbering schemes differ from the DWARF and
8436 DWARF 2 ones. The reason for this arrangement is that it is
8437 likely to get the numbering scheme for the target's
8438 default/native debug format right. For targets where GCC is the
8439 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8440 targets where the native toolchain uses a different numbering
8441 scheme for a particular debug format (stabs-in-ELF on Solaris)
8442 the defaults below will have to be overridden, like
8443 i386_elf_init_abi() does. */
8444
8445 /* Use the dbx register numbering scheme for stabs and COFF. */
8446 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8447 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8448
8449 /* Use the SVR4 register numbering scheme for DWARF 2. */
8450 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8451
8452 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8453 be in use on any of the supported i386 targets. */
8454
8455 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8456
8457 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8458
8459 /* Call dummy code. */
8460 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8461 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8462 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8463 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8464
8465 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8466 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8467 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8468
8469 set_gdbarch_return_value (gdbarch, i386_return_value);
8470
8471 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8472
8473 /* Stack grows downward. */
8474 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8475
8476 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8477 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8478
8479 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8480 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8481
8482 set_gdbarch_frame_args_skip (gdbarch, 8);
8483
8484 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8485
8486 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8487
8488 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8489
8490 /* Add the i386 register groups. */
8491 i386_add_reggroups (gdbarch);
8492 tdep->register_reggroup_p = i386_register_reggroup_p;
8493
8494 /* Helper for function argument information. */
8495 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8496
8497 /* Hook the function epilogue frame unwinder. This unwinder is
8498 appended to the list first, so that it supercedes the DWARF
8499 unwinder in function epilogues (where the DWARF unwinder
8500 currently fails). */
8501 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8502
8503 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8504 to the list before the prologue-based unwinders, so that DWARF
8505 CFI info will be used if it is available. */
8506 dwarf2_append_unwinders (gdbarch);
8507
8508 frame_base_set_default (gdbarch, &i386_frame_base);
8509
8510 /* Pseudo registers may be changed by amd64_init_abi. */
8511 set_gdbarch_pseudo_register_read_value (gdbarch,
8512 i386_pseudo_register_read_value);
8513 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8514 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8515 i386_ax_pseudo_register_collect);
8516
8517 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8518 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8519
8520 /* Override the normal target description method to make the AVX
8521 upper halves anonymous. */
8522 set_gdbarch_register_name (gdbarch, i386_register_name);
8523
8524 /* Even though the default ABI only includes general-purpose registers,
8525 floating-point registers and the SSE registers, we have to leave a
8526 gap for the upper AVX, MPX and AVX512 registers. */
8527 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8528
8529 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8530
8531 /* Get the x86 target description from INFO. */
8532 tdesc = info.target_desc;
8533 if (! tdesc_has_registers (tdesc))
8534 tdesc = tdesc_i386;
8535 tdep->tdesc = tdesc;
8536
8537 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8538 tdep->register_names = i386_register_names;
8539
8540 /* No upper YMM registers. */
8541 tdep->ymmh_register_names = NULL;
8542 tdep->ymm0h_regnum = -1;
8543
8544 /* No upper ZMM registers. */
8545 tdep->zmmh_register_names = NULL;
8546 tdep->zmm0h_regnum = -1;
8547
8548 /* No high XMM registers. */
8549 tdep->xmm_avx512_register_names = NULL;
8550 tdep->xmm16_regnum = -1;
8551
8552 /* No upper YMM16-31 registers. */
8553 tdep->ymm16h_register_names = NULL;
8554 tdep->ymm16h_regnum = -1;
8555
8556 tdep->num_byte_regs = 8;
8557 tdep->num_word_regs = 8;
8558 tdep->num_dword_regs = 0;
8559 tdep->num_mmx_regs = 8;
8560 tdep->num_ymm_regs = 0;
8561
8562 /* No MPX registers. */
8563 tdep->bnd0r_regnum = -1;
8564 tdep->bndcfgu_regnum = -1;
8565
8566 /* No AVX512 registers. */
8567 tdep->k0_regnum = -1;
8568 tdep->num_zmm_regs = 0;
8569 tdep->num_ymm_avx512_regs = 0;
8570 tdep->num_xmm_avx512_regs = 0;
8571
8572 tdesc_data = tdesc_data_alloc ();
8573
8574 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8575
8576 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8577
8578 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8579 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8580 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8581
8582 /* Hook in ABI-specific overrides, if they have been registered.
8583 Note: If INFO specifies a 64 bit arch, this is where we turn
8584 a 32-bit i386 into a 64-bit amd64. */
8585 info.tdep_info = tdesc_data;
8586 gdbarch_init_osabi (info, gdbarch);
8587
8588 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8589 {
8590 tdesc_data_cleanup (tdesc_data);
8591 xfree (tdep);
8592 gdbarch_free (gdbarch);
8593 return NULL;
8594 }
8595
8596 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8597
8598 /* Wire in pseudo registers. Number of pseudo registers may be
8599 changed. */
8600 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8601 + tdep->num_word_regs
8602 + tdep->num_dword_regs
8603 + tdep->num_mmx_regs
8604 + tdep->num_ymm_regs
8605 + num_bnd_cooked
8606 + tdep->num_ymm_avx512_regs
8607 + tdep->num_zmm_regs));
8608
8609 /* Target description may be changed. */
8610 tdesc = tdep->tdesc;
8611
8612 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8613
8614 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8615 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8616
8617 /* Make %al the first pseudo-register. */
8618 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8619 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8620
8621 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8622 if (tdep->num_dword_regs)
8623 {
8624 /* Support dword pseudo-register if it hasn't been disabled. */
8625 tdep->eax_regnum = ymm0_regnum;
8626 ymm0_regnum += tdep->num_dword_regs;
8627 }
8628 else
8629 tdep->eax_regnum = -1;
8630
8631 mm0_regnum = ymm0_regnum;
8632 if (tdep->num_ymm_regs)
8633 {
8634 /* Support YMM pseudo-register if it is available. */
8635 tdep->ymm0_regnum = ymm0_regnum;
8636 mm0_regnum += tdep->num_ymm_regs;
8637 }
8638 else
8639 tdep->ymm0_regnum = -1;
8640
8641 if (tdep->num_ymm_avx512_regs)
8642 {
8643 /* Support YMM16-31 pseudo registers if available. */
8644 tdep->ymm16_regnum = mm0_regnum;
8645 mm0_regnum += tdep->num_ymm_avx512_regs;
8646 }
8647 else
8648 tdep->ymm16_regnum = -1;
8649
8650 if (tdep->num_zmm_regs)
8651 {
8652 /* Support ZMM pseudo-register if it is available. */
8653 tdep->zmm0_regnum = mm0_regnum;
8654 mm0_regnum += tdep->num_zmm_regs;
8655 }
8656 else
8657 tdep->zmm0_regnum = -1;
8658
8659 bnd0_regnum = mm0_regnum;
8660 if (tdep->num_mmx_regs != 0)
8661 {
8662 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8663 tdep->mm0_regnum = mm0_regnum;
8664 bnd0_regnum += tdep->num_mmx_regs;
8665 }
8666 else
8667 tdep->mm0_regnum = -1;
8668
8669 if (tdep->bnd0r_regnum > 0)
8670 tdep->bnd0_regnum = bnd0_regnum;
8671 else
8672 tdep-> bnd0_regnum = -1;
8673
8674 /* Hook in the legacy prologue-based unwinders last (fallback). */
8675 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8676 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8677 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8678
8679 /* If we have a register mapping, enable the generic core file
8680 support, unless it has already been enabled. */
8681 if (tdep->gregset_reg_offset
8682 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8683 set_gdbarch_iterate_over_regset_sections
8684 (gdbarch, i386_iterate_over_regset_sections);
8685
8686 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8687 i386_fast_tracepoint_valid_at);
8688
8689 return gdbarch;
8690 }
8691
8692 static enum gdb_osabi
8693 i386_coff_osabi_sniffer (bfd *abfd)
8694 {
8695 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8696 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8697 return GDB_OSABI_GO32;
8698
8699 return GDB_OSABI_UNKNOWN;
8700 }
8701 \f
8702
8703 /* Return the target description for a specified XSAVE feature mask. */
8704
8705 const struct target_desc *
8706 i386_target_description (uint64_t xcr0)
8707 {
8708 switch (xcr0 & X86_XSTATE_ALL_MASK)
8709 {
8710 case X86_XSTATE_AVX_MPX_AVX512_MASK:
8711 case X86_XSTATE_AVX_AVX512_MASK:
8712 return tdesc_i386_avx_mpx_avx512;
8713 case X86_XSTATE_AVX_MPX_MASK:
8714 return tdesc_i386_avx_mpx;
8715 case X86_XSTATE_MPX_MASK:
8716 return tdesc_i386_mpx;
8717 case X86_XSTATE_AVX_MASK:
8718 return tdesc_i386_avx;
8719 default:
8720 return tdesc_i386;
8721 }
8722 }
8723
8724 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8725
8726 /* Find the bound directory base address. */
8727
8728 static unsigned long
8729 i386_mpx_bd_base (void)
8730 {
8731 struct regcache *rcache;
8732 struct gdbarch_tdep *tdep;
8733 ULONGEST ret;
8734 enum register_status regstatus;
8735
8736 rcache = get_current_regcache ();
8737 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8738
8739 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8740
8741 if (regstatus != REG_VALID)
8742 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8743
8744 return ret & MPX_BASE_MASK;
8745 }
8746
8747 int
8748 i386_mpx_enabled (void)
8749 {
8750 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8751 const struct target_desc *tdesc = tdep->tdesc;
8752
8753 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8754 }
8755
8756 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8757 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8758 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8759 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8760
8761 /* Find the bound table entry given the pointer location and the base
8762 address of the table. */
8763
8764 static CORE_ADDR
8765 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8766 {
8767 CORE_ADDR offset1;
8768 CORE_ADDR offset2;
8769 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8770 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8771 CORE_ADDR bd_entry_addr;
8772 CORE_ADDR bt_addr;
8773 CORE_ADDR bd_entry;
8774 struct gdbarch *gdbarch = get_current_arch ();
8775 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8776
8777
8778 if (gdbarch_ptr_bit (gdbarch) == 64)
8779 {
8780 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8781 bd_ptr_r_shift = 20;
8782 bd_ptr_l_shift = 3;
8783 bt_select_r_shift = 3;
8784 bt_select_l_shift = 5;
8785 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8786
8787 if ( sizeof (CORE_ADDR) == 4)
8788 error (_("bound table examination not supported\
8789 for 64-bit process with 32-bit GDB"));
8790 }
8791 else
8792 {
8793 mpx_bd_mask = MPX_BD_MASK_32;
8794 bd_ptr_r_shift = 12;
8795 bd_ptr_l_shift = 2;
8796 bt_select_r_shift = 2;
8797 bt_select_l_shift = 4;
8798 bt_mask = MPX_BT_MASK_32;
8799 }
8800
8801 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8802 bd_entry_addr = bd_base + offset1;
8803 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8804
8805 if ((bd_entry & 0x1) == 0)
8806 error (_("Invalid bounds directory entry at %s."),
8807 paddress (get_current_arch (), bd_entry_addr));
8808
8809 /* Clearing status bit. */
8810 bd_entry--;
8811 bt_addr = bd_entry & ~bt_select_r_shift;
8812 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8813
8814 return bt_addr + offset2;
8815 }
8816
8817 /* Print routine for the mpx bounds. */
8818
8819 static void
8820 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8821 {
8822 struct ui_out *uiout = current_uiout;
8823 LONGEST size;
8824 struct gdbarch *gdbarch = get_current_arch ();
8825 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8826 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8827
8828 if (bounds_in_map == 1)
8829 {
8830 uiout->text ("Null bounds on map:");
8831 uiout->text (" pointer value = ");
8832 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8833 uiout->text (".");
8834 uiout->text ("\n");
8835 }
8836 else
8837 {
8838 uiout->text ("{lbound = ");
8839 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8840 uiout->text (", ubound = ");
8841
8842 /* The upper bound is stored in 1's complement. */
8843 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8844 uiout->text ("}: pointer value = ");
8845 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8846
8847 if (gdbarch_ptr_bit (gdbarch) == 64)
8848 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8849 else
8850 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8851
8852 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8853 -1 represents in this sense full memory access, and there is no need
8854 one to the size. */
8855
8856 size = (size > -1 ? size + 1 : size);
8857 uiout->text (", size = ");
8858 uiout->field_fmt ("size", "%s", plongest (size));
8859
8860 uiout->text (", metadata = ");
8861 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8862 uiout->text ("\n");
8863 }
8864 }
8865
8866 /* Implement the command "show mpx bound". */
8867
8868 static void
8869 i386_mpx_info_bounds (char *args, int from_tty)
8870 {
8871 CORE_ADDR bd_base = 0;
8872 CORE_ADDR addr;
8873 CORE_ADDR bt_entry_addr = 0;
8874 CORE_ADDR bt_entry[4];
8875 int i;
8876 struct gdbarch *gdbarch = get_current_arch ();
8877 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8878
8879 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8880 || !i386_mpx_enabled ())
8881 {
8882 printf_unfiltered (_("Intel Memory Protection Extensions not "
8883 "supported on this target.\n"));
8884 return;
8885 }
8886
8887 if (args == NULL)
8888 {
8889 printf_unfiltered (_("Address of pointer variable expected.\n"));
8890 return;
8891 }
8892
8893 addr = parse_and_eval_address (args);
8894
8895 bd_base = i386_mpx_bd_base ();
8896 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8897
8898 memset (bt_entry, 0, sizeof (bt_entry));
8899
8900 for (i = 0; i < 4; i++)
8901 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8902 + i * TYPE_LENGTH (data_ptr_type),
8903 data_ptr_type);
8904
8905 i386_mpx_print_bounds (bt_entry);
8906 }
8907
8908 /* Implement the command "set mpx bound". */
8909
8910 static void
8911 i386_mpx_set_bounds (char *args, int from_tty)
8912 {
8913 CORE_ADDR bd_base = 0;
8914 CORE_ADDR addr, lower, upper;
8915 CORE_ADDR bt_entry_addr = 0;
8916 CORE_ADDR bt_entry[2];
8917 const char *input = args;
8918 int i;
8919 struct gdbarch *gdbarch = get_current_arch ();
8920 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8921 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8922
8923 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8924 || !i386_mpx_enabled ())
8925 error (_("Intel Memory Protection Extensions not supported\
8926 on this target."));
8927
8928 if (args == NULL)
8929 error (_("Pointer value expected."));
8930
8931 addr = value_as_address (parse_to_comma_and_eval (&input));
8932
8933 if (input[0] == ',')
8934 ++input;
8935 if (input[0] == '\0')
8936 error (_("wrong number of arguments: missing lower and upper bound."));
8937 lower = value_as_address (parse_to_comma_and_eval (&input));
8938
8939 if (input[0] == ',')
8940 ++input;
8941 if (input[0] == '\0')
8942 error (_("Wrong number of arguments; Missing upper bound."));
8943 upper = value_as_address (parse_to_comma_and_eval (&input));
8944
8945 bd_base = i386_mpx_bd_base ();
8946 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8947 for (i = 0; i < 2; i++)
8948 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8949 + i * TYPE_LENGTH (data_ptr_type),
8950 data_ptr_type);
8951 bt_entry[0] = (uint64_t) lower;
8952 bt_entry[1] = ~(uint64_t) upper;
8953
8954 for (i = 0; i < 2; i++)
8955 write_memory_unsigned_integer (bt_entry_addr
8956 + i * TYPE_LENGTH (data_ptr_type),
8957 TYPE_LENGTH (data_ptr_type), byte_order,
8958 bt_entry[i]);
8959 }
8960
8961 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8962
8963 /* Helper function for the CLI commands. */
8964
8965 static void
8966 set_mpx_cmd (char *args, int from_tty)
8967 {
8968 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8969 }
8970
8971 /* Helper function for the CLI commands. */
8972
8973 static void
8974 show_mpx_cmd (char *args, int from_tty)
8975 {
8976 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8977 }
8978
8979 /* Provide a prototype to silence -Wmissing-prototypes. */
8980 void _initialize_i386_tdep (void);
8981
8982 void
8983 _initialize_i386_tdep (void)
8984 {
8985 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8986
8987 /* Add the variable that controls the disassembly flavor. */
8988 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8989 &disassembly_flavor, _("\
8990 Set the disassembly flavor."), _("\
8991 Show the disassembly flavor."), _("\
8992 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8993 NULL,
8994 NULL, /* FIXME: i18n: */
8995 &setlist, &showlist);
8996
8997 /* Add the variable that controls the convention for returning
8998 structs. */
8999 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9000 &struct_convention, _("\
9001 Set the convention for returning small structs."), _("\
9002 Show the convention for returning small structs."), _("\
9003 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9004 is \"default\"."),
9005 NULL,
9006 NULL, /* FIXME: i18n: */
9007 &setlist, &showlist);
9008
9009 /* Add "mpx" prefix for the set commands. */
9010
9011 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9012 Set Intel Memory Protection Extensions specific variables."),
9013 &mpx_set_cmdlist, "set mpx ",
9014 0 /* allow-unknown */, &setlist);
9015
9016 /* Add "mpx" prefix for the show commands. */
9017
9018 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9019 Show Intel Memory Protection Extensions specific variables."),
9020 &mpx_show_cmdlist, "show mpx ",
9021 0 /* allow-unknown */, &showlist);
9022
9023 /* Add "bound" command for the show mpx commands list. */
9024
9025 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9026 "Show the memory bounds for a given array/pointer storage\
9027 in the bound table.",
9028 &mpx_show_cmdlist);
9029
9030 /* Add "bound" command for the set mpx commands list. */
9031
9032 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9033 "Set the memory bounds for a given array/pointer storage\
9034 in the bound table.",
9035 &mpx_set_cmdlist);
9036
9037 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
9038 i386_coff_osabi_sniffer);
9039
9040 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9041 i386_svr4_init_abi);
9042 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
9043 i386_go32_init_abi);
9044
9045 /* Initialize the i386-specific register groups. */
9046 i386_init_reggroups ();
9047
9048 /* Initialize the standard target descriptions. */
9049 initialize_tdesc_i386 ();
9050 initialize_tdesc_i386_mmx ();
9051 initialize_tdesc_i386_avx ();
9052 initialize_tdesc_i386_mpx ();
9053 initialize_tdesc_i386_avx_mpx ();
9054 initialize_tdesc_i386_avx_mpx_avx512 ();
9055
9056 /* Tell remote stub that we support XML target description. */
9057 register_remote_support_xml ("i386");
9058 }