]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
gdb: rename floatformats_ia64_quad to floatformats_ieee_quad
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51 #include "expop.h"
52
53 #include "record.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
57
58 #include "ax.h"
59 #include "ax-gdb.h"
60
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
66 #include <ctype.h>
67 #include <algorithm>
68 #include <unordered_set>
69 #include "producer.h"
70 #include "infcall.h"
71 #include "maint.h"
72
73 /* Register names. */
74
75 static const char * const i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char * const i386_zmm_names[] =
91 {
92 "zmm0", "zmm1", "zmm2", "zmm3",
93 "zmm4", "zmm5", "zmm6", "zmm7"
94 };
95
96 static const char * const i386_zmmh_names[] =
97 {
98 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
99 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
100 };
101
102 static const char * const i386_k_names[] =
103 {
104 "k0", "k1", "k2", "k3",
105 "k4", "k5", "k6", "k7"
106 };
107
108 static const char * const i386_ymm_names[] =
109 {
110 "ymm0", "ymm1", "ymm2", "ymm3",
111 "ymm4", "ymm5", "ymm6", "ymm7",
112 };
113
114 static const char * const i386_ymmh_names[] =
115 {
116 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
117 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
118 };
119
120 static const char * const i386_mpx_names[] =
121 {
122 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
123 };
124
125 static const char * const i386_pkeys_names[] =
126 {
127 "pkru"
128 };
129
130 /* Register names for MPX pseudo-registers. */
131
132 static const char * const i386_bnd_names[] =
133 {
134 "bnd0", "bnd1", "bnd2", "bnd3"
135 };
136
137 /* Register names for MMX pseudo-registers. */
138
139 static const char * const i386_mmx_names[] =
140 {
141 "mm0", "mm1", "mm2", "mm3",
142 "mm4", "mm5", "mm6", "mm7"
143 };
144
145 /* Register names for byte pseudo-registers. */
146
147 static const char * const i386_byte_names[] =
148 {
149 "al", "cl", "dl", "bl",
150 "ah", "ch", "dh", "bh"
151 };
152
153 /* Register names for word pseudo-registers. */
154
155 static const char * const i386_word_names[] =
156 {
157 "ax", "cx", "dx", "bx",
158 "", "bp", "si", "di"
159 };
160
161 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
162 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
163 we have 16 upper ZMM regs that have to be handled differently. */
164
165 const int num_lower_zmm_regs = 16;
166
167 /* MMX register? */
168
169 static int
170 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
171 {
172 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
173 int mm0_regnum = tdep->mm0_regnum;
174
175 if (mm0_regnum < 0)
176 return 0;
177
178 regnum -= mm0_regnum;
179 return regnum >= 0 && regnum < tdep->num_mmx_regs;
180 }
181
182 /* Byte register? */
183
184 int
185 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
186 {
187 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
188
189 regnum -= tdep->al_regnum;
190 return regnum >= 0 && regnum < tdep->num_byte_regs;
191 }
192
193 /* Word register? */
194
195 int
196 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
197 {
198 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
199
200 regnum -= tdep->ax_regnum;
201 return regnum >= 0 && regnum < tdep->num_word_regs;
202 }
203
204 /* Dword register? */
205
206 int
207 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
210 int eax_regnum = tdep->eax_regnum;
211
212 if (eax_regnum < 0)
213 return 0;
214
215 regnum -= eax_regnum;
216 return regnum >= 0 && regnum < tdep->num_dword_regs;
217 }
218
219 /* AVX512 register? */
220
221 int
222 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
223 {
224 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
225 int zmm0h_regnum = tdep->zmm0h_regnum;
226
227 if (zmm0h_regnum < 0)
228 return 0;
229
230 regnum -= zmm0h_regnum;
231 return regnum >= 0 && regnum < tdep->num_zmm_regs;
232 }
233
234 int
235 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
236 {
237 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
238 int zmm0_regnum = tdep->zmm0_regnum;
239
240 if (zmm0_regnum < 0)
241 return 0;
242
243 regnum -= zmm0_regnum;
244 return regnum >= 0 && regnum < tdep->num_zmm_regs;
245 }
246
247 int
248 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
249 {
250 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
251 int k0_regnum = tdep->k0_regnum;
252
253 if (k0_regnum < 0)
254 return 0;
255
256 regnum -= k0_regnum;
257 return regnum >= 0 && regnum < I387_NUM_K_REGS;
258 }
259
260 static int
261 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
262 {
263 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
264 int ymm0h_regnum = tdep->ymm0h_regnum;
265
266 if (ymm0h_regnum < 0)
267 return 0;
268
269 regnum -= ymm0h_regnum;
270 return regnum >= 0 && regnum < tdep->num_ymm_regs;
271 }
272
273 /* AVX register? */
274
275 int
276 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
277 {
278 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
279 int ymm0_regnum = tdep->ymm0_regnum;
280
281 if (ymm0_regnum < 0)
282 return 0;
283
284 regnum -= ymm0_regnum;
285 return regnum >= 0 && regnum < tdep->num_ymm_regs;
286 }
287
288 static int
289 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
290 {
291 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
292 int ymm16h_regnum = tdep->ymm16h_regnum;
293
294 if (ymm16h_regnum < 0)
295 return 0;
296
297 regnum -= ymm16h_regnum;
298 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
299 }
300
301 int
302 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
305 int ymm16_regnum = tdep->ymm16_regnum;
306
307 if (ymm16_regnum < 0)
308 return 0;
309
310 regnum -= ymm16_regnum;
311 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
312 }
313
314 /* BND register? */
315
316 int
317 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
318 {
319 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
320 int bnd0_regnum = tdep->bnd0_regnum;
321
322 if (bnd0_regnum < 0)
323 return 0;
324
325 regnum -= bnd0_regnum;
326 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
327 }
328
329 /* SSE register? */
330
331 int
332 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
333 {
334 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
335 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
336
337 if (num_xmm_regs == 0)
338 return 0;
339
340 regnum -= I387_XMM0_REGNUM (tdep);
341 return regnum >= 0 && regnum < num_xmm_regs;
342 }
343
344 /* XMM_512 register? */
345
346 int
347 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
348 {
349 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
350 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
351
352 if (num_xmm_avx512_regs == 0)
353 return 0;
354
355 regnum -= I387_XMM16_REGNUM (tdep);
356 return regnum >= 0 && regnum < num_xmm_avx512_regs;
357 }
358
359 static int
360 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
361 {
362 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
363
364 if (I387_NUM_XMM_REGS (tdep) == 0)
365 return 0;
366
367 return (regnum == I387_MXCSR_REGNUM (tdep));
368 }
369
370 /* FP register? */
371
372 int
373 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
374 {
375 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
376
377 if (I387_ST0_REGNUM (tdep) < 0)
378 return 0;
379
380 return (I387_ST0_REGNUM (tdep) <= regnum
381 && regnum < I387_FCTRL_REGNUM (tdep));
382 }
383
384 int
385 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
386 {
387 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
388
389 if (I387_ST0_REGNUM (tdep) < 0)
390 return 0;
391
392 return (I387_FCTRL_REGNUM (tdep) <= regnum
393 && regnum < I387_XMM0_REGNUM (tdep));
394 }
395
396 /* BNDr (raw) register? */
397
398 static int
399 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
400 {
401 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
402
403 if (I387_BND0R_REGNUM (tdep) < 0)
404 return 0;
405
406 regnum -= tdep->bnd0r_regnum;
407 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
408 }
409
410 /* BND control register? */
411
412 static int
413 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
414 {
415 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
416
417 if (I387_BNDCFGU_REGNUM (tdep) < 0)
418 return 0;
419
420 regnum -= I387_BNDCFGU_REGNUM (tdep);
421 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
422 }
423
424 /* PKRU register? */
425
426 bool
427 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
428 {
429 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
430 int pkru_regnum = tdep->pkru_regnum;
431
432 if (pkru_regnum < 0)
433 return false;
434
435 regnum -= pkru_regnum;
436 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
437 }
438
439 /* Return the name of register REGNUM, or the empty string if it is
440 an anonymous register. */
441
442 static const char *
443 i386_register_name (struct gdbarch *gdbarch, int regnum)
444 {
445 /* Hide the upper YMM registers. */
446 if (i386_ymmh_regnum_p (gdbarch, regnum))
447 return "";
448
449 /* Hide the upper YMM16-31 registers. */
450 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
451 return "";
452
453 /* Hide the upper ZMM registers. */
454 if (i386_zmmh_regnum_p (gdbarch, regnum))
455 return "";
456
457 return tdesc_register_name (gdbarch, regnum);
458 }
459
460 /* Return the name of register REGNUM. */
461
462 const char *
463 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
464 {
465 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
466 if (i386_bnd_regnum_p (gdbarch, regnum))
467 return i386_bnd_names[regnum - tdep->bnd0_regnum];
468 if (i386_mmx_regnum_p (gdbarch, regnum))
469 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
470 else if (i386_ymm_regnum_p (gdbarch, regnum))
471 return i386_ymm_names[regnum - tdep->ymm0_regnum];
472 else if (i386_zmm_regnum_p (gdbarch, regnum))
473 return i386_zmm_names[regnum - tdep->zmm0_regnum];
474 else if (i386_byte_regnum_p (gdbarch, regnum))
475 return i386_byte_names[regnum - tdep->al_regnum];
476 else if (i386_word_regnum_p (gdbarch, regnum))
477 return i386_word_names[regnum - tdep->ax_regnum];
478
479 internal_error (__FILE__, __LINE__, _("invalid regnum"));
480 }
481
482 /* Convert a dbx register number REG to the appropriate register
483 number used by GDB. */
484
485 static int
486 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
487 {
488 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
489
490 /* This implements what GCC calls the "default" register map
491 (dbx_register_map[]). */
492
493 if (reg >= 0 && reg <= 7)
494 {
495 /* General-purpose registers. The debug info calls %ebp
496 register 4, and %esp register 5. */
497 if (reg == 4)
498 return 5;
499 else if (reg == 5)
500 return 4;
501 else return reg;
502 }
503 else if (reg >= 12 && reg <= 19)
504 {
505 /* Floating-point registers. */
506 return reg - 12 + I387_ST0_REGNUM (tdep);
507 }
508 else if (reg >= 21 && reg <= 28)
509 {
510 /* SSE registers. */
511 int ymm0_regnum = tdep->ymm0_regnum;
512
513 if (ymm0_regnum >= 0
514 && i386_xmm_regnum_p (gdbarch, reg))
515 return reg - 21 + ymm0_regnum;
516 else
517 return reg - 21 + I387_XMM0_REGNUM (tdep);
518 }
519 else if (reg >= 29 && reg <= 36)
520 {
521 /* MMX registers. */
522 return reg - 29 + I387_MM0_REGNUM (tdep);
523 }
524
525 /* This will hopefully provoke a warning. */
526 return gdbarch_num_cooked_regs (gdbarch);
527 }
528
529 /* Convert SVR4 DWARF register number REG to the appropriate register number
530 used by GDB. */
531
532 static int
533 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
534 {
535 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
536
537 /* This implements the GCC register map that tries to be compatible
538 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
539
540 /* The SVR4 register numbering includes %eip and %eflags, and
541 numbers the floating point registers differently. */
542 if (reg >= 0 && reg <= 9)
543 {
544 /* General-purpose registers. */
545 return reg;
546 }
547 else if (reg >= 11 && reg <= 18)
548 {
549 /* Floating-point registers. */
550 return reg - 11 + I387_ST0_REGNUM (tdep);
551 }
552 else if (reg >= 21 && reg <= 36)
553 {
554 /* The SSE and MMX registers have the same numbers as with dbx. */
555 return i386_dbx_reg_to_regnum (gdbarch, reg);
556 }
557
558 switch (reg)
559 {
560 case 37: return I387_FCTRL_REGNUM (tdep);
561 case 38: return I387_FSTAT_REGNUM (tdep);
562 case 39: return I387_MXCSR_REGNUM (tdep);
563 case 40: return I386_ES_REGNUM;
564 case 41: return I386_CS_REGNUM;
565 case 42: return I386_SS_REGNUM;
566 case 43: return I386_DS_REGNUM;
567 case 44: return I386_FS_REGNUM;
568 case 45: return I386_GS_REGNUM;
569 }
570
571 return -1;
572 }
573
574 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
575 num_regs + num_pseudo_regs for other debug formats. */
576
577 int
578 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
579 {
580 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
581
582 if (regnum == -1)
583 return gdbarch_num_cooked_regs (gdbarch);
584 return regnum;
585 }
586
587 \f
588
589 /* This is the variable that is set with "set disassembly-flavor", and
590 its legitimate values. */
591 static const char att_flavor[] = "att";
592 static const char intel_flavor[] = "intel";
593 static const char *const valid_flavors[] =
594 {
595 att_flavor,
596 intel_flavor,
597 NULL
598 };
599 static const char *disassembly_flavor = att_flavor;
600 \f
601
602 /* Use the program counter to determine the contents and size of a
603 breakpoint instruction. Return a pointer to a string of bytes that
604 encode a breakpoint instruction, store the length of the string in
605 *LEN and optionally adjust *PC to point to the correct memory
606 location for inserting the breakpoint.
607
608 On the i386 we have a single breakpoint that fits in a single byte
609 and can be inserted anywhere.
610
611 This function is 64-bit safe. */
612
613 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
614
615 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
616
617 \f
618 /* Displaced instruction handling. */
619
620 /* Skip the legacy instruction prefixes in INSN.
621 Not all prefixes are valid for any particular insn
622 but we needn't care, the insn will fault if it's invalid.
623 The result is a pointer to the first opcode byte,
624 or NULL if we run off the end of the buffer. */
625
626 static gdb_byte *
627 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
628 {
629 gdb_byte *end = insn + max_len;
630
631 while (insn < end)
632 {
633 switch (*insn)
634 {
635 case DATA_PREFIX_OPCODE:
636 case ADDR_PREFIX_OPCODE:
637 case CS_PREFIX_OPCODE:
638 case DS_PREFIX_OPCODE:
639 case ES_PREFIX_OPCODE:
640 case FS_PREFIX_OPCODE:
641 case GS_PREFIX_OPCODE:
642 case SS_PREFIX_OPCODE:
643 case LOCK_PREFIX_OPCODE:
644 case REPE_PREFIX_OPCODE:
645 case REPNE_PREFIX_OPCODE:
646 ++insn;
647 continue;
648 default:
649 return insn;
650 }
651 }
652
653 return NULL;
654 }
655
656 static int
657 i386_absolute_jmp_p (const gdb_byte *insn)
658 {
659 /* jmp far (absolute address in operand). */
660 if (insn[0] == 0xea)
661 return 1;
662
663 if (insn[0] == 0xff)
664 {
665 /* jump near, absolute indirect (/4). */
666 if ((insn[1] & 0x38) == 0x20)
667 return 1;
668
669 /* jump far, absolute indirect (/5). */
670 if ((insn[1] & 0x38) == 0x28)
671 return 1;
672 }
673
674 return 0;
675 }
676
677 /* Return non-zero if INSN is a jump, zero otherwise. */
678
679 static int
680 i386_jmp_p (const gdb_byte *insn)
681 {
682 /* jump short, relative. */
683 if (insn[0] == 0xeb)
684 return 1;
685
686 /* jump near, relative. */
687 if (insn[0] == 0xe9)
688 return 1;
689
690 return i386_absolute_jmp_p (insn);
691 }
692
693 static int
694 i386_absolute_call_p (const gdb_byte *insn)
695 {
696 /* call far, absolute. */
697 if (insn[0] == 0x9a)
698 return 1;
699
700 if (insn[0] == 0xff)
701 {
702 /* Call near, absolute indirect (/2). */
703 if ((insn[1] & 0x38) == 0x10)
704 return 1;
705
706 /* Call far, absolute indirect (/3). */
707 if ((insn[1] & 0x38) == 0x18)
708 return 1;
709 }
710
711 return 0;
712 }
713
714 static int
715 i386_ret_p (const gdb_byte *insn)
716 {
717 switch (insn[0])
718 {
719 case 0xc2: /* ret near, pop N bytes. */
720 case 0xc3: /* ret near */
721 case 0xca: /* ret far, pop N bytes. */
722 case 0xcb: /* ret far */
723 case 0xcf: /* iret */
724 return 1;
725
726 default:
727 return 0;
728 }
729 }
730
731 static int
732 i386_call_p (const gdb_byte *insn)
733 {
734 if (i386_absolute_call_p (insn))
735 return 1;
736
737 /* call near, relative. */
738 if (insn[0] == 0xe8)
739 return 1;
740
741 return 0;
742 }
743
744 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
745 length in bytes. Otherwise, return zero. */
746
747 static int
748 i386_syscall_p (const gdb_byte *insn, int *lengthp)
749 {
750 /* Is it 'int $0x80'? */
751 if ((insn[0] == 0xcd && insn[1] == 0x80)
752 /* Or is it 'sysenter'? */
753 || (insn[0] == 0x0f && insn[1] == 0x34)
754 /* Or is it 'syscall'? */
755 || (insn[0] == 0x0f && insn[1] == 0x05))
756 {
757 *lengthp = 2;
758 return 1;
759 }
760
761 return 0;
762 }
763
764 /* The gdbarch insn_is_call method. */
765
766 static int
767 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
768 {
769 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
770
771 read_code (addr, buf, I386_MAX_INSN_LEN);
772 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
773
774 return i386_call_p (insn);
775 }
776
777 /* The gdbarch insn_is_ret method. */
778
779 static int
780 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
781 {
782 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
783
784 read_code (addr, buf, I386_MAX_INSN_LEN);
785 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
786
787 return i386_ret_p (insn);
788 }
789
790 /* The gdbarch insn_is_jump method. */
791
792 static int
793 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
794 {
795 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
796
797 read_code (addr, buf, I386_MAX_INSN_LEN);
798 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
799
800 return i386_jmp_p (insn);
801 }
802
803 /* Some kernels may run one past a syscall insn, so we have to cope. */
804
805 displaced_step_copy_insn_closure_up
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809 {
810 size_t len = gdbarch_max_insn_length (gdbarch);
811 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
812 (new i386_displaced_step_copy_insn_closure (len));
813 gdb_byte *buf = closure->buf.data ();
814
815 read_memory (from, buf, len);
816
817 /* GDB may get control back after the insn after the syscall.
818 Presumably this is a kernel bug.
819 If this is a syscall, make sure there's a nop afterwards. */
820 {
821 int syscall_length;
822 gdb_byte *insn;
823
824 insn = i386_skip_prefixes (buf, len);
825 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
826 insn[syscall_length] = NOP_OPCODE;
827 }
828
829 write_memory (to, buf, len);
830
831 displaced_debug_printf ("%s->%s: %s",
832 paddress (gdbarch, from), paddress (gdbarch, to),
833 displaced_step_dump_bytes (buf, len).c_str ());
834
835 /* This is a work around for a problem with g++ 4.8. */
836 return displaced_step_copy_insn_closure_up (closure.release ());
837 }
838
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
841
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_copy_insn_closure *closure_,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 i386_displaced_step_copy_insn_closure *closure
857 = (i386_displaced_step_copy_insn_closure *) closure_;
858 gdb_byte *insn = closure->buf.data ();
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
861
862 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
863 paddress (gdbarch, from), paddress (gdbarch, to),
864 insn[0], insn[1]);
865
866 /* The list of issues to contend with here is taken from
867 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
868 Yay for Free Software! */
869
870 /* Relocate the %eip, if necessary. */
871
872 /* The instruction recognizers we use assume any leading prefixes
873 have been skipped. */
874 {
875 /* This is the size of the buffer in closure. */
876 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
877 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
878 /* If there are too many prefixes, just ignore the insn.
879 It will fault when run. */
880 if (opcode != NULL)
881 insn = opcode;
882 }
883
884 /* Except in the case of absolute or indirect jump or call
885 instructions, or a return instruction, the new eip is relative to
886 the displaced instruction; make it relative. Well, signal
887 handler returns don't need relocation either, but we use the
888 value of %eip to recognize those; see below. */
889 if (! i386_absolute_jmp_p (insn)
890 && ! i386_absolute_call_p (insn)
891 && ! i386_ret_p (insn))
892 {
893 ULONGEST orig_eip;
894 int insn_len;
895
896 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
897
898 /* A signal trampoline system call changes the %eip, resuming
899 execution of the main program after the signal handler has
900 returned. That makes them like 'return' instructions; we
901 shouldn't relocate %eip.
902
903 But most system calls don't, and we do need to relocate %eip.
904
905 Our heuristic for distinguishing these cases: if stepping
906 over the system call instruction left control directly after
907 the instruction, the we relocate --- control almost certainly
908 doesn't belong in the displaced copy. Otherwise, we assume
909 the instruction has put control where it belongs, and leave
910 it unrelocated. Goodness help us if there are PC-relative
911 system calls. */
912 if (i386_syscall_p (insn, &insn_len)
913 && orig_eip != to + (insn - insn_start) + insn_len
914 /* GDB can get control back after the insn after the syscall.
915 Presumably this is a kernel bug.
916 i386_displaced_step_copy_insn ensures its a nop,
917 we add one to the length for it. */
918 && orig_eip != to + (insn - insn_start) + insn_len + 1)
919 displaced_debug_printf ("syscall changed %%eip; not relocating");
920 else
921 {
922 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
923
924 /* If we just stepped over a breakpoint insn, we don't backup
925 the pc on purpose; this is to match behaviour without
926 stepping. */
927
928 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
929
930 displaced_debug_printf ("relocated %%eip from %s to %s",
931 paddress (gdbarch, orig_eip),
932 paddress (gdbarch, eip));
933 }
934 }
935
936 /* If the instruction was PUSHFL, then the TF bit will be set in the
937 pushed value, and should be cleared. We'll leave this for later,
938 since GDB already messes up the TF flag when stepping over a
939 pushfl. */
940
941 /* If the instruction was a call, the return address now atop the
942 stack is the address following the copied instruction. We need
943 to make it the address following the original instruction. */
944 if (i386_call_p (insn))
945 {
946 ULONGEST esp;
947 ULONGEST retaddr;
948 const ULONGEST retaddr_len = 4;
949
950 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
951 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
952 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
953 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
954
955 displaced_debug_printf ("relocated return addr at %s to %s",
956 paddress (gdbarch, esp),
957 paddress (gdbarch, retaddr));
958 }
959 }
960
961 static void
962 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
963 {
964 target_write_memory (*to, buf, len);
965 *to += len;
966 }
967
968 static void
969 i386_relocate_instruction (struct gdbarch *gdbarch,
970 CORE_ADDR *to, CORE_ADDR oldloc)
971 {
972 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
973 gdb_byte buf[I386_MAX_INSN_LEN];
974 int offset = 0, rel32, newrel;
975 int insn_length;
976 gdb_byte *insn = buf;
977
978 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
979
980 insn_length = gdb_buffered_insn_length (gdbarch, insn,
981 I386_MAX_INSN_LEN, oldloc);
982
983 /* Get past the prefixes. */
984 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
985
986 /* Adjust calls with 32-bit relative addresses as push/jump, with
987 the address pushed being the location where the original call in
988 the user program would return to. */
989 if (insn[0] == 0xe8)
990 {
991 gdb_byte push_buf[16];
992 unsigned int ret_addr;
993
994 /* Where "ret" in the original code will return to. */
995 ret_addr = oldloc + insn_length;
996 push_buf[0] = 0x68; /* pushq $... */
997 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
998 /* Push the push. */
999 append_insns (to, 5, push_buf);
1000
1001 /* Convert the relative call to a relative jump. */
1002 insn[0] = 0xe9;
1003
1004 /* Adjust the destination offset. */
1005 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1006 newrel = (oldloc - *to) + rel32;
1007 store_signed_integer (insn + 1, 4, byte_order, newrel);
1008
1009 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1010 hex_string (rel32), paddress (gdbarch, oldloc),
1011 hex_string (newrel), paddress (gdbarch, *to));
1012
1013 /* Write the adjusted jump into its displaced location. */
1014 append_insns (to, 5, insn);
1015 return;
1016 }
1017
1018 /* Adjust jumps with 32-bit relative addresses. Calls are already
1019 handled above. */
1020 if (insn[0] == 0xe9)
1021 offset = 1;
1022 /* Adjust conditional jumps. */
1023 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1024 offset = 2;
1025
1026 if (offset)
1027 {
1028 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1029 newrel = (oldloc - *to) + rel32;
1030 store_signed_integer (insn + offset, 4, byte_order, newrel);
1031 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1032 hex_string (rel32), paddress (gdbarch, oldloc),
1033 hex_string (newrel), paddress (gdbarch, *to));
1034 }
1035
1036 /* Write the adjusted instructions into their displaced
1037 location. */
1038 append_insns (to, insn_length, buf);
1039 }
1040
1041 \f
1042 #ifdef I386_REGNO_TO_SYMMETRY
1043 #error "The Sequent Symmetry is no longer supported."
1044 #endif
1045
1046 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1047 and %esp "belong" to the calling function. Therefore these
1048 registers should be saved if they're going to be modified. */
1049
1050 /* The maximum number of saved registers. This should include all
1051 registers mentioned above, and %eip. */
1052 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1053
1054 struct i386_frame_cache
1055 {
1056 /* Base address. */
1057 CORE_ADDR base;
1058 int base_p;
1059 LONGEST sp_offset;
1060 CORE_ADDR pc;
1061
1062 /* Saved registers. */
1063 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1064 CORE_ADDR saved_sp;
1065 int saved_sp_reg;
1066 int pc_in_eax;
1067
1068 /* Stack space reserved for local variables. */
1069 long locals;
1070 };
1071
1072 /* Allocate and initialize a frame cache. */
1073
1074 static struct i386_frame_cache *
1075 i386_alloc_frame_cache (void)
1076 {
1077 struct i386_frame_cache *cache;
1078 int i;
1079
1080 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1081
1082 /* Base address. */
1083 cache->base_p = 0;
1084 cache->base = 0;
1085 cache->sp_offset = -4;
1086 cache->pc = 0;
1087
1088 /* Saved registers. We initialize these to -1 since zero is a valid
1089 offset (that's where %ebp is supposed to be stored). */
1090 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1091 cache->saved_regs[i] = -1;
1092 cache->saved_sp = 0;
1093 cache->saved_sp_reg = -1;
1094 cache->pc_in_eax = 0;
1095
1096 /* Frameless until proven otherwise. */
1097 cache->locals = -1;
1098
1099 return cache;
1100 }
1101
1102 /* If the instruction at PC is a jump, return the address of its
1103 target. Otherwise, return PC. */
1104
1105 static CORE_ADDR
1106 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1107 {
1108 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1109 gdb_byte op;
1110 long delta = 0;
1111 int data16 = 0;
1112
1113 if (target_read_code (pc, &op, 1))
1114 return pc;
1115
1116 if (op == 0x66)
1117 {
1118 data16 = 1;
1119
1120 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1121 }
1122
1123 switch (op)
1124 {
1125 case 0xe9:
1126 /* Relative jump: if data16 == 0, disp32, else disp16. */
1127 if (data16)
1128 {
1129 delta = read_memory_integer (pc + 2, 2, byte_order);
1130
1131 /* Include the size of the jmp instruction (including the
1132 0x66 prefix). */
1133 delta += 4;
1134 }
1135 else
1136 {
1137 delta = read_memory_integer (pc + 1, 4, byte_order);
1138
1139 /* Include the size of the jmp instruction. */
1140 delta += 5;
1141 }
1142 break;
1143 case 0xeb:
1144 /* Relative jump, disp8 (ignore data16). */
1145 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1146
1147 delta += data16 + 2;
1148 break;
1149 }
1150
1151 return pc + delta;
1152 }
1153
1154 /* Check whether PC points at a prologue for a function returning a
1155 structure or union. If so, it updates CACHE and returns the
1156 address of the first instruction after the code sequence that
1157 removes the "hidden" argument from the stack or CURRENT_PC,
1158 whichever is smaller. Otherwise, return PC. */
1159
1160 static CORE_ADDR
1161 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1162 struct i386_frame_cache *cache)
1163 {
1164 /* Functions that return a structure or union start with:
1165
1166 popl %eax 0x58
1167 xchgl %eax, (%esp) 0x87 0x04 0x24
1168 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1169
1170 (the System V compiler puts out the second `xchg' instruction,
1171 and the assembler doesn't try to optimize it, so the 'sib' form
1172 gets generated). This sequence is used to get the address of the
1173 return buffer for a function that returns a structure. */
1174 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1175 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1176 gdb_byte buf[4];
1177 gdb_byte op;
1178
1179 if (current_pc <= pc)
1180 return pc;
1181
1182 if (target_read_code (pc, &op, 1))
1183 return pc;
1184
1185 if (op != 0x58) /* popl %eax */
1186 return pc;
1187
1188 if (target_read_code (pc + 1, buf, 4))
1189 return pc;
1190
1191 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1192 return pc;
1193
1194 if (current_pc == pc)
1195 {
1196 cache->sp_offset += 4;
1197 return current_pc;
1198 }
1199
1200 if (current_pc == pc + 1)
1201 {
1202 cache->pc_in_eax = 1;
1203 return current_pc;
1204 }
1205
1206 if (buf[1] == proto1[1])
1207 return pc + 4;
1208 else
1209 return pc + 5;
1210 }
1211
1212 static CORE_ADDR
1213 i386_skip_probe (CORE_ADDR pc)
1214 {
1215 /* A function may start with
1216
1217 pushl constant
1218 call _probe
1219 addl $4, %esp
1220
1221 followed by
1222
1223 pushl %ebp
1224
1225 etc. */
1226 gdb_byte buf[8];
1227 gdb_byte op;
1228
1229 if (target_read_code (pc, &op, 1))
1230 return pc;
1231
1232 if (op == 0x68 || op == 0x6a)
1233 {
1234 int delta;
1235
1236 /* Skip past the `pushl' instruction; it has either a one-byte or a
1237 four-byte operand, depending on the opcode. */
1238 if (op == 0x68)
1239 delta = 5;
1240 else
1241 delta = 2;
1242
1243 /* Read the following 8 bytes, which should be `call _probe' (6
1244 bytes) followed by `addl $4,%esp' (2 bytes). */
1245 read_memory (pc + delta, buf, sizeof (buf));
1246 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1247 pc += delta + sizeof (buf);
1248 }
1249
1250 return pc;
1251 }
1252
1253 /* GCC 4.1 and later, can put code in the prologue to realign the
1254 stack pointer. Check whether PC points to such code, and update
1255 CACHE accordingly. Return the first instruction after the code
1256 sequence or CURRENT_PC, whichever is smaller. If we don't
1257 recognize the code, return PC. */
1258
1259 static CORE_ADDR
1260 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1261 struct i386_frame_cache *cache)
1262 {
1263 /* There are 2 code sequences to re-align stack before the frame
1264 gets set up:
1265
1266 1. Use a caller-saved saved register:
1267
1268 leal 4(%esp), %reg
1269 andl $-XXX, %esp
1270 pushl -4(%reg)
1271
1272 2. Use a callee-saved saved register:
1273
1274 pushl %reg
1275 leal 8(%esp), %reg
1276 andl $-XXX, %esp
1277 pushl -4(%reg)
1278
1279 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1280
1281 0x83 0xe4 0xf0 andl $-16, %esp
1282 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1283 */
1284
1285 gdb_byte buf[14];
1286 int reg;
1287 int offset, offset_and;
1288 static int regnums[8] = {
1289 I386_EAX_REGNUM, /* %eax */
1290 I386_ECX_REGNUM, /* %ecx */
1291 I386_EDX_REGNUM, /* %edx */
1292 I386_EBX_REGNUM, /* %ebx */
1293 I386_ESP_REGNUM, /* %esp */
1294 I386_EBP_REGNUM, /* %ebp */
1295 I386_ESI_REGNUM, /* %esi */
1296 I386_EDI_REGNUM /* %edi */
1297 };
1298
1299 if (target_read_code (pc, buf, sizeof buf))
1300 return pc;
1301
1302 /* Check caller-saved saved register. The first instruction has
1303 to be "leal 4(%esp), %reg". */
1304 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1305 {
1306 /* MOD must be binary 10 and R/M must be binary 100. */
1307 if ((buf[1] & 0xc7) != 0x44)
1308 return pc;
1309
1310 /* REG has register number. */
1311 reg = (buf[1] >> 3) & 7;
1312 offset = 4;
1313 }
1314 else
1315 {
1316 /* Check callee-saved saved register. The first instruction
1317 has to be "pushl %reg". */
1318 if ((buf[0] & 0xf8) != 0x50)
1319 return pc;
1320
1321 /* Get register. */
1322 reg = buf[0] & 0x7;
1323
1324 /* The next instruction has to be "leal 8(%esp), %reg". */
1325 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1326 return pc;
1327
1328 /* MOD must be binary 10 and R/M must be binary 100. */
1329 if ((buf[2] & 0xc7) != 0x44)
1330 return pc;
1331
1332 /* REG has register number. Registers in pushl and leal have to
1333 be the same. */
1334 if (reg != ((buf[2] >> 3) & 7))
1335 return pc;
1336
1337 offset = 5;
1338 }
1339
1340 /* Rigister can't be %esp nor %ebp. */
1341 if (reg == 4 || reg == 5)
1342 return pc;
1343
1344 /* The next instruction has to be "andl $-XXX, %esp". */
1345 if (buf[offset + 1] != 0xe4
1346 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1347 return pc;
1348
1349 offset_and = offset;
1350 offset += buf[offset] == 0x81 ? 6 : 3;
1351
1352 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1353 0xfc. REG must be binary 110 and MOD must be binary 01. */
1354 if (buf[offset] != 0xff
1355 || buf[offset + 2] != 0xfc
1356 || (buf[offset + 1] & 0xf8) != 0x70)
1357 return pc;
1358
1359 /* R/M has register. Registers in leal and pushl have to be the
1360 same. */
1361 if (reg != (buf[offset + 1] & 7))
1362 return pc;
1363
1364 if (current_pc > pc + offset_and)
1365 cache->saved_sp_reg = regnums[reg];
1366
1367 return std::min (pc + offset + 3, current_pc);
1368 }
1369
1370 /* Maximum instruction length we need to handle. */
1371 #define I386_MAX_MATCHED_INSN_LEN 6
1372
1373 /* Instruction description. */
1374 struct i386_insn
1375 {
1376 size_t len;
1377 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1378 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1379 };
1380
1381 /* Return whether instruction at PC matches PATTERN. */
1382
1383 static int
1384 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1385 {
1386 gdb_byte op;
1387
1388 if (target_read_code (pc, &op, 1))
1389 return 0;
1390
1391 if ((op & pattern.mask[0]) == pattern.insn[0])
1392 {
1393 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1394 int insn_matched = 1;
1395 size_t i;
1396
1397 gdb_assert (pattern.len > 1);
1398 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1399
1400 if (target_read_code (pc + 1, buf, pattern.len - 1))
1401 return 0;
1402
1403 for (i = 1; i < pattern.len; i++)
1404 {
1405 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1406 insn_matched = 0;
1407 }
1408 return insn_matched;
1409 }
1410 return 0;
1411 }
1412
1413 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1414 the first instruction description that matches. Otherwise, return
1415 NULL. */
1416
1417 static struct i386_insn *
1418 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1419 {
1420 struct i386_insn *pattern;
1421
1422 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1423 {
1424 if (i386_match_pattern (pc, *pattern))
1425 return pattern;
1426 }
1427
1428 return NULL;
1429 }
1430
1431 /* Return whether PC points inside a sequence of instructions that
1432 matches INSN_PATTERNS. */
1433
1434 static int
1435 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1436 {
1437 CORE_ADDR current_pc;
1438 int ix, i;
1439 struct i386_insn *insn;
1440
1441 insn = i386_match_insn (pc, insn_patterns);
1442 if (insn == NULL)
1443 return 0;
1444
1445 current_pc = pc;
1446 ix = insn - insn_patterns;
1447 for (i = ix - 1; i >= 0; i--)
1448 {
1449 current_pc -= insn_patterns[i].len;
1450
1451 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1452 return 0;
1453 }
1454
1455 current_pc = pc + insn->len;
1456 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1457 {
1458 if (!i386_match_pattern (current_pc, *insn))
1459 return 0;
1460
1461 current_pc += insn->len;
1462 }
1463
1464 return 1;
1465 }
1466
1467 /* Some special instructions that might be migrated by GCC into the
1468 part of the prologue that sets up the new stack frame. Because the
1469 stack frame hasn't been setup yet, no registers have been saved
1470 yet, and only the scratch registers %eax, %ecx and %edx can be
1471 touched. */
1472
1473 static i386_insn i386_frame_setup_skip_insns[] =
1474 {
1475 /* Check for `movb imm8, r' and `movl imm32, r'.
1476
1477 ??? Should we handle 16-bit operand-sizes here? */
1478
1479 /* `movb imm8, %al' and `movb imm8, %ah' */
1480 /* `movb imm8, %cl' and `movb imm8, %ch' */
1481 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1482 /* `movb imm8, %dl' and `movb imm8, %dh' */
1483 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1484 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1485 { 5, { 0xb8 }, { 0xfe } },
1486 /* `movl imm32, %edx' */
1487 { 5, { 0xba }, { 0xff } },
1488
1489 /* Check for `mov imm32, r32'. Note that there is an alternative
1490 encoding for `mov m32, %eax'.
1491
1492 ??? Should we handle SIB addressing here?
1493 ??? Should we handle 16-bit operand-sizes here? */
1494
1495 /* `movl m32, %eax' */
1496 { 5, { 0xa1 }, { 0xff } },
1497 /* `movl m32, %eax' and `mov; m32, %ecx' */
1498 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1499 /* `movl m32, %edx' */
1500 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1501
1502 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1503 Because of the symmetry, there are actually two ways to encode
1504 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1505 opcode bytes 0x31 and 0x33 for `xorl'. */
1506
1507 /* `subl %eax, %eax' */
1508 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1509 /* `subl %ecx, %ecx' */
1510 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1511 /* `subl %edx, %edx' */
1512 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1513 /* `xorl %eax, %eax' */
1514 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1515 /* `xorl %ecx, %ecx' */
1516 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1517 /* `xorl %edx, %edx' */
1518 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1519 { 0 }
1520 };
1521
1522 /* Check whether PC points to an endbr32 instruction. */
1523 static CORE_ADDR
1524 i386_skip_endbr (CORE_ADDR pc)
1525 {
1526 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1527
1528 gdb_byte buf[sizeof (endbr32)];
1529
1530 /* Stop there if we can't read the code */
1531 if (target_read_code (pc, buf, sizeof (endbr32)))
1532 return pc;
1533
1534 /* If the instruction isn't an endbr32, stop */
1535 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1536 return pc;
1537
1538 return pc + sizeof (endbr32);
1539 }
1540
1541 /* Check whether PC points to a no-op instruction. */
1542 static CORE_ADDR
1543 i386_skip_noop (CORE_ADDR pc)
1544 {
1545 gdb_byte op;
1546 int check = 1;
1547
1548 if (target_read_code (pc, &op, 1))
1549 return pc;
1550
1551 while (check)
1552 {
1553 check = 0;
1554 /* Ignore `nop' instruction. */
1555 if (op == 0x90)
1556 {
1557 pc += 1;
1558 if (target_read_code (pc, &op, 1))
1559 return pc;
1560 check = 1;
1561 }
1562 /* Ignore no-op instruction `mov %edi, %edi'.
1563 Microsoft system dlls often start with
1564 a `mov %edi,%edi' instruction.
1565 The 5 bytes before the function start are
1566 filled with `nop' instructions.
1567 This pattern can be used for hot-patching:
1568 The `mov %edi, %edi' instruction can be replaced by a
1569 near jump to the location of the 5 `nop' instructions
1570 which can be replaced by a 32-bit jump to anywhere
1571 in the 32-bit address space. */
1572
1573 else if (op == 0x8b)
1574 {
1575 if (target_read_code (pc + 1, &op, 1))
1576 return pc;
1577
1578 if (op == 0xff)
1579 {
1580 pc += 2;
1581 if (target_read_code (pc, &op, 1))
1582 return pc;
1583
1584 check = 1;
1585 }
1586 }
1587 }
1588 return pc;
1589 }
1590
1591 /* Check whether PC points at a code that sets up a new stack frame.
1592 If so, it updates CACHE and returns the address of the first
1593 instruction after the sequence that sets up the frame or LIMIT,
1594 whichever is smaller. If we don't recognize the code, return PC. */
1595
1596 static CORE_ADDR
1597 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1598 CORE_ADDR pc, CORE_ADDR limit,
1599 struct i386_frame_cache *cache)
1600 {
1601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1602 struct i386_insn *insn;
1603 gdb_byte op;
1604 int skip = 0;
1605
1606 if (limit <= pc)
1607 return limit;
1608
1609 if (target_read_code (pc, &op, 1))
1610 return pc;
1611
1612 if (op == 0x55) /* pushl %ebp */
1613 {
1614 /* Take into account that we've executed the `pushl %ebp' that
1615 starts this instruction sequence. */
1616 cache->saved_regs[I386_EBP_REGNUM] = 0;
1617 cache->sp_offset += 4;
1618 pc++;
1619
1620 /* If that's all, return now. */
1621 if (limit <= pc)
1622 return limit;
1623
1624 /* Check for some special instructions that might be migrated by
1625 GCC into the prologue and skip them. At this point in the
1626 prologue, code should only touch the scratch registers %eax,
1627 %ecx and %edx, so while the number of possibilities is sheer,
1628 it is limited.
1629
1630 Make sure we only skip these instructions if we later see the
1631 `movl %esp, %ebp' that actually sets up the frame. */
1632 while (pc + skip < limit)
1633 {
1634 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1635 if (insn == NULL)
1636 break;
1637
1638 skip += insn->len;
1639 }
1640
1641 /* If that's all, return now. */
1642 if (limit <= pc + skip)
1643 return limit;
1644
1645 if (target_read_code (pc + skip, &op, 1))
1646 return pc + skip;
1647
1648 /* The i386 prologue looks like
1649
1650 push %ebp
1651 mov %esp,%ebp
1652 sub $0x10,%esp
1653
1654 and a different prologue can be generated for atom.
1655
1656 push %ebp
1657 lea (%esp),%ebp
1658 lea -0x10(%esp),%esp
1659
1660 We handle both of them here. */
1661
1662 switch (op)
1663 {
1664 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1665 case 0x8b:
1666 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1667 != 0xec)
1668 return pc;
1669 pc += (skip + 2);
1670 break;
1671 case 0x89:
1672 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1673 != 0xe5)
1674 return pc;
1675 pc += (skip + 2);
1676 break;
1677 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1678 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1679 != 0x242c)
1680 return pc;
1681 pc += (skip + 3);
1682 break;
1683 default:
1684 return pc;
1685 }
1686
1687 /* OK, we actually have a frame. We just don't know how large
1688 it is yet. Set its size to zero. We'll adjust it if
1689 necessary. We also now commit to skipping the special
1690 instructions mentioned before. */
1691 cache->locals = 0;
1692
1693 /* If that's all, return now. */
1694 if (limit <= pc)
1695 return limit;
1696
1697 /* Check for stack adjustment
1698
1699 subl $XXX, %esp
1700 or
1701 lea -XXX(%esp),%esp
1702
1703 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1704 reg, so we don't have to worry about a data16 prefix. */
1705 if (target_read_code (pc, &op, 1))
1706 return pc;
1707 if (op == 0x83)
1708 {
1709 /* `subl' with 8-bit immediate. */
1710 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1711 /* Some instruction starting with 0x83 other than `subl'. */
1712 return pc;
1713
1714 /* `subl' with signed 8-bit immediate (though it wouldn't
1715 make sense to be negative). */
1716 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1717 return pc + 3;
1718 }
1719 else if (op == 0x81)
1720 {
1721 /* Maybe it is `subl' with a 32-bit immediate. */
1722 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1723 /* Some instruction starting with 0x81 other than `subl'. */
1724 return pc;
1725
1726 /* It is `subl' with a 32-bit immediate. */
1727 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1728 return pc + 6;
1729 }
1730 else if (op == 0x8d)
1731 {
1732 /* The ModR/M byte is 0x64. */
1733 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1734 return pc;
1735 /* 'lea' with 8-bit displacement. */
1736 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1737 return pc + 4;
1738 }
1739 else
1740 {
1741 /* Some instruction other than `subl' nor 'lea'. */
1742 return pc;
1743 }
1744 }
1745 else if (op == 0xc8) /* enter */
1746 {
1747 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1748 return pc + 4;
1749 }
1750
1751 return pc;
1752 }
1753
1754 /* Check whether PC points at code that saves registers on the stack.
1755 If so, it updates CACHE and returns the address of the first
1756 instruction after the register saves or CURRENT_PC, whichever is
1757 smaller. Otherwise, return PC. */
1758
1759 static CORE_ADDR
1760 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1761 struct i386_frame_cache *cache)
1762 {
1763 CORE_ADDR offset = 0;
1764 gdb_byte op;
1765 int i;
1766
1767 if (cache->locals > 0)
1768 offset -= cache->locals;
1769 for (i = 0; i < 8 && pc < current_pc; i++)
1770 {
1771 if (target_read_code (pc, &op, 1))
1772 return pc;
1773 if (op < 0x50 || op > 0x57)
1774 break;
1775
1776 offset -= 4;
1777 cache->saved_regs[op - 0x50] = offset;
1778 cache->sp_offset += 4;
1779 pc++;
1780 }
1781
1782 return pc;
1783 }
1784
1785 /* Do a full analysis of the prologue at PC and update CACHE
1786 accordingly. Bail out early if CURRENT_PC is reached. Return the
1787 address where the analysis stopped.
1788
1789 We handle these cases:
1790
1791 The startup sequence can be at the start of the function, or the
1792 function can start with a branch to startup code at the end.
1793
1794 %ebp can be set up with either the 'enter' instruction, or "pushl
1795 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1796 once used in the System V compiler).
1797
1798 Local space is allocated just below the saved %ebp by either the
1799 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1800 16-bit unsigned argument for space to allocate, and the 'addl'
1801 instruction could have either a signed byte, or 32-bit immediate.
1802
1803 Next, the registers used by this function are pushed. With the
1804 System V compiler they will always be in the order: %edi, %esi,
1805 %ebx (and sometimes a harmless bug causes it to also save but not
1806 restore %eax); however, the code below is willing to see the pushes
1807 in any order, and will handle up to 8 of them.
1808
1809 If the setup sequence is at the end of the function, then the next
1810 instruction will be a branch back to the start. */
1811
1812 static CORE_ADDR
1813 i386_analyze_prologue (struct gdbarch *gdbarch,
1814 CORE_ADDR pc, CORE_ADDR current_pc,
1815 struct i386_frame_cache *cache)
1816 {
1817 pc = i386_skip_endbr (pc);
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826
1827 /* Return PC of first real instruction. */
1828
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
1834 static gdb_byte pic_pat[6] =
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1838 };
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
1841 gdb_byte op;
1842 int i;
1843 CORE_ADDR func_addr;
1844
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850
1851 /* LLVM backend (Clang/Flang) always emits a line note before the
1852 prologue and another one after. We trust clang and newer Intel
1853 compilers to emit usable line notes. */
1854 if (post_prologue_pc
1855 && (cust != NULL
1856 && cust->producer () != NULL
1857 && (producer_is_llvm (cust->producer ())
1858 || producer_is_icc_ge_19 (cust->producer ()))))
1859 return std::max (start_pc, post_prologue_pc);
1860 }
1861
1862 cache.locals = -1;
1863 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1864 if (cache.locals < 0)
1865 return start_pc;
1866
1867 /* Found valid frame setup. */
1868
1869 /* The native cc on SVR4 in -K PIC mode inserts the following code
1870 to get the address of the global offset table (GOT) into register
1871 %ebx:
1872
1873 call 0x0
1874 popl %ebx
1875 movl %ebx,x(%ebp) (optional)
1876 addl y,%ebx
1877
1878 This code is with the rest of the prologue (at the end of the
1879 function), so we have to skip it to get to the first real
1880 instruction at the start of the function. */
1881
1882 for (i = 0; i < 6; i++)
1883 {
1884 if (target_read_code (pc + i, &op, 1))
1885 return pc;
1886
1887 if (pic_pat[i] != op)
1888 break;
1889 }
1890 if (i == 6)
1891 {
1892 int delta = 6;
1893
1894 if (target_read_code (pc + delta, &op, 1))
1895 return pc;
1896
1897 if (op == 0x89) /* movl %ebx, x(%ebp) */
1898 {
1899 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1900
1901 if (op == 0x5d) /* One byte offset from %ebp. */
1902 delta += 3;
1903 else if (op == 0x9d) /* Four byte offset from %ebp. */
1904 delta += 6;
1905 else /* Unexpected instruction. */
1906 delta = 0;
1907
1908 if (target_read_code (pc + delta, &op, 1))
1909 return pc;
1910 }
1911
1912 /* addl y,%ebx */
1913 if (delta > 0 && op == 0x81
1914 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1915 == 0xc3)
1916 {
1917 pc += delta + 6;
1918 }
1919 }
1920
1921 /* If the function starts with a branch (to startup code at the end)
1922 the last instruction should bring us back to the first
1923 instruction of the real code. */
1924 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1925 pc = i386_follow_jump (gdbarch, pc);
1926
1927 return pc;
1928 }
1929
1930 /* Check that the code pointed to by PC corresponds to a call to
1931 __main, skip it if so. Return PC otherwise. */
1932
1933 CORE_ADDR
1934 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1935 {
1936 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1937 gdb_byte op;
1938
1939 if (target_read_code (pc, &op, 1))
1940 return pc;
1941 if (op == 0xe8)
1942 {
1943 gdb_byte buf[4];
1944
1945 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1946 {
1947 /* Make sure address is computed correctly as a 32bit
1948 integer even if CORE_ADDR is 64 bit wide. */
1949 struct bound_minimal_symbol s;
1950 CORE_ADDR call_dest;
1951
1952 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1953 call_dest = call_dest & 0xffffffffU;
1954 s = lookup_minimal_symbol_by_pc (call_dest);
1955 if (s.minsym != NULL
1956 && s.minsym->linkage_name () != NULL
1957 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1958 pc += 5;
1959 }
1960 }
1961
1962 return pc;
1963 }
1964
1965 /* This function is 64-bit safe. */
1966
1967 static CORE_ADDR
1968 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1969 {
1970 gdb_byte buf[8];
1971
1972 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1973 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1974 }
1975 \f
1976
1977 /* Normal frames. */
1978
1979 static void
1980 i386_frame_cache_1 (struct frame_info *this_frame,
1981 struct i386_frame_cache *cache)
1982 {
1983 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1985 gdb_byte buf[4];
1986 int i;
1987
1988 cache->pc = get_frame_func (this_frame);
1989
1990 /* In principle, for normal frames, %ebp holds the frame pointer,
1991 which holds the base address for the current stack frame.
1992 However, for functions that don't need it, the frame pointer is
1993 optional. For these "frameless" functions the frame pointer is
1994 actually the frame pointer of the calling frame. Signal
1995 trampolines are just a special case of a "frameless" function.
1996 They (usually) share their frame pointer with the frame that was
1997 in progress when the signal occurred. */
1998
1999 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
2000 cache->base = extract_unsigned_integer (buf, 4, byte_order);
2001 if (cache->base == 0)
2002 {
2003 cache->base_p = 1;
2004 return;
2005 }
2006
2007 /* For normal frames, %eip is stored at 4(%ebp). */
2008 cache->saved_regs[I386_EIP_REGNUM] = 4;
2009
2010 if (cache->pc != 0)
2011 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2012 cache);
2013
2014 if (cache->locals < 0)
2015 {
2016 /* We didn't find a valid frame, which means that CACHE->base
2017 currently holds the frame pointer for our calling frame. If
2018 we're at the start of a function, or somewhere half-way its
2019 prologue, the function's frame probably hasn't been fully
2020 setup yet. Try to reconstruct the base address for the stack
2021 frame by looking at the stack pointer. For truly "frameless"
2022 functions this might work too. */
2023
2024 if (cache->saved_sp_reg != -1)
2025 {
2026 /* Saved stack pointer has been saved. */
2027 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2028 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2029
2030 /* We're halfway aligning the stack. */
2031 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2032 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2033
2034 /* This will be added back below. */
2035 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2036 }
2037 else if (cache->pc != 0
2038 || target_read_code (get_frame_pc (this_frame), buf, 1))
2039 {
2040 /* We're in a known function, but did not find a frame
2041 setup. Assume that the function does not use %ebp.
2042 Alternatively, we may have jumped to an invalid
2043 address; in that case there is definitely no new
2044 frame in %ebp. */
2045 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2046 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2047 + cache->sp_offset;
2048 }
2049 else
2050 /* We're in an unknown function. We could not find the start
2051 of the function to analyze the prologue; our best option is
2052 to assume a typical frame layout with the caller's %ebp
2053 saved. */
2054 cache->saved_regs[I386_EBP_REGNUM] = 0;
2055 }
2056
2057 if (cache->saved_sp_reg != -1)
2058 {
2059 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2060 register may be unavailable). */
2061 if (cache->saved_sp == 0
2062 && deprecated_frame_register_read (this_frame,
2063 cache->saved_sp_reg, buf))
2064 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2065 }
2066 /* Now that we have the base address for the stack frame we can
2067 calculate the value of %esp in the calling frame. */
2068 else if (cache->saved_sp == 0)
2069 cache->saved_sp = cache->base + 8;
2070
2071 /* Adjust all the saved registers such that they contain addresses
2072 instead of offsets. */
2073 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2074 if (cache->saved_regs[i] != -1)
2075 cache->saved_regs[i] += cache->base;
2076
2077 cache->base_p = 1;
2078 }
2079
2080 static struct i386_frame_cache *
2081 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2082 {
2083 struct i386_frame_cache *cache;
2084
2085 if (*this_cache)
2086 return (struct i386_frame_cache *) *this_cache;
2087
2088 cache = i386_alloc_frame_cache ();
2089 *this_cache = cache;
2090
2091 try
2092 {
2093 i386_frame_cache_1 (this_frame, cache);
2094 }
2095 catch (const gdb_exception_error &ex)
2096 {
2097 if (ex.error != NOT_AVAILABLE_ERROR)
2098 throw;
2099 }
2100
2101 return cache;
2102 }
2103
2104 static void
2105 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2106 struct frame_id *this_id)
2107 {
2108 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2109
2110 if (!cache->base_p)
2111 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2112 else if (cache->base == 0)
2113 {
2114 /* This marks the outermost frame. */
2115 }
2116 else
2117 {
2118 /* See the end of i386_push_dummy_call. */
2119 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2120 }
2121 }
2122
2123 static enum unwind_stop_reason
2124 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2125 void **this_cache)
2126 {
2127 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2128
2129 if (!cache->base_p)
2130 return UNWIND_UNAVAILABLE;
2131
2132 /* This marks the outermost frame. */
2133 if (cache->base == 0)
2134 return UNWIND_OUTERMOST;
2135
2136 return UNWIND_NO_REASON;
2137 }
2138
2139 static struct value *
2140 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2141 int regnum)
2142 {
2143 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2144
2145 gdb_assert (regnum >= 0);
2146
2147 /* The System V ABI says that:
2148
2149 "The flags register contains the system flags, such as the
2150 direction flag and the carry flag. The direction flag must be
2151 set to the forward (that is, zero) direction before entry and
2152 upon exit from a function. Other user flags have no specified
2153 role in the standard calling sequence and are not preserved."
2154
2155 To guarantee the "upon exit" part of that statement we fake a
2156 saved flags register that has its direction flag cleared.
2157
2158 Note that GCC doesn't seem to rely on the fact that the direction
2159 flag is cleared after a function return; it always explicitly
2160 clears the flag before operations where it matters.
2161
2162 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2163 right thing to do. The way we fake the flags register here makes
2164 it impossible to change it. */
2165
2166 if (regnum == I386_EFLAGS_REGNUM)
2167 {
2168 ULONGEST val;
2169
2170 val = get_frame_register_unsigned (this_frame, regnum);
2171 val &= ~(1 << 10);
2172 return frame_unwind_got_constant (this_frame, regnum, val);
2173 }
2174
2175 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2176 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2177
2178 if (regnum == I386_ESP_REGNUM
2179 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2180 {
2181 /* If the SP has been saved, but we don't know where, then this
2182 means that SAVED_SP_REG register was found unavailable back
2183 when we built the cache. */
2184 if (cache->saved_sp == 0)
2185 return frame_unwind_got_register (this_frame, regnum,
2186 cache->saved_sp_reg);
2187 else
2188 return frame_unwind_got_constant (this_frame, regnum,
2189 cache->saved_sp);
2190 }
2191
2192 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2193 return frame_unwind_got_memory (this_frame, regnum,
2194 cache->saved_regs[regnum]);
2195
2196 return frame_unwind_got_register (this_frame, regnum, regnum);
2197 }
2198
2199 static const struct frame_unwind i386_frame_unwind =
2200 {
2201 "i386 prologue",
2202 NORMAL_FRAME,
2203 i386_frame_unwind_stop_reason,
2204 i386_frame_this_id,
2205 i386_frame_prev_register,
2206 NULL,
2207 default_frame_sniffer
2208 };
2209
2210 /* Normal frames, but in a function epilogue. */
2211
2212 /* Implement the stack_frame_destroyed_p gdbarch method.
2213
2214 The epilogue is defined here as the 'ret' instruction, which will
2215 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2216 the function's stack frame. */
2217
2218 static int
2219 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2220 {
2221 gdb_byte insn;
2222 struct compunit_symtab *cust;
2223
2224 cust = find_pc_compunit_symtab (pc);
2225 if (cust != NULL && cust->epilogue_unwind_valid ())
2226 return 0;
2227
2228 if (target_read_memory (pc, &insn, 1))
2229 return 0; /* Can't read memory at pc. */
2230
2231 if (insn != 0xc3) /* 'ret' instruction. */
2232 return 0;
2233
2234 return 1;
2235 }
2236
2237 static int
2238 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2239 struct frame_info *this_frame,
2240 void **this_prologue_cache)
2241 {
2242 if (frame_relative_level (this_frame) == 0)
2243 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2244 get_frame_pc (this_frame));
2245 else
2246 return 0;
2247 }
2248
2249 static struct i386_frame_cache *
2250 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2251 {
2252 struct i386_frame_cache *cache;
2253 CORE_ADDR sp;
2254
2255 if (*this_cache)
2256 return (struct i386_frame_cache *) *this_cache;
2257
2258 cache = i386_alloc_frame_cache ();
2259 *this_cache = cache;
2260
2261 try
2262 {
2263 cache->pc = get_frame_func (this_frame);
2264
2265 /* At this point the stack looks as if we just entered the
2266 function, with the return address at the top of the
2267 stack. */
2268 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2269 cache->base = sp + cache->sp_offset;
2270 cache->saved_sp = cache->base + 8;
2271 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2272
2273 cache->base_p = 1;
2274 }
2275 catch (const gdb_exception_error &ex)
2276 {
2277 if (ex.error != NOT_AVAILABLE_ERROR)
2278 throw;
2279 }
2280
2281 return cache;
2282 }
2283
2284 static enum unwind_stop_reason
2285 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2286 void **this_cache)
2287 {
2288 struct i386_frame_cache *cache =
2289 i386_epilogue_frame_cache (this_frame, this_cache);
2290
2291 if (!cache->base_p)
2292 return UNWIND_UNAVAILABLE;
2293
2294 return UNWIND_NO_REASON;
2295 }
2296
2297 static void
2298 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2299 void **this_cache,
2300 struct frame_id *this_id)
2301 {
2302 struct i386_frame_cache *cache =
2303 i386_epilogue_frame_cache (this_frame, this_cache);
2304
2305 if (!cache->base_p)
2306 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2307 else
2308 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2309 }
2310
2311 static struct value *
2312 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2313 void **this_cache, int regnum)
2314 {
2315 /* Make sure we've initialized the cache. */
2316 i386_epilogue_frame_cache (this_frame, this_cache);
2317
2318 return i386_frame_prev_register (this_frame, this_cache, regnum);
2319 }
2320
2321 static const struct frame_unwind i386_epilogue_frame_unwind =
2322 {
2323 "i386 epilogue",
2324 NORMAL_FRAME,
2325 i386_epilogue_frame_unwind_stop_reason,
2326 i386_epilogue_frame_this_id,
2327 i386_epilogue_frame_prev_register,
2328 NULL,
2329 i386_epilogue_frame_sniffer
2330 };
2331 \f
2332
2333 /* Stack-based trampolines. */
2334
2335 /* These trampolines are used on cross x86 targets, when taking the
2336 address of a nested function. When executing these trampolines,
2337 no stack frame is set up, so we are in a similar situation as in
2338 epilogues and i386_epilogue_frame_this_id can be re-used. */
2339
2340 /* Static chain passed in register. */
2341
2342 static i386_insn i386_tramp_chain_in_reg_insns[] =
2343 {
2344 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2345 { 5, { 0xb8 }, { 0xfe } },
2346
2347 /* `jmp imm32' */
2348 { 5, { 0xe9 }, { 0xff } },
2349
2350 {0}
2351 };
2352
2353 /* Static chain passed on stack (when regparm=3). */
2354
2355 static i386_insn i386_tramp_chain_on_stack_insns[] =
2356 {
2357 /* `push imm32' */
2358 { 5, { 0x68 }, { 0xff } },
2359
2360 /* `jmp imm32' */
2361 { 5, { 0xe9 }, { 0xff } },
2362
2363 {0}
2364 };
2365
2366 /* Return whether PC points inside a stack trampoline. */
2367
2368 static int
2369 i386_in_stack_tramp_p (CORE_ADDR pc)
2370 {
2371 gdb_byte insn;
2372 const char *name;
2373
2374 /* A stack trampoline is detected if no name is associated
2375 to the current pc and if it points inside a trampoline
2376 sequence. */
2377
2378 find_pc_partial_function (pc, &name, NULL, NULL);
2379 if (name)
2380 return 0;
2381
2382 if (target_read_memory (pc, &insn, 1))
2383 return 0;
2384
2385 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2386 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2387 return 0;
2388
2389 return 1;
2390 }
2391
2392 static int
2393 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2394 struct frame_info *this_frame,
2395 void **this_cache)
2396 {
2397 if (frame_relative_level (this_frame) == 0)
2398 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2399 else
2400 return 0;
2401 }
2402
2403 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2404 {
2405 "i386 stack tramp",
2406 NORMAL_FRAME,
2407 i386_epilogue_frame_unwind_stop_reason,
2408 i386_epilogue_frame_this_id,
2409 i386_epilogue_frame_prev_register,
2410 NULL,
2411 i386_stack_tramp_frame_sniffer
2412 };
2413 \f
2414 /* Generate a bytecode expression to get the value of the saved PC. */
2415
2416 static void
2417 i386_gen_return_address (struct gdbarch *gdbarch,
2418 struct agent_expr *ax, struct axs_value *value,
2419 CORE_ADDR scope)
2420 {
2421 /* The following sequence assumes the traditional use of the base
2422 register. */
2423 ax_reg (ax, I386_EBP_REGNUM);
2424 ax_const_l (ax, 4);
2425 ax_simple (ax, aop_add);
2426 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2427 value->kind = axs_lvalue_memory;
2428 }
2429 \f
2430
2431 /* Signal trampolines. */
2432
2433 static struct i386_frame_cache *
2434 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2435 {
2436 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2437 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2438 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2439 struct i386_frame_cache *cache;
2440 CORE_ADDR addr;
2441 gdb_byte buf[4];
2442
2443 if (*this_cache)
2444 return (struct i386_frame_cache *) *this_cache;
2445
2446 cache = i386_alloc_frame_cache ();
2447
2448 try
2449 {
2450 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2451 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2452
2453 addr = tdep->sigcontext_addr (this_frame);
2454 if (tdep->sc_reg_offset)
2455 {
2456 int i;
2457
2458 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2459
2460 for (i = 0; i < tdep->sc_num_regs; i++)
2461 if (tdep->sc_reg_offset[i] != -1)
2462 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2463 }
2464 else
2465 {
2466 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2467 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2468 }
2469
2470 cache->base_p = 1;
2471 }
2472 catch (const gdb_exception_error &ex)
2473 {
2474 if (ex.error != NOT_AVAILABLE_ERROR)
2475 throw;
2476 }
2477
2478 *this_cache = cache;
2479 return cache;
2480 }
2481
2482 static enum unwind_stop_reason
2483 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2484 void **this_cache)
2485 {
2486 struct i386_frame_cache *cache =
2487 i386_sigtramp_frame_cache (this_frame, this_cache);
2488
2489 if (!cache->base_p)
2490 return UNWIND_UNAVAILABLE;
2491
2492 return UNWIND_NO_REASON;
2493 }
2494
2495 static void
2496 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2497 struct frame_id *this_id)
2498 {
2499 struct i386_frame_cache *cache =
2500 i386_sigtramp_frame_cache (this_frame, this_cache);
2501
2502 if (!cache->base_p)
2503 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2504 else
2505 {
2506 /* See the end of i386_push_dummy_call. */
2507 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2508 }
2509 }
2510
2511 static struct value *
2512 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2513 void **this_cache, int regnum)
2514 {
2515 /* Make sure we've initialized the cache. */
2516 i386_sigtramp_frame_cache (this_frame, this_cache);
2517
2518 return i386_frame_prev_register (this_frame, this_cache, regnum);
2519 }
2520
2521 static int
2522 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2523 struct frame_info *this_frame,
2524 void **this_prologue_cache)
2525 {
2526 gdbarch *arch = get_frame_arch (this_frame);
2527 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
2528
2529 /* We shouldn't even bother if we don't have a sigcontext_addr
2530 handler. */
2531 if (tdep->sigcontext_addr == NULL)
2532 return 0;
2533
2534 if (tdep->sigtramp_p != NULL)
2535 {
2536 if (tdep->sigtramp_p (this_frame))
2537 return 1;
2538 }
2539
2540 if (tdep->sigtramp_start != 0)
2541 {
2542 CORE_ADDR pc = get_frame_pc (this_frame);
2543
2544 gdb_assert (tdep->sigtramp_end != 0);
2545 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2546 return 1;
2547 }
2548
2549 return 0;
2550 }
2551
2552 static const struct frame_unwind i386_sigtramp_frame_unwind =
2553 {
2554 "i386 sigtramp",
2555 SIGTRAMP_FRAME,
2556 i386_sigtramp_frame_unwind_stop_reason,
2557 i386_sigtramp_frame_this_id,
2558 i386_sigtramp_frame_prev_register,
2559 NULL,
2560 i386_sigtramp_frame_sniffer
2561 };
2562 \f
2563
2564 static CORE_ADDR
2565 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2566 {
2567 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2568
2569 return cache->base;
2570 }
2571
2572 static const struct frame_base i386_frame_base =
2573 {
2574 &i386_frame_unwind,
2575 i386_frame_base_address,
2576 i386_frame_base_address,
2577 i386_frame_base_address
2578 };
2579
2580 static struct frame_id
2581 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2582 {
2583 CORE_ADDR fp;
2584
2585 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2586
2587 /* See the end of i386_push_dummy_call. */
2588 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2589 }
2590
2591 /* _Decimal128 function return values need 16-byte alignment on the
2592 stack. */
2593
2594 static CORE_ADDR
2595 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2596 {
2597 return sp & -(CORE_ADDR)16;
2598 }
2599 \f
2600
2601 /* Figure out where the longjmp will land. Slurp the args out of the
2602 stack. We expect the first arg to be a pointer to the jmp_buf
2603 structure from which we extract the address that we will land at.
2604 This address is copied into PC. This routine returns non-zero on
2605 success. */
2606
2607 static int
2608 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2609 {
2610 gdb_byte buf[4];
2611 CORE_ADDR sp, jb_addr;
2612 struct gdbarch *gdbarch = get_frame_arch (frame);
2613 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2614 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2615 int jb_pc_offset = tdep->jb_pc_offset;
2616
2617 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2618 longjmp will land. */
2619 if (jb_pc_offset == -1)
2620 return 0;
2621
2622 get_frame_register (frame, I386_ESP_REGNUM, buf);
2623 sp = extract_unsigned_integer (buf, 4, byte_order);
2624 if (target_read_memory (sp + 4, buf, 4))
2625 return 0;
2626
2627 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2628 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2629 return 0;
2630
2631 *pc = extract_unsigned_integer (buf, 4, byte_order);
2632 return 1;
2633 }
2634 \f
2635
2636 /* Check whether TYPE must be 16-byte-aligned when passed as a
2637 function argument. 16-byte vectors, _Decimal128 and structures or
2638 unions containing such types must be 16-byte-aligned; other
2639 arguments are 4-byte-aligned. */
2640
2641 static int
2642 i386_16_byte_align_p (struct type *type)
2643 {
2644 type = check_typedef (type);
2645 if ((type->code () == TYPE_CODE_DECFLOAT
2646 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2647 && TYPE_LENGTH (type) == 16)
2648 return 1;
2649 if (type->code () == TYPE_CODE_ARRAY)
2650 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2651 if (type->code () == TYPE_CODE_STRUCT
2652 || type->code () == TYPE_CODE_UNION)
2653 {
2654 int i;
2655 for (i = 0; i < type->num_fields (); i++)
2656 {
2657 if (field_is_static (&type->field (i)))
2658 continue;
2659 if (i386_16_byte_align_p (type->field (i).type ()))
2660 return 1;
2661 }
2662 }
2663 return 0;
2664 }
2665
2666 /* Implementation for set_gdbarch_push_dummy_code. */
2667
2668 static CORE_ADDR
2669 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2670 struct value **args, int nargs, struct type *value_type,
2671 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2672 struct regcache *regcache)
2673 {
2674 /* Use 0xcc breakpoint - 1 byte. */
2675 *bp_addr = sp - 1;
2676 *real_pc = funaddr;
2677
2678 /* Keep the stack aligned. */
2679 return sp - 16;
2680 }
2681
2682 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2683 calling convention. */
2684
2685 CORE_ADDR
2686 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2687 struct regcache *regcache, CORE_ADDR bp_addr,
2688 int nargs, struct value **args, CORE_ADDR sp,
2689 function_call_return_method return_method,
2690 CORE_ADDR struct_addr, bool thiscall)
2691 {
2692 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2693 gdb_byte buf[4];
2694 int i;
2695 int write_pass;
2696 int args_space = 0;
2697
2698 /* BND registers can be in arbitrary values at the moment of the
2699 inferior call. This can cause boundary violations that are not
2700 due to a real bug or even desired by the user. The best to be done
2701 is set the BND registers to allow access to the whole memory, INIT
2702 state, before pushing the inferior call. */
2703 i387_reset_bnd_regs (gdbarch, regcache);
2704
2705 /* Determine the total space required for arguments and struct
2706 return address in a first pass (allowing for 16-byte-aligned
2707 arguments), then push arguments in a second pass. */
2708
2709 for (write_pass = 0; write_pass < 2; write_pass++)
2710 {
2711 int args_space_used = 0;
2712
2713 if (return_method == return_method_struct)
2714 {
2715 if (write_pass)
2716 {
2717 /* Push value address. */
2718 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2719 write_memory (sp, buf, 4);
2720 args_space_used += 4;
2721 }
2722 else
2723 args_space += 4;
2724 }
2725
2726 for (i = thiscall ? 1 : 0; i < nargs; i++)
2727 {
2728 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2729
2730 if (write_pass)
2731 {
2732 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2733 args_space_used = align_up (args_space_used, 16);
2734
2735 write_memory (sp + args_space_used,
2736 value_contents_all (args[i]).data (), len);
2737 /* The System V ABI says that:
2738
2739 "An argument's size is increased, if necessary, to make it a
2740 multiple of [32-bit] words. This may require tail padding,
2741 depending on the size of the argument."
2742
2743 This makes sure the stack stays word-aligned. */
2744 args_space_used += align_up (len, 4);
2745 }
2746 else
2747 {
2748 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2749 args_space = align_up (args_space, 16);
2750 args_space += align_up (len, 4);
2751 }
2752 }
2753
2754 if (!write_pass)
2755 {
2756 sp -= args_space;
2757
2758 /* The original System V ABI only requires word alignment,
2759 but modern incarnations need 16-byte alignment in order
2760 to support SSE. Since wasting a few bytes here isn't
2761 harmful we unconditionally enforce 16-byte alignment. */
2762 sp &= ~0xf;
2763 }
2764 }
2765
2766 /* Store return address. */
2767 sp -= 4;
2768 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2769 write_memory (sp, buf, 4);
2770
2771 /* Finally, update the stack pointer... */
2772 store_unsigned_integer (buf, 4, byte_order, sp);
2773 regcache->cooked_write (I386_ESP_REGNUM, buf);
2774
2775 /* ...and fake a frame pointer. */
2776 regcache->cooked_write (I386_EBP_REGNUM, buf);
2777
2778 /* The 'this' pointer needs to be in ECX. */
2779 if (thiscall)
2780 regcache->cooked_write (I386_ECX_REGNUM,
2781 value_contents_all (args[0]).data ());
2782
2783 /* If the PLT is position-independent, the SYSTEM V ABI requires %ebx to be
2784 set to the address of the GOT when doing a call to a PLT address.
2785 Note that we do not try to determine whether the PLT is
2786 position-independent, we just set the register regardless. */
2787 CORE_ADDR func_addr = find_function_addr (function, nullptr, nullptr);
2788 if (in_plt_section (func_addr))
2789 {
2790 struct objfile *objf = nullptr;
2791 asection *asect = nullptr;
2792 obj_section *osect = nullptr;
2793
2794 /* Get object file containing func_addr. */
2795 obj_section *func_section = find_pc_section (func_addr);
2796 if (func_section != nullptr)
2797 objf = func_section->objfile;
2798
2799 if (objf != nullptr)
2800 {
2801 /* Get corresponding .got.plt or .got section. */
2802 asect = bfd_get_section_by_name (objf->obfd, ".got.plt");
2803 if (asect == nullptr)
2804 asect = bfd_get_section_by_name (objf->obfd, ".got");
2805 }
2806
2807 if (asect != nullptr)
2808 /* Translate asection to obj_section. */
2809 osect = maint_obj_section_from_bfd_section (objf->obfd, asect, objf);
2810
2811 if (osect != nullptr)
2812 {
2813 /* Store the section address in %ebx. */
2814 store_unsigned_integer (buf, 4, byte_order, osect->addr ());
2815 regcache->cooked_write (I386_EBX_REGNUM, buf);
2816 }
2817 else
2818 {
2819 /* If we would only do this for a position-independent PLT, it would
2820 make sense to issue a warning here. */
2821 }
2822 }
2823
2824 /* MarkK wrote: This "+ 8" is all over the place:
2825 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2826 i386_dummy_id). It's there, since all frame unwinders for
2827 a given target have to agree (within a certain margin) on the
2828 definition of the stack address of a frame. Otherwise frame id
2829 comparison might not work correctly. Since DWARF2/GCC uses the
2830 stack address *before* the function call as a frame's CFA. On
2831 the i386, when %ebp is used as a frame pointer, the offset
2832 between the contents %ebp and the CFA as defined by GCC. */
2833 return sp + 8;
2834 }
2835
2836 /* Implement the "push_dummy_call" gdbarch method. */
2837
2838 static CORE_ADDR
2839 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2840 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2841 struct value **args, CORE_ADDR sp,
2842 function_call_return_method return_method,
2843 CORE_ADDR struct_addr)
2844 {
2845 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2846 nargs, args, sp, return_method,
2847 struct_addr, false);
2848 }
2849
2850 /* These registers are used for returning integers (and on some
2851 targets also for returning `struct' and `union' values when their
2852 size and alignment match an integer type). */
2853 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2854 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2855
2856 /* Read, for architecture GDBARCH, a function return value of TYPE
2857 from REGCACHE, and copy that into VALBUF. */
2858
2859 static void
2860 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2861 struct regcache *regcache, gdb_byte *valbuf)
2862 {
2863 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2864 int len = TYPE_LENGTH (type);
2865 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2866
2867 /* _Float16 and _Float16 _Complex values are returned via xmm0. */
2868 if (((type->code () == TYPE_CODE_FLT) && len == 2)
2869 || ((type->code () == TYPE_CODE_COMPLEX) && len == 4))
2870 {
2871 regcache->raw_read (I387_XMM0_REGNUM (tdep), valbuf);
2872 return;
2873 }
2874 else if (type->code () == TYPE_CODE_FLT)
2875 {
2876 if (tdep->st0_regnum < 0)
2877 {
2878 warning (_("Cannot find floating-point return value."));
2879 memset (valbuf, 0, len);
2880 return;
2881 }
2882
2883 /* Floating-point return values can be found in %st(0). Convert
2884 its contents to the desired type. This is probably not
2885 exactly how it would happen on the target itself, but it is
2886 the best we can do. */
2887 regcache->raw_read (I386_ST0_REGNUM, buf);
2888 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2889 }
2890 else
2891 {
2892 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2893 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2894
2895 if (len <= low_size)
2896 {
2897 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2898 memcpy (valbuf, buf, len);
2899 }
2900 else if (len <= (low_size + high_size))
2901 {
2902 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2903 memcpy (valbuf, buf, low_size);
2904 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2905 memcpy (valbuf + low_size, buf, len - low_size);
2906 }
2907 else
2908 internal_error (__FILE__, __LINE__,
2909 _("Cannot extract return value of %d bytes long."),
2910 len);
2911 }
2912 }
2913
2914 /* Write, for architecture GDBARCH, a function return value of TYPE
2915 from VALBUF into REGCACHE. */
2916
2917 static void
2918 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2919 struct regcache *regcache, const gdb_byte *valbuf)
2920 {
2921 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2922 int len = TYPE_LENGTH (type);
2923
2924 if (type->code () == TYPE_CODE_FLT)
2925 {
2926 ULONGEST fstat;
2927 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2928
2929 if (tdep->st0_regnum < 0)
2930 {
2931 warning (_("Cannot set floating-point return value."));
2932 return;
2933 }
2934
2935 /* Returning floating-point values is a bit tricky. Apart from
2936 storing the return value in %st(0), we have to simulate the
2937 state of the FPU at function return point. */
2938
2939 /* Convert the value found in VALBUF to the extended
2940 floating-point format used by the FPU. This is probably
2941 not exactly how it would happen on the target itself, but
2942 it is the best we can do. */
2943 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2944 regcache->raw_write (I386_ST0_REGNUM, buf);
2945
2946 /* Set the top of the floating-point register stack to 7. The
2947 actual value doesn't really matter, but 7 is what a normal
2948 function return would end up with if the program started out
2949 with a freshly initialized FPU. */
2950 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2951 fstat |= (7 << 11);
2952 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2953
2954 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2955 the floating-point register stack to 7, the appropriate value
2956 for the tag word is 0x3fff. */
2957 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2958 }
2959 else
2960 {
2961 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2962 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2963
2964 if (len <= low_size)
2965 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2966 else if (len <= (low_size + high_size))
2967 {
2968 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2969 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2970 valbuf + low_size);
2971 }
2972 else
2973 internal_error (__FILE__, __LINE__,
2974 _("Cannot store return value of %d bytes long."), len);
2975 }
2976 }
2977 \f
2978
2979 /* This is the variable that is set with "set struct-convention", and
2980 its legitimate values. */
2981 static const char default_struct_convention[] = "default";
2982 static const char pcc_struct_convention[] = "pcc";
2983 static const char reg_struct_convention[] = "reg";
2984 static const char *const valid_conventions[] =
2985 {
2986 default_struct_convention,
2987 pcc_struct_convention,
2988 reg_struct_convention,
2989 NULL
2990 };
2991 static const char *struct_convention = default_struct_convention;
2992
2993 /* Return non-zero if TYPE, which is assumed to be a structure,
2994 a union type, or an array type, should be returned in registers
2995 for architecture GDBARCH. */
2996
2997 static int
2998 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2999 {
3000 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3001 enum type_code code = type->code ();
3002 int len = TYPE_LENGTH (type);
3003
3004 gdb_assert (code == TYPE_CODE_STRUCT
3005 || code == TYPE_CODE_UNION
3006 || code == TYPE_CODE_ARRAY);
3007
3008 if (struct_convention == pcc_struct_convention
3009 || (struct_convention == default_struct_convention
3010 && tdep->struct_return == pcc_struct_return))
3011 return 0;
3012
3013 /* Structures consisting of a single `float', `double' or 'long
3014 double' member are returned in %st(0). */
3015 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3016 {
3017 type = check_typedef (type->field (0).type ());
3018 if (type->code () == TYPE_CODE_FLT)
3019 return (len == 4 || len == 8 || len == 12);
3020 }
3021
3022 return (len == 1 || len == 2 || len == 4 || len == 8);
3023 }
3024
3025 /* Determine, for architecture GDBARCH, how a return value of TYPE
3026 should be returned. If it is supposed to be returned in registers,
3027 and READBUF is non-zero, read the appropriate value from REGCACHE,
3028 and copy it into READBUF. If WRITEBUF is non-zero, write the value
3029 from WRITEBUF into REGCACHE. */
3030
3031 static enum return_value_convention
3032 i386_return_value (struct gdbarch *gdbarch, struct value *function,
3033 struct type *type, struct regcache *regcache,
3034 gdb_byte *readbuf, const gdb_byte *writebuf)
3035 {
3036 enum type_code code = type->code ();
3037
3038 if (((code == TYPE_CODE_STRUCT
3039 || code == TYPE_CODE_UNION
3040 || code == TYPE_CODE_ARRAY)
3041 && !i386_reg_struct_return_p (gdbarch, type))
3042 /* Complex double and long double uses the struct return convention. */
3043 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
3044 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
3045 /* 128-bit decimal float uses the struct return convention. */
3046 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
3047 {
3048 /* The System V ABI says that:
3049
3050 "A function that returns a structure or union also sets %eax
3051 to the value of the original address of the caller's area
3052 before it returns. Thus when the caller receives control
3053 again, the address of the returned object resides in register
3054 %eax and can be used to access the object."
3055
3056 So the ABI guarantees that we can always find the return
3057 value just after the function has returned. */
3058
3059 /* Note that the ABI doesn't mention functions returning arrays,
3060 which is something possible in certain languages such as Ada.
3061 In this case, the value is returned as if it was wrapped in
3062 a record, so the convention applied to records also applies
3063 to arrays. */
3064
3065 if (readbuf)
3066 {
3067 ULONGEST addr;
3068
3069 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3070 read_memory (addr, readbuf, TYPE_LENGTH (type));
3071 }
3072
3073 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3074 }
3075
3076 /* This special case is for structures consisting of a single
3077 `float', `double' or 'long double' member. These structures are
3078 returned in %st(0). For these structures, we call ourselves
3079 recursively, changing TYPE into the type of the first member of
3080 the structure. Since that should work for all structures that
3081 have only one member, we don't bother to check the member's type
3082 here. */
3083 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3084 {
3085 type = check_typedef (type->field (0).type ());
3086 return i386_return_value (gdbarch, function, type, regcache,
3087 readbuf, writebuf);
3088 }
3089
3090 if (readbuf)
3091 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3092 if (writebuf)
3093 i386_store_return_value (gdbarch, type, regcache, writebuf);
3094
3095 return RETURN_VALUE_REGISTER_CONVENTION;
3096 }
3097 \f
3098
3099 struct type *
3100 i387_ext_type (struct gdbarch *gdbarch)
3101 {
3102 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3103
3104 if (!tdep->i387_ext_type)
3105 {
3106 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3107 gdb_assert (tdep->i387_ext_type != NULL);
3108 }
3109
3110 return tdep->i387_ext_type;
3111 }
3112
3113 /* Construct type for pseudo BND registers. We can't use
3114 tdesc_find_type since a complement of one value has to be used
3115 to describe the upper bound. */
3116
3117 static struct type *
3118 i386_bnd_type (struct gdbarch *gdbarch)
3119 {
3120 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3121
3122
3123 if (!tdep->i386_bnd_type)
3124 {
3125 struct type *t;
3126 const struct builtin_type *bt = builtin_type (gdbarch);
3127
3128 /* The type we're building is described bellow: */
3129 #if 0
3130 struct __bound128
3131 {
3132 void *lbound;
3133 void *ubound; /* One complement of raw ubound field. */
3134 };
3135 #endif
3136
3137 t = arch_composite_type (gdbarch,
3138 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3139
3140 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3141 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3142
3143 t->set_name ("builtin_type_bound128");
3144 tdep->i386_bnd_type = t;
3145 }
3146
3147 return tdep->i386_bnd_type;
3148 }
3149
3150 /* Construct vector type for pseudo ZMM registers. We can't use
3151 tdesc_find_type since ZMM isn't described in target description. */
3152
3153 static struct type *
3154 i386_zmm_type (struct gdbarch *gdbarch)
3155 {
3156 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3157
3158 if (!tdep->i386_zmm_type)
3159 {
3160 const struct builtin_type *bt = builtin_type (gdbarch);
3161
3162 /* The type we're building is this: */
3163 #if 0
3164 union __gdb_builtin_type_vec512i
3165 {
3166 int128_t v4_int128[4];
3167 int64_t v8_int64[8];
3168 int32_t v16_int32[16];
3169 int16_t v32_int16[32];
3170 int8_t v64_int8[64];
3171 double v8_double[8];
3172 float v16_float[16];
3173 float16_t v32_half[32];
3174 bfloat16_t v32_bfloat16[32];
3175 };
3176 #endif
3177
3178 struct type *t;
3179
3180 t = arch_composite_type (gdbarch,
3181 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3182 append_composite_type_field (t, "v32_bfloat16",
3183 init_vector_type (bt->builtin_bfloat16, 32));
3184 append_composite_type_field (t, "v32_half",
3185 init_vector_type (bt->builtin_half, 32));
3186 append_composite_type_field (t, "v16_float",
3187 init_vector_type (bt->builtin_float, 16));
3188 append_composite_type_field (t, "v8_double",
3189 init_vector_type (bt->builtin_double, 8));
3190 append_composite_type_field (t, "v64_int8",
3191 init_vector_type (bt->builtin_int8, 64));
3192 append_composite_type_field (t, "v32_int16",
3193 init_vector_type (bt->builtin_int16, 32));
3194 append_composite_type_field (t, "v16_int32",
3195 init_vector_type (bt->builtin_int32, 16));
3196 append_composite_type_field (t, "v8_int64",
3197 init_vector_type (bt->builtin_int64, 8));
3198 append_composite_type_field (t, "v4_int128",
3199 init_vector_type (bt->builtin_int128, 4));
3200
3201 t->set_is_vector (true);
3202 t->set_name ("builtin_type_vec512i");
3203 tdep->i386_zmm_type = t;
3204 }
3205
3206 return tdep->i386_zmm_type;
3207 }
3208
3209 /* Construct vector type for pseudo YMM registers. We can't use
3210 tdesc_find_type since YMM isn't described in target description. */
3211
3212 static struct type *
3213 i386_ymm_type (struct gdbarch *gdbarch)
3214 {
3215 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3216
3217 if (!tdep->i386_ymm_type)
3218 {
3219 const struct builtin_type *bt = builtin_type (gdbarch);
3220
3221 /* The type we're building is this: */
3222 #if 0
3223 union __gdb_builtin_type_vec256i
3224 {
3225 int128_t v2_int128[2];
3226 int64_t v4_int64[4];
3227 int32_t v8_int32[8];
3228 int16_t v16_int16[16];
3229 int8_t v32_int8[32];
3230 double v4_double[4];
3231 float v8_float[8];
3232 float16_t v16_half[16];
3233 bfloat16_t v16_bfloat16[16];
3234 };
3235 #endif
3236
3237 struct type *t;
3238
3239 t = arch_composite_type (gdbarch,
3240 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3241 append_composite_type_field (t, "v16_bfloat16",
3242 init_vector_type (bt->builtin_bfloat16, 16));
3243 append_composite_type_field (t, "v16_half",
3244 init_vector_type (bt->builtin_half, 16));
3245 append_composite_type_field (t, "v8_float",
3246 init_vector_type (bt->builtin_float, 8));
3247 append_composite_type_field (t, "v4_double",
3248 init_vector_type (bt->builtin_double, 4));
3249 append_composite_type_field (t, "v32_int8",
3250 init_vector_type (bt->builtin_int8, 32));
3251 append_composite_type_field (t, "v16_int16",
3252 init_vector_type (bt->builtin_int16, 16));
3253 append_composite_type_field (t, "v8_int32",
3254 init_vector_type (bt->builtin_int32, 8));
3255 append_composite_type_field (t, "v4_int64",
3256 init_vector_type (bt->builtin_int64, 4));
3257 append_composite_type_field (t, "v2_int128",
3258 init_vector_type (bt->builtin_int128, 2));
3259
3260 t->set_is_vector (true);
3261 t->set_name ("builtin_type_vec256i");
3262 tdep->i386_ymm_type = t;
3263 }
3264
3265 return tdep->i386_ymm_type;
3266 }
3267
3268 /* Construct vector type for MMX registers. */
3269 static struct type *
3270 i386_mmx_type (struct gdbarch *gdbarch)
3271 {
3272 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3273
3274 if (!tdep->i386_mmx_type)
3275 {
3276 const struct builtin_type *bt = builtin_type (gdbarch);
3277
3278 /* The type we're building is this: */
3279 #if 0
3280 union __gdb_builtin_type_vec64i
3281 {
3282 int64_t uint64;
3283 int32_t v2_int32[2];
3284 int16_t v4_int16[4];
3285 int8_t v8_int8[8];
3286 };
3287 #endif
3288
3289 struct type *t;
3290
3291 t = arch_composite_type (gdbarch,
3292 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3293
3294 append_composite_type_field (t, "uint64", bt->builtin_int64);
3295 append_composite_type_field (t, "v2_int32",
3296 init_vector_type (bt->builtin_int32, 2));
3297 append_composite_type_field (t, "v4_int16",
3298 init_vector_type (bt->builtin_int16, 4));
3299 append_composite_type_field (t, "v8_int8",
3300 init_vector_type (bt->builtin_int8, 8));
3301
3302 t->set_is_vector (true);
3303 t->set_name ("builtin_type_vec64i");
3304 tdep->i386_mmx_type = t;
3305 }
3306
3307 return tdep->i386_mmx_type;
3308 }
3309
3310 /* Return the GDB type object for the "standard" data type of data in
3311 register REGNUM. */
3312
3313 struct type *
3314 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3315 {
3316 if (i386_bnd_regnum_p (gdbarch, regnum))
3317 return i386_bnd_type (gdbarch);
3318 if (i386_mmx_regnum_p (gdbarch, regnum))
3319 return i386_mmx_type (gdbarch);
3320 else if (i386_ymm_regnum_p (gdbarch, regnum))
3321 return i386_ymm_type (gdbarch);
3322 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3323 return i386_ymm_type (gdbarch);
3324 else if (i386_zmm_regnum_p (gdbarch, regnum))
3325 return i386_zmm_type (gdbarch);
3326 else
3327 {
3328 const struct builtin_type *bt = builtin_type (gdbarch);
3329 if (i386_byte_regnum_p (gdbarch, regnum))
3330 return bt->builtin_int8;
3331 else if (i386_word_regnum_p (gdbarch, regnum))
3332 return bt->builtin_int16;
3333 else if (i386_dword_regnum_p (gdbarch, regnum))
3334 return bt->builtin_int32;
3335 else if (i386_k_regnum_p (gdbarch, regnum))
3336 return bt->builtin_int64;
3337 }
3338
3339 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3340 }
3341
3342 /* Map a cooked register onto a raw register or memory. For the i386,
3343 the MMX registers need to be mapped onto floating point registers. */
3344
3345 static int
3346 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3347 {
3348 gdbarch *arch = regcache->arch ();
3349 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
3350 int mmxreg, fpreg;
3351 ULONGEST fstat;
3352 int tos;
3353
3354 mmxreg = regnum - tdep->mm0_regnum;
3355 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3356 tos = (fstat >> 11) & 0x7;
3357 fpreg = (mmxreg + tos) % 8;
3358
3359 return (I387_ST0_REGNUM (tdep) + fpreg);
3360 }
3361
3362 /* A helper function for us by i386_pseudo_register_read_value and
3363 amd64_pseudo_register_read_value. It does all the work but reads
3364 the data into an already-allocated value. */
3365
3366 void
3367 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3368 readable_regcache *regcache,
3369 int regnum,
3370 struct value *result_value)
3371 {
3372 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3373 enum register_status status;
3374 gdb_byte *buf = value_contents_raw (result_value).data ();
3375
3376 if (i386_mmx_regnum_p (gdbarch, regnum))
3377 {
3378 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3379
3380 /* Extract (always little endian). */
3381 status = regcache->raw_read (fpnum, raw_buf);
3382 if (status != REG_VALID)
3383 mark_value_bytes_unavailable (result_value, 0,
3384 TYPE_LENGTH (value_type (result_value)));
3385 else
3386 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3387 }
3388 else
3389 {
3390 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3391 if (i386_bnd_regnum_p (gdbarch, regnum))
3392 {
3393 regnum -= tdep->bnd0_regnum;
3394
3395 /* Extract (always little endian). Read lower 128bits. */
3396 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3397 raw_buf);
3398 if (status != REG_VALID)
3399 mark_value_bytes_unavailable (result_value, 0, 16);
3400 else
3401 {
3402 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3403 LONGEST upper, lower;
3404 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3405
3406 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3407 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3408 upper = ~upper;
3409
3410 memcpy (buf, &lower, size);
3411 memcpy (buf + size, &upper, size);
3412 }
3413 }
3414 else if (i386_k_regnum_p (gdbarch, regnum))
3415 {
3416 regnum -= tdep->k0_regnum;
3417
3418 /* Extract (always little endian). */
3419 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3420 if (status != REG_VALID)
3421 mark_value_bytes_unavailable (result_value, 0, 8);
3422 else
3423 memcpy (buf, raw_buf, 8);
3424 }
3425 else if (i386_zmm_regnum_p (gdbarch, regnum))
3426 {
3427 regnum -= tdep->zmm0_regnum;
3428
3429 if (regnum < num_lower_zmm_regs)
3430 {
3431 /* Extract (always little endian). Read lower 128bits. */
3432 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3433 raw_buf);
3434 if (status != REG_VALID)
3435 mark_value_bytes_unavailable (result_value, 0, 16);
3436 else
3437 memcpy (buf, raw_buf, 16);
3438
3439 /* Extract (always little endian). Read upper 128bits. */
3440 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3441 raw_buf);
3442 if (status != REG_VALID)
3443 mark_value_bytes_unavailable (result_value, 16, 16);
3444 else
3445 memcpy (buf + 16, raw_buf, 16);
3446 }
3447 else
3448 {
3449 /* Extract (always little endian). Read lower 128bits. */
3450 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3451 - num_lower_zmm_regs,
3452 raw_buf);
3453 if (status != REG_VALID)
3454 mark_value_bytes_unavailable (result_value, 0, 16);
3455 else
3456 memcpy (buf, raw_buf, 16);
3457
3458 /* Extract (always little endian). Read upper 128bits. */
3459 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3460 - num_lower_zmm_regs,
3461 raw_buf);
3462 if (status != REG_VALID)
3463 mark_value_bytes_unavailable (result_value, 16, 16);
3464 else
3465 memcpy (buf + 16, raw_buf, 16);
3466 }
3467
3468 /* Read upper 256bits. */
3469 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3470 raw_buf);
3471 if (status != REG_VALID)
3472 mark_value_bytes_unavailable (result_value, 32, 32);
3473 else
3474 memcpy (buf + 32, raw_buf, 32);
3475 }
3476 else if (i386_ymm_regnum_p (gdbarch, regnum))
3477 {
3478 regnum -= tdep->ymm0_regnum;
3479
3480 /* Extract (always little endian). Read lower 128bits. */
3481 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3482 raw_buf);
3483 if (status != REG_VALID)
3484 mark_value_bytes_unavailable (result_value, 0, 16);
3485 else
3486 memcpy (buf, raw_buf, 16);
3487 /* Read upper 128bits. */
3488 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3489 raw_buf);
3490 if (status != REG_VALID)
3491 mark_value_bytes_unavailable (result_value, 16, 32);
3492 else
3493 memcpy (buf + 16, raw_buf, 16);
3494 }
3495 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3496 {
3497 regnum -= tdep->ymm16_regnum;
3498 /* Extract (always little endian). Read lower 128bits. */
3499 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3500 raw_buf);
3501 if (status != REG_VALID)
3502 mark_value_bytes_unavailable (result_value, 0, 16);
3503 else
3504 memcpy (buf, raw_buf, 16);
3505 /* Read upper 128bits. */
3506 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3507 raw_buf);
3508 if (status != REG_VALID)
3509 mark_value_bytes_unavailable (result_value, 16, 16);
3510 else
3511 memcpy (buf + 16, raw_buf, 16);
3512 }
3513 else if (i386_word_regnum_p (gdbarch, regnum))
3514 {
3515 int gpnum = regnum - tdep->ax_regnum;
3516
3517 /* Extract (always little endian). */
3518 status = regcache->raw_read (gpnum, raw_buf);
3519 if (status != REG_VALID)
3520 mark_value_bytes_unavailable (result_value, 0,
3521 TYPE_LENGTH (value_type (result_value)));
3522 else
3523 memcpy (buf, raw_buf, 2);
3524 }
3525 else if (i386_byte_regnum_p (gdbarch, regnum))
3526 {
3527 int gpnum = regnum - tdep->al_regnum;
3528
3529 /* Extract (always little endian). We read both lower and
3530 upper registers. */
3531 status = regcache->raw_read (gpnum % 4, raw_buf);
3532 if (status != REG_VALID)
3533 mark_value_bytes_unavailable (result_value, 0,
3534 TYPE_LENGTH (value_type (result_value)));
3535 else if (gpnum >= 4)
3536 memcpy (buf, raw_buf + 1, 1);
3537 else
3538 memcpy (buf, raw_buf, 1);
3539 }
3540 else
3541 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3542 }
3543 }
3544
3545 static struct value *
3546 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3547 readable_regcache *regcache,
3548 int regnum)
3549 {
3550 struct value *result;
3551
3552 result = allocate_value (register_type (gdbarch, regnum));
3553 VALUE_LVAL (result) = lval_register;
3554 VALUE_REGNUM (result) = regnum;
3555
3556 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3557
3558 return result;
3559 }
3560
3561 void
3562 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3563 int regnum, const gdb_byte *buf)
3564 {
3565 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3566
3567 if (i386_mmx_regnum_p (gdbarch, regnum))
3568 {
3569 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3570
3571 /* Read ... */
3572 regcache->raw_read (fpnum, raw_buf);
3573 /* ... Modify ... (always little endian). */
3574 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3575 /* ... Write. */
3576 regcache->raw_write (fpnum, raw_buf);
3577 }
3578 else
3579 {
3580 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3581
3582 if (i386_bnd_regnum_p (gdbarch, regnum))
3583 {
3584 ULONGEST upper, lower;
3585 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3586 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3587
3588 /* New values from input value. */
3589 regnum -= tdep->bnd0_regnum;
3590 lower = extract_unsigned_integer (buf, size, byte_order);
3591 upper = extract_unsigned_integer (buf + size, size, byte_order);
3592
3593 /* Fetching register buffer. */
3594 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3595 raw_buf);
3596
3597 upper = ~upper;
3598
3599 /* Set register bits. */
3600 memcpy (raw_buf, &lower, 8);
3601 memcpy (raw_buf + 8, &upper, 8);
3602
3603 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3604 }
3605 else if (i386_k_regnum_p (gdbarch, regnum))
3606 {
3607 regnum -= tdep->k0_regnum;
3608
3609 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3610 }
3611 else if (i386_zmm_regnum_p (gdbarch, regnum))
3612 {
3613 regnum -= tdep->zmm0_regnum;
3614
3615 if (regnum < num_lower_zmm_regs)
3616 {
3617 /* Write lower 128bits. */
3618 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3619 /* Write upper 128bits. */
3620 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3621 }
3622 else
3623 {
3624 /* Write lower 128bits. */
3625 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3626 - num_lower_zmm_regs, buf);
3627 /* Write upper 128bits. */
3628 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3629 - num_lower_zmm_regs, buf + 16);
3630 }
3631 /* Write upper 256bits. */
3632 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3633 }
3634 else if (i386_ymm_regnum_p (gdbarch, regnum))
3635 {
3636 regnum -= tdep->ymm0_regnum;
3637
3638 /* ... Write lower 128bits. */
3639 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3640 /* ... Write upper 128bits. */
3641 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3642 }
3643 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3644 {
3645 regnum -= tdep->ymm16_regnum;
3646
3647 /* ... Write lower 128bits. */
3648 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3649 /* ... Write upper 128bits. */
3650 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3651 }
3652 else if (i386_word_regnum_p (gdbarch, regnum))
3653 {
3654 int gpnum = regnum - tdep->ax_regnum;
3655
3656 /* Read ... */
3657 regcache->raw_read (gpnum, raw_buf);
3658 /* ... Modify ... (always little endian). */
3659 memcpy (raw_buf, buf, 2);
3660 /* ... Write. */
3661 regcache->raw_write (gpnum, raw_buf);
3662 }
3663 else if (i386_byte_regnum_p (gdbarch, regnum))
3664 {
3665 int gpnum = regnum - tdep->al_regnum;
3666
3667 /* Read ... We read both lower and upper registers. */
3668 regcache->raw_read (gpnum % 4, raw_buf);
3669 /* ... Modify ... (always little endian). */
3670 if (gpnum >= 4)
3671 memcpy (raw_buf + 1, buf, 1);
3672 else
3673 memcpy (raw_buf, buf, 1);
3674 /* ... Write. */
3675 regcache->raw_write (gpnum % 4, raw_buf);
3676 }
3677 else
3678 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3679 }
3680 }
3681
3682 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3683
3684 int
3685 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3686 struct agent_expr *ax, int regnum)
3687 {
3688 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3689
3690 if (i386_mmx_regnum_p (gdbarch, regnum))
3691 {
3692 /* MMX to FPU register mapping depends on current TOS. Let's just
3693 not care and collect everything... */
3694 int i;
3695
3696 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3697 for (i = 0; i < 8; i++)
3698 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3699 return 0;
3700 }
3701 else if (i386_bnd_regnum_p (gdbarch, regnum))
3702 {
3703 regnum -= tdep->bnd0_regnum;
3704 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3705 return 0;
3706 }
3707 else if (i386_k_regnum_p (gdbarch, regnum))
3708 {
3709 regnum -= tdep->k0_regnum;
3710 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3711 return 0;
3712 }
3713 else if (i386_zmm_regnum_p (gdbarch, regnum))
3714 {
3715 regnum -= tdep->zmm0_regnum;
3716 if (regnum < num_lower_zmm_regs)
3717 {
3718 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3719 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3720 }
3721 else
3722 {
3723 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3724 - num_lower_zmm_regs);
3725 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3726 - num_lower_zmm_regs);
3727 }
3728 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3729 return 0;
3730 }
3731 else if (i386_ymm_regnum_p (gdbarch, regnum))
3732 {
3733 regnum -= tdep->ymm0_regnum;
3734 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3735 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3736 return 0;
3737 }
3738 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3739 {
3740 regnum -= tdep->ymm16_regnum;
3741 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3742 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3743 return 0;
3744 }
3745 else if (i386_word_regnum_p (gdbarch, regnum))
3746 {
3747 int gpnum = regnum - tdep->ax_regnum;
3748
3749 ax_reg_mask (ax, gpnum);
3750 return 0;
3751 }
3752 else if (i386_byte_regnum_p (gdbarch, regnum))
3753 {
3754 int gpnum = regnum - tdep->al_regnum;
3755
3756 ax_reg_mask (ax, gpnum % 4);
3757 return 0;
3758 }
3759 else
3760 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3761 return 1;
3762 }
3763 \f
3764
3765 /* Return the register number of the register allocated by GCC after
3766 REGNUM, or -1 if there is no such register. */
3767
3768 static int
3769 i386_next_regnum (int regnum)
3770 {
3771 /* GCC allocates the registers in the order:
3772
3773 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3774
3775 Since storing a variable in %esp doesn't make any sense we return
3776 -1 for %ebp and for %esp itself. */
3777 static int next_regnum[] =
3778 {
3779 I386_EDX_REGNUM, /* Slot for %eax. */
3780 I386_EBX_REGNUM, /* Slot for %ecx. */
3781 I386_ECX_REGNUM, /* Slot for %edx. */
3782 I386_ESI_REGNUM, /* Slot for %ebx. */
3783 -1, -1, /* Slots for %esp and %ebp. */
3784 I386_EDI_REGNUM, /* Slot for %esi. */
3785 I386_EBP_REGNUM /* Slot for %edi. */
3786 };
3787
3788 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3789 return next_regnum[regnum];
3790
3791 return -1;
3792 }
3793
3794 /* Return nonzero if a value of type TYPE stored in register REGNUM
3795 needs any special handling. */
3796
3797 static int
3798 i386_convert_register_p (struct gdbarch *gdbarch,
3799 int regnum, struct type *type)
3800 {
3801 int len = TYPE_LENGTH (type);
3802
3803 /* Values may be spread across multiple registers. Most debugging
3804 formats aren't expressive enough to specify the locations, so
3805 some heuristics is involved. Right now we only handle types that
3806 have a length that is a multiple of the word size, since GCC
3807 doesn't seem to put any other types into registers. */
3808 if (len > 4 && len % 4 == 0)
3809 {
3810 int last_regnum = regnum;
3811
3812 while (len > 4)
3813 {
3814 last_regnum = i386_next_regnum (last_regnum);
3815 len -= 4;
3816 }
3817
3818 if (last_regnum != -1)
3819 return 1;
3820 }
3821
3822 return i387_convert_register_p (gdbarch, regnum, type);
3823 }
3824
3825 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3826 return its contents in TO. */
3827
3828 static int
3829 i386_register_to_value (struct frame_info *frame, int regnum,
3830 struct type *type, gdb_byte *to,
3831 int *optimizedp, int *unavailablep)
3832 {
3833 struct gdbarch *gdbarch = get_frame_arch (frame);
3834 int len = TYPE_LENGTH (type);
3835
3836 if (i386_fp_regnum_p (gdbarch, regnum))
3837 return i387_register_to_value (frame, regnum, type, to,
3838 optimizedp, unavailablep);
3839
3840 /* Read a value spread across multiple registers. */
3841
3842 gdb_assert (len > 4 && len % 4 == 0);
3843
3844 while (len > 0)
3845 {
3846 gdb_assert (regnum != -1);
3847 gdb_assert (register_size (gdbarch, regnum) == 4);
3848
3849 if (!get_frame_register_bytes (frame, regnum, 0,
3850 gdb::make_array_view (to,
3851 register_size (gdbarch,
3852 regnum)),
3853 optimizedp, unavailablep))
3854 return 0;
3855
3856 regnum = i386_next_regnum (regnum);
3857 len -= 4;
3858 to += 4;
3859 }
3860
3861 *optimizedp = *unavailablep = 0;
3862 return 1;
3863 }
3864
3865 /* Write the contents FROM of a value of type TYPE into register
3866 REGNUM in frame FRAME. */
3867
3868 static void
3869 i386_value_to_register (struct frame_info *frame, int regnum,
3870 struct type *type, const gdb_byte *from)
3871 {
3872 int len = TYPE_LENGTH (type);
3873
3874 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3875 {
3876 i387_value_to_register (frame, regnum, type, from);
3877 return;
3878 }
3879
3880 /* Write a value spread across multiple registers. */
3881
3882 gdb_assert (len > 4 && len % 4 == 0);
3883
3884 while (len > 0)
3885 {
3886 gdb_assert (regnum != -1);
3887 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3888
3889 put_frame_register (frame, regnum, from);
3890 regnum = i386_next_regnum (regnum);
3891 len -= 4;
3892 from += 4;
3893 }
3894 }
3895 \f
3896 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3897 in the general-purpose register set REGSET to register cache
3898 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3899
3900 void
3901 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3902 int regnum, const void *gregs, size_t len)
3903 {
3904 struct gdbarch *gdbarch = regcache->arch ();
3905 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3906 const gdb_byte *regs = (const gdb_byte *) gregs;
3907 int i;
3908
3909 gdb_assert (len >= tdep->sizeof_gregset);
3910
3911 for (i = 0; i < tdep->gregset_num_regs; i++)
3912 {
3913 if ((regnum == i || regnum == -1)
3914 && tdep->gregset_reg_offset[i] != -1)
3915 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3916 }
3917 }
3918
3919 /* Collect register REGNUM from the register cache REGCACHE and store
3920 it in the buffer specified by GREGS and LEN as described by the
3921 general-purpose register set REGSET. If REGNUM is -1, do this for
3922 all registers in REGSET. */
3923
3924 static void
3925 i386_collect_gregset (const struct regset *regset,
3926 const struct regcache *regcache,
3927 int regnum, void *gregs, size_t len)
3928 {
3929 struct gdbarch *gdbarch = regcache->arch ();
3930 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3931 gdb_byte *regs = (gdb_byte *) gregs;
3932 int i;
3933
3934 gdb_assert (len >= tdep->sizeof_gregset);
3935
3936 for (i = 0; i < tdep->gregset_num_regs; i++)
3937 {
3938 if ((regnum == i || regnum == -1)
3939 && tdep->gregset_reg_offset[i] != -1)
3940 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3941 }
3942 }
3943
3944 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3945 in the floating-point register set REGSET to register cache
3946 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3947
3948 static void
3949 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3950 int regnum, const void *fpregs, size_t len)
3951 {
3952 struct gdbarch *gdbarch = regcache->arch ();
3953 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3954
3955 if (len == I387_SIZEOF_FXSAVE)
3956 {
3957 i387_supply_fxsave (regcache, regnum, fpregs);
3958 return;
3959 }
3960
3961 gdb_assert (len >= tdep->sizeof_fpregset);
3962 i387_supply_fsave (regcache, regnum, fpregs);
3963 }
3964
3965 /* Collect register REGNUM from the register cache REGCACHE and store
3966 it in the buffer specified by FPREGS and LEN as described by the
3967 floating-point register set REGSET. If REGNUM is -1, do this for
3968 all registers in REGSET. */
3969
3970 static void
3971 i386_collect_fpregset (const struct regset *regset,
3972 const struct regcache *regcache,
3973 int regnum, void *fpregs, size_t len)
3974 {
3975 struct gdbarch *gdbarch = regcache->arch ();
3976 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3977
3978 if (len == I387_SIZEOF_FXSAVE)
3979 {
3980 i387_collect_fxsave (regcache, regnum, fpregs);
3981 return;
3982 }
3983
3984 gdb_assert (len >= tdep->sizeof_fpregset);
3985 i387_collect_fsave (regcache, regnum, fpregs);
3986 }
3987
3988 /* Register set definitions. */
3989
3990 const struct regset i386_gregset =
3991 {
3992 NULL, i386_supply_gregset, i386_collect_gregset
3993 };
3994
3995 const struct regset i386_fpregset =
3996 {
3997 NULL, i386_supply_fpregset, i386_collect_fpregset
3998 };
3999
4000 /* Default iterator over core file register note sections. */
4001
4002 void
4003 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
4004 iterate_over_regset_sections_cb *cb,
4005 void *cb_data,
4006 const struct regcache *regcache)
4007 {
4008 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
4009
4010 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
4011 cb_data);
4012 if (tdep->sizeof_fpregset)
4013 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
4014 NULL, cb_data);
4015 }
4016 \f
4017
4018 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
4019
4020 CORE_ADDR
4021 i386_pe_skip_trampoline_code (struct frame_info *frame,
4022 CORE_ADDR pc, char *name)
4023 {
4024 struct gdbarch *gdbarch = get_frame_arch (frame);
4025 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4026
4027 /* jmp *(dest) */
4028 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
4029 {
4030 unsigned long indirect =
4031 read_memory_unsigned_integer (pc + 2, 4, byte_order);
4032 struct minimal_symbol *indsym =
4033 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
4034 const char *symname = indsym ? indsym->linkage_name () : 0;
4035
4036 if (symname)
4037 {
4038 if (startswith (symname, "__imp_")
4039 || startswith (symname, "_imp_"))
4040 return name ? 1 :
4041 read_memory_unsigned_integer (indirect, 4, byte_order);
4042 }
4043 }
4044 return 0; /* Not a trampoline. */
4045 }
4046 \f
4047
4048 /* Return whether the THIS_FRAME corresponds to a sigtramp
4049 routine. */
4050
4051 int
4052 i386_sigtramp_p (struct frame_info *this_frame)
4053 {
4054 CORE_ADDR pc = get_frame_pc (this_frame);
4055 const char *name;
4056
4057 find_pc_partial_function (pc, &name, NULL, NULL);
4058 return (name && strcmp ("_sigtramp", name) == 0);
4059 }
4060 \f
4061
4062 /* We have two flavours of disassembly. The machinery on this page
4063 deals with switching between those. */
4064
4065 static int
4066 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4067 {
4068 gdb_assert (disassembly_flavor == att_flavor
4069 || disassembly_flavor == intel_flavor);
4070
4071 info->disassembler_options = disassembly_flavor;
4072
4073 return default_print_insn (pc, info);
4074 }
4075 \f
4076
4077 /* There are a few i386 architecture variants that differ only
4078 slightly from the generic i386 target. For now, we don't give them
4079 their own source file, but include them here. As a consequence,
4080 they'll always be included. */
4081
4082 /* System V Release 4 (SVR4). */
4083
4084 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4085 routine. */
4086
4087 static int
4088 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4089 {
4090 CORE_ADDR pc = get_frame_pc (this_frame);
4091 const char *name;
4092
4093 /* The origin of these symbols is currently unknown. */
4094 find_pc_partial_function (pc, &name, NULL, NULL);
4095 return (name && (strcmp ("_sigreturn", name) == 0
4096 || strcmp ("sigvechandler", name) == 0));
4097 }
4098
4099 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4100 address of the associated sigcontext (ucontext) structure. */
4101
4102 static CORE_ADDR
4103 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4104 {
4105 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4106 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4107 gdb_byte buf[4];
4108 CORE_ADDR sp;
4109
4110 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4111 sp = extract_unsigned_integer (buf, 4, byte_order);
4112
4113 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4114 }
4115
4116 \f
4117
4118 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4119 gdbarch.h. */
4120
4121 int
4122 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4123 {
4124 return (*s == '$' /* Literal number. */
4125 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4126 || (*s == '(' && s[1] == '%') /* Register indirection. */
4127 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4128 }
4129
4130 /* Helper function for i386_stap_parse_special_token.
4131
4132 This function parses operands of the form `-8+3+1(%rbp)', which
4133 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4134
4135 Return true if the operand was parsed successfully, false
4136 otherwise. */
4137
4138 static expr::operation_up
4139 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4140 struct stap_parse_info *p)
4141 {
4142 const char *s = p->arg;
4143
4144 if (isdigit (*s) || *s == '-' || *s == '+')
4145 {
4146 bool got_minus[3];
4147 int i;
4148 long displacements[3];
4149 const char *start;
4150 int len;
4151 char *endp;
4152
4153 got_minus[0] = false;
4154 if (*s == '+')
4155 ++s;
4156 else if (*s == '-')
4157 {
4158 ++s;
4159 got_minus[0] = true;
4160 }
4161
4162 if (!isdigit ((unsigned char) *s))
4163 return {};
4164
4165 displacements[0] = strtol (s, &endp, 10);
4166 s = endp;
4167
4168 if (*s != '+' && *s != '-')
4169 {
4170 /* We are not dealing with a triplet. */
4171 return {};
4172 }
4173
4174 got_minus[1] = false;
4175 if (*s == '+')
4176 ++s;
4177 else
4178 {
4179 ++s;
4180 got_minus[1] = true;
4181 }
4182
4183 if (!isdigit ((unsigned char) *s))
4184 return {};
4185
4186 displacements[1] = strtol (s, &endp, 10);
4187 s = endp;
4188
4189 if (*s != '+' && *s != '-')
4190 {
4191 /* We are not dealing with a triplet. */
4192 return {};
4193 }
4194
4195 got_minus[2] = false;
4196 if (*s == '+')
4197 ++s;
4198 else
4199 {
4200 ++s;
4201 got_minus[2] = true;
4202 }
4203
4204 if (!isdigit ((unsigned char) *s))
4205 return {};
4206
4207 displacements[2] = strtol (s, &endp, 10);
4208 s = endp;
4209
4210 if (*s != '(' || s[1] != '%')
4211 return {};
4212
4213 s += 2;
4214 start = s;
4215
4216 while (isalnum (*s))
4217 ++s;
4218
4219 if (*s++ != ')')
4220 return {};
4221
4222 len = s - start - 1;
4223 std::string regname (start, len);
4224
4225 if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
4226 error (_("Invalid register name `%s' on expression `%s'."),
4227 regname.c_str (), p->saved_arg);
4228
4229 LONGEST value = 0;
4230 for (i = 0; i < 3; i++)
4231 {
4232 LONGEST this_val = displacements[i];
4233 if (got_minus[i])
4234 this_val = -this_val;
4235 value += this_val;
4236 }
4237
4238 p->arg = s;
4239
4240 using namespace expr;
4241
4242 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4243 operation_up offset
4244 = make_operation<long_const_operation> (long_type, value);
4245
4246 operation_up reg
4247 = make_operation<register_operation> (std::move (regname));
4248 struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
4249 reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);
4250
4251 operation_up sum
4252 = make_operation<add_operation> (std::move (reg), std::move (offset));
4253 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4254 sum = make_operation<unop_cast_operation> (std::move (sum),
4255 arg_ptr_type);
4256 return make_operation<unop_ind_operation> (std::move (sum));
4257 }
4258
4259 return {};
4260 }
4261
4262 /* Helper function for i386_stap_parse_special_token.
4263
4264 This function parses operands of the form `register base +
4265 (register index * size) + offset', as represented in
4266 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4267
4268 Return true if the operand was parsed successfully, false
4269 otherwise. */
4270
4271 static expr::operation_up
4272 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4273 struct stap_parse_info *p)
4274 {
4275 const char *s = p->arg;
4276
4277 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4278 {
4279 bool offset_minus = false;
4280 long offset = 0;
4281 bool size_minus = false;
4282 long size = 0;
4283 const char *start;
4284 int len_base;
4285 int len_index;
4286
4287 if (*s == '+')
4288 ++s;
4289 else if (*s == '-')
4290 {
4291 ++s;
4292 offset_minus = true;
4293 }
4294
4295 if (offset_minus && !isdigit (*s))
4296 return {};
4297
4298 if (isdigit (*s))
4299 {
4300 char *endp;
4301
4302 offset = strtol (s, &endp, 10);
4303 s = endp;
4304 }
4305
4306 if (*s != '(' || s[1] != '%')
4307 return {};
4308
4309 s += 2;
4310 start = s;
4311
4312 while (isalnum (*s))
4313 ++s;
4314
4315 if (*s != ',' || s[1] != '%')
4316 return {};
4317
4318 len_base = s - start;
4319 std::string base (start, len_base);
4320
4321 if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
4322 error (_("Invalid register name `%s' on expression `%s'."),
4323 base.c_str (), p->saved_arg);
4324
4325 s += 2;
4326 start = s;
4327
4328 while (isalnum (*s))
4329 ++s;
4330
4331 len_index = s - start;
4332 std::string index (start, len_index);
4333
4334 if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
4335 len_index) == -1)
4336 error (_("Invalid register name `%s' on expression `%s'."),
4337 index.c_str (), p->saved_arg);
4338
4339 if (*s != ',' && *s != ')')
4340 return {};
4341
4342 if (*s == ',')
4343 {
4344 char *endp;
4345
4346 ++s;
4347 if (*s == '+')
4348 ++s;
4349 else if (*s == '-')
4350 {
4351 ++s;
4352 size_minus = true;
4353 }
4354
4355 size = strtol (s, &endp, 10);
4356 s = endp;
4357
4358 if (*s != ')')
4359 return {};
4360 }
4361
4362 ++s;
4363 p->arg = s;
4364
4365 using namespace expr;
4366
4367 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4368 operation_up reg = make_operation<register_operation> (std::move (base));
4369
4370 if (offset != 0)
4371 {
4372 if (offset_minus)
4373 offset = -offset;
4374 operation_up value
4375 = make_operation<long_const_operation> (long_type, offset);
4376 reg = make_operation<add_operation> (std::move (reg),
4377 std::move (value));
4378 }
4379
4380 operation_up ind_reg
4381 = make_operation<register_operation> (std::move (index));
4382
4383 if (size != 0)
4384 {
4385 if (size_minus)
4386 size = -size;
4387 operation_up value
4388 = make_operation<long_const_operation> (long_type, size);
4389 ind_reg = make_operation<mul_operation> (std::move (ind_reg),
4390 std::move (value));
4391 }
4392
4393 operation_up sum
4394 = make_operation<add_operation> (std::move (reg),
4395 std::move (ind_reg));
4396
4397 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4398 sum = make_operation<unop_cast_operation> (std::move (sum),
4399 arg_ptr_type);
4400 return make_operation<unop_ind_operation> (std::move (sum));
4401 }
4402
4403 return {};
4404 }
4405
4406 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4407 gdbarch.h. */
4408
4409 expr::operation_up
4410 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4411 struct stap_parse_info *p)
4412 {
4413 /* The special tokens to be parsed here are:
4414
4415 - `register base + (register index * size) + offset', as represented
4416 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4417
4418 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4419 `*(-8 + 3 - 1 + (void *) $eax)'. */
4420
4421 expr::operation_up result
4422 = i386_stap_parse_special_token_triplet (gdbarch, p);
4423
4424 if (result == nullptr)
4425 result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);
4426
4427 return result;
4428 }
4429
4430 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4431 gdbarch.h. */
4432
4433 static std::string
4434 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4435 const std::string &regname, int regnum)
4436 {
4437 static const std::unordered_set<std::string> reg_assoc
4438 = { "ax", "bx", "cx", "dx",
4439 "si", "di", "bp", "sp" };
4440
4441 /* If we are dealing with a register whose size is less than the size
4442 specified by the "[-]N@" prefix, and it is one of the registers that
4443 we know has an extended variant available, then use the extended
4444 version of the register instead. */
4445 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4446 && reg_assoc.find (regname) != reg_assoc.end ())
4447 return "e" + regname;
4448
4449 /* Otherwise, just use the requested register. */
4450 return regname;
4451 }
4452
4453 \f
4454
4455 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4456 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4457
4458 static const char *
4459 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4460 {
4461 return "(x86_64|i.86)";
4462 }
4463
4464 \f
4465
4466 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4467
4468 static bool
4469 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4470 {
4471 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4472 I386_EAX_REGNUM, I386_EIP_REGNUM);
4473 }
4474
4475 /* Generic ELF. */
4476
4477 void
4478 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4479 {
4480 static const char *const stap_integer_prefixes[] = { "$", NULL };
4481 static const char *const stap_register_prefixes[] = { "%", NULL };
4482 static const char *const stap_register_indirection_prefixes[] = { "(",
4483 NULL };
4484 static const char *const stap_register_indirection_suffixes[] = { ")",
4485 NULL };
4486
4487 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4488 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4489
4490 /* Registering SystemTap handlers. */
4491 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4492 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4493 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4494 stap_register_indirection_prefixes);
4495 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4496 stap_register_indirection_suffixes);
4497 set_gdbarch_stap_is_single_operand (gdbarch,
4498 i386_stap_is_single_operand);
4499 set_gdbarch_stap_parse_special_token (gdbarch,
4500 i386_stap_parse_special_token);
4501 set_gdbarch_stap_adjust_register (gdbarch,
4502 i386_stap_adjust_register);
4503
4504 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4505 i386_in_indirect_branch_thunk);
4506 }
4507
4508 /* System V Release 4 (SVR4). */
4509
4510 void
4511 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4512 {
4513 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
4514
4515 /* System V Release 4 uses ELF. */
4516 i386_elf_init_abi (info, gdbarch);
4517
4518 /* System V Release 4 has shared libraries. */
4519 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4520
4521 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4522 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4523 tdep->sc_pc_offset = 36 + 14 * 4;
4524 tdep->sc_sp_offset = 36 + 17 * 4;
4525
4526 tdep->jb_pc_offset = 20;
4527 }
4528
4529 \f
4530
4531 /* i386 register groups. In addition to the normal groups, add "mmx"
4532 and "sse". */
4533
4534 static struct reggroup *i386_sse_reggroup;
4535 static struct reggroup *i386_mmx_reggroup;
4536
4537 static void
4538 i386_init_reggroups (void)
4539 {
4540 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4541 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4542 }
4543
4544 static void
4545 i386_add_reggroups (struct gdbarch *gdbarch)
4546 {
4547 reggroup_add (gdbarch, i386_sse_reggroup);
4548 reggroup_add (gdbarch, i386_mmx_reggroup);
4549 reggroup_add (gdbarch, general_reggroup);
4550 reggroup_add (gdbarch, float_reggroup);
4551 reggroup_add (gdbarch, all_reggroup);
4552 reggroup_add (gdbarch, save_reggroup);
4553 reggroup_add (gdbarch, restore_reggroup);
4554 reggroup_add (gdbarch, vector_reggroup);
4555 reggroup_add (gdbarch, system_reggroup);
4556 }
4557
4558 int
4559 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4560 struct reggroup *group)
4561 {
4562 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
4563 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4564 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4565 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4566 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4567 avx512_p, avx_p, sse_p, pkru_regnum_p;
4568
4569 /* Don't include pseudo registers, except for MMX, in any register
4570 groups. */
4571 if (i386_byte_regnum_p (gdbarch, regnum))
4572 return 0;
4573
4574 if (i386_word_regnum_p (gdbarch, regnum))
4575 return 0;
4576
4577 if (i386_dword_regnum_p (gdbarch, regnum))
4578 return 0;
4579
4580 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4581 if (group == i386_mmx_reggroup)
4582 return mmx_regnum_p;
4583
4584 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4585 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4586 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4587 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4588 if (group == i386_sse_reggroup)
4589 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4590
4591 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4592 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4593 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4594
4595 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4596 == X86_XSTATE_AVX_AVX512_MASK);
4597 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4598 == X86_XSTATE_AVX_MASK) && !avx512_p;
4599 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4600 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4601
4602 if (group == vector_reggroup)
4603 return (mmx_regnum_p
4604 || (zmm_regnum_p && avx512_p)
4605 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4606 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4607 || mxcsr_regnum_p);
4608
4609 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4610 || i386_fpc_regnum_p (gdbarch, regnum));
4611 if (group == float_reggroup)
4612 return fp_regnum_p;
4613
4614 /* For "info reg all", don't include upper YMM registers nor XMM
4615 registers when AVX is supported. */
4616 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4617 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4618 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4619 if (group == all_reggroup
4620 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4621 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4622 || ymmh_regnum_p
4623 || ymmh_avx512_regnum_p
4624 || zmmh_regnum_p))
4625 return 0;
4626
4627 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4628 if (group == all_reggroup
4629 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4630 return bnd_regnum_p;
4631
4632 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4633 if (group == all_reggroup
4634 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4635 return 0;
4636
4637 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4638 if (group == all_reggroup
4639 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4640 return mpx_ctrl_regnum_p;
4641
4642 if (group == general_reggroup)
4643 return (!fp_regnum_p
4644 && !mmx_regnum_p
4645 && !mxcsr_regnum_p
4646 && !xmm_regnum_p
4647 && !xmm_avx512_regnum_p
4648 && !ymm_regnum_p
4649 && !ymmh_regnum_p
4650 && !ymm_avx512_regnum_p
4651 && !ymmh_avx512_regnum_p
4652 && !bndr_regnum_p
4653 && !bnd_regnum_p
4654 && !mpx_ctrl_regnum_p
4655 && !zmm_regnum_p
4656 && !zmmh_regnum_p
4657 && !pkru_regnum_p);
4658
4659 return default_register_reggroup_p (gdbarch, regnum, group);
4660 }
4661 \f
4662
4663 /* Get the ARGIth function argument for the current function. */
4664
4665 static CORE_ADDR
4666 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4667 struct type *type)
4668 {
4669 struct gdbarch *gdbarch = get_frame_arch (frame);
4670 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4671 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4672 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4673 }
4674
4675 #define PREFIX_REPZ 0x01
4676 #define PREFIX_REPNZ 0x02
4677 #define PREFIX_LOCK 0x04
4678 #define PREFIX_DATA 0x08
4679 #define PREFIX_ADDR 0x10
4680
4681 /* operand size */
4682 enum
4683 {
4684 OT_BYTE = 0,
4685 OT_WORD,
4686 OT_LONG,
4687 OT_QUAD,
4688 OT_DQUAD,
4689 };
4690
4691 /* i386 arith/logic operations */
4692 enum
4693 {
4694 OP_ADDL,
4695 OP_ORL,
4696 OP_ADCL,
4697 OP_SBBL,
4698 OP_ANDL,
4699 OP_SUBL,
4700 OP_XORL,
4701 OP_CMPL,
4702 };
4703
4704 struct i386_record_s
4705 {
4706 struct gdbarch *gdbarch;
4707 struct regcache *regcache;
4708 CORE_ADDR orig_addr;
4709 CORE_ADDR addr;
4710 int aflag;
4711 int dflag;
4712 int override;
4713 uint8_t modrm;
4714 uint8_t mod, reg, rm;
4715 int ot;
4716 uint8_t rex_x;
4717 uint8_t rex_b;
4718 int rip_offset;
4719 int popl_esp_hack;
4720 const int *regmap;
4721 };
4722
4723 /* Parse the "modrm" part of the memory address irp->addr points at.
4724 Returns -1 if something goes wrong, 0 otherwise. */
4725
4726 static int
4727 i386_record_modrm (struct i386_record_s *irp)
4728 {
4729 struct gdbarch *gdbarch = irp->gdbarch;
4730
4731 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4732 return -1;
4733
4734 irp->addr++;
4735 irp->mod = (irp->modrm >> 6) & 3;
4736 irp->reg = (irp->modrm >> 3) & 7;
4737 irp->rm = irp->modrm & 7;
4738
4739 return 0;
4740 }
4741
4742 /* Extract the memory address that the current instruction writes to,
4743 and return it in *ADDR. Return -1 if something goes wrong. */
4744
4745 static int
4746 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4747 {
4748 struct gdbarch *gdbarch = irp->gdbarch;
4749 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4750 gdb_byte buf[4];
4751 ULONGEST offset64;
4752
4753 *addr = 0;
4754 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4755 {
4756 /* 32/64 bits */
4757 int havesib = 0;
4758 uint8_t scale = 0;
4759 uint8_t byte;
4760 uint8_t index = 0;
4761 uint8_t base = irp->rm;
4762
4763 if (base == 4)
4764 {
4765 havesib = 1;
4766 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4767 return -1;
4768 irp->addr++;
4769 scale = (byte >> 6) & 3;
4770 index = ((byte >> 3) & 7) | irp->rex_x;
4771 base = (byte & 7);
4772 }
4773 base |= irp->rex_b;
4774
4775 switch (irp->mod)
4776 {
4777 case 0:
4778 if ((base & 7) == 5)
4779 {
4780 base = 0xff;
4781 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4782 return -1;
4783 irp->addr += 4;
4784 *addr = extract_signed_integer (buf, 4, byte_order);
4785 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4786 *addr += irp->addr + irp->rip_offset;
4787 }
4788 break;
4789 case 1:
4790 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4791 return -1;
4792 irp->addr++;
4793 *addr = (int8_t) buf[0];
4794 break;
4795 case 2:
4796 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4797 return -1;
4798 *addr = extract_signed_integer (buf, 4, byte_order);
4799 irp->addr += 4;
4800 break;
4801 }
4802
4803 offset64 = 0;
4804 if (base != 0xff)
4805 {
4806 if (base == 4 && irp->popl_esp_hack)
4807 *addr += irp->popl_esp_hack;
4808 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4809 &offset64);
4810 }
4811 if (irp->aflag == 2)
4812 {
4813 *addr += offset64;
4814 }
4815 else
4816 *addr = (uint32_t) (offset64 + *addr);
4817
4818 if (havesib && (index != 4 || scale != 0))
4819 {
4820 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4821 &offset64);
4822 if (irp->aflag == 2)
4823 *addr += offset64 << scale;
4824 else
4825 *addr = (uint32_t) (*addr + (offset64 << scale));
4826 }
4827
4828 if (!irp->aflag)
4829 {
4830 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4831 address from 32-bit to 64-bit. */
4832 *addr = (uint32_t) *addr;
4833 }
4834 }
4835 else
4836 {
4837 /* 16 bits */
4838 switch (irp->mod)
4839 {
4840 case 0:
4841 if (irp->rm == 6)
4842 {
4843 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4844 return -1;
4845 irp->addr += 2;
4846 *addr = extract_signed_integer (buf, 2, byte_order);
4847 irp->rm = 0;
4848 goto no_rm;
4849 }
4850 break;
4851 case 1:
4852 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4853 return -1;
4854 irp->addr++;
4855 *addr = (int8_t) buf[0];
4856 break;
4857 case 2:
4858 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4859 return -1;
4860 irp->addr += 2;
4861 *addr = extract_signed_integer (buf, 2, byte_order);
4862 break;
4863 }
4864
4865 switch (irp->rm)
4866 {
4867 case 0:
4868 regcache_raw_read_unsigned (irp->regcache,
4869 irp->regmap[X86_RECORD_REBX_REGNUM],
4870 &offset64);
4871 *addr = (uint32_t) (*addr + offset64);
4872 regcache_raw_read_unsigned (irp->regcache,
4873 irp->regmap[X86_RECORD_RESI_REGNUM],
4874 &offset64);
4875 *addr = (uint32_t) (*addr + offset64);
4876 break;
4877 case 1:
4878 regcache_raw_read_unsigned (irp->regcache,
4879 irp->regmap[X86_RECORD_REBX_REGNUM],
4880 &offset64);
4881 *addr = (uint32_t) (*addr + offset64);
4882 regcache_raw_read_unsigned (irp->regcache,
4883 irp->regmap[X86_RECORD_REDI_REGNUM],
4884 &offset64);
4885 *addr = (uint32_t) (*addr + offset64);
4886 break;
4887 case 2:
4888 regcache_raw_read_unsigned (irp->regcache,
4889 irp->regmap[X86_RECORD_REBP_REGNUM],
4890 &offset64);
4891 *addr = (uint32_t) (*addr + offset64);
4892 regcache_raw_read_unsigned (irp->regcache,
4893 irp->regmap[X86_RECORD_RESI_REGNUM],
4894 &offset64);
4895 *addr = (uint32_t) (*addr + offset64);
4896 break;
4897 case 3:
4898 regcache_raw_read_unsigned (irp->regcache,
4899 irp->regmap[X86_RECORD_REBP_REGNUM],
4900 &offset64);
4901 *addr = (uint32_t) (*addr + offset64);
4902 regcache_raw_read_unsigned (irp->regcache,
4903 irp->regmap[X86_RECORD_REDI_REGNUM],
4904 &offset64);
4905 *addr = (uint32_t) (*addr + offset64);
4906 break;
4907 case 4:
4908 regcache_raw_read_unsigned (irp->regcache,
4909 irp->regmap[X86_RECORD_RESI_REGNUM],
4910 &offset64);
4911 *addr = (uint32_t) (*addr + offset64);
4912 break;
4913 case 5:
4914 regcache_raw_read_unsigned (irp->regcache,
4915 irp->regmap[X86_RECORD_REDI_REGNUM],
4916 &offset64);
4917 *addr = (uint32_t) (*addr + offset64);
4918 break;
4919 case 6:
4920 regcache_raw_read_unsigned (irp->regcache,
4921 irp->regmap[X86_RECORD_REBP_REGNUM],
4922 &offset64);
4923 *addr = (uint32_t) (*addr + offset64);
4924 break;
4925 case 7:
4926 regcache_raw_read_unsigned (irp->regcache,
4927 irp->regmap[X86_RECORD_REBX_REGNUM],
4928 &offset64);
4929 *addr = (uint32_t) (*addr + offset64);
4930 break;
4931 }
4932 *addr &= 0xffff;
4933 }
4934
4935 no_rm:
4936 return 0;
4937 }
4938
4939 /* Record the address and contents of the memory that will be changed
4940 by the current instruction. Return -1 if something goes wrong, 0
4941 otherwise. */
4942
4943 static int
4944 i386_record_lea_modrm (struct i386_record_s *irp)
4945 {
4946 struct gdbarch *gdbarch = irp->gdbarch;
4947 uint64_t addr;
4948
4949 if (irp->override >= 0)
4950 {
4951 if (record_full_memory_query)
4952 {
4953 if (yquery (_("\
4954 Process record ignores the memory change of instruction at address %s\n\
4955 because it can't get the value of the segment register.\n\
4956 Do you want to stop the program?"),
4957 paddress (gdbarch, irp->orig_addr)))
4958 return -1;
4959 }
4960
4961 return 0;
4962 }
4963
4964 if (i386_record_lea_modrm_addr (irp, &addr))
4965 return -1;
4966
4967 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4968 return -1;
4969
4970 return 0;
4971 }
4972
4973 /* Record the effects of a push operation. Return -1 if something
4974 goes wrong, 0 otherwise. */
4975
4976 static int
4977 i386_record_push (struct i386_record_s *irp, int size)
4978 {
4979 ULONGEST addr;
4980
4981 if (record_full_arch_list_add_reg (irp->regcache,
4982 irp->regmap[X86_RECORD_RESP_REGNUM]))
4983 return -1;
4984 regcache_raw_read_unsigned (irp->regcache,
4985 irp->regmap[X86_RECORD_RESP_REGNUM],
4986 &addr);
4987 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4988 return -1;
4989
4990 return 0;
4991 }
4992
4993
4994 /* Defines contents to record. */
4995 #define I386_SAVE_FPU_REGS 0xfffd
4996 #define I386_SAVE_FPU_ENV 0xfffe
4997 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4998
4999 /* Record the values of the floating point registers which will be
5000 changed by the current instruction. Returns -1 if something is
5001 wrong, 0 otherwise. */
5002
5003 static int i386_record_floats (struct gdbarch *gdbarch,
5004 struct i386_record_s *ir,
5005 uint32_t iregnum)
5006 {
5007 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
5008 int i;
5009
5010 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5011 happen. Currently we store st0-st7 registers, but we need not store all
5012 registers all the time, in future we use ftag register and record only
5013 those who are not marked as an empty. */
5014
5015 if (I386_SAVE_FPU_REGS == iregnum)
5016 {
5017 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5018 {
5019 if (record_full_arch_list_add_reg (ir->regcache, i))
5020 return -1;
5021 }
5022 }
5023 else if (I386_SAVE_FPU_ENV == iregnum)
5024 {
5025 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5026 {
5027 if (record_full_arch_list_add_reg (ir->regcache, i))
5028 return -1;
5029 }
5030 }
5031 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5032 {
5033 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5034 if (record_full_arch_list_add_reg (ir->regcache, i))
5035 return -1;
5036 }
5037 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5038 (iregnum <= I387_FOP_REGNUM (tdep)))
5039 {
5040 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5041 return -1;
5042 }
5043 else
5044 {
5045 /* Parameter error. */
5046 return -1;
5047 }
5048 if(I386_SAVE_FPU_ENV != iregnum)
5049 {
5050 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5051 {
5052 if (record_full_arch_list_add_reg (ir->regcache, i))
5053 return -1;
5054 }
5055 }
5056 return 0;
5057 }
5058
5059 /* Parse the current instruction, and record the values of the
5060 registers and memory that will be changed by the current
5061 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5062
5063 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5064 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5065
5066 int
5067 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5068 CORE_ADDR input_addr)
5069 {
5070 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5071 int prefixes = 0;
5072 int regnum = 0;
5073 uint32_t opcode;
5074 uint8_t opcode8;
5075 ULONGEST addr;
5076 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5077 struct i386_record_s ir;
5078 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
5079 uint8_t rex_w = -1;
5080 uint8_t rex_r = 0;
5081
5082 memset (&ir, 0, sizeof (struct i386_record_s));
5083 ir.regcache = regcache;
5084 ir.addr = input_addr;
5085 ir.orig_addr = input_addr;
5086 ir.aflag = 1;
5087 ir.dflag = 1;
5088 ir.override = -1;
5089 ir.popl_esp_hack = 0;
5090 ir.regmap = tdep->record_regmap;
5091 ir.gdbarch = gdbarch;
5092
5093 if (record_debug > 1)
5094 gdb_printf (gdb_stdlog, "Process record: i386_process_record "
5095 "addr = %s\n",
5096 paddress (gdbarch, ir.addr));
5097
5098 /* prefixes */
5099 while (1)
5100 {
5101 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5102 return -1;
5103 ir.addr++;
5104 switch (opcode8) /* Instruction prefixes */
5105 {
5106 case REPE_PREFIX_OPCODE:
5107 prefixes |= PREFIX_REPZ;
5108 break;
5109 case REPNE_PREFIX_OPCODE:
5110 prefixes |= PREFIX_REPNZ;
5111 break;
5112 case LOCK_PREFIX_OPCODE:
5113 prefixes |= PREFIX_LOCK;
5114 break;
5115 case CS_PREFIX_OPCODE:
5116 ir.override = X86_RECORD_CS_REGNUM;
5117 break;
5118 case SS_PREFIX_OPCODE:
5119 ir.override = X86_RECORD_SS_REGNUM;
5120 break;
5121 case DS_PREFIX_OPCODE:
5122 ir.override = X86_RECORD_DS_REGNUM;
5123 break;
5124 case ES_PREFIX_OPCODE:
5125 ir.override = X86_RECORD_ES_REGNUM;
5126 break;
5127 case FS_PREFIX_OPCODE:
5128 ir.override = X86_RECORD_FS_REGNUM;
5129 break;
5130 case GS_PREFIX_OPCODE:
5131 ir.override = X86_RECORD_GS_REGNUM;
5132 break;
5133 case DATA_PREFIX_OPCODE:
5134 prefixes |= PREFIX_DATA;
5135 break;
5136 case ADDR_PREFIX_OPCODE:
5137 prefixes |= PREFIX_ADDR;
5138 break;
5139 case 0x40: /* i386 inc %eax */
5140 case 0x41: /* i386 inc %ecx */
5141 case 0x42: /* i386 inc %edx */
5142 case 0x43: /* i386 inc %ebx */
5143 case 0x44: /* i386 inc %esp */
5144 case 0x45: /* i386 inc %ebp */
5145 case 0x46: /* i386 inc %esi */
5146 case 0x47: /* i386 inc %edi */
5147 case 0x48: /* i386 dec %eax */
5148 case 0x49: /* i386 dec %ecx */
5149 case 0x4a: /* i386 dec %edx */
5150 case 0x4b: /* i386 dec %ebx */
5151 case 0x4c: /* i386 dec %esp */
5152 case 0x4d: /* i386 dec %ebp */
5153 case 0x4e: /* i386 dec %esi */
5154 case 0x4f: /* i386 dec %edi */
5155 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5156 {
5157 /* REX */
5158 rex_w = (opcode8 >> 3) & 1;
5159 rex_r = (opcode8 & 0x4) << 1;
5160 ir.rex_x = (opcode8 & 0x2) << 2;
5161 ir.rex_b = (opcode8 & 0x1) << 3;
5162 }
5163 else /* 32 bit target */
5164 goto out_prefixes;
5165 break;
5166 default:
5167 goto out_prefixes;
5168 break;
5169 }
5170 }
5171 out_prefixes:
5172 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5173 {
5174 ir.dflag = 2;
5175 }
5176 else
5177 {
5178 if (prefixes & PREFIX_DATA)
5179 ir.dflag ^= 1;
5180 }
5181 if (prefixes & PREFIX_ADDR)
5182 ir.aflag ^= 1;
5183 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5184 ir.aflag = 2;
5185
5186 /* Now check op code. */
5187 opcode = (uint32_t) opcode8;
5188 reswitch:
5189 switch (opcode)
5190 {
5191 case 0x0f:
5192 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5193 return -1;
5194 ir.addr++;
5195 opcode = (uint32_t) opcode8 | 0x0f00;
5196 goto reswitch;
5197 break;
5198
5199 case 0x00: /* arith & logic */
5200 case 0x01:
5201 case 0x02:
5202 case 0x03:
5203 case 0x04:
5204 case 0x05:
5205 case 0x08:
5206 case 0x09:
5207 case 0x0a:
5208 case 0x0b:
5209 case 0x0c:
5210 case 0x0d:
5211 case 0x10:
5212 case 0x11:
5213 case 0x12:
5214 case 0x13:
5215 case 0x14:
5216 case 0x15:
5217 case 0x18:
5218 case 0x19:
5219 case 0x1a:
5220 case 0x1b:
5221 case 0x1c:
5222 case 0x1d:
5223 case 0x20:
5224 case 0x21:
5225 case 0x22:
5226 case 0x23:
5227 case 0x24:
5228 case 0x25:
5229 case 0x28:
5230 case 0x29:
5231 case 0x2a:
5232 case 0x2b:
5233 case 0x2c:
5234 case 0x2d:
5235 case 0x30:
5236 case 0x31:
5237 case 0x32:
5238 case 0x33:
5239 case 0x34:
5240 case 0x35:
5241 case 0x38:
5242 case 0x39:
5243 case 0x3a:
5244 case 0x3b:
5245 case 0x3c:
5246 case 0x3d:
5247 if (((opcode >> 3) & 7) != OP_CMPL)
5248 {
5249 if ((opcode & 1) == 0)
5250 ir.ot = OT_BYTE;
5251 else
5252 ir.ot = ir.dflag + OT_WORD;
5253
5254 switch ((opcode >> 1) & 3)
5255 {
5256 case 0: /* OP Ev, Gv */
5257 if (i386_record_modrm (&ir))
5258 return -1;
5259 if (ir.mod != 3)
5260 {
5261 if (i386_record_lea_modrm (&ir))
5262 return -1;
5263 }
5264 else
5265 {
5266 ir.rm |= ir.rex_b;
5267 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5268 ir.rm &= 0x3;
5269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5270 }
5271 break;
5272 case 1: /* OP Gv, Ev */
5273 if (i386_record_modrm (&ir))
5274 return -1;
5275 ir.reg |= rex_r;
5276 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5277 ir.reg &= 0x3;
5278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5279 break;
5280 case 2: /* OP A, Iv */
5281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5282 break;
5283 }
5284 }
5285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5286 break;
5287
5288 case 0x80: /* GRP1 */
5289 case 0x81:
5290 case 0x82:
5291 case 0x83:
5292 if (i386_record_modrm (&ir))
5293 return -1;
5294
5295 if (ir.reg != OP_CMPL)
5296 {
5297 if ((opcode & 1) == 0)
5298 ir.ot = OT_BYTE;
5299 else
5300 ir.ot = ir.dflag + OT_WORD;
5301
5302 if (ir.mod != 3)
5303 {
5304 if (opcode == 0x83)
5305 ir.rip_offset = 1;
5306 else
5307 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5308 if (i386_record_lea_modrm (&ir))
5309 return -1;
5310 }
5311 else
5312 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5313 }
5314 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5315 break;
5316
5317 case 0x40: /* inc */
5318 case 0x41:
5319 case 0x42:
5320 case 0x43:
5321 case 0x44:
5322 case 0x45:
5323 case 0x46:
5324 case 0x47:
5325
5326 case 0x48: /* dec */
5327 case 0x49:
5328 case 0x4a:
5329 case 0x4b:
5330 case 0x4c:
5331 case 0x4d:
5332 case 0x4e:
5333 case 0x4f:
5334
5335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5337 break;
5338
5339 case 0xf6: /* GRP3 */
5340 case 0xf7:
5341 if ((opcode & 1) == 0)
5342 ir.ot = OT_BYTE;
5343 else
5344 ir.ot = ir.dflag + OT_WORD;
5345 if (i386_record_modrm (&ir))
5346 return -1;
5347
5348 if (ir.mod != 3 && ir.reg == 0)
5349 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5350
5351 switch (ir.reg)
5352 {
5353 case 0: /* test */
5354 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5355 break;
5356 case 2: /* not */
5357 case 3: /* neg */
5358 if (ir.mod != 3)
5359 {
5360 if (i386_record_lea_modrm (&ir))
5361 return -1;
5362 }
5363 else
5364 {
5365 ir.rm |= ir.rex_b;
5366 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5367 ir.rm &= 0x3;
5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5369 }
5370 if (ir.reg == 3) /* neg */
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5372 break;
5373 case 4: /* mul */
5374 case 5: /* imul */
5375 case 6: /* div */
5376 case 7: /* idiv */
5377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5378 if (ir.ot != OT_BYTE)
5379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5381 break;
5382 default:
5383 ir.addr -= 2;
5384 opcode = opcode << 8 | ir.modrm;
5385 goto no_support;
5386 break;
5387 }
5388 break;
5389
5390 case 0xfe: /* GRP4 */
5391 case 0xff: /* GRP5 */
5392 if (i386_record_modrm (&ir))
5393 return -1;
5394 if (ir.reg >= 2 && opcode == 0xfe)
5395 {
5396 ir.addr -= 2;
5397 opcode = opcode << 8 | ir.modrm;
5398 goto no_support;
5399 }
5400 switch (ir.reg)
5401 {
5402 case 0: /* inc */
5403 case 1: /* dec */
5404 if ((opcode & 1) == 0)
5405 ir.ot = OT_BYTE;
5406 else
5407 ir.ot = ir.dflag + OT_WORD;
5408 if (ir.mod != 3)
5409 {
5410 if (i386_record_lea_modrm (&ir))
5411 return -1;
5412 }
5413 else
5414 {
5415 ir.rm |= ir.rex_b;
5416 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5417 ir.rm &= 0x3;
5418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5419 }
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5421 break;
5422 case 2: /* call */
5423 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5424 ir.dflag = 2;
5425 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5426 return -1;
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5428 break;
5429 case 3: /* lcall */
5430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5431 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5432 return -1;
5433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5434 break;
5435 case 4: /* jmp */
5436 case 5: /* ljmp */
5437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5438 break;
5439 case 6: /* push */
5440 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5441 ir.dflag = 2;
5442 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5443 return -1;
5444 break;
5445 default:
5446 ir.addr -= 2;
5447 opcode = opcode << 8 | ir.modrm;
5448 goto no_support;
5449 break;
5450 }
5451 break;
5452
5453 case 0x84: /* test */
5454 case 0x85:
5455 case 0xa8:
5456 case 0xa9:
5457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5458 break;
5459
5460 case 0x98: /* CWDE/CBW */
5461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5462 break;
5463
5464 case 0x99: /* CDQ/CWD */
5465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5467 break;
5468
5469 case 0x0faf: /* imul */
5470 case 0x69:
5471 case 0x6b:
5472 ir.ot = ir.dflag + OT_WORD;
5473 if (i386_record_modrm (&ir))
5474 return -1;
5475 if (opcode == 0x69)
5476 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5477 else if (opcode == 0x6b)
5478 ir.rip_offset = 1;
5479 ir.reg |= rex_r;
5480 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5481 ir.reg &= 0x3;
5482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5484 break;
5485
5486 case 0x0fc0: /* xadd */
5487 case 0x0fc1:
5488 if ((opcode & 1) == 0)
5489 ir.ot = OT_BYTE;
5490 else
5491 ir.ot = ir.dflag + OT_WORD;
5492 if (i386_record_modrm (&ir))
5493 return -1;
5494 ir.reg |= rex_r;
5495 if (ir.mod == 3)
5496 {
5497 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5498 ir.reg &= 0x3;
5499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5500 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5501 ir.rm &= 0x3;
5502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5503 }
5504 else
5505 {
5506 if (i386_record_lea_modrm (&ir))
5507 return -1;
5508 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5509 ir.reg &= 0x3;
5510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5511 }
5512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5513 break;
5514
5515 case 0x0fb0: /* cmpxchg */
5516 case 0x0fb1:
5517 if ((opcode & 1) == 0)
5518 ir.ot = OT_BYTE;
5519 else
5520 ir.ot = ir.dflag + OT_WORD;
5521 if (i386_record_modrm (&ir))
5522 return -1;
5523 if (ir.mod == 3)
5524 {
5525 ir.reg |= rex_r;
5526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5527 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5528 ir.reg &= 0x3;
5529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5530 }
5531 else
5532 {
5533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5534 if (i386_record_lea_modrm (&ir))
5535 return -1;
5536 }
5537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5538 break;
5539
5540 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5541 if (i386_record_modrm (&ir))
5542 return -1;
5543 if (ir.mod == 3)
5544 {
5545 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5546 an extended opcode. rdrand has bits 110 (/6) and rdseed
5547 has bits 111 (/7). */
5548 if (ir.reg == 6 || ir.reg == 7)
5549 {
5550 /* The storage register is described by the 3 R/M bits, but the
5551 REX.B prefix may be used to give access to registers
5552 R8~R15. In this case ir.rex_b + R/M will give us the register
5553 in the range R8~R15.
5554
5555 REX.W may also be used to access 64-bit registers, but we
5556 already record entire registers and not just partial bits
5557 of them. */
5558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5559 /* These instructions also set conditional bits. */
5560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5561 break;
5562 }
5563 else
5564 {
5565 /* We don't handle this particular instruction yet. */
5566 ir.addr -= 2;
5567 opcode = opcode << 8 | ir.modrm;
5568 goto no_support;
5569 }
5570 }
5571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5573 if (i386_record_lea_modrm (&ir))
5574 return -1;
5575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5576 break;
5577
5578 case 0x50: /* push */
5579 case 0x51:
5580 case 0x52:
5581 case 0x53:
5582 case 0x54:
5583 case 0x55:
5584 case 0x56:
5585 case 0x57:
5586 case 0x68:
5587 case 0x6a:
5588 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5589 ir.dflag = 2;
5590 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5591 return -1;
5592 break;
5593
5594 case 0x06: /* push es */
5595 case 0x0e: /* push cs */
5596 case 0x16: /* push ss */
5597 case 0x1e: /* push ds */
5598 if (ir.regmap[X86_RECORD_R8_REGNUM])
5599 {
5600 ir.addr -= 1;
5601 goto no_support;
5602 }
5603 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5604 return -1;
5605 break;
5606
5607 case 0x0fa0: /* push fs */
5608 case 0x0fa8: /* push gs */
5609 if (ir.regmap[X86_RECORD_R8_REGNUM])
5610 {
5611 ir.addr -= 2;
5612 goto no_support;
5613 }
5614 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5615 return -1;
5616 break;
5617
5618 case 0x60: /* pusha */
5619 if (ir.regmap[X86_RECORD_R8_REGNUM])
5620 {
5621 ir.addr -= 1;
5622 goto no_support;
5623 }
5624 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5625 return -1;
5626 break;
5627
5628 case 0x58: /* pop */
5629 case 0x59:
5630 case 0x5a:
5631 case 0x5b:
5632 case 0x5c:
5633 case 0x5d:
5634 case 0x5e:
5635 case 0x5f:
5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5637 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5638 break;
5639
5640 case 0x61: /* popa */
5641 if (ir.regmap[X86_RECORD_R8_REGNUM])
5642 {
5643 ir.addr -= 1;
5644 goto no_support;
5645 }
5646 for (regnum = X86_RECORD_REAX_REGNUM;
5647 regnum <= X86_RECORD_REDI_REGNUM;
5648 regnum++)
5649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5650 break;
5651
5652 case 0x8f: /* pop */
5653 if (ir.regmap[X86_RECORD_R8_REGNUM])
5654 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5655 else
5656 ir.ot = ir.dflag + OT_WORD;
5657 if (i386_record_modrm (&ir))
5658 return -1;
5659 if (ir.mod == 3)
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5661 else
5662 {
5663 ir.popl_esp_hack = 1 << ir.ot;
5664 if (i386_record_lea_modrm (&ir))
5665 return -1;
5666 }
5667 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5668 break;
5669
5670 case 0xc8: /* enter */
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5672 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5673 ir.dflag = 2;
5674 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5675 return -1;
5676 break;
5677
5678 case 0xc9: /* leave */
5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5681 break;
5682
5683 case 0x07: /* pop es */
5684 if (ir.regmap[X86_RECORD_R8_REGNUM])
5685 {
5686 ir.addr -= 1;
5687 goto no_support;
5688 }
5689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5692 break;
5693
5694 case 0x17: /* pop ss */
5695 if (ir.regmap[X86_RECORD_R8_REGNUM])
5696 {
5697 ir.addr -= 1;
5698 goto no_support;
5699 }
5700 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5701 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5703 break;
5704
5705 case 0x1f: /* pop ds */
5706 if (ir.regmap[X86_RECORD_R8_REGNUM])
5707 {
5708 ir.addr -= 1;
5709 goto no_support;
5710 }
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5714 break;
5715
5716 case 0x0fa1: /* pop fs */
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5720 break;
5721
5722 case 0x0fa9: /* pop gs */
5723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5724 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5726 break;
5727
5728 case 0x88: /* mov */
5729 case 0x89:
5730 case 0xc6:
5731 case 0xc7:
5732 if ((opcode & 1) == 0)
5733 ir.ot = OT_BYTE;
5734 else
5735 ir.ot = ir.dflag + OT_WORD;
5736
5737 if (i386_record_modrm (&ir))
5738 return -1;
5739
5740 if (ir.mod != 3)
5741 {
5742 if (opcode == 0xc6 || opcode == 0xc7)
5743 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5744 if (i386_record_lea_modrm (&ir))
5745 return -1;
5746 }
5747 else
5748 {
5749 if (opcode == 0xc6 || opcode == 0xc7)
5750 ir.rm |= ir.rex_b;
5751 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5752 ir.rm &= 0x3;
5753 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5754 }
5755 break;
5756
5757 case 0x8a: /* mov */
5758 case 0x8b:
5759 if ((opcode & 1) == 0)
5760 ir.ot = OT_BYTE;
5761 else
5762 ir.ot = ir.dflag + OT_WORD;
5763 if (i386_record_modrm (&ir))
5764 return -1;
5765 ir.reg |= rex_r;
5766 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5767 ir.reg &= 0x3;
5768 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5769 break;
5770
5771 case 0x8c: /* mov seg */
5772 if (i386_record_modrm (&ir))
5773 return -1;
5774 if (ir.reg > 5)
5775 {
5776 ir.addr -= 2;
5777 opcode = opcode << 8 | ir.modrm;
5778 goto no_support;
5779 }
5780
5781 if (ir.mod == 3)
5782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5783 else
5784 {
5785 ir.ot = OT_WORD;
5786 if (i386_record_lea_modrm (&ir))
5787 return -1;
5788 }
5789 break;
5790
5791 case 0x8e: /* mov seg */
5792 if (i386_record_modrm (&ir))
5793 return -1;
5794 switch (ir.reg)
5795 {
5796 case 0:
5797 regnum = X86_RECORD_ES_REGNUM;
5798 break;
5799 case 2:
5800 regnum = X86_RECORD_SS_REGNUM;
5801 break;
5802 case 3:
5803 regnum = X86_RECORD_DS_REGNUM;
5804 break;
5805 case 4:
5806 regnum = X86_RECORD_FS_REGNUM;
5807 break;
5808 case 5:
5809 regnum = X86_RECORD_GS_REGNUM;
5810 break;
5811 default:
5812 ir.addr -= 2;
5813 opcode = opcode << 8 | ir.modrm;
5814 goto no_support;
5815 break;
5816 }
5817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5819 break;
5820
5821 case 0x0fb6: /* movzbS */
5822 case 0x0fb7: /* movzwS */
5823 case 0x0fbe: /* movsbS */
5824 case 0x0fbf: /* movswS */
5825 if (i386_record_modrm (&ir))
5826 return -1;
5827 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5828 break;
5829
5830 case 0x8d: /* lea */
5831 if (i386_record_modrm (&ir))
5832 return -1;
5833 if (ir.mod == 3)
5834 {
5835 ir.addr -= 2;
5836 opcode = opcode << 8 | ir.modrm;
5837 goto no_support;
5838 }
5839 ir.ot = ir.dflag;
5840 ir.reg |= rex_r;
5841 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5842 ir.reg &= 0x3;
5843 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5844 break;
5845
5846 case 0xa0: /* mov EAX */
5847 case 0xa1:
5848
5849 case 0xd7: /* xlat */
5850 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5851 break;
5852
5853 case 0xa2: /* mov EAX */
5854 case 0xa3:
5855 if (ir.override >= 0)
5856 {
5857 if (record_full_memory_query)
5858 {
5859 if (yquery (_("\
5860 Process record ignores the memory change of instruction at address %s\n\
5861 because it can't get the value of the segment register.\n\
5862 Do you want to stop the program?"),
5863 paddress (gdbarch, ir.orig_addr)))
5864 return -1;
5865 }
5866 }
5867 else
5868 {
5869 if ((opcode & 1) == 0)
5870 ir.ot = OT_BYTE;
5871 else
5872 ir.ot = ir.dflag + OT_WORD;
5873 if (ir.aflag == 2)
5874 {
5875 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5876 return -1;
5877 ir.addr += 8;
5878 addr = extract_unsigned_integer (buf, 8, byte_order);
5879 }
5880 else if (ir.aflag)
5881 {
5882 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5883 return -1;
5884 ir.addr += 4;
5885 addr = extract_unsigned_integer (buf, 4, byte_order);
5886 }
5887 else
5888 {
5889 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5890 return -1;
5891 ir.addr += 2;
5892 addr = extract_unsigned_integer (buf, 2, byte_order);
5893 }
5894 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5895 return -1;
5896 }
5897 break;
5898
5899 case 0xb0: /* mov R, Ib */
5900 case 0xb1:
5901 case 0xb2:
5902 case 0xb3:
5903 case 0xb4:
5904 case 0xb5:
5905 case 0xb6:
5906 case 0xb7:
5907 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5908 ? ((opcode & 0x7) | ir.rex_b)
5909 : ((opcode & 0x7) & 0x3));
5910 break;
5911
5912 case 0xb8: /* mov R, Iv */
5913 case 0xb9:
5914 case 0xba:
5915 case 0xbb:
5916 case 0xbc:
5917 case 0xbd:
5918 case 0xbe:
5919 case 0xbf:
5920 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5921 break;
5922
5923 case 0x91: /* xchg R, EAX */
5924 case 0x92:
5925 case 0x93:
5926 case 0x94:
5927 case 0x95:
5928 case 0x96:
5929 case 0x97:
5930 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5931 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5932 break;
5933
5934 case 0x86: /* xchg Ev, Gv */
5935 case 0x87:
5936 if ((opcode & 1) == 0)
5937 ir.ot = OT_BYTE;
5938 else
5939 ir.ot = ir.dflag + OT_WORD;
5940 if (i386_record_modrm (&ir))
5941 return -1;
5942 if (ir.mod == 3)
5943 {
5944 ir.rm |= ir.rex_b;
5945 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5946 ir.rm &= 0x3;
5947 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5948 }
5949 else
5950 {
5951 if (i386_record_lea_modrm (&ir))
5952 return -1;
5953 }
5954 ir.reg |= rex_r;
5955 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5956 ir.reg &= 0x3;
5957 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5958 break;
5959
5960 case 0xc4: /* les Gv */
5961 case 0xc5: /* lds Gv */
5962 if (ir.regmap[X86_RECORD_R8_REGNUM])
5963 {
5964 ir.addr -= 1;
5965 goto no_support;
5966 }
5967 /* FALLTHROUGH */
5968 case 0x0fb2: /* lss Gv */
5969 case 0x0fb4: /* lfs Gv */
5970 case 0x0fb5: /* lgs Gv */
5971 if (i386_record_modrm (&ir))
5972 return -1;
5973 if (ir.mod == 3)
5974 {
5975 if (opcode > 0xff)
5976 ir.addr -= 3;
5977 else
5978 ir.addr -= 2;
5979 opcode = opcode << 8 | ir.modrm;
5980 goto no_support;
5981 }
5982 switch (opcode)
5983 {
5984 case 0xc4: /* les Gv */
5985 regnum = X86_RECORD_ES_REGNUM;
5986 break;
5987 case 0xc5: /* lds Gv */
5988 regnum = X86_RECORD_DS_REGNUM;
5989 break;
5990 case 0x0fb2: /* lss Gv */
5991 regnum = X86_RECORD_SS_REGNUM;
5992 break;
5993 case 0x0fb4: /* lfs Gv */
5994 regnum = X86_RECORD_FS_REGNUM;
5995 break;
5996 case 0x0fb5: /* lgs Gv */
5997 regnum = X86_RECORD_GS_REGNUM;
5998 break;
5999 }
6000 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
6001 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6003 break;
6004
6005 case 0xc0: /* shifts */
6006 case 0xc1:
6007 case 0xd0:
6008 case 0xd1:
6009 case 0xd2:
6010 case 0xd3:
6011 if ((opcode & 1) == 0)
6012 ir.ot = OT_BYTE;
6013 else
6014 ir.ot = ir.dflag + OT_WORD;
6015 if (i386_record_modrm (&ir))
6016 return -1;
6017 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6018 {
6019 if (i386_record_lea_modrm (&ir))
6020 return -1;
6021 }
6022 else
6023 {
6024 ir.rm |= ir.rex_b;
6025 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6026 ir.rm &= 0x3;
6027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6028 }
6029 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6030 break;
6031
6032 case 0x0fa4:
6033 case 0x0fa5:
6034 case 0x0fac:
6035 case 0x0fad:
6036 if (i386_record_modrm (&ir))
6037 return -1;
6038 if (ir.mod == 3)
6039 {
6040 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6041 return -1;
6042 }
6043 else
6044 {
6045 if (i386_record_lea_modrm (&ir))
6046 return -1;
6047 }
6048 break;
6049
6050 case 0xd8: /* Floats. */
6051 case 0xd9:
6052 case 0xda:
6053 case 0xdb:
6054 case 0xdc:
6055 case 0xdd:
6056 case 0xde:
6057 case 0xdf:
6058 if (i386_record_modrm (&ir))
6059 return -1;
6060 ir.reg |= ((opcode & 7) << 3);
6061 if (ir.mod != 3)
6062 {
6063 /* Memory. */
6064 uint64_t addr64;
6065
6066 if (i386_record_lea_modrm_addr (&ir, &addr64))
6067 return -1;
6068 switch (ir.reg)
6069 {
6070 case 0x02:
6071 case 0x12:
6072 case 0x22:
6073 case 0x32:
6074 /* For fcom, ficom nothing to do. */
6075 break;
6076 case 0x03:
6077 case 0x13:
6078 case 0x23:
6079 case 0x33:
6080 /* For fcomp, ficomp pop FPU stack, store all. */
6081 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6082 return -1;
6083 break;
6084 case 0x00:
6085 case 0x01:
6086 case 0x04:
6087 case 0x05:
6088 case 0x06:
6089 case 0x07:
6090 case 0x10:
6091 case 0x11:
6092 case 0x14:
6093 case 0x15:
6094 case 0x16:
6095 case 0x17:
6096 case 0x20:
6097 case 0x21:
6098 case 0x24:
6099 case 0x25:
6100 case 0x26:
6101 case 0x27:
6102 case 0x30:
6103 case 0x31:
6104 case 0x34:
6105 case 0x35:
6106 case 0x36:
6107 case 0x37:
6108 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6109 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6110 of code, always affects st(0) register. */
6111 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6112 return -1;
6113 break;
6114 case 0x08:
6115 case 0x0a:
6116 case 0x0b:
6117 case 0x18:
6118 case 0x19:
6119 case 0x1a:
6120 case 0x1b:
6121 case 0x1d:
6122 case 0x28:
6123 case 0x29:
6124 case 0x2a:
6125 case 0x2b:
6126 case 0x38:
6127 case 0x39:
6128 case 0x3a:
6129 case 0x3b:
6130 case 0x3c:
6131 case 0x3d:
6132 switch (ir.reg & 7)
6133 {
6134 case 0:
6135 /* Handling fld, fild. */
6136 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6137 return -1;
6138 break;
6139 case 1:
6140 switch (ir.reg >> 4)
6141 {
6142 case 0:
6143 if (record_full_arch_list_add_mem (addr64, 4))
6144 return -1;
6145 break;
6146 case 2:
6147 if (record_full_arch_list_add_mem (addr64, 8))
6148 return -1;
6149 break;
6150 case 3:
6151 break;
6152 default:
6153 if (record_full_arch_list_add_mem (addr64, 2))
6154 return -1;
6155 break;
6156 }
6157 break;
6158 default:
6159 switch (ir.reg >> 4)
6160 {
6161 case 0:
6162 if (record_full_arch_list_add_mem (addr64, 4))
6163 return -1;
6164 if (3 == (ir.reg & 7))
6165 {
6166 /* For fstp m32fp. */
6167 if (i386_record_floats (gdbarch, &ir,
6168 I386_SAVE_FPU_REGS))
6169 return -1;
6170 }
6171 break;
6172 case 1:
6173 if (record_full_arch_list_add_mem (addr64, 4))
6174 return -1;
6175 if ((3 == (ir.reg & 7))
6176 || (5 == (ir.reg & 7))
6177 || (7 == (ir.reg & 7)))
6178 {
6179 /* For fstp insn. */
6180 if (i386_record_floats (gdbarch, &ir,
6181 I386_SAVE_FPU_REGS))
6182 return -1;
6183 }
6184 break;
6185 case 2:
6186 if (record_full_arch_list_add_mem (addr64, 8))
6187 return -1;
6188 if (3 == (ir.reg & 7))
6189 {
6190 /* For fstp m64fp. */
6191 if (i386_record_floats (gdbarch, &ir,
6192 I386_SAVE_FPU_REGS))
6193 return -1;
6194 }
6195 break;
6196 case 3:
6197 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6198 {
6199 /* For fistp, fbld, fild, fbstp. */
6200 if (i386_record_floats (gdbarch, &ir,
6201 I386_SAVE_FPU_REGS))
6202 return -1;
6203 }
6204 /* Fall through */
6205 default:
6206 if (record_full_arch_list_add_mem (addr64, 2))
6207 return -1;
6208 break;
6209 }
6210 break;
6211 }
6212 break;
6213 case 0x0c:
6214 /* Insn fldenv. */
6215 if (i386_record_floats (gdbarch, &ir,
6216 I386_SAVE_FPU_ENV_REG_STACK))
6217 return -1;
6218 break;
6219 case 0x0d:
6220 /* Insn fldcw. */
6221 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6222 return -1;
6223 break;
6224 case 0x2c:
6225 /* Insn frstor. */
6226 if (i386_record_floats (gdbarch, &ir,
6227 I386_SAVE_FPU_ENV_REG_STACK))
6228 return -1;
6229 break;
6230 case 0x0e:
6231 if (ir.dflag)
6232 {
6233 if (record_full_arch_list_add_mem (addr64, 28))
6234 return -1;
6235 }
6236 else
6237 {
6238 if (record_full_arch_list_add_mem (addr64, 14))
6239 return -1;
6240 }
6241 break;
6242 case 0x0f:
6243 case 0x2f:
6244 if (record_full_arch_list_add_mem (addr64, 2))
6245 return -1;
6246 /* Insn fstp, fbstp. */
6247 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6248 return -1;
6249 break;
6250 case 0x1f:
6251 case 0x3e:
6252 if (record_full_arch_list_add_mem (addr64, 10))
6253 return -1;
6254 break;
6255 case 0x2e:
6256 if (ir.dflag)
6257 {
6258 if (record_full_arch_list_add_mem (addr64, 28))
6259 return -1;
6260 addr64 += 28;
6261 }
6262 else
6263 {
6264 if (record_full_arch_list_add_mem (addr64, 14))
6265 return -1;
6266 addr64 += 14;
6267 }
6268 if (record_full_arch_list_add_mem (addr64, 80))
6269 return -1;
6270 /* Insn fsave. */
6271 if (i386_record_floats (gdbarch, &ir,
6272 I386_SAVE_FPU_ENV_REG_STACK))
6273 return -1;
6274 break;
6275 case 0x3f:
6276 if (record_full_arch_list_add_mem (addr64, 8))
6277 return -1;
6278 /* Insn fistp. */
6279 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6280 return -1;
6281 break;
6282 default:
6283 ir.addr -= 2;
6284 opcode = opcode << 8 | ir.modrm;
6285 goto no_support;
6286 break;
6287 }
6288 }
6289 /* Opcode is an extension of modR/M byte. */
6290 else
6291 {
6292 switch (opcode)
6293 {
6294 case 0xd8:
6295 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6296 return -1;
6297 break;
6298 case 0xd9:
6299 if (0x0c == (ir.modrm >> 4))
6300 {
6301 if ((ir.modrm & 0x0f) <= 7)
6302 {
6303 if (i386_record_floats (gdbarch, &ir,
6304 I386_SAVE_FPU_REGS))
6305 return -1;
6306 }
6307 else
6308 {
6309 if (i386_record_floats (gdbarch, &ir,
6310 I387_ST0_REGNUM (tdep)))
6311 return -1;
6312 /* If only st(0) is changing, then we have already
6313 recorded. */
6314 if ((ir.modrm & 0x0f) - 0x08)
6315 {
6316 if (i386_record_floats (gdbarch, &ir,
6317 I387_ST0_REGNUM (tdep) +
6318 ((ir.modrm & 0x0f) - 0x08)))
6319 return -1;
6320 }
6321 }
6322 }
6323 else
6324 {
6325 switch (ir.modrm)
6326 {
6327 case 0xe0:
6328 case 0xe1:
6329 case 0xf0:
6330 case 0xf5:
6331 case 0xf8:
6332 case 0xfa:
6333 case 0xfc:
6334 case 0xfe:
6335 case 0xff:
6336 if (i386_record_floats (gdbarch, &ir,
6337 I387_ST0_REGNUM (tdep)))
6338 return -1;
6339 break;
6340 case 0xf1:
6341 case 0xf2:
6342 case 0xf3:
6343 case 0xf4:
6344 case 0xf6:
6345 case 0xf7:
6346 case 0xe8:
6347 case 0xe9:
6348 case 0xea:
6349 case 0xeb:
6350 case 0xec:
6351 case 0xed:
6352 case 0xee:
6353 case 0xf9:
6354 case 0xfb:
6355 if (i386_record_floats (gdbarch, &ir,
6356 I386_SAVE_FPU_REGS))
6357 return -1;
6358 break;
6359 case 0xfd:
6360 if (i386_record_floats (gdbarch, &ir,
6361 I387_ST0_REGNUM (tdep)))
6362 return -1;
6363 if (i386_record_floats (gdbarch, &ir,
6364 I387_ST0_REGNUM (tdep) + 1))
6365 return -1;
6366 break;
6367 }
6368 }
6369 break;
6370 case 0xda:
6371 if (0xe9 == ir.modrm)
6372 {
6373 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6374 return -1;
6375 }
6376 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6377 {
6378 if (i386_record_floats (gdbarch, &ir,
6379 I387_ST0_REGNUM (tdep)))
6380 return -1;
6381 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6382 {
6383 if (i386_record_floats (gdbarch, &ir,
6384 I387_ST0_REGNUM (tdep) +
6385 (ir.modrm & 0x0f)))
6386 return -1;
6387 }
6388 else if ((ir.modrm & 0x0f) - 0x08)
6389 {
6390 if (i386_record_floats (gdbarch, &ir,
6391 I387_ST0_REGNUM (tdep) +
6392 ((ir.modrm & 0x0f) - 0x08)))
6393 return -1;
6394 }
6395 }
6396 break;
6397 case 0xdb:
6398 if (0xe3 == ir.modrm)
6399 {
6400 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6401 return -1;
6402 }
6403 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6404 {
6405 if (i386_record_floats (gdbarch, &ir,
6406 I387_ST0_REGNUM (tdep)))
6407 return -1;
6408 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6409 {
6410 if (i386_record_floats (gdbarch, &ir,
6411 I387_ST0_REGNUM (tdep) +
6412 (ir.modrm & 0x0f)))
6413 return -1;
6414 }
6415 else if ((ir.modrm & 0x0f) - 0x08)
6416 {
6417 if (i386_record_floats (gdbarch, &ir,
6418 I387_ST0_REGNUM (tdep) +
6419 ((ir.modrm & 0x0f) - 0x08)))
6420 return -1;
6421 }
6422 }
6423 break;
6424 case 0xdc:
6425 if ((0x0c == ir.modrm >> 4)
6426 || (0x0d == ir.modrm >> 4)
6427 || (0x0f == ir.modrm >> 4))
6428 {
6429 if ((ir.modrm & 0x0f) <= 7)
6430 {
6431 if (i386_record_floats (gdbarch, &ir,
6432 I387_ST0_REGNUM (tdep) +
6433 (ir.modrm & 0x0f)))
6434 return -1;
6435 }
6436 else
6437 {
6438 if (i386_record_floats (gdbarch, &ir,
6439 I387_ST0_REGNUM (tdep) +
6440 ((ir.modrm & 0x0f) - 0x08)))
6441 return -1;
6442 }
6443 }
6444 break;
6445 case 0xdd:
6446 if (0x0c == ir.modrm >> 4)
6447 {
6448 if (i386_record_floats (gdbarch, &ir,
6449 I387_FTAG_REGNUM (tdep)))
6450 return -1;
6451 }
6452 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6453 {
6454 if ((ir.modrm & 0x0f) <= 7)
6455 {
6456 if (i386_record_floats (gdbarch, &ir,
6457 I387_ST0_REGNUM (tdep) +
6458 (ir.modrm & 0x0f)))
6459 return -1;
6460 }
6461 else
6462 {
6463 if (i386_record_floats (gdbarch, &ir,
6464 I386_SAVE_FPU_REGS))
6465 return -1;
6466 }
6467 }
6468 break;
6469 case 0xde:
6470 if ((0x0c == ir.modrm >> 4)
6471 || (0x0e == ir.modrm >> 4)
6472 || (0x0f == ir.modrm >> 4)
6473 || (0xd9 == ir.modrm))
6474 {
6475 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6476 return -1;
6477 }
6478 break;
6479 case 0xdf:
6480 if (0xe0 == ir.modrm)
6481 {
6482 if (record_full_arch_list_add_reg (ir.regcache,
6483 I386_EAX_REGNUM))
6484 return -1;
6485 }
6486 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6487 {
6488 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6489 return -1;
6490 }
6491 break;
6492 }
6493 }
6494 break;
6495 /* string ops */
6496 case 0xa4: /* movsS */
6497 case 0xa5:
6498 case 0xaa: /* stosS */
6499 case 0xab:
6500 case 0x6c: /* insS */
6501 case 0x6d:
6502 regcache_raw_read_unsigned (ir.regcache,
6503 ir.regmap[X86_RECORD_RECX_REGNUM],
6504 &addr);
6505 if (addr)
6506 {
6507 ULONGEST es, ds;
6508
6509 if ((opcode & 1) == 0)
6510 ir.ot = OT_BYTE;
6511 else
6512 ir.ot = ir.dflag + OT_WORD;
6513 regcache_raw_read_unsigned (ir.regcache,
6514 ir.regmap[X86_RECORD_REDI_REGNUM],
6515 &addr);
6516
6517 regcache_raw_read_unsigned (ir.regcache,
6518 ir.regmap[X86_RECORD_ES_REGNUM],
6519 &es);
6520 regcache_raw_read_unsigned (ir.regcache,
6521 ir.regmap[X86_RECORD_DS_REGNUM],
6522 &ds);
6523 if (ir.aflag && (es != ds))
6524 {
6525 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6526 if (record_full_memory_query)
6527 {
6528 if (yquery (_("\
6529 Process record ignores the memory change of instruction at address %s\n\
6530 because it can't get the value of the segment register.\n\
6531 Do you want to stop the program?"),
6532 paddress (gdbarch, ir.orig_addr)))
6533 return -1;
6534 }
6535 }
6536 else
6537 {
6538 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6539 return -1;
6540 }
6541
6542 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6544 if (opcode == 0xa4 || opcode == 0xa5)
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6548 }
6549 break;
6550
6551 case 0xa6: /* cmpsS */
6552 case 0xa7:
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6555 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6558 break;
6559
6560 case 0xac: /* lodsS */
6561 case 0xad:
6562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6564 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6567 break;
6568
6569 case 0xae: /* scasS */
6570 case 0xaf:
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6572 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6575 break;
6576
6577 case 0x6e: /* outsS */
6578 case 0x6f:
6579 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6580 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6581 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6583 break;
6584
6585 case 0xe4: /* port I/O */
6586 case 0xe5:
6587 case 0xec:
6588 case 0xed:
6589 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6591 break;
6592
6593 case 0xe6:
6594 case 0xe7:
6595 case 0xee:
6596 case 0xef:
6597 break;
6598
6599 /* control */
6600 case 0xc2: /* ret im */
6601 case 0xc3: /* ret */
6602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6604 break;
6605
6606 case 0xca: /* lret im */
6607 case 0xcb: /* lret */
6608 case 0xcf: /* iret */
6609 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6610 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6611 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6612 break;
6613
6614 case 0xe8: /* call im */
6615 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6616 ir.dflag = 2;
6617 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6618 return -1;
6619 break;
6620
6621 case 0x9a: /* lcall im */
6622 if (ir.regmap[X86_RECORD_R8_REGNUM])
6623 {
6624 ir.addr -= 1;
6625 goto no_support;
6626 }
6627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6628 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6629 return -1;
6630 break;
6631
6632 case 0xe9: /* jmp im */
6633 case 0xea: /* ljmp im */
6634 case 0xeb: /* jmp Jb */
6635 case 0x70: /* jcc Jb */
6636 case 0x71:
6637 case 0x72:
6638 case 0x73:
6639 case 0x74:
6640 case 0x75:
6641 case 0x76:
6642 case 0x77:
6643 case 0x78:
6644 case 0x79:
6645 case 0x7a:
6646 case 0x7b:
6647 case 0x7c:
6648 case 0x7d:
6649 case 0x7e:
6650 case 0x7f:
6651 case 0x0f80: /* jcc Jv */
6652 case 0x0f81:
6653 case 0x0f82:
6654 case 0x0f83:
6655 case 0x0f84:
6656 case 0x0f85:
6657 case 0x0f86:
6658 case 0x0f87:
6659 case 0x0f88:
6660 case 0x0f89:
6661 case 0x0f8a:
6662 case 0x0f8b:
6663 case 0x0f8c:
6664 case 0x0f8d:
6665 case 0x0f8e:
6666 case 0x0f8f:
6667 break;
6668
6669 case 0x0f90: /* setcc Gv */
6670 case 0x0f91:
6671 case 0x0f92:
6672 case 0x0f93:
6673 case 0x0f94:
6674 case 0x0f95:
6675 case 0x0f96:
6676 case 0x0f97:
6677 case 0x0f98:
6678 case 0x0f99:
6679 case 0x0f9a:
6680 case 0x0f9b:
6681 case 0x0f9c:
6682 case 0x0f9d:
6683 case 0x0f9e:
6684 case 0x0f9f:
6685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6686 ir.ot = OT_BYTE;
6687 if (i386_record_modrm (&ir))
6688 return -1;
6689 if (ir.mod == 3)
6690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6691 : (ir.rm & 0x3));
6692 else
6693 {
6694 if (i386_record_lea_modrm (&ir))
6695 return -1;
6696 }
6697 break;
6698
6699 case 0x0f40: /* cmov Gv, Ev */
6700 case 0x0f41:
6701 case 0x0f42:
6702 case 0x0f43:
6703 case 0x0f44:
6704 case 0x0f45:
6705 case 0x0f46:
6706 case 0x0f47:
6707 case 0x0f48:
6708 case 0x0f49:
6709 case 0x0f4a:
6710 case 0x0f4b:
6711 case 0x0f4c:
6712 case 0x0f4d:
6713 case 0x0f4e:
6714 case 0x0f4f:
6715 if (i386_record_modrm (&ir))
6716 return -1;
6717 ir.reg |= rex_r;
6718 if (ir.dflag == OT_BYTE)
6719 ir.reg &= 0x3;
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6721 break;
6722
6723 /* flags */
6724 case 0x9c: /* pushf */
6725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6726 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6727 ir.dflag = 2;
6728 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6729 return -1;
6730 break;
6731
6732 case 0x9d: /* popf */
6733 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6734 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6735 break;
6736
6737 case 0x9e: /* sahf */
6738 if (ir.regmap[X86_RECORD_R8_REGNUM])
6739 {
6740 ir.addr -= 1;
6741 goto no_support;
6742 }
6743 /* FALLTHROUGH */
6744 case 0xf5: /* cmc */
6745 case 0xf8: /* clc */
6746 case 0xf9: /* stc */
6747 case 0xfc: /* cld */
6748 case 0xfd: /* std */
6749 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6750 break;
6751
6752 case 0x9f: /* lahf */
6753 if (ir.regmap[X86_RECORD_R8_REGNUM])
6754 {
6755 ir.addr -= 1;
6756 goto no_support;
6757 }
6758 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6760 break;
6761
6762 /* bit operations */
6763 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6764 ir.ot = ir.dflag + OT_WORD;
6765 if (i386_record_modrm (&ir))
6766 return -1;
6767 if (ir.reg < 4)
6768 {
6769 ir.addr -= 2;
6770 opcode = opcode << 8 | ir.modrm;
6771 goto no_support;
6772 }
6773 if (ir.reg != 4)
6774 {
6775 if (ir.mod == 3)
6776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6777 else
6778 {
6779 if (i386_record_lea_modrm (&ir))
6780 return -1;
6781 }
6782 }
6783 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6784 break;
6785
6786 case 0x0fa3: /* bt Gv, Ev */
6787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6788 break;
6789
6790 case 0x0fab: /* bts */
6791 case 0x0fb3: /* btr */
6792 case 0x0fbb: /* btc */
6793 ir.ot = ir.dflag + OT_WORD;
6794 if (i386_record_modrm (&ir))
6795 return -1;
6796 if (ir.mod == 3)
6797 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6798 else
6799 {
6800 uint64_t addr64;
6801 if (i386_record_lea_modrm_addr (&ir, &addr64))
6802 return -1;
6803 regcache_raw_read_unsigned (ir.regcache,
6804 ir.regmap[ir.reg | rex_r],
6805 &addr);
6806 switch (ir.dflag)
6807 {
6808 case 0:
6809 addr64 += ((int16_t) addr >> 4) << 4;
6810 break;
6811 case 1:
6812 addr64 += ((int32_t) addr >> 5) << 5;
6813 break;
6814 case 2:
6815 addr64 += ((int64_t) addr >> 6) << 6;
6816 break;
6817 }
6818 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6819 return -1;
6820 if (i386_record_lea_modrm (&ir))
6821 return -1;
6822 }
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6824 break;
6825
6826 case 0x0fbc: /* bsf */
6827 case 0x0fbd: /* bsr */
6828 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6830 break;
6831
6832 /* bcd */
6833 case 0x27: /* daa */
6834 case 0x2f: /* das */
6835 case 0x37: /* aaa */
6836 case 0x3f: /* aas */
6837 case 0xd4: /* aam */
6838 case 0xd5: /* aad */
6839 if (ir.regmap[X86_RECORD_R8_REGNUM])
6840 {
6841 ir.addr -= 1;
6842 goto no_support;
6843 }
6844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6845 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6846 break;
6847
6848 /* misc */
6849 case 0x90: /* nop */
6850 if (prefixes & PREFIX_LOCK)
6851 {
6852 ir.addr -= 1;
6853 goto no_support;
6854 }
6855 break;
6856
6857 case 0x9b: /* fwait */
6858 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6859 return -1;
6860 opcode = (uint32_t) opcode8;
6861 ir.addr++;
6862 goto reswitch;
6863 break;
6864
6865 /* XXX */
6866 case 0xcc: /* int3 */
6867 gdb_printf (gdb_stderr,
6868 _("Process record does not support instruction "
6869 "int3.\n"));
6870 ir.addr -= 1;
6871 goto no_support;
6872 break;
6873
6874 /* XXX */
6875 case 0xcd: /* int */
6876 {
6877 int ret;
6878 uint8_t interrupt;
6879 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6880 return -1;
6881 ir.addr++;
6882 if (interrupt != 0x80
6883 || tdep->i386_intx80_record == NULL)
6884 {
6885 gdb_printf (gdb_stderr,
6886 _("Process record does not support "
6887 "instruction int 0x%02x.\n"),
6888 interrupt);
6889 ir.addr -= 2;
6890 goto no_support;
6891 }
6892 ret = tdep->i386_intx80_record (ir.regcache);
6893 if (ret)
6894 return ret;
6895 }
6896 break;
6897
6898 /* XXX */
6899 case 0xce: /* into */
6900 gdb_printf (gdb_stderr,
6901 _("Process record does not support "
6902 "instruction into.\n"));
6903 ir.addr -= 1;
6904 goto no_support;
6905 break;
6906
6907 case 0xfa: /* cli */
6908 case 0xfb: /* sti */
6909 break;
6910
6911 case 0x62: /* bound */
6912 gdb_printf (gdb_stderr,
6913 _("Process record does not support "
6914 "instruction bound.\n"));
6915 ir.addr -= 1;
6916 goto no_support;
6917 break;
6918
6919 case 0x0fc8: /* bswap reg */
6920 case 0x0fc9:
6921 case 0x0fca:
6922 case 0x0fcb:
6923 case 0x0fcc:
6924 case 0x0fcd:
6925 case 0x0fce:
6926 case 0x0fcf:
6927 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6928 break;
6929
6930 case 0xd6: /* salc */
6931 if (ir.regmap[X86_RECORD_R8_REGNUM])
6932 {
6933 ir.addr -= 1;
6934 goto no_support;
6935 }
6936 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6937 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6938 break;
6939
6940 case 0xe0: /* loopnz */
6941 case 0xe1: /* loopz */
6942 case 0xe2: /* loop */
6943 case 0xe3: /* jecxz */
6944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6945 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6946 break;
6947
6948 case 0x0f30: /* wrmsr */
6949 gdb_printf (gdb_stderr,
6950 _("Process record does not support "
6951 "instruction wrmsr.\n"));
6952 ir.addr -= 2;
6953 goto no_support;
6954 break;
6955
6956 case 0x0f32: /* rdmsr */
6957 gdb_printf (gdb_stderr,
6958 _("Process record does not support "
6959 "instruction rdmsr.\n"));
6960 ir.addr -= 2;
6961 goto no_support;
6962 break;
6963
6964 case 0x0f31: /* rdtsc */
6965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6967 break;
6968
6969 case 0x0f34: /* sysenter */
6970 {
6971 int ret;
6972 if (ir.regmap[X86_RECORD_R8_REGNUM])
6973 {
6974 ir.addr -= 2;
6975 goto no_support;
6976 }
6977 if (tdep->i386_sysenter_record == NULL)
6978 {
6979 gdb_printf (gdb_stderr,
6980 _("Process record does not support "
6981 "instruction sysenter.\n"));
6982 ir.addr -= 2;
6983 goto no_support;
6984 }
6985 ret = tdep->i386_sysenter_record (ir.regcache);
6986 if (ret)
6987 return ret;
6988 }
6989 break;
6990
6991 case 0x0f35: /* sysexit */
6992 gdb_printf (gdb_stderr,
6993 _("Process record does not support "
6994 "instruction sysexit.\n"));
6995 ir.addr -= 2;
6996 goto no_support;
6997 break;
6998
6999 case 0x0f05: /* syscall */
7000 {
7001 int ret;
7002 if (tdep->i386_syscall_record == NULL)
7003 {
7004 gdb_printf (gdb_stderr,
7005 _("Process record does not support "
7006 "instruction syscall.\n"));
7007 ir.addr -= 2;
7008 goto no_support;
7009 }
7010 ret = tdep->i386_syscall_record (ir.regcache);
7011 if (ret)
7012 return ret;
7013 }
7014 break;
7015
7016 case 0x0f07: /* sysret */
7017 gdb_printf (gdb_stderr,
7018 _("Process record does not support "
7019 "instruction sysret.\n"));
7020 ir.addr -= 2;
7021 goto no_support;
7022 break;
7023
7024 case 0x0fa2: /* cpuid */
7025 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7026 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7028 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7029 break;
7030
7031 case 0xf4: /* hlt */
7032 gdb_printf (gdb_stderr,
7033 _("Process record does not support "
7034 "instruction hlt.\n"));
7035 ir.addr -= 1;
7036 goto no_support;
7037 break;
7038
7039 case 0x0f00:
7040 if (i386_record_modrm (&ir))
7041 return -1;
7042 switch (ir.reg)
7043 {
7044 case 0: /* sldt */
7045 case 1: /* str */
7046 if (ir.mod == 3)
7047 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7048 else
7049 {
7050 ir.ot = OT_WORD;
7051 if (i386_record_lea_modrm (&ir))
7052 return -1;
7053 }
7054 break;
7055 case 2: /* lldt */
7056 case 3: /* ltr */
7057 break;
7058 case 4: /* verr */
7059 case 5: /* verw */
7060 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7061 break;
7062 default:
7063 ir.addr -= 3;
7064 opcode = opcode << 8 | ir.modrm;
7065 goto no_support;
7066 break;
7067 }
7068 break;
7069
7070 case 0x0f01:
7071 if (i386_record_modrm (&ir))
7072 return -1;
7073 switch (ir.reg)
7074 {
7075 case 0: /* sgdt */
7076 {
7077 uint64_t addr64;
7078
7079 if (ir.mod == 3)
7080 {
7081 ir.addr -= 3;
7082 opcode = opcode << 8 | ir.modrm;
7083 goto no_support;
7084 }
7085 if (ir.override >= 0)
7086 {
7087 if (record_full_memory_query)
7088 {
7089 if (yquery (_("\
7090 Process record ignores the memory change of instruction at address %s\n\
7091 because it can't get the value of the segment register.\n\
7092 Do you want to stop the program?"),
7093 paddress (gdbarch, ir.orig_addr)))
7094 return -1;
7095 }
7096 }
7097 else
7098 {
7099 if (i386_record_lea_modrm_addr (&ir, &addr64))
7100 return -1;
7101 if (record_full_arch_list_add_mem (addr64, 2))
7102 return -1;
7103 addr64 += 2;
7104 if (ir.regmap[X86_RECORD_R8_REGNUM])
7105 {
7106 if (record_full_arch_list_add_mem (addr64, 8))
7107 return -1;
7108 }
7109 else
7110 {
7111 if (record_full_arch_list_add_mem (addr64, 4))
7112 return -1;
7113 }
7114 }
7115 }
7116 break;
7117 case 1:
7118 if (ir.mod == 3)
7119 {
7120 switch (ir.rm)
7121 {
7122 case 0: /* monitor */
7123 break;
7124 case 1: /* mwait */
7125 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7126 break;
7127 default:
7128 ir.addr -= 3;
7129 opcode = opcode << 8 | ir.modrm;
7130 goto no_support;
7131 break;
7132 }
7133 }
7134 else
7135 {
7136 /* sidt */
7137 if (ir.override >= 0)
7138 {
7139 if (record_full_memory_query)
7140 {
7141 if (yquery (_("\
7142 Process record ignores the memory change of instruction at address %s\n\
7143 because it can't get the value of the segment register.\n\
7144 Do you want to stop the program?"),
7145 paddress (gdbarch, ir.orig_addr)))
7146 return -1;
7147 }
7148 }
7149 else
7150 {
7151 uint64_t addr64;
7152
7153 if (i386_record_lea_modrm_addr (&ir, &addr64))
7154 return -1;
7155 if (record_full_arch_list_add_mem (addr64, 2))
7156 return -1;
7157 addr64 += 2;
7158 if (ir.regmap[X86_RECORD_R8_REGNUM])
7159 {
7160 if (record_full_arch_list_add_mem (addr64, 8))
7161 return -1;
7162 }
7163 else
7164 {
7165 if (record_full_arch_list_add_mem (addr64, 4))
7166 return -1;
7167 }
7168 }
7169 }
7170 break;
7171 case 2: /* lgdt */
7172 if (ir.mod == 3)
7173 {
7174 /* xgetbv */
7175 if (ir.rm == 0)
7176 {
7177 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7178 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7179 break;
7180 }
7181 /* xsetbv */
7182 else if (ir.rm == 1)
7183 break;
7184 }
7185 /* Fall through. */
7186 case 3: /* lidt */
7187 if (ir.mod == 3)
7188 {
7189 ir.addr -= 3;
7190 opcode = opcode << 8 | ir.modrm;
7191 goto no_support;
7192 }
7193 break;
7194 case 4: /* smsw */
7195 if (ir.mod == 3)
7196 {
7197 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7198 return -1;
7199 }
7200 else
7201 {
7202 ir.ot = OT_WORD;
7203 if (i386_record_lea_modrm (&ir))
7204 return -1;
7205 }
7206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7207 break;
7208 case 6: /* lmsw */
7209 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7210 break;
7211 case 7: /* invlpg */
7212 if (ir.mod == 3)
7213 {
7214 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7215 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7216 else
7217 {
7218 ir.addr -= 3;
7219 opcode = opcode << 8 | ir.modrm;
7220 goto no_support;
7221 }
7222 }
7223 else
7224 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7225 break;
7226 default:
7227 ir.addr -= 3;
7228 opcode = opcode << 8 | ir.modrm;
7229 goto no_support;
7230 break;
7231 }
7232 break;
7233
7234 case 0x0f08: /* invd */
7235 case 0x0f09: /* wbinvd */
7236 break;
7237
7238 case 0x63: /* arpl */
7239 if (i386_record_modrm (&ir))
7240 return -1;
7241 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7242 {
7243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7244 ? (ir.reg | rex_r) : ir.rm);
7245 }
7246 else
7247 {
7248 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7249 if (i386_record_lea_modrm (&ir))
7250 return -1;
7251 }
7252 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7254 break;
7255
7256 case 0x0f02: /* lar */
7257 case 0x0f03: /* lsl */
7258 if (i386_record_modrm (&ir))
7259 return -1;
7260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7262 break;
7263
7264 case 0x0f18:
7265 if (i386_record_modrm (&ir))
7266 return -1;
7267 if (ir.mod == 3 && ir.reg == 3)
7268 {
7269 ir.addr -= 3;
7270 opcode = opcode << 8 | ir.modrm;
7271 goto no_support;
7272 }
7273 break;
7274
7275 case 0x0f19:
7276 case 0x0f1a:
7277 case 0x0f1b:
7278 case 0x0f1c:
7279 case 0x0f1d:
7280 case 0x0f1e:
7281 case 0x0f1f:
7282 /* nop (multi byte) */
7283 break;
7284
7285 case 0x0f20: /* mov reg, crN */
7286 case 0x0f22: /* mov crN, reg */
7287 if (i386_record_modrm (&ir))
7288 return -1;
7289 if ((ir.modrm & 0xc0) != 0xc0)
7290 {
7291 ir.addr -= 3;
7292 opcode = opcode << 8 | ir.modrm;
7293 goto no_support;
7294 }
7295 switch (ir.reg)
7296 {
7297 case 0:
7298 case 2:
7299 case 3:
7300 case 4:
7301 case 8:
7302 if (opcode & 2)
7303 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7304 else
7305 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7306 break;
7307 default:
7308 ir.addr -= 3;
7309 opcode = opcode << 8 | ir.modrm;
7310 goto no_support;
7311 break;
7312 }
7313 break;
7314
7315 case 0x0f21: /* mov reg, drN */
7316 case 0x0f23: /* mov drN, reg */
7317 if (i386_record_modrm (&ir))
7318 return -1;
7319 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7320 || ir.reg == 5 || ir.reg >= 8)
7321 {
7322 ir.addr -= 3;
7323 opcode = opcode << 8 | ir.modrm;
7324 goto no_support;
7325 }
7326 if (opcode & 2)
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7328 else
7329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7330 break;
7331
7332 case 0x0f06: /* clts */
7333 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7334 break;
7335
7336 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7337
7338 case 0x0f0d: /* 3DNow! prefetch */
7339 break;
7340
7341 case 0x0f0e: /* 3DNow! femms */
7342 case 0x0f77: /* emms */
7343 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7344 goto no_support;
7345 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7346 break;
7347
7348 case 0x0f0f: /* 3DNow! data */
7349 if (i386_record_modrm (&ir))
7350 return -1;
7351 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7352 return -1;
7353 ir.addr++;
7354 switch (opcode8)
7355 {
7356 case 0x0c: /* 3DNow! pi2fw */
7357 case 0x0d: /* 3DNow! pi2fd */
7358 case 0x1c: /* 3DNow! pf2iw */
7359 case 0x1d: /* 3DNow! pf2id */
7360 case 0x8a: /* 3DNow! pfnacc */
7361 case 0x8e: /* 3DNow! pfpnacc */
7362 case 0x90: /* 3DNow! pfcmpge */
7363 case 0x94: /* 3DNow! pfmin */
7364 case 0x96: /* 3DNow! pfrcp */
7365 case 0x97: /* 3DNow! pfrsqrt */
7366 case 0x9a: /* 3DNow! pfsub */
7367 case 0x9e: /* 3DNow! pfadd */
7368 case 0xa0: /* 3DNow! pfcmpgt */
7369 case 0xa4: /* 3DNow! pfmax */
7370 case 0xa6: /* 3DNow! pfrcpit1 */
7371 case 0xa7: /* 3DNow! pfrsqit1 */
7372 case 0xaa: /* 3DNow! pfsubr */
7373 case 0xae: /* 3DNow! pfacc */
7374 case 0xb0: /* 3DNow! pfcmpeq */
7375 case 0xb4: /* 3DNow! pfmul */
7376 case 0xb6: /* 3DNow! pfrcpit2 */
7377 case 0xb7: /* 3DNow! pmulhrw */
7378 case 0xbb: /* 3DNow! pswapd */
7379 case 0xbf: /* 3DNow! pavgusb */
7380 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7381 goto no_support_3dnow_data;
7382 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7383 break;
7384
7385 default:
7386 no_support_3dnow_data:
7387 opcode = (opcode << 8) | opcode8;
7388 goto no_support;
7389 break;
7390 }
7391 break;
7392
7393 case 0x0faa: /* rsm */
7394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7398 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7399 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7402 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7403 break;
7404
7405 case 0x0fae:
7406 if (i386_record_modrm (&ir))
7407 return -1;
7408 switch(ir.reg)
7409 {
7410 case 0: /* fxsave */
7411 {
7412 uint64_t tmpu64;
7413
7414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7415 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7416 return -1;
7417 if (record_full_arch_list_add_mem (tmpu64, 512))
7418 return -1;
7419 }
7420 break;
7421
7422 case 1: /* fxrstor */
7423 {
7424 int i;
7425
7426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7427
7428 for (i = I387_MM0_REGNUM (tdep);
7429 i386_mmx_regnum_p (gdbarch, i); i++)
7430 record_full_arch_list_add_reg (ir.regcache, i);
7431
7432 for (i = I387_XMM0_REGNUM (tdep);
7433 i386_xmm_regnum_p (gdbarch, i); i++)
7434 record_full_arch_list_add_reg (ir.regcache, i);
7435
7436 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7437 record_full_arch_list_add_reg (ir.regcache,
7438 I387_MXCSR_REGNUM(tdep));
7439
7440 for (i = I387_ST0_REGNUM (tdep);
7441 i386_fp_regnum_p (gdbarch, i); i++)
7442 record_full_arch_list_add_reg (ir.regcache, i);
7443
7444 for (i = I387_FCTRL_REGNUM (tdep);
7445 i386_fpc_regnum_p (gdbarch, i); i++)
7446 record_full_arch_list_add_reg (ir.regcache, i);
7447 }
7448 break;
7449
7450 case 2: /* ldmxcsr */
7451 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7452 goto no_support;
7453 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7454 break;
7455
7456 case 3: /* stmxcsr */
7457 ir.ot = OT_LONG;
7458 if (i386_record_lea_modrm (&ir))
7459 return -1;
7460 break;
7461
7462 case 5: /* lfence */
7463 case 6: /* mfence */
7464 case 7: /* sfence clflush */
7465 break;
7466
7467 default:
7468 opcode = (opcode << 8) | ir.modrm;
7469 goto no_support;
7470 break;
7471 }
7472 break;
7473
7474 case 0x0fc3: /* movnti */
7475 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7476 if (i386_record_modrm (&ir))
7477 return -1;
7478 if (ir.mod == 3)
7479 goto no_support;
7480 ir.reg |= rex_r;
7481 if (i386_record_lea_modrm (&ir))
7482 return -1;
7483 break;
7484
7485 /* Add prefix to opcode. */
7486 case 0x0f10:
7487 case 0x0f11:
7488 case 0x0f12:
7489 case 0x0f13:
7490 case 0x0f14:
7491 case 0x0f15:
7492 case 0x0f16:
7493 case 0x0f17:
7494 case 0x0f28:
7495 case 0x0f29:
7496 case 0x0f2a:
7497 case 0x0f2b:
7498 case 0x0f2c:
7499 case 0x0f2d:
7500 case 0x0f2e:
7501 case 0x0f2f:
7502 case 0x0f38:
7503 case 0x0f39:
7504 case 0x0f3a:
7505 case 0x0f50:
7506 case 0x0f51:
7507 case 0x0f52:
7508 case 0x0f53:
7509 case 0x0f54:
7510 case 0x0f55:
7511 case 0x0f56:
7512 case 0x0f57:
7513 case 0x0f58:
7514 case 0x0f59:
7515 case 0x0f5a:
7516 case 0x0f5b:
7517 case 0x0f5c:
7518 case 0x0f5d:
7519 case 0x0f5e:
7520 case 0x0f5f:
7521 case 0x0f60:
7522 case 0x0f61:
7523 case 0x0f62:
7524 case 0x0f63:
7525 case 0x0f64:
7526 case 0x0f65:
7527 case 0x0f66:
7528 case 0x0f67:
7529 case 0x0f68:
7530 case 0x0f69:
7531 case 0x0f6a:
7532 case 0x0f6b:
7533 case 0x0f6c:
7534 case 0x0f6d:
7535 case 0x0f6e:
7536 case 0x0f6f:
7537 case 0x0f70:
7538 case 0x0f71:
7539 case 0x0f72:
7540 case 0x0f73:
7541 case 0x0f74:
7542 case 0x0f75:
7543 case 0x0f76:
7544 case 0x0f7c:
7545 case 0x0f7d:
7546 case 0x0f7e:
7547 case 0x0f7f:
7548 case 0x0fb8:
7549 case 0x0fc2:
7550 case 0x0fc4:
7551 case 0x0fc5:
7552 case 0x0fc6:
7553 case 0x0fd0:
7554 case 0x0fd1:
7555 case 0x0fd2:
7556 case 0x0fd3:
7557 case 0x0fd4:
7558 case 0x0fd5:
7559 case 0x0fd6:
7560 case 0x0fd7:
7561 case 0x0fd8:
7562 case 0x0fd9:
7563 case 0x0fda:
7564 case 0x0fdb:
7565 case 0x0fdc:
7566 case 0x0fdd:
7567 case 0x0fde:
7568 case 0x0fdf:
7569 case 0x0fe0:
7570 case 0x0fe1:
7571 case 0x0fe2:
7572 case 0x0fe3:
7573 case 0x0fe4:
7574 case 0x0fe5:
7575 case 0x0fe6:
7576 case 0x0fe7:
7577 case 0x0fe8:
7578 case 0x0fe9:
7579 case 0x0fea:
7580 case 0x0feb:
7581 case 0x0fec:
7582 case 0x0fed:
7583 case 0x0fee:
7584 case 0x0fef:
7585 case 0x0ff0:
7586 case 0x0ff1:
7587 case 0x0ff2:
7588 case 0x0ff3:
7589 case 0x0ff4:
7590 case 0x0ff5:
7591 case 0x0ff6:
7592 case 0x0ff7:
7593 case 0x0ff8:
7594 case 0x0ff9:
7595 case 0x0ffa:
7596 case 0x0ffb:
7597 case 0x0ffc:
7598 case 0x0ffd:
7599 case 0x0ffe:
7600 /* Mask out PREFIX_ADDR. */
7601 switch ((prefixes & ~PREFIX_ADDR))
7602 {
7603 case PREFIX_REPNZ:
7604 opcode |= 0xf20000;
7605 break;
7606 case PREFIX_DATA:
7607 opcode |= 0x660000;
7608 break;
7609 case PREFIX_REPZ:
7610 opcode |= 0xf30000;
7611 break;
7612 }
7613 reswitch_prefix_add:
7614 switch (opcode)
7615 {
7616 case 0x0f38:
7617 case 0x660f38:
7618 case 0xf20f38:
7619 case 0x0f3a:
7620 case 0x660f3a:
7621 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7622 return -1;
7623 ir.addr++;
7624 opcode = (uint32_t) opcode8 | opcode << 8;
7625 goto reswitch_prefix_add;
7626 break;
7627
7628 case 0x0f10: /* movups */
7629 case 0x660f10: /* movupd */
7630 case 0xf30f10: /* movss */
7631 case 0xf20f10: /* movsd */
7632 case 0x0f12: /* movlps */
7633 case 0x660f12: /* movlpd */
7634 case 0xf30f12: /* movsldup */
7635 case 0xf20f12: /* movddup */
7636 case 0x0f14: /* unpcklps */
7637 case 0x660f14: /* unpcklpd */
7638 case 0x0f15: /* unpckhps */
7639 case 0x660f15: /* unpckhpd */
7640 case 0x0f16: /* movhps */
7641 case 0x660f16: /* movhpd */
7642 case 0xf30f16: /* movshdup */
7643 case 0x0f28: /* movaps */
7644 case 0x660f28: /* movapd */
7645 case 0x0f2a: /* cvtpi2ps */
7646 case 0x660f2a: /* cvtpi2pd */
7647 case 0xf30f2a: /* cvtsi2ss */
7648 case 0xf20f2a: /* cvtsi2sd */
7649 case 0x0f2c: /* cvttps2pi */
7650 case 0x660f2c: /* cvttpd2pi */
7651 case 0x0f2d: /* cvtps2pi */
7652 case 0x660f2d: /* cvtpd2pi */
7653 case 0x660f3800: /* pshufb */
7654 case 0x660f3801: /* phaddw */
7655 case 0x660f3802: /* phaddd */
7656 case 0x660f3803: /* phaddsw */
7657 case 0x660f3804: /* pmaddubsw */
7658 case 0x660f3805: /* phsubw */
7659 case 0x660f3806: /* phsubd */
7660 case 0x660f3807: /* phsubsw */
7661 case 0x660f3808: /* psignb */
7662 case 0x660f3809: /* psignw */
7663 case 0x660f380a: /* psignd */
7664 case 0x660f380b: /* pmulhrsw */
7665 case 0x660f3810: /* pblendvb */
7666 case 0x660f3814: /* blendvps */
7667 case 0x660f3815: /* blendvpd */
7668 case 0x660f381c: /* pabsb */
7669 case 0x660f381d: /* pabsw */
7670 case 0x660f381e: /* pabsd */
7671 case 0x660f3820: /* pmovsxbw */
7672 case 0x660f3821: /* pmovsxbd */
7673 case 0x660f3822: /* pmovsxbq */
7674 case 0x660f3823: /* pmovsxwd */
7675 case 0x660f3824: /* pmovsxwq */
7676 case 0x660f3825: /* pmovsxdq */
7677 case 0x660f3828: /* pmuldq */
7678 case 0x660f3829: /* pcmpeqq */
7679 case 0x660f382a: /* movntdqa */
7680 case 0x660f3a08: /* roundps */
7681 case 0x660f3a09: /* roundpd */
7682 case 0x660f3a0a: /* roundss */
7683 case 0x660f3a0b: /* roundsd */
7684 case 0x660f3a0c: /* blendps */
7685 case 0x660f3a0d: /* blendpd */
7686 case 0x660f3a0e: /* pblendw */
7687 case 0x660f3a0f: /* palignr */
7688 case 0x660f3a20: /* pinsrb */
7689 case 0x660f3a21: /* insertps */
7690 case 0x660f3a22: /* pinsrd pinsrq */
7691 case 0x660f3a40: /* dpps */
7692 case 0x660f3a41: /* dppd */
7693 case 0x660f3a42: /* mpsadbw */
7694 case 0x660f3a60: /* pcmpestrm */
7695 case 0x660f3a61: /* pcmpestri */
7696 case 0x660f3a62: /* pcmpistrm */
7697 case 0x660f3a63: /* pcmpistri */
7698 case 0x0f51: /* sqrtps */
7699 case 0x660f51: /* sqrtpd */
7700 case 0xf20f51: /* sqrtsd */
7701 case 0xf30f51: /* sqrtss */
7702 case 0x0f52: /* rsqrtps */
7703 case 0xf30f52: /* rsqrtss */
7704 case 0x0f53: /* rcpps */
7705 case 0xf30f53: /* rcpss */
7706 case 0x0f54: /* andps */
7707 case 0x660f54: /* andpd */
7708 case 0x0f55: /* andnps */
7709 case 0x660f55: /* andnpd */
7710 case 0x0f56: /* orps */
7711 case 0x660f56: /* orpd */
7712 case 0x0f57: /* xorps */
7713 case 0x660f57: /* xorpd */
7714 case 0x0f58: /* addps */
7715 case 0x660f58: /* addpd */
7716 case 0xf20f58: /* addsd */
7717 case 0xf30f58: /* addss */
7718 case 0x0f59: /* mulps */
7719 case 0x660f59: /* mulpd */
7720 case 0xf20f59: /* mulsd */
7721 case 0xf30f59: /* mulss */
7722 case 0x0f5a: /* cvtps2pd */
7723 case 0x660f5a: /* cvtpd2ps */
7724 case 0xf20f5a: /* cvtsd2ss */
7725 case 0xf30f5a: /* cvtss2sd */
7726 case 0x0f5b: /* cvtdq2ps */
7727 case 0x660f5b: /* cvtps2dq */
7728 case 0xf30f5b: /* cvttps2dq */
7729 case 0x0f5c: /* subps */
7730 case 0x660f5c: /* subpd */
7731 case 0xf20f5c: /* subsd */
7732 case 0xf30f5c: /* subss */
7733 case 0x0f5d: /* minps */
7734 case 0x660f5d: /* minpd */
7735 case 0xf20f5d: /* minsd */
7736 case 0xf30f5d: /* minss */
7737 case 0x0f5e: /* divps */
7738 case 0x660f5e: /* divpd */
7739 case 0xf20f5e: /* divsd */
7740 case 0xf30f5e: /* divss */
7741 case 0x0f5f: /* maxps */
7742 case 0x660f5f: /* maxpd */
7743 case 0xf20f5f: /* maxsd */
7744 case 0xf30f5f: /* maxss */
7745 case 0x660f60: /* punpcklbw */
7746 case 0x660f61: /* punpcklwd */
7747 case 0x660f62: /* punpckldq */
7748 case 0x660f63: /* packsswb */
7749 case 0x660f64: /* pcmpgtb */
7750 case 0x660f65: /* pcmpgtw */
7751 case 0x660f66: /* pcmpgtd */
7752 case 0x660f67: /* packuswb */
7753 case 0x660f68: /* punpckhbw */
7754 case 0x660f69: /* punpckhwd */
7755 case 0x660f6a: /* punpckhdq */
7756 case 0x660f6b: /* packssdw */
7757 case 0x660f6c: /* punpcklqdq */
7758 case 0x660f6d: /* punpckhqdq */
7759 case 0x660f6e: /* movd */
7760 case 0x660f6f: /* movdqa */
7761 case 0xf30f6f: /* movdqu */
7762 case 0x660f70: /* pshufd */
7763 case 0xf20f70: /* pshuflw */
7764 case 0xf30f70: /* pshufhw */
7765 case 0x660f74: /* pcmpeqb */
7766 case 0x660f75: /* pcmpeqw */
7767 case 0x660f76: /* pcmpeqd */
7768 case 0x660f7c: /* haddpd */
7769 case 0xf20f7c: /* haddps */
7770 case 0x660f7d: /* hsubpd */
7771 case 0xf20f7d: /* hsubps */
7772 case 0xf30f7e: /* movq */
7773 case 0x0fc2: /* cmpps */
7774 case 0x660fc2: /* cmppd */
7775 case 0xf20fc2: /* cmpsd */
7776 case 0xf30fc2: /* cmpss */
7777 case 0x660fc4: /* pinsrw */
7778 case 0x0fc6: /* shufps */
7779 case 0x660fc6: /* shufpd */
7780 case 0x660fd0: /* addsubpd */
7781 case 0xf20fd0: /* addsubps */
7782 case 0x660fd1: /* psrlw */
7783 case 0x660fd2: /* psrld */
7784 case 0x660fd3: /* psrlq */
7785 case 0x660fd4: /* paddq */
7786 case 0x660fd5: /* pmullw */
7787 case 0xf30fd6: /* movq2dq */
7788 case 0x660fd8: /* psubusb */
7789 case 0x660fd9: /* psubusw */
7790 case 0x660fda: /* pminub */
7791 case 0x660fdb: /* pand */
7792 case 0x660fdc: /* paddusb */
7793 case 0x660fdd: /* paddusw */
7794 case 0x660fde: /* pmaxub */
7795 case 0x660fdf: /* pandn */
7796 case 0x660fe0: /* pavgb */
7797 case 0x660fe1: /* psraw */
7798 case 0x660fe2: /* psrad */
7799 case 0x660fe3: /* pavgw */
7800 case 0x660fe4: /* pmulhuw */
7801 case 0x660fe5: /* pmulhw */
7802 case 0x660fe6: /* cvttpd2dq */
7803 case 0xf20fe6: /* cvtpd2dq */
7804 case 0xf30fe6: /* cvtdq2pd */
7805 case 0x660fe8: /* psubsb */
7806 case 0x660fe9: /* psubsw */
7807 case 0x660fea: /* pminsw */
7808 case 0x660feb: /* por */
7809 case 0x660fec: /* paddsb */
7810 case 0x660fed: /* paddsw */
7811 case 0x660fee: /* pmaxsw */
7812 case 0x660fef: /* pxor */
7813 case 0xf20ff0: /* lddqu */
7814 case 0x660ff1: /* psllw */
7815 case 0x660ff2: /* pslld */
7816 case 0x660ff3: /* psllq */
7817 case 0x660ff4: /* pmuludq */
7818 case 0x660ff5: /* pmaddwd */
7819 case 0x660ff6: /* psadbw */
7820 case 0x660ff8: /* psubb */
7821 case 0x660ff9: /* psubw */
7822 case 0x660ffa: /* psubd */
7823 case 0x660ffb: /* psubq */
7824 case 0x660ffc: /* paddb */
7825 case 0x660ffd: /* paddw */
7826 case 0x660ffe: /* paddd */
7827 if (i386_record_modrm (&ir))
7828 return -1;
7829 ir.reg |= rex_r;
7830 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7831 goto no_support;
7832 record_full_arch_list_add_reg (ir.regcache,
7833 I387_XMM0_REGNUM (tdep) + ir.reg);
7834 if ((opcode & 0xfffffffc) == 0x660f3a60)
7835 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7836 break;
7837
7838 case 0x0f11: /* movups */
7839 case 0x660f11: /* movupd */
7840 case 0xf30f11: /* movss */
7841 case 0xf20f11: /* movsd */
7842 case 0x0f13: /* movlps */
7843 case 0x660f13: /* movlpd */
7844 case 0x0f17: /* movhps */
7845 case 0x660f17: /* movhpd */
7846 case 0x0f29: /* movaps */
7847 case 0x660f29: /* movapd */
7848 case 0x660f3a14: /* pextrb */
7849 case 0x660f3a15: /* pextrw */
7850 case 0x660f3a16: /* pextrd pextrq */
7851 case 0x660f3a17: /* extractps */
7852 case 0x660f7f: /* movdqa */
7853 case 0xf30f7f: /* movdqu */
7854 if (i386_record_modrm (&ir))
7855 return -1;
7856 if (ir.mod == 3)
7857 {
7858 if (opcode == 0x0f13 || opcode == 0x660f13
7859 || opcode == 0x0f17 || opcode == 0x660f17)
7860 goto no_support;
7861 ir.rm |= ir.rex_b;
7862 if (!i386_xmm_regnum_p (gdbarch,
7863 I387_XMM0_REGNUM (tdep) + ir.rm))
7864 goto no_support;
7865 record_full_arch_list_add_reg (ir.regcache,
7866 I387_XMM0_REGNUM (tdep) + ir.rm);
7867 }
7868 else
7869 {
7870 switch (opcode)
7871 {
7872 case 0x660f3a14:
7873 ir.ot = OT_BYTE;
7874 break;
7875 case 0x660f3a15:
7876 ir.ot = OT_WORD;
7877 break;
7878 case 0x660f3a16:
7879 ir.ot = OT_LONG;
7880 break;
7881 case 0x660f3a17:
7882 ir.ot = OT_QUAD;
7883 break;
7884 default:
7885 ir.ot = OT_DQUAD;
7886 break;
7887 }
7888 if (i386_record_lea_modrm (&ir))
7889 return -1;
7890 }
7891 break;
7892
7893 case 0x0f2b: /* movntps */
7894 case 0x660f2b: /* movntpd */
7895 case 0x0fe7: /* movntq */
7896 case 0x660fe7: /* movntdq */
7897 if (ir.mod == 3)
7898 goto no_support;
7899 if (opcode == 0x0fe7)
7900 ir.ot = OT_QUAD;
7901 else
7902 ir.ot = OT_DQUAD;
7903 if (i386_record_lea_modrm (&ir))
7904 return -1;
7905 break;
7906
7907 case 0xf30f2c: /* cvttss2si */
7908 case 0xf20f2c: /* cvttsd2si */
7909 case 0xf30f2d: /* cvtss2si */
7910 case 0xf20f2d: /* cvtsd2si */
7911 case 0xf20f38f0: /* crc32 */
7912 case 0xf20f38f1: /* crc32 */
7913 case 0x0f50: /* movmskps */
7914 case 0x660f50: /* movmskpd */
7915 case 0x0fc5: /* pextrw */
7916 case 0x660fc5: /* pextrw */
7917 case 0x0fd7: /* pmovmskb */
7918 case 0x660fd7: /* pmovmskb */
7919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7920 break;
7921
7922 case 0x0f3800: /* pshufb */
7923 case 0x0f3801: /* phaddw */
7924 case 0x0f3802: /* phaddd */
7925 case 0x0f3803: /* phaddsw */
7926 case 0x0f3804: /* pmaddubsw */
7927 case 0x0f3805: /* phsubw */
7928 case 0x0f3806: /* phsubd */
7929 case 0x0f3807: /* phsubsw */
7930 case 0x0f3808: /* psignb */
7931 case 0x0f3809: /* psignw */
7932 case 0x0f380a: /* psignd */
7933 case 0x0f380b: /* pmulhrsw */
7934 case 0x0f381c: /* pabsb */
7935 case 0x0f381d: /* pabsw */
7936 case 0x0f381e: /* pabsd */
7937 case 0x0f382b: /* packusdw */
7938 case 0x0f3830: /* pmovzxbw */
7939 case 0x0f3831: /* pmovzxbd */
7940 case 0x0f3832: /* pmovzxbq */
7941 case 0x0f3833: /* pmovzxwd */
7942 case 0x0f3834: /* pmovzxwq */
7943 case 0x0f3835: /* pmovzxdq */
7944 case 0x0f3837: /* pcmpgtq */
7945 case 0x0f3838: /* pminsb */
7946 case 0x0f3839: /* pminsd */
7947 case 0x0f383a: /* pminuw */
7948 case 0x0f383b: /* pminud */
7949 case 0x0f383c: /* pmaxsb */
7950 case 0x0f383d: /* pmaxsd */
7951 case 0x0f383e: /* pmaxuw */
7952 case 0x0f383f: /* pmaxud */
7953 case 0x0f3840: /* pmulld */
7954 case 0x0f3841: /* phminposuw */
7955 case 0x0f3a0f: /* palignr */
7956 case 0x0f60: /* punpcklbw */
7957 case 0x0f61: /* punpcklwd */
7958 case 0x0f62: /* punpckldq */
7959 case 0x0f63: /* packsswb */
7960 case 0x0f64: /* pcmpgtb */
7961 case 0x0f65: /* pcmpgtw */
7962 case 0x0f66: /* pcmpgtd */
7963 case 0x0f67: /* packuswb */
7964 case 0x0f68: /* punpckhbw */
7965 case 0x0f69: /* punpckhwd */
7966 case 0x0f6a: /* punpckhdq */
7967 case 0x0f6b: /* packssdw */
7968 case 0x0f6e: /* movd */
7969 case 0x0f6f: /* movq */
7970 case 0x0f70: /* pshufw */
7971 case 0x0f74: /* pcmpeqb */
7972 case 0x0f75: /* pcmpeqw */
7973 case 0x0f76: /* pcmpeqd */
7974 case 0x0fc4: /* pinsrw */
7975 case 0x0fd1: /* psrlw */
7976 case 0x0fd2: /* psrld */
7977 case 0x0fd3: /* psrlq */
7978 case 0x0fd4: /* paddq */
7979 case 0x0fd5: /* pmullw */
7980 case 0xf20fd6: /* movdq2q */
7981 case 0x0fd8: /* psubusb */
7982 case 0x0fd9: /* psubusw */
7983 case 0x0fda: /* pminub */
7984 case 0x0fdb: /* pand */
7985 case 0x0fdc: /* paddusb */
7986 case 0x0fdd: /* paddusw */
7987 case 0x0fde: /* pmaxub */
7988 case 0x0fdf: /* pandn */
7989 case 0x0fe0: /* pavgb */
7990 case 0x0fe1: /* psraw */
7991 case 0x0fe2: /* psrad */
7992 case 0x0fe3: /* pavgw */
7993 case 0x0fe4: /* pmulhuw */
7994 case 0x0fe5: /* pmulhw */
7995 case 0x0fe8: /* psubsb */
7996 case 0x0fe9: /* psubsw */
7997 case 0x0fea: /* pminsw */
7998 case 0x0feb: /* por */
7999 case 0x0fec: /* paddsb */
8000 case 0x0fed: /* paddsw */
8001 case 0x0fee: /* pmaxsw */
8002 case 0x0fef: /* pxor */
8003 case 0x0ff1: /* psllw */
8004 case 0x0ff2: /* pslld */
8005 case 0x0ff3: /* psllq */
8006 case 0x0ff4: /* pmuludq */
8007 case 0x0ff5: /* pmaddwd */
8008 case 0x0ff6: /* psadbw */
8009 case 0x0ff8: /* psubb */
8010 case 0x0ff9: /* psubw */
8011 case 0x0ffa: /* psubd */
8012 case 0x0ffb: /* psubq */
8013 case 0x0ffc: /* paddb */
8014 case 0x0ffd: /* paddw */
8015 case 0x0ffe: /* paddd */
8016 if (i386_record_modrm (&ir))
8017 return -1;
8018 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8019 goto no_support;
8020 record_full_arch_list_add_reg (ir.regcache,
8021 I387_MM0_REGNUM (tdep) + ir.reg);
8022 break;
8023
8024 case 0x0f71: /* psllw */
8025 case 0x0f72: /* pslld */
8026 case 0x0f73: /* psllq */
8027 if (i386_record_modrm (&ir))
8028 return -1;
8029 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8030 goto no_support;
8031 record_full_arch_list_add_reg (ir.regcache,
8032 I387_MM0_REGNUM (tdep) + ir.rm);
8033 break;
8034
8035 case 0x660f71: /* psllw */
8036 case 0x660f72: /* pslld */
8037 case 0x660f73: /* psllq */
8038 if (i386_record_modrm (&ir))
8039 return -1;
8040 ir.rm |= ir.rex_b;
8041 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8042 goto no_support;
8043 record_full_arch_list_add_reg (ir.regcache,
8044 I387_XMM0_REGNUM (tdep) + ir.rm);
8045 break;
8046
8047 case 0x0f7e: /* movd */
8048 case 0x660f7e: /* movd */
8049 if (i386_record_modrm (&ir))
8050 return -1;
8051 if (ir.mod == 3)
8052 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8053 else
8054 {
8055 if (ir.dflag == 2)
8056 ir.ot = OT_QUAD;
8057 else
8058 ir.ot = OT_LONG;
8059 if (i386_record_lea_modrm (&ir))
8060 return -1;
8061 }
8062 break;
8063
8064 case 0x0f7f: /* movq */
8065 if (i386_record_modrm (&ir))
8066 return -1;
8067 if (ir.mod == 3)
8068 {
8069 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8070 goto no_support;
8071 record_full_arch_list_add_reg (ir.regcache,
8072 I387_MM0_REGNUM (tdep) + ir.rm);
8073 }
8074 else
8075 {
8076 ir.ot = OT_QUAD;
8077 if (i386_record_lea_modrm (&ir))
8078 return -1;
8079 }
8080 break;
8081
8082 case 0xf30fb8: /* popcnt */
8083 if (i386_record_modrm (&ir))
8084 return -1;
8085 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8086 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8087 break;
8088
8089 case 0x660fd6: /* movq */
8090 if (i386_record_modrm (&ir))
8091 return -1;
8092 if (ir.mod == 3)
8093 {
8094 ir.rm |= ir.rex_b;
8095 if (!i386_xmm_regnum_p (gdbarch,
8096 I387_XMM0_REGNUM (tdep) + ir.rm))
8097 goto no_support;
8098 record_full_arch_list_add_reg (ir.regcache,
8099 I387_XMM0_REGNUM (tdep) + ir.rm);
8100 }
8101 else
8102 {
8103 ir.ot = OT_QUAD;
8104 if (i386_record_lea_modrm (&ir))
8105 return -1;
8106 }
8107 break;
8108
8109 case 0x660f3817: /* ptest */
8110 case 0x0f2e: /* ucomiss */
8111 case 0x660f2e: /* ucomisd */
8112 case 0x0f2f: /* comiss */
8113 case 0x660f2f: /* comisd */
8114 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8115 break;
8116
8117 case 0x0ff7: /* maskmovq */
8118 regcache_raw_read_unsigned (ir.regcache,
8119 ir.regmap[X86_RECORD_REDI_REGNUM],
8120 &addr);
8121 if (record_full_arch_list_add_mem (addr, 64))
8122 return -1;
8123 break;
8124
8125 case 0x660ff7: /* maskmovdqu */
8126 regcache_raw_read_unsigned (ir.regcache,
8127 ir.regmap[X86_RECORD_REDI_REGNUM],
8128 &addr);
8129 if (record_full_arch_list_add_mem (addr, 128))
8130 return -1;
8131 break;
8132
8133 default:
8134 goto no_support;
8135 break;
8136 }
8137 break;
8138
8139 default:
8140 goto no_support;
8141 break;
8142 }
8143
8144 /* In the future, maybe still need to deal with need_dasm. */
8145 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8146 if (record_full_arch_list_add_end ())
8147 return -1;
8148
8149 return 0;
8150
8151 no_support:
8152 gdb_printf (gdb_stderr,
8153 _("Process record does not support instruction 0x%02x "
8154 "at address %s.\n"),
8155 (unsigned int) (opcode),
8156 paddress (gdbarch, ir.orig_addr));
8157 return -1;
8158 }
8159
8160 static const int i386_record_regmap[] =
8161 {
8162 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8163 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8164 0, 0, 0, 0, 0, 0, 0, 0,
8165 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8166 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8167 };
8168
8169 /* Check that the given address appears suitable for a fast
8170 tracepoint, which on x86-64 means that we need an instruction of at
8171 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8172 jump and not have to worry about program jumps to an address in the
8173 middle of the tracepoint jump. On x86, it may be possible to use
8174 4-byte jumps with a 2-byte offset to a trampoline located in the
8175 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8176 of instruction to replace, and 0 if not, plus an explanatory
8177 string. */
8178
8179 static int
8180 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8181 std::string *msg)
8182 {
8183 int len, jumplen;
8184
8185 /* Ask the target for the minimum instruction length supported. */
8186 jumplen = target_get_min_fast_tracepoint_insn_len ();
8187
8188 if (jumplen < 0)
8189 {
8190 /* If the target does not support the get_min_fast_tracepoint_insn_len
8191 operation, assume that fast tracepoints will always be implemented
8192 using 4-byte relative jumps on both x86 and x86-64. */
8193 jumplen = 5;
8194 }
8195 else if (jumplen == 0)
8196 {
8197 /* If the target does support get_min_fast_tracepoint_insn_len but
8198 returns zero, then the IPA has not loaded yet. In this case,
8199 we optimistically assume that truncated 2-byte relative jumps
8200 will be available on x86, and compensate later if this assumption
8201 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8202 jumps will always be used. */
8203 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8204 }
8205
8206 /* Check for fit. */
8207 len = gdb_insn_length (gdbarch, addr);
8208
8209 if (len < jumplen)
8210 {
8211 /* Return a bit of target-specific detail to add to the caller's
8212 generic failure message. */
8213 if (msg)
8214 *msg = string_printf (_("; instruction is only %d bytes long, "
8215 "need at least %d bytes for the jump"),
8216 len, jumplen);
8217 return 0;
8218 }
8219 else
8220 {
8221 if (msg)
8222 msg->clear ();
8223 return 1;
8224 }
8225 }
8226
8227 /* Return a floating-point format for a floating-point variable of
8228 length LEN in bits. If non-NULL, NAME is the name of its type.
8229 If no suitable type is found, return NULL. */
8230
8231 static const struct floatformat **
8232 i386_floatformat_for_type (struct gdbarch *gdbarch,
8233 const char *name, int len)
8234 {
8235 if (len == 128 && name)
8236 if (strcmp (name, "__float128") == 0
8237 || strcmp (name, "_Float128") == 0
8238 || strcmp (name, "complex _Float128") == 0
8239 || strcmp (name, "complex(kind=16)") == 0
8240 || strcmp (name, "complex*32") == 0
8241 || strcmp (name, "COMPLEX*32") == 0
8242 || strcmp (name, "quad complex") == 0
8243 || strcmp (name, "real(kind=16)") == 0
8244 || strcmp (name, "real*16") == 0
8245 || strcmp (name, "REAL*16") == 0)
8246 return floatformats_ieee_quad;
8247
8248 return default_floatformat_for_type (gdbarch, name, len);
8249 }
8250
8251 static int
8252 i386_validate_tdesc_p (i386_gdbarch_tdep *tdep,
8253 struct tdesc_arch_data *tdesc_data)
8254 {
8255 const struct target_desc *tdesc = tdep->tdesc;
8256 const struct tdesc_feature *feature_core;
8257
8258 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8259 *feature_avx512, *feature_pkeys, *feature_segments;
8260 int i, num_regs, valid_p;
8261
8262 if (! tdesc_has_registers (tdesc))
8263 return 0;
8264
8265 /* Get core registers. */
8266 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8267 if (feature_core == NULL)
8268 return 0;
8269
8270 /* Get SSE registers. */
8271 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8272
8273 /* Try AVX registers. */
8274 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8275
8276 /* Try MPX registers. */
8277 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8278
8279 /* Try AVX512 registers. */
8280 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8281
8282 /* Try segment base registers. */
8283 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8284
8285 /* Try PKEYS */
8286 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8287
8288 valid_p = 1;
8289
8290 /* The XCR0 bits. */
8291 if (feature_avx512)
8292 {
8293 /* AVX512 register description requires AVX register description. */
8294 if (!feature_avx)
8295 return 0;
8296
8297 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8298
8299 /* It may have been set by OSABI initialization function. */
8300 if (tdep->k0_regnum < 0)
8301 {
8302 tdep->k_register_names = i386_k_names;
8303 tdep->k0_regnum = I386_K0_REGNUM;
8304 }
8305
8306 for (i = 0; i < I387_NUM_K_REGS; i++)
8307 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8308 tdep->k0_regnum + i,
8309 i386_k_names[i]);
8310
8311 if (tdep->num_zmm_regs == 0)
8312 {
8313 tdep->zmmh_register_names = i386_zmmh_names;
8314 tdep->num_zmm_regs = 8;
8315 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8316 }
8317
8318 for (i = 0; i < tdep->num_zmm_regs; i++)
8319 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8320 tdep->zmm0h_regnum + i,
8321 tdep->zmmh_register_names[i]);
8322
8323 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8324 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8325 tdep->xmm16_regnum + i,
8326 tdep->xmm_avx512_register_names[i]);
8327
8328 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8329 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8330 tdep->ymm16h_regnum + i,
8331 tdep->ymm16h_register_names[i]);
8332 }
8333 if (feature_avx)
8334 {
8335 /* AVX register description requires SSE register description. */
8336 if (!feature_sse)
8337 return 0;
8338
8339 if (!feature_avx512)
8340 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8341
8342 /* It may have been set by OSABI initialization function. */
8343 if (tdep->num_ymm_regs == 0)
8344 {
8345 tdep->ymmh_register_names = i386_ymmh_names;
8346 tdep->num_ymm_regs = 8;
8347 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8348 }
8349
8350 for (i = 0; i < tdep->num_ymm_regs; i++)
8351 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8352 tdep->ymm0h_regnum + i,
8353 tdep->ymmh_register_names[i]);
8354 }
8355 else if (feature_sse)
8356 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8357 else
8358 {
8359 tdep->xcr0 = X86_XSTATE_X87_MASK;
8360 tdep->num_xmm_regs = 0;
8361 }
8362
8363 num_regs = tdep->num_core_regs;
8364 for (i = 0; i < num_regs; i++)
8365 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8366 tdep->register_names[i]);
8367
8368 if (feature_sse)
8369 {
8370 /* Need to include %mxcsr, so add one. */
8371 num_regs += tdep->num_xmm_regs + 1;
8372 for (; i < num_regs; i++)
8373 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8374 tdep->register_names[i]);
8375 }
8376
8377 if (feature_mpx)
8378 {
8379 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8380
8381 if (tdep->bnd0r_regnum < 0)
8382 {
8383 tdep->mpx_register_names = i386_mpx_names;
8384 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8385 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8386 }
8387
8388 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8389 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8390 I387_BND0R_REGNUM (tdep) + i,
8391 tdep->mpx_register_names[i]);
8392 }
8393
8394 if (feature_segments)
8395 {
8396 if (tdep->fsbase_regnum < 0)
8397 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8398 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8399 tdep->fsbase_regnum, "fs_base");
8400 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8401 tdep->fsbase_regnum + 1, "gs_base");
8402 }
8403
8404 if (feature_pkeys)
8405 {
8406 tdep->xcr0 |= X86_XSTATE_PKRU;
8407 if (tdep->pkru_regnum < 0)
8408 {
8409 tdep->pkeys_register_names = i386_pkeys_names;
8410 tdep->pkru_regnum = I386_PKRU_REGNUM;
8411 tdep->num_pkeys_regs = 1;
8412 }
8413
8414 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8415 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8416 I387_PKRU_REGNUM (tdep) + i,
8417 tdep->pkeys_register_names[i]);
8418 }
8419
8420 return valid_p;
8421 }
8422
8423 \f
8424
8425 /* Implement the type_align gdbarch function. */
8426
8427 static ULONGEST
8428 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8429 {
8430 type = check_typedef (type);
8431
8432 if (gdbarch_ptr_bit (gdbarch) == 32)
8433 {
8434 if ((type->code () == TYPE_CODE_INT
8435 || type->code () == TYPE_CODE_FLT)
8436 && TYPE_LENGTH (type) > 4)
8437 return 4;
8438
8439 /* Handle x86's funny long double. */
8440 if (type->code () == TYPE_CODE_FLT
8441 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8442 return 4;
8443 }
8444
8445 return 0;
8446 }
8447
8448 \f
8449 /* Note: This is called for both i386 and amd64. */
8450
8451 static struct gdbarch *
8452 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8453 {
8454 struct gdbarch *gdbarch;
8455 const struct target_desc *tdesc;
8456 int mm0_regnum;
8457 int ymm0_regnum;
8458 int bnd0_regnum;
8459 int num_bnd_cooked;
8460
8461 /* If there is already a candidate, use it. */
8462 arches = gdbarch_list_lookup_by_info (arches, &info);
8463 if (arches != NULL)
8464 return arches->gdbarch;
8465
8466 /* Allocate space for the new architecture. Assume i386 for now. */
8467 i386_gdbarch_tdep *tdep = new i386_gdbarch_tdep;
8468 gdbarch = gdbarch_alloc (&info, tdep);
8469
8470 /* General-purpose registers. */
8471 tdep->gregset_reg_offset = NULL;
8472 tdep->gregset_num_regs = I386_NUM_GREGS;
8473 tdep->sizeof_gregset = 0;
8474
8475 /* Floating-point registers. */
8476 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8477 tdep->fpregset = &i386_fpregset;
8478
8479 /* The default settings include the FPU registers, the MMX registers
8480 and the SSE registers. This can be overridden for a specific ABI
8481 by adjusting the members `st0_regnum', `mm0_regnum' and
8482 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8483 will show up in the output of "info all-registers". */
8484
8485 tdep->st0_regnum = I386_ST0_REGNUM;
8486
8487 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8488 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8489
8490 tdep->jb_pc_offset = -1;
8491 tdep->struct_return = pcc_struct_return;
8492 tdep->sigtramp_start = 0;
8493 tdep->sigtramp_end = 0;
8494 tdep->sigtramp_p = i386_sigtramp_p;
8495 tdep->sigcontext_addr = NULL;
8496 tdep->sc_reg_offset = NULL;
8497 tdep->sc_pc_offset = -1;
8498 tdep->sc_sp_offset = -1;
8499
8500 tdep->xsave_xcr0_offset = -1;
8501
8502 tdep->record_regmap = i386_record_regmap;
8503
8504 set_gdbarch_type_align (gdbarch, i386_type_align);
8505
8506 /* The format used for `long double' on almost all i386 targets is
8507 the i387 extended floating-point format. In fact, of all targets
8508 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8509 on having a `long double' that's not `long' at all. */
8510 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8511
8512 /* Although the i387 extended floating-point has only 80 significant
8513 bits, a `long double' actually takes up 96, probably to enforce
8514 alignment. */
8515 set_gdbarch_long_double_bit (gdbarch, 96);
8516
8517 /* Support of bfloat16 format. */
8518 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8519
8520 /* Support for floating-point data type variants. */
8521 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8522
8523 /* Register numbers of various important registers. */
8524 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8525 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8526 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8527 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8528
8529 /* NOTE: kettenis/20040418: GCC does have two possible register
8530 numbering schemes on the i386: dbx and SVR4. These schemes
8531 differ in how they number %ebp, %esp, %eflags, and the
8532 floating-point registers, and are implemented by the arrays
8533 dbx_register_map[] and svr4_dbx_register_map in
8534 gcc/config/i386.c. GCC also defines a third numbering scheme in
8535 gcc/config/i386.c, which it designates as the "default" register
8536 map used in 64bit mode. This last register numbering scheme is
8537 implemented in dbx64_register_map, and is used for AMD64; see
8538 amd64-tdep.c.
8539
8540 Currently, each GCC i386 target always uses the same register
8541 numbering scheme across all its supported debugging formats
8542 i.e. SDB (COFF), stabs and DWARF 2. This is because
8543 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8544 DBX_REGISTER_NUMBER macro which is defined by each target's
8545 respective config header in a manner independent of the requested
8546 output debugging format.
8547
8548 This does not match the arrangement below, which presumes that
8549 the SDB and stabs numbering schemes differ from the DWARF and
8550 DWARF 2 ones. The reason for this arrangement is that it is
8551 likely to get the numbering scheme for the target's
8552 default/native debug format right. For targets where GCC is the
8553 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8554 targets where the native toolchain uses a different numbering
8555 scheme for a particular debug format (stabs-in-ELF on Solaris)
8556 the defaults below will have to be overridden, like
8557 i386_elf_init_abi() does. */
8558
8559 /* Use the dbx register numbering scheme for stabs and COFF. */
8560 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8561 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8562
8563 /* Use the SVR4 register numbering scheme for DWARF 2. */
8564 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8565
8566 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8567 be in use on any of the supported i386 targets. */
8568
8569 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8570
8571 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8572
8573 /* Call dummy code. */
8574 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8575 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8576 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8577 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8578
8579 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8580 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8581 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8582
8583 set_gdbarch_return_value (gdbarch, i386_return_value);
8584
8585 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8586
8587 /* Stack grows downward. */
8588 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8589
8590 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8591 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8592
8593 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8594 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8595
8596 set_gdbarch_frame_args_skip (gdbarch, 8);
8597
8598 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8599
8600 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8601
8602 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8603
8604 /* Add the i386 register groups. */
8605 i386_add_reggroups (gdbarch);
8606 tdep->register_reggroup_p = i386_register_reggroup_p;
8607
8608 /* Helper for function argument information. */
8609 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8610
8611 /* Hook the function epilogue frame unwinder. This unwinder is
8612 appended to the list first, so that it supercedes the DWARF
8613 unwinder in function epilogues (where the DWARF unwinder
8614 currently fails). */
8615 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8616
8617 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8618 to the list before the prologue-based unwinders, so that DWARF
8619 CFI info will be used if it is available. */
8620 dwarf2_append_unwinders (gdbarch);
8621
8622 frame_base_set_default (gdbarch, &i386_frame_base);
8623
8624 /* Pseudo registers may be changed by amd64_init_abi. */
8625 set_gdbarch_pseudo_register_read_value (gdbarch,
8626 i386_pseudo_register_read_value);
8627 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8628 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8629 i386_ax_pseudo_register_collect);
8630
8631 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8632 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8633
8634 /* Override the normal target description method to make the AVX
8635 upper halves anonymous. */
8636 set_gdbarch_register_name (gdbarch, i386_register_name);
8637
8638 /* Even though the default ABI only includes general-purpose registers,
8639 floating-point registers and the SSE registers, we have to leave a
8640 gap for the upper AVX, MPX and AVX512 registers. */
8641 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8642
8643 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8644
8645 /* Get the x86 target description from INFO. */
8646 tdesc = info.target_desc;
8647 if (! tdesc_has_registers (tdesc))
8648 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8649 tdep->tdesc = tdesc;
8650
8651 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8652 tdep->register_names = i386_register_names;
8653
8654 /* No upper YMM registers. */
8655 tdep->ymmh_register_names = NULL;
8656 tdep->ymm0h_regnum = -1;
8657
8658 /* No upper ZMM registers. */
8659 tdep->zmmh_register_names = NULL;
8660 tdep->zmm0h_regnum = -1;
8661
8662 /* No high XMM registers. */
8663 tdep->xmm_avx512_register_names = NULL;
8664 tdep->xmm16_regnum = -1;
8665
8666 /* No upper YMM16-31 registers. */
8667 tdep->ymm16h_register_names = NULL;
8668 tdep->ymm16h_regnum = -1;
8669
8670 tdep->num_byte_regs = 8;
8671 tdep->num_word_regs = 8;
8672 tdep->num_dword_regs = 0;
8673 tdep->num_mmx_regs = 8;
8674 tdep->num_ymm_regs = 0;
8675
8676 /* No MPX registers. */
8677 tdep->bnd0r_regnum = -1;
8678 tdep->bndcfgu_regnum = -1;
8679
8680 /* No AVX512 registers. */
8681 tdep->k0_regnum = -1;
8682 tdep->num_zmm_regs = 0;
8683 tdep->num_ymm_avx512_regs = 0;
8684 tdep->num_xmm_avx512_regs = 0;
8685
8686 /* No PKEYS registers */
8687 tdep->pkru_regnum = -1;
8688 tdep->num_pkeys_regs = 0;
8689
8690 /* No segment base registers. */
8691 tdep->fsbase_regnum = -1;
8692
8693 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8694
8695 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8696
8697 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8698
8699 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8700 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8701 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8702
8703 /* Hook in ABI-specific overrides, if they have been registered.
8704 Note: If INFO specifies a 64 bit arch, this is where we turn
8705 a 32-bit i386 into a 64-bit amd64. */
8706 info.tdesc_data = tdesc_data.get ();
8707 gdbarch_init_osabi (info, gdbarch);
8708
8709 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8710 {
8711 delete tdep;
8712 gdbarch_free (gdbarch);
8713 return NULL;
8714 }
8715
8716 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8717
8718 /* Wire in pseudo registers. Number of pseudo registers may be
8719 changed. */
8720 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8721 + tdep->num_word_regs
8722 + tdep->num_dword_regs
8723 + tdep->num_mmx_regs
8724 + tdep->num_ymm_regs
8725 + num_bnd_cooked
8726 + tdep->num_ymm_avx512_regs
8727 + tdep->num_zmm_regs));
8728
8729 /* Target description may be changed. */
8730 tdesc = tdep->tdesc;
8731
8732 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8733
8734 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8735 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8736
8737 /* Make %al the first pseudo-register. */
8738 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8739 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8740
8741 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8742 if (tdep->num_dword_regs)
8743 {
8744 /* Support dword pseudo-register if it hasn't been disabled. */
8745 tdep->eax_regnum = ymm0_regnum;
8746 ymm0_regnum += tdep->num_dword_regs;
8747 }
8748 else
8749 tdep->eax_regnum = -1;
8750
8751 mm0_regnum = ymm0_regnum;
8752 if (tdep->num_ymm_regs)
8753 {
8754 /* Support YMM pseudo-register if it is available. */
8755 tdep->ymm0_regnum = ymm0_regnum;
8756 mm0_regnum += tdep->num_ymm_regs;
8757 }
8758 else
8759 tdep->ymm0_regnum = -1;
8760
8761 if (tdep->num_ymm_avx512_regs)
8762 {
8763 /* Support YMM16-31 pseudo registers if available. */
8764 tdep->ymm16_regnum = mm0_regnum;
8765 mm0_regnum += tdep->num_ymm_avx512_regs;
8766 }
8767 else
8768 tdep->ymm16_regnum = -1;
8769
8770 if (tdep->num_zmm_regs)
8771 {
8772 /* Support ZMM pseudo-register if it is available. */
8773 tdep->zmm0_regnum = mm0_regnum;
8774 mm0_regnum += tdep->num_zmm_regs;
8775 }
8776 else
8777 tdep->zmm0_regnum = -1;
8778
8779 bnd0_regnum = mm0_regnum;
8780 if (tdep->num_mmx_regs != 0)
8781 {
8782 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8783 tdep->mm0_regnum = mm0_regnum;
8784 bnd0_regnum += tdep->num_mmx_regs;
8785 }
8786 else
8787 tdep->mm0_regnum = -1;
8788
8789 if (tdep->bnd0r_regnum > 0)
8790 tdep->bnd0_regnum = bnd0_regnum;
8791 else
8792 tdep-> bnd0_regnum = -1;
8793
8794 /* Hook in the legacy prologue-based unwinders last (fallback). */
8795 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8796 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8797 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8798
8799 /* If we have a register mapping, enable the generic core file
8800 support, unless it has already been enabled. */
8801 if (tdep->gregset_reg_offset
8802 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8803 set_gdbarch_iterate_over_regset_sections
8804 (gdbarch, i386_iterate_over_regset_sections);
8805
8806 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8807 i386_fast_tracepoint_valid_at);
8808
8809 return gdbarch;
8810 }
8811
8812 \f
8813
8814 /* Return the target description for a specified XSAVE feature mask. */
8815
8816 const struct target_desc *
8817 i386_target_description (uint64_t xcr0, bool segments)
8818 {
8819 static target_desc *i386_tdescs \
8820 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8821 target_desc **tdesc;
8822
8823 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8824 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8825 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8826 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8827 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8828 [segments ? 1 : 0];
8829
8830 if (*tdesc == NULL)
8831 *tdesc = i386_create_target_description (xcr0, false, segments);
8832
8833 return *tdesc;
8834 }
8835
8836 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8837
8838 /* Find the bound directory base address. */
8839
8840 static unsigned long
8841 i386_mpx_bd_base (void)
8842 {
8843 struct regcache *rcache;
8844 ULONGEST ret;
8845 enum register_status regstatus;
8846
8847 rcache = get_current_regcache ();
8848 gdbarch *arch = rcache->arch ();
8849 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
8850
8851 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8852
8853 if (regstatus != REG_VALID)
8854 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8855
8856 return ret & MPX_BASE_MASK;
8857 }
8858
8859 int
8860 i386_mpx_enabled (void)
8861 {
8862 gdbarch *arch = get_current_arch ();
8863 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
8864 const struct target_desc *tdesc = tdep->tdesc;
8865
8866 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8867 }
8868
8869 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8870 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8871 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8872 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8873
8874 /* Find the bound table entry given the pointer location and the base
8875 address of the table. */
8876
8877 static CORE_ADDR
8878 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8879 {
8880 CORE_ADDR offset1;
8881 CORE_ADDR offset2;
8882 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8883 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8884 CORE_ADDR bd_entry_addr;
8885 CORE_ADDR bt_addr;
8886 CORE_ADDR bd_entry;
8887 struct gdbarch *gdbarch = get_current_arch ();
8888 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8889
8890
8891 if (gdbarch_ptr_bit (gdbarch) == 64)
8892 {
8893 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8894 bd_ptr_r_shift = 20;
8895 bd_ptr_l_shift = 3;
8896 bt_select_r_shift = 3;
8897 bt_select_l_shift = 5;
8898 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8899
8900 if ( sizeof (CORE_ADDR) == 4)
8901 error (_("bound table examination not supported\
8902 for 64-bit process with 32-bit GDB"));
8903 }
8904 else
8905 {
8906 mpx_bd_mask = MPX_BD_MASK_32;
8907 bd_ptr_r_shift = 12;
8908 bd_ptr_l_shift = 2;
8909 bt_select_r_shift = 2;
8910 bt_select_l_shift = 4;
8911 bt_mask = MPX_BT_MASK_32;
8912 }
8913
8914 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8915 bd_entry_addr = bd_base + offset1;
8916 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8917
8918 if ((bd_entry & 0x1) == 0)
8919 error (_("Invalid bounds directory entry at %s."),
8920 paddress (get_current_arch (), bd_entry_addr));
8921
8922 /* Clearing status bit. */
8923 bd_entry--;
8924 bt_addr = bd_entry & ~bt_select_r_shift;
8925 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8926
8927 return bt_addr + offset2;
8928 }
8929
8930 /* Print routine for the mpx bounds. */
8931
8932 static void
8933 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8934 {
8935 struct ui_out *uiout = current_uiout;
8936 LONGEST size;
8937 struct gdbarch *gdbarch = get_current_arch ();
8938 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8939 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8940
8941 if (bounds_in_map == 1)
8942 {
8943 uiout->text ("Null bounds on map:");
8944 uiout->text (" pointer value = ");
8945 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8946 uiout->text (".");
8947 uiout->text ("\n");
8948 }
8949 else
8950 {
8951 uiout->text ("{lbound = ");
8952 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8953 uiout->text (", ubound = ");
8954
8955 /* The upper bound is stored in 1's complement. */
8956 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8957 uiout->text ("}: pointer value = ");
8958 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8959
8960 if (gdbarch_ptr_bit (gdbarch) == 64)
8961 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8962 else
8963 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8964
8965 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8966 -1 represents in this sense full memory access, and there is no need
8967 one to the size. */
8968
8969 size = (size > -1 ? size + 1 : size);
8970 uiout->text (", size = ");
8971 uiout->field_string ("size", plongest (size));
8972
8973 uiout->text (", metadata = ");
8974 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8975 uiout->text ("\n");
8976 }
8977 }
8978
8979 /* Implement the command "show mpx bound". */
8980
8981 static void
8982 i386_mpx_info_bounds (const char *args, int from_tty)
8983 {
8984 CORE_ADDR bd_base = 0;
8985 CORE_ADDR addr;
8986 CORE_ADDR bt_entry_addr = 0;
8987 CORE_ADDR bt_entry[4];
8988 int i;
8989 struct gdbarch *gdbarch = get_current_arch ();
8990 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8991
8992 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8993 || !i386_mpx_enabled ())
8994 {
8995 gdb_printf (_("Intel Memory Protection Extensions not "
8996 "supported on this target.\n"));
8997 return;
8998 }
8999
9000 if (args == NULL)
9001 {
9002 gdb_printf (_("Address of pointer variable expected.\n"));
9003 return;
9004 }
9005
9006 addr = parse_and_eval_address (args);
9007
9008 bd_base = i386_mpx_bd_base ();
9009 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9010
9011 memset (bt_entry, 0, sizeof (bt_entry));
9012
9013 for (i = 0; i < 4; i++)
9014 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9015 + i * TYPE_LENGTH (data_ptr_type),
9016 data_ptr_type);
9017
9018 i386_mpx_print_bounds (bt_entry);
9019 }
9020
9021 /* Implement the command "set mpx bound". */
9022
9023 static void
9024 i386_mpx_set_bounds (const char *args, int from_tty)
9025 {
9026 CORE_ADDR bd_base = 0;
9027 CORE_ADDR addr, lower, upper;
9028 CORE_ADDR bt_entry_addr = 0;
9029 CORE_ADDR bt_entry[2];
9030 const char *input = args;
9031 int i;
9032 struct gdbarch *gdbarch = get_current_arch ();
9033 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9034 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9035
9036 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9037 || !i386_mpx_enabled ())
9038 error (_("Intel Memory Protection Extensions not supported\
9039 on this target."));
9040
9041 if (args == NULL)
9042 error (_("Pointer value expected."));
9043
9044 addr = value_as_address (parse_to_comma_and_eval (&input));
9045
9046 if (input[0] == ',')
9047 ++input;
9048 if (input[0] == '\0')
9049 error (_("wrong number of arguments: missing lower and upper bound."));
9050 lower = value_as_address (parse_to_comma_and_eval (&input));
9051
9052 if (input[0] == ',')
9053 ++input;
9054 if (input[0] == '\0')
9055 error (_("Wrong number of arguments; Missing upper bound."));
9056 upper = value_as_address (parse_to_comma_and_eval (&input));
9057
9058 bd_base = i386_mpx_bd_base ();
9059 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9060 for (i = 0; i < 2; i++)
9061 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9062 + i * TYPE_LENGTH (data_ptr_type),
9063 data_ptr_type);
9064 bt_entry[0] = (uint64_t) lower;
9065 bt_entry[1] = ~(uint64_t) upper;
9066
9067 for (i = 0; i < 2; i++)
9068 write_memory_unsigned_integer (bt_entry_addr
9069 + i * TYPE_LENGTH (data_ptr_type),
9070 TYPE_LENGTH (data_ptr_type), byte_order,
9071 bt_entry[i]);
9072 }
9073
9074 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9075
9076 void _initialize_i386_tdep ();
9077 void
9078 _initialize_i386_tdep ()
9079 {
9080 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9081
9082 /* Add the variable that controls the disassembly flavor. */
9083 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9084 &disassembly_flavor, _("\
9085 Set the disassembly flavor."), _("\
9086 Show the disassembly flavor."), _("\
9087 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9088 NULL,
9089 NULL, /* FIXME: i18n: */
9090 &setlist, &showlist);
9091
9092 /* Add the variable that controls the convention for returning
9093 structs. */
9094 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9095 &struct_convention, _("\
9096 Set the convention for returning small structs."), _("\
9097 Show the convention for returning small structs."), _("\
9098 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9099 is \"default\"."),
9100 NULL,
9101 NULL, /* FIXME: i18n: */
9102 &setlist, &showlist);
9103
9104 /* Add "mpx" prefix for the set and show commands. */
9105
9106 add_setshow_prefix_cmd
9107 ("mpx", class_support,
9108 _("Set Intel Memory Protection Extensions specific variables."),
9109 _("Show Intel Memory Protection Extensions specific variables."),
9110 &mpx_set_cmdlist, &mpx_show_cmdlist, &setlist, &showlist);
9111
9112 /* Add "bound" command for the show mpx commands list. */
9113
9114 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9115 "Show the memory bounds for a given array/pointer storage\
9116 in the bound table.",
9117 &mpx_show_cmdlist);
9118
9119 /* Add "bound" command for the set mpx commands list. */
9120
9121 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9122 "Set the memory bounds for a given array/pointer storage\
9123 in the bound table.",
9124 &mpx_set_cmdlist);
9125
9126 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9127 i386_svr4_init_abi);
9128
9129 /* Initialize the i386-specific register groups. */
9130 i386_init_reggroups ();
9131
9132 /* Tell remote stub that we support XML target description. */
9133 register_remote_support_xml ("i386");
9134 }