]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
gdb: make some variables static
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56
57 #include "ax.h"
58 #include "ax-gdb.h"
59
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67 #include <unordered_set>
68 #include "producer.h"
69
70 /* Register names. */
71
72 static const char * const i386_register_names[] =
73 {
74 "eax", "ecx", "edx", "ebx",
75 "esp", "ebp", "esi", "edi",
76 "eip", "eflags", "cs", "ss",
77 "ds", "es", "fs", "gs",
78 "st0", "st1", "st2", "st3",
79 "st4", "st5", "st6", "st7",
80 "fctrl", "fstat", "ftag", "fiseg",
81 "fioff", "foseg", "fooff", "fop",
82 "xmm0", "xmm1", "xmm2", "xmm3",
83 "xmm4", "xmm5", "xmm6", "xmm7",
84 "mxcsr"
85 };
86
87 static const char * const i386_zmm_names[] =
88 {
89 "zmm0", "zmm1", "zmm2", "zmm3",
90 "zmm4", "zmm5", "zmm6", "zmm7"
91 };
92
93 static const char * const i386_zmmh_names[] =
94 {
95 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
96 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
97 };
98
99 static const char * const i386_k_names[] =
100 {
101 "k0", "k1", "k2", "k3",
102 "k4", "k5", "k6", "k7"
103 };
104
105 static const char * const i386_ymm_names[] =
106 {
107 "ymm0", "ymm1", "ymm2", "ymm3",
108 "ymm4", "ymm5", "ymm6", "ymm7",
109 };
110
111 static const char * const i386_ymmh_names[] =
112 {
113 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
114 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
115 };
116
117 static const char * const i386_mpx_names[] =
118 {
119 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
120 };
121
122 static const char * const i386_pkeys_names[] =
123 {
124 "pkru"
125 };
126
127 /* Register names for MPX pseudo-registers. */
128
129 static const char * const i386_bnd_names[] =
130 {
131 "bnd0", "bnd1", "bnd2", "bnd3"
132 };
133
134 /* Register names for MMX pseudo-registers. */
135
136 static const char * const i386_mmx_names[] =
137 {
138 "mm0", "mm1", "mm2", "mm3",
139 "mm4", "mm5", "mm6", "mm7"
140 };
141
142 /* Register names for byte pseudo-registers. */
143
144 static const char * const i386_byte_names[] =
145 {
146 "al", "cl", "dl", "bl",
147 "ah", "ch", "dh", "bh"
148 };
149
150 /* Register names for word pseudo-registers. */
151
152 static const char * const i386_word_names[] =
153 {
154 "ax", "cx", "dx", "bx",
155 "", "bp", "si", "di"
156 };
157
158 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
159 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
160 we have 16 upper ZMM regs that have to be handled differently. */
161
162 const int num_lower_zmm_regs = 16;
163
164 /* MMX register? */
165
166 static int
167 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170 int mm0_regnum = tdep->mm0_regnum;
171
172 if (mm0_regnum < 0)
173 return 0;
174
175 regnum -= mm0_regnum;
176 return regnum >= 0 && regnum < tdep->num_mmx_regs;
177 }
178
179 /* Byte register? */
180
181 int
182 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
183 {
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185
186 regnum -= tdep->al_regnum;
187 return regnum >= 0 && regnum < tdep->num_byte_regs;
188 }
189
190 /* Word register? */
191
192 int
193 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
194 {
195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196
197 regnum -= tdep->ax_regnum;
198 return regnum >= 0 && regnum < tdep->num_word_regs;
199 }
200
201 /* Dword register? */
202
203 int
204 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
205 {
206 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
207 int eax_regnum = tdep->eax_regnum;
208
209 if (eax_regnum < 0)
210 return 0;
211
212 regnum -= eax_regnum;
213 return regnum >= 0 && regnum < tdep->num_dword_regs;
214 }
215
216 /* AVX512 register? */
217
218 int
219 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
220 {
221 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
222 int zmm0h_regnum = tdep->zmm0h_regnum;
223
224 if (zmm0h_regnum < 0)
225 return 0;
226
227 regnum -= zmm0h_regnum;
228 return regnum >= 0 && regnum < tdep->num_zmm_regs;
229 }
230
231 int
232 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
233 {
234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
235 int zmm0_regnum = tdep->zmm0_regnum;
236
237 if (zmm0_regnum < 0)
238 return 0;
239
240 regnum -= zmm0_regnum;
241 return regnum >= 0 && regnum < tdep->num_zmm_regs;
242 }
243
244 int
245 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248 int k0_regnum = tdep->k0_regnum;
249
250 if (k0_regnum < 0)
251 return 0;
252
253 regnum -= k0_regnum;
254 return regnum >= 0 && regnum < I387_NUM_K_REGS;
255 }
256
257 static int
258 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
259 {
260 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
261 int ymm0h_regnum = tdep->ymm0h_regnum;
262
263 if (ymm0h_regnum < 0)
264 return 0;
265
266 regnum -= ymm0h_regnum;
267 return regnum >= 0 && regnum < tdep->num_ymm_regs;
268 }
269
270 /* AVX register? */
271
272 int
273 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
274 {
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276 int ymm0_regnum = tdep->ymm0_regnum;
277
278 if (ymm0_regnum < 0)
279 return 0;
280
281 regnum -= ymm0_regnum;
282 return regnum >= 0 && regnum < tdep->num_ymm_regs;
283 }
284
285 static int
286 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
287 {
288 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
289 int ymm16h_regnum = tdep->ymm16h_regnum;
290
291 if (ymm16h_regnum < 0)
292 return 0;
293
294 regnum -= ymm16h_regnum;
295 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
296 }
297
298 int
299 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
300 {
301 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
302 int ymm16_regnum = tdep->ymm16_regnum;
303
304 if (ymm16_regnum < 0)
305 return 0;
306
307 regnum -= ymm16_regnum;
308 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
309 }
310
311 /* BND register? */
312
313 int
314 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
315 {
316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
317 int bnd0_regnum = tdep->bnd0_regnum;
318
319 if (bnd0_regnum < 0)
320 return 0;
321
322 regnum -= bnd0_regnum;
323 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
324 }
325
326 /* SSE register? */
327
328 int
329 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
333
334 if (num_xmm_regs == 0)
335 return 0;
336
337 regnum -= I387_XMM0_REGNUM (tdep);
338 return regnum >= 0 && regnum < num_xmm_regs;
339 }
340
341 /* XMM_512 register? */
342
343 int
344 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
345 {
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
347 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
348
349 if (num_xmm_avx512_regs == 0)
350 return 0;
351
352 regnum -= I387_XMM16_REGNUM (tdep);
353 return regnum >= 0 && regnum < num_xmm_avx512_regs;
354 }
355
356 static int
357 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
358 {
359 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
360
361 if (I387_NUM_XMM_REGS (tdep) == 0)
362 return 0;
363
364 return (regnum == I387_MXCSR_REGNUM (tdep));
365 }
366
367 /* FP register? */
368
369 int
370 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
371 {
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373
374 if (I387_ST0_REGNUM (tdep) < 0)
375 return 0;
376
377 return (I387_ST0_REGNUM (tdep) <= regnum
378 && regnum < I387_FCTRL_REGNUM (tdep));
379 }
380
381 int
382 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
383 {
384 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
385
386 if (I387_ST0_REGNUM (tdep) < 0)
387 return 0;
388
389 return (I387_FCTRL_REGNUM (tdep) <= regnum
390 && regnum < I387_XMM0_REGNUM (tdep));
391 }
392
393 /* BNDr (raw) register? */
394
395 static int
396 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
397 {
398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
399
400 if (I387_BND0R_REGNUM (tdep) < 0)
401 return 0;
402
403 regnum -= tdep->bnd0r_regnum;
404 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
405 }
406
407 /* BND control register? */
408
409 static int
410 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
411 {
412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
413
414 if (I387_BNDCFGU_REGNUM (tdep) < 0)
415 return 0;
416
417 regnum -= I387_BNDCFGU_REGNUM (tdep);
418 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
419 }
420
421 /* PKRU register? */
422
423 bool
424 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
425 {
426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
427 int pkru_regnum = tdep->pkru_regnum;
428
429 if (pkru_regnum < 0)
430 return false;
431
432 regnum -= pkru_regnum;
433 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
434 }
435
436 /* Return the name of register REGNUM, or the empty string if it is
437 an anonymous register. */
438
439 static const char *
440 i386_register_name (struct gdbarch *gdbarch, int regnum)
441 {
442 /* Hide the upper YMM registers. */
443 if (i386_ymmh_regnum_p (gdbarch, regnum))
444 return "";
445
446 /* Hide the upper YMM16-31 registers. */
447 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
448 return "";
449
450 /* Hide the upper ZMM registers. */
451 if (i386_zmmh_regnum_p (gdbarch, regnum))
452 return "";
453
454 return tdesc_register_name (gdbarch, regnum);
455 }
456
457 /* Return the name of register REGNUM. */
458
459 const char *
460 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
461 {
462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
463 if (i386_bnd_regnum_p (gdbarch, regnum))
464 return i386_bnd_names[regnum - tdep->bnd0_regnum];
465 if (i386_mmx_regnum_p (gdbarch, regnum))
466 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
467 else if (i386_ymm_regnum_p (gdbarch, regnum))
468 return i386_ymm_names[regnum - tdep->ymm0_regnum];
469 else if (i386_zmm_regnum_p (gdbarch, regnum))
470 return i386_zmm_names[regnum - tdep->zmm0_regnum];
471 else if (i386_byte_regnum_p (gdbarch, regnum))
472 return i386_byte_names[regnum - tdep->al_regnum];
473 else if (i386_word_regnum_p (gdbarch, regnum))
474 return i386_word_names[regnum - tdep->ax_regnum];
475
476 internal_error (__FILE__, __LINE__, _("invalid regnum"));
477 }
478
479 /* Convert a dbx register number REG to the appropriate register
480 number used by GDB. */
481
482 static int
483 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
484 {
485 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
486
487 /* This implements what GCC calls the "default" register map
488 (dbx_register_map[]). */
489
490 if (reg >= 0 && reg <= 7)
491 {
492 /* General-purpose registers. The debug info calls %ebp
493 register 4, and %esp register 5. */
494 if (reg == 4)
495 return 5;
496 else if (reg == 5)
497 return 4;
498 else return reg;
499 }
500 else if (reg >= 12 && reg <= 19)
501 {
502 /* Floating-point registers. */
503 return reg - 12 + I387_ST0_REGNUM (tdep);
504 }
505 else if (reg >= 21 && reg <= 28)
506 {
507 /* SSE registers. */
508 int ymm0_regnum = tdep->ymm0_regnum;
509
510 if (ymm0_regnum >= 0
511 && i386_xmm_regnum_p (gdbarch, reg))
512 return reg - 21 + ymm0_regnum;
513 else
514 return reg - 21 + I387_XMM0_REGNUM (tdep);
515 }
516 else if (reg >= 29 && reg <= 36)
517 {
518 /* MMX registers. */
519 return reg - 29 + I387_MM0_REGNUM (tdep);
520 }
521
522 /* This will hopefully provoke a warning. */
523 return gdbarch_num_cooked_regs (gdbarch);
524 }
525
526 /* Convert SVR4 DWARF register number REG to the appropriate register number
527 used by GDB. */
528
529 static int
530 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
531 {
532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
533
534 /* This implements the GCC register map that tries to be compatible
535 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
536
537 /* The SVR4 register numbering includes %eip and %eflags, and
538 numbers the floating point registers differently. */
539 if (reg >= 0 && reg <= 9)
540 {
541 /* General-purpose registers. */
542 return reg;
543 }
544 else if (reg >= 11 && reg <= 18)
545 {
546 /* Floating-point registers. */
547 return reg - 11 + I387_ST0_REGNUM (tdep);
548 }
549 else if (reg >= 21 && reg <= 36)
550 {
551 /* The SSE and MMX registers have the same numbers as with dbx. */
552 return i386_dbx_reg_to_regnum (gdbarch, reg);
553 }
554
555 switch (reg)
556 {
557 case 37: return I387_FCTRL_REGNUM (tdep);
558 case 38: return I387_FSTAT_REGNUM (tdep);
559 case 39: return I387_MXCSR_REGNUM (tdep);
560 case 40: return I386_ES_REGNUM;
561 case 41: return I386_CS_REGNUM;
562 case 42: return I386_SS_REGNUM;
563 case 43: return I386_DS_REGNUM;
564 case 44: return I386_FS_REGNUM;
565 case 45: return I386_GS_REGNUM;
566 }
567
568 return -1;
569 }
570
571 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
572 num_regs + num_pseudo_regs for other debug formats. */
573
574 int
575 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
576 {
577 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
578
579 if (regnum == -1)
580 return gdbarch_num_cooked_regs (gdbarch);
581 return regnum;
582 }
583
584 \f
585
586 /* This is the variable that is set with "set disassembly-flavor", and
587 its legitimate values. */
588 static const char att_flavor[] = "att";
589 static const char intel_flavor[] = "intel";
590 static const char *const valid_flavors[] =
591 {
592 att_flavor,
593 intel_flavor,
594 NULL
595 };
596 static const char *disassembly_flavor = att_flavor;
597 \f
598
599 /* Use the program counter to determine the contents and size of a
600 breakpoint instruction. Return a pointer to a string of bytes that
601 encode a breakpoint instruction, store the length of the string in
602 *LEN and optionally adjust *PC to point to the correct memory
603 location for inserting the breakpoint.
604
605 On the i386 we have a single breakpoint that fits in a single byte
606 and can be inserted anywhere.
607
608 This function is 64-bit safe. */
609
610 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
611
612 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
613
614 \f
615 /* Displaced instruction handling. */
616
617 /* Skip the legacy instruction prefixes in INSN.
618 Not all prefixes are valid for any particular insn
619 but we needn't care, the insn will fault if it's invalid.
620 The result is a pointer to the first opcode byte,
621 or NULL if we run off the end of the buffer. */
622
623 static gdb_byte *
624 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
625 {
626 gdb_byte *end = insn + max_len;
627
628 while (insn < end)
629 {
630 switch (*insn)
631 {
632 case DATA_PREFIX_OPCODE:
633 case ADDR_PREFIX_OPCODE:
634 case CS_PREFIX_OPCODE:
635 case DS_PREFIX_OPCODE:
636 case ES_PREFIX_OPCODE:
637 case FS_PREFIX_OPCODE:
638 case GS_PREFIX_OPCODE:
639 case SS_PREFIX_OPCODE:
640 case LOCK_PREFIX_OPCODE:
641 case REPE_PREFIX_OPCODE:
642 case REPNE_PREFIX_OPCODE:
643 ++insn;
644 continue;
645 default:
646 return insn;
647 }
648 }
649
650 return NULL;
651 }
652
653 static int
654 i386_absolute_jmp_p (const gdb_byte *insn)
655 {
656 /* jmp far (absolute address in operand). */
657 if (insn[0] == 0xea)
658 return 1;
659
660 if (insn[0] == 0xff)
661 {
662 /* jump near, absolute indirect (/4). */
663 if ((insn[1] & 0x38) == 0x20)
664 return 1;
665
666 /* jump far, absolute indirect (/5). */
667 if ((insn[1] & 0x38) == 0x28)
668 return 1;
669 }
670
671 return 0;
672 }
673
674 /* Return non-zero if INSN is a jump, zero otherwise. */
675
676 static int
677 i386_jmp_p (const gdb_byte *insn)
678 {
679 /* jump short, relative. */
680 if (insn[0] == 0xeb)
681 return 1;
682
683 /* jump near, relative. */
684 if (insn[0] == 0xe9)
685 return 1;
686
687 return i386_absolute_jmp_p (insn);
688 }
689
690 static int
691 i386_absolute_call_p (const gdb_byte *insn)
692 {
693 /* call far, absolute. */
694 if (insn[0] == 0x9a)
695 return 1;
696
697 if (insn[0] == 0xff)
698 {
699 /* Call near, absolute indirect (/2). */
700 if ((insn[1] & 0x38) == 0x10)
701 return 1;
702
703 /* Call far, absolute indirect (/3). */
704 if ((insn[1] & 0x38) == 0x18)
705 return 1;
706 }
707
708 return 0;
709 }
710
711 static int
712 i386_ret_p (const gdb_byte *insn)
713 {
714 switch (insn[0])
715 {
716 case 0xc2: /* ret near, pop N bytes. */
717 case 0xc3: /* ret near */
718 case 0xca: /* ret far, pop N bytes. */
719 case 0xcb: /* ret far */
720 case 0xcf: /* iret */
721 return 1;
722
723 default:
724 return 0;
725 }
726 }
727
728 static int
729 i386_call_p (const gdb_byte *insn)
730 {
731 if (i386_absolute_call_p (insn))
732 return 1;
733
734 /* call near, relative. */
735 if (insn[0] == 0xe8)
736 return 1;
737
738 return 0;
739 }
740
741 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
742 length in bytes. Otherwise, return zero. */
743
744 static int
745 i386_syscall_p (const gdb_byte *insn, int *lengthp)
746 {
747 /* Is it 'int $0x80'? */
748 if ((insn[0] == 0xcd && insn[1] == 0x80)
749 /* Or is it 'sysenter'? */
750 || (insn[0] == 0x0f && insn[1] == 0x34)
751 /* Or is it 'syscall'? */
752 || (insn[0] == 0x0f && insn[1] == 0x05))
753 {
754 *lengthp = 2;
755 return 1;
756 }
757
758 return 0;
759 }
760
761 /* The gdbarch insn_is_call method. */
762
763 static int
764 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
765 {
766 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767
768 read_code (addr, buf, I386_MAX_INSN_LEN);
769 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770
771 return i386_call_p (insn);
772 }
773
774 /* The gdbarch insn_is_ret method. */
775
776 static int
777 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
778 {
779 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
780
781 read_code (addr, buf, I386_MAX_INSN_LEN);
782 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
783
784 return i386_ret_p (insn);
785 }
786
787 /* The gdbarch insn_is_jump method. */
788
789 static int
790 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
791 {
792 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
793
794 read_code (addr, buf, I386_MAX_INSN_LEN);
795 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
796
797 return i386_jmp_p (insn);
798 }
799
800 /* Some kernels may run one past a syscall insn, so we have to cope. */
801
802 displaced_step_copy_insn_closure_up
803 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
804 CORE_ADDR from, CORE_ADDR to,
805 struct regcache *regs)
806 {
807 size_t len = gdbarch_max_insn_length (gdbarch);
808 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
809 (new i386_displaced_step_copy_insn_closure (len));
810 gdb_byte *buf = closure->buf.data ();
811
812 read_memory (from, buf, len);
813
814 /* GDB may get control back after the insn after the syscall.
815 Presumably this is a kernel bug.
816 If this is a syscall, make sure there's a nop afterwards. */
817 {
818 int syscall_length;
819 gdb_byte *insn;
820
821 insn = i386_skip_prefixes (buf, len);
822 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
823 insn[syscall_length] = NOP_OPCODE;
824 }
825
826 write_memory (to, buf, len);
827
828 displaced_debug_printf ("%s->%s: %s",
829 paddress (gdbarch, from), paddress (gdbarch, to),
830 displaced_step_dump_bytes (buf, len).c_str ());
831
832 /* This is a work around for a problem with g++ 4.8. */
833 return displaced_step_copy_insn_closure_up (closure.release ());
834 }
835
836 /* Fix up the state of registers and memory after having single-stepped
837 a displaced instruction. */
838
839 void
840 i386_displaced_step_fixup (struct gdbarch *gdbarch,
841 struct displaced_step_copy_insn_closure *closure_,
842 CORE_ADDR from, CORE_ADDR to,
843 struct regcache *regs)
844 {
845 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
846
847 /* The offset we applied to the instruction's address.
848 This could well be negative (when viewed as a signed 32-bit
849 value), but ULONGEST won't reflect that, so take care when
850 applying it. */
851 ULONGEST insn_offset = to - from;
852
853 i386_displaced_step_copy_insn_closure *closure
854 = (i386_displaced_step_copy_insn_closure *) closure_;
855 gdb_byte *insn = closure->buf.data ();
856 /* The start of the insn, needed in case we see some prefixes. */
857 gdb_byte *insn_start = insn;
858
859 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
860 paddress (gdbarch, from), paddress (gdbarch, to),
861 insn[0], insn[1]);
862
863 /* The list of issues to contend with here is taken from
864 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
865 Yay for Free Software! */
866
867 /* Relocate the %eip, if necessary. */
868
869 /* The instruction recognizers we use assume any leading prefixes
870 have been skipped. */
871 {
872 /* This is the size of the buffer in closure. */
873 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
874 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
875 /* If there are too many prefixes, just ignore the insn.
876 It will fault when run. */
877 if (opcode != NULL)
878 insn = opcode;
879 }
880
881 /* Except in the case of absolute or indirect jump or call
882 instructions, or a return instruction, the new eip is relative to
883 the displaced instruction; make it relative. Well, signal
884 handler returns don't need relocation either, but we use the
885 value of %eip to recognize those; see below. */
886 if (! i386_absolute_jmp_p (insn)
887 && ! i386_absolute_call_p (insn)
888 && ! i386_ret_p (insn))
889 {
890 ULONGEST orig_eip;
891 int insn_len;
892
893 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
894
895 /* A signal trampoline system call changes the %eip, resuming
896 execution of the main program after the signal handler has
897 returned. That makes them like 'return' instructions; we
898 shouldn't relocate %eip.
899
900 But most system calls don't, and we do need to relocate %eip.
901
902 Our heuristic for distinguishing these cases: if stepping
903 over the system call instruction left control directly after
904 the instruction, the we relocate --- control almost certainly
905 doesn't belong in the displaced copy. Otherwise, we assume
906 the instruction has put control where it belongs, and leave
907 it unrelocated. Goodness help us if there are PC-relative
908 system calls. */
909 if (i386_syscall_p (insn, &insn_len)
910 && orig_eip != to + (insn - insn_start) + insn_len
911 /* GDB can get control back after the insn after the syscall.
912 Presumably this is a kernel bug.
913 i386_displaced_step_copy_insn ensures its a nop,
914 we add one to the length for it. */
915 && orig_eip != to + (insn - insn_start) + insn_len + 1)
916 displaced_debug_printf ("syscall changed %%eip; not relocating");
917 else
918 {
919 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
920
921 /* If we just stepped over a breakpoint insn, we don't backup
922 the pc on purpose; this is to match behaviour without
923 stepping. */
924
925 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
926
927 displaced_debug_printf ("relocated %%eip from %s to %s",
928 paddress (gdbarch, orig_eip),
929 paddress (gdbarch, eip));
930 }
931 }
932
933 /* If the instruction was PUSHFL, then the TF bit will be set in the
934 pushed value, and should be cleared. We'll leave this for later,
935 since GDB already messes up the TF flag when stepping over a
936 pushfl. */
937
938 /* If the instruction was a call, the return address now atop the
939 stack is the address following the copied instruction. We need
940 to make it the address following the original instruction. */
941 if (i386_call_p (insn))
942 {
943 ULONGEST esp;
944 ULONGEST retaddr;
945 const ULONGEST retaddr_len = 4;
946
947 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
948 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
949 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
950 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
951
952 displaced_debug_printf ("relocated return addr at %s to %s",
953 paddress (gdbarch, esp),
954 paddress (gdbarch, retaddr));
955 }
956 }
957
958 static void
959 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
960 {
961 target_write_memory (*to, buf, len);
962 *to += len;
963 }
964
965 static void
966 i386_relocate_instruction (struct gdbarch *gdbarch,
967 CORE_ADDR *to, CORE_ADDR oldloc)
968 {
969 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
970 gdb_byte buf[I386_MAX_INSN_LEN];
971 int offset = 0, rel32, newrel;
972 int insn_length;
973 gdb_byte *insn = buf;
974
975 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
976
977 insn_length = gdb_buffered_insn_length (gdbarch, insn,
978 I386_MAX_INSN_LEN, oldloc);
979
980 /* Get past the prefixes. */
981 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
982
983 /* Adjust calls with 32-bit relative addresses as push/jump, with
984 the address pushed being the location where the original call in
985 the user program would return to. */
986 if (insn[0] == 0xe8)
987 {
988 gdb_byte push_buf[16];
989 unsigned int ret_addr;
990
991 /* Where "ret" in the original code will return to. */
992 ret_addr = oldloc + insn_length;
993 push_buf[0] = 0x68; /* pushq $... */
994 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
995 /* Push the push. */
996 append_insns (to, 5, push_buf);
997
998 /* Convert the relative call to a relative jump. */
999 insn[0] = 0xe9;
1000
1001 /* Adjust the destination offset. */
1002 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1003 newrel = (oldloc - *to) + rel32;
1004 store_signed_integer (insn + 1, 4, byte_order, newrel);
1005
1006 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1007 hex_string (rel32), paddress (gdbarch, oldloc),
1008 hex_string (newrel), paddress (gdbarch, *to));
1009
1010 /* Write the adjusted jump into its displaced location. */
1011 append_insns (to, 5, insn);
1012 return;
1013 }
1014
1015 /* Adjust jumps with 32-bit relative addresses. Calls are already
1016 handled above. */
1017 if (insn[0] == 0xe9)
1018 offset = 1;
1019 /* Adjust conditional jumps. */
1020 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1021 offset = 2;
1022
1023 if (offset)
1024 {
1025 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1026 newrel = (oldloc - *to) + rel32;
1027 store_signed_integer (insn + offset, 4, byte_order, newrel);
1028 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1029 hex_string (rel32), paddress (gdbarch, oldloc),
1030 hex_string (newrel), paddress (gdbarch, *to));
1031 }
1032
1033 /* Write the adjusted instructions into their displaced
1034 location. */
1035 append_insns (to, insn_length, buf);
1036 }
1037
1038 \f
1039 #ifdef I386_REGNO_TO_SYMMETRY
1040 #error "The Sequent Symmetry is no longer supported."
1041 #endif
1042
1043 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1044 and %esp "belong" to the calling function. Therefore these
1045 registers should be saved if they're going to be modified. */
1046
1047 /* The maximum number of saved registers. This should include all
1048 registers mentioned above, and %eip. */
1049 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1050
1051 struct i386_frame_cache
1052 {
1053 /* Base address. */
1054 CORE_ADDR base;
1055 int base_p;
1056 LONGEST sp_offset;
1057 CORE_ADDR pc;
1058
1059 /* Saved registers. */
1060 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1061 CORE_ADDR saved_sp;
1062 int saved_sp_reg;
1063 int pc_in_eax;
1064
1065 /* Stack space reserved for local variables. */
1066 long locals;
1067 };
1068
1069 /* Allocate and initialize a frame cache. */
1070
1071 static struct i386_frame_cache *
1072 i386_alloc_frame_cache (void)
1073 {
1074 struct i386_frame_cache *cache;
1075 int i;
1076
1077 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1078
1079 /* Base address. */
1080 cache->base_p = 0;
1081 cache->base = 0;
1082 cache->sp_offset = -4;
1083 cache->pc = 0;
1084
1085 /* Saved registers. We initialize these to -1 since zero is a valid
1086 offset (that's where %ebp is supposed to be stored). */
1087 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1088 cache->saved_regs[i] = -1;
1089 cache->saved_sp = 0;
1090 cache->saved_sp_reg = -1;
1091 cache->pc_in_eax = 0;
1092
1093 /* Frameless until proven otherwise. */
1094 cache->locals = -1;
1095
1096 return cache;
1097 }
1098
1099 /* If the instruction at PC is a jump, return the address of its
1100 target. Otherwise, return PC. */
1101
1102 static CORE_ADDR
1103 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1104 {
1105 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1106 gdb_byte op;
1107 long delta = 0;
1108 int data16 = 0;
1109
1110 if (target_read_code (pc, &op, 1))
1111 return pc;
1112
1113 if (op == 0x66)
1114 {
1115 data16 = 1;
1116
1117 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1118 }
1119
1120 switch (op)
1121 {
1122 case 0xe9:
1123 /* Relative jump: if data16 == 0, disp32, else disp16. */
1124 if (data16)
1125 {
1126 delta = read_memory_integer (pc + 2, 2, byte_order);
1127
1128 /* Include the size of the jmp instruction (including the
1129 0x66 prefix). */
1130 delta += 4;
1131 }
1132 else
1133 {
1134 delta = read_memory_integer (pc + 1, 4, byte_order);
1135
1136 /* Include the size of the jmp instruction. */
1137 delta += 5;
1138 }
1139 break;
1140 case 0xeb:
1141 /* Relative jump, disp8 (ignore data16). */
1142 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1143
1144 delta += data16 + 2;
1145 break;
1146 }
1147
1148 return pc + delta;
1149 }
1150
1151 /* Check whether PC points at a prologue for a function returning a
1152 structure or union. If so, it updates CACHE and returns the
1153 address of the first instruction after the code sequence that
1154 removes the "hidden" argument from the stack or CURRENT_PC,
1155 whichever is smaller. Otherwise, return PC. */
1156
1157 static CORE_ADDR
1158 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1159 struct i386_frame_cache *cache)
1160 {
1161 /* Functions that return a structure or union start with:
1162
1163 popl %eax 0x58
1164 xchgl %eax, (%esp) 0x87 0x04 0x24
1165 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1166
1167 (the System V compiler puts out the second `xchg' instruction,
1168 and the assembler doesn't try to optimize it, so the 'sib' form
1169 gets generated). This sequence is used to get the address of the
1170 return buffer for a function that returns a structure. */
1171 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1172 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1173 gdb_byte buf[4];
1174 gdb_byte op;
1175
1176 if (current_pc <= pc)
1177 return pc;
1178
1179 if (target_read_code (pc, &op, 1))
1180 return pc;
1181
1182 if (op != 0x58) /* popl %eax */
1183 return pc;
1184
1185 if (target_read_code (pc + 1, buf, 4))
1186 return pc;
1187
1188 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1189 return pc;
1190
1191 if (current_pc == pc)
1192 {
1193 cache->sp_offset += 4;
1194 return current_pc;
1195 }
1196
1197 if (current_pc == pc + 1)
1198 {
1199 cache->pc_in_eax = 1;
1200 return current_pc;
1201 }
1202
1203 if (buf[1] == proto1[1])
1204 return pc + 4;
1205 else
1206 return pc + 5;
1207 }
1208
1209 static CORE_ADDR
1210 i386_skip_probe (CORE_ADDR pc)
1211 {
1212 /* A function may start with
1213
1214 pushl constant
1215 call _probe
1216 addl $4, %esp
1217
1218 followed by
1219
1220 pushl %ebp
1221
1222 etc. */
1223 gdb_byte buf[8];
1224 gdb_byte op;
1225
1226 if (target_read_code (pc, &op, 1))
1227 return pc;
1228
1229 if (op == 0x68 || op == 0x6a)
1230 {
1231 int delta;
1232
1233 /* Skip past the `pushl' instruction; it has either a one-byte or a
1234 four-byte operand, depending on the opcode. */
1235 if (op == 0x68)
1236 delta = 5;
1237 else
1238 delta = 2;
1239
1240 /* Read the following 8 bytes, which should be `call _probe' (6
1241 bytes) followed by `addl $4,%esp' (2 bytes). */
1242 read_memory (pc + delta, buf, sizeof (buf));
1243 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1244 pc += delta + sizeof (buf);
1245 }
1246
1247 return pc;
1248 }
1249
1250 /* GCC 4.1 and later, can put code in the prologue to realign the
1251 stack pointer. Check whether PC points to such code, and update
1252 CACHE accordingly. Return the first instruction after the code
1253 sequence or CURRENT_PC, whichever is smaller. If we don't
1254 recognize the code, return PC. */
1255
1256 static CORE_ADDR
1257 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1258 struct i386_frame_cache *cache)
1259 {
1260 /* There are 2 code sequences to re-align stack before the frame
1261 gets set up:
1262
1263 1. Use a caller-saved saved register:
1264
1265 leal 4(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 2. Use a callee-saved saved register:
1270
1271 pushl %reg
1272 leal 8(%esp), %reg
1273 andl $-XXX, %esp
1274 pushl -4(%reg)
1275
1276 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1277
1278 0x83 0xe4 0xf0 andl $-16, %esp
1279 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1280 */
1281
1282 gdb_byte buf[14];
1283 int reg;
1284 int offset, offset_and;
1285 static int regnums[8] = {
1286 I386_EAX_REGNUM, /* %eax */
1287 I386_ECX_REGNUM, /* %ecx */
1288 I386_EDX_REGNUM, /* %edx */
1289 I386_EBX_REGNUM, /* %ebx */
1290 I386_ESP_REGNUM, /* %esp */
1291 I386_EBP_REGNUM, /* %ebp */
1292 I386_ESI_REGNUM, /* %esi */
1293 I386_EDI_REGNUM /* %edi */
1294 };
1295
1296 if (target_read_code (pc, buf, sizeof buf))
1297 return pc;
1298
1299 /* Check caller-saved saved register. The first instruction has
1300 to be "leal 4(%esp), %reg". */
1301 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1302 {
1303 /* MOD must be binary 10 and R/M must be binary 100. */
1304 if ((buf[1] & 0xc7) != 0x44)
1305 return pc;
1306
1307 /* REG has register number. */
1308 reg = (buf[1] >> 3) & 7;
1309 offset = 4;
1310 }
1311 else
1312 {
1313 /* Check callee-saved saved register. The first instruction
1314 has to be "pushl %reg". */
1315 if ((buf[0] & 0xf8) != 0x50)
1316 return pc;
1317
1318 /* Get register. */
1319 reg = buf[0] & 0x7;
1320
1321 /* The next instruction has to be "leal 8(%esp), %reg". */
1322 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1323 return pc;
1324
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[2] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. Registers in pushl and leal have to
1330 be the same. */
1331 if (reg != ((buf[2] >> 3) & 7))
1332 return pc;
1333
1334 offset = 5;
1335 }
1336
1337 /* Rigister can't be %esp nor %ebp. */
1338 if (reg == 4 || reg == 5)
1339 return pc;
1340
1341 /* The next instruction has to be "andl $-XXX, %esp". */
1342 if (buf[offset + 1] != 0xe4
1343 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1344 return pc;
1345
1346 offset_and = offset;
1347 offset += buf[offset] == 0x81 ? 6 : 3;
1348
1349 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1350 0xfc. REG must be binary 110 and MOD must be binary 01. */
1351 if (buf[offset] != 0xff
1352 || buf[offset + 2] != 0xfc
1353 || (buf[offset + 1] & 0xf8) != 0x70)
1354 return pc;
1355
1356 /* R/M has register. Registers in leal and pushl have to be the
1357 same. */
1358 if (reg != (buf[offset + 1] & 7))
1359 return pc;
1360
1361 if (current_pc > pc + offset_and)
1362 cache->saved_sp_reg = regnums[reg];
1363
1364 return std::min (pc + offset + 3, current_pc);
1365 }
1366
1367 /* Maximum instruction length we need to handle. */
1368 #define I386_MAX_MATCHED_INSN_LEN 6
1369
1370 /* Instruction description. */
1371 struct i386_insn
1372 {
1373 size_t len;
1374 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1375 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1376 };
1377
1378 /* Return whether instruction at PC matches PATTERN. */
1379
1380 static int
1381 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1382 {
1383 gdb_byte op;
1384
1385 if (target_read_code (pc, &op, 1))
1386 return 0;
1387
1388 if ((op & pattern.mask[0]) == pattern.insn[0])
1389 {
1390 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1391 int insn_matched = 1;
1392 size_t i;
1393
1394 gdb_assert (pattern.len > 1);
1395 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1396
1397 if (target_read_code (pc + 1, buf, pattern.len - 1))
1398 return 0;
1399
1400 for (i = 1; i < pattern.len; i++)
1401 {
1402 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1403 insn_matched = 0;
1404 }
1405 return insn_matched;
1406 }
1407 return 0;
1408 }
1409
1410 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1411 the first instruction description that matches. Otherwise, return
1412 NULL. */
1413
1414 static struct i386_insn *
1415 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1416 {
1417 struct i386_insn *pattern;
1418
1419 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1420 {
1421 if (i386_match_pattern (pc, *pattern))
1422 return pattern;
1423 }
1424
1425 return NULL;
1426 }
1427
1428 /* Return whether PC points inside a sequence of instructions that
1429 matches INSN_PATTERNS. */
1430
1431 static int
1432 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1433 {
1434 CORE_ADDR current_pc;
1435 int ix, i;
1436 struct i386_insn *insn;
1437
1438 insn = i386_match_insn (pc, insn_patterns);
1439 if (insn == NULL)
1440 return 0;
1441
1442 current_pc = pc;
1443 ix = insn - insn_patterns;
1444 for (i = ix - 1; i >= 0; i--)
1445 {
1446 current_pc -= insn_patterns[i].len;
1447
1448 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1449 return 0;
1450 }
1451
1452 current_pc = pc + insn->len;
1453 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1454 {
1455 if (!i386_match_pattern (current_pc, *insn))
1456 return 0;
1457
1458 current_pc += insn->len;
1459 }
1460
1461 return 1;
1462 }
1463
1464 /* Some special instructions that might be migrated by GCC into the
1465 part of the prologue that sets up the new stack frame. Because the
1466 stack frame hasn't been setup yet, no registers have been saved
1467 yet, and only the scratch registers %eax, %ecx and %edx can be
1468 touched. */
1469
1470 static i386_insn i386_frame_setup_skip_insns[] =
1471 {
1472 /* Check for `movb imm8, r' and `movl imm32, r'.
1473
1474 ??? Should we handle 16-bit operand-sizes here? */
1475
1476 /* `movb imm8, %al' and `movb imm8, %ah' */
1477 /* `movb imm8, %cl' and `movb imm8, %ch' */
1478 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1479 /* `movb imm8, %dl' and `movb imm8, %dh' */
1480 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1481 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1482 { 5, { 0xb8 }, { 0xfe } },
1483 /* `movl imm32, %edx' */
1484 { 5, { 0xba }, { 0xff } },
1485
1486 /* Check for `mov imm32, r32'. Note that there is an alternative
1487 encoding for `mov m32, %eax'.
1488
1489 ??? Should we handle SIB addressing here?
1490 ??? Should we handle 16-bit operand-sizes here? */
1491
1492 /* `movl m32, %eax' */
1493 { 5, { 0xa1 }, { 0xff } },
1494 /* `movl m32, %eax' and `mov; m32, %ecx' */
1495 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1496 /* `movl m32, %edx' */
1497 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1498
1499 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1500 Because of the symmetry, there are actually two ways to encode
1501 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1502 opcode bytes 0x31 and 0x33 for `xorl'. */
1503
1504 /* `subl %eax, %eax' */
1505 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1506 /* `subl %ecx, %ecx' */
1507 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1508 /* `subl %edx, %edx' */
1509 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1510 /* `xorl %eax, %eax' */
1511 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1512 /* `xorl %ecx, %ecx' */
1513 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1514 /* `xorl %edx, %edx' */
1515 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1516 { 0 }
1517 };
1518
1519 /* Check whether PC points to an endbr32 instruction. */
1520 static CORE_ADDR
1521 i386_skip_endbr (CORE_ADDR pc)
1522 {
1523 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1524
1525 gdb_byte buf[sizeof (endbr32)];
1526
1527 /* Stop there if we can't read the code */
1528 if (target_read_code (pc, buf, sizeof (endbr32)))
1529 return pc;
1530
1531 /* If the instruction isn't an endbr32, stop */
1532 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1533 return pc;
1534
1535 return pc + sizeof (endbr32);
1536 }
1537
1538 /* Check whether PC points to a no-op instruction. */
1539 static CORE_ADDR
1540 i386_skip_noop (CORE_ADDR pc)
1541 {
1542 gdb_byte op;
1543 int check = 1;
1544
1545 if (target_read_code (pc, &op, 1))
1546 return pc;
1547
1548 while (check)
1549 {
1550 check = 0;
1551 /* Ignore `nop' instruction. */
1552 if (op == 0x90)
1553 {
1554 pc += 1;
1555 if (target_read_code (pc, &op, 1))
1556 return pc;
1557 check = 1;
1558 }
1559 /* Ignore no-op instruction `mov %edi, %edi'.
1560 Microsoft system dlls often start with
1561 a `mov %edi,%edi' instruction.
1562 The 5 bytes before the function start are
1563 filled with `nop' instructions.
1564 This pattern can be used for hot-patching:
1565 The `mov %edi, %edi' instruction can be replaced by a
1566 near jump to the location of the 5 `nop' instructions
1567 which can be replaced by a 32-bit jump to anywhere
1568 in the 32-bit address space. */
1569
1570 else if (op == 0x8b)
1571 {
1572 if (target_read_code (pc + 1, &op, 1))
1573 return pc;
1574
1575 if (op == 0xff)
1576 {
1577 pc += 2;
1578 if (target_read_code (pc, &op, 1))
1579 return pc;
1580
1581 check = 1;
1582 }
1583 }
1584 }
1585 return pc;
1586 }
1587
1588 /* Check whether PC points at a code that sets up a new stack frame.
1589 If so, it updates CACHE and returns the address of the first
1590 instruction after the sequence that sets up the frame or LIMIT,
1591 whichever is smaller. If we don't recognize the code, return PC. */
1592
1593 static CORE_ADDR
1594 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1595 CORE_ADDR pc, CORE_ADDR limit,
1596 struct i386_frame_cache *cache)
1597 {
1598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1599 struct i386_insn *insn;
1600 gdb_byte op;
1601 int skip = 0;
1602
1603 if (limit <= pc)
1604 return limit;
1605
1606 if (target_read_code (pc, &op, 1))
1607 return pc;
1608
1609 if (op == 0x55) /* pushl %ebp */
1610 {
1611 /* Take into account that we've executed the `pushl %ebp' that
1612 starts this instruction sequence. */
1613 cache->saved_regs[I386_EBP_REGNUM] = 0;
1614 cache->sp_offset += 4;
1615 pc++;
1616
1617 /* If that's all, return now. */
1618 if (limit <= pc)
1619 return limit;
1620
1621 /* Check for some special instructions that might be migrated by
1622 GCC into the prologue and skip them. At this point in the
1623 prologue, code should only touch the scratch registers %eax,
1624 %ecx and %edx, so while the number of possibilities is sheer,
1625 it is limited.
1626
1627 Make sure we only skip these instructions if we later see the
1628 `movl %esp, %ebp' that actually sets up the frame. */
1629 while (pc + skip < limit)
1630 {
1631 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1632 if (insn == NULL)
1633 break;
1634
1635 skip += insn->len;
1636 }
1637
1638 /* If that's all, return now. */
1639 if (limit <= pc + skip)
1640 return limit;
1641
1642 if (target_read_code (pc + skip, &op, 1))
1643 return pc + skip;
1644
1645 /* The i386 prologue looks like
1646
1647 push %ebp
1648 mov %esp,%ebp
1649 sub $0x10,%esp
1650
1651 and a different prologue can be generated for atom.
1652
1653 push %ebp
1654 lea (%esp),%ebp
1655 lea -0x10(%esp),%esp
1656
1657 We handle both of them here. */
1658
1659 switch (op)
1660 {
1661 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1662 case 0x8b:
1663 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1664 != 0xec)
1665 return pc;
1666 pc += (skip + 2);
1667 break;
1668 case 0x89:
1669 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1670 != 0xe5)
1671 return pc;
1672 pc += (skip + 2);
1673 break;
1674 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1675 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1676 != 0x242c)
1677 return pc;
1678 pc += (skip + 3);
1679 break;
1680 default:
1681 return pc;
1682 }
1683
1684 /* OK, we actually have a frame. We just don't know how large
1685 it is yet. Set its size to zero. We'll adjust it if
1686 necessary. We also now commit to skipping the special
1687 instructions mentioned before. */
1688 cache->locals = 0;
1689
1690 /* If that's all, return now. */
1691 if (limit <= pc)
1692 return limit;
1693
1694 /* Check for stack adjustment
1695
1696 subl $XXX, %esp
1697 or
1698 lea -XXX(%esp),%esp
1699
1700 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1701 reg, so we don't have to worry about a data16 prefix. */
1702 if (target_read_code (pc, &op, 1))
1703 return pc;
1704 if (op == 0x83)
1705 {
1706 /* `subl' with 8-bit immediate. */
1707 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1708 /* Some instruction starting with 0x83 other than `subl'. */
1709 return pc;
1710
1711 /* `subl' with signed 8-bit immediate (though it wouldn't
1712 make sense to be negative). */
1713 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1714 return pc + 3;
1715 }
1716 else if (op == 0x81)
1717 {
1718 /* Maybe it is `subl' with a 32-bit immediate. */
1719 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1720 /* Some instruction starting with 0x81 other than `subl'. */
1721 return pc;
1722
1723 /* It is `subl' with a 32-bit immediate. */
1724 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1725 return pc + 6;
1726 }
1727 else if (op == 0x8d)
1728 {
1729 /* The ModR/M byte is 0x64. */
1730 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1731 return pc;
1732 /* 'lea' with 8-bit displacement. */
1733 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1734 return pc + 4;
1735 }
1736 else
1737 {
1738 /* Some instruction other than `subl' nor 'lea'. */
1739 return pc;
1740 }
1741 }
1742 else if (op == 0xc8) /* enter */
1743 {
1744 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1745 return pc + 4;
1746 }
1747
1748 return pc;
1749 }
1750
1751 /* Check whether PC points at code that saves registers on the stack.
1752 If so, it updates CACHE and returns the address of the first
1753 instruction after the register saves or CURRENT_PC, whichever is
1754 smaller. Otherwise, return PC. */
1755
1756 static CORE_ADDR
1757 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1758 struct i386_frame_cache *cache)
1759 {
1760 CORE_ADDR offset = 0;
1761 gdb_byte op;
1762 int i;
1763
1764 if (cache->locals > 0)
1765 offset -= cache->locals;
1766 for (i = 0; i < 8 && pc < current_pc; i++)
1767 {
1768 if (target_read_code (pc, &op, 1))
1769 return pc;
1770 if (op < 0x50 || op > 0x57)
1771 break;
1772
1773 offset -= 4;
1774 cache->saved_regs[op - 0x50] = offset;
1775 cache->sp_offset += 4;
1776 pc++;
1777 }
1778
1779 return pc;
1780 }
1781
1782 /* Do a full analysis of the prologue at PC and update CACHE
1783 accordingly. Bail out early if CURRENT_PC is reached. Return the
1784 address where the analysis stopped.
1785
1786 We handle these cases:
1787
1788 The startup sequence can be at the start of the function, or the
1789 function can start with a branch to startup code at the end.
1790
1791 %ebp can be set up with either the 'enter' instruction, or "pushl
1792 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793 once used in the System V compiler).
1794
1795 Local space is allocated just below the saved %ebp by either the
1796 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1797 16-bit unsigned argument for space to allocate, and the 'addl'
1798 instruction could have either a signed byte, or 32-bit immediate.
1799
1800 Next, the registers used by this function are pushed. With the
1801 System V compiler they will always be in the order: %edi, %esi,
1802 %ebx (and sometimes a harmless bug causes it to also save but not
1803 restore %eax); however, the code below is willing to see the pushes
1804 in any order, and will handle up to 8 of them.
1805
1806 If the setup sequence is at the end of the function, then the next
1807 instruction will be a branch back to the start. */
1808
1809 static CORE_ADDR
1810 i386_analyze_prologue (struct gdbarch *gdbarch,
1811 CORE_ADDR pc, CORE_ADDR current_pc,
1812 struct i386_frame_cache *cache)
1813 {
1814 pc = i386_skip_endbr (pc);
1815 pc = i386_skip_noop (pc);
1816 pc = i386_follow_jump (gdbarch, pc);
1817 pc = i386_analyze_struct_return (pc, current_pc, cache);
1818 pc = i386_skip_probe (pc);
1819 pc = i386_analyze_stack_align (pc, current_pc, cache);
1820 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1821 return i386_analyze_register_saves (pc, current_pc, cache);
1822 }
1823
1824 /* Return PC of first real instruction. */
1825
1826 static CORE_ADDR
1827 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1828 {
1829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1830
1831 static gdb_byte pic_pat[6] =
1832 {
1833 0xe8, 0, 0, 0, 0, /* call 0x0 */
1834 0x5b, /* popl %ebx */
1835 };
1836 struct i386_frame_cache cache;
1837 CORE_ADDR pc;
1838 gdb_byte op;
1839 int i;
1840 CORE_ADDR func_addr;
1841
1842 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1843 {
1844 CORE_ADDR post_prologue_pc
1845 = skip_prologue_using_sal (gdbarch, func_addr);
1846 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1847
1848 /* LLVM backend (Clang/Flang) always emits a line note before the
1849 prologue and another one after. We trust clang to emit usable
1850 line notes. */
1851 if (post_prologue_pc
1852 && (cust != NULL
1853 && COMPUNIT_PRODUCER (cust) != NULL
1854 && producer_is_llvm (COMPUNIT_PRODUCER (cust))))
1855 return std::max (start_pc, post_prologue_pc);
1856 }
1857
1858 cache.locals = -1;
1859 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1860 if (cache.locals < 0)
1861 return start_pc;
1862
1863 /* Found valid frame setup. */
1864
1865 /* The native cc on SVR4 in -K PIC mode inserts the following code
1866 to get the address of the global offset table (GOT) into register
1867 %ebx:
1868
1869 call 0x0
1870 popl %ebx
1871 movl %ebx,x(%ebp) (optional)
1872 addl y,%ebx
1873
1874 This code is with the rest of the prologue (at the end of the
1875 function), so we have to skip it to get to the first real
1876 instruction at the start of the function. */
1877
1878 for (i = 0; i < 6; i++)
1879 {
1880 if (target_read_code (pc + i, &op, 1))
1881 return pc;
1882
1883 if (pic_pat[i] != op)
1884 break;
1885 }
1886 if (i == 6)
1887 {
1888 int delta = 6;
1889
1890 if (target_read_code (pc + delta, &op, 1))
1891 return pc;
1892
1893 if (op == 0x89) /* movl %ebx, x(%ebp) */
1894 {
1895 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1896
1897 if (op == 0x5d) /* One byte offset from %ebp. */
1898 delta += 3;
1899 else if (op == 0x9d) /* Four byte offset from %ebp. */
1900 delta += 6;
1901 else /* Unexpected instruction. */
1902 delta = 0;
1903
1904 if (target_read_code (pc + delta, &op, 1))
1905 return pc;
1906 }
1907
1908 /* addl y,%ebx */
1909 if (delta > 0 && op == 0x81
1910 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1911 == 0xc3)
1912 {
1913 pc += delta + 6;
1914 }
1915 }
1916
1917 /* If the function starts with a branch (to startup code at the end)
1918 the last instruction should bring us back to the first
1919 instruction of the real code. */
1920 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1921 pc = i386_follow_jump (gdbarch, pc);
1922
1923 return pc;
1924 }
1925
1926 /* Check that the code pointed to by PC corresponds to a call to
1927 __main, skip it if so. Return PC otherwise. */
1928
1929 CORE_ADDR
1930 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1931 {
1932 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1933 gdb_byte op;
1934
1935 if (target_read_code (pc, &op, 1))
1936 return pc;
1937 if (op == 0xe8)
1938 {
1939 gdb_byte buf[4];
1940
1941 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1942 {
1943 /* Make sure address is computed correctly as a 32bit
1944 integer even if CORE_ADDR is 64 bit wide. */
1945 struct bound_minimal_symbol s;
1946 CORE_ADDR call_dest;
1947
1948 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1949 call_dest = call_dest & 0xffffffffU;
1950 s = lookup_minimal_symbol_by_pc (call_dest);
1951 if (s.minsym != NULL
1952 && s.minsym->linkage_name () != NULL
1953 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1954 pc += 5;
1955 }
1956 }
1957
1958 return pc;
1959 }
1960
1961 /* This function is 64-bit safe. */
1962
1963 static CORE_ADDR
1964 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1965 {
1966 gdb_byte buf[8];
1967
1968 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1969 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1970 }
1971 \f
1972
1973 /* Normal frames. */
1974
1975 static void
1976 i386_frame_cache_1 (struct frame_info *this_frame,
1977 struct i386_frame_cache *cache)
1978 {
1979 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1980 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1981 gdb_byte buf[4];
1982 int i;
1983
1984 cache->pc = get_frame_func (this_frame);
1985
1986 /* In principle, for normal frames, %ebp holds the frame pointer,
1987 which holds the base address for the current stack frame.
1988 However, for functions that don't need it, the frame pointer is
1989 optional. For these "frameless" functions the frame pointer is
1990 actually the frame pointer of the calling frame. Signal
1991 trampolines are just a special case of a "frameless" function.
1992 They (usually) share their frame pointer with the frame that was
1993 in progress when the signal occurred. */
1994
1995 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1996 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1997 if (cache->base == 0)
1998 {
1999 cache->base_p = 1;
2000 return;
2001 }
2002
2003 /* For normal frames, %eip is stored at 4(%ebp). */
2004 cache->saved_regs[I386_EIP_REGNUM] = 4;
2005
2006 if (cache->pc != 0)
2007 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2008 cache);
2009
2010 if (cache->locals < 0)
2011 {
2012 /* We didn't find a valid frame, which means that CACHE->base
2013 currently holds the frame pointer for our calling frame. If
2014 we're at the start of a function, or somewhere half-way its
2015 prologue, the function's frame probably hasn't been fully
2016 setup yet. Try to reconstruct the base address for the stack
2017 frame by looking at the stack pointer. For truly "frameless"
2018 functions this might work too. */
2019
2020 if (cache->saved_sp_reg != -1)
2021 {
2022 /* Saved stack pointer has been saved. */
2023 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2024 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2025
2026 /* We're halfway aligning the stack. */
2027 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2028 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2029
2030 /* This will be added back below. */
2031 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2032 }
2033 else if (cache->pc != 0
2034 || target_read_code (get_frame_pc (this_frame), buf, 1))
2035 {
2036 /* We're in a known function, but did not find a frame
2037 setup. Assume that the function does not use %ebp.
2038 Alternatively, we may have jumped to an invalid
2039 address; in that case there is definitely no new
2040 frame in %ebp. */
2041 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2042 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2043 + cache->sp_offset;
2044 }
2045 else
2046 /* We're in an unknown function. We could not find the start
2047 of the function to analyze the prologue; our best option is
2048 to assume a typical frame layout with the caller's %ebp
2049 saved. */
2050 cache->saved_regs[I386_EBP_REGNUM] = 0;
2051 }
2052
2053 if (cache->saved_sp_reg != -1)
2054 {
2055 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2056 register may be unavailable). */
2057 if (cache->saved_sp == 0
2058 && deprecated_frame_register_read (this_frame,
2059 cache->saved_sp_reg, buf))
2060 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2061 }
2062 /* Now that we have the base address for the stack frame we can
2063 calculate the value of %esp in the calling frame. */
2064 else if (cache->saved_sp == 0)
2065 cache->saved_sp = cache->base + 8;
2066
2067 /* Adjust all the saved registers such that they contain addresses
2068 instead of offsets. */
2069 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2070 if (cache->saved_regs[i] != -1)
2071 cache->saved_regs[i] += cache->base;
2072
2073 cache->base_p = 1;
2074 }
2075
2076 static struct i386_frame_cache *
2077 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2078 {
2079 struct i386_frame_cache *cache;
2080
2081 if (*this_cache)
2082 return (struct i386_frame_cache *) *this_cache;
2083
2084 cache = i386_alloc_frame_cache ();
2085 *this_cache = cache;
2086
2087 try
2088 {
2089 i386_frame_cache_1 (this_frame, cache);
2090 }
2091 catch (const gdb_exception_error &ex)
2092 {
2093 if (ex.error != NOT_AVAILABLE_ERROR)
2094 throw;
2095 }
2096
2097 return cache;
2098 }
2099
2100 static void
2101 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2102 struct frame_id *this_id)
2103 {
2104 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2105
2106 if (!cache->base_p)
2107 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2108 else if (cache->base == 0)
2109 {
2110 /* This marks the outermost frame. */
2111 }
2112 else
2113 {
2114 /* See the end of i386_push_dummy_call. */
2115 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2116 }
2117 }
2118
2119 static enum unwind_stop_reason
2120 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2121 void **this_cache)
2122 {
2123 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2124
2125 if (!cache->base_p)
2126 return UNWIND_UNAVAILABLE;
2127
2128 /* This marks the outermost frame. */
2129 if (cache->base == 0)
2130 return UNWIND_OUTERMOST;
2131
2132 return UNWIND_NO_REASON;
2133 }
2134
2135 static struct value *
2136 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2137 int regnum)
2138 {
2139 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2140
2141 gdb_assert (regnum >= 0);
2142
2143 /* The System V ABI says that:
2144
2145 "The flags register contains the system flags, such as the
2146 direction flag and the carry flag. The direction flag must be
2147 set to the forward (that is, zero) direction before entry and
2148 upon exit from a function. Other user flags have no specified
2149 role in the standard calling sequence and are not preserved."
2150
2151 To guarantee the "upon exit" part of that statement we fake a
2152 saved flags register that has its direction flag cleared.
2153
2154 Note that GCC doesn't seem to rely on the fact that the direction
2155 flag is cleared after a function return; it always explicitly
2156 clears the flag before operations where it matters.
2157
2158 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2159 right thing to do. The way we fake the flags register here makes
2160 it impossible to change it. */
2161
2162 if (regnum == I386_EFLAGS_REGNUM)
2163 {
2164 ULONGEST val;
2165
2166 val = get_frame_register_unsigned (this_frame, regnum);
2167 val &= ~(1 << 10);
2168 return frame_unwind_got_constant (this_frame, regnum, val);
2169 }
2170
2171 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2172 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2173
2174 if (regnum == I386_ESP_REGNUM
2175 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2176 {
2177 /* If the SP has been saved, but we don't know where, then this
2178 means that SAVED_SP_REG register was found unavailable back
2179 when we built the cache. */
2180 if (cache->saved_sp == 0)
2181 return frame_unwind_got_register (this_frame, regnum,
2182 cache->saved_sp_reg);
2183 else
2184 return frame_unwind_got_constant (this_frame, regnum,
2185 cache->saved_sp);
2186 }
2187
2188 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2189 return frame_unwind_got_memory (this_frame, regnum,
2190 cache->saved_regs[regnum]);
2191
2192 return frame_unwind_got_register (this_frame, regnum, regnum);
2193 }
2194
2195 static const struct frame_unwind i386_frame_unwind =
2196 {
2197 NORMAL_FRAME,
2198 i386_frame_unwind_stop_reason,
2199 i386_frame_this_id,
2200 i386_frame_prev_register,
2201 NULL,
2202 default_frame_sniffer
2203 };
2204
2205 /* Normal frames, but in a function epilogue. */
2206
2207 /* Implement the stack_frame_destroyed_p gdbarch method.
2208
2209 The epilogue is defined here as the 'ret' instruction, which will
2210 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2211 the function's stack frame. */
2212
2213 static int
2214 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2215 {
2216 gdb_byte insn;
2217 struct compunit_symtab *cust;
2218
2219 cust = find_pc_compunit_symtab (pc);
2220 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2221 return 0;
2222
2223 if (target_read_memory (pc, &insn, 1))
2224 return 0; /* Can't read memory at pc. */
2225
2226 if (insn != 0xc3) /* 'ret' instruction. */
2227 return 0;
2228
2229 return 1;
2230 }
2231
2232 static int
2233 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2234 struct frame_info *this_frame,
2235 void **this_prologue_cache)
2236 {
2237 if (frame_relative_level (this_frame) == 0)
2238 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2239 get_frame_pc (this_frame));
2240 else
2241 return 0;
2242 }
2243
2244 static struct i386_frame_cache *
2245 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2246 {
2247 struct i386_frame_cache *cache;
2248 CORE_ADDR sp;
2249
2250 if (*this_cache)
2251 return (struct i386_frame_cache *) *this_cache;
2252
2253 cache = i386_alloc_frame_cache ();
2254 *this_cache = cache;
2255
2256 try
2257 {
2258 cache->pc = get_frame_func (this_frame);
2259
2260 /* At this point the stack looks as if we just entered the
2261 function, with the return address at the top of the
2262 stack. */
2263 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2264 cache->base = sp + cache->sp_offset;
2265 cache->saved_sp = cache->base + 8;
2266 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2267
2268 cache->base_p = 1;
2269 }
2270 catch (const gdb_exception_error &ex)
2271 {
2272 if (ex.error != NOT_AVAILABLE_ERROR)
2273 throw;
2274 }
2275
2276 return cache;
2277 }
2278
2279 static enum unwind_stop_reason
2280 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2281 void **this_cache)
2282 {
2283 struct i386_frame_cache *cache =
2284 i386_epilogue_frame_cache (this_frame, this_cache);
2285
2286 if (!cache->base_p)
2287 return UNWIND_UNAVAILABLE;
2288
2289 return UNWIND_NO_REASON;
2290 }
2291
2292 static void
2293 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2294 void **this_cache,
2295 struct frame_id *this_id)
2296 {
2297 struct i386_frame_cache *cache =
2298 i386_epilogue_frame_cache (this_frame, this_cache);
2299
2300 if (!cache->base_p)
2301 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2302 else
2303 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2304 }
2305
2306 static struct value *
2307 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2308 void **this_cache, int regnum)
2309 {
2310 /* Make sure we've initialized the cache. */
2311 i386_epilogue_frame_cache (this_frame, this_cache);
2312
2313 return i386_frame_prev_register (this_frame, this_cache, regnum);
2314 }
2315
2316 static const struct frame_unwind i386_epilogue_frame_unwind =
2317 {
2318 NORMAL_FRAME,
2319 i386_epilogue_frame_unwind_stop_reason,
2320 i386_epilogue_frame_this_id,
2321 i386_epilogue_frame_prev_register,
2322 NULL,
2323 i386_epilogue_frame_sniffer
2324 };
2325 \f
2326
2327 /* Stack-based trampolines. */
2328
2329 /* These trampolines are used on cross x86 targets, when taking the
2330 address of a nested function. When executing these trampolines,
2331 no stack frame is set up, so we are in a similar situation as in
2332 epilogues and i386_epilogue_frame_this_id can be re-used. */
2333
2334 /* Static chain passed in register. */
2335
2336 static i386_insn i386_tramp_chain_in_reg_insns[] =
2337 {
2338 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339 { 5, { 0xb8 }, { 0xfe } },
2340
2341 /* `jmp imm32' */
2342 { 5, { 0xe9 }, { 0xff } },
2343
2344 {0}
2345 };
2346
2347 /* Static chain passed on stack (when regparm=3). */
2348
2349 static i386_insn i386_tramp_chain_on_stack_insns[] =
2350 {
2351 /* `push imm32' */
2352 { 5, { 0x68 }, { 0xff } },
2353
2354 /* `jmp imm32' */
2355 { 5, { 0xe9 }, { 0xff } },
2356
2357 {0}
2358 };
2359
2360 /* Return whether PC points inside a stack trampoline. */
2361
2362 static int
2363 i386_in_stack_tramp_p (CORE_ADDR pc)
2364 {
2365 gdb_byte insn;
2366 const char *name;
2367
2368 /* A stack trampoline is detected if no name is associated
2369 to the current pc and if it points inside a trampoline
2370 sequence. */
2371
2372 find_pc_partial_function (pc, &name, NULL, NULL);
2373 if (name)
2374 return 0;
2375
2376 if (target_read_memory (pc, &insn, 1))
2377 return 0;
2378
2379 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2380 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2381 return 0;
2382
2383 return 1;
2384 }
2385
2386 static int
2387 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2388 struct frame_info *this_frame,
2389 void **this_cache)
2390 {
2391 if (frame_relative_level (this_frame) == 0)
2392 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2393 else
2394 return 0;
2395 }
2396
2397 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2398 {
2399 NORMAL_FRAME,
2400 i386_epilogue_frame_unwind_stop_reason,
2401 i386_epilogue_frame_this_id,
2402 i386_epilogue_frame_prev_register,
2403 NULL,
2404 i386_stack_tramp_frame_sniffer
2405 };
2406 \f
2407 /* Generate a bytecode expression to get the value of the saved PC. */
2408
2409 static void
2410 i386_gen_return_address (struct gdbarch *gdbarch,
2411 struct agent_expr *ax, struct axs_value *value,
2412 CORE_ADDR scope)
2413 {
2414 /* The following sequence assumes the traditional use of the base
2415 register. */
2416 ax_reg (ax, I386_EBP_REGNUM);
2417 ax_const_l (ax, 4);
2418 ax_simple (ax, aop_add);
2419 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2420 value->kind = axs_lvalue_memory;
2421 }
2422 \f
2423
2424 /* Signal trampolines. */
2425
2426 static struct i386_frame_cache *
2427 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2428 {
2429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2431 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2432 struct i386_frame_cache *cache;
2433 CORE_ADDR addr;
2434 gdb_byte buf[4];
2435
2436 if (*this_cache)
2437 return (struct i386_frame_cache *) *this_cache;
2438
2439 cache = i386_alloc_frame_cache ();
2440
2441 try
2442 {
2443 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2444 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2445
2446 addr = tdep->sigcontext_addr (this_frame);
2447 if (tdep->sc_reg_offset)
2448 {
2449 int i;
2450
2451 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2452
2453 for (i = 0; i < tdep->sc_num_regs; i++)
2454 if (tdep->sc_reg_offset[i] != -1)
2455 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2456 }
2457 else
2458 {
2459 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2460 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2461 }
2462
2463 cache->base_p = 1;
2464 }
2465 catch (const gdb_exception_error &ex)
2466 {
2467 if (ex.error != NOT_AVAILABLE_ERROR)
2468 throw;
2469 }
2470
2471 *this_cache = cache;
2472 return cache;
2473 }
2474
2475 static enum unwind_stop_reason
2476 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2477 void **this_cache)
2478 {
2479 struct i386_frame_cache *cache =
2480 i386_sigtramp_frame_cache (this_frame, this_cache);
2481
2482 if (!cache->base_p)
2483 return UNWIND_UNAVAILABLE;
2484
2485 return UNWIND_NO_REASON;
2486 }
2487
2488 static void
2489 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2490 struct frame_id *this_id)
2491 {
2492 struct i386_frame_cache *cache =
2493 i386_sigtramp_frame_cache (this_frame, this_cache);
2494
2495 if (!cache->base_p)
2496 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2497 else
2498 {
2499 /* See the end of i386_push_dummy_call. */
2500 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2501 }
2502 }
2503
2504 static struct value *
2505 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2506 void **this_cache, int regnum)
2507 {
2508 /* Make sure we've initialized the cache. */
2509 i386_sigtramp_frame_cache (this_frame, this_cache);
2510
2511 return i386_frame_prev_register (this_frame, this_cache, regnum);
2512 }
2513
2514 static int
2515 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2516 struct frame_info *this_frame,
2517 void **this_prologue_cache)
2518 {
2519 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2520
2521 /* We shouldn't even bother if we don't have a sigcontext_addr
2522 handler. */
2523 if (tdep->sigcontext_addr == NULL)
2524 return 0;
2525
2526 if (tdep->sigtramp_p != NULL)
2527 {
2528 if (tdep->sigtramp_p (this_frame))
2529 return 1;
2530 }
2531
2532 if (tdep->sigtramp_start != 0)
2533 {
2534 CORE_ADDR pc = get_frame_pc (this_frame);
2535
2536 gdb_assert (tdep->sigtramp_end != 0);
2537 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2538 return 1;
2539 }
2540
2541 return 0;
2542 }
2543
2544 static const struct frame_unwind i386_sigtramp_frame_unwind =
2545 {
2546 SIGTRAMP_FRAME,
2547 i386_sigtramp_frame_unwind_stop_reason,
2548 i386_sigtramp_frame_this_id,
2549 i386_sigtramp_frame_prev_register,
2550 NULL,
2551 i386_sigtramp_frame_sniffer
2552 };
2553 \f
2554
2555 static CORE_ADDR
2556 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2557 {
2558 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2559
2560 return cache->base;
2561 }
2562
2563 static const struct frame_base i386_frame_base =
2564 {
2565 &i386_frame_unwind,
2566 i386_frame_base_address,
2567 i386_frame_base_address,
2568 i386_frame_base_address
2569 };
2570
2571 static struct frame_id
2572 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2573 {
2574 CORE_ADDR fp;
2575
2576 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2577
2578 /* See the end of i386_push_dummy_call. */
2579 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2580 }
2581
2582 /* _Decimal128 function return values need 16-byte alignment on the
2583 stack. */
2584
2585 static CORE_ADDR
2586 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2587 {
2588 return sp & -(CORE_ADDR)16;
2589 }
2590 \f
2591
2592 /* Figure out where the longjmp will land. Slurp the args out of the
2593 stack. We expect the first arg to be a pointer to the jmp_buf
2594 structure from which we extract the address that we will land at.
2595 This address is copied into PC. This routine returns non-zero on
2596 success. */
2597
2598 static int
2599 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2600 {
2601 gdb_byte buf[4];
2602 CORE_ADDR sp, jb_addr;
2603 struct gdbarch *gdbarch = get_frame_arch (frame);
2604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2605 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2606
2607 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2608 longjmp will land. */
2609 if (jb_pc_offset == -1)
2610 return 0;
2611
2612 get_frame_register (frame, I386_ESP_REGNUM, buf);
2613 sp = extract_unsigned_integer (buf, 4, byte_order);
2614 if (target_read_memory (sp + 4, buf, 4))
2615 return 0;
2616
2617 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2618 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2619 return 0;
2620
2621 *pc = extract_unsigned_integer (buf, 4, byte_order);
2622 return 1;
2623 }
2624 \f
2625
2626 /* Check whether TYPE must be 16-byte-aligned when passed as a
2627 function argument. 16-byte vectors, _Decimal128 and structures or
2628 unions containing such types must be 16-byte-aligned; other
2629 arguments are 4-byte-aligned. */
2630
2631 static int
2632 i386_16_byte_align_p (struct type *type)
2633 {
2634 type = check_typedef (type);
2635 if ((type->code () == TYPE_CODE_DECFLOAT
2636 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2637 && TYPE_LENGTH (type) == 16)
2638 return 1;
2639 if (type->code () == TYPE_CODE_ARRAY)
2640 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2641 if (type->code () == TYPE_CODE_STRUCT
2642 || type->code () == TYPE_CODE_UNION)
2643 {
2644 int i;
2645 for (i = 0; i < type->num_fields (); i++)
2646 {
2647 if (field_is_static (&type->field (i)))
2648 continue;
2649 if (i386_16_byte_align_p (type->field (i).type ()))
2650 return 1;
2651 }
2652 }
2653 return 0;
2654 }
2655
2656 /* Implementation for set_gdbarch_push_dummy_code. */
2657
2658 static CORE_ADDR
2659 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2660 struct value **args, int nargs, struct type *value_type,
2661 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2662 struct regcache *regcache)
2663 {
2664 /* Use 0xcc breakpoint - 1 byte. */
2665 *bp_addr = sp - 1;
2666 *real_pc = funaddr;
2667
2668 /* Keep the stack aligned. */
2669 return sp - 16;
2670 }
2671
2672 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2673 calling convention. */
2674
2675 CORE_ADDR
2676 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2677 struct regcache *regcache, CORE_ADDR bp_addr,
2678 int nargs, struct value **args, CORE_ADDR sp,
2679 function_call_return_method return_method,
2680 CORE_ADDR struct_addr, bool thiscall)
2681 {
2682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2683 gdb_byte buf[4];
2684 int i;
2685 int write_pass;
2686 int args_space = 0;
2687
2688 /* BND registers can be in arbitrary values at the moment of the
2689 inferior call. This can cause boundary violations that are not
2690 due to a real bug or even desired by the user. The best to be done
2691 is set the BND registers to allow access to the whole memory, INIT
2692 state, before pushing the inferior call. */
2693 i387_reset_bnd_regs (gdbarch, regcache);
2694
2695 /* Determine the total space required for arguments and struct
2696 return address in a first pass (allowing for 16-byte-aligned
2697 arguments), then push arguments in a second pass. */
2698
2699 for (write_pass = 0; write_pass < 2; write_pass++)
2700 {
2701 int args_space_used = 0;
2702
2703 if (return_method == return_method_struct)
2704 {
2705 if (write_pass)
2706 {
2707 /* Push value address. */
2708 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2709 write_memory (sp, buf, 4);
2710 args_space_used += 4;
2711 }
2712 else
2713 args_space += 4;
2714 }
2715
2716 for (i = thiscall ? 1 : 0; i < nargs; i++)
2717 {
2718 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2719
2720 if (write_pass)
2721 {
2722 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2723 args_space_used = align_up (args_space_used, 16);
2724
2725 write_memory (sp + args_space_used,
2726 value_contents_all (args[i]), len);
2727 /* The System V ABI says that:
2728
2729 "An argument's size is increased, if necessary, to make it a
2730 multiple of [32-bit] words. This may require tail padding,
2731 depending on the size of the argument."
2732
2733 This makes sure the stack stays word-aligned. */
2734 args_space_used += align_up (len, 4);
2735 }
2736 else
2737 {
2738 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2739 args_space = align_up (args_space, 16);
2740 args_space += align_up (len, 4);
2741 }
2742 }
2743
2744 if (!write_pass)
2745 {
2746 sp -= args_space;
2747
2748 /* The original System V ABI only requires word alignment,
2749 but modern incarnations need 16-byte alignment in order
2750 to support SSE. Since wasting a few bytes here isn't
2751 harmful we unconditionally enforce 16-byte alignment. */
2752 sp &= ~0xf;
2753 }
2754 }
2755
2756 /* Store return address. */
2757 sp -= 4;
2758 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2759 write_memory (sp, buf, 4);
2760
2761 /* Finally, update the stack pointer... */
2762 store_unsigned_integer (buf, 4, byte_order, sp);
2763 regcache->cooked_write (I386_ESP_REGNUM, buf);
2764
2765 /* ...and fake a frame pointer. */
2766 regcache->cooked_write (I386_EBP_REGNUM, buf);
2767
2768 /* The 'this' pointer needs to be in ECX. */
2769 if (thiscall)
2770 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2771
2772 /* MarkK wrote: This "+ 8" is all over the place:
2773 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2774 i386_dummy_id). It's there, since all frame unwinders for
2775 a given target have to agree (within a certain margin) on the
2776 definition of the stack address of a frame. Otherwise frame id
2777 comparison might not work correctly. Since DWARF2/GCC uses the
2778 stack address *before* the function call as a frame's CFA. On
2779 the i386, when %ebp is used as a frame pointer, the offset
2780 between the contents %ebp and the CFA as defined by GCC. */
2781 return sp + 8;
2782 }
2783
2784 /* Implement the "push_dummy_call" gdbarch method. */
2785
2786 static CORE_ADDR
2787 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2788 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2789 struct value **args, CORE_ADDR sp,
2790 function_call_return_method return_method,
2791 CORE_ADDR struct_addr)
2792 {
2793 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2794 nargs, args, sp, return_method,
2795 struct_addr, false);
2796 }
2797
2798 /* These registers are used for returning integers (and on some
2799 targets also for returning `struct' and `union' values when their
2800 size and alignment match an integer type). */
2801 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2802 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2803
2804 /* Read, for architecture GDBARCH, a function return value of TYPE
2805 from REGCACHE, and copy that into VALBUF. */
2806
2807 static void
2808 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2809 struct regcache *regcache, gdb_byte *valbuf)
2810 {
2811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2812 int len = TYPE_LENGTH (type);
2813 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2814
2815 if (type->code () == TYPE_CODE_FLT)
2816 {
2817 if (tdep->st0_regnum < 0)
2818 {
2819 warning (_("Cannot find floating-point return value."));
2820 memset (valbuf, 0, len);
2821 return;
2822 }
2823
2824 /* Floating-point return values can be found in %st(0). Convert
2825 its contents to the desired type. This is probably not
2826 exactly how it would happen on the target itself, but it is
2827 the best we can do. */
2828 regcache->raw_read (I386_ST0_REGNUM, buf);
2829 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2830 }
2831 else
2832 {
2833 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2834 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2835
2836 if (len <= low_size)
2837 {
2838 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2839 memcpy (valbuf, buf, len);
2840 }
2841 else if (len <= (low_size + high_size))
2842 {
2843 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2844 memcpy (valbuf, buf, low_size);
2845 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2846 memcpy (valbuf + low_size, buf, len - low_size);
2847 }
2848 else
2849 internal_error (__FILE__, __LINE__,
2850 _("Cannot extract return value of %d bytes long."),
2851 len);
2852 }
2853 }
2854
2855 /* Write, for architecture GDBARCH, a function return value of TYPE
2856 from VALBUF into REGCACHE. */
2857
2858 static void
2859 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2860 struct regcache *regcache, const gdb_byte *valbuf)
2861 {
2862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2863 int len = TYPE_LENGTH (type);
2864
2865 if (type->code () == TYPE_CODE_FLT)
2866 {
2867 ULONGEST fstat;
2868 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2869
2870 if (tdep->st0_regnum < 0)
2871 {
2872 warning (_("Cannot set floating-point return value."));
2873 return;
2874 }
2875
2876 /* Returning floating-point values is a bit tricky. Apart from
2877 storing the return value in %st(0), we have to simulate the
2878 state of the FPU at function return point. */
2879
2880 /* Convert the value found in VALBUF to the extended
2881 floating-point format used by the FPU. This is probably
2882 not exactly how it would happen on the target itself, but
2883 it is the best we can do. */
2884 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2885 regcache->raw_write (I386_ST0_REGNUM, buf);
2886
2887 /* Set the top of the floating-point register stack to 7. The
2888 actual value doesn't really matter, but 7 is what a normal
2889 function return would end up with if the program started out
2890 with a freshly initialized FPU. */
2891 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2892 fstat |= (7 << 11);
2893 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2894
2895 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2896 the floating-point register stack to 7, the appropriate value
2897 for the tag word is 0x3fff. */
2898 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2899 }
2900 else
2901 {
2902 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2903 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2904
2905 if (len <= low_size)
2906 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2907 else if (len <= (low_size + high_size))
2908 {
2909 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2910 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2911 valbuf + low_size);
2912 }
2913 else
2914 internal_error (__FILE__, __LINE__,
2915 _("Cannot store return value of %d bytes long."), len);
2916 }
2917 }
2918 \f
2919
2920 /* This is the variable that is set with "set struct-convention", and
2921 its legitimate values. */
2922 static const char default_struct_convention[] = "default";
2923 static const char pcc_struct_convention[] = "pcc";
2924 static const char reg_struct_convention[] = "reg";
2925 static const char *const valid_conventions[] =
2926 {
2927 default_struct_convention,
2928 pcc_struct_convention,
2929 reg_struct_convention,
2930 NULL
2931 };
2932 static const char *struct_convention = default_struct_convention;
2933
2934 /* Return non-zero if TYPE, which is assumed to be a structure,
2935 a union type, or an array type, should be returned in registers
2936 for architecture GDBARCH. */
2937
2938 static int
2939 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2940 {
2941 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2942 enum type_code code = type->code ();
2943 int len = TYPE_LENGTH (type);
2944
2945 gdb_assert (code == TYPE_CODE_STRUCT
2946 || code == TYPE_CODE_UNION
2947 || code == TYPE_CODE_ARRAY);
2948
2949 if (struct_convention == pcc_struct_convention
2950 || (struct_convention == default_struct_convention
2951 && tdep->struct_return == pcc_struct_return))
2952 return 0;
2953
2954 /* Structures consisting of a single `float', `double' or 'long
2955 double' member are returned in %st(0). */
2956 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
2957 {
2958 type = check_typedef (type->field (0).type ());
2959 if (type->code () == TYPE_CODE_FLT)
2960 return (len == 4 || len == 8 || len == 12);
2961 }
2962
2963 return (len == 1 || len == 2 || len == 4 || len == 8);
2964 }
2965
2966 /* Determine, for architecture GDBARCH, how a return value of TYPE
2967 should be returned. If it is supposed to be returned in registers,
2968 and READBUF is non-zero, read the appropriate value from REGCACHE,
2969 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2970 from WRITEBUF into REGCACHE. */
2971
2972 static enum return_value_convention
2973 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2974 struct type *type, struct regcache *regcache,
2975 gdb_byte *readbuf, const gdb_byte *writebuf)
2976 {
2977 enum type_code code = type->code ();
2978
2979 if (((code == TYPE_CODE_STRUCT
2980 || code == TYPE_CODE_UNION
2981 || code == TYPE_CODE_ARRAY)
2982 && !i386_reg_struct_return_p (gdbarch, type))
2983 /* Complex double and long double uses the struct return convention. */
2984 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2985 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2986 /* 128-bit decimal float uses the struct return convention. */
2987 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2988 {
2989 /* The System V ABI says that:
2990
2991 "A function that returns a structure or union also sets %eax
2992 to the value of the original address of the caller's area
2993 before it returns. Thus when the caller receives control
2994 again, the address of the returned object resides in register
2995 %eax and can be used to access the object."
2996
2997 So the ABI guarantees that we can always find the return
2998 value just after the function has returned. */
2999
3000 /* Note that the ABI doesn't mention functions returning arrays,
3001 which is something possible in certain languages such as Ada.
3002 In this case, the value is returned as if it was wrapped in
3003 a record, so the convention applied to records also applies
3004 to arrays. */
3005
3006 if (readbuf)
3007 {
3008 ULONGEST addr;
3009
3010 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3011 read_memory (addr, readbuf, TYPE_LENGTH (type));
3012 }
3013
3014 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3015 }
3016
3017 /* This special case is for structures consisting of a single
3018 `float', `double' or 'long double' member. These structures are
3019 returned in %st(0). For these structures, we call ourselves
3020 recursively, changing TYPE into the type of the first member of
3021 the structure. Since that should work for all structures that
3022 have only one member, we don't bother to check the member's type
3023 here. */
3024 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3025 {
3026 type = check_typedef (type->field (0).type ());
3027 return i386_return_value (gdbarch, function, type, regcache,
3028 readbuf, writebuf);
3029 }
3030
3031 if (readbuf)
3032 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3033 if (writebuf)
3034 i386_store_return_value (gdbarch, type, regcache, writebuf);
3035
3036 return RETURN_VALUE_REGISTER_CONVENTION;
3037 }
3038 \f
3039
3040 struct type *
3041 i387_ext_type (struct gdbarch *gdbarch)
3042 {
3043 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3044
3045 if (!tdep->i387_ext_type)
3046 {
3047 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3048 gdb_assert (tdep->i387_ext_type != NULL);
3049 }
3050
3051 return tdep->i387_ext_type;
3052 }
3053
3054 /* Construct type for pseudo BND registers. We can't use
3055 tdesc_find_type since a complement of one value has to be used
3056 to describe the upper bound. */
3057
3058 static struct type *
3059 i386_bnd_type (struct gdbarch *gdbarch)
3060 {
3061 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3062
3063
3064 if (!tdep->i386_bnd_type)
3065 {
3066 struct type *t;
3067 const struct builtin_type *bt = builtin_type (gdbarch);
3068
3069 /* The type we're building is described bellow: */
3070 #if 0
3071 struct __bound128
3072 {
3073 void *lbound;
3074 void *ubound; /* One complement of raw ubound field. */
3075 };
3076 #endif
3077
3078 t = arch_composite_type (gdbarch,
3079 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3080
3081 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3082 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3083
3084 t->set_name ("builtin_type_bound128");
3085 tdep->i386_bnd_type = t;
3086 }
3087
3088 return tdep->i386_bnd_type;
3089 }
3090
3091 /* Construct vector type for pseudo ZMM registers. We can't use
3092 tdesc_find_type since ZMM isn't described in target description. */
3093
3094 static struct type *
3095 i386_zmm_type (struct gdbarch *gdbarch)
3096 {
3097 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3098
3099 if (!tdep->i386_zmm_type)
3100 {
3101 const struct builtin_type *bt = builtin_type (gdbarch);
3102
3103 /* The type we're building is this: */
3104 #if 0
3105 union __gdb_builtin_type_vec512i
3106 {
3107 int128_t v4_int128[4];
3108 int64_t v8_int64[8];
3109 int32_t v16_int32[16];
3110 int16_t v32_int16[32];
3111 int8_t v64_int8[64];
3112 double v8_double[8];
3113 float v16_float[16];
3114 bfloat16_t v32_bfloat16[32];
3115 };
3116 #endif
3117
3118 struct type *t;
3119
3120 t = arch_composite_type (gdbarch,
3121 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3122 append_composite_type_field (t, "v32_bfloat16",
3123 init_vector_type (bt->builtin_bfloat16, 32));
3124 append_composite_type_field (t, "v16_float",
3125 init_vector_type (bt->builtin_float, 16));
3126 append_composite_type_field (t, "v8_double",
3127 init_vector_type (bt->builtin_double, 8));
3128 append_composite_type_field (t, "v64_int8",
3129 init_vector_type (bt->builtin_int8, 64));
3130 append_composite_type_field (t, "v32_int16",
3131 init_vector_type (bt->builtin_int16, 32));
3132 append_composite_type_field (t, "v16_int32",
3133 init_vector_type (bt->builtin_int32, 16));
3134 append_composite_type_field (t, "v8_int64",
3135 init_vector_type (bt->builtin_int64, 8));
3136 append_composite_type_field (t, "v4_int128",
3137 init_vector_type (bt->builtin_int128, 4));
3138
3139 t->set_is_vector (true);
3140 t->set_name ("builtin_type_vec512i");
3141 tdep->i386_zmm_type = t;
3142 }
3143
3144 return tdep->i386_zmm_type;
3145 }
3146
3147 /* Construct vector type for pseudo YMM registers. We can't use
3148 tdesc_find_type since YMM isn't described in target description. */
3149
3150 static struct type *
3151 i386_ymm_type (struct gdbarch *gdbarch)
3152 {
3153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3154
3155 if (!tdep->i386_ymm_type)
3156 {
3157 const struct builtin_type *bt = builtin_type (gdbarch);
3158
3159 /* The type we're building is this: */
3160 #if 0
3161 union __gdb_builtin_type_vec256i
3162 {
3163 int128_t v2_int128[2];
3164 int64_t v4_int64[4];
3165 int32_t v8_int32[8];
3166 int16_t v16_int16[16];
3167 int8_t v32_int8[32];
3168 double v4_double[4];
3169 float v8_float[8];
3170 bfloat16_t v16_bfloat16[16];
3171 };
3172 #endif
3173
3174 struct type *t;
3175
3176 t = arch_composite_type (gdbarch,
3177 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3178 append_composite_type_field (t, "v16_bfloat16",
3179 init_vector_type (bt->builtin_bfloat16, 16));
3180 append_composite_type_field (t, "v8_float",
3181 init_vector_type (bt->builtin_float, 8));
3182 append_composite_type_field (t, "v4_double",
3183 init_vector_type (bt->builtin_double, 4));
3184 append_composite_type_field (t, "v32_int8",
3185 init_vector_type (bt->builtin_int8, 32));
3186 append_composite_type_field (t, "v16_int16",
3187 init_vector_type (bt->builtin_int16, 16));
3188 append_composite_type_field (t, "v8_int32",
3189 init_vector_type (bt->builtin_int32, 8));
3190 append_composite_type_field (t, "v4_int64",
3191 init_vector_type (bt->builtin_int64, 4));
3192 append_composite_type_field (t, "v2_int128",
3193 init_vector_type (bt->builtin_int128, 2));
3194
3195 t->set_is_vector (true);
3196 t->set_name ("builtin_type_vec256i");
3197 tdep->i386_ymm_type = t;
3198 }
3199
3200 return tdep->i386_ymm_type;
3201 }
3202
3203 /* Construct vector type for MMX registers. */
3204 static struct type *
3205 i386_mmx_type (struct gdbarch *gdbarch)
3206 {
3207 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3208
3209 if (!tdep->i386_mmx_type)
3210 {
3211 const struct builtin_type *bt = builtin_type (gdbarch);
3212
3213 /* The type we're building is this: */
3214 #if 0
3215 union __gdb_builtin_type_vec64i
3216 {
3217 int64_t uint64;
3218 int32_t v2_int32[2];
3219 int16_t v4_int16[4];
3220 int8_t v8_int8[8];
3221 };
3222 #endif
3223
3224 struct type *t;
3225
3226 t = arch_composite_type (gdbarch,
3227 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3228
3229 append_composite_type_field (t, "uint64", bt->builtin_int64);
3230 append_composite_type_field (t, "v2_int32",
3231 init_vector_type (bt->builtin_int32, 2));
3232 append_composite_type_field (t, "v4_int16",
3233 init_vector_type (bt->builtin_int16, 4));
3234 append_composite_type_field (t, "v8_int8",
3235 init_vector_type (bt->builtin_int8, 8));
3236
3237 t->set_is_vector (true);
3238 t->set_name ("builtin_type_vec64i");
3239 tdep->i386_mmx_type = t;
3240 }
3241
3242 return tdep->i386_mmx_type;
3243 }
3244
3245 /* Return the GDB type object for the "standard" data type of data in
3246 register REGNUM. */
3247
3248 struct type *
3249 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3250 {
3251 if (i386_bnd_regnum_p (gdbarch, regnum))
3252 return i386_bnd_type (gdbarch);
3253 if (i386_mmx_regnum_p (gdbarch, regnum))
3254 return i386_mmx_type (gdbarch);
3255 else if (i386_ymm_regnum_p (gdbarch, regnum))
3256 return i386_ymm_type (gdbarch);
3257 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3258 return i386_ymm_type (gdbarch);
3259 else if (i386_zmm_regnum_p (gdbarch, regnum))
3260 return i386_zmm_type (gdbarch);
3261 else
3262 {
3263 const struct builtin_type *bt = builtin_type (gdbarch);
3264 if (i386_byte_regnum_p (gdbarch, regnum))
3265 return bt->builtin_int8;
3266 else if (i386_word_regnum_p (gdbarch, regnum))
3267 return bt->builtin_int16;
3268 else if (i386_dword_regnum_p (gdbarch, regnum))
3269 return bt->builtin_int32;
3270 else if (i386_k_regnum_p (gdbarch, regnum))
3271 return bt->builtin_int64;
3272 }
3273
3274 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3275 }
3276
3277 /* Map a cooked register onto a raw register or memory. For the i386,
3278 the MMX registers need to be mapped onto floating point registers. */
3279
3280 static int
3281 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3282 {
3283 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3284 int mmxreg, fpreg;
3285 ULONGEST fstat;
3286 int tos;
3287
3288 mmxreg = regnum - tdep->mm0_regnum;
3289 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3290 tos = (fstat >> 11) & 0x7;
3291 fpreg = (mmxreg + tos) % 8;
3292
3293 return (I387_ST0_REGNUM (tdep) + fpreg);
3294 }
3295
3296 /* A helper function for us by i386_pseudo_register_read_value and
3297 amd64_pseudo_register_read_value. It does all the work but reads
3298 the data into an already-allocated value. */
3299
3300 void
3301 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3302 readable_regcache *regcache,
3303 int regnum,
3304 struct value *result_value)
3305 {
3306 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3307 enum register_status status;
3308 gdb_byte *buf = value_contents_raw (result_value);
3309
3310 if (i386_mmx_regnum_p (gdbarch, regnum))
3311 {
3312 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3313
3314 /* Extract (always little endian). */
3315 status = regcache->raw_read (fpnum, raw_buf);
3316 if (status != REG_VALID)
3317 mark_value_bytes_unavailable (result_value, 0,
3318 TYPE_LENGTH (value_type (result_value)));
3319 else
3320 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3321 }
3322 else
3323 {
3324 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3325 if (i386_bnd_regnum_p (gdbarch, regnum))
3326 {
3327 regnum -= tdep->bnd0_regnum;
3328
3329 /* Extract (always little endian). Read lower 128bits. */
3330 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 0, 16);
3334 else
3335 {
3336 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3337 LONGEST upper, lower;
3338 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3339
3340 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3341 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3342 upper = ~upper;
3343
3344 memcpy (buf, &lower, size);
3345 memcpy (buf + size, &upper, size);
3346 }
3347 }
3348 else if (i386_k_regnum_p (gdbarch, regnum))
3349 {
3350 regnum -= tdep->k0_regnum;
3351
3352 /* Extract (always little endian). */
3353 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3354 if (status != REG_VALID)
3355 mark_value_bytes_unavailable (result_value, 0, 8);
3356 else
3357 memcpy (buf, raw_buf, 8);
3358 }
3359 else if (i386_zmm_regnum_p (gdbarch, regnum))
3360 {
3361 regnum -= tdep->zmm0_regnum;
3362
3363 if (regnum < num_lower_zmm_regs)
3364 {
3365 /* Extract (always little endian). Read lower 128bits. */
3366 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3367 raw_buf);
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 0, 16);
3370 else
3371 memcpy (buf, raw_buf, 16);
3372
3373 /* Extract (always little endian). Read upper 128bits. */
3374 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3375 raw_buf);
3376 if (status != REG_VALID)
3377 mark_value_bytes_unavailable (result_value, 16, 16);
3378 else
3379 memcpy (buf + 16, raw_buf, 16);
3380 }
3381 else
3382 {
3383 /* Extract (always little endian). Read lower 128bits. */
3384 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3385 - num_lower_zmm_regs,
3386 raw_buf);
3387 if (status != REG_VALID)
3388 mark_value_bytes_unavailable (result_value, 0, 16);
3389 else
3390 memcpy (buf, raw_buf, 16);
3391
3392 /* Extract (always little endian). Read upper 128bits. */
3393 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3394 - num_lower_zmm_regs,
3395 raw_buf);
3396 if (status != REG_VALID)
3397 mark_value_bytes_unavailable (result_value, 16, 16);
3398 else
3399 memcpy (buf + 16, raw_buf, 16);
3400 }
3401
3402 /* Read upper 256bits. */
3403 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3404 raw_buf);
3405 if (status != REG_VALID)
3406 mark_value_bytes_unavailable (result_value, 32, 32);
3407 else
3408 memcpy (buf + 32, raw_buf, 32);
3409 }
3410 else if (i386_ymm_regnum_p (gdbarch, regnum))
3411 {
3412 regnum -= tdep->ymm0_regnum;
3413
3414 /* Extract (always little endian). Read lower 128bits. */
3415 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3416 raw_buf);
3417 if (status != REG_VALID)
3418 mark_value_bytes_unavailable (result_value, 0, 16);
3419 else
3420 memcpy (buf, raw_buf, 16);
3421 /* Read upper 128bits. */
3422 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3423 raw_buf);
3424 if (status != REG_VALID)
3425 mark_value_bytes_unavailable (result_value, 16, 32);
3426 else
3427 memcpy (buf + 16, raw_buf, 16);
3428 }
3429 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3430 {
3431 regnum -= tdep->ymm16_regnum;
3432 /* Extract (always little endian). Read lower 128bits. */
3433 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3434 raw_buf);
3435 if (status != REG_VALID)
3436 mark_value_bytes_unavailable (result_value, 0, 16);
3437 else
3438 memcpy (buf, raw_buf, 16);
3439 /* Read upper 128bits. */
3440 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3441 raw_buf);
3442 if (status != REG_VALID)
3443 mark_value_bytes_unavailable (result_value, 16, 16);
3444 else
3445 memcpy (buf + 16, raw_buf, 16);
3446 }
3447 else if (i386_word_regnum_p (gdbarch, regnum))
3448 {
3449 int gpnum = regnum - tdep->ax_regnum;
3450
3451 /* Extract (always little endian). */
3452 status = regcache->raw_read (gpnum, raw_buf);
3453 if (status != REG_VALID)
3454 mark_value_bytes_unavailable (result_value, 0,
3455 TYPE_LENGTH (value_type (result_value)));
3456 else
3457 memcpy (buf, raw_buf, 2);
3458 }
3459 else if (i386_byte_regnum_p (gdbarch, regnum))
3460 {
3461 int gpnum = regnum - tdep->al_regnum;
3462
3463 /* Extract (always little endian). We read both lower and
3464 upper registers. */
3465 status = regcache->raw_read (gpnum % 4, raw_buf);
3466 if (status != REG_VALID)
3467 mark_value_bytes_unavailable (result_value, 0,
3468 TYPE_LENGTH (value_type (result_value)));
3469 else if (gpnum >= 4)
3470 memcpy (buf, raw_buf + 1, 1);
3471 else
3472 memcpy (buf, raw_buf, 1);
3473 }
3474 else
3475 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3476 }
3477 }
3478
3479 static struct value *
3480 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3481 readable_regcache *regcache,
3482 int regnum)
3483 {
3484 struct value *result;
3485
3486 result = allocate_value (register_type (gdbarch, regnum));
3487 VALUE_LVAL (result) = lval_register;
3488 VALUE_REGNUM (result) = regnum;
3489
3490 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3491
3492 return result;
3493 }
3494
3495 void
3496 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3497 int regnum, const gdb_byte *buf)
3498 {
3499 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3500
3501 if (i386_mmx_regnum_p (gdbarch, regnum))
3502 {
3503 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3504
3505 /* Read ... */
3506 regcache->raw_read (fpnum, raw_buf);
3507 /* ... Modify ... (always little endian). */
3508 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3509 /* ... Write. */
3510 regcache->raw_write (fpnum, raw_buf);
3511 }
3512 else
3513 {
3514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3515
3516 if (i386_bnd_regnum_p (gdbarch, regnum))
3517 {
3518 ULONGEST upper, lower;
3519 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3520 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3521
3522 /* New values from input value. */
3523 regnum -= tdep->bnd0_regnum;
3524 lower = extract_unsigned_integer (buf, size, byte_order);
3525 upper = extract_unsigned_integer (buf + size, size, byte_order);
3526
3527 /* Fetching register buffer. */
3528 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3529 raw_buf);
3530
3531 upper = ~upper;
3532
3533 /* Set register bits. */
3534 memcpy (raw_buf, &lower, 8);
3535 memcpy (raw_buf + 8, &upper, 8);
3536
3537 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3538 }
3539 else if (i386_k_regnum_p (gdbarch, regnum))
3540 {
3541 regnum -= tdep->k0_regnum;
3542
3543 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3544 }
3545 else if (i386_zmm_regnum_p (gdbarch, regnum))
3546 {
3547 regnum -= tdep->zmm0_regnum;
3548
3549 if (regnum < num_lower_zmm_regs)
3550 {
3551 /* Write lower 128bits. */
3552 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3553 /* Write upper 128bits. */
3554 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3555 }
3556 else
3557 {
3558 /* Write lower 128bits. */
3559 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3560 - num_lower_zmm_regs, buf);
3561 /* Write upper 128bits. */
3562 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3563 - num_lower_zmm_regs, buf + 16);
3564 }
3565 /* Write upper 256bits. */
3566 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3567 }
3568 else if (i386_ymm_regnum_p (gdbarch, regnum))
3569 {
3570 regnum -= tdep->ymm0_regnum;
3571
3572 /* ... Write lower 128bits. */
3573 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3574 /* ... Write upper 128bits. */
3575 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3576 }
3577 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3578 {
3579 regnum -= tdep->ymm16_regnum;
3580
3581 /* ... Write lower 128bits. */
3582 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3583 /* ... Write upper 128bits. */
3584 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3585 }
3586 else if (i386_word_regnum_p (gdbarch, regnum))
3587 {
3588 int gpnum = regnum - tdep->ax_regnum;
3589
3590 /* Read ... */
3591 regcache->raw_read (gpnum, raw_buf);
3592 /* ... Modify ... (always little endian). */
3593 memcpy (raw_buf, buf, 2);
3594 /* ... Write. */
3595 regcache->raw_write (gpnum, raw_buf);
3596 }
3597 else if (i386_byte_regnum_p (gdbarch, regnum))
3598 {
3599 int gpnum = regnum - tdep->al_regnum;
3600
3601 /* Read ... We read both lower and upper registers. */
3602 regcache->raw_read (gpnum % 4, raw_buf);
3603 /* ... Modify ... (always little endian). */
3604 if (gpnum >= 4)
3605 memcpy (raw_buf + 1, buf, 1);
3606 else
3607 memcpy (raw_buf, buf, 1);
3608 /* ... Write. */
3609 regcache->raw_write (gpnum % 4, raw_buf);
3610 }
3611 else
3612 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3613 }
3614 }
3615
3616 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3617
3618 int
3619 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3620 struct agent_expr *ax, int regnum)
3621 {
3622 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3623
3624 if (i386_mmx_regnum_p (gdbarch, regnum))
3625 {
3626 /* MMX to FPU register mapping depends on current TOS. Let's just
3627 not care and collect everything... */
3628 int i;
3629
3630 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3631 for (i = 0; i < 8; i++)
3632 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3633 return 0;
3634 }
3635 else if (i386_bnd_regnum_p (gdbarch, regnum))
3636 {
3637 regnum -= tdep->bnd0_regnum;
3638 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3639 return 0;
3640 }
3641 else if (i386_k_regnum_p (gdbarch, regnum))
3642 {
3643 regnum -= tdep->k0_regnum;
3644 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3645 return 0;
3646 }
3647 else if (i386_zmm_regnum_p (gdbarch, regnum))
3648 {
3649 regnum -= tdep->zmm0_regnum;
3650 if (regnum < num_lower_zmm_regs)
3651 {
3652 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3653 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3654 }
3655 else
3656 {
3657 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3658 - num_lower_zmm_regs);
3659 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3660 - num_lower_zmm_regs);
3661 }
3662 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3663 return 0;
3664 }
3665 else if (i386_ymm_regnum_p (gdbarch, regnum))
3666 {
3667 regnum -= tdep->ymm0_regnum;
3668 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3669 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3670 return 0;
3671 }
3672 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3673 {
3674 regnum -= tdep->ymm16_regnum;
3675 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3676 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3677 return 0;
3678 }
3679 else if (i386_word_regnum_p (gdbarch, regnum))
3680 {
3681 int gpnum = regnum - tdep->ax_regnum;
3682
3683 ax_reg_mask (ax, gpnum);
3684 return 0;
3685 }
3686 else if (i386_byte_regnum_p (gdbarch, regnum))
3687 {
3688 int gpnum = regnum - tdep->al_regnum;
3689
3690 ax_reg_mask (ax, gpnum % 4);
3691 return 0;
3692 }
3693 else
3694 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3695 return 1;
3696 }
3697 \f
3698
3699 /* Return the register number of the register allocated by GCC after
3700 REGNUM, or -1 if there is no such register. */
3701
3702 static int
3703 i386_next_regnum (int regnum)
3704 {
3705 /* GCC allocates the registers in the order:
3706
3707 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3708
3709 Since storing a variable in %esp doesn't make any sense we return
3710 -1 for %ebp and for %esp itself. */
3711 static int next_regnum[] =
3712 {
3713 I386_EDX_REGNUM, /* Slot for %eax. */
3714 I386_EBX_REGNUM, /* Slot for %ecx. */
3715 I386_ECX_REGNUM, /* Slot for %edx. */
3716 I386_ESI_REGNUM, /* Slot for %ebx. */
3717 -1, -1, /* Slots for %esp and %ebp. */
3718 I386_EDI_REGNUM, /* Slot for %esi. */
3719 I386_EBP_REGNUM /* Slot for %edi. */
3720 };
3721
3722 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3723 return next_regnum[regnum];
3724
3725 return -1;
3726 }
3727
3728 /* Return nonzero if a value of type TYPE stored in register REGNUM
3729 needs any special handling. */
3730
3731 static int
3732 i386_convert_register_p (struct gdbarch *gdbarch,
3733 int regnum, struct type *type)
3734 {
3735 int len = TYPE_LENGTH (type);
3736
3737 /* Values may be spread across multiple registers. Most debugging
3738 formats aren't expressive enough to specify the locations, so
3739 some heuristics is involved. Right now we only handle types that
3740 have a length that is a multiple of the word size, since GCC
3741 doesn't seem to put any other types into registers. */
3742 if (len > 4 && len % 4 == 0)
3743 {
3744 int last_regnum = regnum;
3745
3746 while (len > 4)
3747 {
3748 last_regnum = i386_next_regnum (last_regnum);
3749 len -= 4;
3750 }
3751
3752 if (last_regnum != -1)
3753 return 1;
3754 }
3755
3756 return i387_convert_register_p (gdbarch, regnum, type);
3757 }
3758
3759 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3760 return its contents in TO. */
3761
3762 static int
3763 i386_register_to_value (struct frame_info *frame, int regnum,
3764 struct type *type, gdb_byte *to,
3765 int *optimizedp, int *unavailablep)
3766 {
3767 struct gdbarch *gdbarch = get_frame_arch (frame);
3768 int len = TYPE_LENGTH (type);
3769
3770 if (i386_fp_regnum_p (gdbarch, regnum))
3771 return i387_register_to_value (frame, regnum, type, to,
3772 optimizedp, unavailablep);
3773
3774 /* Read a value spread across multiple registers. */
3775
3776 gdb_assert (len > 4 && len % 4 == 0);
3777
3778 while (len > 0)
3779 {
3780 gdb_assert (regnum != -1);
3781 gdb_assert (register_size (gdbarch, regnum) == 4);
3782
3783 if (!get_frame_register_bytes (frame, regnum, 0,
3784 gdb::make_array_view (to,
3785 register_size (gdbarch,
3786 regnum)),
3787 optimizedp, unavailablep))
3788 return 0;
3789
3790 regnum = i386_next_regnum (regnum);
3791 len -= 4;
3792 to += 4;
3793 }
3794
3795 *optimizedp = *unavailablep = 0;
3796 return 1;
3797 }
3798
3799 /* Write the contents FROM of a value of type TYPE into register
3800 REGNUM in frame FRAME. */
3801
3802 static void
3803 i386_value_to_register (struct frame_info *frame, int regnum,
3804 struct type *type, const gdb_byte *from)
3805 {
3806 int len = TYPE_LENGTH (type);
3807
3808 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3809 {
3810 i387_value_to_register (frame, regnum, type, from);
3811 return;
3812 }
3813
3814 /* Write a value spread across multiple registers. */
3815
3816 gdb_assert (len > 4 && len % 4 == 0);
3817
3818 while (len > 0)
3819 {
3820 gdb_assert (regnum != -1);
3821 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3822
3823 put_frame_register (frame, regnum, from);
3824 regnum = i386_next_regnum (regnum);
3825 len -= 4;
3826 from += 4;
3827 }
3828 }
3829 \f
3830 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3831 in the general-purpose register set REGSET to register cache
3832 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3833
3834 void
3835 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3836 int regnum, const void *gregs, size_t len)
3837 {
3838 struct gdbarch *gdbarch = regcache->arch ();
3839 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3840 const gdb_byte *regs = (const gdb_byte *) gregs;
3841 int i;
3842
3843 gdb_assert (len >= tdep->sizeof_gregset);
3844
3845 for (i = 0; i < tdep->gregset_num_regs; i++)
3846 {
3847 if ((regnum == i || regnum == -1)
3848 && tdep->gregset_reg_offset[i] != -1)
3849 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3850 }
3851 }
3852
3853 /* Collect register REGNUM from the register cache REGCACHE and store
3854 it in the buffer specified by GREGS and LEN as described by the
3855 general-purpose register set REGSET. If REGNUM is -1, do this for
3856 all registers in REGSET. */
3857
3858 static void
3859 i386_collect_gregset (const struct regset *regset,
3860 const struct regcache *regcache,
3861 int regnum, void *gregs, size_t len)
3862 {
3863 struct gdbarch *gdbarch = regcache->arch ();
3864 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3865 gdb_byte *regs = (gdb_byte *) gregs;
3866 int i;
3867
3868 gdb_assert (len >= tdep->sizeof_gregset);
3869
3870 for (i = 0; i < tdep->gregset_num_regs; i++)
3871 {
3872 if ((regnum == i || regnum == -1)
3873 && tdep->gregset_reg_offset[i] != -1)
3874 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3875 }
3876 }
3877
3878 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3879 in the floating-point register set REGSET to register cache
3880 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3881
3882 static void
3883 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3884 int regnum, const void *fpregs, size_t len)
3885 {
3886 struct gdbarch *gdbarch = regcache->arch ();
3887 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3888
3889 if (len == I387_SIZEOF_FXSAVE)
3890 {
3891 i387_supply_fxsave (regcache, regnum, fpregs);
3892 return;
3893 }
3894
3895 gdb_assert (len >= tdep->sizeof_fpregset);
3896 i387_supply_fsave (regcache, regnum, fpregs);
3897 }
3898
3899 /* Collect register REGNUM from the register cache REGCACHE and store
3900 it in the buffer specified by FPREGS and LEN as described by the
3901 floating-point register set REGSET. If REGNUM is -1, do this for
3902 all registers in REGSET. */
3903
3904 static void
3905 i386_collect_fpregset (const struct regset *regset,
3906 const struct regcache *regcache,
3907 int regnum, void *fpregs, size_t len)
3908 {
3909 struct gdbarch *gdbarch = regcache->arch ();
3910 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3911
3912 if (len == I387_SIZEOF_FXSAVE)
3913 {
3914 i387_collect_fxsave (regcache, regnum, fpregs);
3915 return;
3916 }
3917
3918 gdb_assert (len >= tdep->sizeof_fpregset);
3919 i387_collect_fsave (regcache, regnum, fpregs);
3920 }
3921
3922 /* Register set definitions. */
3923
3924 const struct regset i386_gregset =
3925 {
3926 NULL, i386_supply_gregset, i386_collect_gregset
3927 };
3928
3929 const struct regset i386_fpregset =
3930 {
3931 NULL, i386_supply_fpregset, i386_collect_fpregset
3932 };
3933
3934 /* Default iterator over core file register note sections. */
3935
3936 void
3937 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3938 iterate_over_regset_sections_cb *cb,
3939 void *cb_data,
3940 const struct regcache *regcache)
3941 {
3942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3943
3944 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3945 cb_data);
3946 if (tdep->sizeof_fpregset)
3947 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3948 NULL, cb_data);
3949 }
3950 \f
3951
3952 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3953
3954 CORE_ADDR
3955 i386_pe_skip_trampoline_code (struct frame_info *frame,
3956 CORE_ADDR pc, char *name)
3957 {
3958 struct gdbarch *gdbarch = get_frame_arch (frame);
3959 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3960
3961 /* jmp *(dest) */
3962 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3963 {
3964 unsigned long indirect =
3965 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3966 struct minimal_symbol *indsym =
3967 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3968 const char *symname = indsym ? indsym->linkage_name () : 0;
3969
3970 if (symname)
3971 {
3972 if (startswith (symname, "__imp_")
3973 || startswith (symname, "_imp_"))
3974 return name ? 1 :
3975 read_memory_unsigned_integer (indirect, 4, byte_order);
3976 }
3977 }
3978 return 0; /* Not a trampoline. */
3979 }
3980 \f
3981
3982 /* Return whether the THIS_FRAME corresponds to a sigtramp
3983 routine. */
3984
3985 int
3986 i386_sigtramp_p (struct frame_info *this_frame)
3987 {
3988 CORE_ADDR pc = get_frame_pc (this_frame);
3989 const char *name;
3990
3991 find_pc_partial_function (pc, &name, NULL, NULL);
3992 return (name && strcmp ("_sigtramp", name) == 0);
3993 }
3994 \f
3995
3996 /* We have two flavours of disassembly. The machinery on this page
3997 deals with switching between those. */
3998
3999 static int
4000 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4001 {
4002 gdb_assert (disassembly_flavor == att_flavor
4003 || disassembly_flavor == intel_flavor);
4004
4005 info->disassembler_options = disassembly_flavor;
4006
4007 return default_print_insn (pc, info);
4008 }
4009 \f
4010
4011 /* There are a few i386 architecture variants that differ only
4012 slightly from the generic i386 target. For now, we don't give them
4013 their own source file, but include them here. As a consequence,
4014 they'll always be included. */
4015
4016 /* System V Release 4 (SVR4). */
4017
4018 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4019 routine. */
4020
4021 static int
4022 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4023 {
4024 CORE_ADDR pc = get_frame_pc (this_frame);
4025 const char *name;
4026
4027 /* The origin of these symbols is currently unknown. */
4028 find_pc_partial_function (pc, &name, NULL, NULL);
4029 return (name && (strcmp ("_sigreturn", name) == 0
4030 || strcmp ("sigvechandler", name) == 0));
4031 }
4032
4033 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4034 address of the associated sigcontext (ucontext) structure. */
4035
4036 static CORE_ADDR
4037 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4038 {
4039 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4040 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4041 gdb_byte buf[4];
4042 CORE_ADDR sp;
4043
4044 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4045 sp = extract_unsigned_integer (buf, 4, byte_order);
4046
4047 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4048 }
4049
4050 \f
4051
4052 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4053 gdbarch.h. */
4054
4055 int
4056 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4057 {
4058 return (*s == '$' /* Literal number. */
4059 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4060 || (*s == '(' && s[1] == '%') /* Register indirection. */
4061 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4062 }
4063
4064 /* Helper function for i386_stap_parse_special_token.
4065
4066 This function parses operands of the form `-8+3+1(%rbp)', which
4067 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4068
4069 Return true if the operand was parsed successfully, false
4070 otherwise. */
4071
4072 static bool
4073 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4074 struct stap_parse_info *p)
4075 {
4076 const char *s = p->arg;
4077
4078 if (isdigit (*s) || *s == '-' || *s == '+')
4079 {
4080 bool got_minus[3];
4081 int i;
4082 long displacements[3];
4083 const char *start;
4084 char *regname;
4085 int len;
4086 struct stoken str;
4087 char *endp;
4088
4089 got_minus[0] = false;
4090 if (*s == '+')
4091 ++s;
4092 else if (*s == '-')
4093 {
4094 ++s;
4095 got_minus[0] = true;
4096 }
4097
4098 if (!isdigit ((unsigned char) *s))
4099 return false;
4100
4101 displacements[0] = strtol (s, &endp, 10);
4102 s = endp;
4103
4104 if (*s != '+' && *s != '-')
4105 {
4106 /* We are not dealing with a triplet. */
4107 return false;
4108 }
4109
4110 got_minus[1] = false;
4111 if (*s == '+')
4112 ++s;
4113 else
4114 {
4115 ++s;
4116 got_minus[1] = true;
4117 }
4118
4119 if (!isdigit ((unsigned char) *s))
4120 return false;
4121
4122 displacements[1] = strtol (s, &endp, 10);
4123 s = endp;
4124
4125 if (*s != '+' && *s != '-')
4126 {
4127 /* We are not dealing with a triplet. */
4128 return false;
4129 }
4130
4131 got_minus[2] = false;
4132 if (*s == '+')
4133 ++s;
4134 else
4135 {
4136 ++s;
4137 got_minus[2] = true;
4138 }
4139
4140 if (!isdigit ((unsigned char) *s))
4141 return false;
4142
4143 displacements[2] = strtol (s, &endp, 10);
4144 s = endp;
4145
4146 if (*s != '(' || s[1] != '%')
4147 return false;
4148
4149 s += 2;
4150 start = s;
4151
4152 while (isalnum (*s))
4153 ++s;
4154
4155 if (*s++ != ')')
4156 return false;
4157
4158 len = s - start - 1;
4159 regname = (char *) alloca (len + 1);
4160
4161 strncpy (regname, start, len);
4162 regname[len] = '\0';
4163
4164 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4165 error (_("Invalid register name `%s' on expression `%s'."),
4166 regname, p->saved_arg);
4167
4168 for (i = 0; i < 3; i++)
4169 {
4170 write_exp_elt_opcode (&p->pstate, OP_LONG);
4171 write_exp_elt_type
4172 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4173 write_exp_elt_longcst (&p->pstate, displacements[i]);
4174 write_exp_elt_opcode (&p->pstate, OP_LONG);
4175 if (got_minus[i])
4176 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4177 }
4178
4179 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4180 str.ptr = regname;
4181 str.length = len;
4182 write_exp_string (&p->pstate, str);
4183 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4184
4185 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4186 write_exp_elt_type (&p->pstate,
4187 builtin_type (gdbarch)->builtin_data_ptr);
4188 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4189
4190 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4191 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4192 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4193
4194 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4195 write_exp_elt_type (&p->pstate,
4196 lookup_pointer_type (p->arg_type));
4197 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4198
4199 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4200
4201 p->arg = s;
4202
4203 return true;
4204 }
4205
4206 return false;
4207 }
4208
4209 /* Helper function for i386_stap_parse_special_token.
4210
4211 This function parses operands of the form `register base +
4212 (register index * size) + offset', as represented in
4213 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4214
4215 Return true if the operand was parsed successfully, false
4216 otherwise. */
4217
4218 static bool
4219 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4220 struct stap_parse_info *p)
4221 {
4222 const char *s = p->arg;
4223
4224 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4225 {
4226 bool offset_minus = false;
4227 long offset = 0;
4228 bool size_minus = false;
4229 long size = 0;
4230 const char *start;
4231 char *base;
4232 int len_base;
4233 char *index;
4234 int len_index;
4235 struct stoken base_token, index_token;
4236
4237 if (*s == '+')
4238 ++s;
4239 else if (*s == '-')
4240 {
4241 ++s;
4242 offset_minus = true;
4243 }
4244
4245 if (offset_minus && !isdigit (*s))
4246 return false;
4247
4248 if (isdigit (*s))
4249 {
4250 char *endp;
4251
4252 offset = strtol (s, &endp, 10);
4253 s = endp;
4254 }
4255
4256 if (*s != '(' || s[1] != '%')
4257 return false;
4258
4259 s += 2;
4260 start = s;
4261
4262 while (isalnum (*s))
4263 ++s;
4264
4265 if (*s != ',' || s[1] != '%')
4266 return false;
4267
4268 len_base = s - start;
4269 base = (char *) alloca (len_base + 1);
4270 strncpy (base, start, len_base);
4271 base[len_base] = '\0';
4272
4273 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4274 error (_("Invalid register name `%s' on expression `%s'."),
4275 base, p->saved_arg);
4276
4277 s += 2;
4278 start = s;
4279
4280 while (isalnum (*s))
4281 ++s;
4282
4283 len_index = s - start;
4284 index = (char *) alloca (len_index + 1);
4285 strncpy (index, start, len_index);
4286 index[len_index] = '\0';
4287
4288 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4289 error (_("Invalid register name `%s' on expression `%s'."),
4290 index, p->saved_arg);
4291
4292 if (*s != ',' && *s != ')')
4293 return false;
4294
4295 if (*s == ',')
4296 {
4297 char *endp;
4298
4299 ++s;
4300 if (*s == '+')
4301 ++s;
4302 else if (*s == '-')
4303 {
4304 ++s;
4305 size_minus = true;
4306 }
4307
4308 size = strtol (s, &endp, 10);
4309 s = endp;
4310
4311 if (*s != ')')
4312 return false;
4313 }
4314
4315 ++s;
4316
4317 if (offset)
4318 {
4319 write_exp_elt_opcode (&p->pstate, OP_LONG);
4320 write_exp_elt_type (&p->pstate,
4321 builtin_type (gdbarch)->builtin_long);
4322 write_exp_elt_longcst (&p->pstate, offset);
4323 write_exp_elt_opcode (&p->pstate, OP_LONG);
4324 if (offset_minus)
4325 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4326 }
4327
4328 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4329 base_token.ptr = base;
4330 base_token.length = len_base;
4331 write_exp_string (&p->pstate, base_token);
4332 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4333
4334 if (offset)
4335 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4336
4337 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4338 index_token.ptr = index;
4339 index_token.length = len_index;
4340 write_exp_string (&p->pstate, index_token);
4341 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4342
4343 if (size)
4344 {
4345 write_exp_elt_opcode (&p->pstate, OP_LONG);
4346 write_exp_elt_type (&p->pstate,
4347 builtin_type (gdbarch)->builtin_long);
4348 write_exp_elt_longcst (&p->pstate, size);
4349 write_exp_elt_opcode (&p->pstate, OP_LONG);
4350 if (size_minus)
4351 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4352 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4353 }
4354
4355 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4356
4357 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4358 write_exp_elt_type (&p->pstate,
4359 lookup_pointer_type (p->arg_type));
4360 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4361
4362 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4363
4364 p->arg = s;
4365
4366 return true;
4367 }
4368
4369 return false;
4370 }
4371
4372 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4373 gdbarch.h. */
4374
4375 int
4376 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4377 struct stap_parse_info *p)
4378 {
4379 /* In order to parse special tokens, we use a state-machine that go
4380 through every known token and try to get a match. */
4381 enum
4382 {
4383 TRIPLET,
4384 THREE_ARG_DISPLACEMENT,
4385 DONE
4386 };
4387 int current_state;
4388
4389 current_state = TRIPLET;
4390
4391 /* The special tokens to be parsed here are:
4392
4393 - `register base + (register index * size) + offset', as represented
4394 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4395
4396 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4397 `*(-8 + 3 - 1 + (void *) $eax)'. */
4398
4399 while (current_state != DONE)
4400 {
4401 switch (current_state)
4402 {
4403 case TRIPLET:
4404 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4405 return 1;
4406 break;
4407
4408 case THREE_ARG_DISPLACEMENT:
4409 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4410 return 1;
4411 break;
4412 }
4413
4414 /* Advancing to the next state. */
4415 ++current_state;
4416 }
4417
4418 return 0;
4419 }
4420
4421 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4422 gdbarch.h. */
4423
4424 static std::string
4425 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4426 const std::string &regname, int regnum)
4427 {
4428 static const std::unordered_set<std::string> reg_assoc
4429 = { "ax", "bx", "cx", "dx",
4430 "si", "di", "bp", "sp" };
4431
4432 /* If we are dealing with a register whose size is less than the size
4433 specified by the "[-]N@" prefix, and it is one of the registers that
4434 we know has an extended variant available, then use the extended
4435 version of the register instead. */
4436 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4437 && reg_assoc.find (regname) != reg_assoc.end ())
4438 return "e" + regname;
4439
4440 /* Otherwise, just use the requested register. */
4441 return regname;
4442 }
4443
4444 \f
4445
4446 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4447 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4448
4449 static const char *
4450 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4451 {
4452 return "(x86_64|i.86)";
4453 }
4454
4455 \f
4456
4457 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4458
4459 static bool
4460 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4461 {
4462 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4463 I386_EAX_REGNUM, I386_EIP_REGNUM);
4464 }
4465
4466 /* Generic ELF. */
4467
4468 void
4469 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4470 {
4471 static const char *const stap_integer_prefixes[] = { "$", NULL };
4472 static const char *const stap_register_prefixes[] = { "%", NULL };
4473 static const char *const stap_register_indirection_prefixes[] = { "(",
4474 NULL };
4475 static const char *const stap_register_indirection_suffixes[] = { ")",
4476 NULL };
4477
4478 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4479 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4480
4481 /* Registering SystemTap handlers. */
4482 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4483 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4484 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4485 stap_register_indirection_prefixes);
4486 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4487 stap_register_indirection_suffixes);
4488 set_gdbarch_stap_is_single_operand (gdbarch,
4489 i386_stap_is_single_operand);
4490 set_gdbarch_stap_parse_special_token (gdbarch,
4491 i386_stap_parse_special_token);
4492 set_gdbarch_stap_adjust_register (gdbarch,
4493 i386_stap_adjust_register);
4494
4495 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4496 i386_in_indirect_branch_thunk);
4497 }
4498
4499 /* System V Release 4 (SVR4). */
4500
4501 void
4502 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4503 {
4504 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4505
4506 /* System V Release 4 uses ELF. */
4507 i386_elf_init_abi (info, gdbarch);
4508
4509 /* System V Release 4 has shared libraries. */
4510 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4511
4512 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4513 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4514 tdep->sc_pc_offset = 36 + 14 * 4;
4515 tdep->sc_sp_offset = 36 + 17 * 4;
4516
4517 tdep->jb_pc_offset = 20;
4518 }
4519
4520 \f
4521
4522 /* i386 register groups. In addition to the normal groups, add "mmx"
4523 and "sse". */
4524
4525 static struct reggroup *i386_sse_reggroup;
4526 static struct reggroup *i386_mmx_reggroup;
4527
4528 static void
4529 i386_init_reggroups (void)
4530 {
4531 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4532 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4533 }
4534
4535 static void
4536 i386_add_reggroups (struct gdbarch *gdbarch)
4537 {
4538 reggroup_add (gdbarch, i386_sse_reggroup);
4539 reggroup_add (gdbarch, i386_mmx_reggroup);
4540 reggroup_add (gdbarch, general_reggroup);
4541 reggroup_add (gdbarch, float_reggroup);
4542 reggroup_add (gdbarch, all_reggroup);
4543 reggroup_add (gdbarch, save_reggroup);
4544 reggroup_add (gdbarch, restore_reggroup);
4545 reggroup_add (gdbarch, vector_reggroup);
4546 reggroup_add (gdbarch, system_reggroup);
4547 }
4548
4549 int
4550 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4551 struct reggroup *group)
4552 {
4553 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4554 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4555 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4556 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4557 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4558 avx512_p, avx_p, sse_p, pkru_regnum_p;
4559
4560 /* Don't include pseudo registers, except for MMX, in any register
4561 groups. */
4562 if (i386_byte_regnum_p (gdbarch, regnum))
4563 return 0;
4564
4565 if (i386_word_regnum_p (gdbarch, regnum))
4566 return 0;
4567
4568 if (i386_dword_regnum_p (gdbarch, regnum))
4569 return 0;
4570
4571 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4572 if (group == i386_mmx_reggroup)
4573 return mmx_regnum_p;
4574
4575 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4576 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4577 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4578 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4579 if (group == i386_sse_reggroup)
4580 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4581
4582 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4583 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4584 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4585
4586 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4587 == X86_XSTATE_AVX_AVX512_MASK);
4588 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4589 == X86_XSTATE_AVX_MASK) && !avx512_p;
4590 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4591 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4592
4593 if (group == vector_reggroup)
4594 return (mmx_regnum_p
4595 || (zmm_regnum_p && avx512_p)
4596 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4597 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4598 || mxcsr_regnum_p);
4599
4600 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4601 || i386_fpc_regnum_p (gdbarch, regnum));
4602 if (group == float_reggroup)
4603 return fp_regnum_p;
4604
4605 /* For "info reg all", don't include upper YMM registers nor XMM
4606 registers when AVX is supported. */
4607 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4608 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4609 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4610 if (group == all_reggroup
4611 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4612 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4613 || ymmh_regnum_p
4614 || ymmh_avx512_regnum_p
4615 || zmmh_regnum_p))
4616 return 0;
4617
4618 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4619 if (group == all_reggroup
4620 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4621 return bnd_regnum_p;
4622
4623 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4624 if (group == all_reggroup
4625 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4626 return 0;
4627
4628 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4629 if (group == all_reggroup
4630 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4631 return mpx_ctrl_regnum_p;
4632
4633 if (group == general_reggroup)
4634 return (!fp_regnum_p
4635 && !mmx_regnum_p
4636 && !mxcsr_regnum_p
4637 && !xmm_regnum_p
4638 && !xmm_avx512_regnum_p
4639 && !ymm_regnum_p
4640 && !ymmh_regnum_p
4641 && !ymm_avx512_regnum_p
4642 && !ymmh_avx512_regnum_p
4643 && !bndr_regnum_p
4644 && !bnd_regnum_p
4645 && !mpx_ctrl_regnum_p
4646 && !zmm_regnum_p
4647 && !zmmh_regnum_p
4648 && !pkru_regnum_p);
4649
4650 return default_register_reggroup_p (gdbarch, regnum, group);
4651 }
4652 \f
4653
4654 /* Get the ARGIth function argument for the current function. */
4655
4656 static CORE_ADDR
4657 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4658 struct type *type)
4659 {
4660 struct gdbarch *gdbarch = get_frame_arch (frame);
4661 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4662 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4663 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4664 }
4665
4666 #define PREFIX_REPZ 0x01
4667 #define PREFIX_REPNZ 0x02
4668 #define PREFIX_LOCK 0x04
4669 #define PREFIX_DATA 0x08
4670 #define PREFIX_ADDR 0x10
4671
4672 /* operand size */
4673 enum
4674 {
4675 OT_BYTE = 0,
4676 OT_WORD,
4677 OT_LONG,
4678 OT_QUAD,
4679 OT_DQUAD,
4680 };
4681
4682 /* i386 arith/logic operations */
4683 enum
4684 {
4685 OP_ADDL,
4686 OP_ORL,
4687 OP_ADCL,
4688 OP_SBBL,
4689 OP_ANDL,
4690 OP_SUBL,
4691 OP_XORL,
4692 OP_CMPL,
4693 };
4694
4695 struct i386_record_s
4696 {
4697 struct gdbarch *gdbarch;
4698 struct regcache *regcache;
4699 CORE_ADDR orig_addr;
4700 CORE_ADDR addr;
4701 int aflag;
4702 int dflag;
4703 int override;
4704 uint8_t modrm;
4705 uint8_t mod, reg, rm;
4706 int ot;
4707 uint8_t rex_x;
4708 uint8_t rex_b;
4709 int rip_offset;
4710 int popl_esp_hack;
4711 const int *regmap;
4712 };
4713
4714 /* Parse the "modrm" part of the memory address irp->addr points at.
4715 Returns -1 if something goes wrong, 0 otherwise. */
4716
4717 static int
4718 i386_record_modrm (struct i386_record_s *irp)
4719 {
4720 struct gdbarch *gdbarch = irp->gdbarch;
4721
4722 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4723 return -1;
4724
4725 irp->addr++;
4726 irp->mod = (irp->modrm >> 6) & 3;
4727 irp->reg = (irp->modrm >> 3) & 7;
4728 irp->rm = irp->modrm & 7;
4729
4730 return 0;
4731 }
4732
4733 /* Extract the memory address that the current instruction writes to,
4734 and return it in *ADDR. Return -1 if something goes wrong. */
4735
4736 static int
4737 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4738 {
4739 struct gdbarch *gdbarch = irp->gdbarch;
4740 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4741 gdb_byte buf[4];
4742 ULONGEST offset64;
4743
4744 *addr = 0;
4745 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4746 {
4747 /* 32/64 bits */
4748 int havesib = 0;
4749 uint8_t scale = 0;
4750 uint8_t byte;
4751 uint8_t index = 0;
4752 uint8_t base = irp->rm;
4753
4754 if (base == 4)
4755 {
4756 havesib = 1;
4757 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4758 return -1;
4759 irp->addr++;
4760 scale = (byte >> 6) & 3;
4761 index = ((byte >> 3) & 7) | irp->rex_x;
4762 base = (byte & 7);
4763 }
4764 base |= irp->rex_b;
4765
4766 switch (irp->mod)
4767 {
4768 case 0:
4769 if ((base & 7) == 5)
4770 {
4771 base = 0xff;
4772 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4773 return -1;
4774 irp->addr += 4;
4775 *addr = extract_signed_integer (buf, 4, byte_order);
4776 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4777 *addr += irp->addr + irp->rip_offset;
4778 }
4779 break;
4780 case 1:
4781 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4782 return -1;
4783 irp->addr++;
4784 *addr = (int8_t) buf[0];
4785 break;
4786 case 2:
4787 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4788 return -1;
4789 *addr = extract_signed_integer (buf, 4, byte_order);
4790 irp->addr += 4;
4791 break;
4792 }
4793
4794 offset64 = 0;
4795 if (base != 0xff)
4796 {
4797 if (base == 4 && irp->popl_esp_hack)
4798 *addr += irp->popl_esp_hack;
4799 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4800 &offset64);
4801 }
4802 if (irp->aflag == 2)
4803 {
4804 *addr += offset64;
4805 }
4806 else
4807 *addr = (uint32_t) (offset64 + *addr);
4808
4809 if (havesib && (index != 4 || scale != 0))
4810 {
4811 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4812 &offset64);
4813 if (irp->aflag == 2)
4814 *addr += offset64 << scale;
4815 else
4816 *addr = (uint32_t) (*addr + (offset64 << scale));
4817 }
4818
4819 if (!irp->aflag)
4820 {
4821 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4822 address from 32-bit to 64-bit. */
4823 *addr = (uint32_t) *addr;
4824 }
4825 }
4826 else
4827 {
4828 /* 16 bits */
4829 switch (irp->mod)
4830 {
4831 case 0:
4832 if (irp->rm == 6)
4833 {
4834 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4835 return -1;
4836 irp->addr += 2;
4837 *addr = extract_signed_integer (buf, 2, byte_order);
4838 irp->rm = 0;
4839 goto no_rm;
4840 }
4841 break;
4842 case 1:
4843 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4844 return -1;
4845 irp->addr++;
4846 *addr = (int8_t) buf[0];
4847 break;
4848 case 2:
4849 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4850 return -1;
4851 irp->addr += 2;
4852 *addr = extract_signed_integer (buf, 2, byte_order);
4853 break;
4854 }
4855
4856 switch (irp->rm)
4857 {
4858 case 0:
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_REBX_REGNUM],
4861 &offset64);
4862 *addr = (uint32_t) (*addr + offset64);
4863 regcache_raw_read_unsigned (irp->regcache,
4864 irp->regmap[X86_RECORD_RESI_REGNUM],
4865 &offset64);
4866 *addr = (uint32_t) (*addr + offset64);
4867 break;
4868 case 1:
4869 regcache_raw_read_unsigned (irp->regcache,
4870 irp->regmap[X86_RECORD_REBX_REGNUM],
4871 &offset64);
4872 *addr = (uint32_t) (*addr + offset64);
4873 regcache_raw_read_unsigned (irp->regcache,
4874 irp->regmap[X86_RECORD_REDI_REGNUM],
4875 &offset64);
4876 *addr = (uint32_t) (*addr + offset64);
4877 break;
4878 case 2:
4879 regcache_raw_read_unsigned (irp->regcache,
4880 irp->regmap[X86_RECORD_REBP_REGNUM],
4881 &offset64);
4882 *addr = (uint32_t) (*addr + offset64);
4883 regcache_raw_read_unsigned (irp->regcache,
4884 irp->regmap[X86_RECORD_RESI_REGNUM],
4885 &offset64);
4886 *addr = (uint32_t) (*addr + offset64);
4887 break;
4888 case 3:
4889 regcache_raw_read_unsigned (irp->regcache,
4890 irp->regmap[X86_RECORD_REBP_REGNUM],
4891 &offset64);
4892 *addr = (uint32_t) (*addr + offset64);
4893 regcache_raw_read_unsigned (irp->regcache,
4894 irp->regmap[X86_RECORD_REDI_REGNUM],
4895 &offset64);
4896 *addr = (uint32_t) (*addr + offset64);
4897 break;
4898 case 4:
4899 regcache_raw_read_unsigned (irp->regcache,
4900 irp->regmap[X86_RECORD_RESI_REGNUM],
4901 &offset64);
4902 *addr = (uint32_t) (*addr + offset64);
4903 break;
4904 case 5:
4905 regcache_raw_read_unsigned (irp->regcache,
4906 irp->regmap[X86_RECORD_REDI_REGNUM],
4907 &offset64);
4908 *addr = (uint32_t) (*addr + offset64);
4909 break;
4910 case 6:
4911 regcache_raw_read_unsigned (irp->regcache,
4912 irp->regmap[X86_RECORD_REBP_REGNUM],
4913 &offset64);
4914 *addr = (uint32_t) (*addr + offset64);
4915 break;
4916 case 7:
4917 regcache_raw_read_unsigned (irp->regcache,
4918 irp->regmap[X86_RECORD_REBX_REGNUM],
4919 &offset64);
4920 *addr = (uint32_t) (*addr + offset64);
4921 break;
4922 }
4923 *addr &= 0xffff;
4924 }
4925
4926 no_rm:
4927 return 0;
4928 }
4929
4930 /* Record the address and contents of the memory that will be changed
4931 by the current instruction. Return -1 if something goes wrong, 0
4932 otherwise. */
4933
4934 static int
4935 i386_record_lea_modrm (struct i386_record_s *irp)
4936 {
4937 struct gdbarch *gdbarch = irp->gdbarch;
4938 uint64_t addr;
4939
4940 if (irp->override >= 0)
4941 {
4942 if (record_full_memory_query)
4943 {
4944 if (yquery (_("\
4945 Process record ignores the memory change of instruction at address %s\n\
4946 because it can't get the value of the segment register.\n\
4947 Do you want to stop the program?"),
4948 paddress (gdbarch, irp->orig_addr)))
4949 return -1;
4950 }
4951
4952 return 0;
4953 }
4954
4955 if (i386_record_lea_modrm_addr (irp, &addr))
4956 return -1;
4957
4958 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4959 return -1;
4960
4961 return 0;
4962 }
4963
4964 /* Record the effects of a push operation. Return -1 if something
4965 goes wrong, 0 otherwise. */
4966
4967 static int
4968 i386_record_push (struct i386_record_s *irp, int size)
4969 {
4970 ULONGEST addr;
4971
4972 if (record_full_arch_list_add_reg (irp->regcache,
4973 irp->regmap[X86_RECORD_RESP_REGNUM]))
4974 return -1;
4975 regcache_raw_read_unsigned (irp->regcache,
4976 irp->regmap[X86_RECORD_RESP_REGNUM],
4977 &addr);
4978 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4979 return -1;
4980
4981 return 0;
4982 }
4983
4984
4985 /* Defines contents to record. */
4986 #define I386_SAVE_FPU_REGS 0xfffd
4987 #define I386_SAVE_FPU_ENV 0xfffe
4988 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4989
4990 /* Record the values of the floating point registers which will be
4991 changed by the current instruction. Returns -1 if something is
4992 wrong, 0 otherwise. */
4993
4994 static int i386_record_floats (struct gdbarch *gdbarch,
4995 struct i386_record_s *ir,
4996 uint32_t iregnum)
4997 {
4998 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4999 int i;
5000
5001 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5002 happen. Currently we store st0-st7 registers, but we need not store all
5003 registers all the time, in future we use ftag register and record only
5004 those who are not marked as an empty. */
5005
5006 if (I386_SAVE_FPU_REGS == iregnum)
5007 {
5008 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5009 {
5010 if (record_full_arch_list_add_reg (ir->regcache, i))
5011 return -1;
5012 }
5013 }
5014 else if (I386_SAVE_FPU_ENV == iregnum)
5015 {
5016 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5017 {
5018 if (record_full_arch_list_add_reg (ir->regcache, i))
5019 return -1;
5020 }
5021 }
5022 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5023 {
5024 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5025 {
5026 if (record_full_arch_list_add_reg (ir->regcache, i))
5027 return -1;
5028 }
5029 }
5030 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5031 (iregnum <= I387_FOP_REGNUM (tdep)))
5032 {
5033 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5034 return -1;
5035 }
5036 else
5037 {
5038 /* Parameter error. */
5039 return -1;
5040 }
5041 if(I386_SAVE_FPU_ENV != iregnum)
5042 {
5043 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5044 {
5045 if (record_full_arch_list_add_reg (ir->regcache, i))
5046 return -1;
5047 }
5048 }
5049 return 0;
5050 }
5051
5052 /* Parse the current instruction, and record the values of the
5053 registers and memory that will be changed by the current
5054 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5055
5056 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5057 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5058
5059 int
5060 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5061 CORE_ADDR input_addr)
5062 {
5063 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5064 int prefixes = 0;
5065 int regnum = 0;
5066 uint32_t opcode;
5067 uint8_t opcode8;
5068 ULONGEST addr;
5069 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5070 struct i386_record_s ir;
5071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5072 uint8_t rex_w = -1;
5073 uint8_t rex_r = 0;
5074
5075 memset (&ir, 0, sizeof (struct i386_record_s));
5076 ir.regcache = regcache;
5077 ir.addr = input_addr;
5078 ir.orig_addr = input_addr;
5079 ir.aflag = 1;
5080 ir.dflag = 1;
5081 ir.override = -1;
5082 ir.popl_esp_hack = 0;
5083 ir.regmap = tdep->record_regmap;
5084 ir.gdbarch = gdbarch;
5085
5086 if (record_debug > 1)
5087 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5088 "addr = %s\n",
5089 paddress (gdbarch, ir.addr));
5090
5091 /* prefixes */
5092 while (1)
5093 {
5094 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5095 return -1;
5096 ir.addr++;
5097 switch (opcode8) /* Instruction prefixes */
5098 {
5099 case REPE_PREFIX_OPCODE:
5100 prefixes |= PREFIX_REPZ;
5101 break;
5102 case REPNE_PREFIX_OPCODE:
5103 prefixes |= PREFIX_REPNZ;
5104 break;
5105 case LOCK_PREFIX_OPCODE:
5106 prefixes |= PREFIX_LOCK;
5107 break;
5108 case CS_PREFIX_OPCODE:
5109 ir.override = X86_RECORD_CS_REGNUM;
5110 break;
5111 case SS_PREFIX_OPCODE:
5112 ir.override = X86_RECORD_SS_REGNUM;
5113 break;
5114 case DS_PREFIX_OPCODE:
5115 ir.override = X86_RECORD_DS_REGNUM;
5116 break;
5117 case ES_PREFIX_OPCODE:
5118 ir.override = X86_RECORD_ES_REGNUM;
5119 break;
5120 case FS_PREFIX_OPCODE:
5121 ir.override = X86_RECORD_FS_REGNUM;
5122 break;
5123 case GS_PREFIX_OPCODE:
5124 ir.override = X86_RECORD_GS_REGNUM;
5125 break;
5126 case DATA_PREFIX_OPCODE:
5127 prefixes |= PREFIX_DATA;
5128 break;
5129 case ADDR_PREFIX_OPCODE:
5130 prefixes |= PREFIX_ADDR;
5131 break;
5132 case 0x40: /* i386 inc %eax */
5133 case 0x41: /* i386 inc %ecx */
5134 case 0x42: /* i386 inc %edx */
5135 case 0x43: /* i386 inc %ebx */
5136 case 0x44: /* i386 inc %esp */
5137 case 0x45: /* i386 inc %ebp */
5138 case 0x46: /* i386 inc %esi */
5139 case 0x47: /* i386 inc %edi */
5140 case 0x48: /* i386 dec %eax */
5141 case 0x49: /* i386 dec %ecx */
5142 case 0x4a: /* i386 dec %edx */
5143 case 0x4b: /* i386 dec %ebx */
5144 case 0x4c: /* i386 dec %esp */
5145 case 0x4d: /* i386 dec %ebp */
5146 case 0x4e: /* i386 dec %esi */
5147 case 0x4f: /* i386 dec %edi */
5148 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5149 {
5150 /* REX */
5151 rex_w = (opcode8 >> 3) & 1;
5152 rex_r = (opcode8 & 0x4) << 1;
5153 ir.rex_x = (opcode8 & 0x2) << 2;
5154 ir.rex_b = (opcode8 & 0x1) << 3;
5155 }
5156 else /* 32 bit target */
5157 goto out_prefixes;
5158 break;
5159 default:
5160 goto out_prefixes;
5161 break;
5162 }
5163 }
5164 out_prefixes:
5165 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5166 {
5167 ir.dflag = 2;
5168 }
5169 else
5170 {
5171 if (prefixes & PREFIX_DATA)
5172 ir.dflag ^= 1;
5173 }
5174 if (prefixes & PREFIX_ADDR)
5175 ir.aflag ^= 1;
5176 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5177 ir.aflag = 2;
5178
5179 /* Now check op code. */
5180 opcode = (uint32_t) opcode8;
5181 reswitch:
5182 switch (opcode)
5183 {
5184 case 0x0f:
5185 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5186 return -1;
5187 ir.addr++;
5188 opcode = (uint32_t) opcode8 | 0x0f00;
5189 goto reswitch;
5190 break;
5191
5192 case 0x00: /* arith & logic */
5193 case 0x01:
5194 case 0x02:
5195 case 0x03:
5196 case 0x04:
5197 case 0x05:
5198 case 0x08:
5199 case 0x09:
5200 case 0x0a:
5201 case 0x0b:
5202 case 0x0c:
5203 case 0x0d:
5204 case 0x10:
5205 case 0x11:
5206 case 0x12:
5207 case 0x13:
5208 case 0x14:
5209 case 0x15:
5210 case 0x18:
5211 case 0x19:
5212 case 0x1a:
5213 case 0x1b:
5214 case 0x1c:
5215 case 0x1d:
5216 case 0x20:
5217 case 0x21:
5218 case 0x22:
5219 case 0x23:
5220 case 0x24:
5221 case 0x25:
5222 case 0x28:
5223 case 0x29:
5224 case 0x2a:
5225 case 0x2b:
5226 case 0x2c:
5227 case 0x2d:
5228 case 0x30:
5229 case 0x31:
5230 case 0x32:
5231 case 0x33:
5232 case 0x34:
5233 case 0x35:
5234 case 0x38:
5235 case 0x39:
5236 case 0x3a:
5237 case 0x3b:
5238 case 0x3c:
5239 case 0x3d:
5240 if (((opcode >> 3) & 7) != OP_CMPL)
5241 {
5242 if ((opcode & 1) == 0)
5243 ir.ot = OT_BYTE;
5244 else
5245 ir.ot = ir.dflag + OT_WORD;
5246
5247 switch ((opcode >> 1) & 3)
5248 {
5249 case 0: /* OP Ev, Gv */
5250 if (i386_record_modrm (&ir))
5251 return -1;
5252 if (ir.mod != 3)
5253 {
5254 if (i386_record_lea_modrm (&ir))
5255 return -1;
5256 }
5257 else
5258 {
5259 ir.rm |= ir.rex_b;
5260 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5261 ir.rm &= 0x3;
5262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5263 }
5264 break;
5265 case 1: /* OP Gv, Ev */
5266 if (i386_record_modrm (&ir))
5267 return -1;
5268 ir.reg |= rex_r;
5269 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5270 ir.reg &= 0x3;
5271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5272 break;
5273 case 2: /* OP A, Iv */
5274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5275 break;
5276 }
5277 }
5278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5279 break;
5280
5281 case 0x80: /* GRP1 */
5282 case 0x81:
5283 case 0x82:
5284 case 0x83:
5285 if (i386_record_modrm (&ir))
5286 return -1;
5287
5288 if (ir.reg != OP_CMPL)
5289 {
5290 if ((opcode & 1) == 0)
5291 ir.ot = OT_BYTE;
5292 else
5293 ir.ot = ir.dflag + OT_WORD;
5294
5295 if (ir.mod != 3)
5296 {
5297 if (opcode == 0x83)
5298 ir.rip_offset = 1;
5299 else
5300 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5301 if (i386_record_lea_modrm (&ir))
5302 return -1;
5303 }
5304 else
5305 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5306 }
5307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5308 break;
5309
5310 case 0x40: /* inc */
5311 case 0x41:
5312 case 0x42:
5313 case 0x43:
5314 case 0x44:
5315 case 0x45:
5316 case 0x46:
5317 case 0x47:
5318
5319 case 0x48: /* dec */
5320 case 0x49:
5321 case 0x4a:
5322 case 0x4b:
5323 case 0x4c:
5324 case 0x4d:
5325 case 0x4e:
5326 case 0x4f:
5327
5328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5330 break;
5331
5332 case 0xf6: /* GRP3 */
5333 case 0xf7:
5334 if ((opcode & 1) == 0)
5335 ir.ot = OT_BYTE;
5336 else
5337 ir.ot = ir.dflag + OT_WORD;
5338 if (i386_record_modrm (&ir))
5339 return -1;
5340
5341 if (ir.mod != 3 && ir.reg == 0)
5342 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5343
5344 switch (ir.reg)
5345 {
5346 case 0: /* test */
5347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5348 break;
5349 case 2: /* not */
5350 case 3: /* neg */
5351 if (ir.mod != 3)
5352 {
5353 if (i386_record_lea_modrm (&ir))
5354 return -1;
5355 }
5356 else
5357 {
5358 ir.rm |= ir.rex_b;
5359 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5360 ir.rm &= 0x3;
5361 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5362 }
5363 if (ir.reg == 3) /* neg */
5364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5365 break;
5366 case 4: /* mul */
5367 case 5: /* imul */
5368 case 6: /* div */
5369 case 7: /* idiv */
5370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5371 if (ir.ot != OT_BYTE)
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5374 break;
5375 default:
5376 ir.addr -= 2;
5377 opcode = opcode << 8 | ir.modrm;
5378 goto no_support;
5379 break;
5380 }
5381 break;
5382
5383 case 0xfe: /* GRP4 */
5384 case 0xff: /* GRP5 */
5385 if (i386_record_modrm (&ir))
5386 return -1;
5387 if (ir.reg >= 2 && opcode == 0xfe)
5388 {
5389 ir.addr -= 2;
5390 opcode = opcode << 8 | ir.modrm;
5391 goto no_support;
5392 }
5393 switch (ir.reg)
5394 {
5395 case 0: /* inc */
5396 case 1: /* dec */
5397 if ((opcode & 1) == 0)
5398 ir.ot = OT_BYTE;
5399 else
5400 ir.ot = ir.dflag + OT_WORD;
5401 if (ir.mod != 3)
5402 {
5403 if (i386_record_lea_modrm (&ir))
5404 return -1;
5405 }
5406 else
5407 {
5408 ir.rm |= ir.rex_b;
5409 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5410 ir.rm &= 0x3;
5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5412 }
5413 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5414 break;
5415 case 2: /* call */
5416 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5417 ir.dflag = 2;
5418 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5419 return -1;
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5421 break;
5422 case 3: /* lcall */
5423 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5424 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5425 return -1;
5426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5427 break;
5428 case 4: /* jmp */
5429 case 5: /* ljmp */
5430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5431 break;
5432 case 6: /* push */
5433 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5434 ir.dflag = 2;
5435 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5436 return -1;
5437 break;
5438 default:
5439 ir.addr -= 2;
5440 opcode = opcode << 8 | ir.modrm;
5441 goto no_support;
5442 break;
5443 }
5444 break;
5445
5446 case 0x84: /* test */
5447 case 0x85:
5448 case 0xa8:
5449 case 0xa9:
5450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5451 break;
5452
5453 case 0x98: /* CWDE/CBW */
5454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5455 break;
5456
5457 case 0x99: /* CDQ/CWD */
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5459 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5460 break;
5461
5462 case 0x0faf: /* imul */
5463 case 0x69:
5464 case 0x6b:
5465 ir.ot = ir.dflag + OT_WORD;
5466 if (i386_record_modrm (&ir))
5467 return -1;
5468 if (opcode == 0x69)
5469 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5470 else if (opcode == 0x6b)
5471 ir.rip_offset = 1;
5472 ir.reg |= rex_r;
5473 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5474 ir.reg &= 0x3;
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5477 break;
5478
5479 case 0x0fc0: /* xadd */
5480 case 0x0fc1:
5481 if ((opcode & 1) == 0)
5482 ir.ot = OT_BYTE;
5483 else
5484 ir.ot = ir.dflag + OT_WORD;
5485 if (i386_record_modrm (&ir))
5486 return -1;
5487 ir.reg |= rex_r;
5488 if (ir.mod == 3)
5489 {
5490 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5491 ir.reg &= 0x3;
5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5493 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5494 ir.rm &= 0x3;
5495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5496 }
5497 else
5498 {
5499 if (i386_record_lea_modrm (&ir))
5500 return -1;
5501 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5502 ir.reg &= 0x3;
5503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5504 }
5505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5506 break;
5507
5508 case 0x0fb0: /* cmpxchg */
5509 case 0x0fb1:
5510 if ((opcode & 1) == 0)
5511 ir.ot = OT_BYTE;
5512 else
5513 ir.ot = ir.dflag + OT_WORD;
5514 if (i386_record_modrm (&ir))
5515 return -1;
5516 if (ir.mod == 3)
5517 {
5518 ir.reg |= rex_r;
5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5520 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5521 ir.reg &= 0x3;
5522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5523 }
5524 else
5525 {
5526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5527 if (i386_record_lea_modrm (&ir))
5528 return -1;
5529 }
5530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5531 break;
5532
5533 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5534 if (i386_record_modrm (&ir))
5535 return -1;
5536 if (ir.mod == 3)
5537 {
5538 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5539 an extended opcode. rdrand has bits 110 (/6) and rdseed
5540 has bits 111 (/7). */
5541 if (ir.reg == 6 || ir.reg == 7)
5542 {
5543 /* The storage register is described by the 3 R/M bits, but the
5544 REX.B prefix may be used to give access to registers
5545 R8~R15. In this case ir.rex_b + R/M will give us the register
5546 in the range R8~R15.
5547
5548 REX.W may also be used to access 64-bit registers, but we
5549 already record entire registers and not just partial bits
5550 of them. */
5551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5552 /* These instructions also set conditional bits. */
5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5554 break;
5555 }
5556 else
5557 {
5558 /* We don't handle this particular instruction yet. */
5559 ir.addr -= 2;
5560 opcode = opcode << 8 | ir.modrm;
5561 goto no_support;
5562 }
5563 }
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5566 if (i386_record_lea_modrm (&ir))
5567 return -1;
5568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5569 break;
5570
5571 case 0x50: /* push */
5572 case 0x51:
5573 case 0x52:
5574 case 0x53:
5575 case 0x54:
5576 case 0x55:
5577 case 0x56:
5578 case 0x57:
5579 case 0x68:
5580 case 0x6a:
5581 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5582 ir.dflag = 2;
5583 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5584 return -1;
5585 break;
5586
5587 case 0x06: /* push es */
5588 case 0x0e: /* push cs */
5589 case 0x16: /* push ss */
5590 case 0x1e: /* push ds */
5591 if (ir.regmap[X86_RECORD_R8_REGNUM])
5592 {
5593 ir.addr -= 1;
5594 goto no_support;
5595 }
5596 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5597 return -1;
5598 break;
5599
5600 case 0x0fa0: /* push fs */
5601 case 0x0fa8: /* push gs */
5602 if (ir.regmap[X86_RECORD_R8_REGNUM])
5603 {
5604 ir.addr -= 2;
5605 goto no_support;
5606 }
5607 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5608 return -1;
5609 break;
5610
5611 case 0x60: /* pusha */
5612 if (ir.regmap[X86_RECORD_R8_REGNUM])
5613 {
5614 ir.addr -= 1;
5615 goto no_support;
5616 }
5617 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5618 return -1;
5619 break;
5620
5621 case 0x58: /* pop */
5622 case 0x59:
5623 case 0x5a:
5624 case 0x5b:
5625 case 0x5c:
5626 case 0x5d:
5627 case 0x5e:
5628 case 0x5f:
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5631 break;
5632
5633 case 0x61: /* popa */
5634 if (ir.regmap[X86_RECORD_R8_REGNUM])
5635 {
5636 ir.addr -= 1;
5637 goto no_support;
5638 }
5639 for (regnum = X86_RECORD_REAX_REGNUM;
5640 regnum <= X86_RECORD_REDI_REGNUM;
5641 regnum++)
5642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5643 break;
5644
5645 case 0x8f: /* pop */
5646 if (ir.regmap[X86_RECORD_R8_REGNUM])
5647 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5648 else
5649 ir.ot = ir.dflag + OT_WORD;
5650 if (i386_record_modrm (&ir))
5651 return -1;
5652 if (ir.mod == 3)
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5654 else
5655 {
5656 ir.popl_esp_hack = 1 << ir.ot;
5657 if (i386_record_lea_modrm (&ir))
5658 return -1;
5659 }
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5661 break;
5662
5663 case 0xc8: /* enter */
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5665 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5666 ir.dflag = 2;
5667 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5668 return -1;
5669 break;
5670
5671 case 0xc9: /* leave */
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5674 break;
5675
5676 case 0x07: /* pop es */
5677 if (ir.regmap[X86_RECORD_R8_REGNUM])
5678 {
5679 ir.addr -= 1;
5680 goto no_support;
5681 }
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5685 break;
5686
5687 case 0x17: /* pop ss */
5688 if (ir.regmap[X86_RECORD_R8_REGNUM])
5689 {
5690 ir.addr -= 1;
5691 goto no_support;
5692 }
5693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5696 break;
5697
5698 case 0x1f: /* pop ds */
5699 if (ir.regmap[X86_RECORD_R8_REGNUM])
5700 {
5701 ir.addr -= 1;
5702 goto no_support;
5703 }
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5707 break;
5708
5709 case 0x0fa1: /* pop fs */
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5713 break;
5714
5715 case 0x0fa9: /* pop gs */
5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5719 break;
5720
5721 case 0x88: /* mov */
5722 case 0x89:
5723 case 0xc6:
5724 case 0xc7:
5725 if ((opcode & 1) == 0)
5726 ir.ot = OT_BYTE;
5727 else
5728 ir.ot = ir.dflag + OT_WORD;
5729
5730 if (i386_record_modrm (&ir))
5731 return -1;
5732
5733 if (ir.mod != 3)
5734 {
5735 if (opcode == 0xc6 || opcode == 0xc7)
5736 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5737 if (i386_record_lea_modrm (&ir))
5738 return -1;
5739 }
5740 else
5741 {
5742 if (opcode == 0xc6 || opcode == 0xc7)
5743 ir.rm |= ir.rex_b;
5744 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5745 ir.rm &= 0x3;
5746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5747 }
5748 break;
5749
5750 case 0x8a: /* mov */
5751 case 0x8b:
5752 if ((opcode & 1) == 0)
5753 ir.ot = OT_BYTE;
5754 else
5755 ir.ot = ir.dflag + OT_WORD;
5756 if (i386_record_modrm (&ir))
5757 return -1;
5758 ir.reg |= rex_r;
5759 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5760 ir.reg &= 0x3;
5761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5762 break;
5763
5764 case 0x8c: /* mov seg */
5765 if (i386_record_modrm (&ir))
5766 return -1;
5767 if (ir.reg > 5)
5768 {
5769 ir.addr -= 2;
5770 opcode = opcode << 8 | ir.modrm;
5771 goto no_support;
5772 }
5773
5774 if (ir.mod == 3)
5775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5776 else
5777 {
5778 ir.ot = OT_WORD;
5779 if (i386_record_lea_modrm (&ir))
5780 return -1;
5781 }
5782 break;
5783
5784 case 0x8e: /* mov seg */
5785 if (i386_record_modrm (&ir))
5786 return -1;
5787 switch (ir.reg)
5788 {
5789 case 0:
5790 regnum = X86_RECORD_ES_REGNUM;
5791 break;
5792 case 2:
5793 regnum = X86_RECORD_SS_REGNUM;
5794 break;
5795 case 3:
5796 regnum = X86_RECORD_DS_REGNUM;
5797 break;
5798 case 4:
5799 regnum = X86_RECORD_FS_REGNUM;
5800 break;
5801 case 5:
5802 regnum = X86_RECORD_GS_REGNUM;
5803 break;
5804 default:
5805 ir.addr -= 2;
5806 opcode = opcode << 8 | ir.modrm;
5807 goto no_support;
5808 break;
5809 }
5810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5812 break;
5813
5814 case 0x0fb6: /* movzbS */
5815 case 0x0fb7: /* movzwS */
5816 case 0x0fbe: /* movsbS */
5817 case 0x0fbf: /* movswS */
5818 if (i386_record_modrm (&ir))
5819 return -1;
5820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5821 break;
5822
5823 case 0x8d: /* lea */
5824 if (i386_record_modrm (&ir))
5825 return -1;
5826 if (ir.mod == 3)
5827 {
5828 ir.addr -= 2;
5829 opcode = opcode << 8 | ir.modrm;
5830 goto no_support;
5831 }
5832 ir.ot = ir.dflag;
5833 ir.reg |= rex_r;
5834 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5835 ir.reg &= 0x3;
5836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5837 break;
5838
5839 case 0xa0: /* mov EAX */
5840 case 0xa1:
5841
5842 case 0xd7: /* xlat */
5843 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5844 break;
5845
5846 case 0xa2: /* mov EAX */
5847 case 0xa3:
5848 if (ir.override >= 0)
5849 {
5850 if (record_full_memory_query)
5851 {
5852 if (yquery (_("\
5853 Process record ignores the memory change of instruction at address %s\n\
5854 because it can't get the value of the segment register.\n\
5855 Do you want to stop the program?"),
5856 paddress (gdbarch, ir.orig_addr)))
5857 return -1;
5858 }
5859 }
5860 else
5861 {
5862 if ((opcode & 1) == 0)
5863 ir.ot = OT_BYTE;
5864 else
5865 ir.ot = ir.dflag + OT_WORD;
5866 if (ir.aflag == 2)
5867 {
5868 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5869 return -1;
5870 ir.addr += 8;
5871 addr = extract_unsigned_integer (buf, 8, byte_order);
5872 }
5873 else if (ir.aflag)
5874 {
5875 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5876 return -1;
5877 ir.addr += 4;
5878 addr = extract_unsigned_integer (buf, 4, byte_order);
5879 }
5880 else
5881 {
5882 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5883 return -1;
5884 ir.addr += 2;
5885 addr = extract_unsigned_integer (buf, 2, byte_order);
5886 }
5887 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5888 return -1;
5889 }
5890 break;
5891
5892 case 0xb0: /* mov R, Ib */
5893 case 0xb1:
5894 case 0xb2:
5895 case 0xb3:
5896 case 0xb4:
5897 case 0xb5:
5898 case 0xb6:
5899 case 0xb7:
5900 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5901 ? ((opcode & 0x7) | ir.rex_b)
5902 : ((opcode & 0x7) & 0x3));
5903 break;
5904
5905 case 0xb8: /* mov R, Iv */
5906 case 0xb9:
5907 case 0xba:
5908 case 0xbb:
5909 case 0xbc:
5910 case 0xbd:
5911 case 0xbe:
5912 case 0xbf:
5913 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5914 break;
5915
5916 case 0x91: /* xchg R, EAX */
5917 case 0x92:
5918 case 0x93:
5919 case 0x94:
5920 case 0x95:
5921 case 0x96:
5922 case 0x97:
5923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5925 break;
5926
5927 case 0x86: /* xchg Ev, Gv */
5928 case 0x87:
5929 if ((opcode & 1) == 0)
5930 ir.ot = OT_BYTE;
5931 else
5932 ir.ot = ir.dflag + OT_WORD;
5933 if (i386_record_modrm (&ir))
5934 return -1;
5935 if (ir.mod == 3)
5936 {
5937 ir.rm |= ir.rex_b;
5938 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5939 ir.rm &= 0x3;
5940 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5941 }
5942 else
5943 {
5944 if (i386_record_lea_modrm (&ir))
5945 return -1;
5946 }
5947 ir.reg |= rex_r;
5948 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5949 ir.reg &= 0x3;
5950 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5951 break;
5952
5953 case 0xc4: /* les Gv */
5954 case 0xc5: /* lds Gv */
5955 if (ir.regmap[X86_RECORD_R8_REGNUM])
5956 {
5957 ir.addr -= 1;
5958 goto no_support;
5959 }
5960 /* FALLTHROUGH */
5961 case 0x0fb2: /* lss Gv */
5962 case 0x0fb4: /* lfs Gv */
5963 case 0x0fb5: /* lgs Gv */
5964 if (i386_record_modrm (&ir))
5965 return -1;
5966 if (ir.mod == 3)
5967 {
5968 if (opcode > 0xff)
5969 ir.addr -= 3;
5970 else
5971 ir.addr -= 2;
5972 opcode = opcode << 8 | ir.modrm;
5973 goto no_support;
5974 }
5975 switch (opcode)
5976 {
5977 case 0xc4: /* les Gv */
5978 regnum = X86_RECORD_ES_REGNUM;
5979 break;
5980 case 0xc5: /* lds Gv */
5981 regnum = X86_RECORD_DS_REGNUM;
5982 break;
5983 case 0x0fb2: /* lss Gv */
5984 regnum = X86_RECORD_SS_REGNUM;
5985 break;
5986 case 0x0fb4: /* lfs Gv */
5987 regnum = X86_RECORD_FS_REGNUM;
5988 break;
5989 case 0x0fb5: /* lgs Gv */
5990 regnum = X86_RECORD_GS_REGNUM;
5991 break;
5992 }
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5996 break;
5997
5998 case 0xc0: /* shifts */
5999 case 0xc1:
6000 case 0xd0:
6001 case 0xd1:
6002 case 0xd2:
6003 case 0xd3:
6004 if ((opcode & 1) == 0)
6005 ir.ot = OT_BYTE;
6006 else
6007 ir.ot = ir.dflag + OT_WORD;
6008 if (i386_record_modrm (&ir))
6009 return -1;
6010 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6011 {
6012 if (i386_record_lea_modrm (&ir))
6013 return -1;
6014 }
6015 else
6016 {
6017 ir.rm |= ir.rex_b;
6018 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6019 ir.rm &= 0x3;
6020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6021 }
6022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6023 break;
6024
6025 case 0x0fa4:
6026 case 0x0fa5:
6027 case 0x0fac:
6028 case 0x0fad:
6029 if (i386_record_modrm (&ir))
6030 return -1;
6031 if (ir.mod == 3)
6032 {
6033 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6034 return -1;
6035 }
6036 else
6037 {
6038 if (i386_record_lea_modrm (&ir))
6039 return -1;
6040 }
6041 break;
6042
6043 case 0xd8: /* Floats. */
6044 case 0xd9:
6045 case 0xda:
6046 case 0xdb:
6047 case 0xdc:
6048 case 0xdd:
6049 case 0xde:
6050 case 0xdf:
6051 if (i386_record_modrm (&ir))
6052 return -1;
6053 ir.reg |= ((opcode & 7) << 3);
6054 if (ir.mod != 3)
6055 {
6056 /* Memory. */
6057 uint64_t addr64;
6058
6059 if (i386_record_lea_modrm_addr (&ir, &addr64))
6060 return -1;
6061 switch (ir.reg)
6062 {
6063 case 0x02:
6064 case 0x12:
6065 case 0x22:
6066 case 0x32:
6067 /* For fcom, ficom nothing to do. */
6068 break;
6069 case 0x03:
6070 case 0x13:
6071 case 0x23:
6072 case 0x33:
6073 /* For fcomp, ficomp pop FPU stack, store all. */
6074 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6075 return -1;
6076 break;
6077 case 0x00:
6078 case 0x01:
6079 case 0x04:
6080 case 0x05:
6081 case 0x06:
6082 case 0x07:
6083 case 0x10:
6084 case 0x11:
6085 case 0x14:
6086 case 0x15:
6087 case 0x16:
6088 case 0x17:
6089 case 0x20:
6090 case 0x21:
6091 case 0x24:
6092 case 0x25:
6093 case 0x26:
6094 case 0x27:
6095 case 0x30:
6096 case 0x31:
6097 case 0x34:
6098 case 0x35:
6099 case 0x36:
6100 case 0x37:
6101 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6102 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6103 of code, always affects st(0) register. */
6104 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6105 return -1;
6106 break;
6107 case 0x08:
6108 case 0x0a:
6109 case 0x0b:
6110 case 0x18:
6111 case 0x19:
6112 case 0x1a:
6113 case 0x1b:
6114 case 0x1d:
6115 case 0x28:
6116 case 0x29:
6117 case 0x2a:
6118 case 0x2b:
6119 case 0x38:
6120 case 0x39:
6121 case 0x3a:
6122 case 0x3b:
6123 case 0x3c:
6124 case 0x3d:
6125 switch (ir.reg & 7)
6126 {
6127 case 0:
6128 /* Handling fld, fild. */
6129 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6130 return -1;
6131 break;
6132 case 1:
6133 switch (ir.reg >> 4)
6134 {
6135 case 0:
6136 if (record_full_arch_list_add_mem (addr64, 4))
6137 return -1;
6138 break;
6139 case 2:
6140 if (record_full_arch_list_add_mem (addr64, 8))
6141 return -1;
6142 break;
6143 case 3:
6144 break;
6145 default:
6146 if (record_full_arch_list_add_mem (addr64, 2))
6147 return -1;
6148 break;
6149 }
6150 break;
6151 default:
6152 switch (ir.reg >> 4)
6153 {
6154 case 0:
6155 if (record_full_arch_list_add_mem (addr64, 4))
6156 return -1;
6157 if (3 == (ir.reg & 7))
6158 {
6159 /* For fstp m32fp. */
6160 if (i386_record_floats (gdbarch, &ir,
6161 I386_SAVE_FPU_REGS))
6162 return -1;
6163 }
6164 break;
6165 case 1:
6166 if (record_full_arch_list_add_mem (addr64, 4))
6167 return -1;
6168 if ((3 == (ir.reg & 7))
6169 || (5 == (ir.reg & 7))
6170 || (7 == (ir.reg & 7)))
6171 {
6172 /* For fstp insn. */
6173 if (i386_record_floats (gdbarch, &ir,
6174 I386_SAVE_FPU_REGS))
6175 return -1;
6176 }
6177 break;
6178 case 2:
6179 if (record_full_arch_list_add_mem (addr64, 8))
6180 return -1;
6181 if (3 == (ir.reg & 7))
6182 {
6183 /* For fstp m64fp. */
6184 if (i386_record_floats (gdbarch, &ir,
6185 I386_SAVE_FPU_REGS))
6186 return -1;
6187 }
6188 break;
6189 case 3:
6190 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6191 {
6192 /* For fistp, fbld, fild, fbstp. */
6193 if (i386_record_floats (gdbarch, &ir,
6194 I386_SAVE_FPU_REGS))
6195 return -1;
6196 }
6197 /* Fall through */
6198 default:
6199 if (record_full_arch_list_add_mem (addr64, 2))
6200 return -1;
6201 break;
6202 }
6203 break;
6204 }
6205 break;
6206 case 0x0c:
6207 /* Insn fldenv. */
6208 if (i386_record_floats (gdbarch, &ir,
6209 I386_SAVE_FPU_ENV_REG_STACK))
6210 return -1;
6211 break;
6212 case 0x0d:
6213 /* Insn fldcw. */
6214 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6215 return -1;
6216 break;
6217 case 0x2c:
6218 /* Insn frstor. */
6219 if (i386_record_floats (gdbarch, &ir,
6220 I386_SAVE_FPU_ENV_REG_STACK))
6221 return -1;
6222 break;
6223 case 0x0e:
6224 if (ir.dflag)
6225 {
6226 if (record_full_arch_list_add_mem (addr64, 28))
6227 return -1;
6228 }
6229 else
6230 {
6231 if (record_full_arch_list_add_mem (addr64, 14))
6232 return -1;
6233 }
6234 break;
6235 case 0x0f:
6236 case 0x2f:
6237 if (record_full_arch_list_add_mem (addr64, 2))
6238 return -1;
6239 /* Insn fstp, fbstp. */
6240 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6241 return -1;
6242 break;
6243 case 0x1f:
6244 case 0x3e:
6245 if (record_full_arch_list_add_mem (addr64, 10))
6246 return -1;
6247 break;
6248 case 0x2e:
6249 if (ir.dflag)
6250 {
6251 if (record_full_arch_list_add_mem (addr64, 28))
6252 return -1;
6253 addr64 += 28;
6254 }
6255 else
6256 {
6257 if (record_full_arch_list_add_mem (addr64, 14))
6258 return -1;
6259 addr64 += 14;
6260 }
6261 if (record_full_arch_list_add_mem (addr64, 80))
6262 return -1;
6263 /* Insn fsave. */
6264 if (i386_record_floats (gdbarch, &ir,
6265 I386_SAVE_FPU_ENV_REG_STACK))
6266 return -1;
6267 break;
6268 case 0x3f:
6269 if (record_full_arch_list_add_mem (addr64, 8))
6270 return -1;
6271 /* Insn fistp. */
6272 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6273 return -1;
6274 break;
6275 default:
6276 ir.addr -= 2;
6277 opcode = opcode << 8 | ir.modrm;
6278 goto no_support;
6279 break;
6280 }
6281 }
6282 /* Opcode is an extension of modR/M byte. */
6283 else
6284 {
6285 switch (opcode)
6286 {
6287 case 0xd8:
6288 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6289 return -1;
6290 break;
6291 case 0xd9:
6292 if (0x0c == (ir.modrm >> 4))
6293 {
6294 if ((ir.modrm & 0x0f) <= 7)
6295 {
6296 if (i386_record_floats (gdbarch, &ir,
6297 I386_SAVE_FPU_REGS))
6298 return -1;
6299 }
6300 else
6301 {
6302 if (i386_record_floats (gdbarch, &ir,
6303 I387_ST0_REGNUM (tdep)))
6304 return -1;
6305 /* If only st(0) is changing, then we have already
6306 recorded. */
6307 if ((ir.modrm & 0x0f) - 0x08)
6308 {
6309 if (i386_record_floats (gdbarch, &ir,
6310 I387_ST0_REGNUM (tdep) +
6311 ((ir.modrm & 0x0f) - 0x08)))
6312 return -1;
6313 }
6314 }
6315 }
6316 else
6317 {
6318 switch (ir.modrm)
6319 {
6320 case 0xe0:
6321 case 0xe1:
6322 case 0xf0:
6323 case 0xf5:
6324 case 0xf8:
6325 case 0xfa:
6326 case 0xfc:
6327 case 0xfe:
6328 case 0xff:
6329 if (i386_record_floats (gdbarch, &ir,
6330 I387_ST0_REGNUM (tdep)))
6331 return -1;
6332 break;
6333 case 0xf1:
6334 case 0xf2:
6335 case 0xf3:
6336 case 0xf4:
6337 case 0xf6:
6338 case 0xf7:
6339 case 0xe8:
6340 case 0xe9:
6341 case 0xea:
6342 case 0xeb:
6343 case 0xec:
6344 case 0xed:
6345 case 0xee:
6346 case 0xf9:
6347 case 0xfb:
6348 if (i386_record_floats (gdbarch, &ir,
6349 I386_SAVE_FPU_REGS))
6350 return -1;
6351 break;
6352 case 0xfd:
6353 if (i386_record_floats (gdbarch, &ir,
6354 I387_ST0_REGNUM (tdep)))
6355 return -1;
6356 if (i386_record_floats (gdbarch, &ir,
6357 I387_ST0_REGNUM (tdep) + 1))
6358 return -1;
6359 break;
6360 }
6361 }
6362 break;
6363 case 0xda:
6364 if (0xe9 == ir.modrm)
6365 {
6366 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6367 return -1;
6368 }
6369 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6370 {
6371 if (i386_record_floats (gdbarch, &ir,
6372 I387_ST0_REGNUM (tdep)))
6373 return -1;
6374 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6375 {
6376 if (i386_record_floats (gdbarch, &ir,
6377 I387_ST0_REGNUM (tdep) +
6378 (ir.modrm & 0x0f)))
6379 return -1;
6380 }
6381 else if ((ir.modrm & 0x0f) - 0x08)
6382 {
6383 if (i386_record_floats (gdbarch, &ir,
6384 I387_ST0_REGNUM (tdep) +
6385 ((ir.modrm & 0x0f) - 0x08)))
6386 return -1;
6387 }
6388 }
6389 break;
6390 case 0xdb:
6391 if (0xe3 == ir.modrm)
6392 {
6393 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6394 return -1;
6395 }
6396 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6397 {
6398 if (i386_record_floats (gdbarch, &ir,
6399 I387_ST0_REGNUM (tdep)))
6400 return -1;
6401 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6402 {
6403 if (i386_record_floats (gdbarch, &ir,
6404 I387_ST0_REGNUM (tdep) +
6405 (ir.modrm & 0x0f)))
6406 return -1;
6407 }
6408 else if ((ir.modrm & 0x0f) - 0x08)
6409 {
6410 if (i386_record_floats (gdbarch, &ir,
6411 I387_ST0_REGNUM (tdep) +
6412 ((ir.modrm & 0x0f) - 0x08)))
6413 return -1;
6414 }
6415 }
6416 break;
6417 case 0xdc:
6418 if ((0x0c == ir.modrm >> 4)
6419 || (0x0d == ir.modrm >> 4)
6420 || (0x0f == ir.modrm >> 4))
6421 {
6422 if ((ir.modrm & 0x0f) <= 7)
6423 {
6424 if (i386_record_floats (gdbarch, &ir,
6425 I387_ST0_REGNUM (tdep) +
6426 (ir.modrm & 0x0f)))
6427 return -1;
6428 }
6429 else
6430 {
6431 if (i386_record_floats (gdbarch, &ir,
6432 I387_ST0_REGNUM (tdep) +
6433 ((ir.modrm & 0x0f) - 0x08)))
6434 return -1;
6435 }
6436 }
6437 break;
6438 case 0xdd:
6439 if (0x0c == ir.modrm >> 4)
6440 {
6441 if (i386_record_floats (gdbarch, &ir,
6442 I387_FTAG_REGNUM (tdep)))
6443 return -1;
6444 }
6445 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6446 {
6447 if ((ir.modrm & 0x0f) <= 7)
6448 {
6449 if (i386_record_floats (gdbarch, &ir,
6450 I387_ST0_REGNUM (tdep) +
6451 (ir.modrm & 0x0f)))
6452 return -1;
6453 }
6454 else
6455 {
6456 if (i386_record_floats (gdbarch, &ir,
6457 I386_SAVE_FPU_REGS))
6458 return -1;
6459 }
6460 }
6461 break;
6462 case 0xde:
6463 if ((0x0c == ir.modrm >> 4)
6464 || (0x0e == ir.modrm >> 4)
6465 || (0x0f == ir.modrm >> 4)
6466 || (0xd9 == ir.modrm))
6467 {
6468 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6469 return -1;
6470 }
6471 break;
6472 case 0xdf:
6473 if (0xe0 == ir.modrm)
6474 {
6475 if (record_full_arch_list_add_reg (ir.regcache,
6476 I386_EAX_REGNUM))
6477 return -1;
6478 }
6479 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6480 {
6481 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6482 return -1;
6483 }
6484 break;
6485 }
6486 }
6487 break;
6488 /* string ops */
6489 case 0xa4: /* movsS */
6490 case 0xa5:
6491 case 0xaa: /* stosS */
6492 case 0xab:
6493 case 0x6c: /* insS */
6494 case 0x6d:
6495 regcache_raw_read_unsigned (ir.regcache,
6496 ir.regmap[X86_RECORD_RECX_REGNUM],
6497 &addr);
6498 if (addr)
6499 {
6500 ULONGEST es, ds;
6501
6502 if ((opcode & 1) == 0)
6503 ir.ot = OT_BYTE;
6504 else
6505 ir.ot = ir.dflag + OT_WORD;
6506 regcache_raw_read_unsigned (ir.regcache,
6507 ir.regmap[X86_RECORD_REDI_REGNUM],
6508 &addr);
6509
6510 regcache_raw_read_unsigned (ir.regcache,
6511 ir.regmap[X86_RECORD_ES_REGNUM],
6512 &es);
6513 regcache_raw_read_unsigned (ir.regcache,
6514 ir.regmap[X86_RECORD_DS_REGNUM],
6515 &ds);
6516 if (ir.aflag && (es != ds))
6517 {
6518 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6519 if (record_full_memory_query)
6520 {
6521 if (yquery (_("\
6522 Process record ignores the memory change of instruction at address %s\n\
6523 because it can't get the value of the segment register.\n\
6524 Do you want to stop the program?"),
6525 paddress (gdbarch, ir.orig_addr)))
6526 return -1;
6527 }
6528 }
6529 else
6530 {
6531 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6532 return -1;
6533 }
6534
6535 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6537 if (opcode == 0xa4 || opcode == 0xa5)
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6541 }
6542 break;
6543
6544 case 0xa6: /* cmpsS */
6545 case 0xa7:
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6548 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6551 break;
6552
6553 case 0xac: /* lodsS */
6554 case 0xad:
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6557 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6560 break;
6561
6562 case 0xae: /* scasS */
6563 case 0xaf:
6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6565 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6568 break;
6569
6570 case 0x6e: /* outsS */
6571 case 0x6f:
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6573 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6576 break;
6577
6578 case 0xe4: /* port I/O */
6579 case 0xe5:
6580 case 0xec:
6581 case 0xed:
6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6584 break;
6585
6586 case 0xe6:
6587 case 0xe7:
6588 case 0xee:
6589 case 0xef:
6590 break;
6591
6592 /* control */
6593 case 0xc2: /* ret im */
6594 case 0xc3: /* ret */
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6597 break;
6598
6599 case 0xca: /* lret im */
6600 case 0xcb: /* lret */
6601 case 0xcf: /* iret */
6602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6605 break;
6606
6607 case 0xe8: /* call im */
6608 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6609 ir.dflag = 2;
6610 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6611 return -1;
6612 break;
6613
6614 case 0x9a: /* lcall im */
6615 if (ir.regmap[X86_RECORD_R8_REGNUM])
6616 {
6617 ir.addr -= 1;
6618 goto no_support;
6619 }
6620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6621 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6622 return -1;
6623 break;
6624
6625 case 0xe9: /* jmp im */
6626 case 0xea: /* ljmp im */
6627 case 0xeb: /* jmp Jb */
6628 case 0x70: /* jcc Jb */
6629 case 0x71:
6630 case 0x72:
6631 case 0x73:
6632 case 0x74:
6633 case 0x75:
6634 case 0x76:
6635 case 0x77:
6636 case 0x78:
6637 case 0x79:
6638 case 0x7a:
6639 case 0x7b:
6640 case 0x7c:
6641 case 0x7d:
6642 case 0x7e:
6643 case 0x7f:
6644 case 0x0f80: /* jcc Jv */
6645 case 0x0f81:
6646 case 0x0f82:
6647 case 0x0f83:
6648 case 0x0f84:
6649 case 0x0f85:
6650 case 0x0f86:
6651 case 0x0f87:
6652 case 0x0f88:
6653 case 0x0f89:
6654 case 0x0f8a:
6655 case 0x0f8b:
6656 case 0x0f8c:
6657 case 0x0f8d:
6658 case 0x0f8e:
6659 case 0x0f8f:
6660 break;
6661
6662 case 0x0f90: /* setcc Gv */
6663 case 0x0f91:
6664 case 0x0f92:
6665 case 0x0f93:
6666 case 0x0f94:
6667 case 0x0f95:
6668 case 0x0f96:
6669 case 0x0f97:
6670 case 0x0f98:
6671 case 0x0f99:
6672 case 0x0f9a:
6673 case 0x0f9b:
6674 case 0x0f9c:
6675 case 0x0f9d:
6676 case 0x0f9e:
6677 case 0x0f9f:
6678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6679 ir.ot = OT_BYTE;
6680 if (i386_record_modrm (&ir))
6681 return -1;
6682 if (ir.mod == 3)
6683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6684 : (ir.rm & 0x3));
6685 else
6686 {
6687 if (i386_record_lea_modrm (&ir))
6688 return -1;
6689 }
6690 break;
6691
6692 case 0x0f40: /* cmov Gv, Ev */
6693 case 0x0f41:
6694 case 0x0f42:
6695 case 0x0f43:
6696 case 0x0f44:
6697 case 0x0f45:
6698 case 0x0f46:
6699 case 0x0f47:
6700 case 0x0f48:
6701 case 0x0f49:
6702 case 0x0f4a:
6703 case 0x0f4b:
6704 case 0x0f4c:
6705 case 0x0f4d:
6706 case 0x0f4e:
6707 case 0x0f4f:
6708 if (i386_record_modrm (&ir))
6709 return -1;
6710 ir.reg |= rex_r;
6711 if (ir.dflag == OT_BYTE)
6712 ir.reg &= 0x3;
6713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6714 break;
6715
6716 /* flags */
6717 case 0x9c: /* pushf */
6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6719 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6720 ir.dflag = 2;
6721 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6722 return -1;
6723 break;
6724
6725 case 0x9d: /* popf */
6726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6728 break;
6729
6730 case 0x9e: /* sahf */
6731 if (ir.regmap[X86_RECORD_R8_REGNUM])
6732 {
6733 ir.addr -= 1;
6734 goto no_support;
6735 }
6736 /* FALLTHROUGH */
6737 case 0xf5: /* cmc */
6738 case 0xf8: /* clc */
6739 case 0xf9: /* stc */
6740 case 0xfc: /* cld */
6741 case 0xfd: /* std */
6742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6743 break;
6744
6745 case 0x9f: /* lahf */
6746 if (ir.regmap[X86_RECORD_R8_REGNUM])
6747 {
6748 ir.addr -= 1;
6749 goto no_support;
6750 }
6751 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6752 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6753 break;
6754
6755 /* bit operations */
6756 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6757 ir.ot = ir.dflag + OT_WORD;
6758 if (i386_record_modrm (&ir))
6759 return -1;
6760 if (ir.reg < 4)
6761 {
6762 ir.addr -= 2;
6763 opcode = opcode << 8 | ir.modrm;
6764 goto no_support;
6765 }
6766 if (ir.reg != 4)
6767 {
6768 if (ir.mod == 3)
6769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6770 else
6771 {
6772 if (i386_record_lea_modrm (&ir))
6773 return -1;
6774 }
6775 }
6776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6777 break;
6778
6779 case 0x0fa3: /* bt Gv, Ev */
6780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6781 break;
6782
6783 case 0x0fab: /* bts */
6784 case 0x0fb3: /* btr */
6785 case 0x0fbb: /* btc */
6786 ir.ot = ir.dflag + OT_WORD;
6787 if (i386_record_modrm (&ir))
6788 return -1;
6789 if (ir.mod == 3)
6790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6791 else
6792 {
6793 uint64_t addr64;
6794 if (i386_record_lea_modrm_addr (&ir, &addr64))
6795 return -1;
6796 regcache_raw_read_unsigned (ir.regcache,
6797 ir.regmap[ir.reg | rex_r],
6798 &addr);
6799 switch (ir.dflag)
6800 {
6801 case 0:
6802 addr64 += ((int16_t) addr >> 4) << 4;
6803 break;
6804 case 1:
6805 addr64 += ((int32_t) addr >> 5) << 5;
6806 break;
6807 case 2:
6808 addr64 += ((int64_t) addr >> 6) << 6;
6809 break;
6810 }
6811 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6812 return -1;
6813 if (i386_record_lea_modrm (&ir))
6814 return -1;
6815 }
6816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6817 break;
6818
6819 case 0x0fbc: /* bsf */
6820 case 0x0fbd: /* bsr */
6821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6823 break;
6824
6825 /* bcd */
6826 case 0x27: /* daa */
6827 case 0x2f: /* das */
6828 case 0x37: /* aaa */
6829 case 0x3f: /* aas */
6830 case 0xd4: /* aam */
6831 case 0xd5: /* aad */
6832 if (ir.regmap[X86_RECORD_R8_REGNUM])
6833 {
6834 ir.addr -= 1;
6835 goto no_support;
6836 }
6837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6839 break;
6840
6841 /* misc */
6842 case 0x90: /* nop */
6843 if (prefixes & PREFIX_LOCK)
6844 {
6845 ir.addr -= 1;
6846 goto no_support;
6847 }
6848 break;
6849
6850 case 0x9b: /* fwait */
6851 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6852 return -1;
6853 opcode = (uint32_t) opcode8;
6854 ir.addr++;
6855 goto reswitch;
6856 break;
6857
6858 /* XXX */
6859 case 0xcc: /* int3 */
6860 printf_unfiltered (_("Process record does not support instruction "
6861 "int3.\n"));
6862 ir.addr -= 1;
6863 goto no_support;
6864 break;
6865
6866 /* XXX */
6867 case 0xcd: /* int */
6868 {
6869 int ret;
6870 uint8_t interrupt;
6871 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6872 return -1;
6873 ir.addr++;
6874 if (interrupt != 0x80
6875 || tdep->i386_intx80_record == NULL)
6876 {
6877 printf_unfiltered (_("Process record does not support "
6878 "instruction int 0x%02x.\n"),
6879 interrupt);
6880 ir.addr -= 2;
6881 goto no_support;
6882 }
6883 ret = tdep->i386_intx80_record (ir.regcache);
6884 if (ret)
6885 return ret;
6886 }
6887 break;
6888
6889 /* XXX */
6890 case 0xce: /* into */
6891 printf_unfiltered (_("Process record does not support "
6892 "instruction into.\n"));
6893 ir.addr -= 1;
6894 goto no_support;
6895 break;
6896
6897 case 0xfa: /* cli */
6898 case 0xfb: /* sti */
6899 break;
6900
6901 case 0x62: /* bound */
6902 printf_unfiltered (_("Process record does not support "
6903 "instruction bound.\n"));
6904 ir.addr -= 1;
6905 goto no_support;
6906 break;
6907
6908 case 0x0fc8: /* bswap reg */
6909 case 0x0fc9:
6910 case 0x0fca:
6911 case 0x0fcb:
6912 case 0x0fcc:
6913 case 0x0fcd:
6914 case 0x0fce:
6915 case 0x0fcf:
6916 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6917 break;
6918
6919 case 0xd6: /* salc */
6920 if (ir.regmap[X86_RECORD_R8_REGNUM])
6921 {
6922 ir.addr -= 1;
6923 goto no_support;
6924 }
6925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6926 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6927 break;
6928
6929 case 0xe0: /* loopnz */
6930 case 0xe1: /* loopz */
6931 case 0xe2: /* loop */
6932 case 0xe3: /* jecxz */
6933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6934 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6935 break;
6936
6937 case 0x0f30: /* wrmsr */
6938 printf_unfiltered (_("Process record does not support "
6939 "instruction wrmsr.\n"));
6940 ir.addr -= 2;
6941 goto no_support;
6942 break;
6943
6944 case 0x0f32: /* rdmsr */
6945 printf_unfiltered (_("Process record does not support "
6946 "instruction rdmsr.\n"));
6947 ir.addr -= 2;
6948 goto no_support;
6949 break;
6950
6951 case 0x0f31: /* rdtsc */
6952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6954 break;
6955
6956 case 0x0f34: /* sysenter */
6957 {
6958 int ret;
6959 if (ir.regmap[X86_RECORD_R8_REGNUM])
6960 {
6961 ir.addr -= 2;
6962 goto no_support;
6963 }
6964 if (tdep->i386_sysenter_record == NULL)
6965 {
6966 printf_unfiltered (_("Process record does not support "
6967 "instruction sysenter.\n"));
6968 ir.addr -= 2;
6969 goto no_support;
6970 }
6971 ret = tdep->i386_sysenter_record (ir.regcache);
6972 if (ret)
6973 return ret;
6974 }
6975 break;
6976
6977 case 0x0f35: /* sysexit */
6978 printf_unfiltered (_("Process record does not support "
6979 "instruction sysexit.\n"));
6980 ir.addr -= 2;
6981 goto no_support;
6982 break;
6983
6984 case 0x0f05: /* syscall */
6985 {
6986 int ret;
6987 if (tdep->i386_syscall_record == NULL)
6988 {
6989 printf_unfiltered (_("Process record does not support "
6990 "instruction syscall.\n"));
6991 ir.addr -= 2;
6992 goto no_support;
6993 }
6994 ret = tdep->i386_syscall_record (ir.regcache);
6995 if (ret)
6996 return ret;
6997 }
6998 break;
6999
7000 case 0x0f07: /* sysret */
7001 printf_unfiltered (_("Process record does not support "
7002 "instruction sysret.\n"));
7003 ir.addr -= 2;
7004 goto no_support;
7005 break;
7006
7007 case 0x0fa2: /* cpuid */
7008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7012 break;
7013
7014 case 0xf4: /* hlt */
7015 printf_unfiltered (_("Process record does not support "
7016 "instruction hlt.\n"));
7017 ir.addr -= 1;
7018 goto no_support;
7019 break;
7020
7021 case 0x0f00:
7022 if (i386_record_modrm (&ir))
7023 return -1;
7024 switch (ir.reg)
7025 {
7026 case 0: /* sldt */
7027 case 1: /* str */
7028 if (ir.mod == 3)
7029 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7030 else
7031 {
7032 ir.ot = OT_WORD;
7033 if (i386_record_lea_modrm (&ir))
7034 return -1;
7035 }
7036 break;
7037 case 2: /* lldt */
7038 case 3: /* ltr */
7039 break;
7040 case 4: /* verr */
7041 case 5: /* verw */
7042 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7043 break;
7044 default:
7045 ir.addr -= 3;
7046 opcode = opcode << 8 | ir.modrm;
7047 goto no_support;
7048 break;
7049 }
7050 break;
7051
7052 case 0x0f01:
7053 if (i386_record_modrm (&ir))
7054 return -1;
7055 switch (ir.reg)
7056 {
7057 case 0: /* sgdt */
7058 {
7059 uint64_t addr64;
7060
7061 if (ir.mod == 3)
7062 {
7063 ir.addr -= 3;
7064 opcode = opcode << 8 | ir.modrm;
7065 goto no_support;
7066 }
7067 if (ir.override >= 0)
7068 {
7069 if (record_full_memory_query)
7070 {
7071 if (yquery (_("\
7072 Process record ignores the memory change of instruction at address %s\n\
7073 because it can't get the value of the segment register.\n\
7074 Do you want to stop the program?"),
7075 paddress (gdbarch, ir.orig_addr)))
7076 return -1;
7077 }
7078 }
7079 else
7080 {
7081 if (i386_record_lea_modrm_addr (&ir, &addr64))
7082 return -1;
7083 if (record_full_arch_list_add_mem (addr64, 2))
7084 return -1;
7085 addr64 += 2;
7086 if (ir.regmap[X86_RECORD_R8_REGNUM])
7087 {
7088 if (record_full_arch_list_add_mem (addr64, 8))
7089 return -1;
7090 }
7091 else
7092 {
7093 if (record_full_arch_list_add_mem (addr64, 4))
7094 return -1;
7095 }
7096 }
7097 }
7098 break;
7099 case 1:
7100 if (ir.mod == 3)
7101 {
7102 switch (ir.rm)
7103 {
7104 case 0: /* monitor */
7105 break;
7106 case 1: /* mwait */
7107 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7108 break;
7109 default:
7110 ir.addr -= 3;
7111 opcode = opcode << 8 | ir.modrm;
7112 goto no_support;
7113 break;
7114 }
7115 }
7116 else
7117 {
7118 /* sidt */
7119 if (ir.override >= 0)
7120 {
7121 if (record_full_memory_query)
7122 {
7123 if (yquery (_("\
7124 Process record ignores the memory change of instruction at address %s\n\
7125 because it can't get the value of the segment register.\n\
7126 Do you want to stop the program?"),
7127 paddress (gdbarch, ir.orig_addr)))
7128 return -1;
7129 }
7130 }
7131 else
7132 {
7133 uint64_t addr64;
7134
7135 if (i386_record_lea_modrm_addr (&ir, &addr64))
7136 return -1;
7137 if (record_full_arch_list_add_mem (addr64, 2))
7138 return -1;
7139 addr64 += 2;
7140 if (ir.regmap[X86_RECORD_R8_REGNUM])
7141 {
7142 if (record_full_arch_list_add_mem (addr64, 8))
7143 return -1;
7144 }
7145 else
7146 {
7147 if (record_full_arch_list_add_mem (addr64, 4))
7148 return -1;
7149 }
7150 }
7151 }
7152 break;
7153 case 2: /* lgdt */
7154 if (ir.mod == 3)
7155 {
7156 /* xgetbv */
7157 if (ir.rm == 0)
7158 {
7159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7161 break;
7162 }
7163 /* xsetbv */
7164 else if (ir.rm == 1)
7165 break;
7166 }
7167 /* Fall through. */
7168 case 3: /* lidt */
7169 if (ir.mod == 3)
7170 {
7171 ir.addr -= 3;
7172 opcode = opcode << 8 | ir.modrm;
7173 goto no_support;
7174 }
7175 break;
7176 case 4: /* smsw */
7177 if (ir.mod == 3)
7178 {
7179 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7180 return -1;
7181 }
7182 else
7183 {
7184 ir.ot = OT_WORD;
7185 if (i386_record_lea_modrm (&ir))
7186 return -1;
7187 }
7188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7189 break;
7190 case 6: /* lmsw */
7191 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7192 break;
7193 case 7: /* invlpg */
7194 if (ir.mod == 3)
7195 {
7196 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7197 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7198 else
7199 {
7200 ir.addr -= 3;
7201 opcode = opcode << 8 | ir.modrm;
7202 goto no_support;
7203 }
7204 }
7205 else
7206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7207 break;
7208 default:
7209 ir.addr -= 3;
7210 opcode = opcode << 8 | ir.modrm;
7211 goto no_support;
7212 break;
7213 }
7214 break;
7215
7216 case 0x0f08: /* invd */
7217 case 0x0f09: /* wbinvd */
7218 break;
7219
7220 case 0x63: /* arpl */
7221 if (i386_record_modrm (&ir))
7222 return -1;
7223 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7224 {
7225 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7226 ? (ir.reg | rex_r) : ir.rm);
7227 }
7228 else
7229 {
7230 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7231 if (i386_record_lea_modrm (&ir))
7232 return -1;
7233 }
7234 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7236 break;
7237
7238 case 0x0f02: /* lar */
7239 case 0x0f03: /* lsl */
7240 if (i386_record_modrm (&ir))
7241 return -1;
7242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7244 break;
7245
7246 case 0x0f18:
7247 if (i386_record_modrm (&ir))
7248 return -1;
7249 if (ir.mod == 3 && ir.reg == 3)
7250 {
7251 ir.addr -= 3;
7252 opcode = opcode << 8 | ir.modrm;
7253 goto no_support;
7254 }
7255 break;
7256
7257 case 0x0f19:
7258 case 0x0f1a:
7259 case 0x0f1b:
7260 case 0x0f1c:
7261 case 0x0f1d:
7262 case 0x0f1e:
7263 case 0x0f1f:
7264 /* nop (multi byte) */
7265 break;
7266
7267 case 0x0f20: /* mov reg, crN */
7268 case 0x0f22: /* mov crN, reg */
7269 if (i386_record_modrm (&ir))
7270 return -1;
7271 if ((ir.modrm & 0xc0) != 0xc0)
7272 {
7273 ir.addr -= 3;
7274 opcode = opcode << 8 | ir.modrm;
7275 goto no_support;
7276 }
7277 switch (ir.reg)
7278 {
7279 case 0:
7280 case 2:
7281 case 3:
7282 case 4:
7283 case 8:
7284 if (opcode & 2)
7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7286 else
7287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7288 break;
7289 default:
7290 ir.addr -= 3;
7291 opcode = opcode << 8 | ir.modrm;
7292 goto no_support;
7293 break;
7294 }
7295 break;
7296
7297 case 0x0f21: /* mov reg, drN */
7298 case 0x0f23: /* mov drN, reg */
7299 if (i386_record_modrm (&ir))
7300 return -1;
7301 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7302 || ir.reg == 5 || ir.reg >= 8)
7303 {
7304 ir.addr -= 3;
7305 opcode = opcode << 8 | ir.modrm;
7306 goto no_support;
7307 }
7308 if (opcode & 2)
7309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7310 else
7311 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7312 break;
7313
7314 case 0x0f06: /* clts */
7315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7316 break;
7317
7318 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7319
7320 case 0x0f0d: /* 3DNow! prefetch */
7321 break;
7322
7323 case 0x0f0e: /* 3DNow! femms */
7324 case 0x0f77: /* emms */
7325 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7326 goto no_support;
7327 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7328 break;
7329
7330 case 0x0f0f: /* 3DNow! data */
7331 if (i386_record_modrm (&ir))
7332 return -1;
7333 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7334 return -1;
7335 ir.addr++;
7336 switch (opcode8)
7337 {
7338 case 0x0c: /* 3DNow! pi2fw */
7339 case 0x0d: /* 3DNow! pi2fd */
7340 case 0x1c: /* 3DNow! pf2iw */
7341 case 0x1d: /* 3DNow! pf2id */
7342 case 0x8a: /* 3DNow! pfnacc */
7343 case 0x8e: /* 3DNow! pfpnacc */
7344 case 0x90: /* 3DNow! pfcmpge */
7345 case 0x94: /* 3DNow! pfmin */
7346 case 0x96: /* 3DNow! pfrcp */
7347 case 0x97: /* 3DNow! pfrsqrt */
7348 case 0x9a: /* 3DNow! pfsub */
7349 case 0x9e: /* 3DNow! pfadd */
7350 case 0xa0: /* 3DNow! pfcmpgt */
7351 case 0xa4: /* 3DNow! pfmax */
7352 case 0xa6: /* 3DNow! pfrcpit1 */
7353 case 0xa7: /* 3DNow! pfrsqit1 */
7354 case 0xaa: /* 3DNow! pfsubr */
7355 case 0xae: /* 3DNow! pfacc */
7356 case 0xb0: /* 3DNow! pfcmpeq */
7357 case 0xb4: /* 3DNow! pfmul */
7358 case 0xb6: /* 3DNow! pfrcpit2 */
7359 case 0xb7: /* 3DNow! pmulhrw */
7360 case 0xbb: /* 3DNow! pswapd */
7361 case 0xbf: /* 3DNow! pavgusb */
7362 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7363 goto no_support_3dnow_data;
7364 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7365 break;
7366
7367 default:
7368 no_support_3dnow_data:
7369 opcode = (opcode << 8) | opcode8;
7370 goto no_support;
7371 break;
7372 }
7373 break;
7374
7375 case 0x0faa: /* rsm */
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7385 break;
7386
7387 case 0x0fae:
7388 if (i386_record_modrm (&ir))
7389 return -1;
7390 switch(ir.reg)
7391 {
7392 case 0: /* fxsave */
7393 {
7394 uint64_t tmpu64;
7395
7396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7397 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7398 return -1;
7399 if (record_full_arch_list_add_mem (tmpu64, 512))
7400 return -1;
7401 }
7402 break;
7403
7404 case 1: /* fxrstor */
7405 {
7406 int i;
7407
7408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7409
7410 for (i = I387_MM0_REGNUM (tdep);
7411 i386_mmx_regnum_p (gdbarch, i); i++)
7412 record_full_arch_list_add_reg (ir.regcache, i);
7413
7414 for (i = I387_XMM0_REGNUM (tdep);
7415 i386_xmm_regnum_p (gdbarch, i); i++)
7416 record_full_arch_list_add_reg (ir.regcache, i);
7417
7418 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7419 record_full_arch_list_add_reg (ir.regcache,
7420 I387_MXCSR_REGNUM(tdep));
7421
7422 for (i = I387_ST0_REGNUM (tdep);
7423 i386_fp_regnum_p (gdbarch, i); i++)
7424 record_full_arch_list_add_reg (ir.regcache, i);
7425
7426 for (i = I387_FCTRL_REGNUM (tdep);
7427 i386_fpc_regnum_p (gdbarch, i); i++)
7428 record_full_arch_list_add_reg (ir.regcache, i);
7429 }
7430 break;
7431
7432 case 2: /* ldmxcsr */
7433 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7434 goto no_support;
7435 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7436 break;
7437
7438 case 3: /* stmxcsr */
7439 ir.ot = OT_LONG;
7440 if (i386_record_lea_modrm (&ir))
7441 return -1;
7442 break;
7443
7444 case 5: /* lfence */
7445 case 6: /* mfence */
7446 case 7: /* sfence clflush */
7447 break;
7448
7449 default:
7450 opcode = (opcode << 8) | ir.modrm;
7451 goto no_support;
7452 break;
7453 }
7454 break;
7455
7456 case 0x0fc3: /* movnti */
7457 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7458 if (i386_record_modrm (&ir))
7459 return -1;
7460 if (ir.mod == 3)
7461 goto no_support;
7462 ir.reg |= rex_r;
7463 if (i386_record_lea_modrm (&ir))
7464 return -1;
7465 break;
7466
7467 /* Add prefix to opcode. */
7468 case 0x0f10:
7469 case 0x0f11:
7470 case 0x0f12:
7471 case 0x0f13:
7472 case 0x0f14:
7473 case 0x0f15:
7474 case 0x0f16:
7475 case 0x0f17:
7476 case 0x0f28:
7477 case 0x0f29:
7478 case 0x0f2a:
7479 case 0x0f2b:
7480 case 0x0f2c:
7481 case 0x0f2d:
7482 case 0x0f2e:
7483 case 0x0f2f:
7484 case 0x0f38:
7485 case 0x0f39:
7486 case 0x0f3a:
7487 case 0x0f50:
7488 case 0x0f51:
7489 case 0x0f52:
7490 case 0x0f53:
7491 case 0x0f54:
7492 case 0x0f55:
7493 case 0x0f56:
7494 case 0x0f57:
7495 case 0x0f58:
7496 case 0x0f59:
7497 case 0x0f5a:
7498 case 0x0f5b:
7499 case 0x0f5c:
7500 case 0x0f5d:
7501 case 0x0f5e:
7502 case 0x0f5f:
7503 case 0x0f60:
7504 case 0x0f61:
7505 case 0x0f62:
7506 case 0x0f63:
7507 case 0x0f64:
7508 case 0x0f65:
7509 case 0x0f66:
7510 case 0x0f67:
7511 case 0x0f68:
7512 case 0x0f69:
7513 case 0x0f6a:
7514 case 0x0f6b:
7515 case 0x0f6c:
7516 case 0x0f6d:
7517 case 0x0f6e:
7518 case 0x0f6f:
7519 case 0x0f70:
7520 case 0x0f71:
7521 case 0x0f72:
7522 case 0x0f73:
7523 case 0x0f74:
7524 case 0x0f75:
7525 case 0x0f76:
7526 case 0x0f7c:
7527 case 0x0f7d:
7528 case 0x0f7e:
7529 case 0x0f7f:
7530 case 0x0fb8:
7531 case 0x0fc2:
7532 case 0x0fc4:
7533 case 0x0fc5:
7534 case 0x0fc6:
7535 case 0x0fd0:
7536 case 0x0fd1:
7537 case 0x0fd2:
7538 case 0x0fd3:
7539 case 0x0fd4:
7540 case 0x0fd5:
7541 case 0x0fd6:
7542 case 0x0fd7:
7543 case 0x0fd8:
7544 case 0x0fd9:
7545 case 0x0fda:
7546 case 0x0fdb:
7547 case 0x0fdc:
7548 case 0x0fdd:
7549 case 0x0fde:
7550 case 0x0fdf:
7551 case 0x0fe0:
7552 case 0x0fe1:
7553 case 0x0fe2:
7554 case 0x0fe3:
7555 case 0x0fe4:
7556 case 0x0fe5:
7557 case 0x0fe6:
7558 case 0x0fe7:
7559 case 0x0fe8:
7560 case 0x0fe9:
7561 case 0x0fea:
7562 case 0x0feb:
7563 case 0x0fec:
7564 case 0x0fed:
7565 case 0x0fee:
7566 case 0x0fef:
7567 case 0x0ff0:
7568 case 0x0ff1:
7569 case 0x0ff2:
7570 case 0x0ff3:
7571 case 0x0ff4:
7572 case 0x0ff5:
7573 case 0x0ff6:
7574 case 0x0ff7:
7575 case 0x0ff8:
7576 case 0x0ff9:
7577 case 0x0ffa:
7578 case 0x0ffb:
7579 case 0x0ffc:
7580 case 0x0ffd:
7581 case 0x0ffe:
7582 /* Mask out PREFIX_ADDR. */
7583 switch ((prefixes & ~PREFIX_ADDR))
7584 {
7585 case PREFIX_REPNZ:
7586 opcode |= 0xf20000;
7587 break;
7588 case PREFIX_DATA:
7589 opcode |= 0x660000;
7590 break;
7591 case PREFIX_REPZ:
7592 opcode |= 0xf30000;
7593 break;
7594 }
7595 reswitch_prefix_add:
7596 switch (opcode)
7597 {
7598 case 0x0f38:
7599 case 0x660f38:
7600 case 0xf20f38:
7601 case 0x0f3a:
7602 case 0x660f3a:
7603 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7604 return -1;
7605 ir.addr++;
7606 opcode = (uint32_t) opcode8 | opcode << 8;
7607 goto reswitch_prefix_add;
7608 break;
7609
7610 case 0x0f10: /* movups */
7611 case 0x660f10: /* movupd */
7612 case 0xf30f10: /* movss */
7613 case 0xf20f10: /* movsd */
7614 case 0x0f12: /* movlps */
7615 case 0x660f12: /* movlpd */
7616 case 0xf30f12: /* movsldup */
7617 case 0xf20f12: /* movddup */
7618 case 0x0f14: /* unpcklps */
7619 case 0x660f14: /* unpcklpd */
7620 case 0x0f15: /* unpckhps */
7621 case 0x660f15: /* unpckhpd */
7622 case 0x0f16: /* movhps */
7623 case 0x660f16: /* movhpd */
7624 case 0xf30f16: /* movshdup */
7625 case 0x0f28: /* movaps */
7626 case 0x660f28: /* movapd */
7627 case 0x0f2a: /* cvtpi2ps */
7628 case 0x660f2a: /* cvtpi2pd */
7629 case 0xf30f2a: /* cvtsi2ss */
7630 case 0xf20f2a: /* cvtsi2sd */
7631 case 0x0f2c: /* cvttps2pi */
7632 case 0x660f2c: /* cvttpd2pi */
7633 case 0x0f2d: /* cvtps2pi */
7634 case 0x660f2d: /* cvtpd2pi */
7635 case 0x660f3800: /* pshufb */
7636 case 0x660f3801: /* phaddw */
7637 case 0x660f3802: /* phaddd */
7638 case 0x660f3803: /* phaddsw */
7639 case 0x660f3804: /* pmaddubsw */
7640 case 0x660f3805: /* phsubw */
7641 case 0x660f3806: /* phsubd */
7642 case 0x660f3807: /* phsubsw */
7643 case 0x660f3808: /* psignb */
7644 case 0x660f3809: /* psignw */
7645 case 0x660f380a: /* psignd */
7646 case 0x660f380b: /* pmulhrsw */
7647 case 0x660f3810: /* pblendvb */
7648 case 0x660f3814: /* blendvps */
7649 case 0x660f3815: /* blendvpd */
7650 case 0x660f381c: /* pabsb */
7651 case 0x660f381d: /* pabsw */
7652 case 0x660f381e: /* pabsd */
7653 case 0x660f3820: /* pmovsxbw */
7654 case 0x660f3821: /* pmovsxbd */
7655 case 0x660f3822: /* pmovsxbq */
7656 case 0x660f3823: /* pmovsxwd */
7657 case 0x660f3824: /* pmovsxwq */
7658 case 0x660f3825: /* pmovsxdq */
7659 case 0x660f3828: /* pmuldq */
7660 case 0x660f3829: /* pcmpeqq */
7661 case 0x660f382a: /* movntdqa */
7662 case 0x660f3a08: /* roundps */
7663 case 0x660f3a09: /* roundpd */
7664 case 0x660f3a0a: /* roundss */
7665 case 0x660f3a0b: /* roundsd */
7666 case 0x660f3a0c: /* blendps */
7667 case 0x660f3a0d: /* blendpd */
7668 case 0x660f3a0e: /* pblendw */
7669 case 0x660f3a0f: /* palignr */
7670 case 0x660f3a20: /* pinsrb */
7671 case 0x660f3a21: /* insertps */
7672 case 0x660f3a22: /* pinsrd pinsrq */
7673 case 0x660f3a40: /* dpps */
7674 case 0x660f3a41: /* dppd */
7675 case 0x660f3a42: /* mpsadbw */
7676 case 0x660f3a60: /* pcmpestrm */
7677 case 0x660f3a61: /* pcmpestri */
7678 case 0x660f3a62: /* pcmpistrm */
7679 case 0x660f3a63: /* pcmpistri */
7680 case 0x0f51: /* sqrtps */
7681 case 0x660f51: /* sqrtpd */
7682 case 0xf20f51: /* sqrtsd */
7683 case 0xf30f51: /* sqrtss */
7684 case 0x0f52: /* rsqrtps */
7685 case 0xf30f52: /* rsqrtss */
7686 case 0x0f53: /* rcpps */
7687 case 0xf30f53: /* rcpss */
7688 case 0x0f54: /* andps */
7689 case 0x660f54: /* andpd */
7690 case 0x0f55: /* andnps */
7691 case 0x660f55: /* andnpd */
7692 case 0x0f56: /* orps */
7693 case 0x660f56: /* orpd */
7694 case 0x0f57: /* xorps */
7695 case 0x660f57: /* xorpd */
7696 case 0x0f58: /* addps */
7697 case 0x660f58: /* addpd */
7698 case 0xf20f58: /* addsd */
7699 case 0xf30f58: /* addss */
7700 case 0x0f59: /* mulps */
7701 case 0x660f59: /* mulpd */
7702 case 0xf20f59: /* mulsd */
7703 case 0xf30f59: /* mulss */
7704 case 0x0f5a: /* cvtps2pd */
7705 case 0x660f5a: /* cvtpd2ps */
7706 case 0xf20f5a: /* cvtsd2ss */
7707 case 0xf30f5a: /* cvtss2sd */
7708 case 0x0f5b: /* cvtdq2ps */
7709 case 0x660f5b: /* cvtps2dq */
7710 case 0xf30f5b: /* cvttps2dq */
7711 case 0x0f5c: /* subps */
7712 case 0x660f5c: /* subpd */
7713 case 0xf20f5c: /* subsd */
7714 case 0xf30f5c: /* subss */
7715 case 0x0f5d: /* minps */
7716 case 0x660f5d: /* minpd */
7717 case 0xf20f5d: /* minsd */
7718 case 0xf30f5d: /* minss */
7719 case 0x0f5e: /* divps */
7720 case 0x660f5e: /* divpd */
7721 case 0xf20f5e: /* divsd */
7722 case 0xf30f5e: /* divss */
7723 case 0x0f5f: /* maxps */
7724 case 0x660f5f: /* maxpd */
7725 case 0xf20f5f: /* maxsd */
7726 case 0xf30f5f: /* maxss */
7727 case 0x660f60: /* punpcklbw */
7728 case 0x660f61: /* punpcklwd */
7729 case 0x660f62: /* punpckldq */
7730 case 0x660f63: /* packsswb */
7731 case 0x660f64: /* pcmpgtb */
7732 case 0x660f65: /* pcmpgtw */
7733 case 0x660f66: /* pcmpgtd */
7734 case 0x660f67: /* packuswb */
7735 case 0x660f68: /* punpckhbw */
7736 case 0x660f69: /* punpckhwd */
7737 case 0x660f6a: /* punpckhdq */
7738 case 0x660f6b: /* packssdw */
7739 case 0x660f6c: /* punpcklqdq */
7740 case 0x660f6d: /* punpckhqdq */
7741 case 0x660f6e: /* movd */
7742 case 0x660f6f: /* movdqa */
7743 case 0xf30f6f: /* movdqu */
7744 case 0x660f70: /* pshufd */
7745 case 0xf20f70: /* pshuflw */
7746 case 0xf30f70: /* pshufhw */
7747 case 0x660f74: /* pcmpeqb */
7748 case 0x660f75: /* pcmpeqw */
7749 case 0x660f76: /* pcmpeqd */
7750 case 0x660f7c: /* haddpd */
7751 case 0xf20f7c: /* haddps */
7752 case 0x660f7d: /* hsubpd */
7753 case 0xf20f7d: /* hsubps */
7754 case 0xf30f7e: /* movq */
7755 case 0x0fc2: /* cmpps */
7756 case 0x660fc2: /* cmppd */
7757 case 0xf20fc2: /* cmpsd */
7758 case 0xf30fc2: /* cmpss */
7759 case 0x660fc4: /* pinsrw */
7760 case 0x0fc6: /* shufps */
7761 case 0x660fc6: /* shufpd */
7762 case 0x660fd0: /* addsubpd */
7763 case 0xf20fd0: /* addsubps */
7764 case 0x660fd1: /* psrlw */
7765 case 0x660fd2: /* psrld */
7766 case 0x660fd3: /* psrlq */
7767 case 0x660fd4: /* paddq */
7768 case 0x660fd5: /* pmullw */
7769 case 0xf30fd6: /* movq2dq */
7770 case 0x660fd8: /* psubusb */
7771 case 0x660fd9: /* psubusw */
7772 case 0x660fda: /* pminub */
7773 case 0x660fdb: /* pand */
7774 case 0x660fdc: /* paddusb */
7775 case 0x660fdd: /* paddusw */
7776 case 0x660fde: /* pmaxub */
7777 case 0x660fdf: /* pandn */
7778 case 0x660fe0: /* pavgb */
7779 case 0x660fe1: /* psraw */
7780 case 0x660fe2: /* psrad */
7781 case 0x660fe3: /* pavgw */
7782 case 0x660fe4: /* pmulhuw */
7783 case 0x660fe5: /* pmulhw */
7784 case 0x660fe6: /* cvttpd2dq */
7785 case 0xf20fe6: /* cvtpd2dq */
7786 case 0xf30fe6: /* cvtdq2pd */
7787 case 0x660fe8: /* psubsb */
7788 case 0x660fe9: /* psubsw */
7789 case 0x660fea: /* pminsw */
7790 case 0x660feb: /* por */
7791 case 0x660fec: /* paddsb */
7792 case 0x660fed: /* paddsw */
7793 case 0x660fee: /* pmaxsw */
7794 case 0x660fef: /* pxor */
7795 case 0xf20ff0: /* lddqu */
7796 case 0x660ff1: /* psllw */
7797 case 0x660ff2: /* pslld */
7798 case 0x660ff3: /* psllq */
7799 case 0x660ff4: /* pmuludq */
7800 case 0x660ff5: /* pmaddwd */
7801 case 0x660ff6: /* psadbw */
7802 case 0x660ff8: /* psubb */
7803 case 0x660ff9: /* psubw */
7804 case 0x660ffa: /* psubd */
7805 case 0x660ffb: /* psubq */
7806 case 0x660ffc: /* paddb */
7807 case 0x660ffd: /* paddw */
7808 case 0x660ffe: /* paddd */
7809 if (i386_record_modrm (&ir))
7810 return -1;
7811 ir.reg |= rex_r;
7812 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7813 goto no_support;
7814 record_full_arch_list_add_reg (ir.regcache,
7815 I387_XMM0_REGNUM (tdep) + ir.reg);
7816 if ((opcode & 0xfffffffc) == 0x660f3a60)
7817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7818 break;
7819
7820 case 0x0f11: /* movups */
7821 case 0x660f11: /* movupd */
7822 case 0xf30f11: /* movss */
7823 case 0xf20f11: /* movsd */
7824 case 0x0f13: /* movlps */
7825 case 0x660f13: /* movlpd */
7826 case 0x0f17: /* movhps */
7827 case 0x660f17: /* movhpd */
7828 case 0x0f29: /* movaps */
7829 case 0x660f29: /* movapd */
7830 case 0x660f3a14: /* pextrb */
7831 case 0x660f3a15: /* pextrw */
7832 case 0x660f3a16: /* pextrd pextrq */
7833 case 0x660f3a17: /* extractps */
7834 case 0x660f7f: /* movdqa */
7835 case 0xf30f7f: /* movdqu */
7836 if (i386_record_modrm (&ir))
7837 return -1;
7838 if (ir.mod == 3)
7839 {
7840 if (opcode == 0x0f13 || opcode == 0x660f13
7841 || opcode == 0x0f17 || opcode == 0x660f17)
7842 goto no_support;
7843 ir.rm |= ir.rex_b;
7844 if (!i386_xmm_regnum_p (gdbarch,
7845 I387_XMM0_REGNUM (tdep) + ir.rm))
7846 goto no_support;
7847 record_full_arch_list_add_reg (ir.regcache,
7848 I387_XMM0_REGNUM (tdep) + ir.rm);
7849 }
7850 else
7851 {
7852 switch (opcode)
7853 {
7854 case 0x660f3a14:
7855 ir.ot = OT_BYTE;
7856 break;
7857 case 0x660f3a15:
7858 ir.ot = OT_WORD;
7859 break;
7860 case 0x660f3a16:
7861 ir.ot = OT_LONG;
7862 break;
7863 case 0x660f3a17:
7864 ir.ot = OT_QUAD;
7865 break;
7866 default:
7867 ir.ot = OT_DQUAD;
7868 break;
7869 }
7870 if (i386_record_lea_modrm (&ir))
7871 return -1;
7872 }
7873 break;
7874
7875 case 0x0f2b: /* movntps */
7876 case 0x660f2b: /* movntpd */
7877 case 0x0fe7: /* movntq */
7878 case 0x660fe7: /* movntdq */
7879 if (ir.mod == 3)
7880 goto no_support;
7881 if (opcode == 0x0fe7)
7882 ir.ot = OT_QUAD;
7883 else
7884 ir.ot = OT_DQUAD;
7885 if (i386_record_lea_modrm (&ir))
7886 return -1;
7887 break;
7888
7889 case 0xf30f2c: /* cvttss2si */
7890 case 0xf20f2c: /* cvttsd2si */
7891 case 0xf30f2d: /* cvtss2si */
7892 case 0xf20f2d: /* cvtsd2si */
7893 case 0xf20f38f0: /* crc32 */
7894 case 0xf20f38f1: /* crc32 */
7895 case 0x0f50: /* movmskps */
7896 case 0x660f50: /* movmskpd */
7897 case 0x0fc5: /* pextrw */
7898 case 0x660fc5: /* pextrw */
7899 case 0x0fd7: /* pmovmskb */
7900 case 0x660fd7: /* pmovmskb */
7901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7902 break;
7903
7904 case 0x0f3800: /* pshufb */
7905 case 0x0f3801: /* phaddw */
7906 case 0x0f3802: /* phaddd */
7907 case 0x0f3803: /* phaddsw */
7908 case 0x0f3804: /* pmaddubsw */
7909 case 0x0f3805: /* phsubw */
7910 case 0x0f3806: /* phsubd */
7911 case 0x0f3807: /* phsubsw */
7912 case 0x0f3808: /* psignb */
7913 case 0x0f3809: /* psignw */
7914 case 0x0f380a: /* psignd */
7915 case 0x0f380b: /* pmulhrsw */
7916 case 0x0f381c: /* pabsb */
7917 case 0x0f381d: /* pabsw */
7918 case 0x0f381e: /* pabsd */
7919 case 0x0f382b: /* packusdw */
7920 case 0x0f3830: /* pmovzxbw */
7921 case 0x0f3831: /* pmovzxbd */
7922 case 0x0f3832: /* pmovzxbq */
7923 case 0x0f3833: /* pmovzxwd */
7924 case 0x0f3834: /* pmovzxwq */
7925 case 0x0f3835: /* pmovzxdq */
7926 case 0x0f3837: /* pcmpgtq */
7927 case 0x0f3838: /* pminsb */
7928 case 0x0f3839: /* pminsd */
7929 case 0x0f383a: /* pminuw */
7930 case 0x0f383b: /* pminud */
7931 case 0x0f383c: /* pmaxsb */
7932 case 0x0f383d: /* pmaxsd */
7933 case 0x0f383e: /* pmaxuw */
7934 case 0x0f383f: /* pmaxud */
7935 case 0x0f3840: /* pmulld */
7936 case 0x0f3841: /* phminposuw */
7937 case 0x0f3a0f: /* palignr */
7938 case 0x0f60: /* punpcklbw */
7939 case 0x0f61: /* punpcklwd */
7940 case 0x0f62: /* punpckldq */
7941 case 0x0f63: /* packsswb */
7942 case 0x0f64: /* pcmpgtb */
7943 case 0x0f65: /* pcmpgtw */
7944 case 0x0f66: /* pcmpgtd */
7945 case 0x0f67: /* packuswb */
7946 case 0x0f68: /* punpckhbw */
7947 case 0x0f69: /* punpckhwd */
7948 case 0x0f6a: /* punpckhdq */
7949 case 0x0f6b: /* packssdw */
7950 case 0x0f6e: /* movd */
7951 case 0x0f6f: /* movq */
7952 case 0x0f70: /* pshufw */
7953 case 0x0f74: /* pcmpeqb */
7954 case 0x0f75: /* pcmpeqw */
7955 case 0x0f76: /* pcmpeqd */
7956 case 0x0fc4: /* pinsrw */
7957 case 0x0fd1: /* psrlw */
7958 case 0x0fd2: /* psrld */
7959 case 0x0fd3: /* psrlq */
7960 case 0x0fd4: /* paddq */
7961 case 0x0fd5: /* pmullw */
7962 case 0xf20fd6: /* movdq2q */
7963 case 0x0fd8: /* psubusb */
7964 case 0x0fd9: /* psubusw */
7965 case 0x0fda: /* pminub */
7966 case 0x0fdb: /* pand */
7967 case 0x0fdc: /* paddusb */
7968 case 0x0fdd: /* paddusw */
7969 case 0x0fde: /* pmaxub */
7970 case 0x0fdf: /* pandn */
7971 case 0x0fe0: /* pavgb */
7972 case 0x0fe1: /* psraw */
7973 case 0x0fe2: /* psrad */
7974 case 0x0fe3: /* pavgw */
7975 case 0x0fe4: /* pmulhuw */
7976 case 0x0fe5: /* pmulhw */
7977 case 0x0fe8: /* psubsb */
7978 case 0x0fe9: /* psubsw */
7979 case 0x0fea: /* pminsw */
7980 case 0x0feb: /* por */
7981 case 0x0fec: /* paddsb */
7982 case 0x0fed: /* paddsw */
7983 case 0x0fee: /* pmaxsw */
7984 case 0x0fef: /* pxor */
7985 case 0x0ff1: /* psllw */
7986 case 0x0ff2: /* pslld */
7987 case 0x0ff3: /* psllq */
7988 case 0x0ff4: /* pmuludq */
7989 case 0x0ff5: /* pmaddwd */
7990 case 0x0ff6: /* psadbw */
7991 case 0x0ff8: /* psubb */
7992 case 0x0ff9: /* psubw */
7993 case 0x0ffa: /* psubd */
7994 case 0x0ffb: /* psubq */
7995 case 0x0ffc: /* paddb */
7996 case 0x0ffd: /* paddw */
7997 case 0x0ffe: /* paddd */
7998 if (i386_record_modrm (&ir))
7999 return -1;
8000 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8001 goto no_support;
8002 record_full_arch_list_add_reg (ir.regcache,
8003 I387_MM0_REGNUM (tdep) + ir.reg);
8004 break;
8005
8006 case 0x0f71: /* psllw */
8007 case 0x0f72: /* pslld */
8008 case 0x0f73: /* psllq */
8009 if (i386_record_modrm (&ir))
8010 return -1;
8011 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8012 goto no_support;
8013 record_full_arch_list_add_reg (ir.regcache,
8014 I387_MM0_REGNUM (tdep) + ir.rm);
8015 break;
8016
8017 case 0x660f71: /* psllw */
8018 case 0x660f72: /* pslld */
8019 case 0x660f73: /* psllq */
8020 if (i386_record_modrm (&ir))
8021 return -1;
8022 ir.rm |= ir.rex_b;
8023 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8024 goto no_support;
8025 record_full_arch_list_add_reg (ir.regcache,
8026 I387_XMM0_REGNUM (tdep) + ir.rm);
8027 break;
8028
8029 case 0x0f7e: /* movd */
8030 case 0x660f7e: /* movd */
8031 if (i386_record_modrm (&ir))
8032 return -1;
8033 if (ir.mod == 3)
8034 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8035 else
8036 {
8037 if (ir.dflag == 2)
8038 ir.ot = OT_QUAD;
8039 else
8040 ir.ot = OT_LONG;
8041 if (i386_record_lea_modrm (&ir))
8042 return -1;
8043 }
8044 break;
8045
8046 case 0x0f7f: /* movq */
8047 if (i386_record_modrm (&ir))
8048 return -1;
8049 if (ir.mod == 3)
8050 {
8051 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8052 goto no_support;
8053 record_full_arch_list_add_reg (ir.regcache,
8054 I387_MM0_REGNUM (tdep) + ir.rm);
8055 }
8056 else
8057 {
8058 ir.ot = OT_QUAD;
8059 if (i386_record_lea_modrm (&ir))
8060 return -1;
8061 }
8062 break;
8063
8064 case 0xf30fb8: /* popcnt */
8065 if (i386_record_modrm (&ir))
8066 return -1;
8067 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8068 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8069 break;
8070
8071 case 0x660fd6: /* movq */
8072 if (i386_record_modrm (&ir))
8073 return -1;
8074 if (ir.mod == 3)
8075 {
8076 ir.rm |= ir.rex_b;
8077 if (!i386_xmm_regnum_p (gdbarch,
8078 I387_XMM0_REGNUM (tdep) + ir.rm))
8079 goto no_support;
8080 record_full_arch_list_add_reg (ir.regcache,
8081 I387_XMM0_REGNUM (tdep) + ir.rm);
8082 }
8083 else
8084 {
8085 ir.ot = OT_QUAD;
8086 if (i386_record_lea_modrm (&ir))
8087 return -1;
8088 }
8089 break;
8090
8091 case 0x660f3817: /* ptest */
8092 case 0x0f2e: /* ucomiss */
8093 case 0x660f2e: /* ucomisd */
8094 case 0x0f2f: /* comiss */
8095 case 0x660f2f: /* comisd */
8096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8097 break;
8098
8099 case 0x0ff7: /* maskmovq */
8100 regcache_raw_read_unsigned (ir.regcache,
8101 ir.regmap[X86_RECORD_REDI_REGNUM],
8102 &addr);
8103 if (record_full_arch_list_add_mem (addr, 64))
8104 return -1;
8105 break;
8106
8107 case 0x660ff7: /* maskmovdqu */
8108 regcache_raw_read_unsigned (ir.regcache,
8109 ir.regmap[X86_RECORD_REDI_REGNUM],
8110 &addr);
8111 if (record_full_arch_list_add_mem (addr, 128))
8112 return -1;
8113 break;
8114
8115 default:
8116 goto no_support;
8117 break;
8118 }
8119 break;
8120
8121 default:
8122 goto no_support;
8123 break;
8124 }
8125
8126 /* In the future, maybe still need to deal with need_dasm. */
8127 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8128 if (record_full_arch_list_add_end ())
8129 return -1;
8130
8131 return 0;
8132
8133 no_support:
8134 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8135 "at address %s.\n"),
8136 (unsigned int) (opcode),
8137 paddress (gdbarch, ir.orig_addr));
8138 return -1;
8139 }
8140
8141 static const int i386_record_regmap[] =
8142 {
8143 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8144 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8145 0, 0, 0, 0, 0, 0, 0, 0,
8146 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8147 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8148 };
8149
8150 /* Check that the given address appears suitable for a fast
8151 tracepoint, which on x86-64 means that we need an instruction of at
8152 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8153 jump and not have to worry about program jumps to an address in the
8154 middle of the tracepoint jump. On x86, it may be possible to use
8155 4-byte jumps with a 2-byte offset to a trampoline located in the
8156 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8157 of instruction to replace, and 0 if not, plus an explanatory
8158 string. */
8159
8160 static int
8161 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8162 std::string *msg)
8163 {
8164 int len, jumplen;
8165
8166 /* Ask the target for the minimum instruction length supported. */
8167 jumplen = target_get_min_fast_tracepoint_insn_len ();
8168
8169 if (jumplen < 0)
8170 {
8171 /* If the target does not support the get_min_fast_tracepoint_insn_len
8172 operation, assume that fast tracepoints will always be implemented
8173 using 4-byte relative jumps on both x86 and x86-64. */
8174 jumplen = 5;
8175 }
8176 else if (jumplen == 0)
8177 {
8178 /* If the target does support get_min_fast_tracepoint_insn_len but
8179 returns zero, then the IPA has not loaded yet. In this case,
8180 we optimistically assume that truncated 2-byte relative jumps
8181 will be available on x86, and compensate later if this assumption
8182 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8183 jumps will always be used. */
8184 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8185 }
8186
8187 /* Check for fit. */
8188 len = gdb_insn_length (gdbarch, addr);
8189
8190 if (len < jumplen)
8191 {
8192 /* Return a bit of target-specific detail to add to the caller's
8193 generic failure message. */
8194 if (msg)
8195 *msg = string_printf (_("; instruction is only %d bytes long, "
8196 "need at least %d bytes for the jump"),
8197 len, jumplen);
8198 return 0;
8199 }
8200 else
8201 {
8202 if (msg)
8203 msg->clear ();
8204 return 1;
8205 }
8206 }
8207
8208 /* Return a floating-point format for a floating-point variable of
8209 length LEN in bits. If non-NULL, NAME is the name of its type.
8210 If no suitable type is found, return NULL. */
8211
8212 static const struct floatformat **
8213 i386_floatformat_for_type (struct gdbarch *gdbarch,
8214 const char *name, int len)
8215 {
8216 if (len == 128 && name)
8217 if (strcmp (name, "__float128") == 0
8218 || strcmp (name, "_Float128") == 0
8219 || strcmp (name, "complex _Float128") == 0
8220 || strcmp (name, "complex(kind=16)") == 0
8221 || strcmp (name, "quad complex") == 0
8222 || strcmp (name, "real(kind=16)") == 0
8223 || strcmp (name, "real*16") == 0)
8224 return floatformats_ia64_quad;
8225
8226 return default_floatformat_for_type (gdbarch, name, len);
8227 }
8228
8229 static int
8230 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8231 struct tdesc_arch_data *tdesc_data)
8232 {
8233 const struct target_desc *tdesc = tdep->tdesc;
8234 const struct tdesc_feature *feature_core;
8235
8236 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8237 *feature_avx512, *feature_pkeys, *feature_segments;
8238 int i, num_regs, valid_p;
8239
8240 if (! tdesc_has_registers (tdesc))
8241 return 0;
8242
8243 /* Get core registers. */
8244 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8245 if (feature_core == NULL)
8246 return 0;
8247
8248 /* Get SSE registers. */
8249 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8250
8251 /* Try AVX registers. */
8252 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8253
8254 /* Try MPX registers. */
8255 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8256
8257 /* Try AVX512 registers. */
8258 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8259
8260 /* Try segment base registers. */
8261 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8262
8263 /* Try PKEYS */
8264 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8265
8266 valid_p = 1;
8267
8268 /* The XCR0 bits. */
8269 if (feature_avx512)
8270 {
8271 /* AVX512 register description requires AVX register description. */
8272 if (!feature_avx)
8273 return 0;
8274
8275 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8276
8277 /* It may have been set by OSABI initialization function. */
8278 if (tdep->k0_regnum < 0)
8279 {
8280 tdep->k_register_names = i386_k_names;
8281 tdep->k0_regnum = I386_K0_REGNUM;
8282 }
8283
8284 for (i = 0; i < I387_NUM_K_REGS; i++)
8285 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8286 tdep->k0_regnum + i,
8287 i386_k_names[i]);
8288
8289 if (tdep->num_zmm_regs == 0)
8290 {
8291 tdep->zmmh_register_names = i386_zmmh_names;
8292 tdep->num_zmm_regs = 8;
8293 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8294 }
8295
8296 for (i = 0; i < tdep->num_zmm_regs; i++)
8297 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8298 tdep->zmm0h_regnum + i,
8299 tdep->zmmh_register_names[i]);
8300
8301 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8302 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8303 tdep->xmm16_regnum + i,
8304 tdep->xmm_avx512_register_names[i]);
8305
8306 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8307 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8308 tdep->ymm16h_regnum + i,
8309 tdep->ymm16h_register_names[i]);
8310 }
8311 if (feature_avx)
8312 {
8313 /* AVX register description requires SSE register description. */
8314 if (!feature_sse)
8315 return 0;
8316
8317 if (!feature_avx512)
8318 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8319
8320 /* It may have been set by OSABI initialization function. */
8321 if (tdep->num_ymm_regs == 0)
8322 {
8323 tdep->ymmh_register_names = i386_ymmh_names;
8324 tdep->num_ymm_regs = 8;
8325 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8326 }
8327
8328 for (i = 0; i < tdep->num_ymm_regs; i++)
8329 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8330 tdep->ymm0h_regnum + i,
8331 tdep->ymmh_register_names[i]);
8332 }
8333 else if (feature_sse)
8334 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8335 else
8336 {
8337 tdep->xcr0 = X86_XSTATE_X87_MASK;
8338 tdep->num_xmm_regs = 0;
8339 }
8340
8341 num_regs = tdep->num_core_regs;
8342 for (i = 0; i < num_regs; i++)
8343 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8344 tdep->register_names[i]);
8345
8346 if (feature_sse)
8347 {
8348 /* Need to include %mxcsr, so add one. */
8349 num_regs += tdep->num_xmm_regs + 1;
8350 for (; i < num_regs; i++)
8351 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8352 tdep->register_names[i]);
8353 }
8354
8355 if (feature_mpx)
8356 {
8357 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8358
8359 if (tdep->bnd0r_regnum < 0)
8360 {
8361 tdep->mpx_register_names = i386_mpx_names;
8362 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8363 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8364 }
8365
8366 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8367 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8368 I387_BND0R_REGNUM (tdep) + i,
8369 tdep->mpx_register_names[i]);
8370 }
8371
8372 if (feature_segments)
8373 {
8374 if (tdep->fsbase_regnum < 0)
8375 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8376 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8377 tdep->fsbase_regnum, "fs_base");
8378 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8379 tdep->fsbase_regnum + 1, "gs_base");
8380 }
8381
8382 if (feature_pkeys)
8383 {
8384 tdep->xcr0 |= X86_XSTATE_PKRU;
8385 if (tdep->pkru_regnum < 0)
8386 {
8387 tdep->pkeys_register_names = i386_pkeys_names;
8388 tdep->pkru_regnum = I386_PKRU_REGNUM;
8389 tdep->num_pkeys_regs = 1;
8390 }
8391
8392 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8393 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8394 I387_PKRU_REGNUM (tdep) + i,
8395 tdep->pkeys_register_names[i]);
8396 }
8397
8398 return valid_p;
8399 }
8400
8401 \f
8402
8403 /* Implement the type_align gdbarch function. */
8404
8405 static ULONGEST
8406 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8407 {
8408 type = check_typedef (type);
8409
8410 if (gdbarch_ptr_bit (gdbarch) == 32)
8411 {
8412 if ((type->code () == TYPE_CODE_INT
8413 || type->code () == TYPE_CODE_FLT)
8414 && TYPE_LENGTH (type) > 4)
8415 return 4;
8416
8417 /* Handle x86's funny long double. */
8418 if (type->code () == TYPE_CODE_FLT
8419 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8420 return 4;
8421 }
8422
8423 return 0;
8424 }
8425
8426 \f
8427 /* Note: This is called for both i386 and amd64. */
8428
8429 static struct gdbarch *
8430 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8431 {
8432 struct gdbarch_tdep *tdep;
8433 struct gdbarch *gdbarch;
8434 const struct target_desc *tdesc;
8435 int mm0_regnum;
8436 int ymm0_regnum;
8437 int bnd0_regnum;
8438 int num_bnd_cooked;
8439
8440 /* If there is already a candidate, use it. */
8441 arches = gdbarch_list_lookup_by_info (arches, &info);
8442 if (arches != NULL)
8443 return arches->gdbarch;
8444
8445 /* Allocate space for the new architecture. Assume i386 for now. */
8446 tdep = XCNEW (struct gdbarch_tdep);
8447 gdbarch = gdbarch_alloc (&info, tdep);
8448
8449 /* General-purpose registers. */
8450 tdep->gregset_reg_offset = NULL;
8451 tdep->gregset_num_regs = I386_NUM_GREGS;
8452 tdep->sizeof_gregset = 0;
8453
8454 /* Floating-point registers. */
8455 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8456 tdep->fpregset = &i386_fpregset;
8457
8458 /* The default settings include the FPU registers, the MMX registers
8459 and the SSE registers. This can be overridden for a specific ABI
8460 by adjusting the members `st0_regnum', `mm0_regnum' and
8461 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8462 will show up in the output of "info all-registers". */
8463
8464 tdep->st0_regnum = I386_ST0_REGNUM;
8465
8466 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8467 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8468
8469 tdep->jb_pc_offset = -1;
8470 tdep->struct_return = pcc_struct_return;
8471 tdep->sigtramp_start = 0;
8472 tdep->sigtramp_end = 0;
8473 tdep->sigtramp_p = i386_sigtramp_p;
8474 tdep->sigcontext_addr = NULL;
8475 tdep->sc_reg_offset = NULL;
8476 tdep->sc_pc_offset = -1;
8477 tdep->sc_sp_offset = -1;
8478
8479 tdep->xsave_xcr0_offset = -1;
8480
8481 tdep->record_regmap = i386_record_regmap;
8482
8483 set_gdbarch_type_align (gdbarch, i386_type_align);
8484
8485 /* The format used for `long double' on almost all i386 targets is
8486 the i387 extended floating-point format. In fact, of all targets
8487 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8488 on having a `long double' that's not `long' at all. */
8489 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8490
8491 /* Although the i387 extended floating-point has only 80 significant
8492 bits, a `long double' actually takes up 96, probably to enforce
8493 alignment. */
8494 set_gdbarch_long_double_bit (gdbarch, 96);
8495
8496 /* Support of bfloat16 format. */
8497 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8498
8499 /* Support for floating-point data type variants. */
8500 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8501
8502 /* Register numbers of various important registers. */
8503 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8504 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8505 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8506 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8507
8508 /* NOTE: kettenis/20040418: GCC does have two possible register
8509 numbering schemes on the i386: dbx and SVR4. These schemes
8510 differ in how they number %ebp, %esp, %eflags, and the
8511 floating-point registers, and are implemented by the arrays
8512 dbx_register_map[] and svr4_dbx_register_map in
8513 gcc/config/i386.c. GCC also defines a third numbering scheme in
8514 gcc/config/i386.c, which it designates as the "default" register
8515 map used in 64bit mode. This last register numbering scheme is
8516 implemented in dbx64_register_map, and is used for AMD64; see
8517 amd64-tdep.c.
8518
8519 Currently, each GCC i386 target always uses the same register
8520 numbering scheme across all its supported debugging formats
8521 i.e. SDB (COFF), stabs and DWARF 2. This is because
8522 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8523 DBX_REGISTER_NUMBER macro which is defined by each target's
8524 respective config header in a manner independent of the requested
8525 output debugging format.
8526
8527 This does not match the arrangement below, which presumes that
8528 the SDB and stabs numbering schemes differ from the DWARF and
8529 DWARF 2 ones. The reason for this arrangement is that it is
8530 likely to get the numbering scheme for the target's
8531 default/native debug format right. For targets where GCC is the
8532 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8533 targets where the native toolchain uses a different numbering
8534 scheme for a particular debug format (stabs-in-ELF on Solaris)
8535 the defaults below will have to be overridden, like
8536 i386_elf_init_abi() does. */
8537
8538 /* Use the dbx register numbering scheme for stabs and COFF. */
8539 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8540 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8541
8542 /* Use the SVR4 register numbering scheme for DWARF 2. */
8543 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8544
8545 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8546 be in use on any of the supported i386 targets. */
8547
8548 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8549
8550 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8551
8552 /* Call dummy code. */
8553 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8554 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8555 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8556 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8557
8558 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8559 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8560 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8561
8562 set_gdbarch_return_value (gdbarch, i386_return_value);
8563
8564 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8565
8566 /* Stack grows downward. */
8567 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8568
8569 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8570 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8571
8572 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8573 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8574
8575 set_gdbarch_frame_args_skip (gdbarch, 8);
8576
8577 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8578
8579 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8580
8581 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8582
8583 /* Add the i386 register groups. */
8584 i386_add_reggroups (gdbarch);
8585 tdep->register_reggroup_p = i386_register_reggroup_p;
8586
8587 /* Helper for function argument information. */
8588 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8589
8590 /* Hook the function epilogue frame unwinder. This unwinder is
8591 appended to the list first, so that it supercedes the DWARF
8592 unwinder in function epilogues (where the DWARF unwinder
8593 currently fails). */
8594 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8595
8596 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8597 to the list before the prologue-based unwinders, so that DWARF
8598 CFI info will be used if it is available. */
8599 dwarf2_append_unwinders (gdbarch);
8600
8601 frame_base_set_default (gdbarch, &i386_frame_base);
8602
8603 /* Pseudo registers may be changed by amd64_init_abi. */
8604 set_gdbarch_pseudo_register_read_value (gdbarch,
8605 i386_pseudo_register_read_value);
8606 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8607 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8608 i386_ax_pseudo_register_collect);
8609
8610 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8611 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8612
8613 /* Override the normal target description method to make the AVX
8614 upper halves anonymous. */
8615 set_gdbarch_register_name (gdbarch, i386_register_name);
8616
8617 /* Even though the default ABI only includes general-purpose registers,
8618 floating-point registers and the SSE registers, we have to leave a
8619 gap for the upper AVX, MPX and AVX512 registers. */
8620 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8621
8622 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8623
8624 /* Get the x86 target description from INFO. */
8625 tdesc = info.target_desc;
8626 if (! tdesc_has_registers (tdesc))
8627 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8628 tdep->tdesc = tdesc;
8629
8630 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8631 tdep->register_names = i386_register_names;
8632
8633 /* No upper YMM registers. */
8634 tdep->ymmh_register_names = NULL;
8635 tdep->ymm0h_regnum = -1;
8636
8637 /* No upper ZMM registers. */
8638 tdep->zmmh_register_names = NULL;
8639 tdep->zmm0h_regnum = -1;
8640
8641 /* No high XMM registers. */
8642 tdep->xmm_avx512_register_names = NULL;
8643 tdep->xmm16_regnum = -1;
8644
8645 /* No upper YMM16-31 registers. */
8646 tdep->ymm16h_register_names = NULL;
8647 tdep->ymm16h_regnum = -1;
8648
8649 tdep->num_byte_regs = 8;
8650 tdep->num_word_regs = 8;
8651 tdep->num_dword_regs = 0;
8652 tdep->num_mmx_regs = 8;
8653 tdep->num_ymm_regs = 0;
8654
8655 /* No MPX registers. */
8656 tdep->bnd0r_regnum = -1;
8657 tdep->bndcfgu_regnum = -1;
8658
8659 /* No AVX512 registers. */
8660 tdep->k0_regnum = -1;
8661 tdep->num_zmm_regs = 0;
8662 tdep->num_ymm_avx512_regs = 0;
8663 tdep->num_xmm_avx512_regs = 0;
8664
8665 /* No PKEYS registers */
8666 tdep->pkru_regnum = -1;
8667 tdep->num_pkeys_regs = 0;
8668
8669 /* No segment base registers. */
8670 tdep->fsbase_regnum = -1;
8671
8672 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8673
8674 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8675
8676 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8677
8678 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8679 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8680 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8681
8682 /* Hook in ABI-specific overrides, if they have been registered.
8683 Note: If INFO specifies a 64 bit arch, this is where we turn
8684 a 32-bit i386 into a 64-bit amd64. */
8685 info.tdesc_data = tdesc_data.get ();
8686 gdbarch_init_osabi (info, gdbarch);
8687
8688 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8689 {
8690 xfree (tdep);
8691 gdbarch_free (gdbarch);
8692 return NULL;
8693 }
8694
8695 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8696
8697 /* Wire in pseudo registers. Number of pseudo registers may be
8698 changed. */
8699 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8700 + tdep->num_word_regs
8701 + tdep->num_dword_regs
8702 + tdep->num_mmx_regs
8703 + tdep->num_ymm_regs
8704 + num_bnd_cooked
8705 + tdep->num_ymm_avx512_regs
8706 + tdep->num_zmm_regs));
8707
8708 /* Target description may be changed. */
8709 tdesc = tdep->tdesc;
8710
8711 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8712
8713 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8714 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8715
8716 /* Make %al the first pseudo-register. */
8717 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8718 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8719
8720 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8721 if (tdep->num_dword_regs)
8722 {
8723 /* Support dword pseudo-register if it hasn't been disabled. */
8724 tdep->eax_regnum = ymm0_regnum;
8725 ymm0_regnum += tdep->num_dword_regs;
8726 }
8727 else
8728 tdep->eax_regnum = -1;
8729
8730 mm0_regnum = ymm0_regnum;
8731 if (tdep->num_ymm_regs)
8732 {
8733 /* Support YMM pseudo-register if it is available. */
8734 tdep->ymm0_regnum = ymm0_regnum;
8735 mm0_regnum += tdep->num_ymm_regs;
8736 }
8737 else
8738 tdep->ymm0_regnum = -1;
8739
8740 if (tdep->num_ymm_avx512_regs)
8741 {
8742 /* Support YMM16-31 pseudo registers if available. */
8743 tdep->ymm16_regnum = mm0_regnum;
8744 mm0_regnum += tdep->num_ymm_avx512_regs;
8745 }
8746 else
8747 tdep->ymm16_regnum = -1;
8748
8749 if (tdep->num_zmm_regs)
8750 {
8751 /* Support ZMM pseudo-register if it is available. */
8752 tdep->zmm0_regnum = mm0_regnum;
8753 mm0_regnum += tdep->num_zmm_regs;
8754 }
8755 else
8756 tdep->zmm0_regnum = -1;
8757
8758 bnd0_regnum = mm0_regnum;
8759 if (tdep->num_mmx_regs != 0)
8760 {
8761 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8762 tdep->mm0_regnum = mm0_regnum;
8763 bnd0_regnum += tdep->num_mmx_regs;
8764 }
8765 else
8766 tdep->mm0_regnum = -1;
8767
8768 if (tdep->bnd0r_regnum > 0)
8769 tdep->bnd0_regnum = bnd0_regnum;
8770 else
8771 tdep-> bnd0_regnum = -1;
8772
8773 /* Hook in the legacy prologue-based unwinders last (fallback). */
8774 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8775 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8776 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8777
8778 /* If we have a register mapping, enable the generic core file
8779 support, unless it has already been enabled. */
8780 if (tdep->gregset_reg_offset
8781 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8782 set_gdbarch_iterate_over_regset_sections
8783 (gdbarch, i386_iterate_over_regset_sections);
8784
8785 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8786 i386_fast_tracepoint_valid_at);
8787
8788 return gdbarch;
8789 }
8790
8791 \f
8792
8793 /* Return the target description for a specified XSAVE feature mask. */
8794
8795 const struct target_desc *
8796 i386_target_description (uint64_t xcr0, bool segments)
8797 {
8798 static target_desc *i386_tdescs \
8799 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8800 target_desc **tdesc;
8801
8802 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8803 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8804 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8805 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8806 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8807 [segments ? 1 : 0];
8808
8809 if (*tdesc == NULL)
8810 *tdesc = i386_create_target_description (xcr0, false, segments);
8811
8812 return *tdesc;
8813 }
8814
8815 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8816
8817 /* Find the bound directory base address. */
8818
8819 static unsigned long
8820 i386_mpx_bd_base (void)
8821 {
8822 struct regcache *rcache;
8823 struct gdbarch_tdep *tdep;
8824 ULONGEST ret;
8825 enum register_status regstatus;
8826
8827 rcache = get_current_regcache ();
8828 tdep = gdbarch_tdep (rcache->arch ());
8829
8830 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8831
8832 if (regstatus != REG_VALID)
8833 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8834
8835 return ret & MPX_BASE_MASK;
8836 }
8837
8838 int
8839 i386_mpx_enabled (void)
8840 {
8841 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8842 const struct target_desc *tdesc = tdep->tdesc;
8843
8844 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8845 }
8846
8847 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8848 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8849 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8850 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8851
8852 /* Find the bound table entry given the pointer location and the base
8853 address of the table. */
8854
8855 static CORE_ADDR
8856 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8857 {
8858 CORE_ADDR offset1;
8859 CORE_ADDR offset2;
8860 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8861 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8862 CORE_ADDR bd_entry_addr;
8863 CORE_ADDR bt_addr;
8864 CORE_ADDR bd_entry;
8865 struct gdbarch *gdbarch = get_current_arch ();
8866 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8867
8868
8869 if (gdbarch_ptr_bit (gdbarch) == 64)
8870 {
8871 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8872 bd_ptr_r_shift = 20;
8873 bd_ptr_l_shift = 3;
8874 bt_select_r_shift = 3;
8875 bt_select_l_shift = 5;
8876 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8877
8878 if ( sizeof (CORE_ADDR) == 4)
8879 error (_("bound table examination not supported\
8880 for 64-bit process with 32-bit GDB"));
8881 }
8882 else
8883 {
8884 mpx_bd_mask = MPX_BD_MASK_32;
8885 bd_ptr_r_shift = 12;
8886 bd_ptr_l_shift = 2;
8887 bt_select_r_shift = 2;
8888 bt_select_l_shift = 4;
8889 bt_mask = MPX_BT_MASK_32;
8890 }
8891
8892 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8893 bd_entry_addr = bd_base + offset1;
8894 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8895
8896 if ((bd_entry & 0x1) == 0)
8897 error (_("Invalid bounds directory entry at %s."),
8898 paddress (get_current_arch (), bd_entry_addr));
8899
8900 /* Clearing status bit. */
8901 bd_entry--;
8902 bt_addr = bd_entry & ~bt_select_r_shift;
8903 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8904
8905 return bt_addr + offset2;
8906 }
8907
8908 /* Print routine for the mpx bounds. */
8909
8910 static void
8911 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8912 {
8913 struct ui_out *uiout = current_uiout;
8914 LONGEST size;
8915 struct gdbarch *gdbarch = get_current_arch ();
8916 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8917 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8918
8919 if (bounds_in_map == 1)
8920 {
8921 uiout->text ("Null bounds on map:");
8922 uiout->text (" pointer value = ");
8923 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8924 uiout->text (".");
8925 uiout->text ("\n");
8926 }
8927 else
8928 {
8929 uiout->text ("{lbound = ");
8930 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8931 uiout->text (", ubound = ");
8932
8933 /* The upper bound is stored in 1's complement. */
8934 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8935 uiout->text ("}: pointer value = ");
8936 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8937
8938 if (gdbarch_ptr_bit (gdbarch) == 64)
8939 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8940 else
8941 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8942
8943 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8944 -1 represents in this sense full memory access, and there is no need
8945 one to the size. */
8946
8947 size = (size > -1 ? size + 1 : size);
8948 uiout->text (", size = ");
8949 uiout->field_string ("size", plongest (size));
8950
8951 uiout->text (", metadata = ");
8952 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8953 uiout->text ("\n");
8954 }
8955 }
8956
8957 /* Implement the command "show mpx bound". */
8958
8959 static void
8960 i386_mpx_info_bounds (const char *args, int from_tty)
8961 {
8962 CORE_ADDR bd_base = 0;
8963 CORE_ADDR addr;
8964 CORE_ADDR bt_entry_addr = 0;
8965 CORE_ADDR bt_entry[4];
8966 int i;
8967 struct gdbarch *gdbarch = get_current_arch ();
8968 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8969
8970 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8971 || !i386_mpx_enabled ())
8972 {
8973 printf_unfiltered (_("Intel Memory Protection Extensions not "
8974 "supported on this target.\n"));
8975 return;
8976 }
8977
8978 if (args == NULL)
8979 {
8980 printf_unfiltered (_("Address of pointer variable expected.\n"));
8981 return;
8982 }
8983
8984 addr = parse_and_eval_address (args);
8985
8986 bd_base = i386_mpx_bd_base ();
8987 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8988
8989 memset (bt_entry, 0, sizeof (bt_entry));
8990
8991 for (i = 0; i < 4; i++)
8992 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8993 + i * TYPE_LENGTH (data_ptr_type),
8994 data_ptr_type);
8995
8996 i386_mpx_print_bounds (bt_entry);
8997 }
8998
8999 /* Implement the command "set mpx bound". */
9000
9001 static void
9002 i386_mpx_set_bounds (const char *args, int from_tty)
9003 {
9004 CORE_ADDR bd_base = 0;
9005 CORE_ADDR addr, lower, upper;
9006 CORE_ADDR bt_entry_addr = 0;
9007 CORE_ADDR bt_entry[2];
9008 const char *input = args;
9009 int i;
9010 struct gdbarch *gdbarch = get_current_arch ();
9011 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9012 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9013
9014 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9015 || !i386_mpx_enabled ())
9016 error (_("Intel Memory Protection Extensions not supported\
9017 on this target."));
9018
9019 if (args == NULL)
9020 error (_("Pointer value expected."));
9021
9022 addr = value_as_address (parse_to_comma_and_eval (&input));
9023
9024 if (input[0] == ',')
9025 ++input;
9026 if (input[0] == '\0')
9027 error (_("wrong number of arguments: missing lower and upper bound."));
9028 lower = value_as_address (parse_to_comma_and_eval (&input));
9029
9030 if (input[0] == ',')
9031 ++input;
9032 if (input[0] == '\0')
9033 error (_("Wrong number of arguments; Missing upper bound."));
9034 upper = value_as_address (parse_to_comma_and_eval (&input));
9035
9036 bd_base = i386_mpx_bd_base ();
9037 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9038 for (i = 0; i < 2; i++)
9039 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9040 + i * TYPE_LENGTH (data_ptr_type),
9041 data_ptr_type);
9042 bt_entry[0] = (uint64_t) lower;
9043 bt_entry[1] = ~(uint64_t) upper;
9044
9045 for (i = 0; i < 2; i++)
9046 write_memory_unsigned_integer (bt_entry_addr
9047 + i * TYPE_LENGTH (data_ptr_type),
9048 TYPE_LENGTH (data_ptr_type), byte_order,
9049 bt_entry[i]);
9050 }
9051
9052 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9053
9054 void _initialize_i386_tdep ();
9055 void
9056 _initialize_i386_tdep ()
9057 {
9058 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9059
9060 /* Add the variable that controls the disassembly flavor. */
9061 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9062 &disassembly_flavor, _("\
9063 Set the disassembly flavor."), _("\
9064 Show the disassembly flavor."), _("\
9065 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9066 NULL,
9067 NULL, /* FIXME: i18n: */
9068 &setlist, &showlist);
9069
9070 /* Add the variable that controls the convention for returning
9071 structs. */
9072 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9073 &struct_convention, _("\
9074 Set the convention for returning small structs."), _("\
9075 Show the convention for returning small structs."), _("\
9076 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9077 is \"default\"."),
9078 NULL,
9079 NULL, /* FIXME: i18n: */
9080 &setlist, &showlist);
9081
9082 /* Add "mpx" prefix for the set commands. */
9083
9084 add_basic_prefix_cmd ("mpx", class_support, _("\
9085 Set Intel Memory Protection Extensions specific variables."),
9086 &mpx_set_cmdlist, "set mpx ",
9087 0 /* allow-unknown */, &setlist);
9088
9089 /* Add "mpx" prefix for the show commands. */
9090
9091 add_show_prefix_cmd ("mpx", class_support, _("\
9092 Show Intel Memory Protection Extensions specific variables."),
9093 &mpx_show_cmdlist, "show mpx ",
9094 0 /* allow-unknown */, &showlist);
9095
9096 /* Add "bound" command for the show mpx commands list. */
9097
9098 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9099 "Show the memory bounds for a given array/pointer storage\
9100 in the bound table.",
9101 &mpx_show_cmdlist);
9102
9103 /* Add "bound" command for the set mpx commands list. */
9104
9105 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9106 "Set the memory bounds for a given array/pointer storage\
9107 in the bound table.",
9108 &mpx_set_cmdlist);
9109
9110 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9111 i386_svr4_init_abi);
9112
9113 /* Initialize the i386-specific register groups. */
9114 i386_init_reggroups ();
9115
9116 /* Tell remote stub that we support XML target description. */
9117 register_remote_support_xml ("i386");
9118 }