]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
gdb: Use std::min and std::max throughout
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx-mpx.c"
57 #include "features/i386/i386-avx512.c"
58 #include "features/i386/i386-mmx.c"
59
60 #include "ax.h"
61 #include "ax-gdb.h"
62
63 #include "stap-probe.h"
64 #include "user-regs.h"
65 #include "cli/cli-utils.h"
66 #include "expression.h"
67 #include "parser-defs.h"
68 #include <ctype.h>
69 #include <algorithm>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_zmm_names[] =
89 {
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92 };
93
94 static const char *i386_zmmh_names[] =
95 {
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 };
99
100 static const char *i386_k_names[] =
101 {
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104 };
105
106 static const char *i386_ymm_names[] =
107 {
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110 };
111
112 static const char *i386_ymmh_names[] =
113 {
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 };
117
118 static const char *i386_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 /* Register names for MPX pseudo-registers. */
124
125 static const char *i386_bnd_names[] =
126 {
127 "bnd0", "bnd1", "bnd2", "bnd3"
128 };
129
130 /* Register names for MMX pseudo-registers. */
131
132 static const char *i386_mmx_names[] =
133 {
134 "mm0", "mm1", "mm2", "mm3",
135 "mm4", "mm5", "mm6", "mm7"
136 };
137
138 /* Register names for byte pseudo-registers. */
139
140 static const char *i386_byte_names[] =
141 {
142 "al", "cl", "dl", "bl",
143 "ah", "ch", "dh", "bh"
144 };
145
146 /* Register names for word pseudo-registers. */
147
148 static const char *i386_word_names[] =
149 {
150 "ax", "cx", "dx", "bx",
151 "", "bp", "si", "di"
152 };
153
154 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
155 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
156 we have 16 upper ZMM regs that have to be handled differently. */
157
158 const int num_lower_zmm_regs = 16;
159
160 /* MMX register? */
161
162 static int
163 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
164 {
165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
166 int mm0_regnum = tdep->mm0_regnum;
167
168 if (mm0_regnum < 0)
169 return 0;
170
171 regnum -= mm0_regnum;
172 return regnum >= 0 && regnum < tdep->num_mmx_regs;
173 }
174
175 /* Byte register? */
176
177 int
178 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 regnum -= tdep->al_regnum;
183 return regnum >= 0 && regnum < tdep->num_byte_regs;
184 }
185
186 /* Word register? */
187
188 int
189 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
190 {
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 regnum -= tdep->ax_regnum;
194 return regnum >= 0 && regnum < tdep->num_word_regs;
195 }
196
197 /* Dword register? */
198
199 int
200 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
201 {
202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
203 int eax_regnum = tdep->eax_regnum;
204
205 if (eax_regnum < 0)
206 return 0;
207
208 regnum -= eax_regnum;
209 return regnum >= 0 && regnum < tdep->num_dword_regs;
210 }
211
212 /* AVX512 register? */
213
214 int
215 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
216 {
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218 int zmm0h_regnum = tdep->zmm0h_regnum;
219
220 if (zmm0h_regnum < 0)
221 return 0;
222
223 regnum -= zmm0h_regnum;
224 return regnum >= 0 && regnum < tdep->num_zmm_regs;
225 }
226
227 int
228 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
229 {
230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
231 int zmm0_regnum = tdep->zmm0_regnum;
232
233 if (zmm0_regnum < 0)
234 return 0;
235
236 regnum -= zmm0_regnum;
237 return regnum >= 0 && regnum < tdep->num_zmm_regs;
238 }
239
240 int
241 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
242 {
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 int k0_regnum = tdep->k0_regnum;
245
246 if (k0_regnum < 0)
247 return 0;
248
249 regnum -= k0_regnum;
250 return regnum >= 0 && regnum < I387_NUM_K_REGS;
251 }
252
253 static int
254 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
255 {
256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257 int ymm0h_regnum = tdep->ymm0h_regnum;
258
259 if (ymm0h_regnum < 0)
260 return 0;
261
262 regnum -= ymm0h_regnum;
263 return regnum >= 0 && regnum < tdep->num_ymm_regs;
264 }
265
266 /* AVX register? */
267
268 int
269 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
270 {
271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272 int ymm0_regnum = tdep->ymm0_regnum;
273
274 if (ymm0_regnum < 0)
275 return 0;
276
277 regnum -= ymm0_regnum;
278 return regnum >= 0 && regnum < tdep->num_ymm_regs;
279 }
280
281 static int
282 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
283 {
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 int ymm16h_regnum = tdep->ymm16h_regnum;
286
287 if (ymm16h_regnum < 0)
288 return 0;
289
290 regnum -= ymm16h_regnum;
291 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
292 }
293
294 int
295 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
296 {
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 int ymm16_regnum = tdep->ymm16_regnum;
299
300 if (ymm16_regnum < 0)
301 return 0;
302
303 regnum -= ymm16_regnum;
304 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
305 }
306
307 /* BND register? */
308
309 int
310 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
311 {
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
313 int bnd0_regnum = tdep->bnd0_regnum;
314
315 if (bnd0_regnum < 0)
316 return 0;
317
318 regnum -= bnd0_regnum;
319 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
320 }
321
322 /* SSE register? */
323
324 int
325 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
326 {
327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
328 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
329
330 if (num_xmm_regs == 0)
331 return 0;
332
333 regnum -= I387_XMM0_REGNUM (tdep);
334 return regnum >= 0 && regnum < num_xmm_regs;
335 }
336
337 /* XMM_512 register? */
338
339 int
340 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
341 {
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
344
345 if (num_xmm_avx512_regs == 0)
346 return 0;
347
348 regnum -= I387_XMM16_REGNUM (tdep);
349 return regnum >= 0 && regnum < num_xmm_avx512_regs;
350 }
351
352 static int
353 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 if (I387_NUM_XMM_REGS (tdep) == 0)
358 return 0;
359
360 return (regnum == I387_MXCSR_REGNUM (tdep));
361 }
362
363 /* FP register? */
364
365 int
366 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
367 {
368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
369
370 if (I387_ST0_REGNUM (tdep) < 0)
371 return 0;
372
373 return (I387_ST0_REGNUM (tdep) <= regnum
374 && regnum < I387_FCTRL_REGNUM (tdep));
375 }
376
377 int
378 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
379 {
380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
381
382 if (I387_ST0_REGNUM (tdep) < 0)
383 return 0;
384
385 return (I387_FCTRL_REGNUM (tdep) <= regnum
386 && regnum < I387_XMM0_REGNUM (tdep));
387 }
388
389 /* BNDr (raw) register? */
390
391 static int
392 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
393 {
394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
395
396 if (I387_BND0R_REGNUM (tdep) < 0)
397 return 0;
398
399 regnum -= tdep->bnd0r_regnum;
400 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
401 }
402
403 /* BND control register? */
404
405 static int
406 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
407 {
408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409
410 if (I387_BNDCFGU_REGNUM (tdep) < 0)
411 return 0;
412
413 regnum -= I387_BNDCFGU_REGNUM (tdep);
414 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
415 }
416
417 /* Return the name of register REGNUM, or the empty string if it is
418 an anonymous register. */
419
420 static const char *
421 i386_register_name (struct gdbarch *gdbarch, int regnum)
422 {
423 /* Hide the upper YMM registers. */
424 if (i386_ymmh_regnum_p (gdbarch, regnum))
425 return "";
426
427 /* Hide the upper YMM16-31 registers. */
428 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
429 return "";
430
431 /* Hide the upper ZMM registers. */
432 if (i386_zmmh_regnum_p (gdbarch, regnum))
433 return "";
434
435 return tdesc_register_name (gdbarch, regnum);
436 }
437
438 /* Return the name of register REGNUM. */
439
440 const char *
441 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
442 {
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 if (i386_bnd_regnum_p (gdbarch, regnum))
445 return i386_bnd_names[regnum - tdep->bnd0_regnum];
446 if (i386_mmx_regnum_p (gdbarch, regnum))
447 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
448 else if (i386_ymm_regnum_p (gdbarch, regnum))
449 return i386_ymm_names[regnum - tdep->ymm0_regnum];
450 else if (i386_zmm_regnum_p (gdbarch, regnum))
451 return i386_zmm_names[regnum - tdep->zmm0_regnum];
452 else if (i386_byte_regnum_p (gdbarch, regnum))
453 return i386_byte_names[regnum - tdep->al_regnum];
454 else if (i386_word_regnum_p (gdbarch, regnum))
455 return i386_word_names[regnum - tdep->ax_regnum];
456
457 internal_error (__FILE__, __LINE__, _("invalid regnum"));
458 }
459
460 /* Convert a dbx register number REG to the appropriate register
461 number used by GDB. */
462
463 static int
464 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
465 {
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
468 /* This implements what GCC calls the "default" register map
469 (dbx_register_map[]). */
470
471 if (reg >= 0 && reg <= 7)
472 {
473 /* General-purpose registers. The debug info calls %ebp
474 register 4, and %esp register 5. */
475 if (reg == 4)
476 return 5;
477 else if (reg == 5)
478 return 4;
479 else return reg;
480 }
481 else if (reg >= 12 && reg <= 19)
482 {
483 /* Floating-point registers. */
484 return reg - 12 + I387_ST0_REGNUM (tdep);
485 }
486 else if (reg >= 21 && reg <= 28)
487 {
488 /* SSE registers. */
489 int ymm0_regnum = tdep->ymm0_regnum;
490
491 if (ymm0_regnum >= 0
492 && i386_xmm_regnum_p (gdbarch, reg))
493 return reg - 21 + ymm0_regnum;
494 else
495 return reg - 21 + I387_XMM0_REGNUM (tdep);
496 }
497 else if (reg >= 29 && reg <= 36)
498 {
499 /* MMX registers. */
500 return reg - 29 + I387_MM0_REGNUM (tdep);
501 }
502
503 /* This will hopefully provoke a warning. */
504 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
505 }
506
507 /* Convert SVR4 DWARF register number REG to the appropriate register number
508 used by GDB. */
509
510 static int
511 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
512 {
513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
514
515 /* This implements the GCC register map that tries to be compatible
516 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
517
518 /* The SVR4 register numbering includes %eip and %eflags, and
519 numbers the floating point registers differently. */
520 if (reg >= 0 && reg <= 9)
521 {
522 /* General-purpose registers. */
523 return reg;
524 }
525 else if (reg >= 11 && reg <= 18)
526 {
527 /* Floating-point registers. */
528 return reg - 11 + I387_ST0_REGNUM (tdep);
529 }
530 else if (reg >= 21 && reg <= 36)
531 {
532 /* The SSE and MMX registers have the same numbers as with dbx. */
533 return i386_dbx_reg_to_regnum (gdbarch, reg);
534 }
535
536 switch (reg)
537 {
538 case 37: return I387_FCTRL_REGNUM (tdep);
539 case 38: return I387_FSTAT_REGNUM (tdep);
540 case 39: return I387_MXCSR_REGNUM (tdep);
541 case 40: return I386_ES_REGNUM;
542 case 41: return I386_CS_REGNUM;
543 case 42: return I386_SS_REGNUM;
544 case 43: return I386_DS_REGNUM;
545 case 44: return I386_FS_REGNUM;
546 case 45: return I386_GS_REGNUM;
547 }
548
549 return -1;
550 }
551
552 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
553 num_regs + num_pseudo_regs for other debug formats. */
554
555 static int
556 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
557 {
558 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
559
560 if (regnum == -1)
561 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
562 return regnum;
563 }
564
565 \f
566
567 /* This is the variable that is set with "set disassembly-flavor", and
568 its legitimate values. */
569 static const char att_flavor[] = "att";
570 static const char intel_flavor[] = "intel";
571 static const char *const valid_flavors[] =
572 {
573 att_flavor,
574 intel_flavor,
575 NULL
576 };
577 static const char *disassembly_flavor = att_flavor;
578 \f
579
580 /* Use the program counter to determine the contents and size of a
581 breakpoint instruction. Return a pointer to a string of bytes that
582 encode a breakpoint instruction, store the length of the string in
583 *LEN and optionally adjust *PC to point to the correct memory
584 location for inserting the breakpoint.
585
586 On the i386 we have a single breakpoint that fits in a single byte
587 and can be inserted anywhere.
588
589 This function is 64-bit safe. */
590
591 static const gdb_byte *
592 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
593 {
594 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
595
596 *len = sizeof (break_insn);
597 return break_insn;
598 }
599 \f
600 /* Displaced instruction handling. */
601
602 /* Skip the legacy instruction prefixes in INSN.
603 Not all prefixes are valid for any particular insn
604 but we needn't care, the insn will fault if it's invalid.
605 The result is a pointer to the first opcode byte,
606 or NULL if we run off the end of the buffer. */
607
608 static gdb_byte *
609 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
610 {
611 gdb_byte *end = insn + max_len;
612
613 while (insn < end)
614 {
615 switch (*insn)
616 {
617 case DATA_PREFIX_OPCODE:
618 case ADDR_PREFIX_OPCODE:
619 case CS_PREFIX_OPCODE:
620 case DS_PREFIX_OPCODE:
621 case ES_PREFIX_OPCODE:
622 case FS_PREFIX_OPCODE:
623 case GS_PREFIX_OPCODE:
624 case SS_PREFIX_OPCODE:
625 case LOCK_PREFIX_OPCODE:
626 case REPE_PREFIX_OPCODE:
627 case REPNE_PREFIX_OPCODE:
628 ++insn;
629 continue;
630 default:
631 return insn;
632 }
633 }
634
635 return NULL;
636 }
637
638 static int
639 i386_absolute_jmp_p (const gdb_byte *insn)
640 {
641 /* jmp far (absolute address in operand). */
642 if (insn[0] == 0xea)
643 return 1;
644
645 if (insn[0] == 0xff)
646 {
647 /* jump near, absolute indirect (/4). */
648 if ((insn[1] & 0x38) == 0x20)
649 return 1;
650
651 /* jump far, absolute indirect (/5). */
652 if ((insn[1] & 0x38) == 0x28)
653 return 1;
654 }
655
656 return 0;
657 }
658
659 /* Return non-zero if INSN is a jump, zero otherwise. */
660
661 static int
662 i386_jmp_p (const gdb_byte *insn)
663 {
664 /* jump short, relative. */
665 if (insn[0] == 0xeb)
666 return 1;
667
668 /* jump near, relative. */
669 if (insn[0] == 0xe9)
670 return 1;
671
672 return i386_absolute_jmp_p (insn);
673 }
674
675 static int
676 i386_absolute_call_p (const gdb_byte *insn)
677 {
678 /* call far, absolute. */
679 if (insn[0] == 0x9a)
680 return 1;
681
682 if (insn[0] == 0xff)
683 {
684 /* Call near, absolute indirect (/2). */
685 if ((insn[1] & 0x38) == 0x10)
686 return 1;
687
688 /* Call far, absolute indirect (/3). */
689 if ((insn[1] & 0x38) == 0x18)
690 return 1;
691 }
692
693 return 0;
694 }
695
696 static int
697 i386_ret_p (const gdb_byte *insn)
698 {
699 switch (insn[0])
700 {
701 case 0xc2: /* ret near, pop N bytes. */
702 case 0xc3: /* ret near */
703 case 0xca: /* ret far, pop N bytes. */
704 case 0xcb: /* ret far */
705 case 0xcf: /* iret */
706 return 1;
707
708 default:
709 return 0;
710 }
711 }
712
713 static int
714 i386_call_p (const gdb_byte *insn)
715 {
716 if (i386_absolute_call_p (insn))
717 return 1;
718
719 /* call near, relative. */
720 if (insn[0] == 0xe8)
721 return 1;
722
723 return 0;
724 }
725
726 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
727 length in bytes. Otherwise, return zero. */
728
729 static int
730 i386_syscall_p (const gdb_byte *insn, int *lengthp)
731 {
732 /* Is it 'int $0x80'? */
733 if ((insn[0] == 0xcd && insn[1] == 0x80)
734 /* Or is it 'sysenter'? */
735 || (insn[0] == 0x0f && insn[1] == 0x34)
736 /* Or is it 'syscall'? */
737 || (insn[0] == 0x0f && insn[1] == 0x05))
738 {
739 *lengthp = 2;
740 return 1;
741 }
742
743 return 0;
744 }
745
746 /* The gdbarch insn_is_call method. */
747
748 static int
749 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
750 {
751 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
752
753 read_code (addr, buf, I386_MAX_INSN_LEN);
754 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
755
756 return i386_call_p (insn);
757 }
758
759 /* The gdbarch insn_is_ret method. */
760
761 static int
762 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
763 {
764 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
765
766 read_code (addr, buf, I386_MAX_INSN_LEN);
767 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
768
769 return i386_ret_p (insn);
770 }
771
772 /* The gdbarch insn_is_jump method. */
773
774 static int
775 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
776 {
777 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
778
779 read_code (addr, buf, I386_MAX_INSN_LEN);
780 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
781
782 return i386_jmp_p (insn);
783 }
784
785 /* Some kernels may run one past a syscall insn, so we have to cope.
786 Otherwise this is just simple_displaced_step_copy_insn. */
787
788 struct displaced_step_closure *
789 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
790 CORE_ADDR from, CORE_ADDR to,
791 struct regcache *regs)
792 {
793 size_t len = gdbarch_max_insn_length (gdbarch);
794 gdb_byte *buf = (gdb_byte *) xmalloc (len);
795
796 read_memory (from, buf, len);
797
798 /* GDB may get control back after the insn after the syscall.
799 Presumably this is a kernel bug.
800 If this is a syscall, make sure there's a nop afterwards. */
801 {
802 int syscall_length;
803 gdb_byte *insn;
804
805 insn = i386_skip_prefixes (buf, len);
806 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
807 insn[syscall_length] = NOP_OPCODE;
808 }
809
810 write_memory (to, buf, len);
811
812 if (debug_displaced)
813 {
814 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
815 paddress (gdbarch, from), paddress (gdbarch, to));
816 displaced_step_dump_bytes (gdb_stdlog, buf, len);
817 }
818
819 return (struct displaced_step_closure *) buf;
820 }
821
822 /* Fix up the state of registers and memory after having single-stepped
823 a displaced instruction. */
824
825 void
826 i386_displaced_step_fixup (struct gdbarch *gdbarch,
827 struct displaced_step_closure *closure,
828 CORE_ADDR from, CORE_ADDR to,
829 struct regcache *regs)
830 {
831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
832
833 /* The offset we applied to the instruction's address.
834 This could well be negative (when viewed as a signed 32-bit
835 value), but ULONGEST won't reflect that, so take care when
836 applying it. */
837 ULONGEST insn_offset = to - from;
838
839 /* Since we use simple_displaced_step_copy_insn, our closure is a
840 copy of the instruction. */
841 gdb_byte *insn = (gdb_byte *) closure;
842 /* The start of the insn, needed in case we see some prefixes. */
843 gdb_byte *insn_start = insn;
844
845 if (debug_displaced)
846 fprintf_unfiltered (gdb_stdlog,
847 "displaced: fixup (%s, %s), "
848 "insn = 0x%02x 0x%02x ...\n",
849 paddress (gdbarch, from), paddress (gdbarch, to),
850 insn[0], insn[1]);
851
852 /* The list of issues to contend with here is taken from
853 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
854 Yay for Free Software! */
855
856 /* Relocate the %eip, if necessary. */
857
858 /* The instruction recognizers we use assume any leading prefixes
859 have been skipped. */
860 {
861 /* This is the size of the buffer in closure. */
862 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
863 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
864 /* If there are too many prefixes, just ignore the insn.
865 It will fault when run. */
866 if (opcode != NULL)
867 insn = opcode;
868 }
869
870 /* Except in the case of absolute or indirect jump or call
871 instructions, or a return instruction, the new eip is relative to
872 the displaced instruction; make it relative. Well, signal
873 handler returns don't need relocation either, but we use the
874 value of %eip to recognize those; see below. */
875 if (! i386_absolute_jmp_p (insn)
876 && ! i386_absolute_call_p (insn)
877 && ! i386_ret_p (insn))
878 {
879 ULONGEST orig_eip;
880 int insn_len;
881
882 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
883
884 /* A signal trampoline system call changes the %eip, resuming
885 execution of the main program after the signal handler has
886 returned. That makes them like 'return' instructions; we
887 shouldn't relocate %eip.
888
889 But most system calls don't, and we do need to relocate %eip.
890
891 Our heuristic for distinguishing these cases: if stepping
892 over the system call instruction left control directly after
893 the instruction, the we relocate --- control almost certainly
894 doesn't belong in the displaced copy. Otherwise, we assume
895 the instruction has put control where it belongs, and leave
896 it unrelocated. Goodness help us if there are PC-relative
897 system calls. */
898 if (i386_syscall_p (insn, &insn_len)
899 && orig_eip != to + (insn - insn_start) + insn_len
900 /* GDB can get control back after the insn after the syscall.
901 Presumably this is a kernel bug.
902 i386_displaced_step_copy_insn ensures its a nop,
903 we add one to the length for it. */
904 && orig_eip != to + (insn - insn_start) + insn_len + 1)
905 {
906 if (debug_displaced)
907 fprintf_unfiltered (gdb_stdlog,
908 "displaced: syscall changed %%eip; "
909 "not relocating\n");
910 }
911 else
912 {
913 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
914
915 /* If we just stepped over a breakpoint insn, we don't backup
916 the pc on purpose; this is to match behaviour without
917 stepping. */
918
919 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
920
921 if (debug_displaced)
922 fprintf_unfiltered (gdb_stdlog,
923 "displaced: "
924 "relocated %%eip from %s to %s\n",
925 paddress (gdbarch, orig_eip),
926 paddress (gdbarch, eip));
927 }
928 }
929
930 /* If the instruction was PUSHFL, then the TF bit will be set in the
931 pushed value, and should be cleared. We'll leave this for later,
932 since GDB already messes up the TF flag when stepping over a
933 pushfl. */
934
935 /* If the instruction was a call, the return address now atop the
936 stack is the address following the copied instruction. We need
937 to make it the address following the original instruction. */
938 if (i386_call_p (insn))
939 {
940 ULONGEST esp;
941 ULONGEST retaddr;
942 const ULONGEST retaddr_len = 4;
943
944 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
945 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
946 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
947 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
948
949 if (debug_displaced)
950 fprintf_unfiltered (gdb_stdlog,
951 "displaced: relocated return addr at %s to %s\n",
952 paddress (gdbarch, esp),
953 paddress (gdbarch, retaddr));
954 }
955 }
956
957 static void
958 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
959 {
960 target_write_memory (*to, buf, len);
961 *to += len;
962 }
963
964 static void
965 i386_relocate_instruction (struct gdbarch *gdbarch,
966 CORE_ADDR *to, CORE_ADDR oldloc)
967 {
968 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
969 gdb_byte buf[I386_MAX_INSN_LEN];
970 int offset = 0, rel32, newrel;
971 int insn_length;
972 gdb_byte *insn = buf;
973
974 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
975
976 insn_length = gdb_buffered_insn_length (gdbarch, insn,
977 I386_MAX_INSN_LEN, oldloc);
978
979 /* Get past the prefixes. */
980 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
981
982 /* Adjust calls with 32-bit relative addresses as push/jump, with
983 the address pushed being the location where the original call in
984 the user program would return to. */
985 if (insn[0] == 0xe8)
986 {
987 gdb_byte push_buf[16];
988 unsigned int ret_addr;
989
990 /* Where "ret" in the original code will return to. */
991 ret_addr = oldloc + insn_length;
992 push_buf[0] = 0x68; /* pushq $... */
993 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
994 /* Push the push. */
995 append_insns (to, 5, push_buf);
996
997 /* Convert the relative call to a relative jump. */
998 insn[0] = 0xe9;
999
1000 /* Adjust the destination offset. */
1001 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1002 newrel = (oldloc - *to) + rel32;
1003 store_signed_integer (insn + 1, 4, byte_order, newrel);
1004
1005 if (debug_displaced)
1006 fprintf_unfiltered (gdb_stdlog,
1007 "Adjusted insn rel32=%s at %s to"
1008 " rel32=%s at %s\n",
1009 hex_string (rel32), paddress (gdbarch, oldloc),
1010 hex_string (newrel), paddress (gdbarch, *to));
1011
1012 /* Write the adjusted jump into its displaced location. */
1013 append_insns (to, 5, insn);
1014 return;
1015 }
1016
1017 /* Adjust jumps with 32-bit relative addresses. Calls are already
1018 handled above. */
1019 if (insn[0] == 0xe9)
1020 offset = 1;
1021 /* Adjust conditional jumps. */
1022 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1023 offset = 2;
1024
1025 if (offset)
1026 {
1027 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1028 newrel = (oldloc - *to) + rel32;
1029 store_signed_integer (insn + offset, 4, byte_order, newrel);
1030 if (debug_displaced)
1031 fprintf_unfiltered (gdb_stdlog,
1032 "Adjusted insn rel32=%s at %s to"
1033 " rel32=%s at %s\n",
1034 hex_string (rel32), paddress (gdbarch, oldloc),
1035 hex_string (newrel), paddress (gdbarch, *to));
1036 }
1037
1038 /* Write the adjusted instructions into their displaced
1039 location. */
1040 append_insns (to, insn_length, buf);
1041 }
1042
1043 \f
1044 #ifdef I386_REGNO_TO_SYMMETRY
1045 #error "The Sequent Symmetry is no longer supported."
1046 #endif
1047
1048 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1049 and %esp "belong" to the calling function. Therefore these
1050 registers should be saved if they're going to be modified. */
1051
1052 /* The maximum number of saved registers. This should include all
1053 registers mentioned above, and %eip. */
1054 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1055
1056 struct i386_frame_cache
1057 {
1058 /* Base address. */
1059 CORE_ADDR base;
1060 int base_p;
1061 LONGEST sp_offset;
1062 CORE_ADDR pc;
1063
1064 /* Saved registers. */
1065 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1066 CORE_ADDR saved_sp;
1067 int saved_sp_reg;
1068 int pc_in_eax;
1069
1070 /* Stack space reserved for local variables. */
1071 long locals;
1072 };
1073
1074 /* Allocate and initialize a frame cache. */
1075
1076 static struct i386_frame_cache *
1077 i386_alloc_frame_cache (void)
1078 {
1079 struct i386_frame_cache *cache;
1080 int i;
1081
1082 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1083
1084 /* Base address. */
1085 cache->base_p = 0;
1086 cache->base = 0;
1087 cache->sp_offset = -4;
1088 cache->pc = 0;
1089
1090 /* Saved registers. We initialize these to -1 since zero is a valid
1091 offset (that's where %ebp is supposed to be stored). */
1092 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1093 cache->saved_regs[i] = -1;
1094 cache->saved_sp = 0;
1095 cache->saved_sp_reg = -1;
1096 cache->pc_in_eax = 0;
1097
1098 /* Frameless until proven otherwise. */
1099 cache->locals = -1;
1100
1101 return cache;
1102 }
1103
1104 /* If the instruction at PC is a jump, return the address of its
1105 target. Otherwise, return PC. */
1106
1107 static CORE_ADDR
1108 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1109 {
1110 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1111 gdb_byte op;
1112 long delta = 0;
1113 int data16 = 0;
1114
1115 if (target_read_code (pc, &op, 1))
1116 return pc;
1117
1118 if (op == 0x66)
1119 {
1120 data16 = 1;
1121
1122 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1123 }
1124
1125 switch (op)
1126 {
1127 case 0xe9:
1128 /* Relative jump: if data16 == 0, disp32, else disp16. */
1129 if (data16)
1130 {
1131 delta = read_memory_integer (pc + 2, 2, byte_order);
1132
1133 /* Include the size of the jmp instruction (including the
1134 0x66 prefix). */
1135 delta += 4;
1136 }
1137 else
1138 {
1139 delta = read_memory_integer (pc + 1, 4, byte_order);
1140
1141 /* Include the size of the jmp instruction. */
1142 delta += 5;
1143 }
1144 break;
1145 case 0xeb:
1146 /* Relative jump, disp8 (ignore data16). */
1147 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1148
1149 delta += data16 + 2;
1150 break;
1151 }
1152
1153 return pc + delta;
1154 }
1155
1156 /* Check whether PC points at a prologue for a function returning a
1157 structure or union. If so, it updates CACHE and returns the
1158 address of the first instruction after the code sequence that
1159 removes the "hidden" argument from the stack or CURRENT_PC,
1160 whichever is smaller. Otherwise, return PC. */
1161
1162 static CORE_ADDR
1163 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1164 struct i386_frame_cache *cache)
1165 {
1166 /* Functions that return a structure or union start with:
1167
1168 popl %eax 0x58
1169 xchgl %eax, (%esp) 0x87 0x04 0x24
1170 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1171
1172 (the System V compiler puts out the second `xchg' instruction,
1173 and the assembler doesn't try to optimize it, so the 'sib' form
1174 gets generated). This sequence is used to get the address of the
1175 return buffer for a function that returns a structure. */
1176 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1177 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1178 gdb_byte buf[4];
1179 gdb_byte op;
1180
1181 if (current_pc <= pc)
1182 return pc;
1183
1184 if (target_read_code (pc, &op, 1))
1185 return pc;
1186
1187 if (op != 0x58) /* popl %eax */
1188 return pc;
1189
1190 if (target_read_code (pc + 1, buf, 4))
1191 return pc;
1192
1193 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1194 return pc;
1195
1196 if (current_pc == pc)
1197 {
1198 cache->sp_offset += 4;
1199 return current_pc;
1200 }
1201
1202 if (current_pc == pc + 1)
1203 {
1204 cache->pc_in_eax = 1;
1205 return current_pc;
1206 }
1207
1208 if (buf[1] == proto1[1])
1209 return pc + 4;
1210 else
1211 return pc + 5;
1212 }
1213
1214 static CORE_ADDR
1215 i386_skip_probe (CORE_ADDR pc)
1216 {
1217 /* A function may start with
1218
1219 pushl constant
1220 call _probe
1221 addl $4, %esp
1222
1223 followed by
1224
1225 pushl %ebp
1226
1227 etc. */
1228 gdb_byte buf[8];
1229 gdb_byte op;
1230
1231 if (target_read_code (pc, &op, 1))
1232 return pc;
1233
1234 if (op == 0x68 || op == 0x6a)
1235 {
1236 int delta;
1237
1238 /* Skip past the `pushl' instruction; it has either a one-byte or a
1239 four-byte operand, depending on the opcode. */
1240 if (op == 0x68)
1241 delta = 5;
1242 else
1243 delta = 2;
1244
1245 /* Read the following 8 bytes, which should be `call _probe' (6
1246 bytes) followed by `addl $4,%esp' (2 bytes). */
1247 read_memory (pc + delta, buf, sizeof (buf));
1248 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1249 pc += delta + sizeof (buf);
1250 }
1251
1252 return pc;
1253 }
1254
1255 /* GCC 4.1 and later, can put code in the prologue to realign the
1256 stack pointer. Check whether PC points to such code, and update
1257 CACHE accordingly. Return the first instruction after the code
1258 sequence or CURRENT_PC, whichever is smaller. If we don't
1259 recognize the code, return PC. */
1260
1261 static CORE_ADDR
1262 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1263 struct i386_frame_cache *cache)
1264 {
1265 /* There are 2 code sequences to re-align stack before the frame
1266 gets set up:
1267
1268 1. Use a caller-saved saved register:
1269
1270 leal 4(%esp), %reg
1271 andl $-XXX, %esp
1272 pushl -4(%reg)
1273
1274 2. Use a callee-saved saved register:
1275
1276 pushl %reg
1277 leal 8(%esp), %reg
1278 andl $-XXX, %esp
1279 pushl -4(%reg)
1280
1281 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1282
1283 0x83 0xe4 0xf0 andl $-16, %esp
1284 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1285 */
1286
1287 gdb_byte buf[14];
1288 int reg;
1289 int offset, offset_and;
1290 static int regnums[8] = {
1291 I386_EAX_REGNUM, /* %eax */
1292 I386_ECX_REGNUM, /* %ecx */
1293 I386_EDX_REGNUM, /* %edx */
1294 I386_EBX_REGNUM, /* %ebx */
1295 I386_ESP_REGNUM, /* %esp */
1296 I386_EBP_REGNUM, /* %ebp */
1297 I386_ESI_REGNUM, /* %esi */
1298 I386_EDI_REGNUM /* %edi */
1299 };
1300
1301 if (target_read_code (pc, buf, sizeof buf))
1302 return pc;
1303
1304 /* Check caller-saved saved register. The first instruction has
1305 to be "leal 4(%esp), %reg". */
1306 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1307 {
1308 /* MOD must be binary 10 and R/M must be binary 100. */
1309 if ((buf[1] & 0xc7) != 0x44)
1310 return pc;
1311
1312 /* REG has register number. */
1313 reg = (buf[1] >> 3) & 7;
1314 offset = 4;
1315 }
1316 else
1317 {
1318 /* Check callee-saved saved register. The first instruction
1319 has to be "pushl %reg". */
1320 if ((buf[0] & 0xf8) != 0x50)
1321 return pc;
1322
1323 /* Get register. */
1324 reg = buf[0] & 0x7;
1325
1326 /* The next instruction has to be "leal 8(%esp), %reg". */
1327 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1328 return pc;
1329
1330 /* MOD must be binary 10 and R/M must be binary 100. */
1331 if ((buf[2] & 0xc7) != 0x44)
1332 return pc;
1333
1334 /* REG has register number. Registers in pushl and leal have to
1335 be the same. */
1336 if (reg != ((buf[2] >> 3) & 7))
1337 return pc;
1338
1339 offset = 5;
1340 }
1341
1342 /* Rigister can't be %esp nor %ebp. */
1343 if (reg == 4 || reg == 5)
1344 return pc;
1345
1346 /* The next instruction has to be "andl $-XXX, %esp". */
1347 if (buf[offset + 1] != 0xe4
1348 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1349 return pc;
1350
1351 offset_and = offset;
1352 offset += buf[offset] == 0x81 ? 6 : 3;
1353
1354 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1355 0xfc. REG must be binary 110 and MOD must be binary 01. */
1356 if (buf[offset] != 0xff
1357 || buf[offset + 2] != 0xfc
1358 || (buf[offset + 1] & 0xf8) != 0x70)
1359 return pc;
1360
1361 /* R/M has register. Registers in leal and pushl have to be the
1362 same. */
1363 if (reg != (buf[offset + 1] & 7))
1364 return pc;
1365
1366 if (current_pc > pc + offset_and)
1367 cache->saved_sp_reg = regnums[reg];
1368
1369 return std::min (pc + offset + 3, current_pc);
1370 }
1371
1372 /* Maximum instruction length we need to handle. */
1373 #define I386_MAX_MATCHED_INSN_LEN 6
1374
1375 /* Instruction description. */
1376 struct i386_insn
1377 {
1378 size_t len;
1379 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1380 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1381 };
1382
1383 /* Return whether instruction at PC matches PATTERN. */
1384
1385 static int
1386 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1387 {
1388 gdb_byte op;
1389
1390 if (target_read_code (pc, &op, 1))
1391 return 0;
1392
1393 if ((op & pattern.mask[0]) == pattern.insn[0])
1394 {
1395 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1396 int insn_matched = 1;
1397 size_t i;
1398
1399 gdb_assert (pattern.len > 1);
1400 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1401
1402 if (target_read_code (pc + 1, buf, pattern.len - 1))
1403 return 0;
1404
1405 for (i = 1; i < pattern.len; i++)
1406 {
1407 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1408 insn_matched = 0;
1409 }
1410 return insn_matched;
1411 }
1412 return 0;
1413 }
1414
1415 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1416 the first instruction description that matches. Otherwise, return
1417 NULL. */
1418
1419 static struct i386_insn *
1420 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1421 {
1422 struct i386_insn *pattern;
1423
1424 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1425 {
1426 if (i386_match_pattern (pc, *pattern))
1427 return pattern;
1428 }
1429
1430 return NULL;
1431 }
1432
1433 /* Return whether PC points inside a sequence of instructions that
1434 matches INSN_PATTERNS. */
1435
1436 static int
1437 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1438 {
1439 CORE_ADDR current_pc;
1440 int ix, i;
1441 struct i386_insn *insn;
1442
1443 insn = i386_match_insn (pc, insn_patterns);
1444 if (insn == NULL)
1445 return 0;
1446
1447 current_pc = pc;
1448 ix = insn - insn_patterns;
1449 for (i = ix - 1; i >= 0; i--)
1450 {
1451 current_pc -= insn_patterns[i].len;
1452
1453 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1454 return 0;
1455 }
1456
1457 current_pc = pc + insn->len;
1458 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1459 {
1460 if (!i386_match_pattern (current_pc, *insn))
1461 return 0;
1462
1463 current_pc += insn->len;
1464 }
1465
1466 return 1;
1467 }
1468
1469 /* Some special instructions that might be migrated by GCC into the
1470 part of the prologue that sets up the new stack frame. Because the
1471 stack frame hasn't been setup yet, no registers have been saved
1472 yet, and only the scratch registers %eax, %ecx and %edx can be
1473 touched. */
1474
1475 struct i386_insn i386_frame_setup_skip_insns[] =
1476 {
1477 /* Check for `movb imm8, r' and `movl imm32, r'.
1478
1479 ??? Should we handle 16-bit operand-sizes here? */
1480
1481 /* `movb imm8, %al' and `movb imm8, %ah' */
1482 /* `movb imm8, %cl' and `movb imm8, %ch' */
1483 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1484 /* `movb imm8, %dl' and `movb imm8, %dh' */
1485 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1486 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1487 { 5, { 0xb8 }, { 0xfe } },
1488 /* `movl imm32, %edx' */
1489 { 5, { 0xba }, { 0xff } },
1490
1491 /* Check for `mov imm32, r32'. Note that there is an alternative
1492 encoding for `mov m32, %eax'.
1493
1494 ??? Should we handle SIB adressing here?
1495 ??? Should we handle 16-bit operand-sizes here? */
1496
1497 /* `movl m32, %eax' */
1498 { 5, { 0xa1 }, { 0xff } },
1499 /* `movl m32, %eax' and `mov; m32, %ecx' */
1500 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1501 /* `movl m32, %edx' */
1502 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1503
1504 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1505 Because of the symmetry, there are actually two ways to encode
1506 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1507 opcode bytes 0x31 and 0x33 for `xorl'. */
1508
1509 /* `subl %eax, %eax' */
1510 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1511 /* `subl %ecx, %ecx' */
1512 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1513 /* `subl %edx, %edx' */
1514 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1515 /* `xorl %eax, %eax' */
1516 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1517 /* `xorl %ecx, %ecx' */
1518 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1519 /* `xorl %edx, %edx' */
1520 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1521 { 0 }
1522 };
1523
1524
1525 /* Check whether PC points to a no-op instruction. */
1526 static CORE_ADDR
1527 i386_skip_noop (CORE_ADDR pc)
1528 {
1529 gdb_byte op;
1530 int check = 1;
1531
1532 if (target_read_code (pc, &op, 1))
1533 return pc;
1534
1535 while (check)
1536 {
1537 check = 0;
1538 /* Ignore `nop' instruction. */
1539 if (op == 0x90)
1540 {
1541 pc += 1;
1542 if (target_read_code (pc, &op, 1))
1543 return pc;
1544 check = 1;
1545 }
1546 /* Ignore no-op instruction `mov %edi, %edi'.
1547 Microsoft system dlls often start with
1548 a `mov %edi,%edi' instruction.
1549 The 5 bytes before the function start are
1550 filled with `nop' instructions.
1551 This pattern can be used for hot-patching:
1552 The `mov %edi, %edi' instruction can be replaced by a
1553 near jump to the location of the 5 `nop' instructions
1554 which can be replaced by a 32-bit jump to anywhere
1555 in the 32-bit address space. */
1556
1557 else if (op == 0x8b)
1558 {
1559 if (target_read_code (pc + 1, &op, 1))
1560 return pc;
1561
1562 if (op == 0xff)
1563 {
1564 pc += 2;
1565 if (target_read_code (pc, &op, 1))
1566 return pc;
1567
1568 check = 1;
1569 }
1570 }
1571 }
1572 return pc;
1573 }
1574
1575 /* Check whether PC points at a code that sets up a new stack frame.
1576 If so, it updates CACHE and returns the address of the first
1577 instruction after the sequence that sets up the frame or LIMIT,
1578 whichever is smaller. If we don't recognize the code, return PC. */
1579
1580 static CORE_ADDR
1581 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1582 CORE_ADDR pc, CORE_ADDR limit,
1583 struct i386_frame_cache *cache)
1584 {
1585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1586 struct i386_insn *insn;
1587 gdb_byte op;
1588 int skip = 0;
1589
1590 if (limit <= pc)
1591 return limit;
1592
1593 if (target_read_code (pc, &op, 1))
1594 return pc;
1595
1596 if (op == 0x55) /* pushl %ebp */
1597 {
1598 /* Take into account that we've executed the `pushl %ebp' that
1599 starts this instruction sequence. */
1600 cache->saved_regs[I386_EBP_REGNUM] = 0;
1601 cache->sp_offset += 4;
1602 pc++;
1603
1604 /* If that's all, return now. */
1605 if (limit <= pc)
1606 return limit;
1607
1608 /* Check for some special instructions that might be migrated by
1609 GCC into the prologue and skip them. At this point in the
1610 prologue, code should only touch the scratch registers %eax,
1611 %ecx and %edx, so while the number of posibilities is sheer,
1612 it is limited.
1613
1614 Make sure we only skip these instructions if we later see the
1615 `movl %esp, %ebp' that actually sets up the frame. */
1616 while (pc + skip < limit)
1617 {
1618 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1619 if (insn == NULL)
1620 break;
1621
1622 skip += insn->len;
1623 }
1624
1625 /* If that's all, return now. */
1626 if (limit <= pc + skip)
1627 return limit;
1628
1629 if (target_read_code (pc + skip, &op, 1))
1630 return pc + skip;
1631
1632 /* The i386 prologue looks like
1633
1634 push %ebp
1635 mov %esp,%ebp
1636 sub $0x10,%esp
1637
1638 and a different prologue can be generated for atom.
1639
1640 push %ebp
1641 lea (%esp),%ebp
1642 lea -0x10(%esp),%esp
1643
1644 We handle both of them here. */
1645
1646 switch (op)
1647 {
1648 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1649 case 0x8b:
1650 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1651 != 0xec)
1652 return pc;
1653 pc += (skip + 2);
1654 break;
1655 case 0x89:
1656 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1657 != 0xe5)
1658 return pc;
1659 pc += (skip + 2);
1660 break;
1661 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1662 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1663 != 0x242c)
1664 return pc;
1665 pc += (skip + 3);
1666 break;
1667 default:
1668 return pc;
1669 }
1670
1671 /* OK, we actually have a frame. We just don't know how large
1672 it is yet. Set its size to zero. We'll adjust it if
1673 necessary. We also now commit to skipping the special
1674 instructions mentioned before. */
1675 cache->locals = 0;
1676
1677 /* If that's all, return now. */
1678 if (limit <= pc)
1679 return limit;
1680
1681 /* Check for stack adjustment
1682
1683 subl $XXX, %esp
1684 or
1685 lea -XXX(%esp),%esp
1686
1687 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1688 reg, so we don't have to worry about a data16 prefix. */
1689 if (target_read_code (pc, &op, 1))
1690 return pc;
1691 if (op == 0x83)
1692 {
1693 /* `subl' with 8-bit immediate. */
1694 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1695 /* Some instruction starting with 0x83 other than `subl'. */
1696 return pc;
1697
1698 /* `subl' with signed 8-bit immediate (though it wouldn't
1699 make sense to be negative). */
1700 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1701 return pc + 3;
1702 }
1703 else if (op == 0x81)
1704 {
1705 /* Maybe it is `subl' with a 32-bit immediate. */
1706 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1707 /* Some instruction starting with 0x81 other than `subl'. */
1708 return pc;
1709
1710 /* It is `subl' with a 32-bit immediate. */
1711 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1712 return pc + 6;
1713 }
1714 else if (op == 0x8d)
1715 {
1716 /* The ModR/M byte is 0x64. */
1717 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1718 return pc;
1719 /* 'lea' with 8-bit displacement. */
1720 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1721 return pc + 4;
1722 }
1723 else
1724 {
1725 /* Some instruction other than `subl' nor 'lea'. */
1726 return pc;
1727 }
1728 }
1729 else if (op == 0xc8) /* enter */
1730 {
1731 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1732 return pc + 4;
1733 }
1734
1735 return pc;
1736 }
1737
1738 /* Check whether PC points at code that saves registers on the stack.
1739 If so, it updates CACHE and returns the address of the first
1740 instruction after the register saves or CURRENT_PC, whichever is
1741 smaller. Otherwise, return PC. */
1742
1743 static CORE_ADDR
1744 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1745 struct i386_frame_cache *cache)
1746 {
1747 CORE_ADDR offset = 0;
1748 gdb_byte op;
1749 int i;
1750
1751 if (cache->locals > 0)
1752 offset -= cache->locals;
1753 for (i = 0; i < 8 && pc < current_pc; i++)
1754 {
1755 if (target_read_code (pc, &op, 1))
1756 return pc;
1757 if (op < 0x50 || op > 0x57)
1758 break;
1759
1760 offset -= 4;
1761 cache->saved_regs[op - 0x50] = offset;
1762 cache->sp_offset += 4;
1763 pc++;
1764 }
1765
1766 return pc;
1767 }
1768
1769 /* Do a full analysis of the prologue at PC and update CACHE
1770 accordingly. Bail out early if CURRENT_PC is reached. Return the
1771 address where the analysis stopped.
1772
1773 We handle these cases:
1774
1775 The startup sequence can be at the start of the function, or the
1776 function can start with a branch to startup code at the end.
1777
1778 %ebp can be set up with either the 'enter' instruction, or "pushl
1779 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1780 once used in the System V compiler).
1781
1782 Local space is allocated just below the saved %ebp by either the
1783 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1784 16-bit unsigned argument for space to allocate, and the 'addl'
1785 instruction could have either a signed byte, or 32-bit immediate.
1786
1787 Next, the registers used by this function are pushed. With the
1788 System V compiler they will always be in the order: %edi, %esi,
1789 %ebx (and sometimes a harmless bug causes it to also save but not
1790 restore %eax); however, the code below is willing to see the pushes
1791 in any order, and will handle up to 8 of them.
1792
1793 If the setup sequence is at the end of the function, then the next
1794 instruction will be a branch back to the start. */
1795
1796 static CORE_ADDR
1797 i386_analyze_prologue (struct gdbarch *gdbarch,
1798 CORE_ADDR pc, CORE_ADDR current_pc,
1799 struct i386_frame_cache *cache)
1800 {
1801 pc = i386_skip_noop (pc);
1802 pc = i386_follow_jump (gdbarch, pc);
1803 pc = i386_analyze_struct_return (pc, current_pc, cache);
1804 pc = i386_skip_probe (pc);
1805 pc = i386_analyze_stack_align (pc, current_pc, cache);
1806 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1807 return i386_analyze_register_saves (pc, current_pc, cache);
1808 }
1809
1810 /* Return PC of first real instruction. */
1811
1812 static CORE_ADDR
1813 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1814 {
1815 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1816
1817 static gdb_byte pic_pat[6] =
1818 {
1819 0xe8, 0, 0, 0, 0, /* call 0x0 */
1820 0x5b, /* popl %ebx */
1821 };
1822 struct i386_frame_cache cache;
1823 CORE_ADDR pc;
1824 gdb_byte op;
1825 int i;
1826 CORE_ADDR func_addr;
1827
1828 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1829 {
1830 CORE_ADDR post_prologue_pc
1831 = skip_prologue_using_sal (gdbarch, func_addr);
1832 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1833
1834 /* Clang always emits a line note before the prologue and another
1835 one after. We trust clang to emit usable line notes. */
1836 if (post_prologue_pc
1837 && (cust != NULL
1838 && COMPUNIT_PRODUCER (cust) != NULL
1839 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1840 return std::max (start_pc, post_prologue_pc);
1841 }
1842
1843 cache.locals = -1;
1844 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1845 if (cache.locals < 0)
1846 return start_pc;
1847
1848 /* Found valid frame setup. */
1849
1850 /* The native cc on SVR4 in -K PIC mode inserts the following code
1851 to get the address of the global offset table (GOT) into register
1852 %ebx:
1853
1854 call 0x0
1855 popl %ebx
1856 movl %ebx,x(%ebp) (optional)
1857 addl y,%ebx
1858
1859 This code is with the rest of the prologue (at the end of the
1860 function), so we have to skip it to get to the first real
1861 instruction at the start of the function. */
1862
1863 for (i = 0; i < 6; i++)
1864 {
1865 if (target_read_code (pc + i, &op, 1))
1866 return pc;
1867
1868 if (pic_pat[i] != op)
1869 break;
1870 }
1871 if (i == 6)
1872 {
1873 int delta = 6;
1874
1875 if (target_read_code (pc + delta, &op, 1))
1876 return pc;
1877
1878 if (op == 0x89) /* movl %ebx, x(%ebp) */
1879 {
1880 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1881
1882 if (op == 0x5d) /* One byte offset from %ebp. */
1883 delta += 3;
1884 else if (op == 0x9d) /* Four byte offset from %ebp. */
1885 delta += 6;
1886 else /* Unexpected instruction. */
1887 delta = 0;
1888
1889 if (target_read_code (pc + delta, &op, 1))
1890 return pc;
1891 }
1892
1893 /* addl y,%ebx */
1894 if (delta > 0 && op == 0x81
1895 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1896 == 0xc3)
1897 {
1898 pc += delta + 6;
1899 }
1900 }
1901
1902 /* If the function starts with a branch (to startup code at the end)
1903 the last instruction should bring us back to the first
1904 instruction of the real code. */
1905 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1906 pc = i386_follow_jump (gdbarch, pc);
1907
1908 return pc;
1909 }
1910
1911 /* Check that the code pointed to by PC corresponds to a call to
1912 __main, skip it if so. Return PC otherwise. */
1913
1914 CORE_ADDR
1915 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1916 {
1917 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1918 gdb_byte op;
1919
1920 if (target_read_code (pc, &op, 1))
1921 return pc;
1922 if (op == 0xe8)
1923 {
1924 gdb_byte buf[4];
1925
1926 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1927 {
1928 /* Make sure address is computed correctly as a 32bit
1929 integer even if CORE_ADDR is 64 bit wide. */
1930 struct bound_minimal_symbol s;
1931 CORE_ADDR call_dest;
1932
1933 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1934 call_dest = call_dest & 0xffffffffU;
1935 s = lookup_minimal_symbol_by_pc (call_dest);
1936 if (s.minsym != NULL
1937 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1938 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1939 pc += 5;
1940 }
1941 }
1942
1943 return pc;
1944 }
1945
1946 /* This function is 64-bit safe. */
1947
1948 static CORE_ADDR
1949 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1950 {
1951 gdb_byte buf[8];
1952
1953 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1954 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1955 }
1956 \f
1957
1958 /* Normal frames. */
1959
1960 static void
1961 i386_frame_cache_1 (struct frame_info *this_frame,
1962 struct i386_frame_cache *cache)
1963 {
1964 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1965 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1966 gdb_byte buf[4];
1967 int i;
1968
1969 cache->pc = get_frame_func (this_frame);
1970
1971 /* In principle, for normal frames, %ebp holds the frame pointer,
1972 which holds the base address for the current stack frame.
1973 However, for functions that don't need it, the frame pointer is
1974 optional. For these "frameless" functions the frame pointer is
1975 actually the frame pointer of the calling frame. Signal
1976 trampolines are just a special case of a "frameless" function.
1977 They (usually) share their frame pointer with the frame that was
1978 in progress when the signal occurred. */
1979
1980 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1981 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1982 if (cache->base == 0)
1983 {
1984 cache->base_p = 1;
1985 return;
1986 }
1987
1988 /* For normal frames, %eip is stored at 4(%ebp). */
1989 cache->saved_regs[I386_EIP_REGNUM] = 4;
1990
1991 if (cache->pc != 0)
1992 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1993 cache);
1994
1995 if (cache->locals < 0)
1996 {
1997 /* We didn't find a valid frame, which means that CACHE->base
1998 currently holds the frame pointer for our calling frame. If
1999 we're at the start of a function, or somewhere half-way its
2000 prologue, the function's frame probably hasn't been fully
2001 setup yet. Try to reconstruct the base address for the stack
2002 frame by looking at the stack pointer. For truly "frameless"
2003 functions this might work too. */
2004
2005 if (cache->saved_sp_reg != -1)
2006 {
2007 /* Saved stack pointer has been saved. */
2008 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2009 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2010
2011 /* We're halfway aligning the stack. */
2012 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2013 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2014
2015 /* This will be added back below. */
2016 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2017 }
2018 else if (cache->pc != 0
2019 || target_read_code (get_frame_pc (this_frame), buf, 1))
2020 {
2021 /* We're in a known function, but did not find a frame
2022 setup. Assume that the function does not use %ebp.
2023 Alternatively, we may have jumped to an invalid
2024 address; in that case there is definitely no new
2025 frame in %ebp. */
2026 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2027 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2028 + cache->sp_offset;
2029 }
2030 else
2031 /* We're in an unknown function. We could not find the start
2032 of the function to analyze the prologue; our best option is
2033 to assume a typical frame layout with the caller's %ebp
2034 saved. */
2035 cache->saved_regs[I386_EBP_REGNUM] = 0;
2036 }
2037
2038 if (cache->saved_sp_reg != -1)
2039 {
2040 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2041 register may be unavailable). */
2042 if (cache->saved_sp == 0
2043 && deprecated_frame_register_read (this_frame,
2044 cache->saved_sp_reg, buf))
2045 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2046 }
2047 /* Now that we have the base address for the stack frame we can
2048 calculate the value of %esp in the calling frame. */
2049 else if (cache->saved_sp == 0)
2050 cache->saved_sp = cache->base + 8;
2051
2052 /* Adjust all the saved registers such that they contain addresses
2053 instead of offsets. */
2054 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2055 if (cache->saved_regs[i] != -1)
2056 cache->saved_regs[i] += cache->base;
2057
2058 cache->base_p = 1;
2059 }
2060
2061 static struct i386_frame_cache *
2062 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2063 {
2064 struct i386_frame_cache *cache;
2065
2066 if (*this_cache)
2067 return (struct i386_frame_cache *) *this_cache;
2068
2069 cache = i386_alloc_frame_cache ();
2070 *this_cache = cache;
2071
2072 TRY
2073 {
2074 i386_frame_cache_1 (this_frame, cache);
2075 }
2076 CATCH (ex, RETURN_MASK_ERROR)
2077 {
2078 if (ex.error != NOT_AVAILABLE_ERROR)
2079 throw_exception (ex);
2080 }
2081 END_CATCH
2082
2083 return cache;
2084 }
2085
2086 static void
2087 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2088 struct frame_id *this_id)
2089 {
2090 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2091
2092 if (!cache->base_p)
2093 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2094 else if (cache->base == 0)
2095 {
2096 /* This marks the outermost frame. */
2097 }
2098 else
2099 {
2100 /* See the end of i386_push_dummy_call. */
2101 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2102 }
2103 }
2104
2105 static enum unwind_stop_reason
2106 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2107 void **this_cache)
2108 {
2109 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2110
2111 if (!cache->base_p)
2112 return UNWIND_UNAVAILABLE;
2113
2114 /* This marks the outermost frame. */
2115 if (cache->base == 0)
2116 return UNWIND_OUTERMOST;
2117
2118 return UNWIND_NO_REASON;
2119 }
2120
2121 static struct value *
2122 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2123 int regnum)
2124 {
2125 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2126
2127 gdb_assert (regnum >= 0);
2128
2129 /* The System V ABI says that:
2130
2131 "The flags register contains the system flags, such as the
2132 direction flag and the carry flag. The direction flag must be
2133 set to the forward (that is, zero) direction before entry and
2134 upon exit from a function. Other user flags have no specified
2135 role in the standard calling sequence and are not preserved."
2136
2137 To guarantee the "upon exit" part of that statement we fake a
2138 saved flags register that has its direction flag cleared.
2139
2140 Note that GCC doesn't seem to rely on the fact that the direction
2141 flag is cleared after a function return; it always explicitly
2142 clears the flag before operations where it matters.
2143
2144 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2145 right thing to do. The way we fake the flags register here makes
2146 it impossible to change it. */
2147
2148 if (regnum == I386_EFLAGS_REGNUM)
2149 {
2150 ULONGEST val;
2151
2152 val = get_frame_register_unsigned (this_frame, regnum);
2153 val &= ~(1 << 10);
2154 return frame_unwind_got_constant (this_frame, regnum, val);
2155 }
2156
2157 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2158 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2159
2160 if (regnum == I386_ESP_REGNUM
2161 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2162 {
2163 /* If the SP has been saved, but we don't know where, then this
2164 means that SAVED_SP_REG register was found unavailable back
2165 when we built the cache. */
2166 if (cache->saved_sp == 0)
2167 return frame_unwind_got_register (this_frame, regnum,
2168 cache->saved_sp_reg);
2169 else
2170 return frame_unwind_got_constant (this_frame, regnum,
2171 cache->saved_sp);
2172 }
2173
2174 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2175 return frame_unwind_got_memory (this_frame, regnum,
2176 cache->saved_regs[regnum]);
2177
2178 return frame_unwind_got_register (this_frame, regnum, regnum);
2179 }
2180
2181 static const struct frame_unwind i386_frame_unwind =
2182 {
2183 NORMAL_FRAME,
2184 i386_frame_unwind_stop_reason,
2185 i386_frame_this_id,
2186 i386_frame_prev_register,
2187 NULL,
2188 default_frame_sniffer
2189 };
2190
2191 /* Normal frames, but in a function epilogue. */
2192
2193 /* Implement the stack_frame_destroyed_p gdbarch method.
2194
2195 The epilogue is defined here as the 'ret' instruction, which will
2196 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2197 the function's stack frame. */
2198
2199 static int
2200 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2201 {
2202 gdb_byte insn;
2203 struct compunit_symtab *cust;
2204
2205 cust = find_pc_compunit_symtab (pc);
2206 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2207 return 0;
2208
2209 if (target_read_memory (pc, &insn, 1))
2210 return 0; /* Can't read memory at pc. */
2211
2212 if (insn != 0xc3) /* 'ret' instruction. */
2213 return 0;
2214
2215 return 1;
2216 }
2217
2218 static int
2219 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2220 struct frame_info *this_frame,
2221 void **this_prologue_cache)
2222 {
2223 if (frame_relative_level (this_frame) == 0)
2224 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2225 get_frame_pc (this_frame));
2226 else
2227 return 0;
2228 }
2229
2230 static struct i386_frame_cache *
2231 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2232 {
2233 struct i386_frame_cache *cache;
2234 CORE_ADDR sp;
2235
2236 if (*this_cache)
2237 return (struct i386_frame_cache *) *this_cache;
2238
2239 cache = i386_alloc_frame_cache ();
2240 *this_cache = cache;
2241
2242 TRY
2243 {
2244 cache->pc = get_frame_func (this_frame);
2245
2246 /* At this point the stack looks as if we just entered the
2247 function, with the return address at the top of the
2248 stack. */
2249 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2250 cache->base = sp + cache->sp_offset;
2251 cache->saved_sp = cache->base + 8;
2252 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2253
2254 cache->base_p = 1;
2255 }
2256 CATCH (ex, RETURN_MASK_ERROR)
2257 {
2258 if (ex.error != NOT_AVAILABLE_ERROR)
2259 throw_exception (ex);
2260 }
2261 END_CATCH
2262
2263 return cache;
2264 }
2265
2266 static enum unwind_stop_reason
2267 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2268 void **this_cache)
2269 {
2270 struct i386_frame_cache *cache =
2271 i386_epilogue_frame_cache (this_frame, this_cache);
2272
2273 if (!cache->base_p)
2274 return UNWIND_UNAVAILABLE;
2275
2276 return UNWIND_NO_REASON;
2277 }
2278
2279 static void
2280 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2281 void **this_cache,
2282 struct frame_id *this_id)
2283 {
2284 struct i386_frame_cache *cache =
2285 i386_epilogue_frame_cache (this_frame, this_cache);
2286
2287 if (!cache->base_p)
2288 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2289 else
2290 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2291 }
2292
2293 static struct value *
2294 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2295 void **this_cache, int regnum)
2296 {
2297 /* Make sure we've initialized the cache. */
2298 i386_epilogue_frame_cache (this_frame, this_cache);
2299
2300 return i386_frame_prev_register (this_frame, this_cache, regnum);
2301 }
2302
2303 static const struct frame_unwind i386_epilogue_frame_unwind =
2304 {
2305 NORMAL_FRAME,
2306 i386_epilogue_frame_unwind_stop_reason,
2307 i386_epilogue_frame_this_id,
2308 i386_epilogue_frame_prev_register,
2309 NULL,
2310 i386_epilogue_frame_sniffer
2311 };
2312 \f
2313
2314 /* Stack-based trampolines. */
2315
2316 /* These trampolines are used on cross x86 targets, when taking the
2317 address of a nested function. When executing these trampolines,
2318 no stack frame is set up, so we are in a similar situation as in
2319 epilogues and i386_epilogue_frame_this_id can be re-used. */
2320
2321 /* Static chain passed in register. */
2322
2323 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2324 {
2325 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2326 { 5, { 0xb8 }, { 0xfe } },
2327
2328 /* `jmp imm32' */
2329 { 5, { 0xe9 }, { 0xff } },
2330
2331 {0}
2332 };
2333
2334 /* Static chain passed on stack (when regparm=3). */
2335
2336 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2337 {
2338 /* `push imm32' */
2339 { 5, { 0x68 }, { 0xff } },
2340
2341 /* `jmp imm32' */
2342 { 5, { 0xe9 }, { 0xff } },
2343
2344 {0}
2345 };
2346
2347 /* Return whether PC points inside a stack trampoline. */
2348
2349 static int
2350 i386_in_stack_tramp_p (CORE_ADDR pc)
2351 {
2352 gdb_byte insn;
2353 const char *name;
2354
2355 /* A stack trampoline is detected if no name is associated
2356 to the current pc and if it points inside a trampoline
2357 sequence. */
2358
2359 find_pc_partial_function (pc, &name, NULL, NULL);
2360 if (name)
2361 return 0;
2362
2363 if (target_read_memory (pc, &insn, 1))
2364 return 0;
2365
2366 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2367 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2368 return 0;
2369
2370 return 1;
2371 }
2372
2373 static int
2374 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2375 struct frame_info *this_frame,
2376 void **this_cache)
2377 {
2378 if (frame_relative_level (this_frame) == 0)
2379 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2380 else
2381 return 0;
2382 }
2383
2384 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2385 {
2386 NORMAL_FRAME,
2387 i386_epilogue_frame_unwind_stop_reason,
2388 i386_epilogue_frame_this_id,
2389 i386_epilogue_frame_prev_register,
2390 NULL,
2391 i386_stack_tramp_frame_sniffer
2392 };
2393 \f
2394 /* Generate a bytecode expression to get the value of the saved PC. */
2395
2396 static void
2397 i386_gen_return_address (struct gdbarch *gdbarch,
2398 struct agent_expr *ax, struct axs_value *value,
2399 CORE_ADDR scope)
2400 {
2401 /* The following sequence assumes the traditional use of the base
2402 register. */
2403 ax_reg (ax, I386_EBP_REGNUM);
2404 ax_const_l (ax, 4);
2405 ax_simple (ax, aop_add);
2406 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2407 value->kind = axs_lvalue_memory;
2408 }
2409 \f
2410
2411 /* Signal trampolines. */
2412
2413 static struct i386_frame_cache *
2414 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2415 {
2416 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2417 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2418 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2419 struct i386_frame_cache *cache;
2420 CORE_ADDR addr;
2421 gdb_byte buf[4];
2422
2423 if (*this_cache)
2424 return (struct i386_frame_cache *) *this_cache;
2425
2426 cache = i386_alloc_frame_cache ();
2427
2428 TRY
2429 {
2430 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2431 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2432
2433 addr = tdep->sigcontext_addr (this_frame);
2434 if (tdep->sc_reg_offset)
2435 {
2436 int i;
2437
2438 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2439
2440 for (i = 0; i < tdep->sc_num_regs; i++)
2441 if (tdep->sc_reg_offset[i] != -1)
2442 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2443 }
2444 else
2445 {
2446 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2447 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2448 }
2449
2450 cache->base_p = 1;
2451 }
2452 CATCH (ex, RETURN_MASK_ERROR)
2453 {
2454 if (ex.error != NOT_AVAILABLE_ERROR)
2455 throw_exception (ex);
2456 }
2457 END_CATCH
2458
2459 *this_cache = cache;
2460 return cache;
2461 }
2462
2463 static enum unwind_stop_reason
2464 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2465 void **this_cache)
2466 {
2467 struct i386_frame_cache *cache =
2468 i386_sigtramp_frame_cache (this_frame, this_cache);
2469
2470 if (!cache->base_p)
2471 return UNWIND_UNAVAILABLE;
2472
2473 return UNWIND_NO_REASON;
2474 }
2475
2476 static void
2477 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2478 struct frame_id *this_id)
2479 {
2480 struct i386_frame_cache *cache =
2481 i386_sigtramp_frame_cache (this_frame, this_cache);
2482
2483 if (!cache->base_p)
2484 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2485 else
2486 {
2487 /* See the end of i386_push_dummy_call. */
2488 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2489 }
2490 }
2491
2492 static struct value *
2493 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2494 void **this_cache, int regnum)
2495 {
2496 /* Make sure we've initialized the cache. */
2497 i386_sigtramp_frame_cache (this_frame, this_cache);
2498
2499 return i386_frame_prev_register (this_frame, this_cache, regnum);
2500 }
2501
2502 static int
2503 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2504 struct frame_info *this_frame,
2505 void **this_prologue_cache)
2506 {
2507 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2508
2509 /* We shouldn't even bother if we don't have a sigcontext_addr
2510 handler. */
2511 if (tdep->sigcontext_addr == NULL)
2512 return 0;
2513
2514 if (tdep->sigtramp_p != NULL)
2515 {
2516 if (tdep->sigtramp_p (this_frame))
2517 return 1;
2518 }
2519
2520 if (tdep->sigtramp_start != 0)
2521 {
2522 CORE_ADDR pc = get_frame_pc (this_frame);
2523
2524 gdb_assert (tdep->sigtramp_end != 0);
2525 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2526 return 1;
2527 }
2528
2529 return 0;
2530 }
2531
2532 static const struct frame_unwind i386_sigtramp_frame_unwind =
2533 {
2534 SIGTRAMP_FRAME,
2535 i386_sigtramp_frame_unwind_stop_reason,
2536 i386_sigtramp_frame_this_id,
2537 i386_sigtramp_frame_prev_register,
2538 NULL,
2539 i386_sigtramp_frame_sniffer
2540 };
2541 \f
2542
2543 static CORE_ADDR
2544 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2545 {
2546 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2547
2548 return cache->base;
2549 }
2550
2551 static const struct frame_base i386_frame_base =
2552 {
2553 &i386_frame_unwind,
2554 i386_frame_base_address,
2555 i386_frame_base_address,
2556 i386_frame_base_address
2557 };
2558
2559 static struct frame_id
2560 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2561 {
2562 CORE_ADDR fp;
2563
2564 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2565
2566 /* See the end of i386_push_dummy_call. */
2567 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2568 }
2569
2570 /* _Decimal128 function return values need 16-byte alignment on the
2571 stack. */
2572
2573 static CORE_ADDR
2574 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2575 {
2576 return sp & -(CORE_ADDR)16;
2577 }
2578 \f
2579
2580 /* Figure out where the longjmp will land. Slurp the args out of the
2581 stack. We expect the first arg to be a pointer to the jmp_buf
2582 structure from which we extract the address that we will land at.
2583 This address is copied into PC. This routine returns non-zero on
2584 success. */
2585
2586 static int
2587 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2588 {
2589 gdb_byte buf[4];
2590 CORE_ADDR sp, jb_addr;
2591 struct gdbarch *gdbarch = get_frame_arch (frame);
2592 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2593 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2594
2595 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2596 longjmp will land. */
2597 if (jb_pc_offset == -1)
2598 return 0;
2599
2600 get_frame_register (frame, I386_ESP_REGNUM, buf);
2601 sp = extract_unsigned_integer (buf, 4, byte_order);
2602 if (target_read_memory (sp + 4, buf, 4))
2603 return 0;
2604
2605 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2606 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2607 return 0;
2608
2609 *pc = extract_unsigned_integer (buf, 4, byte_order);
2610 return 1;
2611 }
2612 \f
2613
2614 /* Check whether TYPE must be 16-byte-aligned when passed as a
2615 function argument. 16-byte vectors, _Decimal128 and structures or
2616 unions containing such types must be 16-byte-aligned; other
2617 arguments are 4-byte-aligned. */
2618
2619 static int
2620 i386_16_byte_align_p (struct type *type)
2621 {
2622 type = check_typedef (type);
2623 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2624 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2625 && TYPE_LENGTH (type) == 16)
2626 return 1;
2627 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2628 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2629 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2630 || TYPE_CODE (type) == TYPE_CODE_UNION)
2631 {
2632 int i;
2633 for (i = 0; i < TYPE_NFIELDS (type); i++)
2634 {
2635 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2636 return 1;
2637 }
2638 }
2639 return 0;
2640 }
2641
2642 /* Implementation for set_gdbarch_push_dummy_code. */
2643
2644 static CORE_ADDR
2645 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2646 struct value **args, int nargs, struct type *value_type,
2647 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2648 struct regcache *regcache)
2649 {
2650 /* Use 0xcc breakpoint - 1 byte. */
2651 *bp_addr = sp - 1;
2652 *real_pc = funaddr;
2653
2654 /* Keep the stack aligned. */
2655 return sp - 16;
2656 }
2657
2658 static CORE_ADDR
2659 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2660 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2661 struct value **args, CORE_ADDR sp, int struct_return,
2662 CORE_ADDR struct_addr)
2663 {
2664 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2665 gdb_byte buf[4];
2666 int i;
2667 int write_pass;
2668 int args_space = 0;
2669
2670 /* Determine the total space required for arguments and struct
2671 return address in a first pass (allowing for 16-byte-aligned
2672 arguments), then push arguments in a second pass. */
2673
2674 for (write_pass = 0; write_pass < 2; write_pass++)
2675 {
2676 int args_space_used = 0;
2677
2678 if (struct_return)
2679 {
2680 if (write_pass)
2681 {
2682 /* Push value address. */
2683 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2684 write_memory (sp, buf, 4);
2685 args_space_used += 4;
2686 }
2687 else
2688 args_space += 4;
2689 }
2690
2691 for (i = 0; i < nargs; i++)
2692 {
2693 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2694
2695 if (write_pass)
2696 {
2697 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2698 args_space_used = align_up (args_space_used, 16);
2699
2700 write_memory (sp + args_space_used,
2701 value_contents_all (args[i]), len);
2702 /* The System V ABI says that:
2703
2704 "An argument's size is increased, if necessary, to make it a
2705 multiple of [32-bit] words. This may require tail padding,
2706 depending on the size of the argument."
2707
2708 This makes sure the stack stays word-aligned. */
2709 args_space_used += align_up (len, 4);
2710 }
2711 else
2712 {
2713 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2714 args_space = align_up (args_space, 16);
2715 args_space += align_up (len, 4);
2716 }
2717 }
2718
2719 if (!write_pass)
2720 {
2721 sp -= args_space;
2722
2723 /* The original System V ABI only requires word alignment,
2724 but modern incarnations need 16-byte alignment in order
2725 to support SSE. Since wasting a few bytes here isn't
2726 harmful we unconditionally enforce 16-byte alignment. */
2727 sp &= ~0xf;
2728 }
2729 }
2730
2731 /* Store return address. */
2732 sp -= 4;
2733 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2734 write_memory (sp, buf, 4);
2735
2736 /* Finally, update the stack pointer... */
2737 store_unsigned_integer (buf, 4, byte_order, sp);
2738 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2739
2740 /* ...and fake a frame pointer. */
2741 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2742
2743 /* MarkK wrote: This "+ 8" is all over the place:
2744 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2745 i386_dummy_id). It's there, since all frame unwinders for
2746 a given target have to agree (within a certain margin) on the
2747 definition of the stack address of a frame. Otherwise frame id
2748 comparison might not work correctly. Since DWARF2/GCC uses the
2749 stack address *before* the function call as a frame's CFA. On
2750 the i386, when %ebp is used as a frame pointer, the offset
2751 between the contents %ebp and the CFA as defined by GCC. */
2752 return sp + 8;
2753 }
2754
2755 /* These registers are used for returning integers (and on some
2756 targets also for returning `struct' and `union' values when their
2757 size and alignment match an integer type). */
2758 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2759 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2760
2761 /* Read, for architecture GDBARCH, a function return value of TYPE
2762 from REGCACHE, and copy that into VALBUF. */
2763
2764 static void
2765 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2766 struct regcache *regcache, gdb_byte *valbuf)
2767 {
2768 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2769 int len = TYPE_LENGTH (type);
2770 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2771
2772 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2773 {
2774 if (tdep->st0_regnum < 0)
2775 {
2776 warning (_("Cannot find floating-point return value."));
2777 memset (valbuf, 0, len);
2778 return;
2779 }
2780
2781 /* Floating-point return values can be found in %st(0). Convert
2782 its contents to the desired type. This is probably not
2783 exactly how it would happen on the target itself, but it is
2784 the best we can do. */
2785 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2786 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2787 }
2788 else
2789 {
2790 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2791 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2792
2793 if (len <= low_size)
2794 {
2795 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2796 memcpy (valbuf, buf, len);
2797 }
2798 else if (len <= (low_size + high_size))
2799 {
2800 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2801 memcpy (valbuf, buf, low_size);
2802 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2803 memcpy (valbuf + low_size, buf, len - low_size);
2804 }
2805 else
2806 internal_error (__FILE__, __LINE__,
2807 _("Cannot extract return value of %d bytes long."),
2808 len);
2809 }
2810 }
2811
2812 /* Write, for architecture GDBARCH, a function return value of TYPE
2813 from VALBUF into REGCACHE. */
2814
2815 static void
2816 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2817 struct regcache *regcache, const gdb_byte *valbuf)
2818 {
2819 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2820 int len = TYPE_LENGTH (type);
2821
2822 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2823 {
2824 ULONGEST fstat;
2825 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2826
2827 if (tdep->st0_regnum < 0)
2828 {
2829 warning (_("Cannot set floating-point return value."));
2830 return;
2831 }
2832
2833 /* Returning floating-point values is a bit tricky. Apart from
2834 storing the return value in %st(0), we have to simulate the
2835 state of the FPU at function return point. */
2836
2837 /* Convert the value found in VALBUF to the extended
2838 floating-point format used by the FPU. This is probably
2839 not exactly how it would happen on the target itself, but
2840 it is the best we can do. */
2841 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2842 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2843
2844 /* Set the top of the floating-point register stack to 7. The
2845 actual value doesn't really matter, but 7 is what a normal
2846 function return would end up with if the program started out
2847 with a freshly initialized FPU. */
2848 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2849 fstat |= (7 << 11);
2850 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2851
2852 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2853 the floating-point register stack to 7, the appropriate value
2854 for the tag word is 0x3fff. */
2855 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2856 }
2857 else
2858 {
2859 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2860 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2861
2862 if (len <= low_size)
2863 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2864 else if (len <= (low_size + high_size))
2865 {
2866 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2867 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2868 len - low_size, valbuf + low_size);
2869 }
2870 else
2871 internal_error (__FILE__, __LINE__,
2872 _("Cannot store return value of %d bytes long."), len);
2873 }
2874 }
2875 \f
2876
2877 /* This is the variable that is set with "set struct-convention", and
2878 its legitimate values. */
2879 static const char default_struct_convention[] = "default";
2880 static const char pcc_struct_convention[] = "pcc";
2881 static const char reg_struct_convention[] = "reg";
2882 static const char *const valid_conventions[] =
2883 {
2884 default_struct_convention,
2885 pcc_struct_convention,
2886 reg_struct_convention,
2887 NULL
2888 };
2889 static const char *struct_convention = default_struct_convention;
2890
2891 /* Return non-zero if TYPE, which is assumed to be a structure,
2892 a union type, or an array type, should be returned in registers
2893 for architecture GDBARCH. */
2894
2895 static int
2896 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2897 {
2898 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2899 enum type_code code = TYPE_CODE (type);
2900 int len = TYPE_LENGTH (type);
2901
2902 gdb_assert (code == TYPE_CODE_STRUCT
2903 || code == TYPE_CODE_UNION
2904 || code == TYPE_CODE_ARRAY);
2905
2906 if (struct_convention == pcc_struct_convention
2907 || (struct_convention == default_struct_convention
2908 && tdep->struct_return == pcc_struct_return))
2909 return 0;
2910
2911 /* Structures consisting of a single `float', `double' or 'long
2912 double' member are returned in %st(0). */
2913 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2914 {
2915 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2916 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2917 return (len == 4 || len == 8 || len == 12);
2918 }
2919
2920 return (len == 1 || len == 2 || len == 4 || len == 8);
2921 }
2922
2923 /* Determine, for architecture GDBARCH, how a return value of TYPE
2924 should be returned. If it is supposed to be returned in registers,
2925 and READBUF is non-zero, read the appropriate value from REGCACHE,
2926 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2927 from WRITEBUF into REGCACHE. */
2928
2929 static enum return_value_convention
2930 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2931 struct type *type, struct regcache *regcache,
2932 gdb_byte *readbuf, const gdb_byte *writebuf)
2933 {
2934 enum type_code code = TYPE_CODE (type);
2935
2936 if (((code == TYPE_CODE_STRUCT
2937 || code == TYPE_CODE_UNION
2938 || code == TYPE_CODE_ARRAY)
2939 && !i386_reg_struct_return_p (gdbarch, type))
2940 /* Complex double and long double uses the struct return covention. */
2941 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2942 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2943 /* 128-bit decimal float uses the struct return convention. */
2944 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2945 {
2946 /* The System V ABI says that:
2947
2948 "A function that returns a structure or union also sets %eax
2949 to the value of the original address of the caller's area
2950 before it returns. Thus when the caller receives control
2951 again, the address of the returned object resides in register
2952 %eax and can be used to access the object."
2953
2954 So the ABI guarantees that we can always find the return
2955 value just after the function has returned. */
2956
2957 /* Note that the ABI doesn't mention functions returning arrays,
2958 which is something possible in certain languages such as Ada.
2959 In this case, the value is returned as if it was wrapped in
2960 a record, so the convention applied to records also applies
2961 to arrays. */
2962
2963 if (readbuf)
2964 {
2965 ULONGEST addr;
2966
2967 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2968 read_memory (addr, readbuf, TYPE_LENGTH (type));
2969 }
2970
2971 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2972 }
2973
2974 /* This special case is for structures consisting of a single
2975 `float', `double' or 'long double' member. These structures are
2976 returned in %st(0). For these structures, we call ourselves
2977 recursively, changing TYPE into the type of the first member of
2978 the structure. Since that should work for all structures that
2979 have only one member, we don't bother to check the member's type
2980 here. */
2981 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2982 {
2983 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2984 return i386_return_value (gdbarch, function, type, regcache,
2985 readbuf, writebuf);
2986 }
2987
2988 if (readbuf)
2989 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2990 if (writebuf)
2991 i386_store_return_value (gdbarch, type, regcache, writebuf);
2992
2993 return RETURN_VALUE_REGISTER_CONVENTION;
2994 }
2995 \f
2996
2997 struct type *
2998 i387_ext_type (struct gdbarch *gdbarch)
2999 {
3000 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3001
3002 if (!tdep->i387_ext_type)
3003 {
3004 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3005 gdb_assert (tdep->i387_ext_type != NULL);
3006 }
3007
3008 return tdep->i387_ext_type;
3009 }
3010
3011 /* Construct type for pseudo BND registers. We can't use
3012 tdesc_find_type since a complement of one value has to be used
3013 to describe the upper bound. */
3014
3015 static struct type *
3016 i386_bnd_type (struct gdbarch *gdbarch)
3017 {
3018 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3019
3020
3021 if (!tdep->i386_bnd_type)
3022 {
3023 struct type *t;
3024 const struct builtin_type *bt = builtin_type (gdbarch);
3025
3026 /* The type we're building is described bellow: */
3027 #if 0
3028 struct __bound128
3029 {
3030 void *lbound;
3031 void *ubound; /* One complement of raw ubound field. */
3032 };
3033 #endif
3034
3035 t = arch_composite_type (gdbarch,
3036 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3037
3038 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3039 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3040
3041 TYPE_NAME (t) = "builtin_type_bound128";
3042 tdep->i386_bnd_type = t;
3043 }
3044
3045 return tdep->i386_bnd_type;
3046 }
3047
3048 /* Construct vector type for pseudo ZMM registers. We can't use
3049 tdesc_find_type since ZMM isn't described in target description. */
3050
3051 static struct type *
3052 i386_zmm_type (struct gdbarch *gdbarch)
3053 {
3054 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3055
3056 if (!tdep->i386_zmm_type)
3057 {
3058 const struct builtin_type *bt = builtin_type (gdbarch);
3059
3060 /* The type we're building is this: */
3061 #if 0
3062 union __gdb_builtin_type_vec512i
3063 {
3064 int128_t uint128[4];
3065 int64_t v4_int64[8];
3066 int32_t v8_int32[16];
3067 int16_t v16_int16[32];
3068 int8_t v32_int8[64];
3069 double v4_double[8];
3070 float v8_float[16];
3071 };
3072 #endif
3073
3074 struct type *t;
3075
3076 t = arch_composite_type (gdbarch,
3077 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3078 append_composite_type_field (t, "v16_float",
3079 init_vector_type (bt->builtin_float, 16));
3080 append_composite_type_field (t, "v8_double",
3081 init_vector_type (bt->builtin_double, 8));
3082 append_composite_type_field (t, "v64_int8",
3083 init_vector_type (bt->builtin_int8, 64));
3084 append_composite_type_field (t, "v32_int16",
3085 init_vector_type (bt->builtin_int16, 32));
3086 append_composite_type_field (t, "v16_int32",
3087 init_vector_type (bt->builtin_int32, 16));
3088 append_composite_type_field (t, "v8_int64",
3089 init_vector_type (bt->builtin_int64, 8));
3090 append_composite_type_field (t, "v4_int128",
3091 init_vector_type (bt->builtin_int128, 4));
3092
3093 TYPE_VECTOR (t) = 1;
3094 TYPE_NAME (t) = "builtin_type_vec512i";
3095 tdep->i386_zmm_type = t;
3096 }
3097
3098 return tdep->i386_zmm_type;
3099 }
3100
3101 /* Construct vector type for pseudo YMM registers. We can't use
3102 tdesc_find_type since YMM isn't described in target description. */
3103
3104 static struct type *
3105 i386_ymm_type (struct gdbarch *gdbarch)
3106 {
3107 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3108
3109 if (!tdep->i386_ymm_type)
3110 {
3111 const struct builtin_type *bt = builtin_type (gdbarch);
3112
3113 /* The type we're building is this: */
3114 #if 0
3115 union __gdb_builtin_type_vec256i
3116 {
3117 int128_t uint128[2];
3118 int64_t v2_int64[4];
3119 int32_t v4_int32[8];
3120 int16_t v8_int16[16];
3121 int8_t v16_int8[32];
3122 double v2_double[4];
3123 float v4_float[8];
3124 };
3125 #endif
3126
3127 struct type *t;
3128
3129 t = arch_composite_type (gdbarch,
3130 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3131 append_composite_type_field (t, "v8_float",
3132 init_vector_type (bt->builtin_float, 8));
3133 append_composite_type_field (t, "v4_double",
3134 init_vector_type (bt->builtin_double, 4));
3135 append_composite_type_field (t, "v32_int8",
3136 init_vector_type (bt->builtin_int8, 32));
3137 append_composite_type_field (t, "v16_int16",
3138 init_vector_type (bt->builtin_int16, 16));
3139 append_composite_type_field (t, "v8_int32",
3140 init_vector_type (bt->builtin_int32, 8));
3141 append_composite_type_field (t, "v4_int64",
3142 init_vector_type (bt->builtin_int64, 4));
3143 append_composite_type_field (t, "v2_int128",
3144 init_vector_type (bt->builtin_int128, 2));
3145
3146 TYPE_VECTOR (t) = 1;
3147 TYPE_NAME (t) = "builtin_type_vec256i";
3148 tdep->i386_ymm_type = t;
3149 }
3150
3151 return tdep->i386_ymm_type;
3152 }
3153
3154 /* Construct vector type for MMX registers. */
3155 static struct type *
3156 i386_mmx_type (struct gdbarch *gdbarch)
3157 {
3158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3159
3160 if (!tdep->i386_mmx_type)
3161 {
3162 const struct builtin_type *bt = builtin_type (gdbarch);
3163
3164 /* The type we're building is this: */
3165 #if 0
3166 union __gdb_builtin_type_vec64i
3167 {
3168 int64_t uint64;
3169 int32_t v2_int32[2];
3170 int16_t v4_int16[4];
3171 int8_t v8_int8[8];
3172 };
3173 #endif
3174
3175 struct type *t;
3176
3177 t = arch_composite_type (gdbarch,
3178 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3179
3180 append_composite_type_field (t, "uint64", bt->builtin_int64);
3181 append_composite_type_field (t, "v2_int32",
3182 init_vector_type (bt->builtin_int32, 2));
3183 append_composite_type_field (t, "v4_int16",
3184 init_vector_type (bt->builtin_int16, 4));
3185 append_composite_type_field (t, "v8_int8",
3186 init_vector_type (bt->builtin_int8, 8));
3187
3188 TYPE_VECTOR (t) = 1;
3189 TYPE_NAME (t) = "builtin_type_vec64i";
3190 tdep->i386_mmx_type = t;
3191 }
3192
3193 return tdep->i386_mmx_type;
3194 }
3195
3196 /* Return the GDB type object for the "standard" data type of data in
3197 register REGNUM. */
3198
3199 struct type *
3200 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3201 {
3202 if (i386_bnd_regnum_p (gdbarch, regnum))
3203 return i386_bnd_type (gdbarch);
3204 if (i386_mmx_regnum_p (gdbarch, regnum))
3205 return i386_mmx_type (gdbarch);
3206 else if (i386_ymm_regnum_p (gdbarch, regnum))
3207 return i386_ymm_type (gdbarch);
3208 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3209 return i386_ymm_type (gdbarch);
3210 else if (i386_zmm_regnum_p (gdbarch, regnum))
3211 return i386_zmm_type (gdbarch);
3212 else
3213 {
3214 const struct builtin_type *bt = builtin_type (gdbarch);
3215 if (i386_byte_regnum_p (gdbarch, regnum))
3216 return bt->builtin_int8;
3217 else if (i386_word_regnum_p (gdbarch, regnum))
3218 return bt->builtin_int16;
3219 else if (i386_dword_regnum_p (gdbarch, regnum))
3220 return bt->builtin_int32;
3221 else if (i386_k_regnum_p (gdbarch, regnum))
3222 return bt->builtin_int64;
3223 }
3224
3225 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3226 }
3227
3228 /* Map a cooked register onto a raw register or memory. For the i386,
3229 the MMX registers need to be mapped onto floating point registers. */
3230
3231 static int
3232 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3233 {
3234 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3235 int mmxreg, fpreg;
3236 ULONGEST fstat;
3237 int tos;
3238
3239 mmxreg = regnum - tdep->mm0_regnum;
3240 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3241 tos = (fstat >> 11) & 0x7;
3242 fpreg = (mmxreg + tos) % 8;
3243
3244 return (I387_ST0_REGNUM (tdep) + fpreg);
3245 }
3246
3247 /* A helper function for us by i386_pseudo_register_read_value and
3248 amd64_pseudo_register_read_value. It does all the work but reads
3249 the data into an already-allocated value. */
3250
3251 void
3252 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3253 struct regcache *regcache,
3254 int regnum,
3255 struct value *result_value)
3256 {
3257 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3258 enum register_status status;
3259 gdb_byte *buf = value_contents_raw (result_value);
3260
3261 if (i386_mmx_regnum_p (gdbarch, regnum))
3262 {
3263 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3264
3265 /* Extract (always little endian). */
3266 status = regcache_raw_read (regcache, fpnum, raw_buf);
3267 if (status != REG_VALID)
3268 mark_value_bytes_unavailable (result_value, 0,
3269 TYPE_LENGTH (value_type (result_value)));
3270 else
3271 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3272 }
3273 else
3274 {
3275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3276 if (i386_bnd_regnum_p (gdbarch, regnum))
3277 {
3278 regnum -= tdep->bnd0_regnum;
3279
3280 /* Extract (always little endian). Read lower 128bits. */
3281 status = regcache_raw_read (regcache,
3282 I387_BND0R_REGNUM (tdep) + regnum,
3283 raw_buf);
3284 if (status != REG_VALID)
3285 mark_value_bytes_unavailable (result_value, 0, 16);
3286 else
3287 {
3288 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3289 LONGEST upper, lower;
3290 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3291
3292 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3293 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3294 upper = ~upper;
3295
3296 memcpy (buf, &lower, size);
3297 memcpy (buf + size, &upper, size);
3298 }
3299 }
3300 else if (i386_k_regnum_p (gdbarch, regnum))
3301 {
3302 regnum -= tdep->k0_regnum;
3303
3304 /* Extract (always little endian). */
3305 status = regcache_raw_read (regcache,
3306 tdep->k0_regnum + regnum,
3307 raw_buf);
3308 if (status != REG_VALID)
3309 mark_value_bytes_unavailable (result_value, 0, 8);
3310 else
3311 memcpy (buf, raw_buf, 8);
3312 }
3313 else if (i386_zmm_regnum_p (gdbarch, regnum))
3314 {
3315 regnum -= tdep->zmm0_regnum;
3316
3317 if (regnum < num_lower_zmm_regs)
3318 {
3319 /* Extract (always little endian). Read lower 128bits. */
3320 status = regcache_raw_read (regcache,
3321 I387_XMM0_REGNUM (tdep) + regnum,
3322 raw_buf);
3323 if (status != REG_VALID)
3324 mark_value_bytes_unavailable (result_value, 0, 16);
3325 else
3326 memcpy (buf, raw_buf, 16);
3327
3328 /* Extract (always little endian). Read upper 128bits. */
3329 status = regcache_raw_read (regcache,
3330 tdep->ymm0h_regnum + regnum,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 16, 16);
3334 else
3335 memcpy (buf + 16, raw_buf, 16);
3336 }
3337 else
3338 {
3339 /* Extract (always little endian). Read lower 128bits. */
3340 status = regcache_raw_read (regcache,
3341 I387_XMM16_REGNUM (tdep) + regnum
3342 - num_lower_zmm_regs,
3343 raw_buf);
3344 if (status != REG_VALID)
3345 mark_value_bytes_unavailable (result_value, 0, 16);
3346 else
3347 memcpy (buf, raw_buf, 16);
3348
3349 /* Extract (always little endian). Read upper 128bits. */
3350 status = regcache_raw_read (regcache,
3351 I387_YMM16H_REGNUM (tdep) + regnum
3352 - num_lower_zmm_regs,
3353 raw_buf);
3354 if (status != REG_VALID)
3355 mark_value_bytes_unavailable (result_value, 16, 16);
3356 else
3357 memcpy (buf + 16, raw_buf, 16);
3358 }
3359
3360 /* Read upper 256bits. */
3361 status = regcache_raw_read (regcache,
3362 tdep->zmm0h_regnum + regnum,
3363 raw_buf);
3364 if (status != REG_VALID)
3365 mark_value_bytes_unavailable (result_value, 32, 32);
3366 else
3367 memcpy (buf + 32, raw_buf, 32);
3368 }
3369 else if (i386_ymm_regnum_p (gdbarch, regnum))
3370 {
3371 regnum -= tdep->ymm0_regnum;
3372
3373 /* Extract (always little endian). Read lower 128bits. */
3374 status = regcache_raw_read (regcache,
3375 I387_XMM0_REGNUM (tdep) + regnum,
3376 raw_buf);
3377 if (status != REG_VALID)
3378 mark_value_bytes_unavailable (result_value, 0, 16);
3379 else
3380 memcpy (buf, raw_buf, 16);
3381 /* Read upper 128bits. */
3382 status = regcache_raw_read (regcache,
3383 tdep->ymm0h_regnum + regnum,
3384 raw_buf);
3385 if (status != REG_VALID)
3386 mark_value_bytes_unavailable (result_value, 16, 32);
3387 else
3388 memcpy (buf + 16, raw_buf, 16);
3389 }
3390 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3391 {
3392 regnum -= tdep->ymm16_regnum;
3393 /* Extract (always little endian). Read lower 128bits. */
3394 status = regcache_raw_read (regcache,
3395 I387_XMM16_REGNUM (tdep) + regnum,
3396 raw_buf);
3397 if (status != REG_VALID)
3398 mark_value_bytes_unavailable (result_value, 0, 16);
3399 else
3400 memcpy (buf, raw_buf, 16);
3401 /* Read upper 128bits. */
3402 status = regcache_raw_read (regcache,
3403 tdep->ymm16h_regnum + regnum,
3404 raw_buf);
3405 if (status != REG_VALID)
3406 mark_value_bytes_unavailable (result_value, 16, 16);
3407 else
3408 memcpy (buf + 16, raw_buf, 16);
3409 }
3410 else if (i386_word_regnum_p (gdbarch, regnum))
3411 {
3412 int gpnum = regnum - tdep->ax_regnum;
3413
3414 /* Extract (always little endian). */
3415 status = regcache_raw_read (regcache, gpnum, raw_buf);
3416 if (status != REG_VALID)
3417 mark_value_bytes_unavailable (result_value, 0,
3418 TYPE_LENGTH (value_type (result_value)));
3419 else
3420 memcpy (buf, raw_buf, 2);
3421 }
3422 else if (i386_byte_regnum_p (gdbarch, regnum))
3423 {
3424 int gpnum = regnum - tdep->al_regnum;
3425
3426 /* Extract (always little endian). We read both lower and
3427 upper registers. */
3428 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3429 if (status != REG_VALID)
3430 mark_value_bytes_unavailable (result_value, 0,
3431 TYPE_LENGTH (value_type (result_value)));
3432 else if (gpnum >= 4)
3433 memcpy (buf, raw_buf + 1, 1);
3434 else
3435 memcpy (buf, raw_buf, 1);
3436 }
3437 else
3438 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3439 }
3440 }
3441
3442 static struct value *
3443 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3444 struct regcache *regcache,
3445 int regnum)
3446 {
3447 struct value *result;
3448
3449 result = allocate_value (register_type (gdbarch, regnum));
3450 VALUE_LVAL (result) = lval_register;
3451 VALUE_REGNUM (result) = regnum;
3452
3453 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3454
3455 return result;
3456 }
3457
3458 void
3459 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3460 int regnum, const gdb_byte *buf)
3461 {
3462 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3463
3464 if (i386_mmx_regnum_p (gdbarch, regnum))
3465 {
3466 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3467
3468 /* Read ... */
3469 regcache_raw_read (regcache, fpnum, raw_buf);
3470 /* ... Modify ... (always little endian). */
3471 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3472 /* ... Write. */
3473 regcache_raw_write (regcache, fpnum, raw_buf);
3474 }
3475 else
3476 {
3477 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3478
3479 if (i386_bnd_regnum_p (gdbarch, regnum))
3480 {
3481 ULONGEST upper, lower;
3482 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3483 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3484
3485 /* New values from input value. */
3486 regnum -= tdep->bnd0_regnum;
3487 lower = extract_unsigned_integer (buf, size, byte_order);
3488 upper = extract_unsigned_integer (buf + size, size, byte_order);
3489
3490 /* Fetching register buffer. */
3491 regcache_raw_read (regcache,
3492 I387_BND0R_REGNUM (tdep) + regnum,
3493 raw_buf);
3494
3495 upper = ~upper;
3496
3497 /* Set register bits. */
3498 memcpy (raw_buf, &lower, 8);
3499 memcpy (raw_buf + 8, &upper, 8);
3500
3501
3502 regcache_raw_write (regcache,
3503 I387_BND0R_REGNUM (tdep) + regnum,
3504 raw_buf);
3505 }
3506 else if (i386_k_regnum_p (gdbarch, regnum))
3507 {
3508 regnum -= tdep->k0_regnum;
3509
3510 regcache_raw_write (regcache,
3511 tdep->k0_regnum + regnum,
3512 buf);
3513 }
3514 else if (i386_zmm_regnum_p (gdbarch, regnum))
3515 {
3516 regnum -= tdep->zmm0_regnum;
3517
3518 if (regnum < num_lower_zmm_regs)
3519 {
3520 /* Write lower 128bits. */
3521 regcache_raw_write (regcache,
3522 I387_XMM0_REGNUM (tdep) + regnum,
3523 buf);
3524 /* Write upper 128bits. */
3525 regcache_raw_write (regcache,
3526 I387_YMM0_REGNUM (tdep) + regnum,
3527 buf + 16);
3528 }
3529 else
3530 {
3531 /* Write lower 128bits. */
3532 regcache_raw_write (regcache,
3533 I387_XMM16_REGNUM (tdep) + regnum
3534 - num_lower_zmm_regs,
3535 buf);
3536 /* Write upper 128bits. */
3537 regcache_raw_write (regcache,
3538 I387_YMM16H_REGNUM (tdep) + regnum
3539 - num_lower_zmm_regs,
3540 buf + 16);
3541 }
3542 /* Write upper 256bits. */
3543 regcache_raw_write (regcache,
3544 tdep->zmm0h_regnum + regnum,
3545 buf + 32);
3546 }
3547 else if (i386_ymm_regnum_p (gdbarch, regnum))
3548 {
3549 regnum -= tdep->ymm0_regnum;
3550
3551 /* ... Write lower 128bits. */
3552 regcache_raw_write (regcache,
3553 I387_XMM0_REGNUM (tdep) + regnum,
3554 buf);
3555 /* ... Write upper 128bits. */
3556 regcache_raw_write (regcache,
3557 tdep->ymm0h_regnum + regnum,
3558 buf + 16);
3559 }
3560 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3561 {
3562 regnum -= tdep->ymm16_regnum;
3563
3564 /* ... Write lower 128bits. */
3565 regcache_raw_write (regcache,
3566 I387_XMM16_REGNUM (tdep) + regnum,
3567 buf);
3568 /* ... Write upper 128bits. */
3569 regcache_raw_write (regcache,
3570 tdep->ymm16h_regnum + regnum,
3571 buf + 16);
3572 }
3573 else if (i386_word_regnum_p (gdbarch, regnum))
3574 {
3575 int gpnum = regnum - tdep->ax_regnum;
3576
3577 /* Read ... */
3578 regcache_raw_read (regcache, gpnum, raw_buf);
3579 /* ... Modify ... (always little endian). */
3580 memcpy (raw_buf, buf, 2);
3581 /* ... Write. */
3582 regcache_raw_write (regcache, gpnum, raw_buf);
3583 }
3584 else if (i386_byte_regnum_p (gdbarch, regnum))
3585 {
3586 int gpnum = regnum - tdep->al_regnum;
3587
3588 /* Read ... We read both lower and upper registers. */
3589 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3590 /* ... Modify ... (always little endian). */
3591 if (gpnum >= 4)
3592 memcpy (raw_buf + 1, buf, 1);
3593 else
3594 memcpy (raw_buf, buf, 1);
3595 /* ... Write. */
3596 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3597 }
3598 else
3599 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3600 }
3601 }
3602
3603 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3604
3605 int
3606 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3607 struct agent_expr *ax, int regnum)
3608 {
3609 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3610
3611 if (i386_mmx_regnum_p (gdbarch, regnum))
3612 {
3613 /* MMX to FPU register mapping depends on current TOS. Let's just
3614 not care and collect everything... */
3615 int i;
3616
3617 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3618 for (i = 0; i < 8; i++)
3619 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3620 return 0;
3621 }
3622 else if (i386_bnd_regnum_p (gdbarch, regnum))
3623 {
3624 regnum -= tdep->bnd0_regnum;
3625 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3626 return 0;
3627 }
3628 else if (i386_k_regnum_p (gdbarch, regnum))
3629 {
3630 regnum -= tdep->k0_regnum;
3631 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3632 return 0;
3633 }
3634 else if (i386_zmm_regnum_p (gdbarch, regnum))
3635 {
3636 regnum -= tdep->zmm0_regnum;
3637 if (regnum < num_lower_zmm_regs)
3638 {
3639 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3640 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3641 }
3642 else
3643 {
3644 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3645 - num_lower_zmm_regs);
3646 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3647 - num_lower_zmm_regs);
3648 }
3649 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3650 return 0;
3651 }
3652 else if (i386_ymm_regnum_p (gdbarch, regnum))
3653 {
3654 regnum -= tdep->ymm0_regnum;
3655 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3656 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3657 return 0;
3658 }
3659 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3660 {
3661 regnum -= tdep->ymm16_regnum;
3662 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3663 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3664 return 0;
3665 }
3666 else if (i386_word_regnum_p (gdbarch, regnum))
3667 {
3668 int gpnum = regnum - tdep->ax_regnum;
3669
3670 ax_reg_mask (ax, gpnum);
3671 return 0;
3672 }
3673 else if (i386_byte_regnum_p (gdbarch, regnum))
3674 {
3675 int gpnum = regnum - tdep->al_regnum;
3676
3677 ax_reg_mask (ax, gpnum % 4);
3678 return 0;
3679 }
3680 else
3681 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3682 return 1;
3683 }
3684 \f
3685
3686 /* Return the register number of the register allocated by GCC after
3687 REGNUM, or -1 if there is no such register. */
3688
3689 static int
3690 i386_next_regnum (int regnum)
3691 {
3692 /* GCC allocates the registers in the order:
3693
3694 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3695
3696 Since storing a variable in %esp doesn't make any sense we return
3697 -1 for %ebp and for %esp itself. */
3698 static int next_regnum[] =
3699 {
3700 I386_EDX_REGNUM, /* Slot for %eax. */
3701 I386_EBX_REGNUM, /* Slot for %ecx. */
3702 I386_ECX_REGNUM, /* Slot for %edx. */
3703 I386_ESI_REGNUM, /* Slot for %ebx. */
3704 -1, -1, /* Slots for %esp and %ebp. */
3705 I386_EDI_REGNUM, /* Slot for %esi. */
3706 I386_EBP_REGNUM /* Slot for %edi. */
3707 };
3708
3709 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3710 return next_regnum[regnum];
3711
3712 return -1;
3713 }
3714
3715 /* Return nonzero if a value of type TYPE stored in register REGNUM
3716 needs any special handling. */
3717
3718 static int
3719 i386_convert_register_p (struct gdbarch *gdbarch,
3720 int regnum, struct type *type)
3721 {
3722 int len = TYPE_LENGTH (type);
3723
3724 /* Values may be spread across multiple registers. Most debugging
3725 formats aren't expressive enough to specify the locations, so
3726 some heuristics is involved. Right now we only handle types that
3727 have a length that is a multiple of the word size, since GCC
3728 doesn't seem to put any other types into registers. */
3729 if (len > 4 && len % 4 == 0)
3730 {
3731 int last_regnum = regnum;
3732
3733 while (len > 4)
3734 {
3735 last_regnum = i386_next_regnum (last_regnum);
3736 len -= 4;
3737 }
3738
3739 if (last_regnum != -1)
3740 return 1;
3741 }
3742
3743 return i387_convert_register_p (gdbarch, regnum, type);
3744 }
3745
3746 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3747 return its contents in TO. */
3748
3749 static int
3750 i386_register_to_value (struct frame_info *frame, int regnum,
3751 struct type *type, gdb_byte *to,
3752 int *optimizedp, int *unavailablep)
3753 {
3754 struct gdbarch *gdbarch = get_frame_arch (frame);
3755 int len = TYPE_LENGTH (type);
3756
3757 if (i386_fp_regnum_p (gdbarch, regnum))
3758 return i387_register_to_value (frame, regnum, type, to,
3759 optimizedp, unavailablep);
3760
3761 /* Read a value spread across multiple registers. */
3762
3763 gdb_assert (len > 4 && len % 4 == 0);
3764
3765 while (len > 0)
3766 {
3767 gdb_assert (regnum != -1);
3768 gdb_assert (register_size (gdbarch, regnum) == 4);
3769
3770 if (!get_frame_register_bytes (frame, regnum, 0,
3771 register_size (gdbarch, regnum),
3772 to, optimizedp, unavailablep))
3773 return 0;
3774
3775 regnum = i386_next_regnum (regnum);
3776 len -= 4;
3777 to += 4;
3778 }
3779
3780 *optimizedp = *unavailablep = 0;
3781 return 1;
3782 }
3783
3784 /* Write the contents FROM of a value of type TYPE into register
3785 REGNUM in frame FRAME. */
3786
3787 static void
3788 i386_value_to_register (struct frame_info *frame, int regnum,
3789 struct type *type, const gdb_byte *from)
3790 {
3791 int len = TYPE_LENGTH (type);
3792
3793 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3794 {
3795 i387_value_to_register (frame, regnum, type, from);
3796 return;
3797 }
3798
3799 /* Write a value spread across multiple registers. */
3800
3801 gdb_assert (len > 4 && len % 4 == 0);
3802
3803 while (len > 0)
3804 {
3805 gdb_assert (regnum != -1);
3806 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3807
3808 put_frame_register (frame, regnum, from);
3809 regnum = i386_next_regnum (regnum);
3810 len -= 4;
3811 from += 4;
3812 }
3813 }
3814 \f
3815 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3816 in the general-purpose register set REGSET to register cache
3817 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3818
3819 void
3820 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3821 int regnum, const void *gregs, size_t len)
3822 {
3823 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3824 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3825 const gdb_byte *regs = (const gdb_byte *) gregs;
3826 int i;
3827
3828 gdb_assert (len >= tdep->sizeof_gregset);
3829
3830 for (i = 0; i < tdep->gregset_num_regs; i++)
3831 {
3832 if ((regnum == i || regnum == -1)
3833 && tdep->gregset_reg_offset[i] != -1)
3834 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3835 }
3836 }
3837
3838 /* Collect register REGNUM from the register cache REGCACHE and store
3839 it in the buffer specified by GREGS and LEN as described by the
3840 general-purpose register set REGSET. If REGNUM is -1, do this for
3841 all registers in REGSET. */
3842
3843 static void
3844 i386_collect_gregset (const struct regset *regset,
3845 const struct regcache *regcache,
3846 int regnum, void *gregs, size_t len)
3847 {
3848 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3849 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3850 gdb_byte *regs = (gdb_byte *) gregs;
3851 int i;
3852
3853 gdb_assert (len >= tdep->sizeof_gregset);
3854
3855 for (i = 0; i < tdep->gregset_num_regs; i++)
3856 {
3857 if ((regnum == i || regnum == -1)
3858 && tdep->gregset_reg_offset[i] != -1)
3859 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3860 }
3861 }
3862
3863 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3864 in the floating-point register set REGSET to register cache
3865 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3866
3867 static void
3868 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3869 int regnum, const void *fpregs, size_t len)
3870 {
3871 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3872 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3873
3874 if (len == I387_SIZEOF_FXSAVE)
3875 {
3876 i387_supply_fxsave (regcache, regnum, fpregs);
3877 return;
3878 }
3879
3880 gdb_assert (len >= tdep->sizeof_fpregset);
3881 i387_supply_fsave (regcache, regnum, fpregs);
3882 }
3883
3884 /* Collect register REGNUM from the register cache REGCACHE and store
3885 it in the buffer specified by FPREGS and LEN as described by the
3886 floating-point register set REGSET. If REGNUM is -1, do this for
3887 all registers in REGSET. */
3888
3889 static void
3890 i386_collect_fpregset (const struct regset *regset,
3891 const struct regcache *regcache,
3892 int regnum, void *fpregs, size_t len)
3893 {
3894 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3895 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3896
3897 if (len == I387_SIZEOF_FXSAVE)
3898 {
3899 i387_collect_fxsave (regcache, regnum, fpregs);
3900 return;
3901 }
3902
3903 gdb_assert (len >= tdep->sizeof_fpregset);
3904 i387_collect_fsave (regcache, regnum, fpregs);
3905 }
3906
3907 /* Register set definitions. */
3908
3909 const struct regset i386_gregset =
3910 {
3911 NULL, i386_supply_gregset, i386_collect_gregset
3912 };
3913
3914 const struct regset i386_fpregset =
3915 {
3916 NULL, i386_supply_fpregset, i386_collect_fpregset
3917 };
3918
3919 /* Default iterator over core file register note sections. */
3920
3921 void
3922 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3923 iterate_over_regset_sections_cb *cb,
3924 void *cb_data,
3925 const struct regcache *regcache)
3926 {
3927 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3928
3929 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3930 if (tdep->sizeof_fpregset)
3931 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3932 }
3933 \f
3934
3935 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3936
3937 CORE_ADDR
3938 i386_pe_skip_trampoline_code (struct frame_info *frame,
3939 CORE_ADDR pc, char *name)
3940 {
3941 struct gdbarch *gdbarch = get_frame_arch (frame);
3942 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3943
3944 /* jmp *(dest) */
3945 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3946 {
3947 unsigned long indirect =
3948 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3949 struct minimal_symbol *indsym =
3950 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3951 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3952
3953 if (symname)
3954 {
3955 if (startswith (symname, "__imp_")
3956 || startswith (symname, "_imp_"))
3957 return name ? 1 :
3958 read_memory_unsigned_integer (indirect, 4, byte_order);
3959 }
3960 }
3961 return 0; /* Not a trampoline. */
3962 }
3963 \f
3964
3965 /* Return whether the THIS_FRAME corresponds to a sigtramp
3966 routine. */
3967
3968 int
3969 i386_sigtramp_p (struct frame_info *this_frame)
3970 {
3971 CORE_ADDR pc = get_frame_pc (this_frame);
3972 const char *name;
3973
3974 find_pc_partial_function (pc, &name, NULL, NULL);
3975 return (name && strcmp ("_sigtramp", name) == 0);
3976 }
3977 \f
3978
3979 /* We have two flavours of disassembly. The machinery on this page
3980 deals with switching between those. */
3981
3982 static int
3983 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3984 {
3985 gdb_assert (disassembly_flavor == att_flavor
3986 || disassembly_flavor == intel_flavor);
3987
3988 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3989 constified, cast to prevent a compiler warning. */
3990 info->disassembler_options = (char *) disassembly_flavor;
3991
3992 return print_insn_i386 (pc, info);
3993 }
3994 \f
3995
3996 /* There are a few i386 architecture variants that differ only
3997 slightly from the generic i386 target. For now, we don't give them
3998 their own source file, but include them here. As a consequence,
3999 they'll always be included. */
4000
4001 /* System V Release 4 (SVR4). */
4002
4003 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4004 routine. */
4005
4006 static int
4007 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4008 {
4009 CORE_ADDR pc = get_frame_pc (this_frame);
4010 const char *name;
4011
4012 /* The origin of these symbols is currently unknown. */
4013 find_pc_partial_function (pc, &name, NULL, NULL);
4014 return (name && (strcmp ("_sigreturn", name) == 0
4015 || strcmp ("sigvechandler", name) == 0));
4016 }
4017
4018 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4019 address of the associated sigcontext (ucontext) structure. */
4020
4021 static CORE_ADDR
4022 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4023 {
4024 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4025 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4026 gdb_byte buf[4];
4027 CORE_ADDR sp;
4028
4029 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4030 sp = extract_unsigned_integer (buf, 4, byte_order);
4031
4032 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4033 }
4034
4035 \f
4036
4037 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4038 gdbarch.h. */
4039
4040 int
4041 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4042 {
4043 return (*s == '$' /* Literal number. */
4044 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4045 || (*s == '(' && s[1] == '%') /* Register indirection. */
4046 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4047 }
4048
4049 /* Helper function for i386_stap_parse_special_token.
4050
4051 This function parses operands of the form `-8+3+1(%rbp)', which
4052 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4053
4054 Return 1 if the operand was parsed successfully, zero
4055 otherwise. */
4056
4057 static int
4058 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4059 struct stap_parse_info *p)
4060 {
4061 const char *s = p->arg;
4062
4063 if (isdigit (*s) || *s == '-' || *s == '+')
4064 {
4065 int got_minus[3];
4066 int i;
4067 long displacements[3];
4068 const char *start;
4069 char *regname;
4070 int len;
4071 struct stoken str;
4072 char *endp;
4073
4074 got_minus[0] = 0;
4075 if (*s == '+')
4076 ++s;
4077 else if (*s == '-')
4078 {
4079 ++s;
4080 got_minus[0] = 1;
4081 }
4082
4083 if (!isdigit ((unsigned char) *s))
4084 return 0;
4085
4086 displacements[0] = strtol (s, &endp, 10);
4087 s = endp;
4088
4089 if (*s != '+' && *s != '-')
4090 {
4091 /* We are not dealing with a triplet. */
4092 return 0;
4093 }
4094
4095 got_minus[1] = 0;
4096 if (*s == '+')
4097 ++s;
4098 else
4099 {
4100 ++s;
4101 got_minus[1] = 1;
4102 }
4103
4104 if (!isdigit ((unsigned char) *s))
4105 return 0;
4106
4107 displacements[1] = strtol (s, &endp, 10);
4108 s = endp;
4109
4110 if (*s != '+' && *s != '-')
4111 {
4112 /* We are not dealing with a triplet. */
4113 return 0;
4114 }
4115
4116 got_minus[2] = 0;
4117 if (*s == '+')
4118 ++s;
4119 else
4120 {
4121 ++s;
4122 got_minus[2] = 1;
4123 }
4124
4125 if (!isdigit ((unsigned char) *s))
4126 return 0;
4127
4128 displacements[2] = strtol (s, &endp, 10);
4129 s = endp;
4130
4131 if (*s != '(' || s[1] != '%')
4132 return 0;
4133
4134 s += 2;
4135 start = s;
4136
4137 while (isalnum (*s))
4138 ++s;
4139
4140 if (*s++ != ')')
4141 return 0;
4142
4143 len = s - start - 1;
4144 regname = (char *) alloca (len + 1);
4145
4146 strncpy (regname, start, len);
4147 regname[len] = '\0';
4148
4149 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4150 error (_("Invalid register name `%s' on expression `%s'."),
4151 regname, p->saved_arg);
4152
4153 for (i = 0; i < 3; i++)
4154 {
4155 write_exp_elt_opcode (&p->pstate, OP_LONG);
4156 write_exp_elt_type
4157 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4158 write_exp_elt_longcst (&p->pstate, displacements[i]);
4159 write_exp_elt_opcode (&p->pstate, OP_LONG);
4160 if (got_minus[i])
4161 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4162 }
4163
4164 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4165 str.ptr = regname;
4166 str.length = len;
4167 write_exp_string (&p->pstate, str);
4168 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4169
4170 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4171 write_exp_elt_type (&p->pstate,
4172 builtin_type (gdbarch)->builtin_data_ptr);
4173 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4174
4175 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4176 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4177 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4178
4179 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4180 write_exp_elt_type (&p->pstate,
4181 lookup_pointer_type (p->arg_type));
4182 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4183
4184 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4185
4186 p->arg = s;
4187
4188 return 1;
4189 }
4190
4191 return 0;
4192 }
4193
4194 /* Helper function for i386_stap_parse_special_token.
4195
4196 This function parses operands of the form `register base +
4197 (register index * size) + offset', as represented in
4198 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4199
4200 Return 1 if the operand was parsed successfully, zero
4201 otherwise. */
4202
4203 static int
4204 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4205 struct stap_parse_info *p)
4206 {
4207 const char *s = p->arg;
4208
4209 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4210 {
4211 int offset_minus = 0;
4212 long offset = 0;
4213 int size_minus = 0;
4214 long size = 0;
4215 const char *start;
4216 char *base;
4217 int len_base;
4218 char *index;
4219 int len_index;
4220 struct stoken base_token, index_token;
4221
4222 if (*s == '+')
4223 ++s;
4224 else if (*s == '-')
4225 {
4226 ++s;
4227 offset_minus = 1;
4228 }
4229
4230 if (offset_minus && !isdigit (*s))
4231 return 0;
4232
4233 if (isdigit (*s))
4234 {
4235 char *endp;
4236
4237 offset = strtol (s, &endp, 10);
4238 s = endp;
4239 }
4240
4241 if (*s != '(' || s[1] != '%')
4242 return 0;
4243
4244 s += 2;
4245 start = s;
4246
4247 while (isalnum (*s))
4248 ++s;
4249
4250 if (*s != ',' || s[1] != '%')
4251 return 0;
4252
4253 len_base = s - start;
4254 base = (char *) alloca (len_base + 1);
4255 strncpy (base, start, len_base);
4256 base[len_base] = '\0';
4257
4258 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4259 error (_("Invalid register name `%s' on expression `%s'."),
4260 base, p->saved_arg);
4261
4262 s += 2;
4263 start = s;
4264
4265 while (isalnum (*s))
4266 ++s;
4267
4268 len_index = s - start;
4269 index = (char *) alloca (len_index + 1);
4270 strncpy (index, start, len_index);
4271 index[len_index] = '\0';
4272
4273 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4274 error (_("Invalid register name `%s' on expression `%s'."),
4275 index, p->saved_arg);
4276
4277 if (*s != ',' && *s != ')')
4278 return 0;
4279
4280 if (*s == ',')
4281 {
4282 char *endp;
4283
4284 ++s;
4285 if (*s == '+')
4286 ++s;
4287 else if (*s == '-')
4288 {
4289 ++s;
4290 size_minus = 1;
4291 }
4292
4293 size = strtol (s, &endp, 10);
4294 s = endp;
4295
4296 if (*s != ')')
4297 return 0;
4298 }
4299
4300 ++s;
4301
4302 if (offset)
4303 {
4304 write_exp_elt_opcode (&p->pstate, OP_LONG);
4305 write_exp_elt_type (&p->pstate,
4306 builtin_type (gdbarch)->builtin_long);
4307 write_exp_elt_longcst (&p->pstate, offset);
4308 write_exp_elt_opcode (&p->pstate, OP_LONG);
4309 if (offset_minus)
4310 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4311 }
4312
4313 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4314 base_token.ptr = base;
4315 base_token.length = len_base;
4316 write_exp_string (&p->pstate, base_token);
4317 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4318
4319 if (offset)
4320 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4321
4322 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4323 index_token.ptr = index;
4324 index_token.length = len_index;
4325 write_exp_string (&p->pstate, index_token);
4326 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4327
4328 if (size)
4329 {
4330 write_exp_elt_opcode (&p->pstate, OP_LONG);
4331 write_exp_elt_type (&p->pstate,
4332 builtin_type (gdbarch)->builtin_long);
4333 write_exp_elt_longcst (&p->pstate, size);
4334 write_exp_elt_opcode (&p->pstate, OP_LONG);
4335 if (size_minus)
4336 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4337 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4338 }
4339
4340 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4341
4342 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4343 write_exp_elt_type (&p->pstate,
4344 lookup_pointer_type (p->arg_type));
4345 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4346
4347 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4348
4349 p->arg = s;
4350
4351 return 1;
4352 }
4353
4354 return 0;
4355 }
4356
4357 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4358 gdbarch.h. */
4359
4360 int
4361 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4362 struct stap_parse_info *p)
4363 {
4364 /* In order to parse special tokens, we use a state-machine that go
4365 through every known token and try to get a match. */
4366 enum
4367 {
4368 TRIPLET,
4369 THREE_ARG_DISPLACEMENT,
4370 DONE
4371 };
4372 int current_state;
4373
4374 current_state = TRIPLET;
4375
4376 /* The special tokens to be parsed here are:
4377
4378 - `register base + (register index * size) + offset', as represented
4379 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4380
4381 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4382 `*(-8 + 3 - 1 + (void *) $eax)'. */
4383
4384 while (current_state != DONE)
4385 {
4386 switch (current_state)
4387 {
4388 case TRIPLET:
4389 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4390 return 1;
4391 break;
4392
4393 case THREE_ARG_DISPLACEMENT:
4394 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4395 return 1;
4396 break;
4397 }
4398
4399 /* Advancing to the next state. */
4400 ++current_state;
4401 }
4402
4403 return 0;
4404 }
4405
4406 \f
4407
4408 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4409 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4410
4411 static const char *
4412 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4413 {
4414 return "(x86_64|i.86)";
4415 }
4416
4417 \f
4418
4419 /* Generic ELF. */
4420
4421 void
4422 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4423 {
4424 static const char *const stap_integer_prefixes[] = { "$", NULL };
4425 static const char *const stap_register_prefixes[] = { "%", NULL };
4426 static const char *const stap_register_indirection_prefixes[] = { "(",
4427 NULL };
4428 static const char *const stap_register_indirection_suffixes[] = { ")",
4429 NULL };
4430
4431 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4432 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4433
4434 /* Registering SystemTap handlers. */
4435 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4436 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4437 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4438 stap_register_indirection_prefixes);
4439 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4440 stap_register_indirection_suffixes);
4441 set_gdbarch_stap_is_single_operand (gdbarch,
4442 i386_stap_is_single_operand);
4443 set_gdbarch_stap_parse_special_token (gdbarch,
4444 i386_stap_parse_special_token);
4445
4446 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4447 }
4448
4449 /* System V Release 4 (SVR4). */
4450
4451 void
4452 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4453 {
4454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4455
4456 /* System V Release 4 uses ELF. */
4457 i386_elf_init_abi (info, gdbarch);
4458
4459 /* System V Release 4 has shared libraries. */
4460 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4461
4462 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4463 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4464 tdep->sc_pc_offset = 36 + 14 * 4;
4465 tdep->sc_sp_offset = 36 + 17 * 4;
4466
4467 tdep->jb_pc_offset = 20;
4468 }
4469
4470 /* DJGPP. */
4471
4472 static void
4473 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4474 {
4475 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4476
4477 /* DJGPP doesn't have any special frames for signal handlers. */
4478 tdep->sigtramp_p = NULL;
4479
4480 tdep->jb_pc_offset = 36;
4481
4482 /* DJGPP does not support the SSE registers. */
4483 if (! tdesc_has_registers (info.target_desc))
4484 tdep->tdesc = tdesc_i386_mmx;
4485
4486 /* Native compiler is GCC, which uses the SVR4 register numbering
4487 even in COFF and STABS. See the comment in i386_gdbarch_init,
4488 before the calls to set_gdbarch_stab_reg_to_regnum and
4489 set_gdbarch_sdb_reg_to_regnum. */
4490 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4491 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4492
4493 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4494
4495 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4496 }
4497 \f
4498
4499 /* i386 register groups. In addition to the normal groups, add "mmx"
4500 and "sse". */
4501
4502 static struct reggroup *i386_sse_reggroup;
4503 static struct reggroup *i386_mmx_reggroup;
4504
4505 static void
4506 i386_init_reggroups (void)
4507 {
4508 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4509 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4510 }
4511
4512 static void
4513 i386_add_reggroups (struct gdbarch *gdbarch)
4514 {
4515 reggroup_add (gdbarch, i386_sse_reggroup);
4516 reggroup_add (gdbarch, i386_mmx_reggroup);
4517 reggroup_add (gdbarch, general_reggroup);
4518 reggroup_add (gdbarch, float_reggroup);
4519 reggroup_add (gdbarch, all_reggroup);
4520 reggroup_add (gdbarch, save_reggroup);
4521 reggroup_add (gdbarch, restore_reggroup);
4522 reggroup_add (gdbarch, vector_reggroup);
4523 reggroup_add (gdbarch, system_reggroup);
4524 }
4525
4526 int
4527 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4528 struct reggroup *group)
4529 {
4530 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4531 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4532 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4533 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4534 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4535 avx512_p, avx_p, sse_p;
4536
4537 /* Don't include pseudo registers, except for MMX, in any register
4538 groups. */
4539 if (i386_byte_regnum_p (gdbarch, regnum))
4540 return 0;
4541
4542 if (i386_word_regnum_p (gdbarch, regnum))
4543 return 0;
4544
4545 if (i386_dword_regnum_p (gdbarch, regnum))
4546 return 0;
4547
4548 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4549 if (group == i386_mmx_reggroup)
4550 return mmx_regnum_p;
4551
4552 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4553 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4554 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4555 if (group == i386_sse_reggroup)
4556 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4557
4558 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4559 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4560 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4561
4562 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4563 == X86_XSTATE_AVX512_MASK);
4564 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4565 == X86_XSTATE_AVX_MASK) && !avx512_p;
4566 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4567 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4568
4569 if (group == vector_reggroup)
4570 return (mmx_regnum_p
4571 || (zmm_regnum_p && avx512_p)
4572 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4573 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4574 || mxcsr_regnum_p);
4575
4576 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4577 || i386_fpc_regnum_p (gdbarch, regnum));
4578 if (group == float_reggroup)
4579 return fp_regnum_p;
4580
4581 /* For "info reg all", don't include upper YMM registers nor XMM
4582 registers when AVX is supported. */
4583 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4584 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4585 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4586 if (group == all_reggroup
4587 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4588 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4589 || ymmh_regnum_p
4590 || ymmh_avx512_regnum_p
4591 || zmmh_regnum_p))
4592 return 0;
4593
4594 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4595 if (group == all_reggroup
4596 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4597 return bnd_regnum_p;
4598
4599 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4600 if (group == all_reggroup
4601 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4602 return 0;
4603
4604 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4605 if (group == all_reggroup
4606 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4607 return mpx_ctrl_regnum_p;
4608
4609 if (group == general_reggroup)
4610 return (!fp_regnum_p
4611 && !mmx_regnum_p
4612 && !mxcsr_regnum_p
4613 && !xmm_regnum_p
4614 && !xmm_avx512_regnum_p
4615 && !ymm_regnum_p
4616 && !ymmh_regnum_p
4617 && !ymm_avx512_regnum_p
4618 && !ymmh_avx512_regnum_p
4619 && !bndr_regnum_p
4620 && !bnd_regnum_p
4621 && !mpx_ctrl_regnum_p
4622 && !zmm_regnum_p
4623 && !zmmh_regnum_p);
4624
4625 return default_register_reggroup_p (gdbarch, regnum, group);
4626 }
4627 \f
4628
4629 /* Get the ARGIth function argument for the current function. */
4630
4631 static CORE_ADDR
4632 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4633 struct type *type)
4634 {
4635 struct gdbarch *gdbarch = get_frame_arch (frame);
4636 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4637 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4638 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4639 }
4640
4641 #define PREFIX_REPZ 0x01
4642 #define PREFIX_REPNZ 0x02
4643 #define PREFIX_LOCK 0x04
4644 #define PREFIX_DATA 0x08
4645 #define PREFIX_ADDR 0x10
4646
4647 /* operand size */
4648 enum
4649 {
4650 OT_BYTE = 0,
4651 OT_WORD,
4652 OT_LONG,
4653 OT_QUAD,
4654 OT_DQUAD,
4655 };
4656
4657 /* i386 arith/logic operations */
4658 enum
4659 {
4660 OP_ADDL,
4661 OP_ORL,
4662 OP_ADCL,
4663 OP_SBBL,
4664 OP_ANDL,
4665 OP_SUBL,
4666 OP_XORL,
4667 OP_CMPL,
4668 };
4669
4670 struct i386_record_s
4671 {
4672 struct gdbarch *gdbarch;
4673 struct regcache *regcache;
4674 CORE_ADDR orig_addr;
4675 CORE_ADDR addr;
4676 int aflag;
4677 int dflag;
4678 int override;
4679 uint8_t modrm;
4680 uint8_t mod, reg, rm;
4681 int ot;
4682 uint8_t rex_x;
4683 uint8_t rex_b;
4684 int rip_offset;
4685 int popl_esp_hack;
4686 const int *regmap;
4687 };
4688
4689 /* Parse the "modrm" part of the memory address irp->addr points at.
4690 Returns -1 if something goes wrong, 0 otherwise. */
4691
4692 static int
4693 i386_record_modrm (struct i386_record_s *irp)
4694 {
4695 struct gdbarch *gdbarch = irp->gdbarch;
4696
4697 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4698 return -1;
4699
4700 irp->addr++;
4701 irp->mod = (irp->modrm >> 6) & 3;
4702 irp->reg = (irp->modrm >> 3) & 7;
4703 irp->rm = irp->modrm & 7;
4704
4705 return 0;
4706 }
4707
4708 /* Extract the memory address that the current instruction writes to,
4709 and return it in *ADDR. Return -1 if something goes wrong. */
4710
4711 static int
4712 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4713 {
4714 struct gdbarch *gdbarch = irp->gdbarch;
4715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4716 gdb_byte buf[4];
4717 ULONGEST offset64;
4718
4719 *addr = 0;
4720 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4721 {
4722 /* 32/64 bits */
4723 int havesib = 0;
4724 uint8_t scale = 0;
4725 uint8_t byte;
4726 uint8_t index = 0;
4727 uint8_t base = irp->rm;
4728
4729 if (base == 4)
4730 {
4731 havesib = 1;
4732 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4733 return -1;
4734 irp->addr++;
4735 scale = (byte >> 6) & 3;
4736 index = ((byte >> 3) & 7) | irp->rex_x;
4737 base = (byte & 7);
4738 }
4739 base |= irp->rex_b;
4740
4741 switch (irp->mod)
4742 {
4743 case 0:
4744 if ((base & 7) == 5)
4745 {
4746 base = 0xff;
4747 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4748 return -1;
4749 irp->addr += 4;
4750 *addr = extract_signed_integer (buf, 4, byte_order);
4751 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4752 *addr += irp->addr + irp->rip_offset;
4753 }
4754 break;
4755 case 1:
4756 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4757 return -1;
4758 irp->addr++;
4759 *addr = (int8_t) buf[0];
4760 break;
4761 case 2:
4762 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4763 return -1;
4764 *addr = extract_signed_integer (buf, 4, byte_order);
4765 irp->addr += 4;
4766 break;
4767 }
4768
4769 offset64 = 0;
4770 if (base != 0xff)
4771 {
4772 if (base == 4 && irp->popl_esp_hack)
4773 *addr += irp->popl_esp_hack;
4774 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4775 &offset64);
4776 }
4777 if (irp->aflag == 2)
4778 {
4779 *addr += offset64;
4780 }
4781 else
4782 *addr = (uint32_t) (offset64 + *addr);
4783
4784 if (havesib && (index != 4 || scale != 0))
4785 {
4786 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4787 &offset64);
4788 if (irp->aflag == 2)
4789 *addr += offset64 << scale;
4790 else
4791 *addr = (uint32_t) (*addr + (offset64 << scale));
4792 }
4793
4794 if (!irp->aflag)
4795 {
4796 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4797 address from 32-bit to 64-bit. */
4798 *addr = (uint32_t) *addr;
4799 }
4800 }
4801 else
4802 {
4803 /* 16 bits */
4804 switch (irp->mod)
4805 {
4806 case 0:
4807 if (irp->rm == 6)
4808 {
4809 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4810 return -1;
4811 irp->addr += 2;
4812 *addr = extract_signed_integer (buf, 2, byte_order);
4813 irp->rm = 0;
4814 goto no_rm;
4815 }
4816 break;
4817 case 1:
4818 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4819 return -1;
4820 irp->addr++;
4821 *addr = (int8_t) buf[0];
4822 break;
4823 case 2:
4824 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4825 return -1;
4826 irp->addr += 2;
4827 *addr = extract_signed_integer (buf, 2, byte_order);
4828 break;
4829 }
4830
4831 switch (irp->rm)
4832 {
4833 case 0:
4834 regcache_raw_read_unsigned (irp->regcache,
4835 irp->regmap[X86_RECORD_REBX_REGNUM],
4836 &offset64);
4837 *addr = (uint32_t) (*addr + offset64);
4838 regcache_raw_read_unsigned (irp->regcache,
4839 irp->regmap[X86_RECORD_RESI_REGNUM],
4840 &offset64);
4841 *addr = (uint32_t) (*addr + offset64);
4842 break;
4843 case 1:
4844 regcache_raw_read_unsigned (irp->regcache,
4845 irp->regmap[X86_RECORD_REBX_REGNUM],
4846 &offset64);
4847 *addr = (uint32_t) (*addr + offset64);
4848 regcache_raw_read_unsigned (irp->regcache,
4849 irp->regmap[X86_RECORD_REDI_REGNUM],
4850 &offset64);
4851 *addr = (uint32_t) (*addr + offset64);
4852 break;
4853 case 2:
4854 regcache_raw_read_unsigned (irp->regcache,
4855 irp->regmap[X86_RECORD_REBP_REGNUM],
4856 &offset64);
4857 *addr = (uint32_t) (*addr + offset64);
4858 regcache_raw_read_unsigned (irp->regcache,
4859 irp->regmap[X86_RECORD_RESI_REGNUM],
4860 &offset64);
4861 *addr = (uint32_t) (*addr + offset64);
4862 break;
4863 case 3:
4864 regcache_raw_read_unsigned (irp->regcache,
4865 irp->regmap[X86_RECORD_REBP_REGNUM],
4866 &offset64);
4867 *addr = (uint32_t) (*addr + offset64);
4868 regcache_raw_read_unsigned (irp->regcache,
4869 irp->regmap[X86_RECORD_REDI_REGNUM],
4870 &offset64);
4871 *addr = (uint32_t) (*addr + offset64);
4872 break;
4873 case 4:
4874 regcache_raw_read_unsigned (irp->regcache,
4875 irp->regmap[X86_RECORD_RESI_REGNUM],
4876 &offset64);
4877 *addr = (uint32_t) (*addr + offset64);
4878 break;
4879 case 5:
4880 regcache_raw_read_unsigned (irp->regcache,
4881 irp->regmap[X86_RECORD_REDI_REGNUM],
4882 &offset64);
4883 *addr = (uint32_t) (*addr + offset64);
4884 break;
4885 case 6:
4886 regcache_raw_read_unsigned (irp->regcache,
4887 irp->regmap[X86_RECORD_REBP_REGNUM],
4888 &offset64);
4889 *addr = (uint32_t) (*addr + offset64);
4890 break;
4891 case 7:
4892 regcache_raw_read_unsigned (irp->regcache,
4893 irp->regmap[X86_RECORD_REBX_REGNUM],
4894 &offset64);
4895 *addr = (uint32_t) (*addr + offset64);
4896 break;
4897 }
4898 *addr &= 0xffff;
4899 }
4900
4901 no_rm:
4902 return 0;
4903 }
4904
4905 /* Record the address and contents of the memory that will be changed
4906 by the current instruction. Return -1 if something goes wrong, 0
4907 otherwise. */
4908
4909 static int
4910 i386_record_lea_modrm (struct i386_record_s *irp)
4911 {
4912 struct gdbarch *gdbarch = irp->gdbarch;
4913 uint64_t addr;
4914
4915 if (irp->override >= 0)
4916 {
4917 if (record_full_memory_query)
4918 {
4919 if (yquery (_("\
4920 Process record ignores the memory change of instruction at address %s\n\
4921 because it can't get the value of the segment register.\n\
4922 Do you want to stop the program?"),
4923 paddress (gdbarch, irp->orig_addr)))
4924 return -1;
4925 }
4926
4927 return 0;
4928 }
4929
4930 if (i386_record_lea_modrm_addr (irp, &addr))
4931 return -1;
4932
4933 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4934 return -1;
4935
4936 return 0;
4937 }
4938
4939 /* Record the effects of a push operation. Return -1 if something
4940 goes wrong, 0 otherwise. */
4941
4942 static int
4943 i386_record_push (struct i386_record_s *irp, int size)
4944 {
4945 ULONGEST addr;
4946
4947 if (record_full_arch_list_add_reg (irp->regcache,
4948 irp->regmap[X86_RECORD_RESP_REGNUM]))
4949 return -1;
4950 regcache_raw_read_unsigned (irp->regcache,
4951 irp->regmap[X86_RECORD_RESP_REGNUM],
4952 &addr);
4953 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4954 return -1;
4955
4956 return 0;
4957 }
4958
4959
4960 /* Defines contents to record. */
4961 #define I386_SAVE_FPU_REGS 0xfffd
4962 #define I386_SAVE_FPU_ENV 0xfffe
4963 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4964
4965 /* Record the values of the floating point registers which will be
4966 changed by the current instruction. Returns -1 if something is
4967 wrong, 0 otherwise. */
4968
4969 static int i386_record_floats (struct gdbarch *gdbarch,
4970 struct i386_record_s *ir,
4971 uint32_t iregnum)
4972 {
4973 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4974 int i;
4975
4976 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4977 happen. Currently we store st0-st7 registers, but we need not store all
4978 registers all the time, in future we use ftag register and record only
4979 those who are not marked as an empty. */
4980
4981 if (I386_SAVE_FPU_REGS == iregnum)
4982 {
4983 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4984 {
4985 if (record_full_arch_list_add_reg (ir->regcache, i))
4986 return -1;
4987 }
4988 }
4989 else if (I386_SAVE_FPU_ENV == iregnum)
4990 {
4991 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4992 {
4993 if (record_full_arch_list_add_reg (ir->regcache, i))
4994 return -1;
4995 }
4996 }
4997 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4998 {
4999 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5000 {
5001 if (record_full_arch_list_add_reg (ir->regcache, i))
5002 return -1;
5003 }
5004 }
5005 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5006 (iregnum <= I387_FOP_REGNUM (tdep)))
5007 {
5008 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5009 return -1;
5010 }
5011 else
5012 {
5013 /* Parameter error. */
5014 return -1;
5015 }
5016 if(I386_SAVE_FPU_ENV != iregnum)
5017 {
5018 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5019 {
5020 if (record_full_arch_list_add_reg (ir->regcache, i))
5021 return -1;
5022 }
5023 }
5024 return 0;
5025 }
5026
5027 /* Parse the current instruction, and record the values of the
5028 registers and memory that will be changed by the current
5029 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5030
5031 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5032 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5033
5034 int
5035 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5036 CORE_ADDR input_addr)
5037 {
5038 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5039 int prefixes = 0;
5040 int regnum = 0;
5041 uint32_t opcode;
5042 uint8_t opcode8;
5043 ULONGEST addr;
5044 gdb_byte buf[MAX_REGISTER_SIZE];
5045 struct i386_record_s ir;
5046 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5047 uint8_t rex_w = -1;
5048 uint8_t rex_r = 0;
5049
5050 memset (&ir, 0, sizeof (struct i386_record_s));
5051 ir.regcache = regcache;
5052 ir.addr = input_addr;
5053 ir.orig_addr = input_addr;
5054 ir.aflag = 1;
5055 ir.dflag = 1;
5056 ir.override = -1;
5057 ir.popl_esp_hack = 0;
5058 ir.regmap = tdep->record_regmap;
5059 ir.gdbarch = gdbarch;
5060
5061 if (record_debug > 1)
5062 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5063 "addr = %s\n",
5064 paddress (gdbarch, ir.addr));
5065
5066 /* prefixes */
5067 while (1)
5068 {
5069 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5070 return -1;
5071 ir.addr++;
5072 switch (opcode8) /* Instruction prefixes */
5073 {
5074 case REPE_PREFIX_OPCODE:
5075 prefixes |= PREFIX_REPZ;
5076 break;
5077 case REPNE_PREFIX_OPCODE:
5078 prefixes |= PREFIX_REPNZ;
5079 break;
5080 case LOCK_PREFIX_OPCODE:
5081 prefixes |= PREFIX_LOCK;
5082 break;
5083 case CS_PREFIX_OPCODE:
5084 ir.override = X86_RECORD_CS_REGNUM;
5085 break;
5086 case SS_PREFIX_OPCODE:
5087 ir.override = X86_RECORD_SS_REGNUM;
5088 break;
5089 case DS_PREFIX_OPCODE:
5090 ir.override = X86_RECORD_DS_REGNUM;
5091 break;
5092 case ES_PREFIX_OPCODE:
5093 ir.override = X86_RECORD_ES_REGNUM;
5094 break;
5095 case FS_PREFIX_OPCODE:
5096 ir.override = X86_RECORD_FS_REGNUM;
5097 break;
5098 case GS_PREFIX_OPCODE:
5099 ir.override = X86_RECORD_GS_REGNUM;
5100 break;
5101 case DATA_PREFIX_OPCODE:
5102 prefixes |= PREFIX_DATA;
5103 break;
5104 case ADDR_PREFIX_OPCODE:
5105 prefixes |= PREFIX_ADDR;
5106 break;
5107 case 0x40: /* i386 inc %eax */
5108 case 0x41: /* i386 inc %ecx */
5109 case 0x42: /* i386 inc %edx */
5110 case 0x43: /* i386 inc %ebx */
5111 case 0x44: /* i386 inc %esp */
5112 case 0x45: /* i386 inc %ebp */
5113 case 0x46: /* i386 inc %esi */
5114 case 0x47: /* i386 inc %edi */
5115 case 0x48: /* i386 dec %eax */
5116 case 0x49: /* i386 dec %ecx */
5117 case 0x4a: /* i386 dec %edx */
5118 case 0x4b: /* i386 dec %ebx */
5119 case 0x4c: /* i386 dec %esp */
5120 case 0x4d: /* i386 dec %ebp */
5121 case 0x4e: /* i386 dec %esi */
5122 case 0x4f: /* i386 dec %edi */
5123 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5124 {
5125 /* REX */
5126 rex_w = (opcode8 >> 3) & 1;
5127 rex_r = (opcode8 & 0x4) << 1;
5128 ir.rex_x = (opcode8 & 0x2) << 2;
5129 ir.rex_b = (opcode8 & 0x1) << 3;
5130 }
5131 else /* 32 bit target */
5132 goto out_prefixes;
5133 break;
5134 default:
5135 goto out_prefixes;
5136 break;
5137 }
5138 }
5139 out_prefixes:
5140 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5141 {
5142 ir.dflag = 2;
5143 }
5144 else
5145 {
5146 if (prefixes & PREFIX_DATA)
5147 ir.dflag ^= 1;
5148 }
5149 if (prefixes & PREFIX_ADDR)
5150 ir.aflag ^= 1;
5151 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5152 ir.aflag = 2;
5153
5154 /* Now check op code. */
5155 opcode = (uint32_t) opcode8;
5156 reswitch:
5157 switch (opcode)
5158 {
5159 case 0x0f:
5160 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5161 return -1;
5162 ir.addr++;
5163 opcode = (uint32_t) opcode8 | 0x0f00;
5164 goto reswitch;
5165 break;
5166
5167 case 0x00: /* arith & logic */
5168 case 0x01:
5169 case 0x02:
5170 case 0x03:
5171 case 0x04:
5172 case 0x05:
5173 case 0x08:
5174 case 0x09:
5175 case 0x0a:
5176 case 0x0b:
5177 case 0x0c:
5178 case 0x0d:
5179 case 0x10:
5180 case 0x11:
5181 case 0x12:
5182 case 0x13:
5183 case 0x14:
5184 case 0x15:
5185 case 0x18:
5186 case 0x19:
5187 case 0x1a:
5188 case 0x1b:
5189 case 0x1c:
5190 case 0x1d:
5191 case 0x20:
5192 case 0x21:
5193 case 0x22:
5194 case 0x23:
5195 case 0x24:
5196 case 0x25:
5197 case 0x28:
5198 case 0x29:
5199 case 0x2a:
5200 case 0x2b:
5201 case 0x2c:
5202 case 0x2d:
5203 case 0x30:
5204 case 0x31:
5205 case 0x32:
5206 case 0x33:
5207 case 0x34:
5208 case 0x35:
5209 case 0x38:
5210 case 0x39:
5211 case 0x3a:
5212 case 0x3b:
5213 case 0x3c:
5214 case 0x3d:
5215 if (((opcode >> 3) & 7) != OP_CMPL)
5216 {
5217 if ((opcode & 1) == 0)
5218 ir.ot = OT_BYTE;
5219 else
5220 ir.ot = ir.dflag + OT_WORD;
5221
5222 switch ((opcode >> 1) & 3)
5223 {
5224 case 0: /* OP Ev, Gv */
5225 if (i386_record_modrm (&ir))
5226 return -1;
5227 if (ir.mod != 3)
5228 {
5229 if (i386_record_lea_modrm (&ir))
5230 return -1;
5231 }
5232 else
5233 {
5234 ir.rm |= ir.rex_b;
5235 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5236 ir.rm &= 0x3;
5237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5238 }
5239 break;
5240 case 1: /* OP Gv, Ev */
5241 if (i386_record_modrm (&ir))
5242 return -1;
5243 ir.reg |= rex_r;
5244 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5245 ir.reg &= 0x3;
5246 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5247 break;
5248 case 2: /* OP A, Iv */
5249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5250 break;
5251 }
5252 }
5253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5254 break;
5255
5256 case 0x80: /* GRP1 */
5257 case 0x81:
5258 case 0x82:
5259 case 0x83:
5260 if (i386_record_modrm (&ir))
5261 return -1;
5262
5263 if (ir.reg != OP_CMPL)
5264 {
5265 if ((opcode & 1) == 0)
5266 ir.ot = OT_BYTE;
5267 else
5268 ir.ot = ir.dflag + OT_WORD;
5269
5270 if (ir.mod != 3)
5271 {
5272 if (opcode == 0x83)
5273 ir.rip_offset = 1;
5274 else
5275 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5276 if (i386_record_lea_modrm (&ir))
5277 return -1;
5278 }
5279 else
5280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5281 }
5282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5283 break;
5284
5285 case 0x40: /* inc */
5286 case 0x41:
5287 case 0x42:
5288 case 0x43:
5289 case 0x44:
5290 case 0x45:
5291 case 0x46:
5292 case 0x47:
5293
5294 case 0x48: /* dec */
5295 case 0x49:
5296 case 0x4a:
5297 case 0x4b:
5298 case 0x4c:
5299 case 0x4d:
5300 case 0x4e:
5301 case 0x4f:
5302
5303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5305 break;
5306
5307 case 0xf6: /* GRP3 */
5308 case 0xf7:
5309 if ((opcode & 1) == 0)
5310 ir.ot = OT_BYTE;
5311 else
5312 ir.ot = ir.dflag + OT_WORD;
5313 if (i386_record_modrm (&ir))
5314 return -1;
5315
5316 if (ir.mod != 3 && ir.reg == 0)
5317 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5318
5319 switch (ir.reg)
5320 {
5321 case 0: /* test */
5322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5323 break;
5324 case 2: /* not */
5325 case 3: /* neg */
5326 if (ir.mod != 3)
5327 {
5328 if (i386_record_lea_modrm (&ir))
5329 return -1;
5330 }
5331 else
5332 {
5333 ir.rm |= ir.rex_b;
5334 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5335 ir.rm &= 0x3;
5336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5337 }
5338 if (ir.reg == 3) /* neg */
5339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5340 break;
5341 case 4: /* mul */
5342 case 5: /* imul */
5343 case 6: /* div */
5344 case 7: /* idiv */
5345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5346 if (ir.ot != OT_BYTE)
5347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5349 break;
5350 default:
5351 ir.addr -= 2;
5352 opcode = opcode << 8 | ir.modrm;
5353 goto no_support;
5354 break;
5355 }
5356 break;
5357
5358 case 0xfe: /* GRP4 */
5359 case 0xff: /* GRP5 */
5360 if (i386_record_modrm (&ir))
5361 return -1;
5362 if (ir.reg >= 2 && opcode == 0xfe)
5363 {
5364 ir.addr -= 2;
5365 opcode = opcode << 8 | ir.modrm;
5366 goto no_support;
5367 }
5368 switch (ir.reg)
5369 {
5370 case 0: /* inc */
5371 case 1: /* dec */
5372 if ((opcode & 1) == 0)
5373 ir.ot = OT_BYTE;
5374 else
5375 ir.ot = ir.dflag + OT_WORD;
5376 if (ir.mod != 3)
5377 {
5378 if (i386_record_lea_modrm (&ir))
5379 return -1;
5380 }
5381 else
5382 {
5383 ir.rm |= ir.rex_b;
5384 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5385 ir.rm &= 0x3;
5386 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5387 }
5388 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5389 break;
5390 case 2: /* call */
5391 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5392 ir.dflag = 2;
5393 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5394 return -1;
5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5396 break;
5397 case 3: /* lcall */
5398 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5399 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5400 return -1;
5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5402 break;
5403 case 4: /* jmp */
5404 case 5: /* ljmp */
5405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5406 break;
5407 case 6: /* push */
5408 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5409 ir.dflag = 2;
5410 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5411 return -1;
5412 break;
5413 default:
5414 ir.addr -= 2;
5415 opcode = opcode << 8 | ir.modrm;
5416 goto no_support;
5417 break;
5418 }
5419 break;
5420
5421 case 0x84: /* test */
5422 case 0x85:
5423 case 0xa8:
5424 case 0xa9:
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5426 break;
5427
5428 case 0x98: /* CWDE/CBW */
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5430 break;
5431
5432 case 0x99: /* CDQ/CWD */
5433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5434 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5435 break;
5436
5437 case 0x0faf: /* imul */
5438 case 0x69:
5439 case 0x6b:
5440 ir.ot = ir.dflag + OT_WORD;
5441 if (i386_record_modrm (&ir))
5442 return -1;
5443 if (opcode == 0x69)
5444 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5445 else if (opcode == 0x6b)
5446 ir.rip_offset = 1;
5447 ir.reg |= rex_r;
5448 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5449 ir.reg &= 0x3;
5450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5451 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5452 break;
5453
5454 case 0x0fc0: /* xadd */
5455 case 0x0fc1:
5456 if ((opcode & 1) == 0)
5457 ir.ot = OT_BYTE;
5458 else
5459 ir.ot = ir.dflag + OT_WORD;
5460 if (i386_record_modrm (&ir))
5461 return -1;
5462 ir.reg |= rex_r;
5463 if (ir.mod == 3)
5464 {
5465 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5466 ir.reg &= 0x3;
5467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5468 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5469 ir.rm &= 0x3;
5470 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5471 }
5472 else
5473 {
5474 if (i386_record_lea_modrm (&ir))
5475 return -1;
5476 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5477 ir.reg &= 0x3;
5478 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5479 }
5480 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5481 break;
5482
5483 case 0x0fb0: /* cmpxchg */
5484 case 0x0fb1:
5485 if ((opcode & 1) == 0)
5486 ir.ot = OT_BYTE;
5487 else
5488 ir.ot = ir.dflag + OT_WORD;
5489 if (i386_record_modrm (&ir))
5490 return -1;
5491 if (ir.mod == 3)
5492 {
5493 ir.reg |= rex_r;
5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5495 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5496 ir.reg &= 0x3;
5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5498 }
5499 else
5500 {
5501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5502 if (i386_record_lea_modrm (&ir))
5503 return -1;
5504 }
5505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5506 break;
5507
5508 case 0x0fc7: /* cmpxchg8b */
5509 if (i386_record_modrm (&ir))
5510 return -1;
5511 if (ir.mod == 3)
5512 {
5513 ir.addr -= 2;
5514 opcode = opcode << 8 | ir.modrm;
5515 goto no_support;
5516 }
5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5519 if (i386_record_lea_modrm (&ir))
5520 return -1;
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5522 break;
5523
5524 case 0x50: /* push */
5525 case 0x51:
5526 case 0x52:
5527 case 0x53:
5528 case 0x54:
5529 case 0x55:
5530 case 0x56:
5531 case 0x57:
5532 case 0x68:
5533 case 0x6a:
5534 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5535 ir.dflag = 2;
5536 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5537 return -1;
5538 break;
5539
5540 case 0x06: /* push es */
5541 case 0x0e: /* push cs */
5542 case 0x16: /* push ss */
5543 case 0x1e: /* push ds */
5544 if (ir.regmap[X86_RECORD_R8_REGNUM])
5545 {
5546 ir.addr -= 1;
5547 goto no_support;
5548 }
5549 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5550 return -1;
5551 break;
5552
5553 case 0x0fa0: /* push fs */
5554 case 0x0fa8: /* push gs */
5555 if (ir.regmap[X86_RECORD_R8_REGNUM])
5556 {
5557 ir.addr -= 2;
5558 goto no_support;
5559 }
5560 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5561 return -1;
5562 break;
5563
5564 case 0x60: /* pusha */
5565 if (ir.regmap[X86_RECORD_R8_REGNUM])
5566 {
5567 ir.addr -= 1;
5568 goto no_support;
5569 }
5570 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5571 return -1;
5572 break;
5573
5574 case 0x58: /* pop */
5575 case 0x59:
5576 case 0x5a:
5577 case 0x5b:
5578 case 0x5c:
5579 case 0x5d:
5580 case 0x5e:
5581 case 0x5f:
5582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5583 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5584 break;
5585
5586 case 0x61: /* popa */
5587 if (ir.regmap[X86_RECORD_R8_REGNUM])
5588 {
5589 ir.addr -= 1;
5590 goto no_support;
5591 }
5592 for (regnum = X86_RECORD_REAX_REGNUM;
5593 regnum <= X86_RECORD_REDI_REGNUM;
5594 regnum++)
5595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5596 break;
5597
5598 case 0x8f: /* pop */
5599 if (ir.regmap[X86_RECORD_R8_REGNUM])
5600 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5601 else
5602 ir.ot = ir.dflag + OT_WORD;
5603 if (i386_record_modrm (&ir))
5604 return -1;
5605 if (ir.mod == 3)
5606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5607 else
5608 {
5609 ir.popl_esp_hack = 1 << ir.ot;
5610 if (i386_record_lea_modrm (&ir))
5611 return -1;
5612 }
5613 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5614 break;
5615
5616 case 0xc8: /* enter */
5617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5618 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5619 ir.dflag = 2;
5620 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5621 return -1;
5622 break;
5623
5624 case 0xc9: /* leave */
5625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5627 break;
5628
5629 case 0x07: /* pop es */
5630 if (ir.regmap[X86_RECORD_R8_REGNUM])
5631 {
5632 ir.addr -= 1;
5633 goto no_support;
5634 }
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5638 break;
5639
5640 case 0x17: /* pop ss */
5641 if (ir.regmap[X86_RECORD_R8_REGNUM])
5642 {
5643 ir.addr -= 1;
5644 goto no_support;
5645 }
5646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5649 break;
5650
5651 case 0x1f: /* pop ds */
5652 if (ir.regmap[X86_RECORD_R8_REGNUM])
5653 {
5654 ir.addr -= 1;
5655 goto no_support;
5656 }
5657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5660 break;
5661
5662 case 0x0fa1: /* pop fs */
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5666 break;
5667
5668 case 0x0fa9: /* pop gs */
5669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5672 break;
5673
5674 case 0x88: /* mov */
5675 case 0x89:
5676 case 0xc6:
5677 case 0xc7:
5678 if ((opcode & 1) == 0)
5679 ir.ot = OT_BYTE;
5680 else
5681 ir.ot = ir.dflag + OT_WORD;
5682
5683 if (i386_record_modrm (&ir))
5684 return -1;
5685
5686 if (ir.mod != 3)
5687 {
5688 if (opcode == 0xc6 || opcode == 0xc7)
5689 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5690 if (i386_record_lea_modrm (&ir))
5691 return -1;
5692 }
5693 else
5694 {
5695 if (opcode == 0xc6 || opcode == 0xc7)
5696 ir.rm |= ir.rex_b;
5697 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5698 ir.rm &= 0x3;
5699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5700 }
5701 break;
5702
5703 case 0x8a: /* mov */
5704 case 0x8b:
5705 if ((opcode & 1) == 0)
5706 ir.ot = OT_BYTE;
5707 else
5708 ir.ot = ir.dflag + OT_WORD;
5709 if (i386_record_modrm (&ir))
5710 return -1;
5711 ir.reg |= rex_r;
5712 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5713 ir.reg &= 0x3;
5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5715 break;
5716
5717 case 0x8c: /* mov seg */
5718 if (i386_record_modrm (&ir))
5719 return -1;
5720 if (ir.reg > 5)
5721 {
5722 ir.addr -= 2;
5723 opcode = opcode << 8 | ir.modrm;
5724 goto no_support;
5725 }
5726
5727 if (ir.mod == 3)
5728 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5729 else
5730 {
5731 ir.ot = OT_WORD;
5732 if (i386_record_lea_modrm (&ir))
5733 return -1;
5734 }
5735 break;
5736
5737 case 0x8e: /* mov seg */
5738 if (i386_record_modrm (&ir))
5739 return -1;
5740 switch (ir.reg)
5741 {
5742 case 0:
5743 regnum = X86_RECORD_ES_REGNUM;
5744 break;
5745 case 2:
5746 regnum = X86_RECORD_SS_REGNUM;
5747 break;
5748 case 3:
5749 regnum = X86_RECORD_DS_REGNUM;
5750 break;
5751 case 4:
5752 regnum = X86_RECORD_FS_REGNUM;
5753 break;
5754 case 5:
5755 regnum = X86_RECORD_GS_REGNUM;
5756 break;
5757 default:
5758 ir.addr -= 2;
5759 opcode = opcode << 8 | ir.modrm;
5760 goto no_support;
5761 break;
5762 }
5763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5765 break;
5766
5767 case 0x0fb6: /* movzbS */
5768 case 0x0fb7: /* movzwS */
5769 case 0x0fbe: /* movsbS */
5770 case 0x0fbf: /* movswS */
5771 if (i386_record_modrm (&ir))
5772 return -1;
5773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5774 break;
5775
5776 case 0x8d: /* lea */
5777 if (i386_record_modrm (&ir))
5778 return -1;
5779 if (ir.mod == 3)
5780 {
5781 ir.addr -= 2;
5782 opcode = opcode << 8 | ir.modrm;
5783 goto no_support;
5784 }
5785 ir.ot = ir.dflag;
5786 ir.reg |= rex_r;
5787 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5788 ir.reg &= 0x3;
5789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5790 break;
5791
5792 case 0xa0: /* mov EAX */
5793 case 0xa1:
5794
5795 case 0xd7: /* xlat */
5796 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5797 break;
5798
5799 case 0xa2: /* mov EAX */
5800 case 0xa3:
5801 if (ir.override >= 0)
5802 {
5803 if (record_full_memory_query)
5804 {
5805 if (yquery (_("\
5806 Process record ignores the memory change of instruction at address %s\n\
5807 because it can't get the value of the segment register.\n\
5808 Do you want to stop the program?"),
5809 paddress (gdbarch, ir.orig_addr)))
5810 return -1;
5811 }
5812 }
5813 else
5814 {
5815 if ((opcode & 1) == 0)
5816 ir.ot = OT_BYTE;
5817 else
5818 ir.ot = ir.dflag + OT_WORD;
5819 if (ir.aflag == 2)
5820 {
5821 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5822 return -1;
5823 ir.addr += 8;
5824 addr = extract_unsigned_integer (buf, 8, byte_order);
5825 }
5826 else if (ir.aflag)
5827 {
5828 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5829 return -1;
5830 ir.addr += 4;
5831 addr = extract_unsigned_integer (buf, 4, byte_order);
5832 }
5833 else
5834 {
5835 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5836 return -1;
5837 ir.addr += 2;
5838 addr = extract_unsigned_integer (buf, 2, byte_order);
5839 }
5840 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5841 return -1;
5842 }
5843 break;
5844
5845 case 0xb0: /* mov R, Ib */
5846 case 0xb1:
5847 case 0xb2:
5848 case 0xb3:
5849 case 0xb4:
5850 case 0xb5:
5851 case 0xb6:
5852 case 0xb7:
5853 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5854 ? ((opcode & 0x7) | ir.rex_b)
5855 : ((opcode & 0x7) & 0x3));
5856 break;
5857
5858 case 0xb8: /* mov R, Iv */
5859 case 0xb9:
5860 case 0xba:
5861 case 0xbb:
5862 case 0xbc:
5863 case 0xbd:
5864 case 0xbe:
5865 case 0xbf:
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5867 break;
5868
5869 case 0x91: /* xchg R, EAX */
5870 case 0x92:
5871 case 0x93:
5872 case 0x94:
5873 case 0x95:
5874 case 0x96:
5875 case 0x97:
5876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5878 break;
5879
5880 case 0x86: /* xchg Ev, Gv */
5881 case 0x87:
5882 if ((opcode & 1) == 0)
5883 ir.ot = OT_BYTE;
5884 else
5885 ir.ot = ir.dflag + OT_WORD;
5886 if (i386_record_modrm (&ir))
5887 return -1;
5888 if (ir.mod == 3)
5889 {
5890 ir.rm |= ir.rex_b;
5891 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5892 ir.rm &= 0x3;
5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5894 }
5895 else
5896 {
5897 if (i386_record_lea_modrm (&ir))
5898 return -1;
5899 }
5900 ir.reg |= rex_r;
5901 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5902 ir.reg &= 0x3;
5903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5904 break;
5905
5906 case 0xc4: /* les Gv */
5907 case 0xc5: /* lds Gv */
5908 if (ir.regmap[X86_RECORD_R8_REGNUM])
5909 {
5910 ir.addr -= 1;
5911 goto no_support;
5912 }
5913 /* FALLTHROUGH */
5914 case 0x0fb2: /* lss Gv */
5915 case 0x0fb4: /* lfs Gv */
5916 case 0x0fb5: /* lgs Gv */
5917 if (i386_record_modrm (&ir))
5918 return -1;
5919 if (ir.mod == 3)
5920 {
5921 if (opcode > 0xff)
5922 ir.addr -= 3;
5923 else
5924 ir.addr -= 2;
5925 opcode = opcode << 8 | ir.modrm;
5926 goto no_support;
5927 }
5928 switch (opcode)
5929 {
5930 case 0xc4: /* les Gv */
5931 regnum = X86_RECORD_ES_REGNUM;
5932 break;
5933 case 0xc5: /* lds Gv */
5934 regnum = X86_RECORD_DS_REGNUM;
5935 break;
5936 case 0x0fb2: /* lss Gv */
5937 regnum = X86_RECORD_SS_REGNUM;
5938 break;
5939 case 0x0fb4: /* lfs Gv */
5940 regnum = X86_RECORD_FS_REGNUM;
5941 break;
5942 case 0x0fb5: /* lgs Gv */
5943 regnum = X86_RECORD_GS_REGNUM;
5944 break;
5945 }
5946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5947 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5949 break;
5950
5951 case 0xc0: /* shifts */
5952 case 0xc1:
5953 case 0xd0:
5954 case 0xd1:
5955 case 0xd2:
5956 case 0xd3:
5957 if ((opcode & 1) == 0)
5958 ir.ot = OT_BYTE;
5959 else
5960 ir.ot = ir.dflag + OT_WORD;
5961 if (i386_record_modrm (&ir))
5962 return -1;
5963 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5964 {
5965 if (i386_record_lea_modrm (&ir))
5966 return -1;
5967 }
5968 else
5969 {
5970 ir.rm |= ir.rex_b;
5971 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5972 ir.rm &= 0x3;
5973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5974 }
5975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5976 break;
5977
5978 case 0x0fa4:
5979 case 0x0fa5:
5980 case 0x0fac:
5981 case 0x0fad:
5982 if (i386_record_modrm (&ir))
5983 return -1;
5984 if (ir.mod == 3)
5985 {
5986 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5987 return -1;
5988 }
5989 else
5990 {
5991 if (i386_record_lea_modrm (&ir))
5992 return -1;
5993 }
5994 break;
5995
5996 case 0xd8: /* Floats. */
5997 case 0xd9:
5998 case 0xda:
5999 case 0xdb:
6000 case 0xdc:
6001 case 0xdd:
6002 case 0xde:
6003 case 0xdf:
6004 if (i386_record_modrm (&ir))
6005 return -1;
6006 ir.reg |= ((opcode & 7) << 3);
6007 if (ir.mod != 3)
6008 {
6009 /* Memory. */
6010 uint64_t addr64;
6011
6012 if (i386_record_lea_modrm_addr (&ir, &addr64))
6013 return -1;
6014 switch (ir.reg)
6015 {
6016 case 0x02:
6017 case 0x12:
6018 case 0x22:
6019 case 0x32:
6020 /* For fcom, ficom nothing to do. */
6021 break;
6022 case 0x03:
6023 case 0x13:
6024 case 0x23:
6025 case 0x33:
6026 /* For fcomp, ficomp pop FPU stack, store all. */
6027 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6028 return -1;
6029 break;
6030 case 0x00:
6031 case 0x01:
6032 case 0x04:
6033 case 0x05:
6034 case 0x06:
6035 case 0x07:
6036 case 0x10:
6037 case 0x11:
6038 case 0x14:
6039 case 0x15:
6040 case 0x16:
6041 case 0x17:
6042 case 0x20:
6043 case 0x21:
6044 case 0x24:
6045 case 0x25:
6046 case 0x26:
6047 case 0x27:
6048 case 0x30:
6049 case 0x31:
6050 case 0x34:
6051 case 0x35:
6052 case 0x36:
6053 case 0x37:
6054 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6055 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6056 of code, always affects st(0) register. */
6057 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6058 return -1;
6059 break;
6060 case 0x08:
6061 case 0x0a:
6062 case 0x0b:
6063 case 0x18:
6064 case 0x19:
6065 case 0x1a:
6066 case 0x1b:
6067 case 0x1d:
6068 case 0x28:
6069 case 0x29:
6070 case 0x2a:
6071 case 0x2b:
6072 case 0x38:
6073 case 0x39:
6074 case 0x3a:
6075 case 0x3b:
6076 case 0x3c:
6077 case 0x3d:
6078 switch (ir.reg & 7)
6079 {
6080 case 0:
6081 /* Handling fld, fild. */
6082 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6083 return -1;
6084 break;
6085 case 1:
6086 switch (ir.reg >> 4)
6087 {
6088 case 0:
6089 if (record_full_arch_list_add_mem (addr64, 4))
6090 return -1;
6091 break;
6092 case 2:
6093 if (record_full_arch_list_add_mem (addr64, 8))
6094 return -1;
6095 break;
6096 case 3:
6097 break;
6098 default:
6099 if (record_full_arch_list_add_mem (addr64, 2))
6100 return -1;
6101 break;
6102 }
6103 break;
6104 default:
6105 switch (ir.reg >> 4)
6106 {
6107 case 0:
6108 if (record_full_arch_list_add_mem (addr64, 4))
6109 return -1;
6110 if (3 == (ir.reg & 7))
6111 {
6112 /* For fstp m32fp. */
6113 if (i386_record_floats (gdbarch, &ir,
6114 I386_SAVE_FPU_REGS))
6115 return -1;
6116 }
6117 break;
6118 case 1:
6119 if (record_full_arch_list_add_mem (addr64, 4))
6120 return -1;
6121 if ((3 == (ir.reg & 7))
6122 || (5 == (ir.reg & 7))
6123 || (7 == (ir.reg & 7)))
6124 {
6125 /* For fstp insn. */
6126 if (i386_record_floats (gdbarch, &ir,
6127 I386_SAVE_FPU_REGS))
6128 return -1;
6129 }
6130 break;
6131 case 2:
6132 if (record_full_arch_list_add_mem (addr64, 8))
6133 return -1;
6134 if (3 == (ir.reg & 7))
6135 {
6136 /* For fstp m64fp. */
6137 if (i386_record_floats (gdbarch, &ir,
6138 I386_SAVE_FPU_REGS))
6139 return -1;
6140 }
6141 break;
6142 case 3:
6143 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6144 {
6145 /* For fistp, fbld, fild, fbstp. */
6146 if (i386_record_floats (gdbarch, &ir,
6147 I386_SAVE_FPU_REGS))
6148 return -1;
6149 }
6150 /* Fall through */
6151 default:
6152 if (record_full_arch_list_add_mem (addr64, 2))
6153 return -1;
6154 break;
6155 }
6156 break;
6157 }
6158 break;
6159 case 0x0c:
6160 /* Insn fldenv. */
6161 if (i386_record_floats (gdbarch, &ir,
6162 I386_SAVE_FPU_ENV_REG_STACK))
6163 return -1;
6164 break;
6165 case 0x0d:
6166 /* Insn fldcw. */
6167 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6168 return -1;
6169 break;
6170 case 0x2c:
6171 /* Insn frstor. */
6172 if (i386_record_floats (gdbarch, &ir,
6173 I386_SAVE_FPU_ENV_REG_STACK))
6174 return -1;
6175 break;
6176 case 0x0e:
6177 if (ir.dflag)
6178 {
6179 if (record_full_arch_list_add_mem (addr64, 28))
6180 return -1;
6181 }
6182 else
6183 {
6184 if (record_full_arch_list_add_mem (addr64, 14))
6185 return -1;
6186 }
6187 break;
6188 case 0x0f:
6189 case 0x2f:
6190 if (record_full_arch_list_add_mem (addr64, 2))
6191 return -1;
6192 /* Insn fstp, fbstp. */
6193 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6194 return -1;
6195 break;
6196 case 0x1f:
6197 case 0x3e:
6198 if (record_full_arch_list_add_mem (addr64, 10))
6199 return -1;
6200 break;
6201 case 0x2e:
6202 if (ir.dflag)
6203 {
6204 if (record_full_arch_list_add_mem (addr64, 28))
6205 return -1;
6206 addr64 += 28;
6207 }
6208 else
6209 {
6210 if (record_full_arch_list_add_mem (addr64, 14))
6211 return -1;
6212 addr64 += 14;
6213 }
6214 if (record_full_arch_list_add_mem (addr64, 80))
6215 return -1;
6216 /* Insn fsave. */
6217 if (i386_record_floats (gdbarch, &ir,
6218 I386_SAVE_FPU_ENV_REG_STACK))
6219 return -1;
6220 break;
6221 case 0x3f:
6222 if (record_full_arch_list_add_mem (addr64, 8))
6223 return -1;
6224 /* Insn fistp. */
6225 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6226 return -1;
6227 break;
6228 default:
6229 ir.addr -= 2;
6230 opcode = opcode << 8 | ir.modrm;
6231 goto no_support;
6232 break;
6233 }
6234 }
6235 /* Opcode is an extension of modR/M byte. */
6236 else
6237 {
6238 switch (opcode)
6239 {
6240 case 0xd8:
6241 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6242 return -1;
6243 break;
6244 case 0xd9:
6245 if (0x0c == (ir.modrm >> 4))
6246 {
6247 if ((ir.modrm & 0x0f) <= 7)
6248 {
6249 if (i386_record_floats (gdbarch, &ir,
6250 I386_SAVE_FPU_REGS))
6251 return -1;
6252 }
6253 else
6254 {
6255 if (i386_record_floats (gdbarch, &ir,
6256 I387_ST0_REGNUM (tdep)))
6257 return -1;
6258 /* If only st(0) is changing, then we have already
6259 recorded. */
6260 if ((ir.modrm & 0x0f) - 0x08)
6261 {
6262 if (i386_record_floats (gdbarch, &ir,
6263 I387_ST0_REGNUM (tdep) +
6264 ((ir.modrm & 0x0f) - 0x08)))
6265 return -1;
6266 }
6267 }
6268 }
6269 else
6270 {
6271 switch (ir.modrm)
6272 {
6273 case 0xe0:
6274 case 0xe1:
6275 case 0xf0:
6276 case 0xf5:
6277 case 0xf8:
6278 case 0xfa:
6279 case 0xfc:
6280 case 0xfe:
6281 case 0xff:
6282 if (i386_record_floats (gdbarch, &ir,
6283 I387_ST0_REGNUM (tdep)))
6284 return -1;
6285 break;
6286 case 0xf1:
6287 case 0xf2:
6288 case 0xf3:
6289 case 0xf4:
6290 case 0xf6:
6291 case 0xf7:
6292 case 0xe8:
6293 case 0xe9:
6294 case 0xea:
6295 case 0xeb:
6296 case 0xec:
6297 case 0xed:
6298 case 0xee:
6299 case 0xf9:
6300 case 0xfb:
6301 if (i386_record_floats (gdbarch, &ir,
6302 I386_SAVE_FPU_REGS))
6303 return -1;
6304 break;
6305 case 0xfd:
6306 if (i386_record_floats (gdbarch, &ir,
6307 I387_ST0_REGNUM (tdep)))
6308 return -1;
6309 if (i386_record_floats (gdbarch, &ir,
6310 I387_ST0_REGNUM (tdep) + 1))
6311 return -1;
6312 break;
6313 }
6314 }
6315 break;
6316 case 0xda:
6317 if (0xe9 == ir.modrm)
6318 {
6319 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6320 return -1;
6321 }
6322 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6323 {
6324 if (i386_record_floats (gdbarch, &ir,
6325 I387_ST0_REGNUM (tdep)))
6326 return -1;
6327 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6328 {
6329 if (i386_record_floats (gdbarch, &ir,
6330 I387_ST0_REGNUM (tdep) +
6331 (ir.modrm & 0x0f)))
6332 return -1;
6333 }
6334 else if ((ir.modrm & 0x0f) - 0x08)
6335 {
6336 if (i386_record_floats (gdbarch, &ir,
6337 I387_ST0_REGNUM (tdep) +
6338 ((ir.modrm & 0x0f) - 0x08)))
6339 return -1;
6340 }
6341 }
6342 break;
6343 case 0xdb:
6344 if (0xe3 == ir.modrm)
6345 {
6346 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6347 return -1;
6348 }
6349 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6350 {
6351 if (i386_record_floats (gdbarch, &ir,
6352 I387_ST0_REGNUM (tdep)))
6353 return -1;
6354 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6355 {
6356 if (i386_record_floats (gdbarch, &ir,
6357 I387_ST0_REGNUM (tdep) +
6358 (ir.modrm & 0x0f)))
6359 return -1;
6360 }
6361 else if ((ir.modrm & 0x0f) - 0x08)
6362 {
6363 if (i386_record_floats (gdbarch, &ir,
6364 I387_ST0_REGNUM (tdep) +
6365 ((ir.modrm & 0x0f) - 0x08)))
6366 return -1;
6367 }
6368 }
6369 break;
6370 case 0xdc:
6371 if ((0x0c == ir.modrm >> 4)
6372 || (0x0d == ir.modrm >> 4)
6373 || (0x0f == ir.modrm >> 4))
6374 {
6375 if ((ir.modrm & 0x0f) <= 7)
6376 {
6377 if (i386_record_floats (gdbarch, &ir,
6378 I387_ST0_REGNUM (tdep) +
6379 (ir.modrm & 0x0f)))
6380 return -1;
6381 }
6382 else
6383 {
6384 if (i386_record_floats (gdbarch, &ir,
6385 I387_ST0_REGNUM (tdep) +
6386 ((ir.modrm & 0x0f) - 0x08)))
6387 return -1;
6388 }
6389 }
6390 break;
6391 case 0xdd:
6392 if (0x0c == ir.modrm >> 4)
6393 {
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_FTAG_REGNUM (tdep)))
6396 return -1;
6397 }
6398 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6399 {
6400 if ((ir.modrm & 0x0f) <= 7)
6401 {
6402 if (i386_record_floats (gdbarch, &ir,
6403 I387_ST0_REGNUM (tdep) +
6404 (ir.modrm & 0x0f)))
6405 return -1;
6406 }
6407 else
6408 {
6409 if (i386_record_floats (gdbarch, &ir,
6410 I386_SAVE_FPU_REGS))
6411 return -1;
6412 }
6413 }
6414 break;
6415 case 0xde:
6416 if ((0x0c == ir.modrm >> 4)
6417 || (0x0e == ir.modrm >> 4)
6418 || (0x0f == ir.modrm >> 4)
6419 || (0xd9 == ir.modrm))
6420 {
6421 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6422 return -1;
6423 }
6424 break;
6425 case 0xdf:
6426 if (0xe0 == ir.modrm)
6427 {
6428 if (record_full_arch_list_add_reg (ir.regcache,
6429 I386_EAX_REGNUM))
6430 return -1;
6431 }
6432 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6433 {
6434 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6435 return -1;
6436 }
6437 break;
6438 }
6439 }
6440 break;
6441 /* string ops */
6442 case 0xa4: /* movsS */
6443 case 0xa5:
6444 case 0xaa: /* stosS */
6445 case 0xab:
6446 case 0x6c: /* insS */
6447 case 0x6d:
6448 regcache_raw_read_unsigned (ir.regcache,
6449 ir.regmap[X86_RECORD_RECX_REGNUM],
6450 &addr);
6451 if (addr)
6452 {
6453 ULONGEST es, ds;
6454
6455 if ((opcode & 1) == 0)
6456 ir.ot = OT_BYTE;
6457 else
6458 ir.ot = ir.dflag + OT_WORD;
6459 regcache_raw_read_unsigned (ir.regcache,
6460 ir.regmap[X86_RECORD_REDI_REGNUM],
6461 &addr);
6462
6463 regcache_raw_read_unsigned (ir.regcache,
6464 ir.regmap[X86_RECORD_ES_REGNUM],
6465 &es);
6466 regcache_raw_read_unsigned (ir.regcache,
6467 ir.regmap[X86_RECORD_DS_REGNUM],
6468 &ds);
6469 if (ir.aflag && (es != ds))
6470 {
6471 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6472 if (record_full_memory_query)
6473 {
6474 if (yquery (_("\
6475 Process record ignores the memory change of instruction at address %s\n\
6476 because it can't get the value of the segment register.\n\
6477 Do you want to stop the program?"),
6478 paddress (gdbarch, ir.orig_addr)))
6479 return -1;
6480 }
6481 }
6482 else
6483 {
6484 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6485 return -1;
6486 }
6487
6488 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6490 if (opcode == 0xa4 || opcode == 0xa5)
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6494 }
6495 break;
6496
6497 case 0xa6: /* cmpsS */
6498 case 0xa7:
6499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6501 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6504 break;
6505
6506 case 0xac: /* lodsS */
6507 case 0xad:
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6510 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6513 break;
6514
6515 case 0xae: /* scasS */
6516 case 0xaf:
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6518 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6521 break;
6522
6523 case 0x6e: /* outsS */
6524 case 0x6f:
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6526 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6529 break;
6530
6531 case 0xe4: /* port I/O */
6532 case 0xe5:
6533 case 0xec:
6534 case 0xed:
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6537 break;
6538
6539 case 0xe6:
6540 case 0xe7:
6541 case 0xee:
6542 case 0xef:
6543 break;
6544
6545 /* control */
6546 case 0xc2: /* ret im */
6547 case 0xc3: /* ret */
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6550 break;
6551
6552 case 0xca: /* lret im */
6553 case 0xcb: /* lret */
6554 case 0xcf: /* iret */
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6558 break;
6559
6560 case 0xe8: /* call im */
6561 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6562 ir.dflag = 2;
6563 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6564 return -1;
6565 break;
6566
6567 case 0x9a: /* lcall im */
6568 if (ir.regmap[X86_RECORD_R8_REGNUM])
6569 {
6570 ir.addr -= 1;
6571 goto no_support;
6572 }
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6574 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6575 return -1;
6576 break;
6577
6578 case 0xe9: /* jmp im */
6579 case 0xea: /* ljmp im */
6580 case 0xeb: /* jmp Jb */
6581 case 0x70: /* jcc Jb */
6582 case 0x71:
6583 case 0x72:
6584 case 0x73:
6585 case 0x74:
6586 case 0x75:
6587 case 0x76:
6588 case 0x77:
6589 case 0x78:
6590 case 0x79:
6591 case 0x7a:
6592 case 0x7b:
6593 case 0x7c:
6594 case 0x7d:
6595 case 0x7e:
6596 case 0x7f:
6597 case 0x0f80: /* jcc Jv */
6598 case 0x0f81:
6599 case 0x0f82:
6600 case 0x0f83:
6601 case 0x0f84:
6602 case 0x0f85:
6603 case 0x0f86:
6604 case 0x0f87:
6605 case 0x0f88:
6606 case 0x0f89:
6607 case 0x0f8a:
6608 case 0x0f8b:
6609 case 0x0f8c:
6610 case 0x0f8d:
6611 case 0x0f8e:
6612 case 0x0f8f:
6613 break;
6614
6615 case 0x0f90: /* setcc Gv */
6616 case 0x0f91:
6617 case 0x0f92:
6618 case 0x0f93:
6619 case 0x0f94:
6620 case 0x0f95:
6621 case 0x0f96:
6622 case 0x0f97:
6623 case 0x0f98:
6624 case 0x0f99:
6625 case 0x0f9a:
6626 case 0x0f9b:
6627 case 0x0f9c:
6628 case 0x0f9d:
6629 case 0x0f9e:
6630 case 0x0f9f:
6631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6632 ir.ot = OT_BYTE;
6633 if (i386_record_modrm (&ir))
6634 return -1;
6635 if (ir.mod == 3)
6636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6637 : (ir.rm & 0x3));
6638 else
6639 {
6640 if (i386_record_lea_modrm (&ir))
6641 return -1;
6642 }
6643 break;
6644
6645 case 0x0f40: /* cmov Gv, Ev */
6646 case 0x0f41:
6647 case 0x0f42:
6648 case 0x0f43:
6649 case 0x0f44:
6650 case 0x0f45:
6651 case 0x0f46:
6652 case 0x0f47:
6653 case 0x0f48:
6654 case 0x0f49:
6655 case 0x0f4a:
6656 case 0x0f4b:
6657 case 0x0f4c:
6658 case 0x0f4d:
6659 case 0x0f4e:
6660 case 0x0f4f:
6661 if (i386_record_modrm (&ir))
6662 return -1;
6663 ir.reg |= rex_r;
6664 if (ir.dflag == OT_BYTE)
6665 ir.reg &= 0x3;
6666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6667 break;
6668
6669 /* flags */
6670 case 0x9c: /* pushf */
6671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6672 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6673 ir.dflag = 2;
6674 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6675 return -1;
6676 break;
6677
6678 case 0x9d: /* popf */
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6681 break;
6682
6683 case 0x9e: /* sahf */
6684 if (ir.regmap[X86_RECORD_R8_REGNUM])
6685 {
6686 ir.addr -= 1;
6687 goto no_support;
6688 }
6689 /* FALLTHROUGH */
6690 case 0xf5: /* cmc */
6691 case 0xf8: /* clc */
6692 case 0xf9: /* stc */
6693 case 0xfc: /* cld */
6694 case 0xfd: /* std */
6695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6696 break;
6697
6698 case 0x9f: /* lahf */
6699 if (ir.regmap[X86_RECORD_R8_REGNUM])
6700 {
6701 ir.addr -= 1;
6702 goto no_support;
6703 }
6704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6706 break;
6707
6708 /* bit operations */
6709 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6710 ir.ot = ir.dflag + OT_WORD;
6711 if (i386_record_modrm (&ir))
6712 return -1;
6713 if (ir.reg < 4)
6714 {
6715 ir.addr -= 2;
6716 opcode = opcode << 8 | ir.modrm;
6717 goto no_support;
6718 }
6719 if (ir.reg != 4)
6720 {
6721 if (ir.mod == 3)
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6723 else
6724 {
6725 if (i386_record_lea_modrm (&ir))
6726 return -1;
6727 }
6728 }
6729 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6730 break;
6731
6732 case 0x0fa3: /* bt Gv, Ev */
6733 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6734 break;
6735
6736 case 0x0fab: /* bts */
6737 case 0x0fb3: /* btr */
6738 case 0x0fbb: /* btc */
6739 ir.ot = ir.dflag + OT_WORD;
6740 if (i386_record_modrm (&ir))
6741 return -1;
6742 if (ir.mod == 3)
6743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6744 else
6745 {
6746 uint64_t addr64;
6747 if (i386_record_lea_modrm_addr (&ir, &addr64))
6748 return -1;
6749 regcache_raw_read_unsigned (ir.regcache,
6750 ir.regmap[ir.reg | rex_r],
6751 &addr);
6752 switch (ir.dflag)
6753 {
6754 case 0:
6755 addr64 += ((int16_t) addr >> 4) << 4;
6756 break;
6757 case 1:
6758 addr64 += ((int32_t) addr >> 5) << 5;
6759 break;
6760 case 2:
6761 addr64 += ((int64_t) addr >> 6) << 6;
6762 break;
6763 }
6764 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6765 return -1;
6766 if (i386_record_lea_modrm (&ir))
6767 return -1;
6768 }
6769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6770 break;
6771
6772 case 0x0fbc: /* bsf */
6773 case 0x0fbd: /* bsr */
6774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6776 break;
6777
6778 /* bcd */
6779 case 0x27: /* daa */
6780 case 0x2f: /* das */
6781 case 0x37: /* aaa */
6782 case 0x3f: /* aas */
6783 case 0xd4: /* aam */
6784 case 0xd5: /* aad */
6785 if (ir.regmap[X86_RECORD_R8_REGNUM])
6786 {
6787 ir.addr -= 1;
6788 goto no_support;
6789 }
6790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6792 break;
6793
6794 /* misc */
6795 case 0x90: /* nop */
6796 if (prefixes & PREFIX_LOCK)
6797 {
6798 ir.addr -= 1;
6799 goto no_support;
6800 }
6801 break;
6802
6803 case 0x9b: /* fwait */
6804 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6805 return -1;
6806 opcode = (uint32_t) opcode8;
6807 ir.addr++;
6808 goto reswitch;
6809 break;
6810
6811 /* XXX */
6812 case 0xcc: /* int3 */
6813 printf_unfiltered (_("Process record does not support instruction "
6814 "int3.\n"));
6815 ir.addr -= 1;
6816 goto no_support;
6817 break;
6818
6819 /* XXX */
6820 case 0xcd: /* int */
6821 {
6822 int ret;
6823 uint8_t interrupt;
6824 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6825 return -1;
6826 ir.addr++;
6827 if (interrupt != 0x80
6828 || tdep->i386_intx80_record == NULL)
6829 {
6830 printf_unfiltered (_("Process record does not support "
6831 "instruction int 0x%02x.\n"),
6832 interrupt);
6833 ir.addr -= 2;
6834 goto no_support;
6835 }
6836 ret = tdep->i386_intx80_record (ir.regcache);
6837 if (ret)
6838 return ret;
6839 }
6840 break;
6841
6842 /* XXX */
6843 case 0xce: /* into */
6844 printf_unfiltered (_("Process record does not support "
6845 "instruction into.\n"));
6846 ir.addr -= 1;
6847 goto no_support;
6848 break;
6849
6850 case 0xfa: /* cli */
6851 case 0xfb: /* sti */
6852 break;
6853
6854 case 0x62: /* bound */
6855 printf_unfiltered (_("Process record does not support "
6856 "instruction bound.\n"));
6857 ir.addr -= 1;
6858 goto no_support;
6859 break;
6860
6861 case 0x0fc8: /* bswap reg */
6862 case 0x0fc9:
6863 case 0x0fca:
6864 case 0x0fcb:
6865 case 0x0fcc:
6866 case 0x0fcd:
6867 case 0x0fce:
6868 case 0x0fcf:
6869 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6870 break;
6871
6872 case 0xd6: /* salc */
6873 if (ir.regmap[X86_RECORD_R8_REGNUM])
6874 {
6875 ir.addr -= 1;
6876 goto no_support;
6877 }
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6880 break;
6881
6882 case 0xe0: /* loopnz */
6883 case 0xe1: /* loopz */
6884 case 0xe2: /* loop */
6885 case 0xe3: /* jecxz */
6886 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6888 break;
6889
6890 case 0x0f30: /* wrmsr */
6891 printf_unfiltered (_("Process record does not support "
6892 "instruction wrmsr.\n"));
6893 ir.addr -= 2;
6894 goto no_support;
6895 break;
6896
6897 case 0x0f32: /* rdmsr */
6898 printf_unfiltered (_("Process record does not support "
6899 "instruction rdmsr.\n"));
6900 ir.addr -= 2;
6901 goto no_support;
6902 break;
6903
6904 case 0x0f31: /* rdtsc */
6905 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6906 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6907 break;
6908
6909 case 0x0f34: /* sysenter */
6910 {
6911 int ret;
6912 if (ir.regmap[X86_RECORD_R8_REGNUM])
6913 {
6914 ir.addr -= 2;
6915 goto no_support;
6916 }
6917 if (tdep->i386_sysenter_record == NULL)
6918 {
6919 printf_unfiltered (_("Process record does not support "
6920 "instruction sysenter.\n"));
6921 ir.addr -= 2;
6922 goto no_support;
6923 }
6924 ret = tdep->i386_sysenter_record (ir.regcache);
6925 if (ret)
6926 return ret;
6927 }
6928 break;
6929
6930 case 0x0f35: /* sysexit */
6931 printf_unfiltered (_("Process record does not support "
6932 "instruction sysexit.\n"));
6933 ir.addr -= 2;
6934 goto no_support;
6935 break;
6936
6937 case 0x0f05: /* syscall */
6938 {
6939 int ret;
6940 if (tdep->i386_syscall_record == NULL)
6941 {
6942 printf_unfiltered (_("Process record does not support "
6943 "instruction syscall.\n"));
6944 ir.addr -= 2;
6945 goto no_support;
6946 }
6947 ret = tdep->i386_syscall_record (ir.regcache);
6948 if (ret)
6949 return ret;
6950 }
6951 break;
6952
6953 case 0x0f07: /* sysret */
6954 printf_unfiltered (_("Process record does not support "
6955 "instruction sysret.\n"));
6956 ir.addr -= 2;
6957 goto no_support;
6958 break;
6959
6960 case 0x0fa2: /* cpuid */
6961 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6962 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6965 break;
6966
6967 case 0xf4: /* hlt */
6968 printf_unfiltered (_("Process record does not support "
6969 "instruction hlt.\n"));
6970 ir.addr -= 1;
6971 goto no_support;
6972 break;
6973
6974 case 0x0f00:
6975 if (i386_record_modrm (&ir))
6976 return -1;
6977 switch (ir.reg)
6978 {
6979 case 0: /* sldt */
6980 case 1: /* str */
6981 if (ir.mod == 3)
6982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6983 else
6984 {
6985 ir.ot = OT_WORD;
6986 if (i386_record_lea_modrm (&ir))
6987 return -1;
6988 }
6989 break;
6990 case 2: /* lldt */
6991 case 3: /* ltr */
6992 break;
6993 case 4: /* verr */
6994 case 5: /* verw */
6995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6996 break;
6997 default:
6998 ir.addr -= 3;
6999 opcode = opcode << 8 | ir.modrm;
7000 goto no_support;
7001 break;
7002 }
7003 break;
7004
7005 case 0x0f01:
7006 if (i386_record_modrm (&ir))
7007 return -1;
7008 switch (ir.reg)
7009 {
7010 case 0: /* sgdt */
7011 {
7012 uint64_t addr64;
7013
7014 if (ir.mod == 3)
7015 {
7016 ir.addr -= 3;
7017 opcode = opcode << 8 | ir.modrm;
7018 goto no_support;
7019 }
7020 if (ir.override >= 0)
7021 {
7022 if (record_full_memory_query)
7023 {
7024 if (yquery (_("\
7025 Process record ignores the memory change of instruction at address %s\n\
7026 because it can't get the value of the segment register.\n\
7027 Do you want to stop the program?"),
7028 paddress (gdbarch, ir.orig_addr)))
7029 return -1;
7030 }
7031 }
7032 else
7033 {
7034 if (i386_record_lea_modrm_addr (&ir, &addr64))
7035 return -1;
7036 if (record_full_arch_list_add_mem (addr64, 2))
7037 return -1;
7038 addr64 += 2;
7039 if (ir.regmap[X86_RECORD_R8_REGNUM])
7040 {
7041 if (record_full_arch_list_add_mem (addr64, 8))
7042 return -1;
7043 }
7044 else
7045 {
7046 if (record_full_arch_list_add_mem (addr64, 4))
7047 return -1;
7048 }
7049 }
7050 }
7051 break;
7052 case 1:
7053 if (ir.mod == 3)
7054 {
7055 switch (ir.rm)
7056 {
7057 case 0: /* monitor */
7058 break;
7059 case 1: /* mwait */
7060 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7061 break;
7062 default:
7063 ir.addr -= 3;
7064 opcode = opcode << 8 | ir.modrm;
7065 goto no_support;
7066 break;
7067 }
7068 }
7069 else
7070 {
7071 /* sidt */
7072 if (ir.override >= 0)
7073 {
7074 if (record_full_memory_query)
7075 {
7076 if (yquery (_("\
7077 Process record ignores the memory change of instruction at address %s\n\
7078 because it can't get the value of the segment register.\n\
7079 Do you want to stop the program?"),
7080 paddress (gdbarch, ir.orig_addr)))
7081 return -1;
7082 }
7083 }
7084 else
7085 {
7086 uint64_t addr64;
7087
7088 if (i386_record_lea_modrm_addr (&ir, &addr64))
7089 return -1;
7090 if (record_full_arch_list_add_mem (addr64, 2))
7091 return -1;
7092 addr64 += 2;
7093 if (ir.regmap[X86_RECORD_R8_REGNUM])
7094 {
7095 if (record_full_arch_list_add_mem (addr64, 8))
7096 return -1;
7097 }
7098 else
7099 {
7100 if (record_full_arch_list_add_mem (addr64, 4))
7101 return -1;
7102 }
7103 }
7104 }
7105 break;
7106 case 2: /* lgdt */
7107 if (ir.mod == 3)
7108 {
7109 /* xgetbv */
7110 if (ir.rm == 0)
7111 {
7112 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7113 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7114 break;
7115 }
7116 /* xsetbv */
7117 else if (ir.rm == 1)
7118 break;
7119 }
7120 case 3: /* lidt */
7121 if (ir.mod == 3)
7122 {
7123 ir.addr -= 3;
7124 opcode = opcode << 8 | ir.modrm;
7125 goto no_support;
7126 }
7127 break;
7128 case 4: /* smsw */
7129 if (ir.mod == 3)
7130 {
7131 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7132 return -1;
7133 }
7134 else
7135 {
7136 ir.ot = OT_WORD;
7137 if (i386_record_lea_modrm (&ir))
7138 return -1;
7139 }
7140 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7141 break;
7142 case 6: /* lmsw */
7143 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7144 break;
7145 case 7: /* invlpg */
7146 if (ir.mod == 3)
7147 {
7148 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7149 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7150 else
7151 {
7152 ir.addr -= 3;
7153 opcode = opcode << 8 | ir.modrm;
7154 goto no_support;
7155 }
7156 }
7157 else
7158 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7159 break;
7160 default:
7161 ir.addr -= 3;
7162 opcode = opcode << 8 | ir.modrm;
7163 goto no_support;
7164 break;
7165 }
7166 break;
7167
7168 case 0x0f08: /* invd */
7169 case 0x0f09: /* wbinvd */
7170 break;
7171
7172 case 0x63: /* arpl */
7173 if (i386_record_modrm (&ir))
7174 return -1;
7175 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7176 {
7177 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7178 ? (ir.reg | rex_r) : ir.rm);
7179 }
7180 else
7181 {
7182 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7183 if (i386_record_lea_modrm (&ir))
7184 return -1;
7185 }
7186 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7188 break;
7189
7190 case 0x0f02: /* lar */
7191 case 0x0f03: /* lsl */
7192 if (i386_record_modrm (&ir))
7193 return -1;
7194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7196 break;
7197
7198 case 0x0f18:
7199 if (i386_record_modrm (&ir))
7200 return -1;
7201 if (ir.mod == 3 && ir.reg == 3)
7202 {
7203 ir.addr -= 3;
7204 opcode = opcode << 8 | ir.modrm;
7205 goto no_support;
7206 }
7207 break;
7208
7209 case 0x0f19:
7210 case 0x0f1a:
7211 case 0x0f1b:
7212 case 0x0f1c:
7213 case 0x0f1d:
7214 case 0x0f1e:
7215 case 0x0f1f:
7216 /* nop (multi byte) */
7217 break;
7218
7219 case 0x0f20: /* mov reg, crN */
7220 case 0x0f22: /* mov crN, reg */
7221 if (i386_record_modrm (&ir))
7222 return -1;
7223 if ((ir.modrm & 0xc0) != 0xc0)
7224 {
7225 ir.addr -= 3;
7226 opcode = opcode << 8 | ir.modrm;
7227 goto no_support;
7228 }
7229 switch (ir.reg)
7230 {
7231 case 0:
7232 case 2:
7233 case 3:
7234 case 4:
7235 case 8:
7236 if (opcode & 2)
7237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7238 else
7239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7240 break;
7241 default:
7242 ir.addr -= 3;
7243 opcode = opcode << 8 | ir.modrm;
7244 goto no_support;
7245 break;
7246 }
7247 break;
7248
7249 case 0x0f21: /* mov reg, drN */
7250 case 0x0f23: /* mov drN, reg */
7251 if (i386_record_modrm (&ir))
7252 return -1;
7253 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7254 || ir.reg == 5 || ir.reg >= 8)
7255 {
7256 ir.addr -= 3;
7257 opcode = opcode << 8 | ir.modrm;
7258 goto no_support;
7259 }
7260 if (opcode & 2)
7261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7262 else
7263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7264 break;
7265
7266 case 0x0f06: /* clts */
7267 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7268 break;
7269
7270 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7271
7272 case 0x0f0d: /* 3DNow! prefetch */
7273 break;
7274
7275 case 0x0f0e: /* 3DNow! femms */
7276 case 0x0f77: /* emms */
7277 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7278 goto no_support;
7279 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7280 break;
7281
7282 case 0x0f0f: /* 3DNow! data */
7283 if (i386_record_modrm (&ir))
7284 return -1;
7285 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7286 return -1;
7287 ir.addr++;
7288 switch (opcode8)
7289 {
7290 case 0x0c: /* 3DNow! pi2fw */
7291 case 0x0d: /* 3DNow! pi2fd */
7292 case 0x1c: /* 3DNow! pf2iw */
7293 case 0x1d: /* 3DNow! pf2id */
7294 case 0x8a: /* 3DNow! pfnacc */
7295 case 0x8e: /* 3DNow! pfpnacc */
7296 case 0x90: /* 3DNow! pfcmpge */
7297 case 0x94: /* 3DNow! pfmin */
7298 case 0x96: /* 3DNow! pfrcp */
7299 case 0x97: /* 3DNow! pfrsqrt */
7300 case 0x9a: /* 3DNow! pfsub */
7301 case 0x9e: /* 3DNow! pfadd */
7302 case 0xa0: /* 3DNow! pfcmpgt */
7303 case 0xa4: /* 3DNow! pfmax */
7304 case 0xa6: /* 3DNow! pfrcpit1 */
7305 case 0xa7: /* 3DNow! pfrsqit1 */
7306 case 0xaa: /* 3DNow! pfsubr */
7307 case 0xae: /* 3DNow! pfacc */
7308 case 0xb0: /* 3DNow! pfcmpeq */
7309 case 0xb4: /* 3DNow! pfmul */
7310 case 0xb6: /* 3DNow! pfrcpit2 */
7311 case 0xb7: /* 3DNow! pmulhrw */
7312 case 0xbb: /* 3DNow! pswapd */
7313 case 0xbf: /* 3DNow! pavgusb */
7314 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7315 goto no_support_3dnow_data;
7316 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7317 break;
7318
7319 default:
7320 no_support_3dnow_data:
7321 opcode = (opcode << 8) | opcode8;
7322 goto no_support;
7323 break;
7324 }
7325 break;
7326
7327 case 0x0faa: /* rsm */
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7333 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7337 break;
7338
7339 case 0x0fae:
7340 if (i386_record_modrm (&ir))
7341 return -1;
7342 switch(ir.reg)
7343 {
7344 case 0: /* fxsave */
7345 {
7346 uint64_t tmpu64;
7347
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7349 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7350 return -1;
7351 if (record_full_arch_list_add_mem (tmpu64, 512))
7352 return -1;
7353 }
7354 break;
7355
7356 case 1: /* fxrstor */
7357 {
7358 int i;
7359
7360 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7361
7362 for (i = I387_MM0_REGNUM (tdep);
7363 i386_mmx_regnum_p (gdbarch, i); i++)
7364 record_full_arch_list_add_reg (ir.regcache, i);
7365
7366 for (i = I387_XMM0_REGNUM (tdep);
7367 i386_xmm_regnum_p (gdbarch, i); i++)
7368 record_full_arch_list_add_reg (ir.regcache, i);
7369
7370 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7371 record_full_arch_list_add_reg (ir.regcache,
7372 I387_MXCSR_REGNUM(tdep));
7373
7374 for (i = I387_ST0_REGNUM (tdep);
7375 i386_fp_regnum_p (gdbarch, i); i++)
7376 record_full_arch_list_add_reg (ir.regcache, i);
7377
7378 for (i = I387_FCTRL_REGNUM (tdep);
7379 i386_fpc_regnum_p (gdbarch, i); i++)
7380 record_full_arch_list_add_reg (ir.regcache, i);
7381 }
7382 break;
7383
7384 case 2: /* ldmxcsr */
7385 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7386 goto no_support;
7387 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7388 break;
7389
7390 case 3: /* stmxcsr */
7391 ir.ot = OT_LONG;
7392 if (i386_record_lea_modrm (&ir))
7393 return -1;
7394 break;
7395
7396 case 5: /* lfence */
7397 case 6: /* mfence */
7398 case 7: /* sfence clflush */
7399 break;
7400
7401 default:
7402 opcode = (opcode << 8) | ir.modrm;
7403 goto no_support;
7404 break;
7405 }
7406 break;
7407
7408 case 0x0fc3: /* movnti */
7409 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7410 if (i386_record_modrm (&ir))
7411 return -1;
7412 if (ir.mod == 3)
7413 goto no_support;
7414 ir.reg |= rex_r;
7415 if (i386_record_lea_modrm (&ir))
7416 return -1;
7417 break;
7418
7419 /* Add prefix to opcode. */
7420 case 0x0f10:
7421 case 0x0f11:
7422 case 0x0f12:
7423 case 0x0f13:
7424 case 0x0f14:
7425 case 0x0f15:
7426 case 0x0f16:
7427 case 0x0f17:
7428 case 0x0f28:
7429 case 0x0f29:
7430 case 0x0f2a:
7431 case 0x0f2b:
7432 case 0x0f2c:
7433 case 0x0f2d:
7434 case 0x0f2e:
7435 case 0x0f2f:
7436 case 0x0f38:
7437 case 0x0f39:
7438 case 0x0f3a:
7439 case 0x0f50:
7440 case 0x0f51:
7441 case 0x0f52:
7442 case 0x0f53:
7443 case 0x0f54:
7444 case 0x0f55:
7445 case 0x0f56:
7446 case 0x0f57:
7447 case 0x0f58:
7448 case 0x0f59:
7449 case 0x0f5a:
7450 case 0x0f5b:
7451 case 0x0f5c:
7452 case 0x0f5d:
7453 case 0x0f5e:
7454 case 0x0f5f:
7455 case 0x0f60:
7456 case 0x0f61:
7457 case 0x0f62:
7458 case 0x0f63:
7459 case 0x0f64:
7460 case 0x0f65:
7461 case 0x0f66:
7462 case 0x0f67:
7463 case 0x0f68:
7464 case 0x0f69:
7465 case 0x0f6a:
7466 case 0x0f6b:
7467 case 0x0f6c:
7468 case 0x0f6d:
7469 case 0x0f6e:
7470 case 0x0f6f:
7471 case 0x0f70:
7472 case 0x0f71:
7473 case 0x0f72:
7474 case 0x0f73:
7475 case 0x0f74:
7476 case 0x0f75:
7477 case 0x0f76:
7478 case 0x0f7c:
7479 case 0x0f7d:
7480 case 0x0f7e:
7481 case 0x0f7f:
7482 case 0x0fb8:
7483 case 0x0fc2:
7484 case 0x0fc4:
7485 case 0x0fc5:
7486 case 0x0fc6:
7487 case 0x0fd0:
7488 case 0x0fd1:
7489 case 0x0fd2:
7490 case 0x0fd3:
7491 case 0x0fd4:
7492 case 0x0fd5:
7493 case 0x0fd6:
7494 case 0x0fd7:
7495 case 0x0fd8:
7496 case 0x0fd9:
7497 case 0x0fda:
7498 case 0x0fdb:
7499 case 0x0fdc:
7500 case 0x0fdd:
7501 case 0x0fde:
7502 case 0x0fdf:
7503 case 0x0fe0:
7504 case 0x0fe1:
7505 case 0x0fe2:
7506 case 0x0fe3:
7507 case 0x0fe4:
7508 case 0x0fe5:
7509 case 0x0fe6:
7510 case 0x0fe7:
7511 case 0x0fe8:
7512 case 0x0fe9:
7513 case 0x0fea:
7514 case 0x0feb:
7515 case 0x0fec:
7516 case 0x0fed:
7517 case 0x0fee:
7518 case 0x0fef:
7519 case 0x0ff0:
7520 case 0x0ff1:
7521 case 0x0ff2:
7522 case 0x0ff3:
7523 case 0x0ff4:
7524 case 0x0ff5:
7525 case 0x0ff6:
7526 case 0x0ff7:
7527 case 0x0ff8:
7528 case 0x0ff9:
7529 case 0x0ffa:
7530 case 0x0ffb:
7531 case 0x0ffc:
7532 case 0x0ffd:
7533 case 0x0ffe:
7534 /* Mask out PREFIX_ADDR. */
7535 switch ((prefixes & ~PREFIX_ADDR))
7536 {
7537 case PREFIX_REPNZ:
7538 opcode |= 0xf20000;
7539 break;
7540 case PREFIX_DATA:
7541 opcode |= 0x660000;
7542 break;
7543 case PREFIX_REPZ:
7544 opcode |= 0xf30000;
7545 break;
7546 }
7547 reswitch_prefix_add:
7548 switch (opcode)
7549 {
7550 case 0x0f38:
7551 case 0x660f38:
7552 case 0xf20f38:
7553 case 0x0f3a:
7554 case 0x660f3a:
7555 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7556 return -1;
7557 ir.addr++;
7558 opcode = (uint32_t) opcode8 | opcode << 8;
7559 goto reswitch_prefix_add;
7560 break;
7561
7562 case 0x0f10: /* movups */
7563 case 0x660f10: /* movupd */
7564 case 0xf30f10: /* movss */
7565 case 0xf20f10: /* movsd */
7566 case 0x0f12: /* movlps */
7567 case 0x660f12: /* movlpd */
7568 case 0xf30f12: /* movsldup */
7569 case 0xf20f12: /* movddup */
7570 case 0x0f14: /* unpcklps */
7571 case 0x660f14: /* unpcklpd */
7572 case 0x0f15: /* unpckhps */
7573 case 0x660f15: /* unpckhpd */
7574 case 0x0f16: /* movhps */
7575 case 0x660f16: /* movhpd */
7576 case 0xf30f16: /* movshdup */
7577 case 0x0f28: /* movaps */
7578 case 0x660f28: /* movapd */
7579 case 0x0f2a: /* cvtpi2ps */
7580 case 0x660f2a: /* cvtpi2pd */
7581 case 0xf30f2a: /* cvtsi2ss */
7582 case 0xf20f2a: /* cvtsi2sd */
7583 case 0x0f2c: /* cvttps2pi */
7584 case 0x660f2c: /* cvttpd2pi */
7585 case 0x0f2d: /* cvtps2pi */
7586 case 0x660f2d: /* cvtpd2pi */
7587 case 0x660f3800: /* pshufb */
7588 case 0x660f3801: /* phaddw */
7589 case 0x660f3802: /* phaddd */
7590 case 0x660f3803: /* phaddsw */
7591 case 0x660f3804: /* pmaddubsw */
7592 case 0x660f3805: /* phsubw */
7593 case 0x660f3806: /* phsubd */
7594 case 0x660f3807: /* phsubsw */
7595 case 0x660f3808: /* psignb */
7596 case 0x660f3809: /* psignw */
7597 case 0x660f380a: /* psignd */
7598 case 0x660f380b: /* pmulhrsw */
7599 case 0x660f3810: /* pblendvb */
7600 case 0x660f3814: /* blendvps */
7601 case 0x660f3815: /* blendvpd */
7602 case 0x660f381c: /* pabsb */
7603 case 0x660f381d: /* pabsw */
7604 case 0x660f381e: /* pabsd */
7605 case 0x660f3820: /* pmovsxbw */
7606 case 0x660f3821: /* pmovsxbd */
7607 case 0x660f3822: /* pmovsxbq */
7608 case 0x660f3823: /* pmovsxwd */
7609 case 0x660f3824: /* pmovsxwq */
7610 case 0x660f3825: /* pmovsxdq */
7611 case 0x660f3828: /* pmuldq */
7612 case 0x660f3829: /* pcmpeqq */
7613 case 0x660f382a: /* movntdqa */
7614 case 0x660f3a08: /* roundps */
7615 case 0x660f3a09: /* roundpd */
7616 case 0x660f3a0a: /* roundss */
7617 case 0x660f3a0b: /* roundsd */
7618 case 0x660f3a0c: /* blendps */
7619 case 0x660f3a0d: /* blendpd */
7620 case 0x660f3a0e: /* pblendw */
7621 case 0x660f3a0f: /* palignr */
7622 case 0x660f3a20: /* pinsrb */
7623 case 0x660f3a21: /* insertps */
7624 case 0x660f3a22: /* pinsrd pinsrq */
7625 case 0x660f3a40: /* dpps */
7626 case 0x660f3a41: /* dppd */
7627 case 0x660f3a42: /* mpsadbw */
7628 case 0x660f3a60: /* pcmpestrm */
7629 case 0x660f3a61: /* pcmpestri */
7630 case 0x660f3a62: /* pcmpistrm */
7631 case 0x660f3a63: /* pcmpistri */
7632 case 0x0f51: /* sqrtps */
7633 case 0x660f51: /* sqrtpd */
7634 case 0xf20f51: /* sqrtsd */
7635 case 0xf30f51: /* sqrtss */
7636 case 0x0f52: /* rsqrtps */
7637 case 0xf30f52: /* rsqrtss */
7638 case 0x0f53: /* rcpps */
7639 case 0xf30f53: /* rcpss */
7640 case 0x0f54: /* andps */
7641 case 0x660f54: /* andpd */
7642 case 0x0f55: /* andnps */
7643 case 0x660f55: /* andnpd */
7644 case 0x0f56: /* orps */
7645 case 0x660f56: /* orpd */
7646 case 0x0f57: /* xorps */
7647 case 0x660f57: /* xorpd */
7648 case 0x0f58: /* addps */
7649 case 0x660f58: /* addpd */
7650 case 0xf20f58: /* addsd */
7651 case 0xf30f58: /* addss */
7652 case 0x0f59: /* mulps */
7653 case 0x660f59: /* mulpd */
7654 case 0xf20f59: /* mulsd */
7655 case 0xf30f59: /* mulss */
7656 case 0x0f5a: /* cvtps2pd */
7657 case 0x660f5a: /* cvtpd2ps */
7658 case 0xf20f5a: /* cvtsd2ss */
7659 case 0xf30f5a: /* cvtss2sd */
7660 case 0x0f5b: /* cvtdq2ps */
7661 case 0x660f5b: /* cvtps2dq */
7662 case 0xf30f5b: /* cvttps2dq */
7663 case 0x0f5c: /* subps */
7664 case 0x660f5c: /* subpd */
7665 case 0xf20f5c: /* subsd */
7666 case 0xf30f5c: /* subss */
7667 case 0x0f5d: /* minps */
7668 case 0x660f5d: /* minpd */
7669 case 0xf20f5d: /* minsd */
7670 case 0xf30f5d: /* minss */
7671 case 0x0f5e: /* divps */
7672 case 0x660f5e: /* divpd */
7673 case 0xf20f5e: /* divsd */
7674 case 0xf30f5e: /* divss */
7675 case 0x0f5f: /* maxps */
7676 case 0x660f5f: /* maxpd */
7677 case 0xf20f5f: /* maxsd */
7678 case 0xf30f5f: /* maxss */
7679 case 0x660f60: /* punpcklbw */
7680 case 0x660f61: /* punpcklwd */
7681 case 0x660f62: /* punpckldq */
7682 case 0x660f63: /* packsswb */
7683 case 0x660f64: /* pcmpgtb */
7684 case 0x660f65: /* pcmpgtw */
7685 case 0x660f66: /* pcmpgtd */
7686 case 0x660f67: /* packuswb */
7687 case 0x660f68: /* punpckhbw */
7688 case 0x660f69: /* punpckhwd */
7689 case 0x660f6a: /* punpckhdq */
7690 case 0x660f6b: /* packssdw */
7691 case 0x660f6c: /* punpcklqdq */
7692 case 0x660f6d: /* punpckhqdq */
7693 case 0x660f6e: /* movd */
7694 case 0x660f6f: /* movdqa */
7695 case 0xf30f6f: /* movdqu */
7696 case 0x660f70: /* pshufd */
7697 case 0xf20f70: /* pshuflw */
7698 case 0xf30f70: /* pshufhw */
7699 case 0x660f74: /* pcmpeqb */
7700 case 0x660f75: /* pcmpeqw */
7701 case 0x660f76: /* pcmpeqd */
7702 case 0x660f7c: /* haddpd */
7703 case 0xf20f7c: /* haddps */
7704 case 0x660f7d: /* hsubpd */
7705 case 0xf20f7d: /* hsubps */
7706 case 0xf30f7e: /* movq */
7707 case 0x0fc2: /* cmpps */
7708 case 0x660fc2: /* cmppd */
7709 case 0xf20fc2: /* cmpsd */
7710 case 0xf30fc2: /* cmpss */
7711 case 0x660fc4: /* pinsrw */
7712 case 0x0fc6: /* shufps */
7713 case 0x660fc6: /* shufpd */
7714 case 0x660fd0: /* addsubpd */
7715 case 0xf20fd0: /* addsubps */
7716 case 0x660fd1: /* psrlw */
7717 case 0x660fd2: /* psrld */
7718 case 0x660fd3: /* psrlq */
7719 case 0x660fd4: /* paddq */
7720 case 0x660fd5: /* pmullw */
7721 case 0xf30fd6: /* movq2dq */
7722 case 0x660fd8: /* psubusb */
7723 case 0x660fd9: /* psubusw */
7724 case 0x660fda: /* pminub */
7725 case 0x660fdb: /* pand */
7726 case 0x660fdc: /* paddusb */
7727 case 0x660fdd: /* paddusw */
7728 case 0x660fde: /* pmaxub */
7729 case 0x660fdf: /* pandn */
7730 case 0x660fe0: /* pavgb */
7731 case 0x660fe1: /* psraw */
7732 case 0x660fe2: /* psrad */
7733 case 0x660fe3: /* pavgw */
7734 case 0x660fe4: /* pmulhuw */
7735 case 0x660fe5: /* pmulhw */
7736 case 0x660fe6: /* cvttpd2dq */
7737 case 0xf20fe6: /* cvtpd2dq */
7738 case 0xf30fe6: /* cvtdq2pd */
7739 case 0x660fe8: /* psubsb */
7740 case 0x660fe9: /* psubsw */
7741 case 0x660fea: /* pminsw */
7742 case 0x660feb: /* por */
7743 case 0x660fec: /* paddsb */
7744 case 0x660fed: /* paddsw */
7745 case 0x660fee: /* pmaxsw */
7746 case 0x660fef: /* pxor */
7747 case 0xf20ff0: /* lddqu */
7748 case 0x660ff1: /* psllw */
7749 case 0x660ff2: /* pslld */
7750 case 0x660ff3: /* psllq */
7751 case 0x660ff4: /* pmuludq */
7752 case 0x660ff5: /* pmaddwd */
7753 case 0x660ff6: /* psadbw */
7754 case 0x660ff8: /* psubb */
7755 case 0x660ff9: /* psubw */
7756 case 0x660ffa: /* psubd */
7757 case 0x660ffb: /* psubq */
7758 case 0x660ffc: /* paddb */
7759 case 0x660ffd: /* paddw */
7760 case 0x660ffe: /* paddd */
7761 if (i386_record_modrm (&ir))
7762 return -1;
7763 ir.reg |= rex_r;
7764 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7765 goto no_support;
7766 record_full_arch_list_add_reg (ir.regcache,
7767 I387_XMM0_REGNUM (tdep) + ir.reg);
7768 if ((opcode & 0xfffffffc) == 0x660f3a60)
7769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7770 break;
7771
7772 case 0x0f11: /* movups */
7773 case 0x660f11: /* movupd */
7774 case 0xf30f11: /* movss */
7775 case 0xf20f11: /* movsd */
7776 case 0x0f13: /* movlps */
7777 case 0x660f13: /* movlpd */
7778 case 0x0f17: /* movhps */
7779 case 0x660f17: /* movhpd */
7780 case 0x0f29: /* movaps */
7781 case 0x660f29: /* movapd */
7782 case 0x660f3a14: /* pextrb */
7783 case 0x660f3a15: /* pextrw */
7784 case 0x660f3a16: /* pextrd pextrq */
7785 case 0x660f3a17: /* extractps */
7786 case 0x660f7f: /* movdqa */
7787 case 0xf30f7f: /* movdqu */
7788 if (i386_record_modrm (&ir))
7789 return -1;
7790 if (ir.mod == 3)
7791 {
7792 if (opcode == 0x0f13 || opcode == 0x660f13
7793 || opcode == 0x0f17 || opcode == 0x660f17)
7794 goto no_support;
7795 ir.rm |= ir.rex_b;
7796 if (!i386_xmm_regnum_p (gdbarch,
7797 I387_XMM0_REGNUM (tdep) + ir.rm))
7798 goto no_support;
7799 record_full_arch_list_add_reg (ir.regcache,
7800 I387_XMM0_REGNUM (tdep) + ir.rm);
7801 }
7802 else
7803 {
7804 switch (opcode)
7805 {
7806 case 0x660f3a14:
7807 ir.ot = OT_BYTE;
7808 break;
7809 case 0x660f3a15:
7810 ir.ot = OT_WORD;
7811 break;
7812 case 0x660f3a16:
7813 ir.ot = OT_LONG;
7814 break;
7815 case 0x660f3a17:
7816 ir.ot = OT_QUAD;
7817 break;
7818 default:
7819 ir.ot = OT_DQUAD;
7820 break;
7821 }
7822 if (i386_record_lea_modrm (&ir))
7823 return -1;
7824 }
7825 break;
7826
7827 case 0x0f2b: /* movntps */
7828 case 0x660f2b: /* movntpd */
7829 case 0x0fe7: /* movntq */
7830 case 0x660fe7: /* movntdq */
7831 if (ir.mod == 3)
7832 goto no_support;
7833 if (opcode == 0x0fe7)
7834 ir.ot = OT_QUAD;
7835 else
7836 ir.ot = OT_DQUAD;
7837 if (i386_record_lea_modrm (&ir))
7838 return -1;
7839 break;
7840
7841 case 0xf30f2c: /* cvttss2si */
7842 case 0xf20f2c: /* cvttsd2si */
7843 case 0xf30f2d: /* cvtss2si */
7844 case 0xf20f2d: /* cvtsd2si */
7845 case 0xf20f38f0: /* crc32 */
7846 case 0xf20f38f1: /* crc32 */
7847 case 0x0f50: /* movmskps */
7848 case 0x660f50: /* movmskpd */
7849 case 0x0fc5: /* pextrw */
7850 case 0x660fc5: /* pextrw */
7851 case 0x0fd7: /* pmovmskb */
7852 case 0x660fd7: /* pmovmskb */
7853 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7854 break;
7855
7856 case 0x0f3800: /* pshufb */
7857 case 0x0f3801: /* phaddw */
7858 case 0x0f3802: /* phaddd */
7859 case 0x0f3803: /* phaddsw */
7860 case 0x0f3804: /* pmaddubsw */
7861 case 0x0f3805: /* phsubw */
7862 case 0x0f3806: /* phsubd */
7863 case 0x0f3807: /* phsubsw */
7864 case 0x0f3808: /* psignb */
7865 case 0x0f3809: /* psignw */
7866 case 0x0f380a: /* psignd */
7867 case 0x0f380b: /* pmulhrsw */
7868 case 0x0f381c: /* pabsb */
7869 case 0x0f381d: /* pabsw */
7870 case 0x0f381e: /* pabsd */
7871 case 0x0f382b: /* packusdw */
7872 case 0x0f3830: /* pmovzxbw */
7873 case 0x0f3831: /* pmovzxbd */
7874 case 0x0f3832: /* pmovzxbq */
7875 case 0x0f3833: /* pmovzxwd */
7876 case 0x0f3834: /* pmovzxwq */
7877 case 0x0f3835: /* pmovzxdq */
7878 case 0x0f3837: /* pcmpgtq */
7879 case 0x0f3838: /* pminsb */
7880 case 0x0f3839: /* pminsd */
7881 case 0x0f383a: /* pminuw */
7882 case 0x0f383b: /* pminud */
7883 case 0x0f383c: /* pmaxsb */
7884 case 0x0f383d: /* pmaxsd */
7885 case 0x0f383e: /* pmaxuw */
7886 case 0x0f383f: /* pmaxud */
7887 case 0x0f3840: /* pmulld */
7888 case 0x0f3841: /* phminposuw */
7889 case 0x0f3a0f: /* palignr */
7890 case 0x0f60: /* punpcklbw */
7891 case 0x0f61: /* punpcklwd */
7892 case 0x0f62: /* punpckldq */
7893 case 0x0f63: /* packsswb */
7894 case 0x0f64: /* pcmpgtb */
7895 case 0x0f65: /* pcmpgtw */
7896 case 0x0f66: /* pcmpgtd */
7897 case 0x0f67: /* packuswb */
7898 case 0x0f68: /* punpckhbw */
7899 case 0x0f69: /* punpckhwd */
7900 case 0x0f6a: /* punpckhdq */
7901 case 0x0f6b: /* packssdw */
7902 case 0x0f6e: /* movd */
7903 case 0x0f6f: /* movq */
7904 case 0x0f70: /* pshufw */
7905 case 0x0f74: /* pcmpeqb */
7906 case 0x0f75: /* pcmpeqw */
7907 case 0x0f76: /* pcmpeqd */
7908 case 0x0fc4: /* pinsrw */
7909 case 0x0fd1: /* psrlw */
7910 case 0x0fd2: /* psrld */
7911 case 0x0fd3: /* psrlq */
7912 case 0x0fd4: /* paddq */
7913 case 0x0fd5: /* pmullw */
7914 case 0xf20fd6: /* movdq2q */
7915 case 0x0fd8: /* psubusb */
7916 case 0x0fd9: /* psubusw */
7917 case 0x0fda: /* pminub */
7918 case 0x0fdb: /* pand */
7919 case 0x0fdc: /* paddusb */
7920 case 0x0fdd: /* paddusw */
7921 case 0x0fde: /* pmaxub */
7922 case 0x0fdf: /* pandn */
7923 case 0x0fe0: /* pavgb */
7924 case 0x0fe1: /* psraw */
7925 case 0x0fe2: /* psrad */
7926 case 0x0fe3: /* pavgw */
7927 case 0x0fe4: /* pmulhuw */
7928 case 0x0fe5: /* pmulhw */
7929 case 0x0fe8: /* psubsb */
7930 case 0x0fe9: /* psubsw */
7931 case 0x0fea: /* pminsw */
7932 case 0x0feb: /* por */
7933 case 0x0fec: /* paddsb */
7934 case 0x0fed: /* paddsw */
7935 case 0x0fee: /* pmaxsw */
7936 case 0x0fef: /* pxor */
7937 case 0x0ff1: /* psllw */
7938 case 0x0ff2: /* pslld */
7939 case 0x0ff3: /* psllq */
7940 case 0x0ff4: /* pmuludq */
7941 case 0x0ff5: /* pmaddwd */
7942 case 0x0ff6: /* psadbw */
7943 case 0x0ff8: /* psubb */
7944 case 0x0ff9: /* psubw */
7945 case 0x0ffa: /* psubd */
7946 case 0x0ffb: /* psubq */
7947 case 0x0ffc: /* paddb */
7948 case 0x0ffd: /* paddw */
7949 case 0x0ffe: /* paddd */
7950 if (i386_record_modrm (&ir))
7951 return -1;
7952 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7953 goto no_support;
7954 record_full_arch_list_add_reg (ir.regcache,
7955 I387_MM0_REGNUM (tdep) + ir.reg);
7956 break;
7957
7958 case 0x0f71: /* psllw */
7959 case 0x0f72: /* pslld */
7960 case 0x0f73: /* psllq */
7961 if (i386_record_modrm (&ir))
7962 return -1;
7963 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7964 goto no_support;
7965 record_full_arch_list_add_reg (ir.regcache,
7966 I387_MM0_REGNUM (tdep) + ir.rm);
7967 break;
7968
7969 case 0x660f71: /* psllw */
7970 case 0x660f72: /* pslld */
7971 case 0x660f73: /* psllq */
7972 if (i386_record_modrm (&ir))
7973 return -1;
7974 ir.rm |= ir.rex_b;
7975 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7976 goto no_support;
7977 record_full_arch_list_add_reg (ir.regcache,
7978 I387_XMM0_REGNUM (tdep) + ir.rm);
7979 break;
7980
7981 case 0x0f7e: /* movd */
7982 case 0x660f7e: /* movd */
7983 if (i386_record_modrm (&ir))
7984 return -1;
7985 if (ir.mod == 3)
7986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7987 else
7988 {
7989 if (ir.dflag == 2)
7990 ir.ot = OT_QUAD;
7991 else
7992 ir.ot = OT_LONG;
7993 if (i386_record_lea_modrm (&ir))
7994 return -1;
7995 }
7996 break;
7997
7998 case 0x0f7f: /* movq */
7999 if (i386_record_modrm (&ir))
8000 return -1;
8001 if (ir.mod == 3)
8002 {
8003 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8004 goto no_support;
8005 record_full_arch_list_add_reg (ir.regcache,
8006 I387_MM0_REGNUM (tdep) + ir.rm);
8007 }
8008 else
8009 {
8010 ir.ot = OT_QUAD;
8011 if (i386_record_lea_modrm (&ir))
8012 return -1;
8013 }
8014 break;
8015
8016 case 0xf30fb8: /* popcnt */
8017 if (i386_record_modrm (&ir))
8018 return -1;
8019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8021 break;
8022
8023 case 0x660fd6: /* movq */
8024 if (i386_record_modrm (&ir))
8025 return -1;
8026 if (ir.mod == 3)
8027 {
8028 ir.rm |= ir.rex_b;
8029 if (!i386_xmm_regnum_p (gdbarch,
8030 I387_XMM0_REGNUM (tdep) + ir.rm))
8031 goto no_support;
8032 record_full_arch_list_add_reg (ir.regcache,
8033 I387_XMM0_REGNUM (tdep) + ir.rm);
8034 }
8035 else
8036 {
8037 ir.ot = OT_QUAD;
8038 if (i386_record_lea_modrm (&ir))
8039 return -1;
8040 }
8041 break;
8042
8043 case 0x660f3817: /* ptest */
8044 case 0x0f2e: /* ucomiss */
8045 case 0x660f2e: /* ucomisd */
8046 case 0x0f2f: /* comiss */
8047 case 0x660f2f: /* comisd */
8048 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8049 break;
8050
8051 case 0x0ff7: /* maskmovq */
8052 regcache_raw_read_unsigned (ir.regcache,
8053 ir.regmap[X86_RECORD_REDI_REGNUM],
8054 &addr);
8055 if (record_full_arch_list_add_mem (addr, 64))
8056 return -1;
8057 break;
8058
8059 case 0x660ff7: /* maskmovdqu */
8060 regcache_raw_read_unsigned (ir.regcache,
8061 ir.regmap[X86_RECORD_REDI_REGNUM],
8062 &addr);
8063 if (record_full_arch_list_add_mem (addr, 128))
8064 return -1;
8065 break;
8066
8067 default:
8068 goto no_support;
8069 break;
8070 }
8071 break;
8072
8073 default:
8074 goto no_support;
8075 break;
8076 }
8077
8078 /* In the future, maybe still need to deal with need_dasm. */
8079 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8080 if (record_full_arch_list_add_end ())
8081 return -1;
8082
8083 return 0;
8084
8085 no_support:
8086 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8087 "at address %s.\n"),
8088 (unsigned int) (opcode),
8089 paddress (gdbarch, ir.orig_addr));
8090 return -1;
8091 }
8092
8093 static const int i386_record_regmap[] =
8094 {
8095 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8096 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8097 0, 0, 0, 0, 0, 0, 0, 0,
8098 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8099 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8100 };
8101
8102 /* Check that the given address appears suitable for a fast
8103 tracepoint, which on x86-64 means that we need an instruction of at
8104 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8105 jump and not have to worry about program jumps to an address in the
8106 middle of the tracepoint jump. On x86, it may be possible to use
8107 4-byte jumps with a 2-byte offset to a trampoline located in the
8108 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8109 of instruction to replace, and 0 if not, plus an explanatory
8110 string. */
8111
8112 static int
8113 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8114 char **msg)
8115 {
8116 int len, jumplen;
8117 static struct ui_file *gdb_null = NULL;
8118
8119 /* Ask the target for the minimum instruction length supported. */
8120 jumplen = target_get_min_fast_tracepoint_insn_len ();
8121
8122 if (jumplen < 0)
8123 {
8124 /* If the target does not support the get_min_fast_tracepoint_insn_len
8125 operation, assume that fast tracepoints will always be implemented
8126 using 4-byte relative jumps on both x86 and x86-64. */
8127 jumplen = 5;
8128 }
8129 else if (jumplen == 0)
8130 {
8131 /* If the target does support get_min_fast_tracepoint_insn_len but
8132 returns zero, then the IPA has not loaded yet. In this case,
8133 we optimistically assume that truncated 2-byte relative jumps
8134 will be available on x86, and compensate later if this assumption
8135 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8136 jumps will always be used. */
8137 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8138 }
8139
8140 /* Dummy file descriptor for the disassembler. */
8141 if (!gdb_null)
8142 gdb_null = ui_file_new ();
8143
8144 /* Check for fit. */
8145 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8146
8147 if (len < jumplen)
8148 {
8149 /* Return a bit of target-specific detail to add to the caller's
8150 generic failure message. */
8151 if (msg)
8152 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8153 "need at least %d bytes for the jump"),
8154 len, jumplen);
8155 return 0;
8156 }
8157 else
8158 {
8159 if (msg)
8160 *msg = NULL;
8161 return 1;
8162 }
8163 }
8164
8165 /* Return a floating-point format for a floating-point variable of
8166 length LEN in bits. If non-NULL, NAME is the name of its type.
8167 If no suitable type is found, return NULL. */
8168
8169 const struct floatformat **
8170 i386_floatformat_for_type (struct gdbarch *gdbarch,
8171 const char *name, int len)
8172 {
8173 if (len == 128 && name)
8174 if (strcmp (name, "__float128") == 0
8175 || strcmp (name, "_Float128") == 0
8176 || strcmp (name, "complex _Float128") == 0)
8177 return floatformats_ia64_quad;
8178
8179 return default_floatformat_for_type (gdbarch, name, len);
8180 }
8181
8182 static int
8183 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8184 struct tdesc_arch_data *tdesc_data)
8185 {
8186 const struct target_desc *tdesc = tdep->tdesc;
8187 const struct tdesc_feature *feature_core;
8188
8189 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8190 *feature_avx512;
8191 int i, num_regs, valid_p;
8192
8193 if (! tdesc_has_registers (tdesc))
8194 return 0;
8195
8196 /* Get core registers. */
8197 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8198 if (feature_core == NULL)
8199 return 0;
8200
8201 /* Get SSE registers. */
8202 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8203
8204 /* Try AVX registers. */
8205 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8206
8207 /* Try MPX registers. */
8208 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8209
8210 /* Try AVX512 registers. */
8211 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8212
8213 valid_p = 1;
8214
8215 /* The XCR0 bits. */
8216 if (feature_avx512)
8217 {
8218 /* AVX512 register description requires AVX register description. */
8219 if (!feature_avx)
8220 return 0;
8221
8222 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
8223
8224 /* It may have been set by OSABI initialization function. */
8225 if (tdep->k0_regnum < 0)
8226 {
8227 tdep->k_register_names = i386_k_names;
8228 tdep->k0_regnum = I386_K0_REGNUM;
8229 }
8230
8231 for (i = 0; i < I387_NUM_K_REGS; i++)
8232 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8233 tdep->k0_regnum + i,
8234 i386_k_names[i]);
8235
8236 if (tdep->num_zmm_regs == 0)
8237 {
8238 tdep->zmmh_register_names = i386_zmmh_names;
8239 tdep->num_zmm_regs = 8;
8240 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8241 }
8242
8243 for (i = 0; i < tdep->num_zmm_regs; i++)
8244 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8245 tdep->zmm0h_regnum + i,
8246 tdep->zmmh_register_names[i]);
8247
8248 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8249 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8250 tdep->xmm16_regnum + i,
8251 tdep->xmm_avx512_register_names[i]);
8252
8253 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8254 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8255 tdep->ymm16h_regnum + i,
8256 tdep->ymm16h_register_names[i]);
8257 }
8258 if (feature_avx)
8259 {
8260 /* AVX register description requires SSE register description. */
8261 if (!feature_sse)
8262 return 0;
8263
8264 if (!feature_avx512)
8265 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8266
8267 /* It may have been set by OSABI initialization function. */
8268 if (tdep->num_ymm_regs == 0)
8269 {
8270 tdep->ymmh_register_names = i386_ymmh_names;
8271 tdep->num_ymm_regs = 8;
8272 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8273 }
8274
8275 for (i = 0; i < tdep->num_ymm_regs; i++)
8276 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8277 tdep->ymm0h_regnum + i,
8278 tdep->ymmh_register_names[i]);
8279 }
8280 else if (feature_sse)
8281 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8282 else
8283 {
8284 tdep->xcr0 = X86_XSTATE_X87_MASK;
8285 tdep->num_xmm_regs = 0;
8286 }
8287
8288 num_regs = tdep->num_core_regs;
8289 for (i = 0; i < num_regs; i++)
8290 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8291 tdep->register_names[i]);
8292
8293 if (feature_sse)
8294 {
8295 /* Need to include %mxcsr, so add one. */
8296 num_regs += tdep->num_xmm_regs + 1;
8297 for (; i < num_regs; i++)
8298 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8299 tdep->register_names[i]);
8300 }
8301
8302 if (feature_mpx)
8303 {
8304 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8305
8306 if (tdep->bnd0r_regnum < 0)
8307 {
8308 tdep->mpx_register_names = i386_mpx_names;
8309 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8310 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8311 }
8312
8313 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8314 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8315 I387_BND0R_REGNUM (tdep) + i,
8316 tdep->mpx_register_names[i]);
8317 }
8318
8319 return valid_p;
8320 }
8321
8322 \f
8323 static struct gdbarch *
8324 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8325 {
8326 struct gdbarch_tdep *tdep;
8327 struct gdbarch *gdbarch;
8328 struct tdesc_arch_data *tdesc_data;
8329 const struct target_desc *tdesc;
8330 int mm0_regnum;
8331 int ymm0_regnum;
8332 int bnd0_regnum;
8333 int num_bnd_cooked;
8334
8335 /* If there is already a candidate, use it. */
8336 arches = gdbarch_list_lookup_by_info (arches, &info);
8337 if (arches != NULL)
8338 return arches->gdbarch;
8339
8340 /* Allocate space for the new architecture. */
8341 tdep = XCNEW (struct gdbarch_tdep);
8342 gdbarch = gdbarch_alloc (&info, tdep);
8343
8344 /* General-purpose registers. */
8345 tdep->gregset_reg_offset = NULL;
8346 tdep->gregset_num_regs = I386_NUM_GREGS;
8347 tdep->sizeof_gregset = 0;
8348
8349 /* Floating-point registers. */
8350 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8351 tdep->fpregset = &i386_fpregset;
8352
8353 /* The default settings include the FPU registers, the MMX registers
8354 and the SSE registers. This can be overridden for a specific ABI
8355 by adjusting the members `st0_regnum', `mm0_regnum' and
8356 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8357 will show up in the output of "info all-registers". */
8358
8359 tdep->st0_regnum = I386_ST0_REGNUM;
8360
8361 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8362 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8363
8364 tdep->jb_pc_offset = -1;
8365 tdep->struct_return = pcc_struct_return;
8366 tdep->sigtramp_start = 0;
8367 tdep->sigtramp_end = 0;
8368 tdep->sigtramp_p = i386_sigtramp_p;
8369 tdep->sigcontext_addr = NULL;
8370 tdep->sc_reg_offset = NULL;
8371 tdep->sc_pc_offset = -1;
8372 tdep->sc_sp_offset = -1;
8373
8374 tdep->xsave_xcr0_offset = -1;
8375
8376 tdep->record_regmap = i386_record_regmap;
8377
8378 set_gdbarch_long_long_align_bit (gdbarch, 32);
8379
8380 /* The format used for `long double' on almost all i386 targets is
8381 the i387 extended floating-point format. In fact, of all targets
8382 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8383 on having a `long double' that's not `long' at all. */
8384 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8385
8386 /* Although the i387 extended floating-point has only 80 significant
8387 bits, a `long double' actually takes up 96, probably to enforce
8388 alignment. */
8389 set_gdbarch_long_double_bit (gdbarch, 96);
8390
8391 /* Support for floating-point data type variants. */
8392 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8393
8394 /* Register numbers of various important registers. */
8395 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8396 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8397 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8398 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8399
8400 /* NOTE: kettenis/20040418: GCC does have two possible register
8401 numbering schemes on the i386: dbx and SVR4. These schemes
8402 differ in how they number %ebp, %esp, %eflags, and the
8403 floating-point registers, and are implemented by the arrays
8404 dbx_register_map[] and svr4_dbx_register_map in
8405 gcc/config/i386.c. GCC also defines a third numbering scheme in
8406 gcc/config/i386.c, which it designates as the "default" register
8407 map used in 64bit mode. This last register numbering scheme is
8408 implemented in dbx64_register_map, and is used for AMD64; see
8409 amd64-tdep.c.
8410
8411 Currently, each GCC i386 target always uses the same register
8412 numbering scheme across all its supported debugging formats
8413 i.e. SDB (COFF), stabs and DWARF 2. This is because
8414 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8415 DBX_REGISTER_NUMBER macro which is defined by each target's
8416 respective config header in a manner independent of the requested
8417 output debugging format.
8418
8419 This does not match the arrangement below, which presumes that
8420 the SDB and stabs numbering schemes differ from the DWARF and
8421 DWARF 2 ones. The reason for this arrangement is that it is
8422 likely to get the numbering scheme for the target's
8423 default/native debug format right. For targets where GCC is the
8424 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8425 targets where the native toolchain uses a different numbering
8426 scheme for a particular debug format (stabs-in-ELF on Solaris)
8427 the defaults below will have to be overridden, like
8428 i386_elf_init_abi() does. */
8429
8430 /* Use the dbx register numbering scheme for stabs and COFF. */
8431 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8432 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8433
8434 /* Use the SVR4 register numbering scheme for DWARF 2. */
8435 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8436
8437 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8438 be in use on any of the supported i386 targets. */
8439
8440 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8441
8442 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8443
8444 /* Call dummy code. */
8445 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8446 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8447 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8448 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8449
8450 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8451 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8452 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8453
8454 set_gdbarch_return_value (gdbarch, i386_return_value);
8455
8456 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8457
8458 /* Stack grows downward. */
8459 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8460
8461 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8462 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8463 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8464
8465 set_gdbarch_frame_args_skip (gdbarch, 8);
8466
8467 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8468
8469 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8470
8471 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8472
8473 /* Add the i386 register groups. */
8474 i386_add_reggroups (gdbarch);
8475 tdep->register_reggroup_p = i386_register_reggroup_p;
8476
8477 /* Helper for function argument information. */
8478 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8479
8480 /* Hook the function epilogue frame unwinder. This unwinder is
8481 appended to the list first, so that it supercedes the DWARF
8482 unwinder in function epilogues (where the DWARF unwinder
8483 currently fails). */
8484 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8485
8486 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8487 to the list before the prologue-based unwinders, so that DWARF
8488 CFI info will be used if it is available. */
8489 dwarf2_append_unwinders (gdbarch);
8490
8491 frame_base_set_default (gdbarch, &i386_frame_base);
8492
8493 /* Pseudo registers may be changed by amd64_init_abi. */
8494 set_gdbarch_pseudo_register_read_value (gdbarch,
8495 i386_pseudo_register_read_value);
8496 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8497 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8498 i386_ax_pseudo_register_collect);
8499
8500 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8501 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8502
8503 /* Override the normal target description method to make the AVX
8504 upper halves anonymous. */
8505 set_gdbarch_register_name (gdbarch, i386_register_name);
8506
8507 /* Even though the default ABI only includes general-purpose registers,
8508 floating-point registers and the SSE registers, we have to leave a
8509 gap for the upper AVX, MPX and AVX512 registers. */
8510 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8511
8512 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8513
8514 /* Get the x86 target description from INFO. */
8515 tdesc = info.target_desc;
8516 if (! tdesc_has_registers (tdesc))
8517 tdesc = tdesc_i386;
8518 tdep->tdesc = tdesc;
8519
8520 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8521 tdep->register_names = i386_register_names;
8522
8523 /* No upper YMM registers. */
8524 tdep->ymmh_register_names = NULL;
8525 tdep->ymm0h_regnum = -1;
8526
8527 /* No upper ZMM registers. */
8528 tdep->zmmh_register_names = NULL;
8529 tdep->zmm0h_regnum = -1;
8530
8531 /* No high XMM registers. */
8532 tdep->xmm_avx512_register_names = NULL;
8533 tdep->xmm16_regnum = -1;
8534
8535 /* No upper YMM16-31 registers. */
8536 tdep->ymm16h_register_names = NULL;
8537 tdep->ymm16h_regnum = -1;
8538
8539 tdep->num_byte_regs = 8;
8540 tdep->num_word_regs = 8;
8541 tdep->num_dword_regs = 0;
8542 tdep->num_mmx_regs = 8;
8543 tdep->num_ymm_regs = 0;
8544
8545 /* No MPX registers. */
8546 tdep->bnd0r_regnum = -1;
8547 tdep->bndcfgu_regnum = -1;
8548
8549 /* No AVX512 registers. */
8550 tdep->k0_regnum = -1;
8551 tdep->num_zmm_regs = 0;
8552 tdep->num_ymm_avx512_regs = 0;
8553 tdep->num_xmm_avx512_regs = 0;
8554
8555 tdesc_data = tdesc_data_alloc ();
8556
8557 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8558
8559 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8560
8561 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8562 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8563 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8564
8565 /* Hook in ABI-specific overrides, if they have been registered. */
8566 info.tdep_info = tdesc_data;
8567 gdbarch_init_osabi (info, gdbarch);
8568
8569 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8570 {
8571 tdesc_data_cleanup (tdesc_data);
8572 xfree (tdep);
8573 gdbarch_free (gdbarch);
8574 return NULL;
8575 }
8576
8577 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8578
8579 /* Wire in pseudo registers. Number of pseudo registers may be
8580 changed. */
8581 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8582 + tdep->num_word_regs
8583 + tdep->num_dword_regs
8584 + tdep->num_mmx_regs
8585 + tdep->num_ymm_regs
8586 + num_bnd_cooked
8587 + tdep->num_ymm_avx512_regs
8588 + tdep->num_zmm_regs));
8589
8590 /* Target description may be changed. */
8591 tdesc = tdep->tdesc;
8592
8593 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8594
8595 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8596 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8597
8598 /* Make %al the first pseudo-register. */
8599 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8600 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8601
8602 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8603 if (tdep->num_dword_regs)
8604 {
8605 /* Support dword pseudo-register if it hasn't been disabled. */
8606 tdep->eax_regnum = ymm0_regnum;
8607 ymm0_regnum += tdep->num_dword_regs;
8608 }
8609 else
8610 tdep->eax_regnum = -1;
8611
8612 mm0_regnum = ymm0_regnum;
8613 if (tdep->num_ymm_regs)
8614 {
8615 /* Support YMM pseudo-register if it is available. */
8616 tdep->ymm0_regnum = ymm0_regnum;
8617 mm0_regnum += tdep->num_ymm_regs;
8618 }
8619 else
8620 tdep->ymm0_regnum = -1;
8621
8622 if (tdep->num_ymm_avx512_regs)
8623 {
8624 /* Support YMM16-31 pseudo registers if available. */
8625 tdep->ymm16_regnum = mm0_regnum;
8626 mm0_regnum += tdep->num_ymm_avx512_regs;
8627 }
8628 else
8629 tdep->ymm16_regnum = -1;
8630
8631 if (tdep->num_zmm_regs)
8632 {
8633 /* Support ZMM pseudo-register if it is available. */
8634 tdep->zmm0_regnum = mm0_regnum;
8635 mm0_regnum += tdep->num_zmm_regs;
8636 }
8637 else
8638 tdep->zmm0_regnum = -1;
8639
8640 bnd0_regnum = mm0_regnum;
8641 if (tdep->num_mmx_regs != 0)
8642 {
8643 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8644 tdep->mm0_regnum = mm0_regnum;
8645 bnd0_regnum += tdep->num_mmx_regs;
8646 }
8647 else
8648 tdep->mm0_regnum = -1;
8649
8650 if (tdep->bnd0r_regnum > 0)
8651 tdep->bnd0_regnum = bnd0_regnum;
8652 else
8653 tdep-> bnd0_regnum = -1;
8654
8655 /* Hook in the legacy prologue-based unwinders last (fallback). */
8656 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8657 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8658 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8659
8660 /* If we have a register mapping, enable the generic core file
8661 support, unless it has already been enabled. */
8662 if (tdep->gregset_reg_offset
8663 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8664 set_gdbarch_iterate_over_regset_sections
8665 (gdbarch, i386_iterate_over_regset_sections);
8666
8667 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8668 i386_fast_tracepoint_valid_at);
8669
8670 return gdbarch;
8671 }
8672
8673 static enum gdb_osabi
8674 i386_coff_osabi_sniffer (bfd *abfd)
8675 {
8676 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8677 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8678 return GDB_OSABI_GO32;
8679
8680 return GDB_OSABI_UNKNOWN;
8681 }
8682 \f
8683
8684 /* Return the target description for a specified XSAVE feature mask. */
8685
8686 const struct target_desc *
8687 i386_target_description (uint64_t xcr0)
8688 {
8689 switch (xcr0 & X86_XSTATE_ALL_MASK)
8690 {
8691 case X86_XSTATE_MPX_AVX512_MASK:
8692 case X86_XSTATE_AVX512_MASK:
8693 return tdesc_i386_avx512;
8694 case X86_XSTATE_AVX_MPX_MASK:
8695 return tdesc_i386_avx_mpx;
8696 case X86_XSTATE_MPX_MASK:
8697 return tdesc_i386_mpx;
8698 case X86_XSTATE_AVX_MASK:
8699 return tdesc_i386_avx;
8700 default:
8701 return tdesc_i386;
8702 }
8703 }
8704
8705 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8706
8707 /* Find the bound directory base address. */
8708
8709 static unsigned long
8710 i386_mpx_bd_base (void)
8711 {
8712 struct regcache *rcache;
8713 struct gdbarch_tdep *tdep;
8714 ULONGEST ret;
8715 enum register_status regstatus;
8716
8717 rcache = get_current_regcache ();
8718 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8719
8720 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8721
8722 if (regstatus != REG_VALID)
8723 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8724
8725 return ret & MPX_BASE_MASK;
8726 }
8727
8728 int
8729 i386_mpx_enabled (void)
8730 {
8731 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8732 const struct target_desc *tdesc = tdep->tdesc;
8733
8734 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8735 }
8736
8737 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8738 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8739 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8740 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8741
8742 /* Find the bound table entry given the pointer location and the base
8743 address of the table. */
8744
8745 static CORE_ADDR
8746 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8747 {
8748 CORE_ADDR offset1;
8749 CORE_ADDR offset2;
8750 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8751 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8752 CORE_ADDR bd_entry_addr;
8753 CORE_ADDR bt_addr;
8754 CORE_ADDR bd_entry;
8755 struct gdbarch *gdbarch = get_current_arch ();
8756 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8757
8758
8759 if (gdbarch_ptr_bit (gdbarch) == 64)
8760 {
8761 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8762 bd_ptr_r_shift = 20;
8763 bd_ptr_l_shift = 3;
8764 bt_select_r_shift = 3;
8765 bt_select_l_shift = 5;
8766 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8767
8768 if ( sizeof (CORE_ADDR) == 4)
8769 error (_("bound table examination not supported\
8770 for 64-bit process with 32-bit GDB"));
8771 }
8772 else
8773 {
8774 mpx_bd_mask = MPX_BD_MASK_32;
8775 bd_ptr_r_shift = 12;
8776 bd_ptr_l_shift = 2;
8777 bt_select_r_shift = 2;
8778 bt_select_l_shift = 4;
8779 bt_mask = MPX_BT_MASK_32;
8780 }
8781
8782 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8783 bd_entry_addr = bd_base + offset1;
8784 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8785
8786 if ((bd_entry & 0x1) == 0)
8787 error (_("Invalid bounds directory entry at %s."),
8788 paddress (get_current_arch (), bd_entry_addr));
8789
8790 /* Clearing status bit. */
8791 bd_entry--;
8792 bt_addr = bd_entry & ~bt_select_r_shift;
8793 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8794
8795 return bt_addr + offset2;
8796 }
8797
8798 /* Print routine for the mpx bounds. */
8799
8800 static void
8801 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8802 {
8803 struct ui_out *uiout = current_uiout;
8804 LONGEST size;
8805 struct gdbarch *gdbarch = get_current_arch ();
8806 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8807 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8808
8809 if (bounds_in_map == 1)
8810 {
8811 ui_out_text (uiout, "Null bounds on map:");
8812 ui_out_text (uiout, " pointer value = ");
8813 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8814 ui_out_text (uiout, ".");
8815 ui_out_text (uiout, "\n");
8816 }
8817 else
8818 {
8819 ui_out_text (uiout, "{lbound = ");
8820 ui_out_field_core_addr (uiout, "lower-bound", gdbarch, bt_entry[0]);
8821 ui_out_text (uiout, ", ubound = ");
8822
8823 /* The upper bound is stored in 1's complement. */
8824 ui_out_field_core_addr (uiout, "upper-bound", gdbarch, ~bt_entry[1]);
8825 ui_out_text (uiout, "}: pointer value = ");
8826 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8827
8828 if (gdbarch_ptr_bit (gdbarch) == 64)
8829 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8830 else
8831 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8832
8833 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8834 -1 represents in this sense full memory access, and there is no need
8835 one to the size. */
8836
8837 size = (size > -1 ? size + 1 : size);
8838 ui_out_text (uiout, ", size = ");
8839 ui_out_field_fmt (uiout, "size", "%s", plongest (size));
8840
8841 ui_out_text (uiout, ", metadata = ");
8842 ui_out_field_core_addr (uiout, "metadata", gdbarch, bt_entry[3]);
8843 ui_out_text (uiout, "\n");
8844 }
8845 }
8846
8847 /* Implement the command "show mpx bound". */
8848
8849 static void
8850 i386_mpx_info_bounds (char *args, int from_tty)
8851 {
8852 CORE_ADDR bd_base = 0;
8853 CORE_ADDR addr;
8854 CORE_ADDR bt_entry_addr = 0;
8855 CORE_ADDR bt_entry[4];
8856 int i;
8857 struct gdbarch *gdbarch = get_current_arch ();
8858 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8859
8860 if (!i386_mpx_enabled ())
8861 {
8862 printf_unfiltered (_("Intel Memory Protection Extensions not "
8863 "supported on this target.\n"));
8864 return;
8865 }
8866
8867 if (args == NULL)
8868 {
8869 printf_unfiltered (_("Address of pointer variable expected.\n"));
8870 return;
8871 }
8872
8873 addr = parse_and_eval_address (args);
8874
8875 bd_base = i386_mpx_bd_base ();
8876 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8877
8878 memset (bt_entry, 0, sizeof (bt_entry));
8879
8880 for (i = 0; i < 4; i++)
8881 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8882 + i * TYPE_LENGTH (data_ptr_type),
8883 data_ptr_type);
8884
8885 i386_mpx_print_bounds (bt_entry);
8886 }
8887
8888 /* Implement the command "set mpx bound". */
8889
8890 static void
8891 i386_mpx_set_bounds (char *args, int from_tty)
8892 {
8893 CORE_ADDR bd_base = 0;
8894 CORE_ADDR addr, lower, upper;
8895 CORE_ADDR bt_entry_addr = 0;
8896 CORE_ADDR bt_entry[2];
8897 const char *input = args;
8898 int i;
8899 struct gdbarch *gdbarch = get_current_arch ();
8900 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8901 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8902
8903 if (!i386_mpx_enabled ())
8904 error (_("Intel Memory Protection Extensions not supported\
8905 on this target."));
8906
8907 if (args == NULL)
8908 error (_("Pointer value expected."));
8909
8910 addr = value_as_address (parse_to_comma_and_eval (&input));
8911
8912 if (input[0] == ',')
8913 ++input;
8914 if (input[0] == '\0')
8915 error (_("wrong number of arguments: missing lower and upper bound."));
8916 lower = value_as_address (parse_to_comma_and_eval (&input));
8917
8918 if (input[0] == ',')
8919 ++input;
8920 if (input[0] == '\0')
8921 error (_("Wrong number of arguments; Missing upper bound."));
8922 upper = value_as_address (parse_to_comma_and_eval (&input));
8923
8924 bd_base = i386_mpx_bd_base ();
8925 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8926 for (i = 0; i < 2; i++)
8927 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8928 + i * TYPE_LENGTH (data_ptr_type),
8929 data_ptr_type);
8930 bt_entry[0] = (uint64_t) lower;
8931 bt_entry[1] = ~(uint64_t) upper;
8932
8933 for (i = 0; i < 2; i++)
8934 write_memory_unsigned_integer (bt_entry_addr
8935 + i * TYPE_LENGTH (data_ptr_type),
8936 TYPE_LENGTH (data_ptr_type), byte_order,
8937 bt_entry[i]);
8938 }
8939
8940 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8941
8942 /* Helper function for the CLI commands. */
8943
8944 static void
8945 set_mpx_cmd (char *args, int from_tty)
8946 {
8947 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8948 }
8949
8950 /* Helper function for the CLI commands. */
8951
8952 static void
8953 show_mpx_cmd (char *args, int from_tty)
8954 {
8955 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8956 }
8957
8958 /* Provide a prototype to silence -Wmissing-prototypes. */
8959 void _initialize_i386_tdep (void);
8960
8961 void
8962 _initialize_i386_tdep (void)
8963 {
8964 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8965
8966 /* Add the variable that controls the disassembly flavor. */
8967 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8968 &disassembly_flavor, _("\
8969 Set the disassembly flavor."), _("\
8970 Show the disassembly flavor."), _("\
8971 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8972 NULL,
8973 NULL, /* FIXME: i18n: */
8974 &setlist, &showlist);
8975
8976 /* Add the variable that controls the convention for returning
8977 structs. */
8978 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8979 &struct_convention, _("\
8980 Set the convention for returning small structs."), _("\
8981 Show the convention for returning small structs."), _("\
8982 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8983 is \"default\"."),
8984 NULL,
8985 NULL, /* FIXME: i18n: */
8986 &setlist, &showlist);
8987
8988 /* Add "mpx" prefix for the set commands. */
8989
8990 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
8991 Set Intel Memory Protection Extensions specific variables."),
8992 &mpx_set_cmdlist, "set mpx ",
8993 0 /* allow-unknown */, &setlist);
8994
8995 /* Add "mpx" prefix for the show commands. */
8996
8997 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
8998 Show Intel Memory Protection Extensions specific variables."),
8999 &mpx_show_cmdlist, "show mpx ",
9000 0 /* allow-unknown */, &showlist);
9001
9002 /* Add "bound" command for the show mpx commands list. */
9003
9004 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9005 "Show the memory bounds for a given array/pointer storage\
9006 in the bound table.",
9007 &mpx_show_cmdlist);
9008
9009 /* Add "bound" command for the set mpx commands list. */
9010
9011 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9012 "Set the memory bounds for a given array/pointer storage\
9013 in the bound table.",
9014 &mpx_set_cmdlist);
9015
9016 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
9017 i386_coff_osabi_sniffer);
9018
9019 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9020 i386_svr4_init_abi);
9021 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
9022 i386_go32_init_abi);
9023
9024 /* Initialize the i386-specific register groups. */
9025 i386_init_reggroups ();
9026
9027 /* Initialize the standard target descriptions. */
9028 initialize_tdesc_i386 ();
9029 initialize_tdesc_i386_mmx ();
9030 initialize_tdesc_i386_avx ();
9031 initialize_tdesc_i386_mpx ();
9032 initialize_tdesc_i386_avx_mpx ();
9033 initialize_tdesc_i386_avx512 ();
9034
9035 /* Tell remote stub that we support XML target description. */
9036 register_remote_support_xml ("i386");
9037 }