]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
gdb/x86: Implement ax_pseudo_register_collect hook.
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "infrun.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "x86-xstate.h"
50
51 #include "record.h"
52 #include "record-full.h"
53 #include "features/i386/i386.c"
54 #include "features/i386/i386-avx.c"
55 #include "features/i386/i386-mpx.c"
56 #include "features/i386/i386-avx512.c"
57 #include "features/i386/i386-mmx.c"
58
59 #include "ax.h"
60 #include "ax-gdb.h"
61
62 #include "stap-probe.h"
63 #include "user-regs.h"
64 #include "cli/cli-utils.h"
65 #include "expression.h"
66 #include "parser-defs.h"
67 #include <ctype.h>
68
69 /* Register names. */
70
71 static const char *i386_register_names[] =
72 {
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
83 "mxcsr"
84 };
85
86 static const char *i386_zmm_names[] =
87 {
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
90 };
91
92 static const char *i386_zmmh_names[] =
93 {
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
96 };
97
98 static const char *i386_k_names[] =
99 {
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
102 };
103
104 static const char *i386_ymm_names[] =
105 {
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
108 };
109
110 static const char *i386_ymmh_names[] =
111 {
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
114 };
115
116 static const char *i386_mpx_names[] =
117 {
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
119 };
120
121 /* Register names for MPX pseudo-registers. */
122
123 static const char *i386_bnd_names[] =
124 {
125 "bnd0", "bnd1", "bnd2", "bnd3"
126 };
127
128 /* Register names for MMX pseudo-registers. */
129
130 static const char *i386_mmx_names[] =
131 {
132 "mm0", "mm1", "mm2", "mm3",
133 "mm4", "mm5", "mm6", "mm7"
134 };
135
136 /* Register names for byte pseudo-registers. */
137
138 static const char *i386_byte_names[] =
139 {
140 "al", "cl", "dl", "bl",
141 "ah", "ch", "dh", "bh"
142 };
143
144 /* Register names for word pseudo-registers. */
145
146 static const char *i386_word_names[] =
147 {
148 "ax", "cx", "dx", "bx",
149 "", "bp", "si", "di"
150 };
151
152 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
153 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
154 we have 16 upper ZMM regs that have to be handled differently. */
155
156 const int num_lower_zmm_regs = 16;
157
158 /* MMX register? */
159
160 static int
161 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
162 {
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164 int mm0_regnum = tdep->mm0_regnum;
165
166 if (mm0_regnum < 0)
167 return 0;
168
169 regnum -= mm0_regnum;
170 return regnum >= 0 && regnum < tdep->num_mmx_regs;
171 }
172
173 /* Byte register? */
174
175 int
176 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
177 {
178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
179
180 regnum -= tdep->al_regnum;
181 return regnum >= 0 && regnum < tdep->num_byte_regs;
182 }
183
184 /* Word register? */
185
186 int
187 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
188 {
189 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
190
191 regnum -= tdep->ax_regnum;
192 return regnum >= 0 && regnum < tdep->num_word_regs;
193 }
194
195 /* Dword register? */
196
197 int
198 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
199 {
200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
201 int eax_regnum = tdep->eax_regnum;
202
203 if (eax_regnum < 0)
204 return 0;
205
206 regnum -= eax_regnum;
207 return regnum >= 0 && regnum < tdep->num_dword_regs;
208 }
209
210 /* AVX512 register? */
211
212 int
213 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
214 {
215 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
216 int zmm0h_regnum = tdep->zmm0h_regnum;
217
218 if (zmm0h_regnum < 0)
219 return 0;
220
221 regnum -= zmm0h_regnum;
222 return regnum >= 0 && regnum < tdep->num_zmm_regs;
223 }
224
225 int
226 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
227 {
228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
229 int zmm0_regnum = tdep->zmm0_regnum;
230
231 if (zmm0_regnum < 0)
232 return 0;
233
234 regnum -= zmm0_regnum;
235 return regnum >= 0 && regnum < tdep->num_zmm_regs;
236 }
237
238 int
239 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
240 {
241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
242 int k0_regnum = tdep->k0_regnum;
243
244 if (k0_regnum < 0)
245 return 0;
246
247 regnum -= k0_regnum;
248 return regnum >= 0 && regnum < I387_NUM_K_REGS;
249 }
250
251 static int
252 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
253 {
254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
255 int ymm0h_regnum = tdep->ymm0h_regnum;
256
257 if (ymm0h_regnum < 0)
258 return 0;
259
260 regnum -= ymm0h_regnum;
261 return regnum >= 0 && regnum < tdep->num_ymm_regs;
262 }
263
264 /* AVX register? */
265
266 int
267 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
268 {
269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
270 int ymm0_regnum = tdep->ymm0_regnum;
271
272 if (ymm0_regnum < 0)
273 return 0;
274
275 regnum -= ymm0_regnum;
276 return regnum >= 0 && regnum < tdep->num_ymm_regs;
277 }
278
279 static int
280 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
281 {
282 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
283 int ymm16h_regnum = tdep->ymm16h_regnum;
284
285 if (ymm16h_regnum < 0)
286 return 0;
287
288 regnum -= ymm16h_regnum;
289 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
290 }
291
292 int
293 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
294 {
295 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
296 int ymm16_regnum = tdep->ymm16_regnum;
297
298 if (ymm16_regnum < 0)
299 return 0;
300
301 regnum -= ymm16_regnum;
302 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
303 }
304
305 /* BND register? */
306
307 int
308 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
309 {
310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
311 int bnd0_regnum = tdep->bnd0_regnum;
312
313 if (bnd0_regnum < 0)
314 return 0;
315
316 regnum -= bnd0_regnum;
317 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
318 }
319
320 /* SSE register? */
321
322 int
323 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
324 {
325 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
326 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
327
328 if (num_xmm_regs == 0)
329 return 0;
330
331 regnum -= I387_XMM0_REGNUM (tdep);
332 return regnum >= 0 && regnum < num_xmm_regs;
333 }
334
335 /* XMM_512 register? */
336
337 int
338 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
342
343 if (num_xmm_avx512_regs == 0)
344 return 0;
345
346 regnum -= I387_XMM16_REGNUM (tdep);
347 return regnum >= 0 && regnum < num_xmm_avx512_regs;
348 }
349
350 static int
351 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
352 {
353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
354
355 if (I387_NUM_XMM_REGS (tdep) == 0)
356 return 0;
357
358 return (regnum == I387_MXCSR_REGNUM (tdep));
359 }
360
361 /* FP register? */
362
363 int
364 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
365 {
366 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
367
368 if (I387_ST0_REGNUM (tdep) < 0)
369 return 0;
370
371 return (I387_ST0_REGNUM (tdep) <= regnum
372 && regnum < I387_FCTRL_REGNUM (tdep));
373 }
374
375 int
376 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
377 {
378 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
379
380 if (I387_ST0_REGNUM (tdep) < 0)
381 return 0;
382
383 return (I387_FCTRL_REGNUM (tdep) <= regnum
384 && regnum < I387_XMM0_REGNUM (tdep));
385 }
386
387 /* BNDr (raw) register? */
388
389 static int
390 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
391 {
392 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
393
394 if (I387_BND0R_REGNUM (tdep) < 0)
395 return 0;
396
397 regnum -= tdep->bnd0r_regnum;
398 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
399 }
400
401 /* BND control register? */
402
403 static int
404 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
405 {
406 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
407
408 if (I387_BNDCFGU_REGNUM (tdep) < 0)
409 return 0;
410
411 regnum -= I387_BNDCFGU_REGNUM (tdep);
412 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
413 }
414
415 /* Return the name of register REGNUM, or the empty string if it is
416 an anonymous register. */
417
418 static const char *
419 i386_register_name (struct gdbarch *gdbarch, int regnum)
420 {
421 /* Hide the upper YMM registers. */
422 if (i386_ymmh_regnum_p (gdbarch, regnum))
423 return "";
424
425 /* Hide the upper YMM16-31 registers. */
426 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
427 return "";
428
429 /* Hide the upper ZMM registers. */
430 if (i386_zmmh_regnum_p (gdbarch, regnum))
431 return "";
432
433 return tdesc_register_name (gdbarch, regnum);
434 }
435
436 /* Return the name of register REGNUM. */
437
438 const char *
439 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
440 {
441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
442 if (i386_bnd_regnum_p (gdbarch, regnum))
443 return i386_bnd_names[regnum - tdep->bnd0_regnum];
444 if (i386_mmx_regnum_p (gdbarch, regnum))
445 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
446 else if (i386_ymm_regnum_p (gdbarch, regnum))
447 return i386_ymm_names[regnum - tdep->ymm0_regnum];
448 else if (i386_zmm_regnum_p (gdbarch, regnum))
449 return i386_zmm_names[regnum - tdep->zmm0_regnum];
450 else if (i386_byte_regnum_p (gdbarch, regnum))
451 return i386_byte_names[regnum - tdep->al_regnum];
452 else if (i386_word_regnum_p (gdbarch, regnum))
453 return i386_word_names[regnum - tdep->ax_regnum];
454
455 internal_error (__FILE__, __LINE__, _("invalid regnum"));
456 }
457
458 /* Convert a dbx register number REG to the appropriate register
459 number used by GDB. */
460
461 static int
462 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
463 {
464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465
466 /* This implements what GCC calls the "default" register map
467 (dbx_register_map[]). */
468
469 if (reg >= 0 && reg <= 7)
470 {
471 /* General-purpose registers. The debug info calls %ebp
472 register 4, and %esp register 5. */
473 if (reg == 4)
474 return 5;
475 else if (reg == 5)
476 return 4;
477 else return reg;
478 }
479 else if (reg >= 12 && reg <= 19)
480 {
481 /* Floating-point registers. */
482 return reg - 12 + I387_ST0_REGNUM (tdep);
483 }
484 else if (reg >= 21 && reg <= 28)
485 {
486 /* SSE registers. */
487 int ymm0_regnum = tdep->ymm0_regnum;
488
489 if (ymm0_regnum >= 0
490 && i386_xmm_regnum_p (gdbarch, reg))
491 return reg - 21 + ymm0_regnum;
492 else
493 return reg - 21 + I387_XMM0_REGNUM (tdep);
494 }
495 else if (reg >= 29 && reg <= 36)
496 {
497 /* MMX registers. */
498 return reg - 29 + I387_MM0_REGNUM (tdep);
499 }
500
501 /* This will hopefully provoke a warning. */
502 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
503 }
504
505 /* Convert SVR4 DWARF register number REG to the appropriate register number
506 used by GDB. */
507
508 static int
509 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
510 {
511 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
512
513 /* This implements the GCC register map that tries to be compatible
514 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
515
516 /* The SVR4 register numbering includes %eip and %eflags, and
517 numbers the floating point registers differently. */
518 if (reg >= 0 && reg <= 9)
519 {
520 /* General-purpose registers. */
521 return reg;
522 }
523 else if (reg >= 11 && reg <= 18)
524 {
525 /* Floating-point registers. */
526 return reg - 11 + I387_ST0_REGNUM (tdep);
527 }
528 else if (reg >= 21 && reg <= 36)
529 {
530 /* The SSE and MMX registers have the same numbers as with dbx. */
531 return i386_dbx_reg_to_regnum (gdbarch, reg);
532 }
533
534 switch (reg)
535 {
536 case 37: return I387_FCTRL_REGNUM (tdep);
537 case 38: return I387_FSTAT_REGNUM (tdep);
538 case 39: return I387_MXCSR_REGNUM (tdep);
539 case 40: return I386_ES_REGNUM;
540 case 41: return I386_CS_REGNUM;
541 case 42: return I386_SS_REGNUM;
542 case 43: return I386_DS_REGNUM;
543 case 44: return I386_FS_REGNUM;
544 case 45: return I386_GS_REGNUM;
545 }
546
547 return -1;
548 }
549
550 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
551 num_regs + num_pseudo_regs for other debug formats. */
552
553 static int
554 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
555 {
556 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
557
558 if (regnum == -1)
559 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
560 return regnum;
561 }
562
563 \f
564
565 /* This is the variable that is set with "set disassembly-flavor", and
566 its legitimate values. */
567 static const char att_flavor[] = "att";
568 static const char intel_flavor[] = "intel";
569 static const char *const valid_flavors[] =
570 {
571 att_flavor,
572 intel_flavor,
573 NULL
574 };
575 static const char *disassembly_flavor = att_flavor;
576 \f
577
578 /* Use the program counter to determine the contents and size of a
579 breakpoint instruction. Return a pointer to a string of bytes that
580 encode a breakpoint instruction, store the length of the string in
581 *LEN and optionally adjust *PC to point to the correct memory
582 location for inserting the breakpoint.
583
584 On the i386 we have a single breakpoint that fits in a single byte
585 and can be inserted anywhere.
586
587 This function is 64-bit safe. */
588
589 static const gdb_byte *
590 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
591 {
592 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
593
594 *len = sizeof (break_insn);
595 return break_insn;
596 }
597 \f
598 /* Displaced instruction handling. */
599
600 /* Skip the legacy instruction prefixes in INSN.
601 Not all prefixes are valid for any particular insn
602 but we needn't care, the insn will fault if it's invalid.
603 The result is a pointer to the first opcode byte,
604 or NULL if we run off the end of the buffer. */
605
606 static gdb_byte *
607 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
608 {
609 gdb_byte *end = insn + max_len;
610
611 while (insn < end)
612 {
613 switch (*insn)
614 {
615 case DATA_PREFIX_OPCODE:
616 case ADDR_PREFIX_OPCODE:
617 case CS_PREFIX_OPCODE:
618 case DS_PREFIX_OPCODE:
619 case ES_PREFIX_OPCODE:
620 case FS_PREFIX_OPCODE:
621 case GS_PREFIX_OPCODE:
622 case SS_PREFIX_OPCODE:
623 case LOCK_PREFIX_OPCODE:
624 case REPE_PREFIX_OPCODE:
625 case REPNE_PREFIX_OPCODE:
626 ++insn;
627 continue;
628 default:
629 return insn;
630 }
631 }
632
633 return NULL;
634 }
635
636 static int
637 i386_absolute_jmp_p (const gdb_byte *insn)
638 {
639 /* jmp far (absolute address in operand). */
640 if (insn[0] == 0xea)
641 return 1;
642
643 if (insn[0] == 0xff)
644 {
645 /* jump near, absolute indirect (/4). */
646 if ((insn[1] & 0x38) == 0x20)
647 return 1;
648
649 /* jump far, absolute indirect (/5). */
650 if ((insn[1] & 0x38) == 0x28)
651 return 1;
652 }
653
654 return 0;
655 }
656
657 /* Return non-zero if INSN is a jump, zero otherwise. */
658
659 static int
660 i386_jmp_p (const gdb_byte *insn)
661 {
662 /* jump short, relative. */
663 if (insn[0] == 0xeb)
664 return 1;
665
666 /* jump near, relative. */
667 if (insn[0] == 0xe9)
668 return 1;
669
670 return i386_absolute_jmp_p (insn);
671 }
672
673 static int
674 i386_absolute_call_p (const gdb_byte *insn)
675 {
676 /* call far, absolute. */
677 if (insn[0] == 0x9a)
678 return 1;
679
680 if (insn[0] == 0xff)
681 {
682 /* Call near, absolute indirect (/2). */
683 if ((insn[1] & 0x38) == 0x10)
684 return 1;
685
686 /* Call far, absolute indirect (/3). */
687 if ((insn[1] & 0x38) == 0x18)
688 return 1;
689 }
690
691 return 0;
692 }
693
694 static int
695 i386_ret_p (const gdb_byte *insn)
696 {
697 switch (insn[0])
698 {
699 case 0xc2: /* ret near, pop N bytes. */
700 case 0xc3: /* ret near */
701 case 0xca: /* ret far, pop N bytes. */
702 case 0xcb: /* ret far */
703 case 0xcf: /* iret */
704 return 1;
705
706 default:
707 return 0;
708 }
709 }
710
711 static int
712 i386_call_p (const gdb_byte *insn)
713 {
714 if (i386_absolute_call_p (insn))
715 return 1;
716
717 /* call near, relative. */
718 if (insn[0] == 0xe8)
719 return 1;
720
721 return 0;
722 }
723
724 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
725 length in bytes. Otherwise, return zero. */
726
727 static int
728 i386_syscall_p (const gdb_byte *insn, int *lengthp)
729 {
730 /* Is it 'int $0x80'? */
731 if ((insn[0] == 0xcd && insn[1] == 0x80)
732 /* Or is it 'sysenter'? */
733 || (insn[0] == 0x0f && insn[1] == 0x34)
734 /* Or is it 'syscall'? */
735 || (insn[0] == 0x0f && insn[1] == 0x05))
736 {
737 *lengthp = 2;
738 return 1;
739 }
740
741 return 0;
742 }
743
744 /* The gdbarch insn_is_call method. */
745
746 static int
747 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
748 {
749 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
750
751 read_code (addr, buf, I386_MAX_INSN_LEN);
752 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
753
754 return i386_call_p (insn);
755 }
756
757 /* The gdbarch insn_is_ret method. */
758
759 static int
760 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
761 {
762 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
763
764 read_code (addr, buf, I386_MAX_INSN_LEN);
765 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
766
767 return i386_ret_p (insn);
768 }
769
770 /* The gdbarch insn_is_jump method. */
771
772 static int
773 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
774 {
775 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
776
777 read_code (addr, buf, I386_MAX_INSN_LEN);
778 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
779
780 return i386_jmp_p (insn);
781 }
782
783 /* Some kernels may run one past a syscall insn, so we have to cope.
784 Otherwise this is just simple_displaced_step_copy_insn. */
785
786 struct displaced_step_closure *
787 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
788 CORE_ADDR from, CORE_ADDR to,
789 struct regcache *regs)
790 {
791 size_t len = gdbarch_max_insn_length (gdbarch);
792 gdb_byte *buf = (gdb_byte *) xmalloc (len);
793
794 read_memory (from, buf, len);
795
796 /* GDB may get control back after the insn after the syscall.
797 Presumably this is a kernel bug.
798 If this is a syscall, make sure there's a nop afterwards. */
799 {
800 int syscall_length;
801 gdb_byte *insn;
802
803 insn = i386_skip_prefixes (buf, len);
804 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
805 insn[syscall_length] = NOP_OPCODE;
806 }
807
808 write_memory (to, buf, len);
809
810 if (debug_displaced)
811 {
812 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
813 paddress (gdbarch, from), paddress (gdbarch, to));
814 displaced_step_dump_bytes (gdb_stdlog, buf, len);
815 }
816
817 return (struct displaced_step_closure *) buf;
818 }
819
820 /* Fix up the state of registers and memory after having single-stepped
821 a displaced instruction. */
822
823 void
824 i386_displaced_step_fixup (struct gdbarch *gdbarch,
825 struct displaced_step_closure *closure,
826 CORE_ADDR from, CORE_ADDR to,
827 struct regcache *regs)
828 {
829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
830
831 /* The offset we applied to the instruction's address.
832 This could well be negative (when viewed as a signed 32-bit
833 value), but ULONGEST won't reflect that, so take care when
834 applying it. */
835 ULONGEST insn_offset = to - from;
836
837 /* Since we use simple_displaced_step_copy_insn, our closure is a
838 copy of the instruction. */
839 gdb_byte *insn = (gdb_byte *) closure;
840 /* The start of the insn, needed in case we see some prefixes. */
841 gdb_byte *insn_start = insn;
842
843 if (debug_displaced)
844 fprintf_unfiltered (gdb_stdlog,
845 "displaced: fixup (%s, %s), "
846 "insn = 0x%02x 0x%02x ...\n",
847 paddress (gdbarch, from), paddress (gdbarch, to),
848 insn[0], insn[1]);
849
850 /* The list of issues to contend with here is taken from
851 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
852 Yay for Free Software! */
853
854 /* Relocate the %eip, if necessary. */
855
856 /* The instruction recognizers we use assume any leading prefixes
857 have been skipped. */
858 {
859 /* This is the size of the buffer in closure. */
860 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
861 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
862 /* If there are too many prefixes, just ignore the insn.
863 It will fault when run. */
864 if (opcode != NULL)
865 insn = opcode;
866 }
867
868 /* Except in the case of absolute or indirect jump or call
869 instructions, or a return instruction, the new eip is relative to
870 the displaced instruction; make it relative. Well, signal
871 handler returns don't need relocation either, but we use the
872 value of %eip to recognize those; see below. */
873 if (! i386_absolute_jmp_p (insn)
874 && ! i386_absolute_call_p (insn)
875 && ! i386_ret_p (insn))
876 {
877 ULONGEST orig_eip;
878 int insn_len;
879
880 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
881
882 /* A signal trampoline system call changes the %eip, resuming
883 execution of the main program after the signal handler has
884 returned. That makes them like 'return' instructions; we
885 shouldn't relocate %eip.
886
887 But most system calls don't, and we do need to relocate %eip.
888
889 Our heuristic for distinguishing these cases: if stepping
890 over the system call instruction left control directly after
891 the instruction, the we relocate --- control almost certainly
892 doesn't belong in the displaced copy. Otherwise, we assume
893 the instruction has put control where it belongs, and leave
894 it unrelocated. Goodness help us if there are PC-relative
895 system calls. */
896 if (i386_syscall_p (insn, &insn_len)
897 && orig_eip != to + (insn - insn_start) + insn_len
898 /* GDB can get control back after the insn after the syscall.
899 Presumably this is a kernel bug.
900 i386_displaced_step_copy_insn ensures its a nop,
901 we add one to the length for it. */
902 && orig_eip != to + (insn - insn_start) + insn_len + 1)
903 {
904 if (debug_displaced)
905 fprintf_unfiltered (gdb_stdlog,
906 "displaced: syscall changed %%eip; "
907 "not relocating\n");
908 }
909 else
910 {
911 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
912
913 /* If we just stepped over a breakpoint insn, we don't backup
914 the pc on purpose; this is to match behaviour without
915 stepping. */
916
917 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
918
919 if (debug_displaced)
920 fprintf_unfiltered (gdb_stdlog,
921 "displaced: "
922 "relocated %%eip from %s to %s\n",
923 paddress (gdbarch, orig_eip),
924 paddress (gdbarch, eip));
925 }
926 }
927
928 /* If the instruction was PUSHFL, then the TF bit will be set in the
929 pushed value, and should be cleared. We'll leave this for later,
930 since GDB already messes up the TF flag when stepping over a
931 pushfl. */
932
933 /* If the instruction was a call, the return address now atop the
934 stack is the address following the copied instruction. We need
935 to make it the address following the original instruction. */
936 if (i386_call_p (insn))
937 {
938 ULONGEST esp;
939 ULONGEST retaddr;
940 const ULONGEST retaddr_len = 4;
941
942 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
943 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
944 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
945 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
946
947 if (debug_displaced)
948 fprintf_unfiltered (gdb_stdlog,
949 "displaced: relocated return addr at %s to %s\n",
950 paddress (gdbarch, esp),
951 paddress (gdbarch, retaddr));
952 }
953 }
954
955 static void
956 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
957 {
958 target_write_memory (*to, buf, len);
959 *to += len;
960 }
961
962 static void
963 i386_relocate_instruction (struct gdbarch *gdbarch,
964 CORE_ADDR *to, CORE_ADDR oldloc)
965 {
966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
967 gdb_byte buf[I386_MAX_INSN_LEN];
968 int offset = 0, rel32, newrel;
969 int insn_length;
970 gdb_byte *insn = buf;
971
972 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
973
974 insn_length = gdb_buffered_insn_length (gdbarch, insn,
975 I386_MAX_INSN_LEN, oldloc);
976
977 /* Get past the prefixes. */
978 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
979
980 /* Adjust calls with 32-bit relative addresses as push/jump, with
981 the address pushed being the location where the original call in
982 the user program would return to. */
983 if (insn[0] == 0xe8)
984 {
985 gdb_byte push_buf[16];
986 unsigned int ret_addr;
987
988 /* Where "ret" in the original code will return to. */
989 ret_addr = oldloc + insn_length;
990 push_buf[0] = 0x68; /* pushq $... */
991 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
992 /* Push the push. */
993 append_insns (to, 5, push_buf);
994
995 /* Convert the relative call to a relative jump. */
996 insn[0] = 0xe9;
997
998 /* Adjust the destination offset. */
999 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1000 newrel = (oldloc - *to) + rel32;
1001 store_signed_integer (insn + 1, 4, byte_order, newrel);
1002
1003 if (debug_displaced)
1004 fprintf_unfiltered (gdb_stdlog,
1005 "Adjusted insn rel32=%s at %s to"
1006 " rel32=%s at %s\n",
1007 hex_string (rel32), paddress (gdbarch, oldloc),
1008 hex_string (newrel), paddress (gdbarch, *to));
1009
1010 /* Write the adjusted jump into its displaced location. */
1011 append_insns (to, 5, insn);
1012 return;
1013 }
1014
1015 /* Adjust jumps with 32-bit relative addresses. Calls are already
1016 handled above. */
1017 if (insn[0] == 0xe9)
1018 offset = 1;
1019 /* Adjust conditional jumps. */
1020 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1021 offset = 2;
1022
1023 if (offset)
1024 {
1025 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1026 newrel = (oldloc - *to) + rel32;
1027 store_signed_integer (insn + offset, 4, byte_order, newrel);
1028 if (debug_displaced)
1029 fprintf_unfiltered (gdb_stdlog,
1030 "Adjusted insn rel32=%s at %s to"
1031 " rel32=%s at %s\n",
1032 hex_string (rel32), paddress (gdbarch, oldloc),
1033 hex_string (newrel), paddress (gdbarch, *to));
1034 }
1035
1036 /* Write the adjusted instructions into their displaced
1037 location. */
1038 append_insns (to, insn_length, buf);
1039 }
1040
1041 \f
1042 #ifdef I386_REGNO_TO_SYMMETRY
1043 #error "The Sequent Symmetry is no longer supported."
1044 #endif
1045
1046 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1047 and %esp "belong" to the calling function. Therefore these
1048 registers should be saved if they're going to be modified. */
1049
1050 /* The maximum number of saved registers. This should include all
1051 registers mentioned above, and %eip. */
1052 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1053
1054 struct i386_frame_cache
1055 {
1056 /* Base address. */
1057 CORE_ADDR base;
1058 int base_p;
1059 LONGEST sp_offset;
1060 CORE_ADDR pc;
1061
1062 /* Saved registers. */
1063 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1064 CORE_ADDR saved_sp;
1065 int saved_sp_reg;
1066 int pc_in_eax;
1067
1068 /* Stack space reserved for local variables. */
1069 long locals;
1070 };
1071
1072 /* Allocate and initialize a frame cache. */
1073
1074 static struct i386_frame_cache *
1075 i386_alloc_frame_cache (void)
1076 {
1077 struct i386_frame_cache *cache;
1078 int i;
1079
1080 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1081
1082 /* Base address. */
1083 cache->base_p = 0;
1084 cache->base = 0;
1085 cache->sp_offset = -4;
1086 cache->pc = 0;
1087
1088 /* Saved registers. We initialize these to -1 since zero is a valid
1089 offset (that's where %ebp is supposed to be stored). */
1090 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1091 cache->saved_regs[i] = -1;
1092 cache->saved_sp = 0;
1093 cache->saved_sp_reg = -1;
1094 cache->pc_in_eax = 0;
1095
1096 /* Frameless until proven otherwise. */
1097 cache->locals = -1;
1098
1099 return cache;
1100 }
1101
1102 /* If the instruction at PC is a jump, return the address of its
1103 target. Otherwise, return PC. */
1104
1105 static CORE_ADDR
1106 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1107 {
1108 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1109 gdb_byte op;
1110 long delta = 0;
1111 int data16 = 0;
1112
1113 if (target_read_code (pc, &op, 1))
1114 return pc;
1115
1116 if (op == 0x66)
1117 {
1118 data16 = 1;
1119
1120 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1121 }
1122
1123 switch (op)
1124 {
1125 case 0xe9:
1126 /* Relative jump: if data16 == 0, disp32, else disp16. */
1127 if (data16)
1128 {
1129 delta = read_memory_integer (pc + 2, 2, byte_order);
1130
1131 /* Include the size of the jmp instruction (including the
1132 0x66 prefix). */
1133 delta += 4;
1134 }
1135 else
1136 {
1137 delta = read_memory_integer (pc + 1, 4, byte_order);
1138
1139 /* Include the size of the jmp instruction. */
1140 delta += 5;
1141 }
1142 break;
1143 case 0xeb:
1144 /* Relative jump, disp8 (ignore data16). */
1145 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1146
1147 delta += data16 + 2;
1148 break;
1149 }
1150
1151 return pc + delta;
1152 }
1153
1154 /* Check whether PC points at a prologue for a function returning a
1155 structure or union. If so, it updates CACHE and returns the
1156 address of the first instruction after the code sequence that
1157 removes the "hidden" argument from the stack or CURRENT_PC,
1158 whichever is smaller. Otherwise, return PC. */
1159
1160 static CORE_ADDR
1161 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1162 struct i386_frame_cache *cache)
1163 {
1164 /* Functions that return a structure or union start with:
1165
1166 popl %eax 0x58
1167 xchgl %eax, (%esp) 0x87 0x04 0x24
1168 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1169
1170 (the System V compiler puts out the second `xchg' instruction,
1171 and the assembler doesn't try to optimize it, so the 'sib' form
1172 gets generated). This sequence is used to get the address of the
1173 return buffer for a function that returns a structure. */
1174 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1175 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1176 gdb_byte buf[4];
1177 gdb_byte op;
1178
1179 if (current_pc <= pc)
1180 return pc;
1181
1182 if (target_read_code (pc, &op, 1))
1183 return pc;
1184
1185 if (op != 0x58) /* popl %eax */
1186 return pc;
1187
1188 if (target_read_code (pc + 1, buf, 4))
1189 return pc;
1190
1191 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1192 return pc;
1193
1194 if (current_pc == pc)
1195 {
1196 cache->sp_offset += 4;
1197 return current_pc;
1198 }
1199
1200 if (current_pc == pc + 1)
1201 {
1202 cache->pc_in_eax = 1;
1203 return current_pc;
1204 }
1205
1206 if (buf[1] == proto1[1])
1207 return pc + 4;
1208 else
1209 return pc + 5;
1210 }
1211
1212 static CORE_ADDR
1213 i386_skip_probe (CORE_ADDR pc)
1214 {
1215 /* A function may start with
1216
1217 pushl constant
1218 call _probe
1219 addl $4, %esp
1220
1221 followed by
1222
1223 pushl %ebp
1224
1225 etc. */
1226 gdb_byte buf[8];
1227 gdb_byte op;
1228
1229 if (target_read_code (pc, &op, 1))
1230 return pc;
1231
1232 if (op == 0x68 || op == 0x6a)
1233 {
1234 int delta;
1235
1236 /* Skip past the `pushl' instruction; it has either a one-byte or a
1237 four-byte operand, depending on the opcode. */
1238 if (op == 0x68)
1239 delta = 5;
1240 else
1241 delta = 2;
1242
1243 /* Read the following 8 bytes, which should be `call _probe' (6
1244 bytes) followed by `addl $4,%esp' (2 bytes). */
1245 read_memory (pc + delta, buf, sizeof (buf));
1246 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1247 pc += delta + sizeof (buf);
1248 }
1249
1250 return pc;
1251 }
1252
1253 /* GCC 4.1 and later, can put code in the prologue to realign the
1254 stack pointer. Check whether PC points to such code, and update
1255 CACHE accordingly. Return the first instruction after the code
1256 sequence or CURRENT_PC, whichever is smaller. If we don't
1257 recognize the code, return PC. */
1258
1259 static CORE_ADDR
1260 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1261 struct i386_frame_cache *cache)
1262 {
1263 /* There are 2 code sequences to re-align stack before the frame
1264 gets set up:
1265
1266 1. Use a caller-saved saved register:
1267
1268 leal 4(%esp), %reg
1269 andl $-XXX, %esp
1270 pushl -4(%reg)
1271
1272 2. Use a callee-saved saved register:
1273
1274 pushl %reg
1275 leal 8(%esp), %reg
1276 andl $-XXX, %esp
1277 pushl -4(%reg)
1278
1279 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1280
1281 0x83 0xe4 0xf0 andl $-16, %esp
1282 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1283 */
1284
1285 gdb_byte buf[14];
1286 int reg;
1287 int offset, offset_and;
1288 static int regnums[8] = {
1289 I386_EAX_REGNUM, /* %eax */
1290 I386_ECX_REGNUM, /* %ecx */
1291 I386_EDX_REGNUM, /* %edx */
1292 I386_EBX_REGNUM, /* %ebx */
1293 I386_ESP_REGNUM, /* %esp */
1294 I386_EBP_REGNUM, /* %ebp */
1295 I386_ESI_REGNUM, /* %esi */
1296 I386_EDI_REGNUM /* %edi */
1297 };
1298
1299 if (target_read_code (pc, buf, sizeof buf))
1300 return pc;
1301
1302 /* Check caller-saved saved register. The first instruction has
1303 to be "leal 4(%esp), %reg". */
1304 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1305 {
1306 /* MOD must be binary 10 and R/M must be binary 100. */
1307 if ((buf[1] & 0xc7) != 0x44)
1308 return pc;
1309
1310 /* REG has register number. */
1311 reg = (buf[1] >> 3) & 7;
1312 offset = 4;
1313 }
1314 else
1315 {
1316 /* Check callee-saved saved register. The first instruction
1317 has to be "pushl %reg". */
1318 if ((buf[0] & 0xf8) != 0x50)
1319 return pc;
1320
1321 /* Get register. */
1322 reg = buf[0] & 0x7;
1323
1324 /* The next instruction has to be "leal 8(%esp), %reg". */
1325 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1326 return pc;
1327
1328 /* MOD must be binary 10 and R/M must be binary 100. */
1329 if ((buf[2] & 0xc7) != 0x44)
1330 return pc;
1331
1332 /* REG has register number. Registers in pushl and leal have to
1333 be the same. */
1334 if (reg != ((buf[2] >> 3) & 7))
1335 return pc;
1336
1337 offset = 5;
1338 }
1339
1340 /* Rigister can't be %esp nor %ebp. */
1341 if (reg == 4 || reg == 5)
1342 return pc;
1343
1344 /* The next instruction has to be "andl $-XXX, %esp". */
1345 if (buf[offset + 1] != 0xe4
1346 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1347 return pc;
1348
1349 offset_and = offset;
1350 offset += buf[offset] == 0x81 ? 6 : 3;
1351
1352 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1353 0xfc. REG must be binary 110 and MOD must be binary 01. */
1354 if (buf[offset] != 0xff
1355 || buf[offset + 2] != 0xfc
1356 || (buf[offset + 1] & 0xf8) != 0x70)
1357 return pc;
1358
1359 /* R/M has register. Registers in leal and pushl have to be the
1360 same. */
1361 if (reg != (buf[offset + 1] & 7))
1362 return pc;
1363
1364 if (current_pc > pc + offset_and)
1365 cache->saved_sp_reg = regnums[reg];
1366
1367 return min (pc + offset + 3, current_pc);
1368 }
1369
1370 /* Maximum instruction length we need to handle. */
1371 #define I386_MAX_MATCHED_INSN_LEN 6
1372
1373 /* Instruction description. */
1374 struct i386_insn
1375 {
1376 size_t len;
1377 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1378 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1379 };
1380
1381 /* Return whether instruction at PC matches PATTERN. */
1382
1383 static int
1384 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1385 {
1386 gdb_byte op;
1387
1388 if (target_read_code (pc, &op, 1))
1389 return 0;
1390
1391 if ((op & pattern.mask[0]) == pattern.insn[0])
1392 {
1393 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1394 int insn_matched = 1;
1395 size_t i;
1396
1397 gdb_assert (pattern.len > 1);
1398 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1399
1400 if (target_read_code (pc + 1, buf, pattern.len - 1))
1401 return 0;
1402
1403 for (i = 1; i < pattern.len; i++)
1404 {
1405 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1406 insn_matched = 0;
1407 }
1408 return insn_matched;
1409 }
1410 return 0;
1411 }
1412
1413 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1414 the first instruction description that matches. Otherwise, return
1415 NULL. */
1416
1417 static struct i386_insn *
1418 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1419 {
1420 struct i386_insn *pattern;
1421
1422 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1423 {
1424 if (i386_match_pattern (pc, *pattern))
1425 return pattern;
1426 }
1427
1428 return NULL;
1429 }
1430
1431 /* Return whether PC points inside a sequence of instructions that
1432 matches INSN_PATTERNS. */
1433
1434 static int
1435 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1436 {
1437 CORE_ADDR current_pc;
1438 int ix, i;
1439 struct i386_insn *insn;
1440
1441 insn = i386_match_insn (pc, insn_patterns);
1442 if (insn == NULL)
1443 return 0;
1444
1445 current_pc = pc;
1446 ix = insn - insn_patterns;
1447 for (i = ix - 1; i >= 0; i--)
1448 {
1449 current_pc -= insn_patterns[i].len;
1450
1451 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1452 return 0;
1453 }
1454
1455 current_pc = pc + insn->len;
1456 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1457 {
1458 if (!i386_match_pattern (current_pc, *insn))
1459 return 0;
1460
1461 current_pc += insn->len;
1462 }
1463
1464 return 1;
1465 }
1466
1467 /* Some special instructions that might be migrated by GCC into the
1468 part of the prologue that sets up the new stack frame. Because the
1469 stack frame hasn't been setup yet, no registers have been saved
1470 yet, and only the scratch registers %eax, %ecx and %edx can be
1471 touched. */
1472
1473 struct i386_insn i386_frame_setup_skip_insns[] =
1474 {
1475 /* Check for `movb imm8, r' and `movl imm32, r'.
1476
1477 ??? Should we handle 16-bit operand-sizes here? */
1478
1479 /* `movb imm8, %al' and `movb imm8, %ah' */
1480 /* `movb imm8, %cl' and `movb imm8, %ch' */
1481 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1482 /* `movb imm8, %dl' and `movb imm8, %dh' */
1483 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1484 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1485 { 5, { 0xb8 }, { 0xfe } },
1486 /* `movl imm32, %edx' */
1487 { 5, { 0xba }, { 0xff } },
1488
1489 /* Check for `mov imm32, r32'. Note that there is an alternative
1490 encoding for `mov m32, %eax'.
1491
1492 ??? Should we handle SIB adressing here?
1493 ??? Should we handle 16-bit operand-sizes here? */
1494
1495 /* `movl m32, %eax' */
1496 { 5, { 0xa1 }, { 0xff } },
1497 /* `movl m32, %eax' and `mov; m32, %ecx' */
1498 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1499 /* `movl m32, %edx' */
1500 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1501
1502 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1503 Because of the symmetry, there are actually two ways to encode
1504 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1505 opcode bytes 0x31 and 0x33 for `xorl'. */
1506
1507 /* `subl %eax, %eax' */
1508 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1509 /* `subl %ecx, %ecx' */
1510 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1511 /* `subl %edx, %edx' */
1512 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1513 /* `xorl %eax, %eax' */
1514 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1515 /* `xorl %ecx, %ecx' */
1516 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1517 /* `xorl %edx, %edx' */
1518 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1519 { 0 }
1520 };
1521
1522
1523 /* Check whether PC points to a no-op instruction. */
1524 static CORE_ADDR
1525 i386_skip_noop (CORE_ADDR pc)
1526 {
1527 gdb_byte op;
1528 int check = 1;
1529
1530 if (target_read_code (pc, &op, 1))
1531 return pc;
1532
1533 while (check)
1534 {
1535 check = 0;
1536 /* Ignore `nop' instruction. */
1537 if (op == 0x90)
1538 {
1539 pc += 1;
1540 if (target_read_code (pc, &op, 1))
1541 return pc;
1542 check = 1;
1543 }
1544 /* Ignore no-op instruction `mov %edi, %edi'.
1545 Microsoft system dlls often start with
1546 a `mov %edi,%edi' instruction.
1547 The 5 bytes before the function start are
1548 filled with `nop' instructions.
1549 This pattern can be used for hot-patching:
1550 The `mov %edi, %edi' instruction can be replaced by a
1551 near jump to the location of the 5 `nop' instructions
1552 which can be replaced by a 32-bit jump to anywhere
1553 in the 32-bit address space. */
1554
1555 else if (op == 0x8b)
1556 {
1557 if (target_read_code (pc + 1, &op, 1))
1558 return pc;
1559
1560 if (op == 0xff)
1561 {
1562 pc += 2;
1563 if (target_read_code (pc, &op, 1))
1564 return pc;
1565
1566 check = 1;
1567 }
1568 }
1569 }
1570 return pc;
1571 }
1572
1573 /* Check whether PC points at a code that sets up a new stack frame.
1574 If so, it updates CACHE and returns the address of the first
1575 instruction after the sequence that sets up the frame or LIMIT,
1576 whichever is smaller. If we don't recognize the code, return PC. */
1577
1578 static CORE_ADDR
1579 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1580 CORE_ADDR pc, CORE_ADDR limit,
1581 struct i386_frame_cache *cache)
1582 {
1583 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1584 struct i386_insn *insn;
1585 gdb_byte op;
1586 int skip = 0;
1587
1588 if (limit <= pc)
1589 return limit;
1590
1591 if (target_read_code (pc, &op, 1))
1592 return pc;
1593
1594 if (op == 0x55) /* pushl %ebp */
1595 {
1596 /* Take into account that we've executed the `pushl %ebp' that
1597 starts this instruction sequence. */
1598 cache->saved_regs[I386_EBP_REGNUM] = 0;
1599 cache->sp_offset += 4;
1600 pc++;
1601
1602 /* If that's all, return now. */
1603 if (limit <= pc)
1604 return limit;
1605
1606 /* Check for some special instructions that might be migrated by
1607 GCC into the prologue and skip them. At this point in the
1608 prologue, code should only touch the scratch registers %eax,
1609 %ecx and %edx, so while the number of posibilities is sheer,
1610 it is limited.
1611
1612 Make sure we only skip these instructions if we later see the
1613 `movl %esp, %ebp' that actually sets up the frame. */
1614 while (pc + skip < limit)
1615 {
1616 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1617 if (insn == NULL)
1618 break;
1619
1620 skip += insn->len;
1621 }
1622
1623 /* If that's all, return now. */
1624 if (limit <= pc + skip)
1625 return limit;
1626
1627 if (target_read_code (pc + skip, &op, 1))
1628 return pc + skip;
1629
1630 /* The i386 prologue looks like
1631
1632 push %ebp
1633 mov %esp,%ebp
1634 sub $0x10,%esp
1635
1636 and a different prologue can be generated for atom.
1637
1638 push %ebp
1639 lea (%esp),%ebp
1640 lea -0x10(%esp),%esp
1641
1642 We handle both of them here. */
1643
1644 switch (op)
1645 {
1646 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1647 case 0x8b:
1648 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1649 != 0xec)
1650 return pc;
1651 pc += (skip + 2);
1652 break;
1653 case 0x89:
1654 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1655 != 0xe5)
1656 return pc;
1657 pc += (skip + 2);
1658 break;
1659 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1660 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1661 != 0x242c)
1662 return pc;
1663 pc += (skip + 3);
1664 break;
1665 default:
1666 return pc;
1667 }
1668
1669 /* OK, we actually have a frame. We just don't know how large
1670 it is yet. Set its size to zero. We'll adjust it if
1671 necessary. We also now commit to skipping the special
1672 instructions mentioned before. */
1673 cache->locals = 0;
1674
1675 /* If that's all, return now. */
1676 if (limit <= pc)
1677 return limit;
1678
1679 /* Check for stack adjustment
1680
1681 subl $XXX, %esp
1682 or
1683 lea -XXX(%esp),%esp
1684
1685 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1686 reg, so we don't have to worry about a data16 prefix. */
1687 if (target_read_code (pc, &op, 1))
1688 return pc;
1689 if (op == 0x83)
1690 {
1691 /* `subl' with 8-bit immediate. */
1692 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1693 /* Some instruction starting with 0x83 other than `subl'. */
1694 return pc;
1695
1696 /* `subl' with signed 8-bit immediate (though it wouldn't
1697 make sense to be negative). */
1698 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1699 return pc + 3;
1700 }
1701 else if (op == 0x81)
1702 {
1703 /* Maybe it is `subl' with a 32-bit immediate. */
1704 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1705 /* Some instruction starting with 0x81 other than `subl'. */
1706 return pc;
1707
1708 /* It is `subl' with a 32-bit immediate. */
1709 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1710 return pc + 6;
1711 }
1712 else if (op == 0x8d)
1713 {
1714 /* The ModR/M byte is 0x64. */
1715 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1716 return pc;
1717 /* 'lea' with 8-bit displacement. */
1718 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1719 return pc + 4;
1720 }
1721 else
1722 {
1723 /* Some instruction other than `subl' nor 'lea'. */
1724 return pc;
1725 }
1726 }
1727 else if (op == 0xc8) /* enter */
1728 {
1729 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1730 return pc + 4;
1731 }
1732
1733 return pc;
1734 }
1735
1736 /* Check whether PC points at code that saves registers on the stack.
1737 If so, it updates CACHE and returns the address of the first
1738 instruction after the register saves or CURRENT_PC, whichever is
1739 smaller. Otherwise, return PC. */
1740
1741 static CORE_ADDR
1742 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1743 struct i386_frame_cache *cache)
1744 {
1745 CORE_ADDR offset = 0;
1746 gdb_byte op;
1747 int i;
1748
1749 if (cache->locals > 0)
1750 offset -= cache->locals;
1751 for (i = 0; i < 8 && pc < current_pc; i++)
1752 {
1753 if (target_read_code (pc, &op, 1))
1754 return pc;
1755 if (op < 0x50 || op > 0x57)
1756 break;
1757
1758 offset -= 4;
1759 cache->saved_regs[op - 0x50] = offset;
1760 cache->sp_offset += 4;
1761 pc++;
1762 }
1763
1764 return pc;
1765 }
1766
1767 /* Do a full analysis of the prologue at PC and update CACHE
1768 accordingly. Bail out early if CURRENT_PC is reached. Return the
1769 address where the analysis stopped.
1770
1771 We handle these cases:
1772
1773 The startup sequence can be at the start of the function, or the
1774 function can start with a branch to startup code at the end.
1775
1776 %ebp can be set up with either the 'enter' instruction, or "pushl
1777 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1778 once used in the System V compiler).
1779
1780 Local space is allocated just below the saved %ebp by either the
1781 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1782 16-bit unsigned argument for space to allocate, and the 'addl'
1783 instruction could have either a signed byte, or 32-bit immediate.
1784
1785 Next, the registers used by this function are pushed. With the
1786 System V compiler they will always be in the order: %edi, %esi,
1787 %ebx (and sometimes a harmless bug causes it to also save but not
1788 restore %eax); however, the code below is willing to see the pushes
1789 in any order, and will handle up to 8 of them.
1790
1791 If the setup sequence is at the end of the function, then the next
1792 instruction will be a branch back to the start. */
1793
1794 static CORE_ADDR
1795 i386_analyze_prologue (struct gdbarch *gdbarch,
1796 CORE_ADDR pc, CORE_ADDR current_pc,
1797 struct i386_frame_cache *cache)
1798 {
1799 pc = i386_skip_noop (pc);
1800 pc = i386_follow_jump (gdbarch, pc);
1801 pc = i386_analyze_struct_return (pc, current_pc, cache);
1802 pc = i386_skip_probe (pc);
1803 pc = i386_analyze_stack_align (pc, current_pc, cache);
1804 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1805 return i386_analyze_register_saves (pc, current_pc, cache);
1806 }
1807
1808 /* Return PC of first real instruction. */
1809
1810 static CORE_ADDR
1811 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1812 {
1813 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1814
1815 static gdb_byte pic_pat[6] =
1816 {
1817 0xe8, 0, 0, 0, 0, /* call 0x0 */
1818 0x5b, /* popl %ebx */
1819 };
1820 struct i386_frame_cache cache;
1821 CORE_ADDR pc;
1822 gdb_byte op;
1823 int i;
1824 CORE_ADDR func_addr;
1825
1826 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1827 {
1828 CORE_ADDR post_prologue_pc
1829 = skip_prologue_using_sal (gdbarch, func_addr);
1830 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1831
1832 /* Clang always emits a line note before the prologue and another
1833 one after. We trust clang to emit usable line notes. */
1834 if (post_prologue_pc
1835 && (cust != NULL
1836 && COMPUNIT_PRODUCER (cust) != NULL
1837 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1838 return max (start_pc, post_prologue_pc);
1839 }
1840
1841 cache.locals = -1;
1842 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1843 if (cache.locals < 0)
1844 return start_pc;
1845
1846 /* Found valid frame setup. */
1847
1848 /* The native cc on SVR4 in -K PIC mode inserts the following code
1849 to get the address of the global offset table (GOT) into register
1850 %ebx:
1851
1852 call 0x0
1853 popl %ebx
1854 movl %ebx,x(%ebp) (optional)
1855 addl y,%ebx
1856
1857 This code is with the rest of the prologue (at the end of the
1858 function), so we have to skip it to get to the first real
1859 instruction at the start of the function. */
1860
1861 for (i = 0; i < 6; i++)
1862 {
1863 if (target_read_code (pc + i, &op, 1))
1864 return pc;
1865
1866 if (pic_pat[i] != op)
1867 break;
1868 }
1869 if (i == 6)
1870 {
1871 int delta = 6;
1872
1873 if (target_read_code (pc + delta, &op, 1))
1874 return pc;
1875
1876 if (op == 0x89) /* movl %ebx, x(%ebp) */
1877 {
1878 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1879
1880 if (op == 0x5d) /* One byte offset from %ebp. */
1881 delta += 3;
1882 else if (op == 0x9d) /* Four byte offset from %ebp. */
1883 delta += 6;
1884 else /* Unexpected instruction. */
1885 delta = 0;
1886
1887 if (target_read_code (pc + delta, &op, 1))
1888 return pc;
1889 }
1890
1891 /* addl y,%ebx */
1892 if (delta > 0 && op == 0x81
1893 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1894 == 0xc3)
1895 {
1896 pc += delta + 6;
1897 }
1898 }
1899
1900 /* If the function starts with a branch (to startup code at the end)
1901 the last instruction should bring us back to the first
1902 instruction of the real code. */
1903 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1904 pc = i386_follow_jump (gdbarch, pc);
1905
1906 return pc;
1907 }
1908
1909 /* Check that the code pointed to by PC corresponds to a call to
1910 __main, skip it if so. Return PC otherwise. */
1911
1912 CORE_ADDR
1913 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1914 {
1915 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1916 gdb_byte op;
1917
1918 if (target_read_code (pc, &op, 1))
1919 return pc;
1920 if (op == 0xe8)
1921 {
1922 gdb_byte buf[4];
1923
1924 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1925 {
1926 /* Make sure address is computed correctly as a 32bit
1927 integer even if CORE_ADDR is 64 bit wide. */
1928 struct bound_minimal_symbol s;
1929 CORE_ADDR call_dest;
1930
1931 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1932 call_dest = call_dest & 0xffffffffU;
1933 s = lookup_minimal_symbol_by_pc (call_dest);
1934 if (s.minsym != NULL
1935 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1936 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1937 pc += 5;
1938 }
1939 }
1940
1941 return pc;
1942 }
1943
1944 /* This function is 64-bit safe. */
1945
1946 static CORE_ADDR
1947 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1948 {
1949 gdb_byte buf[8];
1950
1951 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1952 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1953 }
1954 \f
1955
1956 /* Normal frames. */
1957
1958 static void
1959 i386_frame_cache_1 (struct frame_info *this_frame,
1960 struct i386_frame_cache *cache)
1961 {
1962 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1963 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1964 gdb_byte buf[4];
1965 int i;
1966
1967 cache->pc = get_frame_func (this_frame);
1968
1969 /* In principle, for normal frames, %ebp holds the frame pointer,
1970 which holds the base address for the current stack frame.
1971 However, for functions that don't need it, the frame pointer is
1972 optional. For these "frameless" functions the frame pointer is
1973 actually the frame pointer of the calling frame. Signal
1974 trampolines are just a special case of a "frameless" function.
1975 They (usually) share their frame pointer with the frame that was
1976 in progress when the signal occurred. */
1977
1978 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1979 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1980 if (cache->base == 0)
1981 {
1982 cache->base_p = 1;
1983 return;
1984 }
1985
1986 /* For normal frames, %eip is stored at 4(%ebp). */
1987 cache->saved_regs[I386_EIP_REGNUM] = 4;
1988
1989 if (cache->pc != 0)
1990 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1991 cache);
1992
1993 if (cache->locals < 0)
1994 {
1995 /* We didn't find a valid frame, which means that CACHE->base
1996 currently holds the frame pointer for our calling frame. If
1997 we're at the start of a function, or somewhere half-way its
1998 prologue, the function's frame probably hasn't been fully
1999 setup yet. Try to reconstruct the base address for the stack
2000 frame by looking at the stack pointer. For truly "frameless"
2001 functions this might work too. */
2002
2003 if (cache->saved_sp_reg != -1)
2004 {
2005 /* Saved stack pointer has been saved. */
2006 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2007 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2008
2009 /* We're halfway aligning the stack. */
2010 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2011 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2012
2013 /* This will be added back below. */
2014 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2015 }
2016 else if (cache->pc != 0
2017 || target_read_code (get_frame_pc (this_frame), buf, 1))
2018 {
2019 /* We're in a known function, but did not find a frame
2020 setup. Assume that the function does not use %ebp.
2021 Alternatively, we may have jumped to an invalid
2022 address; in that case there is definitely no new
2023 frame in %ebp. */
2024 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2025 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2026 + cache->sp_offset;
2027 }
2028 else
2029 /* We're in an unknown function. We could not find the start
2030 of the function to analyze the prologue; our best option is
2031 to assume a typical frame layout with the caller's %ebp
2032 saved. */
2033 cache->saved_regs[I386_EBP_REGNUM] = 0;
2034 }
2035
2036 if (cache->saved_sp_reg != -1)
2037 {
2038 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2039 register may be unavailable). */
2040 if (cache->saved_sp == 0
2041 && deprecated_frame_register_read (this_frame,
2042 cache->saved_sp_reg, buf))
2043 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2044 }
2045 /* Now that we have the base address for the stack frame we can
2046 calculate the value of %esp in the calling frame. */
2047 else if (cache->saved_sp == 0)
2048 cache->saved_sp = cache->base + 8;
2049
2050 /* Adjust all the saved registers such that they contain addresses
2051 instead of offsets. */
2052 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2053 if (cache->saved_regs[i] != -1)
2054 cache->saved_regs[i] += cache->base;
2055
2056 cache->base_p = 1;
2057 }
2058
2059 static struct i386_frame_cache *
2060 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2061 {
2062 struct i386_frame_cache *cache;
2063
2064 if (*this_cache)
2065 return (struct i386_frame_cache *) *this_cache;
2066
2067 cache = i386_alloc_frame_cache ();
2068 *this_cache = cache;
2069
2070 TRY
2071 {
2072 i386_frame_cache_1 (this_frame, cache);
2073 }
2074 CATCH (ex, RETURN_MASK_ERROR)
2075 {
2076 if (ex.error != NOT_AVAILABLE_ERROR)
2077 throw_exception (ex);
2078 }
2079 END_CATCH
2080
2081 return cache;
2082 }
2083
2084 static void
2085 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2086 struct frame_id *this_id)
2087 {
2088 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2089
2090 if (!cache->base_p)
2091 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2092 else if (cache->base == 0)
2093 {
2094 /* This marks the outermost frame. */
2095 }
2096 else
2097 {
2098 /* See the end of i386_push_dummy_call. */
2099 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2100 }
2101 }
2102
2103 static enum unwind_stop_reason
2104 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2105 void **this_cache)
2106 {
2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2108
2109 if (!cache->base_p)
2110 return UNWIND_UNAVAILABLE;
2111
2112 /* This marks the outermost frame. */
2113 if (cache->base == 0)
2114 return UNWIND_OUTERMOST;
2115
2116 return UNWIND_NO_REASON;
2117 }
2118
2119 static struct value *
2120 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2121 int regnum)
2122 {
2123 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2124
2125 gdb_assert (regnum >= 0);
2126
2127 /* The System V ABI says that:
2128
2129 "The flags register contains the system flags, such as the
2130 direction flag and the carry flag. The direction flag must be
2131 set to the forward (that is, zero) direction before entry and
2132 upon exit from a function. Other user flags have no specified
2133 role in the standard calling sequence and are not preserved."
2134
2135 To guarantee the "upon exit" part of that statement we fake a
2136 saved flags register that has its direction flag cleared.
2137
2138 Note that GCC doesn't seem to rely on the fact that the direction
2139 flag is cleared after a function return; it always explicitly
2140 clears the flag before operations where it matters.
2141
2142 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2143 right thing to do. The way we fake the flags register here makes
2144 it impossible to change it. */
2145
2146 if (regnum == I386_EFLAGS_REGNUM)
2147 {
2148 ULONGEST val;
2149
2150 val = get_frame_register_unsigned (this_frame, regnum);
2151 val &= ~(1 << 10);
2152 return frame_unwind_got_constant (this_frame, regnum, val);
2153 }
2154
2155 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2156 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2157
2158 if (regnum == I386_ESP_REGNUM
2159 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2160 {
2161 /* If the SP has been saved, but we don't know where, then this
2162 means that SAVED_SP_REG register was found unavailable back
2163 when we built the cache. */
2164 if (cache->saved_sp == 0)
2165 return frame_unwind_got_register (this_frame, regnum,
2166 cache->saved_sp_reg);
2167 else
2168 return frame_unwind_got_constant (this_frame, regnum,
2169 cache->saved_sp);
2170 }
2171
2172 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2173 return frame_unwind_got_memory (this_frame, regnum,
2174 cache->saved_regs[regnum]);
2175
2176 return frame_unwind_got_register (this_frame, regnum, regnum);
2177 }
2178
2179 static const struct frame_unwind i386_frame_unwind =
2180 {
2181 NORMAL_FRAME,
2182 i386_frame_unwind_stop_reason,
2183 i386_frame_this_id,
2184 i386_frame_prev_register,
2185 NULL,
2186 default_frame_sniffer
2187 };
2188
2189 /* Normal frames, but in a function epilogue. */
2190
2191 /* Implement the stack_frame_destroyed_p gdbarch method.
2192
2193 The epilogue is defined here as the 'ret' instruction, which will
2194 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2195 the function's stack frame. */
2196
2197 static int
2198 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2199 {
2200 gdb_byte insn;
2201 struct compunit_symtab *cust;
2202
2203 cust = find_pc_compunit_symtab (pc);
2204 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2205 return 0;
2206
2207 if (target_read_memory (pc, &insn, 1))
2208 return 0; /* Can't read memory at pc. */
2209
2210 if (insn != 0xc3) /* 'ret' instruction. */
2211 return 0;
2212
2213 return 1;
2214 }
2215
2216 static int
2217 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2218 struct frame_info *this_frame,
2219 void **this_prologue_cache)
2220 {
2221 if (frame_relative_level (this_frame) == 0)
2222 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2223 get_frame_pc (this_frame));
2224 else
2225 return 0;
2226 }
2227
2228 static struct i386_frame_cache *
2229 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2230 {
2231 struct i386_frame_cache *cache;
2232 CORE_ADDR sp;
2233
2234 if (*this_cache)
2235 return (struct i386_frame_cache *) *this_cache;
2236
2237 cache = i386_alloc_frame_cache ();
2238 *this_cache = cache;
2239
2240 TRY
2241 {
2242 cache->pc = get_frame_func (this_frame);
2243
2244 /* At this point the stack looks as if we just entered the
2245 function, with the return address at the top of the
2246 stack. */
2247 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2248 cache->base = sp + cache->sp_offset;
2249 cache->saved_sp = cache->base + 8;
2250 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2251
2252 cache->base_p = 1;
2253 }
2254 CATCH (ex, RETURN_MASK_ERROR)
2255 {
2256 if (ex.error != NOT_AVAILABLE_ERROR)
2257 throw_exception (ex);
2258 }
2259 END_CATCH
2260
2261 return cache;
2262 }
2263
2264 static enum unwind_stop_reason
2265 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2266 void **this_cache)
2267 {
2268 struct i386_frame_cache *cache =
2269 i386_epilogue_frame_cache (this_frame, this_cache);
2270
2271 if (!cache->base_p)
2272 return UNWIND_UNAVAILABLE;
2273
2274 return UNWIND_NO_REASON;
2275 }
2276
2277 static void
2278 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2279 void **this_cache,
2280 struct frame_id *this_id)
2281 {
2282 struct i386_frame_cache *cache =
2283 i386_epilogue_frame_cache (this_frame, this_cache);
2284
2285 if (!cache->base_p)
2286 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2287 else
2288 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2289 }
2290
2291 static struct value *
2292 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2293 void **this_cache, int regnum)
2294 {
2295 /* Make sure we've initialized the cache. */
2296 i386_epilogue_frame_cache (this_frame, this_cache);
2297
2298 return i386_frame_prev_register (this_frame, this_cache, regnum);
2299 }
2300
2301 static const struct frame_unwind i386_epilogue_frame_unwind =
2302 {
2303 NORMAL_FRAME,
2304 i386_epilogue_frame_unwind_stop_reason,
2305 i386_epilogue_frame_this_id,
2306 i386_epilogue_frame_prev_register,
2307 NULL,
2308 i386_epilogue_frame_sniffer
2309 };
2310 \f
2311
2312 /* Stack-based trampolines. */
2313
2314 /* These trampolines are used on cross x86 targets, when taking the
2315 address of a nested function. When executing these trampolines,
2316 no stack frame is set up, so we are in a similar situation as in
2317 epilogues and i386_epilogue_frame_this_id can be re-used. */
2318
2319 /* Static chain passed in register. */
2320
2321 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2322 {
2323 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2324 { 5, { 0xb8 }, { 0xfe } },
2325
2326 /* `jmp imm32' */
2327 { 5, { 0xe9 }, { 0xff } },
2328
2329 {0}
2330 };
2331
2332 /* Static chain passed on stack (when regparm=3). */
2333
2334 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2335 {
2336 /* `push imm32' */
2337 { 5, { 0x68 }, { 0xff } },
2338
2339 /* `jmp imm32' */
2340 { 5, { 0xe9 }, { 0xff } },
2341
2342 {0}
2343 };
2344
2345 /* Return whether PC points inside a stack trampoline. */
2346
2347 static int
2348 i386_in_stack_tramp_p (CORE_ADDR pc)
2349 {
2350 gdb_byte insn;
2351 const char *name;
2352
2353 /* A stack trampoline is detected if no name is associated
2354 to the current pc and if it points inside a trampoline
2355 sequence. */
2356
2357 find_pc_partial_function (pc, &name, NULL, NULL);
2358 if (name)
2359 return 0;
2360
2361 if (target_read_memory (pc, &insn, 1))
2362 return 0;
2363
2364 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2365 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2366 return 0;
2367
2368 return 1;
2369 }
2370
2371 static int
2372 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2373 struct frame_info *this_frame,
2374 void **this_cache)
2375 {
2376 if (frame_relative_level (this_frame) == 0)
2377 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2378 else
2379 return 0;
2380 }
2381
2382 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2383 {
2384 NORMAL_FRAME,
2385 i386_epilogue_frame_unwind_stop_reason,
2386 i386_epilogue_frame_this_id,
2387 i386_epilogue_frame_prev_register,
2388 NULL,
2389 i386_stack_tramp_frame_sniffer
2390 };
2391 \f
2392 /* Generate a bytecode expression to get the value of the saved PC. */
2393
2394 static void
2395 i386_gen_return_address (struct gdbarch *gdbarch,
2396 struct agent_expr *ax, struct axs_value *value,
2397 CORE_ADDR scope)
2398 {
2399 /* The following sequence assumes the traditional use of the base
2400 register. */
2401 ax_reg (ax, I386_EBP_REGNUM);
2402 ax_const_l (ax, 4);
2403 ax_simple (ax, aop_add);
2404 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2405 value->kind = axs_lvalue_memory;
2406 }
2407 \f
2408
2409 /* Signal trampolines. */
2410
2411 static struct i386_frame_cache *
2412 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2413 {
2414 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2416 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2417 struct i386_frame_cache *cache;
2418 CORE_ADDR addr;
2419 gdb_byte buf[4];
2420
2421 if (*this_cache)
2422 return (struct i386_frame_cache *) *this_cache;
2423
2424 cache = i386_alloc_frame_cache ();
2425
2426 TRY
2427 {
2428 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2429 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2430
2431 addr = tdep->sigcontext_addr (this_frame);
2432 if (tdep->sc_reg_offset)
2433 {
2434 int i;
2435
2436 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2437
2438 for (i = 0; i < tdep->sc_num_regs; i++)
2439 if (tdep->sc_reg_offset[i] != -1)
2440 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2441 }
2442 else
2443 {
2444 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2445 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2446 }
2447
2448 cache->base_p = 1;
2449 }
2450 CATCH (ex, RETURN_MASK_ERROR)
2451 {
2452 if (ex.error != NOT_AVAILABLE_ERROR)
2453 throw_exception (ex);
2454 }
2455 END_CATCH
2456
2457 *this_cache = cache;
2458 return cache;
2459 }
2460
2461 static enum unwind_stop_reason
2462 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2463 void **this_cache)
2464 {
2465 struct i386_frame_cache *cache =
2466 i386_sigtramp_frame_cache (this_frame, this_cache);
2467
2468 if (!cache->base_p)
2469 return UNWIND_UNAVAILABLE;
2470
2471 return UNWIND_NO_REASON;
2472 }
2473
2474 static void
2475 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2476 struct frame_id *this_id)
2477 {
2478 struct i386_frame_cache *cache =
2479 i386_sigtramp_frame_cache (this_frame, this_cache);
2480
2481 if (!cache->base_p)
2482 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2483 else
2484 {
2485 /* See the end of i386_push_dummy_call. */
2486 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2487 }
2488 }
2489
2490 static struct value *
2491 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2492 void **this_cache, int regnum)
2493 {
2494 /* Make sure we've initialized the cache. */
2495 i386_sigtramp_frame_cache (this_frame, this_cache);
2496
2497 return i386_frame_prev_register (this_frame, this_cache, regnum);
2498 }
2499
2500 static int
2501 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2502 struct frame_info *this_frame,
2503 void **this_prologue_cache)
2504 {
2505 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2506
2507 /* We shouldn't even bother if we don't have a sigcontext_addr
2508 handler. */
2509 if (tdep->sigcontext_addr == NULL)
2510 return 0;
2511
2512 if (tdep->sigtramp_p != NULL)
2513 {
2514 if (tdep->sigtramp_p (this_frame))
2515 return 1;
2516 }
2517
2518 if (tdep->sigtramp_start != 0)
2519 {
2520 CORE_ADDR pc = get_frame_pc (this_frame);
2521
2522 gdb_assert (tdep->sigtramp_end != 0);
2523 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2524 return 1;
2525 }
2526
2527 return 0;
2528 }
2529
2530 static const struct frame_unwind i386_sigtramp_frame_unwind =
2531 {
2532 SIGTRAMP_FRAME,
2533 i386_sigtramp_frame_unwind_stop_reason,
2534 i386_sigtramp_frame_this_id,
2535 i386_sigtramp_frame_prev_register,
2536 NULL,
2537 i386_sigtramp_frame_sniffer
2538 };
2539 \f
2540
2541 static CORE_ADDR
2542 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2543 {
2544 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2545
2546 return cache->base;
2547 }
2548
2549 static const struct frame_base i386_frame_base =
2550 {
2551 &i386_frame_unwind,
2552 i386_frame_base_address,
2553 i386_frame_base_address,
2554 i386_frame_base_address
2555 };
2556
2557 static struct frame_id
2558 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2559 {
2560 CORE_ADDR fp;
2561
2562 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2563
2564 /* See the end of i386_push_dummy_call. */
2565 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2566 }
2567
2568 /* _Decimal128 function return values need 16-byte alignment on the
2569 stack. */
2570
2571 static CORE_ADDR
2572 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2573 {
2574 return sp & -(CORE_ADDR)16;
2575 }
2576 \f
2577
2578 /* Figure out where the longjmp will land. Slurp the args out of the
2579 stack. We expect the first arg to be a pointer to the jmp_buf
2580 structure from which we extract the address that we will land at.
2581 This address is copied into PC. This routine returns non-zero on
2582 success. */
2583
2584 static int
2585 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2586 {
2587 gdb_byte buf[4];
2588 CORE_ADDR sp, jb_addr;
2589 struct gdbarch *gdbarch = get_frame_arch (frame);
2590 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2591 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2592
2593 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2594 longjmp will land. */
2595 if (jb_pc_offset == -1)
2596 return 0;
2597
2598 get_frame_register (frame, I386_ESP_REGNUM, buf);
2599 sp = extract_unsigned_integer (buf, 4, byte_order);
2600 if (target_read_memory (sp + 4, buf, 4))
2601 return 0;
2602
2603 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2604 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2605 return 0;
2606
2607 *pc = extract_unsigned_integer (buf, 4, byte_order);
2608 return 1;
2609 }
2610 \f
2611
2612 /* Check whether TYPE must be 16-byte-aligned when passed as a
2613 function argument. 16-byte vectors, _Decimal128 and structures or
2614 unions containing such types must be 16-byte-aligned; other
2615 arguments are 4-byte-aligned. */
2616
2617 static int
2618 i386_16_byte_align_p (struct type *type)
2619 {
2620 type = check_typedef (type);
2621 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2622 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2623 && TYPE_LENGTH (type) == 16)
2624 return 1;
2625 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2626 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2627 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2628 || TYPE_CODE (type) == TYPE_CODE_UNION)
2629 {
2630 int i;
2631 for (i = 0; i < TYPE_NFIELDS (type); i++)
2632 {
2633 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2634 return 1;
2635 }
2636 }
2637 return 0;
2638 }
2639
2640 /* Implementation for set_gdbarch_push_dummy_code. */
2641
2642 static CORE_ADDR
2643 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2644 struct value **args, int nargs, struct type *value_type,
2645 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2646 struct regcache *regcache)
2647 {
2648 /* Use 0xcc breakpoint - 1 byte. */
2649 *bp_addr = sp - 1;
2650 *real_pc = funaddr;
2651
2652 /* Keep the stack aligned. */
2653 return sp - 16;
2654 }
2655
2656 static CORE_ADDR
2657 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2658 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2659 struct value **args, CORE_ADDR sp, int struct_return,
2660 CORE_ADDR struct_addr)
2661 {
2662 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2663 gdb_byte buf[4];
2664 int i;
2665 int write_pass;
2666 int args_space = 0;
2667
2668 /* Determine the total space required for arguments and struct
2669 return address in a first pass (allowing for 16-byte-aligned
2670 arguments), then push arguments in a second pass. */
2671
2672 for (write_pass = 0; write_pass < 2; write_pass++)
2673 {
2674 int args_space_used = 0;
2675
2676 if (struct_return)
2677 {
2678 if (write_pass)
2679 {
2680 /* Push value address. */
2681 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2682 write_memory (sp, buf, 4);
2683 args_space_used += 4;
2684 }
2685 else
2686 args_space += 4;
2687 }
2688
2689 for (i = 0; i < nargs; i++)
2690 {
2691 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2692
2693 if (write_pass)
2694 {
2695 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2696 args_space_used = align_up (args_space_used, 16);
2697
2698 write_memory (sp + args_space_used,
2699 value_contents_all (args[i]), len);
2700 /* The System V ABI says that:
2701
2702 "An argument's size is increased, if necessary, to make it a
2703 multiple of [32-bit] words. This may require tail padding,
2704 depending on the size of the argument."
2705
2706 This makes sure the stack stays word-aligned. */
2707 args_space_used += align_up (len, 4);
2708 }
2709 else
2710 {
2711 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2712 args_space = align_up (args_space, 16);
2713 args_space += align_up (len, 4);
2714 }
2715 }
2716
2717 if (!write_pass)
2718 {
2719 sp -= args_space;
2720
2721 /* The original System V ABI only requires word alignment,
2722 but modern incarnations need 16-byte alignment in order
2723 to support SSE. Since wasting a few bytes here isn't
2724 harmful we unconditionally enforce 16-byte alignment. */
2725 sp &= ~0xf;
2726 }
2727 }
2728
2729 /* Store return address. */
2730 sp -= 4;
2731 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2732 write_memory (sp, buf, 4);
2733
2734 /* Finally, update the stack pointer... */
2735 store_unsigned_integer (buf, 4, byte_order, sp);
2736 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2737
2738 /* ...and fake a frame pointer. */
2739 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2740
2741 /* MarkK wrote: This "+ 8" is all over the place:
2742 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2743 i386_dummy_id). It's there, since all frame unwinders for
2744 a given target have to agree (within a certain margin) on the
2745 definition of the stack address of a frame. Otherwise frame id
2746 comparison might not work correctly. Since DWARF2/GCC uses the
2747 stack address *before* the function call as a frame's CFA. On
2748 the i386, when %ebp is used as a frame pointer, the offset
2749 between the contents %ebp and the CFA as defined by GCC. */
2750 return sp + 8;
2751 }
2752
2753 /* These registers are used for returning integers (and on some
2754 targets also for returning `struct' and `union' values when their
2755 size and alignment match an integer type). */
2756 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2757 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2758
2759 /* Read, for architecture GDBARCH, a function return value of TYPE
2760 from REGCACHE, and copy that into VALBUF. */
2761
2762 static void
2763 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2764 struct regcache *regcache, gdb_byte *valbuf)
2765 {
2766 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2767 int len = TYPE_LENGTH (type);
2768 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2769
2770 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2771 {
2772 if (tdep->st0_regnum < 0)
2773 {
2774 warning (_("Cannot find floating-point return value."));
2775 memset (valbuf, 0, len);
2776 return;
2777 }
2778
2779 /* Floating-point return values can be found in %st(0). Convert
2780 its contents to the desired type. This is probably not
2781 exactly how it would happen on the target itself, but it is
2782 the best we can do. */
2783 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2784 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2785 }
2786 else
2787 {
2788 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2789 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2790
2791 if (len <= low_size)
2792 {
2793 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2794 memcpy (valbuf, buf, len);
2795 }
2796 else if (len <= (low_size + high_size))
2797 {
2798 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2799 memcpy (valbuf, buf, low_size);
2800 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2801 memcpy (valbuf + low_size, buf, len - low_size);
2802 }
2803 else
2804 internal_error (__FILE__, __LINE__,
2805 _("Cannot extract return value of %d bytes long."),
2806 len);
2807 }
2808 }
2809
2810 /* Write, for architecture GDBARCH, a function return value of TYPE
2811 from VALBUF into REGCACHE. */
2812
2813 static void
2814 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2815 struct regcache *regcache, const gdb_byte *valbuf)
2816 {
2817 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2818 int len = TYPE_LENGTH (type);
2819
2820 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2821 {
2822 ULONGEST fstat;
2823 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2824
2825 if (tdep->st0_regnum < 0)
2826 {
2827 warning (_("Cannot set floating-point return value."));
2828 return;
2829 }
2830
2831 /* Returning floating-point values is a bit tricky. Apart from
2832 storing the return value in %st(0), we have to simulate the
2833 state of the FPU at function return point. */
2834
2835 /* Convert the value found in VALBUF to the extended
2836 floating-point format used by the FPU. This is probably
2837 not exactly how it would happen on the target itself, but
2838 it is the best we can do. */
2839 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2840 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2841
2842 /* Set the top of the floating-point register stack to 7. The
2843 actual value doesn't really matter, but 7 is what a normal
2844 function return would end up with if the program started out
2845 with a freshly initialized FPU. */
2846 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2847 fstat |= (7 << 11);
2848 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2849
2850 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2851 the floating-point register stack to 7, the appropriate value
2852 for the tag word is 0x3fff. */
2853 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2854 }
2855 else
2856 {
2857 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2858 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2859
2860 if (len <= low_size)
2861 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2862 else if (len <= (low_size + high_size))
2863 {
2864 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2865 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2866 len - low_size, valbuf + low_size);
2867 }
2868 else
2869 internal_error (__FILE__, __LINE__,
2870 _("Cannot store return value of %d bytes long."), len);
2871 }
2872 }
2873 \f
2874
2875 /* This is the variable that is set with "set struct-convention", and
2876 its legitimate values. */
2877 static const char default_struct_convention[] = "default";
2878 static const char pcc_struct_convention[] = "pcc";
2879 static const char reg_struct_convention[] = "reg";
2880 static const char *const valid_conventions[] =
2881 {
2882 default_struct_convention,
2883 pcc_struct_convention,
2884 reg_struct_convention,
2885 NULL
2886 };
2887 static const char *struct_convention = default_struct_convention;
2888
2889 /* Return non-zero if TYPE, which is assumed to be a structure,
2890 a union type, or an array type, should be returned in registers
2891 for architecture GDBARCH. */
2892
2893 static int
2894 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2895 {
2896 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2897 enum type_code code = TYPE_CODE (type);
2898 int len = TYPE_LENGTH (type);
2899
2900 gdb_assert (code == TYPE_CODE_STRUCT
2901 || code == TYPE_CODE_UNION
2902 || code == TYPE_CODE_ARRAY);
2903
2904 if (struct_convention == pcc_struct_convention
2905 || (struct_convention == default_struct_convention
2906 && tdep->struct_return == pcc_struct_return))
2907 return 0;
2908
2909 /* Structures consisting of a single `float', `double' or 'long
2910 double' member are returned in %st(0). */
2911 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2912 {
2913 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2914 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2915 return (len == 4 || len == 8 || len == 12);
2916 }
2917
2918 return (len == 1 || len == 2 || len == 4 || len == 8);
2919 }
2920
2921 /* Determine, for architecture GDBARCH, how a return value of TYPE
2922 should be returned. If it is supposed to be returned in registers,
2923 and READBUF is non-zero, read the appropriate value from REGCACHE,
2924 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2925 from WRITEBUF into REGCACHE. */
2926
2927 static enum return_value_convention
2928 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2929 struct type *type, struct regcache *regcache,
2930 gdb_byte *readbuf, const gdb_byte *writebuf)
2931 {
2932 enum type_code code = TYPE_CODE (type);
2933
2934 if (((code == TYPE_CODE_STRUCT
2935 || code == TYPE_CODE_UNION
2936 || code == TYPE_CODE_ARRAY)
2937 && !i386_reg_struct_return_p (gdbarch, type))
2938 /* Complex double and long double uses the struct return covention. */
2939 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2940 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2941 /* 128-bit decimal float uses the struct return convention. */
2942 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2943 {
2944 /* The System V ABI says that:
2945
2946 "A function that returns a structure or union also sets %eax
2947 to the value of the original address of the caller's area
2948 before it returns. Thus when the caller receives control
2949 again, the address of the returned object resides in register
2950 %eax and can be used to access the object."
2951
2952 So the ABI guarantees that we can always find the return
2953 value just after the function has returned. */
2954
2955 /* Note that the ABI doesn't mention functions returning arrays,
2956 which is something possible in certain languages such as Ada.
2957 In this case, the value is returned as if it was wrapped in
2958 a record, so the convention applied to records also applies
2959 to arrays. */
2960
2961 if (readbuf)
2962 {
2963 ULONGEST addr;
2964
2965 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2966 read_memory (addr, readbuf, TYPE_LENGTH (type));
2967 }
2968
2969 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2970 }
2971
2972 /* This special case is for structures consisting of a single
2973 `float', `double' or 'long double' member. These structures are
2974 returned in %st(0). For these structures, we call ourselves
2975 recursively, changing TYPE into the type of the first member of
2976 the structure. Since that should work for all structures that
2977 have only one member, we don't bother to check the member's type
2978 here. */
2979 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2980 {
2981 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2982 return i386_return_value (gdbarch, function, type, regcache,
2983 readbuf, writebuf);
2984 }
2985
2986 if (readbuf)
2987 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2988 if (writebuf)
2989 i386_store_return_value (gdbarch, type, regcache, writebuf);
2990
2991 return RETURN_VALUE_REGISTER_CONVENTION;
2992 }
2993 \f
2994
2995 struct type *
2996 i387_ext_type (struct gdbarch *gdbarch)
2997 {
2998 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2999
3000 if (!tdep->i387_ext_type)
3001 {
3002 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3003 gdb_assert (tdep->i387_ext_type != NULL);
3004 }
3005
3006 return tdep->i387_ext_type;
3007 }
3008
3009 /* Construct type for pseudo BND registers. We can't use
3010 tdesc_find_type since a complement of one value has to be used
3011 to describe the upper bound. */
3012
3013 static struct type *
3014 i386_bnd_type (struct gdbarch *gdbarch)
3015 {
3016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3017
3018
3019 if (!tdep->i386_bnd_type)
3020 {
3021 struct type *t, *bound_t;
3022 const struct builtin_type *bt = builtin_type (gdbarch);
3023
3024 /* The type we're building is described bellow: */
3025 #if 0
3026 struct __bound128
3027 {
3028 void *lbound;
3029 void *ubound; /* One complement of raw ubound field. */
3030 };
3031 #endif
3032
3033 t = arch_composite_type (gdbarch,
3034 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3035
3036 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3037 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3038
3039 TYPE_NAME (t) = "builtin_type_bound128";
3040 tdep->i386_bnd_type = t;
3041 }
3042
3043 return tdep->i386_bnd_type;
3044 }
3045
3046 /* Construct vector type for pseudo ZMM registers. We can't use
3047 tdesc_find_type since ZMM isn't described in target description. */
3048
3049 static struct type *
3050 i386_zmm_type (struct gdbarch *gdbarch)
3051 {
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3053
3054 if (!tdep->i386_zmm_type)
3055 {
3056 const struct builtin_type *bt = builtin_type (gdbarch);
3057
3058 /* The type we're building is this: */
3059 #if 0
3060 union __gdb_builtin_type_vec512i
3061 {
3062 int128_t uint128[4];
3063 int64_t v4_int64[8];
3064 int32_t v8_int32[16];
3065 int16_t v16_int16[32];
3066 int8_t v32_int8[64];
3067 double v4_double[8];
3068 float v8_float[16];
3069 };
3070 #endif
3071
3072 struct type *t;
3073
3074 t = arch_composite_type (gdbarch,
3075 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3076 append_composite_type_field (t, "v16_float",
3077 init_vector_type (bt->builtin_float, 16));
3078 append_composite_type_field (t, "v8_double",
3079 init_vector_type (bt->builtin_double, 8));
3080 append_composite_type_field (t, "v64_int8",
3081 init_vector_type (bt->builtin_int8, 64));
3082 append_composite_type_field (t, "v32_int16",
3083 init_vector_type (bt->builtin_int16, 32));
3084 append_composite_type_field (t, "v16_int32",
3085 init_vector_type (bt->builtin_int32, 16));
3086 append_composite_type_field (t, "v8_int64",
3087 init_vector_type (bt->builtin_int64, 8));
3088 append_composite_type_field (t, "v4_int128",
3089 init_vector_type (bt->builtin_int128, 4));
3090
3091 TYPE_VECTOR (t) = 1;
3092 TYPE_NAME (t) = "builtin_type_vec512i";
3093 tdep->i386_zmm_type = t;
3094 }
3095
3096 return tdep->i386_zmm_type;
3097 }
3098
3099 /* Construct vector type for pseudo YMM registers. We can't use
3100 tdesc_find_type since YMM isn't described in target description. */
3101
3102 static struct type *
3103 i386_ymm_type (struct gdbarch *gdbarch)
3104 {
3105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3106
3107 if (!tdep->i386_ymm_type)
3108 {
3109 const struct builtin_type *bt = builtin_type (gdbarch);
3110
3111 /* The type we're building is this: */
3112 #if 0
3113 union __gdb_builtin_type_vec256i
3114 {
3115 int128_t uint128[2];
3116 int64_t v2_int64[4];
3117 int32_t v4_int32[8];
3118 int16_t v8_int16[16];
3119 int8_t v16_int8[32];
3120 double v2_double[4];
3121 float v4_float[8];
3122 };
3123 #endif
3124
3125 struct type *t;
3126
3127 t = arch_composite_type (gdbarch,
3128 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3129 append_composite_type_field (t, "v8_float",
3130 init_vector_type (bt->builtin_float, 8));
3131 append_composite_type_field (t, "v4_double",
3132 init_vector_type (bt->builtin_double, 4));
3133 append_composite_type_field (t, "v32_int8",
3134 init_vector_type (bt->builtin_int8, 32));
3135 append_composite_type_field (t, "v16_int16",
3136 init_vector_type (bt->builtin_int16, 16));
3137 append_composite_type_field (t, "v8_int32",
3138 init_vector_type (bt->builtin_int32, 8));
3139 append_composite_type_field (t, "v4_int64",
3140 init_vector_type (bt->builtin_int64, 4));
3141 append_composite_type_field (t, "v2_int128",
3142 init_vector_type (bt->builtin_int128, 2));
3143
3144 TYPE_VECTOR (t) = 1;
3145 TYPE_NAME (t) = "builtin_type_vec256i";
3146 tdep->i386_ymm_type = t;
3147 }
3148
3149 return tdep->i386_ymm_type;
3150 }
3151
3152 /* Construct vector type for MMX registers. */
3153 static struct type *
3154 i386_mmx_type (struct gdbarch *gdbarch)
3155 {
3156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3157
3158 if (!tdep->i386_mmx_type)
3159 {
3160 const struct builtin_type *bt = builtin_type (gdbarch);
3161
3162 /* The type we're building is this: */
3163 #if 0
3164 union __gdb_builtin_type_vec64i
3165 {
3166 int64_t uint64;
3167 int32_t v2_int32[2];
3168 int16_t v4_int16[4];
3169 int8_t v8_int8[8];
3170 };
3171 #endif
3172
3173 struct type *t;
3174
3175 t = arch_composite_type (gdbarch,
3176 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3177
3178 append_composite_type_field (t, "uint64", bt->builtin_int64);
3179 append_composite_type_field (t, "v2_int32",
3180 init_vector_type (bt->builtin_int32, 2));
3181 append_composite_type_field (t, "v4_int16",
3182 init_vector_type (bt->builtin_int16, 4));
3183 append_composite_type_field (t, "v8_int8",
3184 init_vector_type (bt->builtin_int8, 8));
3185
3186 TYPE_VECTOR (t) = 1;
3187 TYPE_NAME (t) = "builtin_type_vec64i";
3188 tdep->i386_mmx_type = t;
3189 }
3190
3191 return tdep->i386_mmx_type;
3192 }
3193
3194 /* Return the GDB type object for the "standard" data type of data in
3195 register REGNUM. */
3196
3197 struct type *
3198 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3199 {
3200 if (i386_bnd_regnum_p (gdbarch, regnum))
3201 return i386_bnd_type (gdbarch);
3202 if (i386_mmx_regnum_p (gdbarch, regnum))
3203 return i386_mmx_type (gdbarch);
3204 else if (i386_ymm_regnum_p (gdbarch, regnum))
3205 return i386_ymm_type (gdbarch);
3206 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3207 return i386_ymm_type (gdbarch);
3208 else if (i386_zmm_regnum_p (gdbarch, regnum))
3209 return i386_zmm_type (gdbarch);
3210 else
3211 {
3212 const struct builtin_type *bt = builtin_type (gdbarch);
3213 if (i386_byte_regnum_p (gdbarch, regnum))
3214 return bt->builtin_int8;
3215 else if (i386_word_regnum_p (gdbarch, regnum))
3216 return bt->builtin_int16;
3217 else if (i386_dword_regnum_p (gdbarch, regnum))
3218 return bt->builtin_int32;
3219 else if (i386_k_regnum_p (gdbarch, regnum))
3220 return bt->builtin_int64;
3221 }
3222
3223 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3224 }
3225
3226 /* Map a cooked register onto a raw register or memory. For the i386,
3227 the MMX registers need to be mapped onto floating point registers. */
3228
3229 static int
3230 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
3231 {
3232 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3233 int mmxreg, fpreg;
3234 ULONGEST fstat;
3235 int tos;
3236
3237 mmxreg = regnum - tdep->mm0_regnum;
3238 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
3239 tos = (fstat >> 11) & 0x7;
3240 fpreg = (mmxreg + tos) % 8;
3241
3242 return (I387_ST0_REGNUM (tdep) + fpreg);
3243 }
3244
3245 /* A helper function for us by i386_pseudo_register_read_value and
3246 amd64_pseudo_register_read_value. It does all the work but reads
3247 the data into an already-allocated value. */
3248
3249 void
3250 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3251 struct regcache *regcache,
3252 int regnum,
3253 struct value *result_value)
3254 {
3255 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3256 enum register_status status;
3257 gdb_byte *buf = value_contents_raw (result_value);
3258
3259 if (i386_mmx_regnum_p (gdbarch, regnum))
3260 {
3261 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3262
3263 /* Extract (always little endian). */
3264 status = regcache_raw_read (regcache, fpnum, raw_buf);
3265 if (status != REG_VALID)
3266 mark_value_bytes_unavailable (result_value, 0,
3267 TYPE_LENGTH (value_type (result_value)));
3268 else
3269 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3270 }
3271 else
3272 {
3273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3274 if (i386_bnd_regnum_p (gdbarch, regnum))
3275 {
3276 regnum -= tdep->bnd0_regnum;
3277
3278 /* Extract (always little endian). Read lower 128bits. */
3279 status = regcache_raw_read (regcache,
3280 I387_BND0R_REGNUM (tdep) + regnum,
3281 raw_buf);
3282 if (status != REG_VALID)
3283 mark_value_bytes_unavailable (result_value, 0, 16);
3284 else
3285 {
3286 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3287 LONGEST upper, lower;
3288 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3289
3290 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3291 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3292 upper = ~upper;
3293
3294 memcpy (buf, &lower, size);
3295 memcpy (buf + size, &upper, size);
3296 }
3297 }
3298 else if (i386_k_regnum_p (gdbarch, regnum))
3299 {
3300 regnum -= tdep->k0_regnum;
3301
3302 /* Extract (always little endian). */
3303 status = regcache_raw_read (regcache,
3304 tdep->k0_regnum + regnum,
3305 raw_buf);
3306 if (status != REG_VALID)
3307 mark_value_bytes_unavailable (result_value, 0, 8);
3308 else
3309 memcpy (buf, raw_buf, 8);
3310 }
3311 else if (i386_zmm_regnum_p (gdbarch, regnum))
3312 {
3313 regnum -= tdep->zmm0_regnum;
3314
3315 if (regnum < num_lower_zmm_regs)
3316 {
3317 /* Extract (always little endian). Read lower 128bits. */
3318 status = regcache_raw_read (regcache,
3319 I387_XMM0_REGNUM (tdep) + regnum,
3320 raw_buf);
3321 if (status != REG_VALID)
3322 mark_value_bytes_unavailable (result_value, 0, 16);
3323 else
3324 memcpy (buf, raw_buf, 16);
3325
3326 /* Extract (always little endian). Read upper 128bits. */
3327 status = regcache_raw_read (regcache,
3328 tdep->ymm0h_regnum + regnum,
3329 raw_buf);
3330 if (status != REG_VALID)
3331 mark_value_bytes_unavailable (result_value, 16, 16);
3332 else
3333 memcpy (buf + 16, raw_buf, 16);
3334 }
3335 else
3336 {
3337 /* Extract (always little endian). Read lower 128bits. */
3338 status = regcache_raw_read (regcache,
3339 I387_XMM16_REGNUM (tdep) + regnum
3340 - num_lower_zmm_regs,
3341 raw_buf);
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 0, 16);
3344 else
3345 memcpy (buf, raw_buf, 16);
3346
3347 /* Extract (always little endian). Read upper 128bits. */
3348 status = regcache_raw_read (regcache,
3349 I387_YMM16H_REGNUM (tdep) + regnum
3350 - num_lower_zmm_regs,
3351 raw_buf);
3352 if (status != REG_VALID)
3353 mark_value_bytes_unavailable (result_value, 16, 16);
3354 else
3355 memcpy (buf + 16, raw_buf, 16);
3356 }
3357
3358 /* Read upper 256bits. */
3359 status = regcache_raw_read (regcache,
3360 tdep->zmm0h_regnum + regnum,
3361 raw_buf);
3362 if (status != REG_VALID)
3363 mark_value_bytes_unavailable (result_value, 32, 32);
3364 else
3365 memcpy (buf + 32, raw_buf, 32);
3366 }
3367 else if (i386_ymm_regnum_p (gdbarch, regnum))
3368 {
3369 regnum -= tdep->ymm0_regnum;
3370
3371 /* Extract (always little endian). Read lower 128bits. */
3372 status = regcache_raw_read (regcache,
3373 I387_XMM0_REGNUM (tdep) + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 0, 16);
3377 else
3378 memcpy (buf, raw_buf, 16);
3379 /* Read upper 128bits. */
3380 status = regcache_raw_read (regcache,
3381 tdep->ymm0h_regnum + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 16, 32);
3385 else
3386 memcpy (buf + 16, raw_buf, 16);
3387 }
3388 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3389 {
3390 regnum -= tdep->ymm16_regnum;
3391 /* Extract (always little endian). Read lower 128bits. */
3392 status = regcache_raw_read (regcache,
3393 I387_XMM16_REGNUM (tdep) + regnum,
3394 raw_buf);
3395 if (status != REG_VALID)
3396 mark_value_bytes_unavailable (result_value, 0, 16);
3397 else
3398 memcpy (buf, raw_buf, 16);
3399 /* Read upper 128bits. */
3400 status = regcache_raw_read (regcache,
3401 tdep->ymm16h_regnum + regnum,
3402 raw_buf);
3403 if (status != REG_VALID)
3404 mark_value_bytes_unavailable (result_value, 16, 16);
3405 else
3406 memcpy (buf + 16, raw_buf, 16);
3407 }
3408 else if (i386_word_regnum_p (gdbarch, regnum))
3409 {
3410 int gpnum = regnum - tdep->ax_regnum;
3411
3412 /* Extract (always little endian). */
3413 status = regcache_raw_read (regcache, gpnum, raw_buf);
3414 if (status != REG_VALID)
3415 mark_value_bytes_unavailable (result_value, 0,
3416 TYPE_LENGTH (value_type (result_value)));
3417 else
3418 memcpy (buf, raw_buf, 2);
3419 }
3420 else if (i386_byte_regnum_p (gdbarch, regnum))
3421 {
3422 int gpnum = regnum - tdep->al_regnum;
3423
3424 /* Extract (always little endian). We read both lower and
3425 upper registers. */
3426 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3427 if (status != REG_VALID)
3428 mark_value_bytes_unavailable (result_value, 0,
3429 TYPE_LENGTH (value_type (result_value)));
3430 else if (gpnum >= 4)
3431 memcpy (buf, raw_buf + 1, 1);
3432 else
3433 memcpy (buf, raw_buf, 1);
3434 }
3435 else
3436 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3437 }
3438 }
3439
3440 static struct value *
3441 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3442 struct regcache *regcache,
3443 int regnum)
3444 {
3445 struct value *result;
3446
3447 result = allocate_value (register_type (gdbarch, regnum));
3448 VALUE_LVAL (result) = lval_register;
3449 VALUE_REGNUM (result) = regnum;
3450
3451 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3452
3453 return result;
3454 }
3455
3456 void
3457 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3458 int regnum, const gdb_byte *buf)
3459 {
3460 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3461
3462 if (i386_mmx_regnum_p (gdbarch, regnum))
3463 {
3464 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3465
3466 /* Read ... */
3467 regcache_raw_read (regcache, fpnum, raw_buf);
3468 /* ... Modify ... (always little endian). */
3469 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3470 /* ... Write. */
3471 regcache_raw_write (regcache, fpnum, raw_buf);
3472 }
3473 else
3474 {
3475 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3476
3477 if (i386_bnd_regnum_p (gdbarch, regnum))
3478 {
3479 ULONGEST upper, lower;
3480 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3481 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3482
3483 /* New values from input value. */
3484 regnum -= tdep->bnd0_regnum;
3485 lower = extract_unsigned_integer (buf, size, byte_order);
3486 upper = extract_unsigned_integer (buf + size, size, byte_order);
3487
3488 /* Fetching register buffer. */
3489 regcache_raw_read (regcache,
3490 I387_BND0R_REGNUM (tdep) + regnum,
3491 raw_buf);
3492
3493 upper = ~upper;
3494
3495 /* Set register bits. */
3496 memcpy (raw_buf, &lower, 8);
3497 memcpy (raw_buf + 8, &upper, 8);
3498
3499
3500 regcache_raw_write (regcache,
3501 I387_BND0R_REGNUM (tdep) + regnum,
3502 raw_buf);
3503 }
3504 else if (i386_k_regnum_p (gdbarch, regnum))
3505 {
3506 regnum -= tdep->k0_regnum;
3507
3508 regcache_raw_write (regcache,
3509 tdep->k0_regnum + regnum,
3510 buf);
3511 }
3512 else if (i386_zmm_regnum_p (gdbarch, regnum))
3513 {
3514 regnum -= tdep->zmm0_regnum;
3515
3516 if (regnum < num_lower_zmm_regs)
3517 {
3518 /* Write lower 128bits. */
3519 regcache_raw_write (regcache,
3520 I387_XMM0_REGNUM (tdep) + regnum,
3521 buf);
3522 /* Write upper 128bits. */
3523 regcache_raw_write (regcache,
3524 I387_YMM0_REGNUM (tdep) + regnum,
3525 buf + 16);
3526 }
3527 else
3528 {
3529 /* Write lower 128bits. */
3530 regcache_raw_write (regcache,
3531 I387_XMM16_REGNUM (tdep) + regnum
3532 - num_lower_zmm_regs,
3533 buf);
3534 /* Write upper 128bits. */
3535 regcache_raw_write (regcache,
3536 I387_YMM16H_REGNUM (tdep) + regnum
3537 - num_lower_zmm_regs,
3538 buf + 16);
3539 }
3540 /* Write upper 256bits. */
3541 regcache_raw_write (regcache,
3542 tdep->zmm0h_regnum + regnum,
3543 buf + 32);
3544 }
3545 else if (i386_ymm_regnum_p (gdbarch, regnum))
3546 {
3547 regnum -= tdep->ymm0_regnum;
3548
3549 /* ... Write lower 128bits. */
3550 regcache_raw_write (regcache,
3551 I387_XMM0_REGNUM (tdep) + regnum,
3552 buf);
3553 /* ... Write upper 128bits. */
3554 regcache_raw_write (regcache,
3555 tdep->ymm0h_regnum + regnum,
3556 buf + 16);
3557 }
3558 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3559 {
3560 regnum -= tdep->ymm16_regnum;
3561
3562 /* ... Write lower 128bits. */
3563 regcache_raw_write (regcache,
3564 I387_XMM16_REGNUM (tdep) + regnum,
3565 buf);
3566 /* ... Write upper 128bits. */
3567 regcache_raw_write (regcache,
3568 tdep->ymm16h_regnum + regnum,
3569 buf + 16);
3570 }
3571 else if (i386_word_regnum_p (gdbarch, regnum))
3572 {
3573 int gpnum = regnum - tdep->ax_regnum;
3574
3575 /* Read ... */
3576 regcache_raw_read (regcache, gpnum, raw_buf);
3577 /* ... Modify ... (always little endian). */
3578 memcpy (raw_buf, buf, 2);
3579 /* ... Write. */
3580 regcache_raw_write (regcache, gpnum, raw_buf);
3581 }
3582 else if (i386_byte_regnum_p (gdbarch, regnum))
3583 {
3584 int gpnum = regnum - tdep->al_regnum;
3585
3586 /* Read ... We read both lower and upper registers. */
3587 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3588 /* ... Modify ... (always little endian). */
3589 if (gpnum >= 4)
3590 memcpy (raw_buf + 1, buf, 1);
3591 else
3592 memcpy (raw_buf, buf, 1);
3593 /* ... Write. */
3594 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3595 }
3596 else
3597 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3598 }
3599 }
3600
3601 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3602
3603 int
3604 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3605 struct agent_expr *ax, int regnum)
3606 {
3607 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3608
3609 if (i386_mmx_regnum_p (gdbarch, regnum))
3610 {
3611 /* MMX to FPU register mapping depends on current TOS. Let's just
3612 not care and collect everything... */
3613 int i;
3614
3615 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3616 for (i = 0; i < 8; i++)
3617 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3618 return 0;
3619 }
3620 else if (i386_bnd_regnum_p (gdbarch, regnum))
3621 {
3622 regnum -= tdep->bnd0_regnum;
3623 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3624 return 0;
3625 }
3626 else if (i386_k_regnum_p (gdbarch, regnum))
3627 {
3628 regnum -= tdep->k0_regnum;
3629 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3630 return 0;
3631 }
3632 else if (i386_zmm_regnum_p (gdbarch, regnum))
3633 {
3634 regnum -= tdep->zmm0_regnum;
3635 if (regnum < num_lower_zmm_regs)
3636 {
3637 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3638 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3639 }
3640 else
3641 {
3642 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3643 - num_lower_zmm_regs);
3644 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3645 - num_lower_zmm_regs);
3646 }
3647 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3648 return 0;
3649 }
3650 else if (i386_ymm_regnum_p (gdbarch, regnum))
3651 {
3652 regnum -= tdep->ymm0_regnum;
3653 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3654 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3655 return 0;
3656 }
3657 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3658 {
3659 regnum -= tdep->ymm16_regnum;
3660 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3661 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3662 return 0;
3663 }
3664 else if (i386_word_regnum_p (gdbarch, regnum))
3665 {
3666 int gpnum = regnum - tdep->ax_regnum;
3667
3668 ax_reg_mask (ax, gpnum);
3669 return 0;
3670 }
3671 else if (i386_byte_regnum_p (gdbarch, regnum))
3672 {
3673 int gpnum = regnum - tdep->al_regnum;
3674
3675 ax_reg_mask (ax, gpnum % 4);
3676 return 0;
3677 }
3678 else
3679 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3680 return 1;
3681 }
3682 \f
3683
3684 /* Return the register number of the register allocated by GCC after
3685 REGNUM, or -1 if there is no such register. */
3686
3687 static int
3688 i386_next_regnum (int regnum)
3689 {
3690 /* GCC allocates the registers in the order:
3691
3692 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3693
3694 Since storing a variable in %esp doesn't make any sense we return
3695 -1 for %ebp and for %esp itself. */
3696 static int next_regnum[] =
3697 {
3698 I386_EDX_REGNUM, /* Slot for %eax. */
3699 I386_EBX_REGNUM, /* Slot for %ecx. */
3700 I386_ECX_REGNUM, /* Slot for %edx. */
3701 I386_ESI_REGNUM, /* Slot for %ebx. */
3702 -1, -1, /* Slots for %esp and %ebp. */
3703 I386_EDI_REGNUM, /* Slot for %esi. */
3704 I386_EBP_REGNUM /* Slot for %edi. */
3705 };
3706
3707 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3708 return next_regnum[regnum];
3709
3710 return -1;
3711 }
3712
3713 /* Return nonzero if a value of type TYPE stored in register REGNUM
3714 needs any special handling. */
3715
3716 static int
3717 i386_convert_register_p (struct gdbarch *gdbarch,
3718 int regnum, struct type *type)
3719 {
3720 int len = TYPE_LENGTH (type);
3721
3722 /* Values may be spread across multiple registers. Most debugging
3723 formats aren't expressive enough to specify the locations, so
3724 some heuristics is involved. Right now we only handle types that
3725 have a length that is a multiple of the word size, since GCC
3726 doesn't seem to put any other types into registers. */
3727 if (len > 4 && len % 4 == 0)
3728 {
3729 int last_regnum = regnum;
3730
3731 while (len > 4)
3732 {
3733 last_regnum = i386_next_regnum (last_regnum);
3734 len -= 4;
3735 }
3736
3737 if (last_regnum != -1)
3738 return 1;
3739 }
3740
3741 return i387_convert_register_p (gdbarch, regnum, type);
3742 }
3743
3744 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3745 return its contents in TO. */
3746
3747 static int
3748 i386_register_to_value (struct frame_info *frame, int regnum,
3749 struct type *type, gdb_byte *to,
3750 int *optimizedp, int *unavailablep)
3751 {
3752 struct gdbarch *gdbarch = get_frame_arch (frame);
3753 int len = TYPE_LENGTH (type);
3754
3755 if (i386_fp_regnum_p (gdbarch, regnum))
3756 return i387_register_to_value (frame, regnum, type, to,
3757 optimizedp, unavailablep);
3758
3759 /* Read a value spread across multiple registers. */
3760
3761 gdb_assert (len > 4 && len % 4 == 0);
3762
3763 while (len > 0)
3764 {
3765 gdb_assert (regnum != -1);
3766 gdb_assert (register_size (gdbarch, regnum) == 4);
3767
3768 if (!get_frame_register_bytes (frame, regnum, 0,
3769 register_size (gdbarch, regnum),
3770 to, optimizedp, unavailablep))
3771 return 0;
3772
3773 regnum = i386_next_regnum (regnum);
3774 len -= 4;
3775 to += 4;
3776 }
3777
3778 *optimizedp = *unavailablep = 0;
3779 return 1;
3780 }
3781
3782 /* Write the contents FROM of a value of type TYPE into register
3783 REGNUM in frame FRAME. */
3784
3785 static void
3786 i386_value_to_register (struct frame_info *frame, int regnum,
3787 struct type *type, const gdb_byte *from)
3788 {
3789 int len = TYPE_LENGTH (type);
3790
3791 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3792 {
3793 i387_value_to_register (frame, regnum, type, from);
3794 return;
3795 }
3796
3797 /* Write a value spread across multiple registers. */
3798
3799 gdb_assert (len > 4 && len % 4 == 0);
3800
3801 while (len > 0)
3802 {
3803 gdb_assert (regnum != -1);
3804 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3805
3806 put_frame_register (frame, regnum, from);
3807 regnum = i386_next_regnum (regnum);
3808 len -= 4;
3809 from += 4;
3810 }
3811 }
3812 \f
3813 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3814 in the general-purpose register set REGSET to register cache
3815 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3816
3817 void
3818 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3819 int regnum, const void *gregs, size_t len)
3820 {
3821 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3822 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3823 const gdb_byte *regs = (const gdb_byte *) gregs;
3824 int i;
3825
3826 gdb_assert (len >= tdep->sizeof_gregset);
3827
3828 for (i = 0; i < tdep->gregset_num_regs; i++)
3829 {
3830 if ((regnum == i || regnum == -1)
3831 && tdep->gregset_reg_offset[i] != -1)
3832 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3833 }
3834 }
3835
3836 /* Collect register REGNUM from the register cache REGCACHE and store
3837 it in the buffer specified by GREGS and LEN as described by the
3838 general-purpose register set REGSET. If REGNUM is -1, do this for
3839 all registers in REGSET. */
3840
3841 static void
3842 i386_collect_gregset (const struct regset *regset,
3843 const struct regcache *regcache,
3844 int regnum, void *gregs, size_t len)
3845 {
3846 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3847 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3848 gdb_byte *regs = (gdb_byte *) gregs;
3849 int i;
3850
3851 gdb_assert (len >= tdep->sizeof_gregset);
3852
3853 for (i = 0; i < tdep->gregset_num_regs; i++)
3854 {
3855 if ((regnum == i || regnum == -1)
3856 && tdep->gregset_reg_offset[i] != -1)
3857 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3858 }
3859 }
3860
3861 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3862 in the floating-point register set REGSET to register cache
3863 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3864
3865 static void
3866 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3867 int regnum, const void *fpregs, size_t len)
3868 {
3869 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3870 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3871
3872 if (len == I387_SIZEOF_FXSAVE)
3873 {
3874 i387_supply_fxsave (regcache, regnum, fpregs);
3875 return;
3876 }
3877
3878 gdb_assert (len >= tdep->sizeof_fpregset);
3879 i387_supply_fsave (regcache, regnum, fpregs);
3880 }
3881
3882 /* Collect register REGNUM from the register cache REGCACHE and store
3883 it in the buffer specified by FPREGS and LEN as described by the
3884 floating-point register set REGSET. If REGNUM is -1, do this for
3885 all registers in REGSET. */
3886
3887 static void
3888 i386_collect_fpregset (const struct regset *regset,
3889 const struct regcache *regcache,
3890 int regnum, void *fpregs, size_t len)
3891 {
3892 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3893 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3894
3895 if (len == I387_SIZEOF_FXSAVE)
3896 {
3897 i387_collect_fxsave (regcache, regnum, fpregs);
3898 return;
3899 }
3900
3901 gdb_assert (len >= tdep->sizeof_fpregset);
3902 i387_collect_fsave (regcache, regnum, fpregs);
3903 }
3904
3905 /* Register set definitions. */
3906
3907 const struct regset i386_gregset =
3908 {
3909 NULL, i386_supply_gregset, i386_collect_gregset
3910 };
3911
3912 const struct regset i386_fpregset =
3913 {
3914 NULL, i386_supply_fpregset, i386_collect_fpregset
3915 };
3916
3917 /* Default iterator over core file register note sections. */
3918
3919 void
3920 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3921 iterate_over_regset_sections_cb *cb,
3922 void *cb_data,
3923 const struct regcache *regcache)
3924 {
3925 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3926
3927 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3928 if (tdep->sizeof_fpregset)
3929 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
3930 }
3931 \f
3932
3933 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3934
3935 CORE_ADDR
3936 i386_pe_skip_trampoline_code (struct frame_info *frame,
3937 CORE_ADDR pc, char *name)
3938 {
3939 struct gdbarch *gdbarch = get_frame_arch (frame);
3940 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3941
3942 /* jmp *(dest) */
3943 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3944 {
3945 unsigned long indirect =
3946 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3947 struct minimal_symbol *indsym =
3948 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3949 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
3950
3951 if (symname)
3952 {
3953 if (startswith (symname, "__imp_")
3954 || startswith (symname, "_imp_"))
3955 return name ? 1 :
3956 read_memory_unsigned_integer (indirect, 4, byte_order);
3957 }
3958 }
3959 return 0; /* Not a trampoline. */
3960 }
3961 \f
3962
3963 /* Return whether the THIS_FRAME corresponds to a sigtramp
3964 routine. */
3965
3966 int
3967 i386_sigtramp_p (struct frame_info *this_frame)
3968 {
3969 CORE_ADDR pc = get_frame_pc (this_frame);
3970 const char *name;
3971
3972 find_pc_partial_function (pc, &name, NULL, NULL);
3973 return (name && strcmp ("_sigtramp", name) == 0);
3974 }
3975 \f
3976
3977 /* We have two flavours of disassembly. The machinery on this page
3978 deals with switching between those. */
3979
3980 static int
3981 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3982 {
3983 gdb_assert (disassembly_flavor == att_flavor
3984 || disassembly_flavor == intel_flavor);
3985
3986 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3987 constified, cast to prevent a compiler warning. */
3988 info->disassembler_options = (char *) disassembly_flavor;
3989
3990 return print_insn_i386 (pc, info);
3991 }
3992 \f
3993
3994 /* There are a few i386 architecture variants that differ only
3995 slightly from the generic i386 target. For now, we don't give them
3996 their own source file, but include them here. As a consequence,
3997 they'll always be included. */
3998
3999 /* System V Release 4 (SVR4). */
4000
4001 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4002 routine. */
4003
4004 static int
4005 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4006 {
4007 CORE_ADDR pc = get_frame_pc (this_frame);
4008 const char *name;
4009
4010 /* The origin of these symbols is currently unknown. */
4011 find_pc_partial_function (pc, &name, NULL, NULL);
4012 return (name && (strcmp ("_sigreturn", name) == 0
4013 || strcmp ("sigvechandler", name) == 0));
4014 }
4015
4016 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4017 address of the associated sigcontext (ucontext) structure. */
4018
4019 static CORE_ADDR
4020 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4021 {
4022 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4023 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4024 gdb_byte buf[4];
4025 CORE_ADDR sp;
4026
4027 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4028 sp = extract_unsigned_integer (buf, 4, byte_order);
4029
4030 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4031 }
4032
4033 \f
4034
4035 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4036 gdbarch.h. */
4037
4038 int
4039 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4040 {
4041 return (*s == '$' /* Literal number. */
4042 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4043 || (*s == '(' && s[1] == '%') /* Register indirection. */
4044 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4045 }
4046
4047 /* Helper function for i386_stap_parse_special_token.
4048
4049 This function parses operands of the form `-8+3+1(%rbp)', which
4050 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4051
4052 Return 1 if the operand was parsed successfully, zero
4053 otherwise. */
4054
4055 static int
4056 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4057 struct stap_parse_info *p)
4058 {
4059 const char *s = p->arg;
4060
4061 if (isdigit (*s) || *s == '-' || *s == '+')
4062 {
4063 int got_minus[3];
4064 int i;
4065 long displacements[3];
4066 const char *start;
4067 char *regname;
4068 int len;
4069 struct stoken str;
4070 char *endp;
4071
4072 got_minus[0] = 0;
4073 if (*s == '+')
4074 ++s;
4075 else if (*s == '-')
4076 {
4077 ++s;
4078 got_minus[0] = 1;
4079 }
4080
4081 if (!isdigit ((unsigned char) *s))
4082 return 0;
4083
4084 displacements[0] = strtol (s, &endp, 10);
4085 s = endp;
4086
4087 if (*s != '+' && *s != '-')
4088 {
4089 /* We are not dealing with a triplet. */
4090 return 0;
4091 }
4092
4093 got_minus[1] = 0;
4094 if (*s == '+')
4095 ++s;
4096 else
4097 {
4098 ++s;
4099 got_minus[1] = 1;
4100 }
4101
4102 if (!isdigit ((unsigned char) *s))
4103 return 0;
4104
4105 displacements[1] = strtol (s, &endp, 10);
4106 s = endp;
4107
4108 if (*s != '+' && *s != '-')
4109 {
4110 /* We are not dealing with a triplet. */
4111 return 0;
4112 }
4113
4114 got_minus[2] = 0;
4115 if (*s == '+')
4116 ++s;
4117 else
4118 {
4119 ++s;
4120 got_minus[2] = 1;
4121 }
4122
4123 if (!isdigit ((unsigned char) *s))
4124 return 0;
4125
4126 displacements[2] = strtol (s, &endp, 10);
4127 s = endp;
4128
4129 if (*s != '(' || s[1] != '%')
4130 return 0;
4131
4132 s += 2;
4133 start = s;
4134
4135 while (isalnum (*s))
4136 ++s;
4137
4138 if (*s++ != ')')
4139 return 0;
4140
4141 len = s - start - 1;
4142 regname = (char *) alloca (len + 1);
4143
4144 strncpy (regname, start, len);
4145 regname[len] = '\0';
4146
4147 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4148 error (_("Invalid register name `%s' on expression `%s'."),
4149 regname, p->saved_arg);
4150
4151 for (i = 0; i < 3; i++)
4152 {
4153 write_exp_elt_opcode (&p->pstate, OP_LONG);
4154 write_exp_elt_type
4155 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4156 write_exp_elt_longcst (&p->pstate, displacements[i]);
4157 write_exp_elt_opcode (&p->pstate, OP_LONG);
4158 if (got_minus[i])
4159 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4160 }
4161
4162 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4163 str.ptr = regname;
4164 str.length = len;
4165 write_exp_string (&p->pstate, str);
4166 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4167
4168 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4169 write_exp_elt_type (&p->pstate,
4170 builtin_type (gdbarch)->builtin_data_ptr);
4171 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4172
4173 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4174 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4175 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4176
4177 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4178 write_exp_elt_type (&p->pstate,
4179 lookup_pointer_type (p->arg_type));
4180 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4181
4182 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4183
4184 p->arg = s;
4185
4186 return 1;
4187 }
4188
4189 return 0;
4190 }
4191
4192 /* Helper function for i386_stap_parse_special_token.
4193
4194 This function parses operands of the form `register base +
4195 (register index * size) + offset', as represented in
4196 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4197
4198 Return 1 if the operand was parsed successfully, zero
4199 otherwise. */
4200
4201 static int
4202 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4203 struct stap_parse_info *p)
4204 {
4205 const char *s = p->arg;
4206
4207 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4208 {
4209 int offset_minus = 0;
4210 long offset = 0;
4211 int size_minus = 0;
4212 long size = 0;
4213 const char *start;
4214 char *base;
4215 int len_base;
4216 char *index;
4217 int len_index;
4218 struct stoken base_token, index_token;
4219
4220 if (*s == '+')
4221 ++s;
4222 else if (*s == '-')
4223 {
4224 ++s;
4225 offset_minus = 1;
4226 }
4227
4228 if (offset_minus && !isdigit (*s))
4229 return 0;
4230
4231 if (isdigit (*s))
4232 {
4233 char *endp;
4234
4235 offset = strtol (s, &endp, 10);
4236 s = endp;
4237 }
4238
4239 if (*s != '(' || s[1] != '%')
4240 return 0;
4241
4242 s += 2;
4243 start = s;
4244
4245 while (isalnum (*s))
4246 ++s;
4247
4248 if (*s != ',' || s[1] != '%')
4249 return 0;
4250
4251 len_base = s - start;
4252 base = (char *) alloca (len_base + 1);
4253 strncpy (base, start, len_base);
4254 base[len_base] = '\0';
4255
4256 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4257 error (_("Invalid register name `%s' on expression `%s'."),
4258 base, p->saved_arg);
4259
4260 s += 2;
4261 start = s;
4262
4263 while (isalnum (*s))
4264 ++s;
4265
4266 len_index = s - start;
4267 index = (char *) alloca (len_index + 1);
4268 strncpy (index, start, len_index);
4269 index[len_index] = '\0';
4270
4271 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4272 error (_("Invalid register name `%s' on expression `%s'."),
4273 index, p->saved_arg);
4274
4275 if (*s != ',' && *s != ')')
4276 return 0;
4277
4278 if (*s == ',')
4279 {
4280 char *endp;
4281
4282 ++s;
4283 if (*s == '+')
4284 ++s;
4285 else if (*s == '-')
4286 {
4287 ++s;
4288 size_minus = 1;
4289 }
4290
4291 size = strtol (s, &endp, 10);
4292 s = endp;
4293
4294 if (*s != ')')
4295 return 0;
4296 }
4297
4298 ++s;
4299
4300 if (offset)
4301 {
4302 write_exp_elt_opcode (&p->pstate, OP_LONG);
4303 write_exp_elt_type (&p->pstate,
4304 builtin_type (gdbarch)->builtin_long);
4305 write_exp_elt_longcst (&p->pstate, offset);
4306 write_exp_elt_opcode (&p->pstate, OP_LONG);
4307 if (offset_minus)
4308 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4309 }
4310
4311 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4312 base_token.ptr = base;
4313 base_token.length = len_base;
4314 write_exp_string (&p->pstate, base_token);
4315 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4316
4317 if (offset)
4318 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4319
4320 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4321 index_token.ptr = index;
4322 index_token.length = len_index;
4323 write_exp_string (&p->pstate, index_token);
4324 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4325
4326 if (size)
4327 {
4328 write_exp_elt_opcode (&p->pstate, OP_LONG);
4329 write_exp_elt_type (&p->pstate,
4330 builtin_type (gdbarch)->builtin_long);
4331 write_exp_elt_longcst (&p->pstate, size);
4332 write_exp_elt_opcode (&p->pstate, OP_LONG);
4333 if (size_minus)
4334 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4335 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4336 }
4337
4338 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4339
4340 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4341 write_exp_elt_type (&p->pstate,
4342 lookup_pointer_type (p->arg_type));
4343 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4344
4345 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4346
4347 p->arg = s;
4348
4349 return 1;
4350 }
4351
4352 return 0;
4353 }
4354
4355 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4356 gdbarch.h. */
4357
4358 int
4359 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4360 struct stap_parse_info *p)
4361 {
4362 /* In order to parse special tokens, we use a state-machine that go
4363 through every known token and try to get a match. */
4364 enum
4365 {
4366 TRIPLET,
4367 THREE_ARG_DISPLACEMENT,
4368 DONE
4369 };
4370 int current_state;
4371
4372 current_state = TRIPLET;
4373
4374 /* The special tokens to be parsed here are:
4375
4376 - `register base + (register index * size) + offset', as represented
4377 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4378
4379 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4380 `*(-8 + 3 - 1 + (void *) $eax)'. */
4381
4382 while (current_state != DONE)
4383 {
4384 switch (current_state)
4385 {
4386 case TRIPLET:
4387 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4388 return 1;
4389 break;
4390
4391 case THREE_ARG_DISPLACEMENT:
4392 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4393 return 1;
4394 break;
4395 }
4396
4397 /* Advancing to the next state. */
4398 ++current_state;
4399 }
4400
4401 return 0;
4402 }
4403
4404 \f
4405
4406 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4407 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4408
4409 static const char *
4410 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4411 {
4412 return "(x86_64|i.86)";
4413 }
4414
4415 \f
4416
4417 /* Generic ELF. */
4418
4419 void
4420 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4421 {
4422 static const char *const stap_integer_prefixes[] = { "$", NULL };
4423 static const char *const stap_register_prefixes[] = { "%", NULL };
4424 static const char *const stap_register_indirection_prefixes[] = { "(",
4425 NULL };
4426 static const char *const stap_register_indirection_suffixes[] = { ")",
4427 NULL };
4428
4429 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4430 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4431
4432 /* Registering SystemTap handlers. */
4433 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4434 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4435 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4436 stap_register_indirection_prefixes);
4437 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4438 stap_register_indirection_suffixes);
4439 set_gdbarch_stap_is_single_operand (gdbarch,
4440 i386_stap_is_single_operand);
4441 set_gdbarch_stap_parse_special_token (gdbarch,
4442 i386_stap_parse_special_token);
4443
4444 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4445 }
4446
4447 /* System V Release 4 (SVR4). */
4448
4449 void
4450 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4451 {
4452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4453
4454 /* System V Release 4 uses ELF. */
4455 i386_elf_init_abi (info, gdbarch);
4456
4457 /* System V Release 4 has shared libraries. */
4458 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4459
4460 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4461 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4462 tdep->sc_pc_offset = 36 + 14 * 4;
4463 tdep->sc_sp_offset = 36 + 17 * 4;
4464
4465 tdep->jb_pc_offset = 20;
4466 }
4467
4468 /* DJGPP. */
4469
4470 static void
4471 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4472 {
4473 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4474
4475 /* DJGPP doesn't have any special frames for signal handlers. */
4476 tdep->sigtramp_p = NULL;
4477
4478 tdep->jb_pc_offset = 36;
4479
4480 /* DJGPP does not support the SSE registers. */
4481 if (! tdesc_has_registers (info.target_desc))
4482 tdep->tdesc = tdesc_i386_mmx;
4483
4484 /* Native compiler is GCC, which uses the SVR4 register numbering
4485 even in COFF and STABS. See the comment in i386_gdbarch_init,
4486 before the calls to set_gdbarch_stab_reg_to_regnum and
4487 set_gdbarch_sdb_reg_to_regnum. */
4488 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4489 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4490
4491 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
4492
4493 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
4494 }
4495 \f
4496
4497 /* i386 register groups. In addition to the normal groups, add "mmx"
4498 and "sse". */
4499
4500 static struct reggroup *i386_sse_reggroup;
4501 static struct reggroup *i386_mmx_reggroup;
4502
4503 static void
4504 i386_init_reggroups (void)
4505 {
4506 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4507 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4508 }
4509
4510 static void
4511 i386_add_reggroups (struct gdbarch *gdbarch)
4512 {
4513 reggroup_add (gdbarch, i386_sse_reggroup);
4514 reggroup_add (gdbarch, i386_mmx_reggroup);
4515 reggroup_add (gdbarch, general_reggroup);
4516 reggroup_add (gdbarch, float_reggroup);
4517 reggroup_add (gdbarch, all_reggroup);
4518 reggroup_add (gdbarch, save_reggroup);
4519 reggroup_add (gdbarch, restore_reggroup);
4520 reggroup_add (gdbarch, vector_reggroup);
4521 reggroup_add (gdbarch, system_reggroup);
4522 }
4523
4524 int
4525 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4526 struct reggroup *group)
4527 {
4528 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4529 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4530 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4531 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4532 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4533 avx512_p, avx_p, sse_p;
4534
4535 /* Don't include pseudo registers, except for MMX, in any register
4536 groups. */
4537 if (i386_byte_regnum_p (gdbarch, regnum))
4538 return 0;
4539
4540 if (i386_word_regnum_p (gdbarch, regnum))
4541 return 0;
4542
4543 if (i386_dword_regnum_p (gdbarch, regnum))
4544 return 0;
4545
4546 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4547 if (group == i386_mmx_reggroup)
4548 return mmx_regnum_p;
4549
4550 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4551 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4552 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4553 if (group == i386_sse_reggroup)
4554 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4555
4556 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4557 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4558 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4559
4560 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4561 == X86_XSTATE_AVX512_MASK);
4562 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4563 == X86_XSTATE_AVX_MASK) && !avx512_p;
4564 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4565 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4566
4567 if (group == vector_reggroup)
4568 return (mmx_regnum_p
4569 || (zmm_regnum_p && avx512_p)
4570 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4571 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4572 || mxcsr_regnum_p);
4573
4574 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4575 || i386_fpc_regnum_p (gdbarch, regnum));
4576 if (group == float_reggroup)
4577 return fp_regnum_p;
4578
4579 /* For "info reg all", don't include upper YMM registers nor XMM
4580 registers when AVX is supported. */
4581 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4582 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4583 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4584 if (group == all_reggroup
4585 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4586 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4587 || ymmh_regnum_p
4588 || ymmh_avx512_regnum_p
4589 || zmmh_regnum_p))
4590 return 0;
4591
4592 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4593 if (group == all_reggroup
4594 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4595 return bnd_regnum_p;
4596
4597 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4598 if (group == all_reggroup
4599 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4600 return 0;
4601
4602 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4603 if (group == all_reggroup
4604 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4605 return mpx_ctrl_regnum_p;
4606
4607 if (group == general_reggroup)
4608 return (!fp_regnum_p
4609 && !mmx_regnum_p
4610 && !mxcsr_regnum_p
4611 && !xmm_regnum_p
4612 && !xmm_avx512_regnum_p
4613 && !ymm_regnum_p
4614 && !ymmh_regnum_p
4615 && !ymm_avx512_regnum_p
4616 && !ymmh_avx512_regnum_p
4617 && !bndr_regnum_p
4618 && !bnd_regnum_p
4619 && !mpx_ctrl_regnum_p
4620 && !zmm_regnum_p
4621 && !zmmh_regnum_p);
4622
4623 return default_register_reggroup_p (gdbarch, regnum, group);
4624 }
4625 \f
4626
4627 /* Get the ARGIth function argument for the current function. */
4628
4629 static CORE_ADDR
4630 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4631 struct type *type)
4632 {
4633 struct gdbarch *gdbarch = get_frame_arch (frame);
4634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4635 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4636 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4637 }
4638
4639 #define PREFIX_REPZ 0x01
4640 #define PREFIX_REPNZ 0x02
4641 #define PREFIX_LOCK 0x04
4642 #define PREFIX_DATA 0x08
4643 #define PREFIX_ADDR 0x10
4644
4645 /* operand size */
4646 enum
4647 {
4648 OT_BYTE = 0,
4649 OT_WORD,
4650 OT_LONG,
4651 OT_QUAD,
4652 OT_DQUAD,
4653 };
4654
4655 /* i386 arith/logic operations */
4656 enum
4657 {
4658 OP_ADDL,
4659 OP_ORL,
4660 OP_ADCL,
4661 OP_SBBL,
4662 OP_ANDL,
4663 OP_SUBL,
4664 OP_XORL,
4665 OP_CMPL,
4666 };
4667
4668 struct i386_record_s
4669 {
4670 struct gdbarch *gdbarch;
4671 struct regcache *regcache;
4672 CORE_ADDR orig_addr;
4673 CORE_ADDR addr;
4674 int aflag;
4675 int dflag;
4676 int override;
4677 uint8_t modrm;
4678 uint8_t mod, reg, rm;
4679 int ot;
4680 uint8_t rex_x;
4681 uint8_t rex_b;
4682 int rip_offset;
4683 int popl_esp_hack;
4684 const int *regmap;
4685 };
4686
4687 /* Parse the "modrm" part of the memory address irp->addr points at.
4688 Returns -1 if something goes wrong, 0 otherwise. */
4689
4690 static int
4691 i386_record_modrm (struct i386_record_s *irp)
4692 {
4693 struct gdbarch *gdbarch = irp->gdbarch;
4694
4695 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4696 return -1;
4697
4698 irp->addr++;
4699 irp->mod = (irp->modrm >> 6) & 3;
4700 irp->reg = (irp->modrm >> 3) & 7;
4701 irp->rm = irp->modrm & 7;
4702
4703 return 0;
4704 }
4705
4706 /* Extract the memory address that the current instruction writes to,
4707 and return it in *ADDR. Return -1 if something goes wrong. */
4708
4709 static int
4710 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4711 {
4712 struct gdbarch *gdbarch = irp->gdbarch;
4713 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4714 gdb_byte buf[4];
4715 ULONGEST offset64;
4716
4717 *addr = 0;
4718 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4719 {
4720 /* 32/64 bits */
4721 int havesib = 0;
4722 uint8_t scale = 0;
4723 uint8_t byte;
4724 uint8_t index = 0;
4725 uint8_t base = irp->rm;
4726
4727 if (base == 4)
4728 {
4729 havesib = 1;
4730 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4731 return -1;
4732 irp->addr++;
4733 scale = (byte >> 6) & 3;
4734 index = ((byte >> 3) & 7) | irp->rex_x;
4735 base = (byte & 7);
4736 }
4737 base |= irp->rex_b;
4738
4739 switch (irp->mod)
4740 {
4741 case 0:
4742 if ((base & 7) == 5)
4743 {
4744 base = 0xff;
4745 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4746 return -1;
4747 irp->addr += 4;
4748 *addr = extract_signed_integer (buf, 4, byte_order);
4749 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4750 *addr += irp->addr + irp->rip_offset;
4751 }
4752 break;
4753 case 1:
4754 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4755 return -1;
4756 irp->addr++;
4757 *addr = (int8_t) buf[0];
4758 break;
4759 case 2:
4760 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4761 return -1;
4762 *addr = extract_signed_integer (buf, 4, byte_order);
4763 irp->addr += 4;
4764 break;
4765 }
4766
4767 offset64 = 0;
4768 if (base != 0xff)
4769 {
4770 if (base == 4 && irp->popl_esp_hack)
4771 *addr += irp->popl_esp_hack;
4772 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4773 &offset64);
4774 }
4775 if (irp->aflag == 2)
4776 {
4777 *addr += offset64;
4778 }
4779 else
4780 *addr = (uint32_t) (offset64 + *addr);
4781
4782 if (havesib && (index != 4 || scale != 0))
4783 {
4784 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4785 &offset64);
4786 if (irp->aflag == 2)
4787 *addr += offset64 << scale;
4788 else
4789 *addr = (uint32_t) (*addr + (offset64 << scale));
4790 }
4791
4792 if (!irp->aflag)
4793 {
4794 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4795 address from 32-bit to 64-bit. */
4796 *addr = (uint32_t) *addr;
4797 }
4798 }
4799 else
4800 {
4801 /* 16 bits */
4802 switch (irp->mod)
4803 {
4804 case 0:
4805 if (irp->rm == 6)
4806 {
4807 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4808 return -1;
4809 irp->addr += 2;
4810 *addr = extract_signed_integer (buf, 2, byte_order);
4811 irp->rm = 0;
4812 goto no_rm;
4813 }
4814 break;
4815 case 1:
4816 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4817 return -1;
4818 irp->addr++;
4819 *addr = (int8_t) buf[0];
4820 break;
4821 case 2:
4822 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4823 return -1;
4824 irp->addr += 2;
4825 *addr = extract_signed_integer (buf, 2, byte_order);
4826 break;
4827 }
4828
4829 switch (irp->rm)
4830 {
4831 case 0:
4832 regcache_raw_read_unsigned (irp->regcache,
4833 irp->regmap[X86_RECORD_REBX_REGNUM],
4834 &offset64);
4835 *addr = (uint32_t) (*addr + offset64);
4836 regcache_raw_read_unsigned (irp->regcache,
4837 irp->regmap[X86_RECORD_RESI_REGNUM],
4838 &offset64);
4839 *addr = (uint32_t) (*addr + offset64);
4840 break;
4841 case 1:
4842 regcache_raw_read_unsigned (irp->regcache,
4843 irp->regmap[X86_RECORD_REBX_REGNUM],
4844 &offset64);
4845 *addr = (uint32_t) (*addr + offset64);
4846 regcache_raw_read_unsigned (irp->regcache,
4847 irp->regmap[X86_RECORD_REDI_REGNUM],
4848 &offset64);
4849 *addr = (uint32_t) (*addr + offset64);
4850 break;
4851 case 2:
4852 regcache_raw_read_unsigned (irp->regcache,
4853 irp->regmap[X86_RECORD_REBP_REGNUM],
4854 &offset64);
4855 *addr = (uint32_t) (*addr + offset64);
4856 regcache_raw_read_unsigned (irp->regcache,
4857 irp->regmap[X86_RECORD_RESI_REGNUM],
4858 &offset64);
4859 *addr = (uint32_t) (*addr + offset64);
4860 break;
4861 case 3:
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_REBP_REGNUM],
4864 &offset64);
4865 *addr = (uint32_t) (*addr + offset64);
4866 regcache_raw_read_unsigned (irp->regcache,
4867 irp->regmap[X86_RECORD_REDI_REGNUM],
4868 &offset64);
4869 *addr = (uint32_t) (*addr + offset64);
4870 break;
4871 case 4:
4872 regcache_raw_read_unsigned (irp->regcache,
4873 irp->regmap[X86_RECORD_RESI_REGNUM],
4874 &offset64);
4875 *addr = (uint32_t) (*addr + offset64);
4876 break;
4877 case 5:
4878 regcache_raw_read_unsigned (irp->regcache,
4879 irp->regmap[X86_RECORD_REDI_REGNUM],
4880 &offset64);
4881 *addr = (uint32_t) (*addr + offset64);
4882 break;
4883 case 6:
4884 regcache_raw_read_unsigned (irp->regcache,
4885 irp->regmap[X86_RECORD_REBP_REGNUM],
4886 &offset64);
4887 *addr = (uint32_t) (*addr + offset64);
4888 break;
4889 case 7:
4890 regcache_raw_read_unsigned (irp->regcache,
4891 irp->regmap[X86_RECORD_REBX_REGNUM],
4892 &offset64);
4893 *addr = (uint32_t) (*addr + offset64);
4894 break;
4895 }
4896 *addr &= 0xffff;
4897 }
4898
4899 no_rm:
4900 return 0;
4901 }
4902
4903 /* Record the address and contents of the memory that will be changed
4904 by the current instruction. Return -1 if something goes wrong, 0
4905 otherwise. */
4906
4907 static int
4908 i386_record_lea_modrm (struct i386_record_s *irp)
4909 {
4910 struct gdbarch *gdbarch = irp->gdbarch;
4911 uint64_t addr;
4912
4913 if (irp->override >= 0)
4914 {
4915 if (record_full_memory_query)
4916 {
4917 int q;
4918
4919 target_terminal_ours ();
4920 q = yquery (_("\
4921 Process record ignores the memory change of instruction at address %s\n\
4922 because it can't get the value of the segment register.\n\
4923 Do you want to stop the program?"),
4924 paddress (gdbarch, irp->orig_addr));
4925 target_terminal_inferior ();
4926 if (q)
4927 return -1;
4928 }
4929
4930 return 0;
4931 }
4932
4933 if (i386_record_lea_modrm_addr (irp, &addr))
4934 return -1;
4935
4936 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4937 return -1;
4938
4939 return 0;
4940 }
4941
4942 /* Record the effects of a push operation. Return -1 if something
4943 goes wrong, 0 otherwise. */
4944
4945 static int
4946 i386_record_push (struct i386_record_s *irp, int size)
4947 {
4948 ULONGEST addr;
4949
4950 if (record_full_arch_list_add_reg (irp->regcache,
4951 irp->regmap[X86_RECORD_RESP_REGNUM]))
4952 return -1;
4953 regcache_raw_read_unsigned (irp->regcache,
4954 irp->regmap[X86_RECORD_RESP_REGNUM],
4955 &addr);
4956 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4957 return -1;
4958
4959 return 0;
4960 }
4961
4962
4963 /* Defines contents to record. */
4964 #define I386_SAVE_FPU_REGS 0xfffd
4965 #define I386_SAVE_FPU_ENV 0xfffe
4966 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4967
4968 /* Record the values of the floating point registers which will be
4969 changed by the current instruction. Returns -1 if something is
4970 wrong, 0 otherwise. */
4971
4972 static int i386_record_floats (struct gdbarch *gdbarch,
4973 struct i386_record_s *ir,
4974 uint32_t iregnum)
4975 {
4976 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4977 int i;
4978
4979 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4980 happen. Currently we store st0-st7 registers, but we need not store all
4981 registers all the time, in future we use ftag register and record only
4982 those who are not marked as an empty. */
4983
4984 if (I386_SAVE_FPU_REGS == iregnum)
4985 {
4986 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4987 {
4988 if (record_full_arch_list_add_reg (ir->regcache, i))
4989 return -1;
4990 }
4991 }
4992 else if (I386_SAVE_FPU_ENV == iregnum)
4993 {
4994 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4995 {
4996 if (record_full_arch_list_add_reg (ir->regcache, i))
4997 return -1;
4998 }
4999 }
5000 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5001 {
5002 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5003 {
5004 if (record_full_arch_list_add_reg (ir->regcache, i))
5005 return -1;
5006 }
5007 }
5008 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5009 (iregnum <= I387_FOP_REGNUM (tdep)))
5010 {
5011 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5012 return -1;
5013 }
5014 else
5015 {
5016 /* Parameter error. */
5017 return -1;
5018 }
5019 if(I386_SAVE_FPU_ENV != iregnum)
5020 {
5021 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5022 {
5023 if (record_full_arch_list_add_reg (ir->regcache, i))
5024 return -1;
5025 }
5026 }
5027 return 0;
5028 }
5029
5030 /* Parse the current instruction, and record the values of the
5031 registers and memory that will be changed by the current
5032 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5033
5034 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5035 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5036
5037 int
5038 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5039 CORE_ADDR input_addr)
5040 {
5041 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5042 int prefixes = 0;
5043 int regnum = 0;
5044 uint32_t opcode;
5045 uint8_t opcode8;
5046 ULONGEST addr;
5047 gdb_byte buf[MAX_REGISTER_SIZE];
5048 struct i386_record_s ir;
5049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5050 uint8_t rex_w = -1;
5051 uint8_t rex_r = 0;
5052
5053 memset (&ir, 0, sizeof (struct i386_record_s));
5054 ir.regcache = regcache;
5055 ir.addr = input_addr;
5056 ir.orig_addr = input_addr;
5057 ir.aflag = 1;
5058 ir.dflag = 1;
5059 ir.override = -1;
5060 ir.popl_esp_hack = 0;
5061 ir.regmap = tdep->record_regmap;
5062 ir.gdbarch = gdbarch;
5063
5064 if (record_debug > 1)
5065 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5066 "addr = %s\n",
5067 paddress (gdbarch, ir.addr));
5068
5069 /* prefixes */
5070 while (1)
5071 {
5072 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5073 return -1;
5074 ir.addr++;
5075 switch (opcode8) /* Instruction prefixes */
5076 {
5077 case REPE_PREFIX_OPCODE:
5078 prefixes |= PREFIX_REPZ;
5079 break;
5080 case REPNE_PREFIX_OPCODE:
5081 prefixes |= PREFIX_REPNZ;
5082 break;
5083 case LOCK_PREFIX_OPCODE:
5084 prefixes |= PREFIX_LOCK;
5085 break;
5086 case CS_PREFIX_OPCODE:
5087 ir.override = X86_RECORD_CS_REGNUM;
5088 break;
5089 case SS_PREFIX_OPCODE:
5090 ir.override = X86_RECORD_SS_REGNUM;
5091 break;
5092 case DS_PREFIX_OPCODE:
5093 ir.override = X86_RECORD_DS_REGNUM;
5094 break;
5095 case ES_PREFIX_OPCODE:
5096 ir.override = X86_RECORD_ES_REGNUM;
5097 break;
5098 case FS_PREFIX_OPCODE:
5099 ir.override = X86_RECORD_FS_REGNUM;
5100 break;
5101 case GS_PREFIX_OPCODE:
5102 ir.override = X86_RECORD_GS_REGNUM;
5103 break;
5104 case DATA_PREFIX_OPCODE:
5105 prefixes |= PREFIX_DATA;
5106 break;
5107 case ADDR_PREFIX_OPCODE:
5108 prefixes |= PREFIX_ADDR;
5109 break;
5110 case 0x40: /* i386 inc %eax */
5111 case 0x41: /* i386 inc %ecx */
5112 case 0x42: /* i386 inc %edx */
5113 case 0x43: /* i386 inc %ebx */
5114 case 0x44: /* i386 inc %esp */
5115 case 0x45: /* i386 inc %ebp */
5116 case 0x46: /* i386 inc %esi */
5117 case 0x47: /* i386 inc %edi */
5118 case 0x48: /* i386 dec %eax */
5119 case 0x49: /* i386 dec %ecx */
5120 case 0x4a: /* i386 dec %edx */
5121 case 0x4b: /* i386 dec %ebx */
5122 case 0x4c: /* i386 dec %esp */
5123 case 0x4d: /* i386 dec %ebp */
5124 case 0x4e: /* i386 dec %esi */
5125 case 0x4f: /* i386 dec %edi */
5126 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5127 {
5128 /* REX */
5129 rex_w = (opcode8 >> 3) & 1;
5130 rex_r = (opcode8 & 0x4) << 1;
5131 ir.rex_x = (opcode8 & 0x2) << 2;
5132 ir.rex_b = (opcode8 & 0x1) << 3;
5133 }
5134 else /* 32 bit target */
5135 goto out_prefixes;
5136 break;
5137 default:
5138 goto out_prefixes;
5139 break;
5140 }
5141 }
5142 out_prefixes:
5143 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5144 {
5145 ir.dflag = 2;
5146 }
5147 else
5148 {
5149 if (prefixes & PREFIX_DATA)
5150 ir.dflag ^= 1;
5151 }
5152 if (prefixes & PREFIX_ADDR)
5153 ir.aflag ^= 1;
5154 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5155 ir.aflag = 2;
5156
5157 /* Now check op code. */
5158 opcode = (uint32_t) opcode8;
5159 reswitch:
5160 switch (opcode)
5161 {
5162 case 0x0f:
5163 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5164 return -1;
5165 ir.addr++;
5166 opcode = (uint32_t) opcode8 | 0x0f00;
5167 goto reswitch;
5168 break;
5169
5170 case 0x00: /* arith & logic */
5171 case 0x01:
5172 case 0x02:
5173 case 0x03:
5174 case 0x04:
5175 case 0x05:
5176 case 0x08:
5177 case 0x09:
5178 case 0x0a:
5179 case 0x0b:
5180 case 0x0c:
5181 case 0x0d:
5182 case 0x10:
5183 case 0x11:
5184 case 0x12:
5185 case 0x13:
5186 case 0x14:
5187 case 0x15:
5188 case 0x18:
5189 case 0x19:
5190 case 0x1a:
5191 case 0x1b:
5192 case 0x1c:
5193 case 0x1d:
5194 case 0x20:
5195 case 0x21:
5196 case 0x22:
5197 case 0x23:
5198 case 0x24:
5199 case 0x25:
5200 case 0x28:
5201 case 0x29:
5202 case 0x2a:
5203 case 0x2b:
5204 case 0x2c:
5205 case 0x2d:
5206 case 0x30:
5207 case 0x31:
5208 case 0x32:
5209 case 0x33:
5210 case 0x34:
5211 case 0x35:
5212 case 0x38:
5213 case 0x39:
5214 case 0x3a:
5215 case 0x3b:
5216 case 0x3c:
5217 case 0x3d:
5218 if (((opcode >> 3) & 7) != OP_CMPL)
5219 {
5220 if ((opcode & 1) == 0)
5221 ir.ot = OT_BYTE;
5222 else
5223 ir.ot = ir.dflag + OT_WORD;
5224
5225 switch ((opcode >> 1) & 3)
5226 {
5227 case 0: /* OP Ev, Gv */
5228 if (i386_record_modrm (&ir))
5229 return -1;
5230 if (ir.mod != 3)
5231 {
5232 if (i386_record_lea_modrm (&ir))
5233 return -1;
5234 }
5235 else
5236 {
5237 ir.rm |= ir.rex_b;
5238 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5239 ir.rm &= 0x3;
5240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5241 }
5242 break;
5243 case 1: /* OP Gv, Ev */
5244 if (i386_record_modrm (&ir))
5245 return -1;
5246 ir.reg |= rex_r;
5247 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5248 ir.reg &= 0x3;
5249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5250 break;
5251 case 2: /* OP A, Iv */
5252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5253 break;
5254 }
5255 }
5256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5257 break;
5258
5259 case 0x80: /* GRP1 */
5260 case 0x81:
5261 case 0x82:
5262 case 0x83:
5263 if (i386_record_modrm (&ir))
5264 return -1;
5265
5266 if (ir.reg != OP_CMPL)
5267 {
5268 if ((opcode & 1) == 0)
5269 ir.ot = OT_BYTE;
5270 else
5271 ir.ot = ir.dflag + OT_WORD;
5272
5273 if (ir.mod != 3)
5274 {
5275 if (opcode == 0x83)
5276 ir.rip_offset = 1;
5277 else
5278 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5279 if (i386_record_lea_modrm (&ir))
5280 return -1;
5281 }
5282 else
5283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5284 }
5285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5286 break;
5287
5288 case 0x40: /* inc */
5289 case 0x41:
5290 case 0x42:
5291 case 0x43:
5292 case 0x44:
5293 case 0x45:
5294 case 0x46:
5295 case 0x47:
5296
5297 case 0x48: /* dec */
5298 case 0x49:
5299 case 0x4a:
5300 case 0x4b:
5301 case 0x4c:
5302 case 0x4d:
5303 case 0x4e:
5304 case 0x4f:
5305
5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5308 break;
5309
5310 case 0xf6: /* GRP3 */
5311 case 0xf7:
5312 if ((opcode & 1) == 0)
5313 ir.ot = OT_BYTE;
5314 else
5315 ir.ot = ir.dflag + OT_WORD;
5316 if (i386_record_modrm (&ir))
5317 return -1;
5318
5319 if (ir.mod != 3 && ir.reg == 0)
5320 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5321
5322 switch (ir.reg)
5323 {
5324 case 0: /* test */
5325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5326 break;
5327 case 2: /* not */
5328 case 3: /* neg */
5329 if (ir.mod != 3)
5330 {
5331 if (i386_record_lea_modrm (&ir))
5332 return -1;
5333 }
5334 else
5335 {
5336 ir.rm |= ir.rex_b;
5337 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5338 ir.rm &= 0x3;
5339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5340 }
5341 if (ir.reg == 3) /* neg */
5342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5343 break;
5344 case 4: /* mul */
5345 case 5: /* imul */
5346 case 6: /* div */
5347 case 7: /* idiv */
5348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5349 if (ir.ot != OT_BYTE)
5350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5352 break;
5353 default:
5354 ir.addr -= 2;
5355 opcode = opcode << 8 | ir.modrm;
5356 goto no_support;
5357 break;
5358 }
5359 break;
5360
5361 case 0xfe: /* GRP4 */
5362 case 0xff: /* GRP5 */
5363 if (i386_record_modrm (&ir))
5364 return -1;
5365 if (ir.reg >= 2 && opcode == 0xfe)
5366 {
5367 ir.addr -= 2;
5368 opcode = opcode << 8 | ir.modrm;
5369 goto no_support;
5370 }
5371 switch (ir.reg)
5372 {
5373 case 0: /* inc */
5374 case 1: /* dec */
5375 if ((opcode & 1) == 0)
5376 ir.ot = OT_BYTE;
5377 else
5378 ir.ot = ir.dflag + OT_WORD;
5379 if (ir.mod != 3)
5380 {
5381 if (i386_record_lea_modrm (&ir))
5382 return -1;
5383 }
5384 else
5385 {
5386 ir.rm |= ir.rex_b;
5387 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5388 ir.rm &= 0x3;
5389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5390 }
5391 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5392 break;
5393 case 2: /* call */
5394 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5395 ir.dflag = 2;
5396 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5397 return -1;
5398 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5399 break;
5400 case 3: /* lcall */
5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5402 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5403 return -1;
5404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5405 break;
5406 case 4: /* jmp */
5407 case 5: /* ljmp */
5408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5409 break;
5410 case 6: /* push */
5411 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5412 ir.dflag = 2;
5413 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5414 return -1;
5415 break;
5416 default:
5417 ir.addr -= 2;
5418 opcode = opcode << 8 | ir.modrm;
5419 goto no_support;
5420 break;
5421 }
5422 break;
5423
5424 case 0x84: /* test */
5425 case 0x85:
5426 case 0xa8:
5427 case 0xa9:
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5429 break;
5430
5431 case 0x98: /* CWDE/CBW */
5432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5433 break;
5434
5435 case 0x99: /* CDQ/CWD */
5436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5438 break;
5439
5440 case 0x0faf: /* imul */
5441 case 0x69:
5442 case 0x6b:
5443 ir.ot = ir.dflag + OT_WORD;
5444 if (i386_record_modrm (&ir))
5445 return -1;
5446 if (opcode == 0x69)
5447 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5448 else if (opcode == 0x6b)
5449 ir.rip_offset = 1;
5450 ir.reg |= rex_r;
5451 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5452 ir.reg &= 0x3;
5453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5455 break;
5456
5457 case 0x0fc0: /* xadd */
5458 case 0x0fc1:
5459 if ((opcode & 1) == 0)
5460 ir.ot = OT_BYTE;
5461 else
5462 ir.ot = ir.dflag + OT_WORD;
5463 if (i386_record_modrm (&ir))
5464 return -1;
5465 ir.reg |= rex_r;
5466 if (ir.mod == 3)
5467 {
5468 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5469 ir.reg &= 0x3;
5470 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5471 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5472 ir.rm &= 0x3;
5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5474 }
5475 else
5476 {
5477 if (i386_record_lea_modrm (&ir))
5478 return -1;
5479 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5480 ir.reg &= 0x3;
5481 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5482 }
5483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5484 break;
5485
5486 case 0x0fb0: /* cmpxchg */
5487 case 0x0fb1:
5488 if ((opcode & 1) == 0)
5489 ir.ot = OT_BYTE;
5490 else
5491 ir.ot = ir.dflag + OT_WORD;
5492 if (i386_record_modrm (&ir))
5493 return -1;
5494 if (ir.mod == 3)
5495 {
5496 ir.reg |= rex_r;
5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5498 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5499 ir.reg &= 0x3;
5500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5501 }
5502 else
5503 {
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5505 if (i386_record_lea_modrm (&ir))
5506 return -1;
5507 }
5508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5509 break;
5510
5511 case 0x0fc7: /* cmpxchg8b */
5512 if (i386_record_modrm (&ir))
5513 return -1;
5514 if (ir.mod == 3)
5515 {
5516 ir.addr -= 2;
5517 opcode = opcode << 8 | ir.modrm;
5518 goto no_support;
5519 }
5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5522 if (i386_record_lea_modrm (&ir))
5523 return -1;
5524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5525 break;
5526
5527 case 0x50: /* push */
5528 case 0x51:
5529 case 0x52:
5530 case 0x53:
5531 case 0x54:
5532 case 0x55:
5533 case 0x56:
5534 case 0x57:
5535 case 0x68:
5536 case 0x6a:
5537 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5538 ir.dflag = 2;
5539 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5540 return -1;
5541 break;
5542
5543 case 0x06: /* push es */
5544 case 0x0e: /* push cs */
5545 case 0x16: /* push ss */
5546 case 0x1e: /* push ds */
5547 if (ir.regmap[X86_RECORD_R8_REGNUM])
5548 {
5549 ir.addr -= 1;
5550 goto no_support;
5551 }
5552 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5553 return -1;
5554 break;
5555
5556 case 0x0fa0: /* push fs */
5557 case 0x0fa8: /* push gs */
5558 if (ir.regmap[X86_RECORD_R8_REGNUM])
5559 {
5560 ir.addr -= 2;
5561 goto no_support;
5562 }
5563 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5564 return -1;
5565 break;
5566
5567 case 0x60: /* pusha */
5568 if (ir.regmap[X86_RECORD_R8_REGNUM])
5569 {
5570 ir.addr -= 1;
5571 goto no_support;
5572 }
5573 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5574 return -1;
5575 break;
5576
5577 case 0x58: /* pop */
5578 case 0x59:
5579 case 0x5a:
5580 case 0x5b:
5581 case 0x5c:
5582 case 0x5d:
5583 case 0x5e:
5584 case 0x5f:
5585 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5586 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5587 break;
5588
5589 case 0x61: /* popa */
5590 if (ir.regmap[X86_RECORD_R8_REGNUM])
5591 {
5592 ir.addr -= 1;
5593 goto no_support;
5594 }
5595 for (regnum = X86_RECORD_REAX_REGNUM;
5596 regnum <= X86_RECORD_REDI_REGNUM;
5597 regnum++)
5598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5599 break;
5600
5601 case 0x8f: /* pop */
5602 if (ir.regmap[X86_RECORD_R8_REGNUM])
5603 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5604 else
5605 ir.ot = ir.dflag + OT_WORD;
5606 if (i386_record_modrm (&ir))
5607 return -1;
5608 if (ir.mod == 3)
5609 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5610 else
5611 {
5612 ir.popl_esp_hack = 1 << ir.ot;
5613 if (i386_record_lea_modrm (&ir))
5614 return -1;
5615 }
5616 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5617 break;
5618
5619 case 0xc8: /* enter */
5620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5621 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5622 ir.dflag = 2;
5623 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5624 return -1;
5625 break;
5626
5627 case 0xc9: /* leave */
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5630 break;
5631
5632 case 0x07: /* pop es */
5633 if (ir.regmap[X86_RECORD_R8_REGNUM])
5634 {
5635 ir.addr -= 1;
5636 goto no_support;
5637 }
5638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5640 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5641 break;
5642
5643 case 0x17: /* pop ss */
5644 if (ir.regmap[X86_RECORD_R8_REGNUM])
5645 {
5646 ir.addr -= 1;
5647 goto no_support;
5648 }
5649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5652 break;
5653
5654 case 0x1f: /* pop ds */
5655 if (ir.regmap[X86_RECORD_R8_REGNUM])
5656 {
5657 ir.addr -= 1;
5658 goto no_support;
5659 }
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5663 break;
5664
5665 case 0x0fa1: /* pop fs */
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5667 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5669 break;
5670
5671 case 0x0fa9: /* pop gs */
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5675 break;
5676
5677 case 0x88: /* mov */
5678 case 0x89:
5679 case 0xc6:
5680 case 0xc7:
5681 if ((opcode & 1) == 0)
5682 ir.ot = OT_BYTE;
5683 else
5684 ir.ot = ir.dflag + OT_WORD;
5685
5686 if (i386_record_modrm (&ir))
5687 return -1;
5688
5689 if (ir.mod != 3)
5690 {
5691 if (opcode == 0xc6 || opcode == 0xc7)
5692 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5693 if (i386_record_lea_modrm (&ir))
5694 return -1;
5695 }
5696 else
5697 {
5698 if (opcode == 0xc6 || opcode == 0xc7)
5699 ir.rm |= ir.rex_b;
5700 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5701 ir.rm &= 0x3;
5702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5703 }
5704 break;
5705
5706 case 0x8a: /* mov */
5707 case 0x8b:
5708 if ((opcode & 1) == 0)
5709 ir.ot = OT_BYTE;
5710 else
5711 ir.ot = ir.dflag + OT_WORD;
5712 if (i386_record_modrm (&ir))
5713 return -1;
5714 ir.reg |= rex_r;
5715 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5716 ir.reg &= 0x3;
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5718 break;
5719
5720 case 0x8c: /* mov seg */
5721 if (i386_record_modrm (&ir))
5722 return -1;
5723 if (ir.reg > 5)
5724 {
5725 ir.addr -= 2;
5726 opcode = opcode << 8 | ir.modrm;
5727 goto no_support;
5728 }
5729
5730 if (ir.mod == 3)
5731 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5732 else
5733 {
5734 ir.ot = OT_WORD;
5735 if (i386_record_lea_modrm (&ir))
5736 return -1;
5737 }
5738 break;
5739
5740 case 0x8e: /* mov seg */
5741 if (i386_record_modrm (&ir))
5742 return -1;
5743 switch (ir.reg)
5744 {
5745 case 0:
5746 regnum = X86_RECORD_ES_REGNUM;
5747 break;
5748 case 2:
5749 regnum = X86_RECORD_SS_REGNUM;
5750 break;
5751 case 3:
5752 regnum = X86_RECORD_DS_REGNUM;
5753 break;
5754 case 4:
5755 regnum = X86_RECORD_FS_REGNUM;
5756 break;
5757 case 5:
5758 regnum = X86_RECORD_GS_REGNUM;
5759 break;
5760 default:
5761 ir.addr -= 2;
5762 opcode = opcode << 8 | ir.modrm;
5763 goto no_support;
5764 break;
5765 }
5766 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5767 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5768 break;
5769
5770 case 0x0fb6: /* movzbS */
5771 case 0x0fb7: /* movzwS */
5772 case 0x0fbe: /* movsbS */
5773 case 0x0fbf: /* movswS */
5774 if (i386_record_modrm (&ir))
5775 return -1;
5776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5777 break;
5778
5779 case 0x8d: /* lea */
5780 if (i386_record_modrm (&ir))
5781 return -1;
5782 if (ir.mod == 3)
5783 {
5784 ir.addr -= 2;
5785 opcode = opcode << 8 | ir.modrm;
5786 goto no_support;
5787 }
5788 ir.ot = ir.dflag;
5789 ir.reg |= rex_r;
5790 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5791 ir.reg &= 0x3;
5792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5793 break;
5794
5795 case 0xa0: /* mov EAX */
5796 case 0xa1:
5797
5798 case 0xd7: /* xlat */
5799 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5800 break;
5801
5802 case 0xa2: /* mov EAX */
5803 case 0xa3:
5804 if (ir.override >= 0)
5805 {
5806 if (record_full_memory_query)
5807 {
5808 int q;
5809
5810 target_terminal_ours ();
5811 q = yquery (_("\
5812 Process record ignores the memory change of instruction at address %s\n\
5813 because it can't get the value of the segment register.\n\
5814 Do you want to stop the program?"),
5815 paddress (gdbarch, ir.orig_addr));
5816 target_terminal_inferior ();
5817 if (q)
5818 return -1;
5819 }
5820 }
5821 else
5822 {
5823 if ((opcode & 1) == 0)
5824 ir.ot = OT_BYTE;
5825 else
5826 ir.ot = ir.dflag + OT_WORD;
5827 if (ir.aflag == 2)
5828 {
5829 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5830 return -1;
5831 ir.addr += 8;
5832 addr = extract_unsigned_integer (buf, 8, byte_order);
5833 }
5834 else if (ir.aflag)
5835 {
5836 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5837 return -1;
5838 ir.addr += 4;
5839 addr = extract_unsigned_integer (buf, 4, byte_order);
5840 }
5841 else
5842 {
5843 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5844 return -1;
5845 ir.addr += 2;
5846 addr = extract_unsigned_integer (buf, 2, byte_order);
5847 }
5848 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5849 return -1;
5850 }
5851 break;
5852
5853 case 0xb0: /* mov R, Ib */
5854 case 0xb1:
5855 case 0xb2:
5856 case 0xb3:
5857 case 0xb4:
5858 case 0xb5:
5859 case 0xb6:
5860 case 0xb7:
5861 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5862 ? ((opcode & 0x7) | ir.rex_b)
5863 : ((opcode & 0x7) & 0x3));
5864 break;
5865
5866 case 0xb8: /* mov R, Iv */
5867 case 0xb9:
5868 case 0xba:
5869 case 0xbb:
5870 case 0xbc:
5871 case 0xbd:
5872 case 0xbe:
5873 case 0xbf:
5874 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5875 break;
5876
5877 case 0x91: /* xchg R, EAX */
5878 case 0x92:
5879 case 0x93:
5880 case 0x94:
5881 case 0x95:
5882 case 0x96:
5883 case 0x97:
5884 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5885 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5886 break;
5887
5888 case 0x86: /* xchg Ev, Gv */
5889 case 0x87:
5890 if ((opcode & 1) == 0)
5891 ir.ot = OT_BYTE;
5892 else
5893 ir.ot = ir.dflag + OT_WORD;
5894 if (i386_record_modrm (&ir))
5895 return -1;
5896 if (ir.mod == 3)
5897 {
5898 ir.rm |= ir.rex_b;
5899 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5900 ir.rm &= 0x3;
5901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5902 }
5903 else
5904 {
5905 if (i386_record_lea_modrm (&ir))
5906 return -1;
5907 }
5908 ir.reg |= rex_r;
5909 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5910 ir.reg &= 0x3;
5911 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5912 break;
5913
5914 case 0xc4: /* les Gv */
5915 case 0xc5: /* lds Gv */
5916 if (ir.regmap[X86_RECORD_R8_REGNUM])
5917 {
5918 ir.addr -= 1;
5919 goto no_support;
5920 }
5921 /* FALLTHROUGH */
5922 case 0x0fb2: /* lss Gv */
5923 case 0x0fb4: /* lfs Gv */
5924 case 0x0fb5: /* lgs Gv */
5925 if (i386_record_modrm (&ir))
5926 return -1;
5927 if (ir.mod == 3)
5928 {
5929 if (opcode > 0xff)
5930 ir.addr -= 3;
5931 else
5932 ir.addr -= 2;
5933 opcode = opcode << 8 | ir.modrm;
5934 goto no_support;
5935 }
5936 switch (opcode)
5937 {
5938 case 0xc4: /* les Gv */
5939 regnum = X86_RECORD_ES_REGNUM;
5940 break;
5941 case 0xc5: /* lds Gv */
5942 regnum = X86_RECORD_DS_REGNUM;
5943 break;
5944 case 0x0fb2: /* lss Gv */
5945 regnum = X86_RECORD_SS_REGNUM;
5946 break;
5947 case 0x0fb4: /* lfs Gv */
5948 regnum = X86_RECORD_FS_REGNUM;
5949 break;
5950 case 0x0fb5: /* lgs Gv */
5951 regnum = X86_RECORD_GS_REGNUM;
5952 break;
5953 }
5954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5956 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5957 break;
5958
5959 case 0xc0: /* shifts */
5960 case 0xc1:
5961 case 0xd0:
5962 case 0xd1:
5963 case 0xd2:
5964 case 0xd3:
5965 if ((opcode & 1) == 0)
5966 ir.ot = OT_BYTE;
5967 else
5968 ir.ot = ir.dflag + OT_WORD;
5969 if (i386_record_modrm (&ir))
5970 return -1;
5971 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5972 {
5973 if (i386_record_lea_modrm (&ir))
5974 return -1;
5975 }
5976 else
5977 {
5978 ir.rm |= ir.rex_b;
5979 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5980 ir.rm &= 0x3;
5981 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5982 }
5983 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5984 break;
5985
5986 case 0x0fa4:
5987 case 0x0fa5:
5988 case 0x0fac:
5989 case 0x0fad:
5990 if (i386_record_modrm (&ir))
5991 return -1;
5992 if (ir.mod == 3)
5993 {
5994 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5995 return -1;
5996 }
5997 else
5998 {
5999 if (i386_record_lea_modrm (&ir))
6000 return -1;
6001 }
6002 break;
6003
6004 case 0xd8: /* Floats. */
6005 case 0xd9:
6006 case 0xda:
6007 case 0xdb:
6008 case 0xdc:
6009 case 0xdd:
6010 case 0xde:
6011 case 0xdf:
6012 if (i386_record_modrm (&ir))
6013 return -1;
6014 ir.reg |= ((opcode & 7) << 3);
6015 if (ir.mod != 3)
6016 {
6017 /* Memory. */
6018 uint64_t addr64;
6019
6020 if (i386_record_lea_modrm_addr (&ir, &addr64))
6021 return -1;
6022 switch (ir.reg)
6023 {
6024 case 0x02:
6025 case 0x12:
6026 case 0x22:
6027 case 0x32:
6028 /* For fcom, ficom nothing to do. */
6029 break;
6030 case 0x03:
6031 case 0x13:
6032 case 0x23:
6033 case 0x33:
6034 /* For fcomp, ficomp pop FPU stack, store all. */
6035 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6036 return -1;
6037 break;
6038 case 0x00:
6039 case 0x01:
6040 case 0x04:
6041 case 0x05:
6042 case 0x06:
6043 case 0x07:
6044 case 0x10:
6045 case 0x11:
6046 case 0x14:
6047 case 0x15:
6048 case 0x16:
6049 case 0x17:
6050 case 0x20:
6051 case 0x21:
6052 case 0x24:
6053 case 0x25:
6054 case 0x26:
6055 case 0x27:
6056 case 0x30:
6057 case 0x31:
6058 case 0x34:
6059 case 0x35:
6060 case 0x36:
6061 case 0x37:
6062 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6063 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6064 of code, always affects st(0) register. */
6065 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6066 return -1;
6067 break;
6068 case 0x08:
6069 case 0x0a:
6070 case 0x0b:
6071 case 0x18:
6072 case 0x19:
6073 case 0x1a:
6074 case 0x1b:
6075 case 0x1d:
6076 case 0x28:
6077 case 0x29:
6078 case 0x2a:
6079 case 0x2b:
6080 case 0x38:
6081 case 0x39:
6082 case 0x3a:
6083 case 0x3b:
6084 case 0x3c:
6085 case 0x3d:
6086 switch (ir.reg & 7)
6087 {
6088 case 0:
6089 /* Handling fld, fild. */
6090 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6091 return -1;
6092 break;
6093 case 1:
6094 switch (ir.reg >> 4)
6095 {
6096 case 0:
6097 if (record_full_arch_list_add_mem (addr64, 4))
6098 return -1;
6099 break;
6100 case 2:
6101 if (record_full_arch_list_add_mem (addr64, 8))
6102 return -1;
6103 break;
6104 case 3:
6105 break;
6106 default:
6107 if (record_full_arch_list_add_mem (addr64, 2))
6108 return -1;
6109 break;
6110 }
6111 break;
6112 default:
6113 switch (ir.reg >> 4)
6114 {
6115 case 0:
6116 if (record_full_arch_list_add_mem (addr64, 4))
6117 return -1;
6118 if (3 == (ir.reg & 7))
6119 {
6120 /* For fstp m32fp. */
6121 if (i386_record_floats (gdbarch, &ir,
6122 I386_SAVE_FPU_REGS))
6123 return -1;
6124 }
6125 break;
6126 case 1:
6127 if (record_full_arch_list_add_mem (addr64, 4))
6128 return -1;
6129 if ((3 == (ir.reg & 7))
6130 || (5 == (ir.reg & 7))
6131 || (7 == (ir.reg & 7)))
6132 {
6133 /* For fstp insn. */
6134 if (i386_record_floats (gdbarch, &ir,
6135 I386_SAVE_FPU_REGS))
6136 return -1;
6137 }
6138 break;
6139 case 2:
6140 if (record_full_arch_list_add_mem (addr64, 8))
6141 return -1;
6142 if (3 == (ir.reg & 7))
6143 {
6144 /* For fstp m64fp. */
6145 if (i386_record_floats (gdbarch, &ir,
6146 I386_SAVE_FPU_REGS))
6147 return -1;
6148 }
6149 break;
6150 case 3:
6151 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6152 {
6153 /* For fistp, fbld, fild, fbstp. */
6154 if (i386_record_floats (gdbarch, &ir,
6155 I386_SAVE_FPU_REGS))
6156 return -1;
6157 }
6158 /* Fall through */
6159 default:
6160 if (record_full_arch_list_add_mem (addr64, 2))
6161 return -1;
6162 break;
6163 }
6164 break;
6165 }
6166 break;
6167 case 0x0c:
6168 /* Insn fldenv. */
6169 if (i386_record_floats (gdbarch, &ir,
6170 I386_SAVE_FPU_ENV_REG_STACK))
6171 return -1;
6172 break;
6173 case 0x0d:
6174 /* Insn fldcw. */
6175 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6176 return -1;
6177 break;
6178 case 0x2c:
6179 /* Insn frstor. */
6180 if (i386_record_floats (gdbarch, &ir,
6181 I386_SAVE_FPU_ENV_REG_STACK))
6182 return -1;
6183 break;
6184 case 0x0e:
6185 if (ir.dflag)
6186 {
6187 if (record_full_arch_list_add_mem (addr64, 28))
6188 return -1;
6189 }
6190 else
6191 {
6192 if (record_full_arch_list_add_mem (addr64, 14))
6193 return -1;
6194 }
6195 break;
6196 case 0x0f:
6197 case 0x2f:
6198 if (record_full_arch_list_add_mem (addr64, 2))
6199 return -1;
6200 /* Insn fstp, fbstp. */
6201 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6202 return -1;
6203 break;
6204 case 0x1f:
6205 case 0x3e:
6206 if (record_full_arch_list_add_mem (addr64, 10))
6207 return -1;
6208 break;
6209 case 0x2e:
6210 if (ir.dflag)
6211 {
6212 if (record_full_arch_list_add_mem (addr64, 28))
6213 return -1;
6214 addr64 += 28;
6215 }
6216 else
6217 {
6218 if (record_full_arch_list_add_mem (addr64, 14))
6219 return -1;
6220 addr64 += 14;
6221 }
6222 if (record_full_arch_list_add_mem (addr64, 80))
6223 return -1;
6224 /* Insn fsave. */
6225 if (i386_record_floats (gdbarch, &ir,
6226 I386_SAVE_FPU_ENV_REG_STACK))
6227 return -1;
6228 break;
6229 case 0x3f:
6230 if (record_full_arch_list_add_mem (addr64, 8))
6231 return -1;
6232 /* Insn fistp. */
6233 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6234 return -1;
6235 break;
6236 default:
6237 ir.addr -= 2;
6238 opcode = opcode << 8 | ir.modrm;
6239 goto no_support;
6240 break;
6241 }
6242 }
6243 /* Opcode is an extension of modR/M byte. */
6244 else
6245 {
6246 switch (opcode)
6247 {
6248 case 0xd8:
6249 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6250 return -1;
6251 break;
6252 case 0xd9:
6253 if (0x0c == (ir.modrm >> 4))
6254 {
6255 if ((ir.modrm & 0x0f) <= 7)
6256 {
6257 if (i386_record_floats (gdbarch, &ir,
6258 I386_SAVE_FPU_REGS))
6259 return -1;
6260 }
6261 else
6262 {
6263 if (i386_record_floats (gdbarch, &ir,
6264 I387_ST0_REGNUM (tdep)))
6265 return -1;
6266 /* If only st(0) is changing, then we have already
6267 recorded. */
6268 if ((ir.modrm & 0x0f) - 0x08)
6269 {
6270 if (i386_record_floats (gdbarch, &ir,
6271 I387_ST0_REGNUM (tdep) +
6272 ((ir.modrm & 0x0f) - 0x08)))
6273 return -1;
6274 }
6275 }
6276 }
6277 else
6278 {
6279 switch (ir.modrm)
6280 {
6281 case 0xe0:
6282 case 0xe1:
6283 case 0xf0:
6284 case 0xf5:
6285 case 0xf8:
6286 case 0xfa:
6287 case 0xfc:
6288 case 0xfe:
6289 case 0xff:
6290 if (i386_record_floats (gdbarch, &ir,
6291 I387_ST0_REGNUM (tdep)))
6292 return -1;
6293 break;
6294 case 0xf1:
6295 case 0xf2:
6296 case 0xf3:
6297 case 0xf4:
6298 case 0xf6:
6299 case 0xf7:
6300 case 0xe8:
6301 case 0xe9:
6302 case 0xea:
6303 case 0xeb:
6304 case 0xec:
6305 case 0xed:
6306 case 0xee:
6307 case 0xf9:
6308 case 0xfb:
6309 if (i386_record_floats (gdbarch, &ir,
6310 I386_SAVE_FPU_REGS))
6311 return -1;
6312 break;
6313 case 0xfd:
6314 if (i386_record_floats (gdbarch, &ir,
6315 I387_ST0_REGNUM (tdep)))
6316 return -1;
6317 if (i386_record_floats (gdbarch, &ir,
6318 I387_ST0_REGNUM (tdep) + 1))
6319 return -1;
6320 break;
6321 }
6322 }
6323 break;
6324 case 0xda:
6325 if (0xe9 == ir.modrm)
6326 {
6327 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6328 return -1;
6329 }
6330 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6331 {
6332 if (i386_record_floats (gdbarch, &ir,
6333 I387_ST0_REGNUM (tdep)))
6334 return -1;
6335 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6336 {
6337 if (i386_record_floats (gdbarch, &ir,
6338 I387_ST0_REGNUM (tdep) +
6339 (ir.modrm & 0x0f)))
6340 return -1;
6341 }
6342 else if ((ir.modrm & 0x0f) - 0x08)
6343 {
6344 if (i386_record_floats (gdbarch, &ir,
6345 I387_ST0_REGNUM (tdep) +
6346 ((ir.modrm & 0x0f) - 0x08)))
6347 return -1;
6348 }
6349 }
6350 break;
6351 case 0xdb:
6352 if (0xe3 == ir.modrm)
6353 {
6354 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6355 return -1;
6356 }
6357 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6358 {
6359 if (i386_record_floats (gdbarch, &ir,
6360 I387_ST0_REGNUM (tdep)))
6361 return -1;
6362 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6363 {
6364 if (i386_record_floats (gdbarch, &ir,
6365 I387_ST0_REGNUM (tdep) +
6366 (ir.modrm & 0x0f)))
6367 return -1;
6368 }
6369 else if ((ir.modrm & 0x0f) - 0x08)
6370 {
6371 if (i386_record_floats (gdbarch, &ir,
6372 I387_ST0_REGNUM (tdep) +
6373 ((ir.modrm & 0x0f) - 0x08)))
6374 return -1;
6375 }
6376 }
6377 break;
6378 case 0xdc:
6379 if ((0x0c == ir.modrm >> 4)
6380 || (0x0d == ir.modrm >> 4)
6381 || (0x0f == ir.modrm >> 4))
6382 {
6383 if ((ir.modrm & 0x0f) <= 7)
6384 {
6385 if (i386_record_floats (gdbarch, &ir,
6386 I387_ST0_REGNUM (tdep) +
6387 (ir.modrm & 0x0f)))
6388 return -1;
6389 }
6390 else
6391 {
6392 if (i386_record_floats (gdbarch, &ir,
6393 I387_ST0_REGNUM (tdep) +
6394 ((ir.modrm & 0x0f) - 0x08)))
6395 return -1;
6396 }
6397 }
6398 break;
6399 case 0xdd:
6400 if (0x0c == ir.modrm >> 4)
6401 {
6402 if (i386_record_floats (gdbarch, &ir,
6403 I387_FTAG_REGNUM (tdep)))
6404 return -1;
6405 }
6406 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6407 {
6408 if ((ir.modrm & 0x0f) <= 7)
6409 {
6410 if (i386_record_floats (gdbarch, &ir,
6411 I387_ST0_REGNUM (tdep) +
6412 (ir.modrm & 0x0f)))
6413 return -1;
6414 }
6415 else
6416 {
6417 if (i386_record_floats (gdbarch, &ir,
6418 I386_SAVE_FPU_REGS))
6419 return -1;
6420 }
6421 }
6422 break;
6423 case 0xde:
6424 if ((0x0c == ir.modrm >> 4)
6425 || (0x0e == ir.modrm >> 4)
6426 || (0x0f == ir.modrm >> 4)
6427 || (0xd9 == ir.modrm))
6428 {
6429 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6430 return -1;
6431 }
6432 break;
6433 case 0xdf:
6434 if (0xe0 == ir.modrm)
6435 {
6436 if (record_full_arch_list_add_reg (ir.regcache,
6437 I386_EAX_REGNUM))
6438 return -1;
6439 }
6440 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6441 {
6442 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6443 return -1;
6444 }
6445 break;
6446 }
6447 }
6448 break;
6449 /* string ops */
6450 case 0xa4: /* movsS */
6451 case 0xa5:
6452 case 0xaa: /* stosS */
6453 case 0xab:
6454 case 0x6c: /* insS */
6455 case 0x6d:
6456 regcache_raw_read_unsigned (ir.regcache,
6457 ir.regmap[X86_RECORD_RECX_REGNUM],
6458 &addr);
6459 if (addr)
6460 {
6461 ULONGEST es, ds;
6462
6463 if ((opcode & 1) == 0)
6464 ir.ot = OT_BYTE;
6465 else
6466 ir.ot = ir.dflag + OT_WORD;
6467 regcache_raw_read_unsigned (ir.regcache,
6468 ir.regmap[X86_RECORD_REDI_REGNUM],
6469 &addr);
6470
6471 regcache_raw_read_unsigned (ir.regcache,
6472 ir.regmap[X86_RECORD_ES_REGNUM],
6473 &es);
6474 regcache_raw_read_unsigned (ir.regcache,
6475 ir.regmap[X86_RECORD_DS_REGNUM],
6476 &ds);
6477 if (ir.aflag && (es != ds))
6478 {
6479 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6480 if (record_full_memory_query)
6481 {
6482 int q;
6483
6484 target_terminal_ours ();
6485 q = yquery (_("\
6486 Process record ignores the memory change of instruction at address %s\n\
6487 because it can't get the value of the segment register.\n\
6488 Do you want to stop the program?"),
6489 paddress (gdbarch, ir.orig_addr));
6490 target_terminal_inferior ();
6491 if (q)
6492 return -1;
6493 }
6494 }
6495 else
6496 {
6497 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6498 return -1;
6499 }
6500
6501 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6503 if (opcode == 0xa4 || opcode == 0xa5)
6504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6507 }
6508 break;
6509
6510 case 0xa6: /* cmpsS */
6511 case 0xa7:
6512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6514 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6517 break;
6518
6519 case 0xac: /* lodsS */
6520 case 0xad:
6521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6523 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6526 break;
6527
6528 case 0xae: /* scasS */
6529 case 0xaf:
6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6531 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6534 break;
6535
6536 case 0x6e: /* outsS */
6537 case 0x6f:
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6539 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6542 break;
6543
6544 case 0xe4: /* port I/O */
6545 case 0xe5:
6546 case 0xec:
6547 case 0xed:
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6550 break;
6551
6552 case 0xe6:
6553 case 0xe7:
6554 case 0xee:
6555 case 0xef:
6556 break;
6557
6558 /* control */
6559 case 0xc2: /* ret im */
6560 case 0xc3: /* ret */
6561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6563 break;
6564
6565 case 0xca: /* lret im */
6566 case 0xcb: /* lret */
6567 case 0xcf: /* iret */
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6571 break;
6572
6573 case 0xe8: /* call im */
6574 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6575 ir.dflag = 2;
6576 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6577 return -1;
6578 break;
6579
6580 case 0x9a: /* lcall im */
6581 if (ir.regmap[X86_RECORD_R8_REGNUM])
6582 {
6583 ir.addr -= 1;
6584 goto no_support;
6585 }
6586 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6587 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6588 return -1;
6589 break;
6590
6591 case 0xe9: /* jmp im */
6592 case 0xea: /* ljmp im */
6593 case 0xeb: /* jmp Jb */
6594 case 0x70: /* jcc Jb */
6595 case 0x71:
6596 case 0x72:
6597 case 0x73:
6598 case 0x74:
6599 case 0x75:
6600 case 0x76:
6601 case 0x77:
6602 case 0x78:
6603 case 0x79:
6604 case 0x7a:
6605 case 0x7b:
6606 case 0x7c:
6607 case 0x7d:
6608 case 0x7e:
6609 case 0x7f:
6610 case 0x0f80: /* jcc Jv */
6611 case 0x0f81:
6612 case 0x0f82:
6613 case 0x0f83:
6614 case 0x0f84:
6615 case 0x0f85:
6616 case 0x0f86:
6617 case 0x0f87:
6618 case 0x0f88:
6619 case 0x0f89:
6620 case 0x0f8a:
6621 case 0x0f8b:
6622 case 0x0f8c:
6623 case 0x0f8d:
6624 case 0x0f8e:
6625 case 0x0f8f:
6626 break;
6627
6628 case 0x0f90: /* setcc Gv */
6629 case 0x0f91:
6630 case 0x0f92:
6631 case 0x0f93:
6632 case 0x0f94:
6633 case 0x0f95:
6634 case 0x0f96:
6635 case 0x0f97:
6636 case 0x0f98:
6637 case 0x0f99:
6638 case 0x0f9a:
6639 case 0x0f9b:
6640 case 0x0f9c:
6641 case 0x0f9d:
6642 case 0x0f9e:
6643 case 0x0f9f:
6644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6645 ir.ot = OT_BYTE;
6646 if (i386_record_modrm (&ir))
6647 return -1;
6648 if (ir.mod == 3)
6649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6650 : (ir.rm & 0x3));
6651 else
6652 {
6653 if (i386_record_lea_modrm (&ir))
6654 return -1;
6655 }
6656 break;
6657
6658 case 0x0f40: /* cmov Gv, Ev */
6659 case 0x0f41:
6660 case 0x0f42:
6661 case 0x0f43:
6662 case 0x0f44:
6663 case 0x0f45:
6664 case 0x0f46:
6665 case 0x0f47:
6666 case 0x0f48:
6667 case 0x0f49:
6668 case 0x0f4a:
6669 case 0x0f4b:
6670 case 0x0f4c:
6671 case 0x0f4d:
6672 case 0x0f4e:
6673 case 0x0f4f:
6674 if (i386_record_modrm (&ir))
6675 return -1;
6676 ir.reg |= rex_r;
6677 if (ir.dflag == OT_BYTE)
6678 ir.reg &= 0x3;
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6680 break;
6681
6682 /* flags */
6683 case 0x9c: /* pushf */
6684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6685 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6686 ir.dflag = 2;
6687 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6688 return -1;
6689 break;
6690
6691 case 0x9d: /* popf */
6692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6694 break;
6695
6696 case 0x9e: /* sahf */
6697 if (ir.regmap[X86_RECORD_R8_REGNUM])
6698 {
6699 ir.addr -= 1;
6700 goto no_support;
6701 }
6702 /* FALLTHROUGH */
6703 case 0xf5: /* cmc */
6704 case 0xf8: /* clc */
6705 case 0xf9: /* stc */
6706 case 0xfc: /* cld */
6707 case 0xfd: /* std */
6708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6709 break;
6710
6711 case 0x9f: /* lahf */
6712 if (ir.regmap[X86_RECORD_R8_REGNUM])
6713 {
6714 ir.addr -= 1;
6715 goto no_support;
6716 }
6717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6719 break;
6720
6721 /* bit operations */
6722 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6723 ir.ot = ir.dflag + OT_WORD;
6724 if (i386_record_modrm (&ir))
6725 return -1;
6726 if (ir.reg < 4)
6727 {
6728 ir.addr -= 2;
6729 opcode = opcode << 8 | ir.modrm;
6730 goto no_support;
6731 }
6732 if (ir.reg != 4)
6733 {
6734 if (ir.mod == 3)
6735 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6736 else
6737 {
6738 if (i386_record_lea_modrm (&ir))
6739 return -1;
6740 }
6741 }
6742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6743 break;
6744
6745 case 0x0fa3: /* bt Gv, Ev */
6746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6747 break;
6748
6749 case 0x0fab: /* bts */
6750 case 0x0fb3: /* btr */
6751 case 0x0fbb: /* btc */
6752 ir.ot = ir.dflag + OT_WORD;
6753 if (i386_record_modrm (&ir))
6754 return -1;
6755 if (ir.mod == 3)
6756 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6757 else
6758 {
6759 uint64_t addr64;
6760 if (i386_record_lea_modrm_addr (&ir, &addr64))
6761 return -1;
6762 regcache_raw_read_unsigned (ir.regcache,
6763 ir.regmap[ir.reg | rex_r],
6764 &addr);
6765 switch (ir.dflag)
6766 {
6767 case 0:
6768 addr64 += ((int16_t) addr >> 4) << 4;
6769 break;
6770 case 1:
6771 addr64 += ((int32_t) addr >> 5) << 5;
6772 break;
6773 case 2:
6774 addr64 += ((int64_t) addr >> 6) << 6;
6775 break;
6776 }
6777 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6778 return -1;
6779 if (i386_record_lea_modrm (&ir))
6780 return -1;
6781 }
6782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6783 break;
6784
6785 case 0x0fbc: /* bsf */
6786 case 0x0fbd: /* bsr */
6787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6789 break;
6790
6791 /* bcd */
6792 case 0x27: /* daa */
6793 case 0x2f: /* das */
6794 case 0x37: /* aaa */
6795 case 0x3f: /* aas */
6796 case 0xd4: /* aam */
6797 case 0xd5: /* aad */
6798 if (ir.regmap[X86_RECORD_R8_REGNUM])
6799 {
6800 ir.addr -= 1;
6801 goto no_support;
6802 }
6803 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6805 break;
6806
6807 /* misc */
6808 case 0x90: /* nop */
6809 if (prefixes & PREFIX_LOCK)
6810 {
6811 ir.addr -= 1;
6812 goto no_support;
6813 }
6814 break;
6815
6816 case 0x9b: /* fwait */
6817 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6818 return -1;
6819 opcode = (uint32_t) opcode8;
6820 ir.addr++;
6821 goto reswitch;
6822 break;
6823
6824 /* XXX */
6825 case 0xcc: /* int3 */
6826 printf_unfiltered (_("Process record does not support instruction "
6827 "int3.\n"));
6828 ir.addr -= 1;
6829 goto no_support;
6830 break;
6831
6832 /* XXX */
6833 case 0xcd: /* int */
6834 {
6835 int ret;
6836 uint8_t interrupt;
6837 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6838 return -1;
6839 ir.addr++;
6840 if (interrupt != 0x80
6841 || tdep->i386_intx80_record == NULL)
6842 {
6843 printf_unfiltered (_("Process record does not support "
6844 "instruction int 0x%02x.\n"),
6845 interrupt);
6846 ir.addr -= 2;
6847 goto no_support;
6848 }
6849 ret = tdep->i386_intx80_record (ir.regcache);
6850 if (ret)
6851 return ret;
6852 }
6853 break;
6854
6855 /* XXX */
6856 case 0xce: /* into */
6857 printf_unfiltered (_("Process record does not support "
6858 "instruction into.\n"));
6859 ir.addr -= 1;
6860 goto no_support;
6861 break;
6862
6863 case 0xfa: /* cli */
6864 case 0xfb: /* sti */
6865 break;
6866
6867 case 0x62: /* bound */
6868 printf_unfiltered (_("Process record does not support "
6869 "instruction bound.\n"));
6870 ir.addr -= 1;
6871 goto no_support;
6872 break;
6873
6874 case 0x0fc8: /* bswap reg */
6875 case 0x0fc9:
6876 case 0x0fca:
6877 case 0x0fcb:
6878 case 0x0fcc:
6879 case 0x0fcd:
6880 case 0x0fce:
6881 case 0x0fcf:
6882 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6883 break;
6884
6885 case 0xd6: /* salc */
6886 if (ir.regmap[X86_RECORD_R8_REGNUM])
6887 {
6888 ir.addr -= 1;
6889 goto no_support;
6890 }
6891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6893 break;
6894
6895 case 0xe0: /* loopnz */
6896 case 0xe1: /* loopz */
6897 case 0xe2: /* loop */
6898 case 0xe3: /* jecxz */
6899 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6900 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6901 break;
6902
6903 case 0x0f30: /* wrmsr */
6904 printf_unfiltered (_("Process record does not support "
6905 "instruction wrmsr.\n"));
6906 ir.addr -= 2;
6907 goto no_support;
6908 break;
6909
6910 case 0x0f32: /* rdmsr */
6911 printf_unfiltered (_("Process record does not support "
6912 "instruction rdmsr.\n"));
6913 ir.addr -= 2;
6914 goto no_support;
6915 break;
6916
6917 case 0x0f31: /* rdtsc */
6918 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6920 break;
6921
6922 case 0x0f34: /* sysenter */
6923 {
6924 int ret;
6925 if (ir.regmap[X86_RECORD_R8_REGNUM])
6926 {
6927 ir.addr -= 2;
6928 goto no_support;
6929 }
6930 if (tdep->i386_sysenter_record == NULL)
6931 {
6932 printf_unfiltered (_("Process record does not support "
6933 "instruction sysenter.\n"));
6934 ir.addr -= 2;
6935 goto no_support;
6936 }
6937 ret = tdep->i386_sysenter_record (ir.regcache);
6938 if (ret)
6939 return ret;
6940 }
6941 break;
6942
6943 case 0x0f35: /* sysexit */
6944 printf_unfiltered (_("Process record does not support "
6945 "instruction sysexit.\n"));
6946 ir.addr -= 2;
6947 goto no_support;
6948 break;
6949
6950 case 0x0f05: /* syscall */
6951 {
6952 int ret;
6953 if (tdep->i386_syscall_record == NULL)
6954 {
6955 printf_unfiltered (_("Process record does not support "
6956 "instruction syscall.\n"));
6957 ir.addr -= 2;
6958 goto no_support;
6959 }
6960 ret = tdep->i386_syscall_record (ir.regcache);
6961 if (ret)
6962 return ret;
6963 }
6964 break;
6965
6966 case 0x0f07: /* sysret */
6967 printf_unfiltered (_("Process record does not support "
6968 "instruction sysret.\n"));
6969 ir.addr -= 2;
6970 goto no_support;
6971 break;
6972
6973 case 0x0fa2: /* cpuid */
6974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6976 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6978 break;
6979
6980 case 0xf4: /* hlt */
6981 printf_unfiltered (_("Process record does not support "
6982 "instruction hlt.\n"));
6983 ir.addr -= 1;
6984 goto no_support;
6985 break;
6986
6987 case 0x0f00:
6988 if (i386_record_modrm (&ir))
6989 return -1;
6990 switch (ir.reg)
6991 {
6992 case 0: /* sldt */
6993 case 1: /* str */
6994 if (ir.mod == 3)
6995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6996 else
6997 {
6998 ir.ot = OT_WORD;
6999 if (i386_record_lea_modrm (&ir))
7000 return -1;
7001 }
7002 break;
7003 case 2: /* lldt */
7004 case 3: /* ltr */
7005 break;
7006 case 4: /* verr */
7007 case 5: /* verw */
7008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7009 break;
7010 default:
7011 ir.addr -= 3;
7012 opcode = opcode << 8 | ir.modrm;
7013 goto no_support;
7014 break;
7015 }
7016 break;
7017
7018 case 0x0f01:
7019 if (i386_record_modrm (&ir))
7020 return -1;
7021 switch (ir.reg)
7022 {
7023 case 0: /* sgdt */
7024 {
7025 uint64_t addr64;
7026
7027 if (ir.mod == 3)
7028 {
7029 ir.addr -= 3;
7030 opcode = opcode << 8 | ir.modrm;
7031 goto no_support;
7032 }
7033 if (ir.override >= 0)
7034 {
7035 if (record_full_memory_query)
7036 {
7037 int q;
7038
7039 target_terminal_ours ();
7040 q = yquery (_("\
7041 Process record ignores the memory change of instruction at address %s\n\
7042 because it can't get the value of the segment register.\n\
7043 Do you want to stop the program?"),
7044 paddress (gdbarch, ir.orig_addr));
7045 target_terminal_inferior ();
7046 if (q)
7047 return -1;
7048 }
7049 }
7050 else
7051 {
7052 if (i386_record_lea_modrm_addr (&ir, &addr64))
7053 return -1;
7054 if (record_full_arch_list_add_mem (addr64, 2))
7055 return -1;
7056 addr64 += 2;
7057 if (ir.regmap[X86_RECORD_R8_REGNUM])
7058 {
7059 if (record_full_arch_list_add_mem (addr64, 8))
7060 return -1;
7061 }
7062 else
7063 {
7064 if (record_full_arch_list_add_mem (addr64, 4))
7065 return -1;
7066 }
7067 }
7068 }
7069 break;
7070 case 1:
7071 if (ir.mod == 3)
7072 {
7073 switch (ir.rm)
7074 {
7075 case 0: /* monitor */
7076 break;
7077 case 1: /* mwait */
7078 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7079 break;
7080 default:
7081 ir.addr -= 3;
7082 opcode = opcode << 8 | ir.modrm;
7083 goto no_support;
7084 break;
7085 }
7086 }
7087 else
7088 {
7089 /* sidt */
7090 if (ir.override >= 0)
7091 {
7092 if (record_full_memory_query)
7093 {
7094 int q;
7095
7096 target_terminal_ours ();
7097 q = yquery (_("\
7098 Process record ignores the memory change of instruction at address %s\n\
7099 because it can't get the value of the segment register.\n\
7100 Do you want to stop the program?"),
7101 paddress (gdbarch, ir.orig_addr));
7102 target_terminal_inferior ();
7103 if (q)
7104 return -1;
7105 }
7106 }
7107 else
7108 {
7109 uint64_t addr64;
7110
7111 if (i386_record_lea_modrm_addr (&ir, &addr64))
7112 return -1;
7113 if (record_full_arch_list_add_mem (addr64, 2))
7114 return -1;
7115 addr64 += 2;
7116 if (ir.regmap[X86_RECORD_R8_REGNUM])
7117 {
7118 if (record_full_arch_list_add_mem (addr64, 8))
7119 return -1;
7120 }
7121 else
7122 {
7123 if (record_full_arch_list_add_mem (addr64, 4))
7124 return -1;
7125 }
7126 }
7127 }
7128 break;
7129 case 2: /* lgdt */
7130 if (ir.mod == 3)
7131 {
7132 /* xgetbv */
7133 if (ir.rm == 0)
7134 {
7135 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7136 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7137 break;
7138 }
7139 /* xsetbv */
7140 else if (ir.rm == 1)
7141 break;
7142 }
7143 case 3: /* lidt */
7144 if (ir.mod == 3)
7145 {
7146 ir.addr -= 3;
7147 opcode = opcode << 8 | ir.modrm;
7148 goto no_support;
7149 }
7150 break;
7151 case 4: /* smsw */
7152 if (ir.mod == 3)
7153 {
7154 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7155 return -1;
7156 }
7157 else
7158 {
7159 ir.ot = OT_WORD;
7160 if (i386_record_lea_modrm (&ir))
7161 return -1;
7162 }
7163 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7164 break;
7165 case 6: /* lmsw */
7166 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7167 break;
7168 case 7: /* invlpg */
7169 if (ir.mod == 3)
7170 {
7171 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7172 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7173 else
7174 {
7175 ir.addr -= 3;
7176 opcode = opcode << 8 | ir.modrm;
7177 goto no_support;
7178 }
7179 }
7180 else
7181 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7182 break;
7183 default:
7184 ir.addr -= 3;
7185 opcode = opcode << 8 | ir.modrm;
7186 goto no_support;
7187 break;
7188 }
7189 break;
7190
7191 case 0x0f08: /* invd */
7192 case 0x0f09: /* wbinvd */
7193 break;
7194
7195 case 0x63: /* arpl */
7196 if (i386_record_modrm (&ir))
7197 return -1;
7198 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7199 {
7200 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7201 ? (ir.reg | rex_r) : ir.rm);
7202 }
7203 else
7204 {
7205 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7206 if (i386_record_lea_modrm (&ir))
7207 return -1;
7208 }
7209 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7210 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7211 break;
7212
7213 case 0x0f02: /* lar */
7214 case 0x0f03: /* lsl */
7215 if (i386_record_modrm (&ir))
7216 return -1;
7217 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7218 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7219 break;
7220
7221 case 0x0f18:
7222 if (i386_record_modrm (&ir))
7223 return -1;
7224 if (ir.mod == 3 && ir.reg == 3)
7225 {
7226 ir.addr -= 3;
7227 opcode = opcode << 8 | ir.modrm;
7228 goto no_support;
7229 }
7230 break;
7231
7232 case 0x0f19:
7233 case 0x0f1a:
7234 case 0x0f1b:
7235 case 0x0f1c:
7236 case 0x0f1d:
7237 case 0x0f1e:
7238 case 0x0f1f:
7239 /* nop (multi byte) */
7240 break;
7241
7242 case 0x0f20: /* mov reg, crN */
7243 case 0x0f22: /* mov crN, reg */
7244 if (i386_record_modrm (&ir))
7245 return -1;
7246 if ((ir.modrm & 0xc0) != 0xc0)
7247 {
7248 ir.addr -= 3;
7249 opcode = opcode << 8 | ir.modrm;
7250 goto no_support;
7251 }
7252 switch (ir.reg)
7253 {
7254 case 0:
7255 case 2:
7256 case 3:
7257 case 4:
7258 case 8:
7259 if (opcode & 2)
7260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7261 else
7262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7263 break;
7264 default:
7265 ir.addr -= 3;
7266 opcode = opcode << 8 | ir.modrm;
7267 goto no_support;
7268 break;
7269 }
7270 break;
7271
7272 case 0x0f21: /* mov reg, drN */
7273 case 0x0f23: /* mov drN, reg */
7274 if (i386_record_modrm (&ir))
7275 return -1;
7276 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7277 || ir.reg == 5 || ir.reg >= 8)
7278 {
7279 ir.addr -= 3;
7280 opcode = opcode << 8 | ir.modrm;
7281 goto no_support;
7282 }
7283 if (opcode & 2)
7284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7285 else
7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7287 break;
7288
7289 case 0x0f06: /* clts */
7290 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7291 break;
7292
7293 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7294
7295 case 0x0f0d: /* 3DNow! prefetch */
7296 break;
7297
7298 case 0x0f0e: /* 3DNow! femms */
7299 case 0x0f77: /* emms */
7300 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7301 goto no_support;
7302 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7303 break;
7304
7305 case 0x0f0f: /* 3DNow! data */
7306 if (i386_record_modrm (&ir))
7307 return -1;
7308 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7309 return -1;
7310 ir.addr++;
7311 switch (opcode8)
7312 {
7313 case 0x0c: /* 3DNow! pi2fw */
7314 case 0x0d: /* 3DNow! pi2fd */
7315 case 0x1c: /* 3DNow! pf2iw */
7316 case 0x1d: /* 3DNow! pf2id */
7317 case 0x8a: /* 3DNow! pfnacc */
7318 case 0x8e: /* 3DNow! pfpnacc */
7319 case 0x90: /* 3DNow! pfcmpge */
7320 case 0x94: /* 3DNow! pfmin */
7321 case 0x96: /* 3DNow! pfrcp */
7322 case 0x97: /* 3DNow! pfrsqrt */
7323 case 0x9a: /* 3DNow! pfsub */
7324 case 0x9e: /* 3DNow! pfadd */
7325 case 0xa0: /* 3DNow! pfcmpgt */
7326 case 0xa4: /* 3DNow! pfmax */
7327 case 0xa6: /* 3DNow! pfrcpit1 */
7328 case 0xa7: /* 3DNow! pfrsqit1 */
7329 case 0xaa: /* 3DNow! pfsubr */
7330 case 0xae: /* 3DNow! pfacc */
7331 case 0xb0: /* 3DNow! pfcmpeq */
7332 case 0xb4: /* 3DNow! pfmul */
7333 case 0xb6: /* 3DNow! pfrcpit2 */
7334 case 0xb7: /* 3DNow! pmulhrw */
7335 case 0xbb: /* 3DNow! pswapd */
7336 case 0xbf: /* 3DNow! pavgusb */
7337 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7338 goto no_support_3dnow_data;
7339 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7340 break;
7341
7342 default:
7343 no_support_3dnow_data:
7344 opcode = (opcode << 8) | opcode8;
7345 goto no_support;
7346 break;
7347 }
7348 break;
7349
7350 case 0x0faa: /* rsm */
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7354 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7356 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7357 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7359 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7360 break;
7361
7362 case 0x0fae:
7363 if (i386_record_modrm (&ir))
7364 return -1;
7365 switch(ir.reg)
7366 {
7367 case 0: /* fxsave */
7368 {
7369 uint64_t tmpu64;
7370
7371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7372 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7373 return -1;
7374 if (record_full_arch_list_add_mem (tmpu64, 512))
7375 return -1;
7376 }
7377 break;
7378
7379 case 1: /* fxrstor */
7380 {
7381 int i;
7382
7383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7384
7385 for (i = I387_MM0_REGNUM (tdep);
7386 i386_mmx_regnum_p (gdbarch, i); i++)
7387 record_full_arch_list_add_reg (ir.regcache, i);
7388
7389 for (i = I387_XMM0_REGNUM (tdep);
7390 i386_xmm_regnum_p (gdbarch, i); i++)
7391 record_full_arch_list_add_reg (ir.regcache, i);
7392
7393 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7394 record_full_arch_list_add_reg (ir.regcache,
7395 I387_MXCSR_REGNUM(tdep));
7396
7397 for (i = I387_ST0_REGNUM (tdep);
7398 i386_fp_regnum_p (gdbarch, i); i++)
7399 record_full_arch_list_add_reg (ir.regcache, i);
7400
7401 for (i = I387_FCTRL_REGNUM (tdep);
7402 i386_fpc_regnum_p (gdbarch, i); i++)
7403 record_full_arch_list_add_reg (ir.regcache, i);
7404 }
7405 break;
7406
7407 case 2: /* ldmxcsr */
7408 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7409 goto no_support;
7410 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7411 break;
7412
7413 case 3: /* stmxcsr */
7414 ir.ot = OT_LONG;
7415 if (i386_record_lea_modrm (&ir))
7416 return -1;
7417 break;
7418
7419 case 5: /* lfence */
7420 case 6: /* mfence */
7421 case 7: /* sfence clflush */
7422 break;
7423
7424 default:
7425 opcode = (opcode << 8) | ir.modrm;
7426 goto no_support;
7427 break;
7428 }
7429 break;
7430
7431 case 0x0fc3: /* movnti */
7432 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7433 if (i386_record_modrm (&ir))
7434 return -1;
7435 if (ir.mod == 3)
7436 goto no_support;
7437 ir.reg |= rex_r;
7438 if (i386_record_lea_modrm (&ir))
7439 return -1;
7440 break;
7441
7442 /* Add prefix to opcode. */
7443 case 0x0f10:
7444 case 0x0f11:
7445 case 0x0f12:
7446 case 0x0f13:
7447 case 0x0f14:
7448 case 0x0f15:
7449 case 0x0f16:
7450 case 0x0f17:
7451 case 0x0f28:
7452 case 0x0f29:
7453 case 0x0f2a:
7454 case 0x0f2b:
7455 case 0x0f2c:
7456 case 0x0f2d:
7457 case 0x0f2e:
7458 case 0x0f2f:
7459 case 0x0f38:
7460 case 0x0f39:
7461 case 0x0f3a:
7462 case 0x0f50:
7463 case 0x0f51:
7464 case 0x0f52:
7465 case 0x0f53:
7466 case 0x0f54:
7467 case 0x0f55:
7468 case 0x0f56:
7469 case 0x0f57:
7470 case 0x0f58:
7471 case 0x0f59:
7472 case 0x0f5a:
7473 case 0x0f5b:
7474 case 0x0f5c:
7475 case 0x0f5d:
7476 case 0x0f5e:
7477 case 0x0f5f:
7478 case 0x0f60:
7479 case 0x0f61:
7480 case 0x0f62:
7481 case 0x0f63:
7482 case 0x0f64:
7483 case 0x0f65:
7484 case 0x0f66:
7485 case 0x0f67:
7486 case 0x0f68:
7487 case 0x0f69:
7488 case 0x0f6a:
7489 case 0x0f6b:
7490 case 0x0f6c:
7491 case 0x0f6d:
7492 case 0x0f6e:
7493 case 0x0f6f:
7494 case 0x0f70:
7495 case 0x0f71:
7496 case 0x0f72:
7497 case 0x0f73:
7498 case 0x0f74:
7499 case 0x0f75:
7500 case 0x0f76:
7501 case 0x0f7c:
7502 case 0x0f7d:
7503 case 0x0f7e:
7504 case 0x0f7f:
7505 case 0x0fb8:
7506 case 0x0fc2:
7507 case 0x0fc4:
7508 case 0x0fc5:
7509 case 0x0fc6:
7510 case 0x0fd0:
7511 case 0x0fd1:
7512 case 0x0fd2:
7513 case 0x0fd3:
7514 case 0x0fd4:
7515 case 0x0fd5:
7516 case 0x0fd6:
7517 case 0x0fd7:
7518 case 0x0fd8:
7519 case 0x0fd9:
7520 case 0x0fda:
7521 case 0x0fdb:
7522 case 0x0fdc:
7523 case 0x0fdd:
7524 case 0x0fde:
7525 case 0x0fdf:
7526 case 0x0fe0:
7527 case 0x0fe1:
7528 case 0x0fe2:
7529 case 0x0fe3:
7530 case 0x0fe4:
7531 case 0x0fe5:
7532 case 0x0fe6:
7533 case 0x0fe7:
7534 case 0x0fe8:
7535 case 0x0fe9:
7536 case 0x0fea:
7537 case 0x0feb:
7538 case 0x0fec:
7539 case 0x0fed:
7540 case 0x0fee:
7541 case 0x0fef:
7542 case 0x0ff0:
7543 case 0x0ff1:
7544 case 0x0ff2:
7545 case 0x0ff3:
7546 case 0x0ff4:
7547 case 0x0ff5:
7548 case 0x0ff6:
7549 case 0x0ff7:
7550 case 0x0ff8:
7551 case 0x0ff9:
7552 case 0x0ffa:
7553 case 0x0ffb:
7554 case 0x0ffc:
7555 case 0x0ffd:
7556 case 0x0ffe:
7557 /* Mask out PREFIX_ADDR. */
7558 switch ((prefixes & ~PREFIX_ADDR))
7559 {
7560 case PREFIX_REPNZ:
7561 opcode |= 0xf20000;
7562 break;
7563 case PREFIX_DATA:
7564 opcode |= 0x660000;
7565 break;
7566 case PREFIX_REPZ:
7567 opcode |= 0xf30000;
7568 break;
7569 }
7570 reswitch_prefix_add:
7571 switch (opcode)
7572 {
7573 case 0x0f38:
7574 case 0x660f38:
7575 case 0xf20f38:
7576 case 0x0f3a:
7577 case 0x660f3a:
7578 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7579 return -1;
7580 ir.addr++;
7581 opcode = (uint32_t) opcode8 | opcode << 8;
7582 goto reswitch_prefix_add;
7583 break;
7584
7585 case 0x0f10: /* movups */
7586 case 0x660f10: /* movupd */
7587 case 0xf30f10: /* movss */
7588 case 0xf20f10: /* movsd */
7589 case 0x0f12: /* movlps */
7590 case 0x660f12: /* movlpd */
7591 case 0xf30f12: /* movsldup */
7592 case 0xf20f12: /* movddup */
7593 case 0x0f14: /* unpcklps */
7594 case 0x660f14: /* unpcklpd */
7595 case 0x0f15: /* unpckhps */
7596 case 0x660f15: /* unpckhpd */
7597 case 0x0f16: /* movhps */
7598 case 0x660f16: /* movhpd */
7599 case 0xf30f16: /* movshdup */
7600 case 0x0f28: /* movaps */
7601 case 0x660f28: /* movapd */
7602 case 0x0f2a: /* cvtpi2ps */
7603 case 0x660f2a: /* cvtpi2pd */
7604 case 0xf30f2a: /* cvtsi2ss */
7605 case 0xf20f2a: /* cvtsi2sd */
7606 case 0x0f2c: /* cvttps2pi */
7607 case 0x660f2c: /* cvttpd2pi */
7608 case 0x0f2d: /* cvtps2pi */
7609 case 0x660f2d: /* cvtpd2pi */
7610 case 0x660f3800: /* pshufb */
7611 case 0x660f3801: /* phaddw */
7612 case 0x660f3802: /* phaddd */
7613 case 0x660f3803: /* phaddsw */
7614 case 0x660f3804: /* pmaddubsw */
7615 case 0x660f3805: /* phsubw */
7616 case 0x660f3806: /* phsubd */
7617 case 0x660f3807: /* phsubsw */
7618 case 0x660f3808: /* psignb */
7619 case 0x660f3809: /* psignw */
7620 case 0x660f380a: /* psignd */
7621 case 0x660f380b: /* pmulhrsw */
7622 case 0x660f3810: /* pblendvb */
7623 case 0x660f3814: /* blendvps */
7624 case 0x660f3815: /* blendvpd */
7625 case 0x660f381c: /* pabsb */
7626 case 0x660f381d: /* pabsw */
7627 case 0x660f381e: /* pabsd */
7628 case 0x660f3820: /* pmovsxbw */
7629 case 0x660f3821: /* pmovsxbd */
7630 case 0x660f3822: /* pmovsxbq */
7631 case 0x660f3823: /* pmovsxwd */
7632 case 0x660f3824: /* pmovsxwq */
7633 case 0x660f3825: /* pmovsxdq */
7634 case 0x660f3828: /* pmuldq */
7635 case 0x660f3829: /* pcmpeqq */
7636 case 0x660f382a: /* movntdqa */
7637 case 0x660f3a08: /* roundps */
7638 case 0x660f3a09: /* roundpd */
7639 case 0x660f3a0a: /* roundss */
7640 case 0x660f3a0b: /* roundsd */
7641 case 0x660f3a0c: /* blendps */
7642 case 0x660f3a0d: /* blendpd */
7643 case 0x660f3a0e: /* pblendw */
7644 case 0x660f3a0f: /* palignr */
7645 case 0x660f3a20: /* pinsrb */
7646 case 0x660f3a21: /* insertps */
7647 case 0x660f3a22: /* pinsrd pinsrq */
7648 case 0x660f3a40: /* dpps */
7649 case 0x660f3a41: /* dppd */
7650 case 0x660f3a42: /* mpsadbw */
7651 case 0x660f3a60: /* pcmpestrm */
7652 case 0x660f3a61: /* pcmpestri */
7653 case 0x660f3a62: /* pcmpistrm */
7654 case 0x660f3a63: /* pcmpistri */
7655 case 0x0f51: /* sqrtps */
7656 case 0x660f51: /* sqrtpd */
7657 case 0xf20f51: /* sqrtsd */
7658 case 0xf30f51: /* sqrtss */
7659 case 0x0f52: /* rsqrtps */
7660 case 0xf30f52: /* rsqrtss */
7661 case 0x0f53: /* rcpps */
7662 case 0xf30f53: /* rcpss */
7663 case 0x0f54: /* andps */
7664 case 0x660f54: /* andpd */
7665 case 0x0f55: /* andnps */
7666 case 0x660f55: /* andnpd */
7667 case 0x0f56: /* orps */
7668 case 0x660f56: /* orpd */
7669 case 0x0f57: /* xorps */
7670 case 0x660f57: /* xorpd */
7671 case 0x0f58: /* addps */
7672 case 0x660f58: /* addpd */
7673 case 0xf20f58: /* addsd */
7674 case 0xf30f58: /* addss */
7675 case 0x0f59: /* mulps */
7676 case 0x660f59: /* mulpd */
7677 case 0xf20f59: /* mulsd */
7678 case 0xf30f59: /* mulss */
7679 case 0x0f5a: /* cvtps2pd */
7680 case 0x660f5a: /* cvtpd2ps */
7681 case 0xf20f5a: /* cvtsd2ss */
7682 case 0xf30f5a: /* cvtss2sd */
7683 case 0x0f5b: /* cvtdq2ps */
7684 case 0x660f5b: /* cvtps2dq */
7685 case 0xf30f5b: /* cvttps2dq */
7686 case 0x0f5c: /* subps */
7687 case 0x660f5c: /* subpd */
7688 case 0xf20f5c: /* subsd */
7689 case 0xf30f5c: /* subss */
7690 case 0x0f5d: /* minps */
7691 case 0x660f5d: /* minpd */
7692 case 0xf20f5d: /* minsd */
7693 case 0xf30f5d: /* minss */
7694 case 0x0f5e: /* divps */
7695 case 0x660f5e: /* divpd */
7696 case 0xf20f5e: /* divsd */
7697 case 0xf30f5e: /* divss */
7698 case 0x0f5f: /* maxps */
7699 case 0x660f5f: /* maxpd */
7700 case 0xf20f5f: /* maxsd */
7701 case 0xf30f5f: /* maxss */
7702 case 0x660f60: /* punpcklbw */
7703 case 0x660f61: /* punpcklwd */
7704 case 0x660f62: /* punpckldq */
7705 case 0x660f63: /* packsswb */
7706 case 0x660f64: /* pcmpgtb */
7707 case 0x660f65: /* pcmpgtw */
7708 case 0x660f66: /* pcmpgtd */
7709 case 0x660f67: /* packuswb */
7710 case 0x660f68: /* punpckhbw */
7711 case 0x660f69: /* punpckhwd */
7712 case 0x660f6a: /* punpckhdq */
7713 case 0x660f6b: /* packssdw */
7714 case 0x660f6c: /* punpcklqdq */
7715 case 0x660f6d: /* punpckhqdq */
7716 case 0x660f6e: /* movd */
7717 case 0x660f6f: /* movdqa */
7718 case 0xf30f6f: /* movdqu */
7719 case 0x660f70: /* pshufd */
7720 case 0xf20f70: /* pshuflw */
7721 case 0xf30f70: /* pshufhw */
7722 case 0x660f74: /* pcmpeqb */
7723 case 0x660f75: /* pcmpeqw */
7724 case 0x660f76: /* pcmpeqd */
7725 case 0x660f7c: /* haddpd */
7726 case 0xf20f7c: /* haddps */
7727 case 0x660f7d: /* hsubpd */
7728 case 0xf20f7d: /* hsubps */
7729 case 0xf30f7e: /* movq */
7730 case 0x0fc2: /* cmpps */
7731 case 0x660fc2: /* cmppd */
7732 case 0xf20fc2: /* cmpsd */
7733 case 0xf30fc2: /* cmpss */
7734 case 0x660fc4: /* pinsrw */
7735 case 0x0fc6: /* shufps */
7736 case 0x660fc6: /* shufpd */
7737 case 0x660fd0: /* addsubpd */
7738 case 0xf20fd0: /* addsubps */
7739 case 0x660fd1: /* psrlw */
7740 case 0x660fd2: /* psrld */
7741 case 0x660fd3: /* psrlq */
7742 case 0x660fd4: /* paddq */
7743 case 0x660fd5: /* pmullw */
7744 case 0xf30fd6: /* movq2dq */
7745 case 0x660fd8: /* psubusb */
7746 case 0x660fd9: /* psubusw */
7747 case 0x660fda: /* pminub */
7748 case 0x660fdb: /* pand */
7749 case 0x660fdc: /* paddusb */
7750 case 0x660fdd: /* paddusw */
7751 case 0x660fde: /* pmaxub */
7752 case 0x660fdf: /* pandn */
7753 case 0x660fe0: /* pavgb */
7754 case 0x660fe1: /* psraw */
7755 case 0x660fe2: /* psrad */
7756 case 0x660fe3: /* pavgw */
7757 case 0x660fe4: /* pmulhuw */
7758 case 0x660fe5: /* pmulhw */
7759 case 0x660fe6: /* cvttpd2dq */
7760 case 0xf20fe6: /* cvtpd2dq */
7761 case 0xf30fe6: /* cvtdq2pd */
7762 case 0x660fe8: /* psubsb */
7763 case 0x660fe9: /* psubsw */
7764 case 0x660fea: /* pminsw */
7765 case 0x660feb: /* por */
7766 case 0x660fec: /* paddsb */
7767 case 0x660fed: /* paddsw */
7768 case 0x660fee: /* pmaxsw */
7769 case 0x660fef: /* pxor */
7770 case 0xf20ff0: /* lddqu */
7771 case 0x660ff1: /* psllw */
7772 case 0x660ff2: /* pslld */
7773 case 0x660ff3: /* psllq */
7774 case 0x660ff4: /* pmuludq */
7775 case 0x660ff5: /* pmaddwd */
7776 case 0x660ff6: /* psadbw */
7777 case 0x660ff8: /* psubb */
7778 case 0x660ff9: /* psubw */
7779 case 0x660ffa: /* psubd */
7780 case 0x660ffb: /* psubq */
7781 case 0x660ffc: /* paddb */
7782 case 0x660ffd: /* paddw */
7783 case 0x660ffe: /* paddd */
7784 if (i386_record_modrm (&ir))
7785 return -1;
7786 ir.reg |= rex_r;
7787 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7788 goto no_support;
7789 record_full_arch_list_add_reg (ir.regcache,
7790 I387_XMM0_REGNUM (tdep) + ir.reg);
7791 if ((opcode & 0xfffffffc) == 0x660f3a60)
7792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7793 break;
7794
7795 case 0x0f11: /* movups */
7796 case 0x660f11: /* movupd */
7797 case 0xf30f11: /* movss */
7798 case 0xf20f11: /* movsd */
7799 case 0x0f13: /* movlps */
7800 case 0x660f13: /* movlpd */
7801 case 0x0f17: /* movhps */
7802 case 0x660f17: /* movhpd */
7803 case 0x0f29: /* movaps */
7804 case 0x660f29: /* movapd */
7805 case 0x660f3a14: /* pextrb */
7806 case 0x660f3a15: /* pextrw */
7807 case 0x660f3a16: /* pextrd pextrq */
7808 case 0x660f3a17: /* extractps */
7809 case 0x660f7f: /* movdqa */
7810 case 0xf30f7f: /* movdqu */
7811 if (i386_record_modrm (&ir))
7812 return -1;
7813 if (ir.mod == 3)
7814 {
7815 if (opcode == 0x0f13 || opcode == 0x660f13
7816 || opcode == 0x0f17 || opcode == 0x660f17)
7817 goto no_support;
7818 ir.rm |= ir.rex_b;
7819 if (!i386_xmm_regnum_p (gdbarch,
7820 I387_XMM0_REGNUM (tdep) + ir.rm))
7821 goto no_support;
7822 record_full_arch_list_add_reg (ir.regcache,
7823 I387_XMM0_REGNUM (tdep) + ir.rm);
7824 }
7825 else
7826 {
7827 switch (opcode)
7828 {
7829 case 0x660f3a14:
7830 ir.ot = OT_BYTE;
7831 break;
7832 case 0x660f3a15:
7833 ir.ot = OT_WORD;
7834 break;
7835 case 0x660f3a16:
7836 ir.ot = OT_LONG;
7837 break;
7838 case 0x660f3a17:
7839 ir.ot = OT_QUAD;
7840 break;
7841 default:
7842 ir.ot = OT_DQUAD;
7843 break;
7844 }
7845 if (i386_record_lea_modrm (&ir))
7846 return -1;
7847 }
7848 break;
7849
7850 case 0x0f2b: /* movntps */
7851 case 0x660f2b: /* movntpd */
7852 case 0x0fe7: /* movntq */
7853 case 0x660fe7: /* movntdq */
7854 if (ir.mod == 3)
7855 goto no_support;
7856 if (opcode == 0x0fe7)
7857 ir.ot = OT_QUAD;
7858 else
7859 ir.ot = OT_DQUAD;
7860 if (i386_record_lea_modrm (&ir))
7861 return -1;
7862 break;
7863
7864 case 0xf30f2c: /* cvttss2si */
7865 case 0xf20f2c: /* cvttsd2si */
7866 case 0xf30f2d: /* cvtss2si */
7867 case 0xf20f2d: /* cvtsd2si */
7868 case 0xf20f38f0: /* crc32 */
7869 case 0xf20f38f1: /* crc32 */
7870 case 0x0f50: /* movmskps */
7871 case 0x660f50: /* movmskpd */
7872 case 0x0fc5: /* pextrw */
7873 case 0x660fc5: /* pextrw */
7874 case 0x0fd7: /* pmovmskb */
7875 case 0x660fd7: /* pmovmskb */
7876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7877 break;
7878
7879 case 0x0f3800: /* pshufb */
7880 case 0x0f3801: /* phaddw */
7881 case 0x0f3802: /* phaddd */
7882 case 0x0f3803: /* phaddsw */
7883 case 0x0f3804: /* pmaddubsw */
7884 case 0x0f3805: /* phsubw */
7885 case 0x0f3806: /* phsubd */
7886 case 0x0f3807: /* phsubsw */
7887 case 0x0f3808: /* psignb */
7888 case 0x0f3809: /* psignw */
7889 case 0x0f380a: /* psignd */
7890 case 0x0f380b: /* pmulhrsw */
7891 case 0x0f381c: /* pabsb */
7892 case 0x0f381d: /* pabsw */
7893 case 0x0f381e: /* pabsd */
7894 case 0x0f382b: /* packusdw */
7895 case 0x0f3830: /* pmovzxbw */
7896 case 0x0f3831: /* pmovzxbd */
7897 case 0x0f3832: /* pmovzxbq */
7898 case 0x0f3833: /* pmovzxwd */
7899 case 0x0f3834: /* pmovzxwq */
7900 case 0x0f3835: /* pmovzxdq */
7901 case 0x0f3837: /* pcmpgtq */
7902 case 0x0f3838: /* pminsb */
7903 case 0x0f3839: /* pminsd */
7904 case 0x0f383a: /* pminuw */
7905 case 0x0f383b: /* pminud */
7906 case 0x0f383c: /* pmaxsb */
7907 case 0x0f383d: /* pmaxsd */
7908 case 0x0f383e: /* pmaxuw */
7909 case 0x0f383f: /* pmaxud */
7910 case 0x0f3840: /* pmulld */
7911 case 0x0f3841: /* phminposuw */
7912 case 0x0f3a0f: /* palignr */
7913 case 0x0f60: /* punpcklbw */
7914 case 0x0f61: /* punpcklwd */
7915 case 0x0f62: /* punpckldq */
7916 case 0x0f63: /* packsswb */
7917 case 0x0f64: /* pcmpgtb */
7918 case 0x0f65: /* pcmpgtw */
7919 case 0x0f66: /* pcmpgtd */
7920 case 0x0f67: /* packuswb */
7921 case 0x0f68: /* punpckhbw */
7922 case 0x0f69: /* punpckhwd */
7923 case 0x0f6a: /* punpckhdq */
7924 case 0x0f6b: /* packssdw */
7925 case 0x0f6e: /* movd */
7926 case 0x0f6f: /* movq */
7927 case 0x0f70: /* pshufw */
7928 case 0x0f74: /* pcmpeqb */
7929 case 0x0f75: /* pcmpeqw */
7930 case 0x0f76: /* pcmpeqd */
7931 case 0x0fc4: /* pinsrw */
7932 case 0x0fd1: /* psrlw */
7933 case 0x0fd2: /* psrld */
7934 case 0x0fd3: /* psrlq */
7935 case 0x0fd4: /* paddq */
7936 case 0x0fd5: /* pmullw */
7937 case 0xf20fd6: /* movdq2q */
7938 case 0x0fd8: /* psubusb */
7939 case 0x0fd9: /* psubusw */
7940 case 0x0fda: /* pminub */
7941 case 0x0fdb: /* pand */
7942 case 0x0fdc: /* paddusb */
7943 case 0x0fdd: /* paddusw */
7944 case 0x0fde: /* pmaxub */
7945 case 0x0fdf: /* pandn */
7946 case 0x0fe0: /* pavgb */
7947 case 0x0fe1: /* psraw */
7948 case 0x0fe2: /* psrad */
7949 case 0x0fe3: /* pavgw */
7950 case 0x0fe4: /* pmulhuw */
7951 case 0x0fe5: /* pmulhw */
7952 case 0x0fe8: /* psubsb */
7953 case 0x0fe9: /* psubsw */
7954 case 0x0fea: /* pminsw */
7955 case 0x0feb: /* por */
7956 case 0x0fec: /* paddsb */
7957 case 0x0fed: /* paddsw */
7958 case 0x0fee: /* pmaxsw */
7959 case 0x0fef: /* pxor */
7960 case 0x0ff1: /* psllw */
7961 case 0x0ff2: /* pslld */
7962 case 0x0ff3: /* psllq */
7963 case 0x0ff4: /* pmuludq */
7964 case 0x0ff5: /* pmaddwd */
7965 case 0x0ff6: /* psadbw */
7966 case 0x0ff8: /* psubb */
7967 case 0x0ff9: /* psubw */
7968 case 0x0ffa: /* psubd */
7969 case 0x0ffb: /* psubq */
7970 case 0x0ffc: /* paddb */
7971 case 0x0ffd: /* paddw */
7972 case 0x0ffe: /* paddd */
7973 if (i386_record_modrm (&ir))
7974 return -1;
7975 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7976 goto no_support;
7977 record_full_arch_list_add_reg (ir.regcache,
7978 I387_MM0_REGNUM (tdep) + ir.reg);
7979 break;
7980
7981 case 0x0f71: /* psllw */
7982 case 0x0f72: /* pslld */
7983 case 0x0f73: /* psllq */
7984 if (i386_record_modrm (&ir))
7985 return -1;
7986 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7987 goto no_support;
7988 record_full_arch_list_add_reg (ir.regcache,
7989 I387_MM0_REGNUM (tdep) + ir.rm);
7990 break;
7991
7992 case 0x660f71: /* psllw */
7993 case 0x660f72: /* pslld */
7994 case 0x660f73: /* psllq */
7995 if (i386_record_modrm (&ir))
7996 return -1;
7997 ir.rm |= ir.rex_b;
7998 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7999 goto no_support;
8000 record_full_arch_list_add_reg (ir.regcache,
8001 I387_XMM0_REGNUM (tdep) + ir.rm);
8002 break;
8003
8004 case 0x0f7e: /* movd */
8005 case 0x660f7e: /* movd */
8006 if (i386_record_modrm (&ir))
8007 return -1;
8008 if (ir.mod == 3)
8009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8010 else
8011 {
8012 if (ir.dflag == 2)
8013 ir.ot = OT_QUAD;
8014 else
8015 ir.ot = OT_LONG;
8016 if (i386_record_lea_modrm (&ir))
8017 return -1;
8018 }
8019 break;
8020
8021 case 0x0f7f: /* movq */
8022 if (i386_record_modrm (&ir))
8023 return -1;
8024 if (ir.mod == 3)
8025 {
8026 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8027 goto no_support;
8028 record_full_arch_list_add_reg (ir.regcache,
8029 I387_MM0_REGNUM (tdep) + ir.rm);
8030 }
8031 else
8032 {
8033 ir.ot = OT_QUAD;
8034 if (i386_record_lea_modrm (&ir))
8035 return -1;
8036 }
8037 break;
8038
8039 case 0xf30fb8: /* popcnt */
8040 if (i386_record_modrm (&ir))
8041 return -1;
8042 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8043 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8044 break;
8045
8046 case 0x660fd6: /* movq */
8047 if (i386_record_modrm (&ir))
8048 return -1;
8049 if (ir.mod == 3)
8050 {
8051 ir.rm |= ir.rex_b;
8052 if (!i386_xmm_regnum_p (gdbarch,
8053 I387_XMM0_REGNUM (tdep) + ir.rm))
8054 goto no_support;
8055 record_full_arch_list_add_reg (ir.regcache,
8056 I387_XMM0_REGNUM (tdep) + ir.rm);
8057 }
8058 else
8059 {
8060 ir.ot = OT_QUAD;
8061 if (i386_record_lea_modrm (&ir))
8062 return -1;
8063 }
8064 break;
8065
8066 case 0x660f3817: /* ptest */
8067 case 0x0f2e: /* ucomiss */
8068 case 0x660f2e: /* ucomisd */
8069 case 0x0f2f: /* comiss */
8070 case 0x660f2f: /* comisd */
8071 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8072 break;
8073
8074 case 0x0ff7: /* maskmovq */
8075 regcache_raw_read_unsigned (ir.regcache,
8076 ir.regmap[X86_RECORD_REDI_REGNUM],
8077 &addr);
8078 if (record_full_arch_list_add_mem (addr, 64))
8079 return -1;
8080 break;
8081
8082 case 0x660ff7: /* maskmovdqu */
8083 regcache_raw_read_unsigned (ir.regcache,
8084 ir.regmap[X86_RECORD_REDI_REGNUM],
8085 &addr);
8086 if (record_full_arch_list_add_mem (addr, 128))
8087 return -1;
8088 break;
8089
8090 default:
8091 goto no_support;
8092 break;
8093 }
8094 break;
8095
8096 default:
8097 goto no_support;
8098 break;
8099 }
8100
8101 /* In the future, maybe still need to deal with need_dasm. */
8102 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8103 if (record_full_arch_list_add_end ())
8104 return -1;
8105
8106 return 0;
8107
8108 no_support:
8109 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8110 "at address %s.\n"),
8111 (unsigned int) (opcode),
8112 paddress (gdbarch, ir.orig_addr));
8113 return -1;
8114 }
8115
8116 static const int i386_record_regmap[] =
8117 {
8118 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8119 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8120 0, 0, 0, 0, 0, 0, 0, 0,
8121 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8122 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8123 };
8124
8125 /* Check that the given address appears suitable for a fast
8126 tracepoint, which on x86-64 means that we need an instruction of at
8127 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8128 jump and not have to worry about program jumps to an address in the
8129 middle of the tracepoint jump. On x86, it may be possible to use
8130 4-byte jumps with a 2-byte offset to a trampoline located in the
8131 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8132 of instruction to replace, and 0 if not, plus an explanatory
8133 string. */
8134
8135 static int
8136 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8137 char **msg)
8138 {
8139 int len, jumplen;
8140 static struct ui_file *gdb_null = NULL;
8141
8142 /* Ask the target for the minimum instruction length supported. */
8143 jumplen = target_get_min_fast_tracepoint_insn_len ();
8144
8145 if (jumplen < 0)
8146 {
8147 /* If the target does not support the get_min_fast_tracepoint_insn_len
8148 operation, assume that fast tracepoints will always be implemented
8149 using 4-byte relative jumps on both x86 and x86-64. */
8150 jumplen = 5;
8151 }
8152 else if (jumplen == 0)
8153 {
8154 /* If the target does support get_min_fast_tracepoint_insn_len but
8155 returns zero, then the IPA has not loaded yet. In this case,
8156 we optimistically assume that truncated 2-byte relative jumps
8157 will be available on x86, and compensate later if this assumption
8158 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8159 jumps will always be used. */
8160 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8161 }
8162
8163 /* Dummy file descriptor for the disassembler. */
8164 if (!gdb_null)
8165 gdb_null = ui_file_new ();
8166
8167 /* Check for fit. */
8168 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
8169
8170 if (len < jumplen)
8171 {
8172 /* Return a bit of target-specific detail to add to the caller's
8173 generic failure message. */
8174 if (msg)
8175 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8176 "need at least %d bytes for the jump"),
8177 len, jumplen);
8178 return 0;
8179 }
8180 else
8181 {
8182 if (msg)
8183 *msg = NULL;
8184 return 1;
8185 }
8186 }
8187
8188 static int
8189 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8190 struct tdesc_arch_data *tdesc_data)
8191 {
8192 const struct target_desc *tdesc = tdep->tdesc;
8193 const struct tdesc_feature *feature_core;
8194
8195 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8196 *feature_avx512;
8197 int i, num_regs, valid_p;
8198
8199 if (! tdesc_has_registers (tdesc))
8200 return 0;
8201
8202 /* Get core registers. */
8203 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8204 if (feature_core == NULL)
8205 return 0;
8206
8207 /* Get SSE registers. */
8208 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8209
8210 /* Try AVX registers. */
8211 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8212
8213 /* Try MPX registers. */
8214 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8215
8216 /* Try AVX512 registers. */
8217 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8218
8219 valid_p = 1;
8220
8221 /* The XCR0 bits. */
8222 if (feature_avx512)
8223 {
8224 /* AVX512 register description requires AVX register description. */
8225 if (!feature_avx)
8226 return 0;
8227
8228 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
8229
8230 /* It may have been set by OSABI initialization function. */
8231 if (tdep->k0_regnum < 0)
8232 {
8233 tdep->k_register_names = i386_k_names;
8234 tdep->k0_regnum = I386_K0_REGNUM;
8235 }
8236
8237 for (i = 0; i < I387_NUM_K_REGS; i++)
8238 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8239 tdep->k0_regnum + i,
8240 i386_k_names[i]);
8241
8242 if (tdep->num_zmm_regs == 0)
8243 {
8244 tdep->zmmh_register_names = i386_zmmh_names;
8245 tdep->num_zmm_regs = 8;
8246 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8247 }
8248
8249 for (i = 0; i < tdep->num_zmm_regs; i++)
8250 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8251 tdep->zmm0h_regnum + i,
8252 tdep->zmmh_register_names[i]);
8253
8254 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8255 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8256 tdep->xmm16_regnum + i,
8257 tdep->xmm_avx512_register_names[i]);
8258
8259 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8260 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8261 tdep->ymm16h_regnum + i,
8262 tdep->ymm16h_register_names[i]);
8263 }
8264 if (feature_avx)
8265 {
8266 /* AVX register description requires SSE register description. */
8267 if (!feature_sse)
8268 return 0;
8269
8270 if (!feature_avx512)
8271 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8272
8273 /* It may have been set by OSABI initialization function. */
8274 if (tdep->num_ymm_regs == 0)
8275 {
8276 tdep->ymmh_register_names = i386_ymmh_names;
8277 tdep->num_ymm_regs = 8;
8278 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8279 }
8280
8281 for (i = 0; i < tdep->num_ymm_regs; i++)
8282 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8283 tdep->ymm0h_regnum + i,
8284 tdep->ymmh_register_names[i]);
8285 }
8286 else if (feature_sse)
8287 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8288 else
8289 {
8290 tdep->xcr0 = X86_XSTATE_X87_MASK;
8291 tdep->num_xmm_regs = 0;
8292 }
8293
8294 num_regs = tdep->num_core_regs;
8295 for (i = 0; i < num_regs; i++)
8296 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8297 tdep->register_names[i]);
8298
8299 if (feature_sse)
8300 {
8301 /* Need to include %mxcsr, so add one. */
8302 num_regs += tdep->num_xmm_regs + 1;
8303 for (; i < num_regs; i++)
8304 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8305 tdep->register_names[i]);
8306 }
8307
8308 if (feature_mpx)
8309 {
8310 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8311
8312 if (tdep->bnd0r_regnum < 0)
8313 {
8314 tdep->mpx_register_names = i386_mpx_names;
8315 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8316 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8317 }
8318
8319 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8320 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8321 I387_BND0R_REGNUM (tdep) + i,
8322 tdep->mpx_register_names[i]);
8323 }
8324
8325 return valid_p;
8326 }
8327
8328 \f
8329 static struct gdbarch *
8330 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8331 {
8332 struct gdbarch_tdep *tdep;
8333 struct gdbarch *gdbarch;
8334 struct tdesc_arch_data *tdesc_data;
8335 const struct target_desc *tdesc;
8336 int mm0_regnum;
8337 int ymm0_regnum;
8338 int bnd0_regnum;
8339 int num_bnd_cooked;
8340 int k0_regnum;
8341 int zmm0_regnum;
8342
8343 /* If there is already a candidate, use it. */
8344 arches = gdbarch_list_lookup_by_info (arches, &info);
8345 if (arches != NULL)
8346 return arches->gdbarch;
8347
8348 /* Allocate space for the new architecture. */
8349 tdep = XCNEW (struct gdbarch_tdep);
8350 gdbarch = gdbarch_alloc (&info, tdep);
8351
8352 /* General-purpose registers. */
8353 tdep->gregset_reg_offset = NULL;
8354 tdep->gregset_num_regs = I386_NUM_GREGS;
8355 tdep->sizeof_gregset = 0;
8356
8357 /* Floating-point registers. */
8358 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8359 tdep->fpregset = &i386_fpregset;
8360
8361 /* The default settings include the FPU registers, the MMX registers
8362 and the SSE registers. This can be overridden for a specific ABI
8363 by adjusting the members `st0_regnum', `mm0_regnum' and
8364 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8365 will show up in the output of "info all-registers". */
8366
8367 tdep->st0_regnum = I386_ST0_REGNUM;
8368
8369 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8370 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8371
8372 tdep->jb_pc_offset = -1;
8373 tdep->struct_return = pcc_struct_return;
8374 tdep->sigtramp_start = 0;
8375 tdep->sigtramp_end = 0;
8376 tdep->sigtramp_p = i386_sigtramp_p;
8377 tdep->sigcontext_addr = NULL;
8378 tdep->sc_reg_offset = NULL;
8379 tdep->sc_pc_offset = -1;
8380 tdep->sc_sp_offset = -1;
8381
8382 tdep->xsave_xcr0_offset = -1;
8383
8384 tdep->record_regmap = i386_record_regmap;
8385
8386 set_gdbarch_long_long_align_bit (gdbarch, 32);
8387
8388 /* The format used for `long double' on almost all i386 targets is
8389 the i387 extended floating-point format. In fact, of all targets
8390 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8391 on having a `long double' that's not `long' at all. */
8392 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8393
8394 /* Although the i387 extended floating-point has only 80 significant
8395 bits, a `long double' actually takes up 96, probably to enforce
8396 alignment. */
8397 set_gdbarch_long_double_bit (gdbarch, 96);
8398
8399 /* Register numbers of various important registers. */
8400 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8401 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8402 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8403 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8404
8405 /* NOTE: kettenis/20040418: GCC does have two possible register
8406 numbering schemes on the i386: dbx and SVR4. These schemes
8407 differ in how they number %ebp, %esp, %eflags, and the
8408 floating-point registers, and are implemented by the arrays
8409 dbx_register_map[] and svr4_dbx_register_map in
8410 gcc/config/i386.c. GCC also defines a third numbering scheme in
8411 gcc/config/i386.c, which it designates as the "default" register
8412 map used in 64bit mode. This last register numbering scheme is
8413 implemented in dbx64_register_map, and is used for AMD64; see
8414 amd64-tdep.c.
8415
8416 Currently, each GCC i386 target always uses the same register
8417 numbering scheme across all its supported debugging formats
8418 i.e. SDB (COFF), stabs and DWARF 2. This is because
8419 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8420 DBX_REGISTER_NUMBER macro which is defined by each target's
8421 respective config header in a manner independent of the requested
8422 output debugging format.
8423
8424 This does not match the arrangement below, which presumes that
8425 the SDB and stabs numbering schemes differ from the DWARF and
8426 DWARF 2 ones. The reason for this arrangement is that it is
8427 likely to get the numbering scheme for the target's
8428 default/native debug format right. For targets where GCC is the
8429 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8430 targets where the native toolchain uses a different numbering
8431 scheme for a particular debug format (stabs-in-ELF on Solaris)
8432 the defaults below will have to be overridden, like
8433 i386_elf_init_abi() does. */
8434
8435 /* Use the dbx register numbering scheme for stabs and COFF. */
8436 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8437 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8438
8439 /* Use the SVR4 register numbering scheme for DWARF 2. */
8440 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8441
8442 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8443 be in use on any of the supported i386 targets. */
8444
8445 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8446
8447 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8448
8449 /* Call dummy code. */
8450 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8451 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8452 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8453 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8454
8455 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8456 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8457 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8458
8459 set_gdbarch_return_value (gdbarch, i386_return_value);
8460
8461 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8462
8463 /* Stack grows downward. */
8464 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8465
8466 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8467 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8468 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8469
8470 set_gdbarch_frame_args_skip (gdbarch, 8);
8471
8472 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8473
8474 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8475
8476 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8477
8478 /* Add the i386 register groups. */
8479 i386_add_reggroups (gdbarch);
8480 tdep->register_reggroup_p = i386_register_reggroup_p;
8481
8482 /* Helper for function argument information. */
8483 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8484
8485 /* Hook the function epilogue frame unwinder. This unwinder is
8486 appended to the list first, so that it supercedes the DWARF
8487 unwinder in function epilogues (where the DWARF unwinder
8488 currently fails). */
8489 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8490
8491 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8492 to the list before the prologue-based unwinders, so that DWARF
8493 CFI info will be used if it is available. */
8494 dwarf2_append_unwinders (gdbarch);
8495
8496 frame_base_set_default (gdbarch, &i386_frame_base);
8497
8498 /* Pseudo registers may be changed by amd64_init_abi. */
8499 set_gdbarch_pseudo_register_read_value (gdbarch,
8500 i386_pseudo_register_read_value);
8501 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8502 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8503 i386_ax_pseudo_register_collect);
8504
8505 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8506 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8507
8508 /* Override the normal target description method to make the AVX
8509 upper halves anonymous. */
8510 set_gdbarch_register_name (gdbarch, i386_register_name);
8511
8512 /* Even though the default ABI only includes general-purpose registers,
8513 floating-point registers and the SSE registers, we have to leave a
8514 gap for the upper AVX, MPX and AVX512 registers. */
8515 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
8516
8517 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8518
8519 /* Get the x86 target description from INFO. */
8520 tdesc = info.target_desc;
8521 if (! tdesc_has_registers (tdesc))
8522 tdesc = tdesc_i386;
8523 tdep->tdesc = tdesc;
8524
8525 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8526 tdep->register_names = i386_register_names;
8527
8528 /* No upper YMM registers. */
8529 tdep->ymmh_register_names = NULL;
8530 tdep->ymm0h_regnum = -1;
8531
8532 /* No upper ZMM registers. */
8533 tdep->zmmh_register_names = NULL;
8534 tdep->zmm0h_regnum = -1;
8535
8536 /* No high XMM registers. */
8537 tdep->xmm_avx512_register_names = NULL;
8538 tdep->xmm16_regnum = -1;
8539
8540 /* No upper YMM16-31 registers. */
8541 tdep->ymm16h_register_names = NULL;
8542 tdep->ymm16h_regnum = -1;
8543
8544 tdep->num_byte_regs = 8;
8545 tdep->num_word_regs = 8;
8546 tdep->num_dword_regs = 0;
8547 tdep->num_mmx_regs = 8;
8548 tdep->num_ymm_regs = 0;
8549
8550 /* No MPX registers. */
8551 tdep->bnd0r_regnum = -1;
8552 tdep->bndcfgu_regnum = -1;
8553
8554 /* No AVX512 registers. */
8555 tdep->k0_regnum = -1;
8556 tdep->num_zmm_regs = 0;
8557 tdep->num_ymm_avx512_regs = 0;
8558 tdep->num_xmm_avx512_regs = 0;
8559
8560 tdesc_data = tdesc_data_alloc ();
8561
8562 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8563
8564 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8565
8566 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8567 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8568 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8569
8570 /* Hook in ABI-specific overrides, if they have been registered. */
8571 info.tdep_info = tdesc_data;
8572 gdbarch_init_osabi (info, gdbarch);
8573
8574 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8575 {
8576 tdesc_data_cleanup (tdesc_data);
8577 xfree (tdep);
8578 gdbarch_free (gdbarch);
8579 return NULL;
8580 }
8581
8582 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8583
8584 /* Wire in pseudo registers. Number of pseudo registers may be
8585 changed. */
8586 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8587 + tdep->num_word_regs
8588 + tdep->num_dword_regs
8589 + tdep->num_mmx_regs
8590 + tdep->num_ymm_regs
8591 + num_bnd_cooked
8592 + tdep->num_ymm_avx512_regs
8593 + tdep->num_zmm_regs));
8594
8595 /* Target description may be changed. */
8596 tdesc = tdep->tdesc;
8597
8598 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8599
8600 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8601 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8602
8603 /* Make %al the first pseudo-register. */
8604 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8605 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8606
8607 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8608 if (tdep->num_dword_regs)
8609 {
8610 /* Support dword pseudo-register if it hasn't been disabled. */
8611 tdep->eax_regnum = ymm0_regnum;
8612 ymm0_regnum += tdep->num_dword_regs;
8613 }
8614 else
8615 tdep->eax_regnum = -1;
8616
8617 mm0_regnum = ymm0_regnum;
8618 if (tdep->num_ymm_regs)
8619 {
8620 /* Support YMM pseudo-register if it is available. */
8621 tdep->ymm0_regnum = ymm0_regnum;
8622 mm0_regnum += tdep->num_ymm_regs;
8623 }
8624 else
8625 tdep->ymm0_regnum = -1;
8626
8627 if (tdep->num_ymm_avx512_regs)
8628 {
8629 /* Support YMM16-31 pseudo registers if available. */
8630 tdep->ymm16_regnum = mm0_regnum;
8631 mm0_regnum += tdep->num_ymm_avx512_regs;
8632 }
8633 else
8634 tdep->ymm16_regnum = -1;
8635
8636 if (tdep->num_zmm_regs)
8637 {
8638 /* Support ZMM pseudo-register if it is available. */
8639 tdep->zmm0_regnum = mm0_regnum;
8640 mm0_regnum += tdep->num_zmm_regs;
8641 }
8642 else
8643 tdep->zmm0_regnum = -1;
8644
8645 bnd0_regnum = mm0_regnum;
8646 if (tdep->num_mmx_regs != 0)
8647 {
8648 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8649 tdep->mm0_regnum = mm0_regnum;
8650 bnd0_regnum += tdep->num_mmx_regs;
8651 }
8652 else
8653 tdep->mm0_regnum = -1;
8654
8655 if (tdep->bnd0r_regnum > 0)
8656 tdep->bnd0_regnum = bnd0_regnum;
8657 else
8658 tdep-> bnd0_regnum = -1;
8659
8660 /* Hook in the legacy prologue-based unwinders last (fallback). */
8661 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8662 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8663 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8664
8665 /* If we have a register mapping, enable the generic core file
8666 support, unless it has already been enabled. */
8667 if (tdep->gregset_reg_offset
8668 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8669 set_gdbarch_iterate_over_regset_sections
8670 (gdbarch, i386_iterate_over_regset_sections);
8671
8672 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8673 i386_fast_tracepoint_valid_at);
8674
8675 return gdbarch;
8676 }
8677
8678 static enum gdb_osabi
8679 i386_coff_osabi_sniffer (bfd *abfd)
8680 {
8681 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8682 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8683 return GDB_OSABI_GO32;
8684
8685 return GDB_OSABI_UNKNOWN;
8686 }
8687 \f
8688
8689 /* Return the target description for a specified XSAVE feature mask. */
8690
8691 const struct target_desc *
8692 i386_target_description (uint64_t xcr0)
8693 {
8694 switch (xcr0 & X86_XSTATE_ALL_MASK)
8695 {
8696 case X86_XSTATE_MPX_AVX512_MASK:
8697 case X86_XSTATE_AVX512_MASK:
8698 return tdesc_i386_avx512;
8699 case X86_XSTATE_MPX_MASK:
8700 return tdesc_i386_mpx;
8701 case X86_XSTATE_AVX_MASK:
8702 return tdesc_i386_avx;
8703 default:
8704 return tdesc_i386;
8705 }
8706 }
8707
8708 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8709
8710 /* Find the bound directory base address. */
8711
8712 static unsigned long
8713 i386_mpx_bd_base (void)
8714 {
8715 struct regcache *rcache;
8716 struct gdbarch_tdep *tdep;
8717 ULONGEST ret;
8718 enum register_status regstatus;
8719 struct gdb_exception except;
8720
8721 rcache = get_current_regcache ();
8722 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8723
8724 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8725
8726 if (regstatus != REG_VALID)
8727 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8728
8729 return ret & MPX_BASE_MASK;
8730 }
8731
8732 /* Check if the current target is MPX enabled. */
8733
8734 static int
8735 i386_mpx_enabled (void)
8736 {
8737 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8738 const struct target_desc *tdesc = tdep->tdesc;
8739
8740 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8741 }
8742
8743 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8744 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8745 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8746 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8747
8748 /* Find the bound table entry given the pointer location and the base
8749 address of the table. */
8750
8751 static CORE_ADDR
8752 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8753 {
8754 CORE_ADDR offset1;
8755 CORE_ADDR offset2;
8756 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8757 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8758 CORE_ADDR bd_entry_addr;
8759 CORE_ADDR bt_addr;
8760 CORE_ADDR bd_entry;
8761 struct gdbarch *gdbarch = get_current_arch ();
8762 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8763
8764
8765 if (gdbarch_ptr_bit (gdbarch) == 64)
8766 {
8767 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8768 bd_ptr_r_shift = 20;
8769 bd_ptr_l_shift = 3;
8770 bt_select_r_shift = 3;
8771 bt_select_l_shift = 5;
8772 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8773
8774 if ( sizeof (CORE_ADDR) == 4)
8775 error (_("bound table examination not supported\
8776 for 64-bit process with 32-bit GDB"));
8777 }
8778 else
8779 {
8780 mpx_bd_mask = MPX_BD_MASK_32;
8781 bd_ptr_r_shift = 12;
8782 bd_ptr_l_shift = 2;
8783 bt_select_r_shift = 2;
8784 bt_select_l_shift = 4;
8785 bt_mask = MPX_BT_MASK_32;
8786 }
8787
8788 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8789 bd_entry_addr = bd_base + offset1;
8790 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8791
8792 if ((bd_entry & 0x1) == 0)
8793 error (_("Invalid bounds directory entry at %s."),
8794 paddress (get_current_arch (), bd_entry_addr));
8795
8796 /* Clearing status bit. */
8797 bd_entry--;
8798 bt_addr = bd_entry & ~bt_select_r_shift;
8799 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8800
8801 return bt_addr + offset2;
8802 }
8803
8804 /* Print routine for the mpx bounds. */
8805
8806 static void
8807 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8808 {
8809 struct ui_out *uiout = current_uiout;
8810 LONGEST size;
8811 struct gdbarch *gdbarch = get_current_arch ();
8812 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8813 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8814
8815 if (bounds_in_map == 1)
8816 {
8817 ui_out_text (uiout, "Null bounds on map:");
8818 ui_out_text (uiout, " pointer value = ");
8819 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8820 ui_out_text (uiout, ".");
8821 ui_out_text (uiout, "\n");
8822 }
8823 else
8824 {
8825 ui_out_text (uiout, "{lbound = ");
8826 ui_out_field_core_addr (uiout, "lower-bound", gdbarch, bt_entry[0]);
8827 ui_out_text (uiout, ", ubound = ");
8828
8829 /* The upper bound is stored in 1's complement. */
8830 ui_out_field_core_addr (uiout, "upper-bound", gdbarch, ~bt_entry[1]);
8831 ui_out_text (uiout, "}: pointer value = ");
8832 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8833
8834 if (gdbarch_ptr_bit (gdbarch) == 64)
8835 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8836 else
8837 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8838
8839 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8840 -1 represents in this sense full memory access, and there is no need
8841 one to the size. */
8842
8843 size = (size > -1 ? size + 1 : size);
8844 ui_out_text (uiout, ", size = ");
8845 ui_out_field_fmt (uiout, "size", "%s", plongest (size));
8846
8847 ui_out_text (uiout, ", metadata = ");
8848 ui_out_field_core_addr (uiout, "metadata", gdbarch, bt_entry[3]);
8849 ui_out_text (uiout, "\n");
8850 }
8851 }
8852
8853 /* Implement the command "show mpx bound". */
8854
8855 static void
8856 i386_mpx_info_bounds (char *args, int from_tty)
8857 {
8858 CORE_ADDR bd_base = 0;
8859 CORE_ADDR addr;
8860 CORE_ADDR bt_entry_addr = 0;
8861 CORE_ADDR bt_entry[4];
8862 int i;
8863 struct gdbarch *gdbarch = get_current_arch ();
8864 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8865
8866 if (!i386_mpx_enabled ())
8867 {
8868 printf_unfiltered (_("Intel Memory Protection Extensions not "
8869 "supported on this target.\n"));
8870 return;
8871 }
8872
8873 if (args == NULL)
8874 {
8875 printf_unfiltered (_("Address of pointer variable expected.\n"));
8876 return;
8877 }
8878
8879 addr = parse_and_eval_address (args);
8880
8881 bd_base = i386_mpx_bd_base ();
8882 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8883
8884 memset (bt_entry, 0, sizeof (bt_entry));
8885
8886 for (i = 0; i < 4; i++)
8887 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8888 + i * TYPE_LENGTH (data_ptr_type),
8889 data_ptr_type);
8890
8891 i386_mpx_print_bounds (bt_entry);
8892 }
8893
8894 /* Implement the command "set mpx bound". */
8895
8896 static void
8897 i386_mpx_set_bounds (char *args, int from_tty)
8898 {
8899 CORE_ADDR bd_base = 0;
8900 CORE_ADDR addr, lower, upper;
8901 CORE_ADDR bt_entry_addr = 0;
8902 CORE_ADDR bt_entry[2];
8903 const char *input = args;
8904 int i;
8905 struct gdbarch *gdbarch = get_current_arch ();
8906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8907 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8908
8909 if (!i386_mpx_enabled ())
8910 error (_("Intel Memory Protection Extensions not supported\
8911 on this target."));
8912
8913 if (args == NULL)
8914 error (_("Pointer value expected."));
8915
8916 addr = value_as_address (parse_to_comma_and_eval (&input));
8917
8918 if (input[0] == ',')
8919 ++input;
8920 if (input[0] == '\0')
8921 error (_("wrong number of arguments: missing lower and upper bound."));
8922 lower = value_as_address (parse_to_comma_and_eval (&input));
8923
8924 if (input[0] == ',')
8925 ++input;
8926 if (input[0] == '\0')
8927 error (_("Wrong number of arguments; Missing upper bound."));
8928 upper = value_as_address (parse_to_comma_and_eval (&input));
8929
8930 bd_base = i386_mpx_bd_base ();
8931 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8932 for (i = 0; i < 2; i++)
8933 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8934 + i * TYPE_LENGTH (data_ptr_type),
8935 data_ptr_type);
8936 bt_entry[0] = (uint64_t) lower;
8937 bt_entry[1] = ~(uint64_t) upper;
8938
8939 for (i = 0; i < 2; i++)
8940 write_memory_unsigned_integer (bt_entry_addr
8941 + i * TYPE_LENGTH (data_ptr_type),
8942 TYPE_LENGTH (data_ptr_type), byte_order,
8943 bt_entry[i]);
8944 }
8945
8946 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8947
8948 /* Helper function for the CLI commands. */
8949
8950 static void
8951 set_mpx_cmd (char *args, int from_tty)
8952 {
8953 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
8954 }
8955
8956 /* Helper function for the CLI commands. */
8957
8958 static void
8959 show_mpx_cmd (char *args, int from_tty)
8960 {
8961 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8962 }
8963
8964 /* Provide a prototype to silence -Wmissing-prototypes. */
8965 void _initialize_i386_tdep (void);
8966
8967 void
8968 _initialize_i386_tdep (void)
8969 {
8970 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8971
8972 /* Add the variable that controls the disassembly flavor. */
8973 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8974 &disassembly_flavor, _("\
8975 Set the disassembly flavor."), _("\
8976 Show the disassembly flavor."), _("\
8977 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8978 NULL,
8979 NULL, /* FIXME: i18n: */
8980 &setlist, &showlist);
8981
8982 /* Add the variable that controls the convention for returning
8983 structs. */
8984 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8985 &struct_convention, _("\
8986 Set the convention for returning small structs."), _("\
8987 Show the convention for returning small structs."), _("\
8988 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8989 is \"default\"."),
8990 NULL,
8991 NULL, /* FIXME: i18n: */
8992 &setlist, &showlist);
8993
8994 /* Add "mpx" prefix for the set commands. */
8995
8996 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
8997 Set Intel Memory Protection Extensions specific variables."),
8998 &mpx_set_cmdlist, "set mpx ",
8999 0 /* allow-unknown */, &setlist);
9000
9001 /* Add "mpx" prefix for the show commands. */
9002
9003 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9004 Show Intel Memory Protection Extensions specific variables."),
9005 &mpx_show_cmdlist, "show mpx ",
9006 0 /* allow-unknown */, &showlist);
9007
9008 /* Add "bound" command for the show mpx commands list. */
9009
9010 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9011 "Show the memory bounds for a given array/pointer storage\
9012 in the bound table.",
9013 &mpx_show_cmdlist);
9014
9015 /* Add "bound" command for the set mpx commands list. */
9016
9017 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9018 "Set the memory bounds for a given array/pointer storage\
9019 in the bound table.",
9020 &mpx_set_cmdlist);
9021
9022 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
9023 i386_coff_osabi_sniffer);
9024
9025 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9026 i386_svr4_init_abi);
9027 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
9028 i386_go32_init_abi);
9029
9030 /* Initialize the i386-specific register groups. */
9031 i386_init_reggroups ();
9032
9033 /* Initialize the standard target descriptions. */
9034 initialize_tdesc_i386 ();
9035 initialize_tdesc_i386_mmx ();
9036 initialize_tdesc_i386_avx ();
9037 initialize_tdesc_i386_mpx ();
9038 initialize_tdesc_i386_avx512 ();
9039
9040 /* Tell remote stub that we support XML target description. */
9041 register_remote_support_xml ("i386");
9042 }