]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
gdb: introduce displaced_step_closure_up type alias
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56
57 #include "ax.h"
58 #include "ax-gdb.h"
59
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67 #include <unordered_set>
68
69 /* Register names. */
70
71 static const char *i386_register_names[] =
72 {
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
83 "mxcsr"
84 };
85
86 static const char *i386_zmm_names[] =
87 {
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
90 };
91
92 static const char *i386_zmmh_names[] =
93 {
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
96 };
97
98 static const char *i386_k_names[] =
99 {
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
102 };
103
104 static const char *i386_ymm_names[] =
105 {
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
108 };
109
110 static const char *i386_ymmh_names[] =
111 {
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
114 };
115
116 static const char *i386_mpx_names[] =
117 {
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
119 };
120
121 static const char* i386_pkeys_names[] =
122 {
123 "pkru"
124 };
125
126 /* Register names for MPX pseudo-registers. */
127
128 static const char *i386_bnd_names[] =
129 {
130 "bnd0", "bnd1", "bnd2", "bnd3"
131 };
132
133 /* Register names for MMX pseudo-registers. */
134
135 static const char *i386_mmx_names[] =
136 {
137 "mm0", "mm1", "mm2", "mm3",
138 "mm4", "mm5", "mm6", "mm7"
139 };
140
141 /* Register names for byte pseudo-registers. */
142
143 static const char *i386_byte_names[] =
144 {
145 "al", "cl", "dl", "bl",
146 "ah", "ch", "dh", "bh"
147 };
148
149 /* Register names for word pseudo-registers. */
150
151 static const char *i386_word_names[] =
152 {
153 "ax", "cx", "dx", "bx",
154 "", "bp", "si", "di"
155 };
156
157 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
158 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
159 we have 16 upper ZMM regs that have to be handled differently. */
160
161 const int num_lower_zmm_regs = 16;
162
163 /* MMX register? */
164
165 static int
166 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
167 {
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 int mm0_regnum = tdep->mm0_regnum;
170
171 if (mm0_regnum < 0)
172 return 0;
173
174 regnum -= mm0_regnum;
175 return regnum >= 0 && regnum < tdep->num_mmx_regs;
176 }
177
178 /* Byte register? */
179
180 int
181 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
182 {
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184
185 regnum -= tdep->al_regnum;
186 return regnum >= 0 && regnum < tdep->num_byte_regs;
187 }
188
189 /* Word register? */
190
191 int
192 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195
196 regnum -= tdep->ax_regnum;
197 return regnum >= 0 && regnum < tdep->num_word_regs;
198 }
199
200 /* Dword register? */
201
202 int
203 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
204 {
205 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
206 int eax_regnum = tdep->eax_regnum;
207
208 if (eax_regnum < 0)
209 return 0;
210
211 regnum -= eax_regnum;
212 return regnum >= 0 && regnum < tdep->num_dword_regs;
213 }
214
215 /* AVX512 register? */
216
217 int
218 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
219 {
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221 int zmm0h_regnum = tdep->zmm0h_regnum;
222
223 if (zmm0h_regnum < 0)
224 return 0;
225
226 regnum -= zmm0h_regnum;
227 return regnum >= 0 && regnum < tdep->num_zmm_regs;
228 }
229
230 int
231 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
232 {
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234 int zmm0_regnum = tdep->zmm0_regnum;
235
236 if (zmm0_regnum < 0)
237 return 0;
238
239 regnum -= zmm0_regnum;
240 return regnum >= 0 && regnum < tdep->num_zmm_regs;
241 }
242
243 int
244 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
245 {
246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
247 int k0_regnum = tdep->k0_regnum;
248
249 if (k0_regnum < 0)
250 return 0;
251
252 regnum -= k0_regnum;
253 return regnum >= 0 && regnum < I387_NUM_K_REGS;
254 }
255
256 static int
257 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
258 {
259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260 int ymm0h_regnum = tdep->ymm0h_regnum;
261
262 if (ymm0h_regnum < 0)
263 return 0;
264
265 regnum -= ymm0h_regnum;
266 return regnum >= 0 && regnum < tdep->num_ymm_regs;
267 }
268
269 /* AVX register? */
270
271 int
272 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 int ymm0_regnum = tdep->ymm0_regnum;
276
277 if (ymm0_regnum < 0)
278 return 0;
279
280 regnum -= ymm0_regnum;
281 return regnum >= 0 && regnum < tdep->num_ymm_regs;
282 }
283
284 static int
285 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
286 {
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288 int ymm16h_regnum = tdep->ymm16h_regnum;
289
290 if (ymm16h_regnum < 0)
291 return 0;
292
293 regnum -= ymm16h_regnum;
294 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
295 }
296
297 int
298 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
299 {
300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
301 int ymm16_regnum = tdep->ymm16_regnum;
302
303 if (ymm16_regnum < 0)
304 return 0;
305
306 regnum -= ymm16_regnum;
307 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
308 }
309
310 /* BND register? */
311
312 int
313 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
314 {
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 int bnd0_regnum = tdep->bnd0_regnum;
317
318 if (bnd0_regnum < 0)
319 return 0;
320
321 regnum -= bnd0_regnum;
322 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
323 }
324
325 /* SSE register? */
326
327 int
328 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
329 {
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
332
333 if (num_xmm_regs == 0)
334 return 0;
335
336 regnum -= I387_XMM0_REGNUM (tdep);
337 return regnum >= 0 && regnum < num_xmm_regs;
338 }
339
340 /* XMM_512 register? */
341
342 int
343 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
344 {
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
347
348 if (num_xmm_avx512_regs == 0)
349 return 0;
350
351 regnum -= I387_XMM16_REGNUM (tdep);
352 return regnum >= 0 && regnum < num_xmm_avx512_regs;
353 }
354
355 static int
356 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
357 {
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359
360 if (I387_NUM_XMM_REGS (tdep) == 0)
361 return 0;
362
363 return (regnum == I387_MXCSR_REGNUM (tdep));
364 }
365
366 /* FP register? */
367
368 int
369 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
370 {
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372
373 if (I387_ST0_REGNUM (tdep) < 0)
374 return 0;
375
376 return (I387_ST0_REGNUM (tdep) <= regnum
377 && regnum < I387_FCTRL_REGNUM (tdep));
378 }
379
380 int
381 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
382 {
383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
384
385 if (I387_ST0_REGNUM (tdep) < 0)
386 return 0;
387
388 return (I387_FCTRL_REGNUM (tdep) <= regnum
389 && regnum < I387_XMM0_REGNUM (tdep));
390 }
391
392 /* BNDr (raw) register? */
393
394 static int
395 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
396 {
397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
398
399 if (I387_BND0R_REGNUM (tdep) < 0)
400 return 0;
401
402 regnum -= tdep->bnd0r_regnum;
403 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
404 }
405
406 /* BND control register? */
407
408 static int
409 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
410 {
411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
412
413 if (I387_BNDCFGU_REGNUM (tdep) < 0)
414 return 0;
415
416 regnum -= I387_BNDCFGU_REGNUM (tdep);
417 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
418 }
419
420 /* PKRU register? */
421
422 bool
423 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
424 {
425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
426 int pkru_regnum = tdep->pkru_regnum;
427
428 if (pkru_regnum < 0)
429 return false;
430
431 regnum -= pkru_regnum;
432 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
433 }
434
435 /* Return the name of register REGNUM, or the empty string if it is
436 an anonymous register. */
437
438 static const char *
439 i386_register_name (struct gdbarch *gdbarch, int regnum)
440 {
441 /* Hide the upper YMM registers. */
442 if (i386_ymmh_regnum_p (gdbarch, regnum))
443 return "";
444
445 /* Hide the upper YMM16-31 registers. */
446 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
447 return "";
448
449 /* Hide the upper ZMM registers. */
450 if (i386_zmmh_regnum_p (gdbarch, regnum))
451 return "";
452
453 return tdesc_register_name (gdbarch, regnum);
454 }
455
456 /* Return the name of register REGNUM. */
457
458 const char *
459 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
460 {
461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
462 if (i386_bnd_regnum_p (gdbarch, regnum))
463 return i386_bnd_names[regnum - tdep->bnd0_regnum];
464 if (i386_mmx_regnum_p (gdbarch, regnum))
465 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
466 else if (i386_ymm_regnum_p (gdbarch, regnum))
467 return i386_ymm_names[regnum - tdep->ymm0_regnum];
468 else if (i386_zmm_regnum_p (gdbarch, regnum))
469 return i386_zmm_names[regnum - tdep->zmm0_regnum];
470 else if (i386_byte_regnum_p (gdbarch, regnum))
471 return i386_byte_names[regnum - tdep->al_regnum];
472 else if (i386_word_regnum_p (gdbarch, regnum))
473 return i386_word_names[regnum - tdep->ax_regnum];
474
475 internal_error (__FILE__, __LINE__, _("invalid regnum"));
476 }
477
478 /* Convert a dbx register number REG to the appropriate register
479 number used by GDB. */
480
481 static int
482 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
483 {
484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
485
486 /* This implements what GCC calls the "default" register map
487 (dbx_register_map[]). */
488
489 if (reg >= 0 && reg <= 7)
490 {
491 /* General-purpose registers. The debug info calls %ebp
492 register 4, and %esp register 5. */
493 if (reg == 4)
494 return 5;
495 else if (reg == 5)
496 return 4;
497 else return reg;
498 }
499 else if (reg >= 12 && reg <= 19)
500 {
501 /* Floating-point registers. */
502 return reg - 12 + I387_ST0_REGNUM (tdep);
503 }
504 else if (reg >= 21 && reg <= 28)
505 {
506 /* SSE registers. */
507 int ymm0_regnum = tdep->ymm0_regnum;
508
509 if (ymm0_regnum >= 0
510 && i386_xmm_regnum_p (gdbarch, reg))
511 return reg - 21 + ymm0_regnum;
512 else
513 return reg - 21 + I387_XMM0_REGNUM (tdep);
514 }
515 else if (reg >= 29 && reg <= 36)
516 {
517 /* MMX registers. */
518 return reg - 29 + I387_MM0_REGNUM (tdep);
519 }
520
521 /* This will hopefully provoke a warning. */
522 return gdbarch_num_cooked_regs (gdbarch);
523 }
524
525 /* Convert SVR4 DWARF register number REG to the appropriate register number
526 used by GDB. */
527
528 static int
529 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
530 {
531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
532
533 /* This implements the GCC register map that tries to be compatible
534 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
535
536 /* The SVR4 register numbering includes %eip and %eflags, and
537 numbers the floating point registers differently. */
538 if (reg >= 0 && reg <= 9)
539 {
540 /* General-purpose registers. */
541 return reg;
542 }
543 else if (reg >= 11 && reg <= 18)
544 {
545 /* Floating-point registers. */
546 return reg - 11 + I387_ST0_REGNUM (tdep);
547 }
548 else if (reg >= 21 && reg <= 36)
549 {
550 /* The SSE and MMX registers have the same numbers as with dbx. */
551 return i386_dbx_reg_to_regnum (gdbarch, reg);
552 }
553
554 switch (reg)
555 {
556 case 37: return I387_FCTRL_REGNUM (tdep);
557 case 38: return I387_FSTAT_REGNUM (tdep);
558 case 39: return I387_MXCSR_REGNUM (tdep);
559 case 40: return I386_ES_REGNUM;
560 case 41: return I386_CS_REGNUM;
561 case 42: return I386_SS_REGNUM;
562 case 43: return I386_DS_REGNUM;
563 case 44: return I386_FS_REGNUM;
564 case 45: return I386_GS_REGNUM;
565 }
566
567 return -1;
568 }
569
570 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
571 num_regs + num_pseudo_regs for other debug formats. */
572
573 int
574 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
575 {
576 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
577
578 if (regnum == -1)
579 return gdbarch_num_cooked_regs (gdbarch);
580 return regnum;
581 }
582
583 \f
584
585 /* This is the variable that is set with "set disassembly-flavor", and
586 its legitimate values. */
587 static const char att_flavor[] = "att";
588 static const char intel_flavor[] = "intel";
589 static const char *const valid_flavors[] =
590 {
591 att_flavor,
592 intel_flavor,
593 NULL
594 };
595 static const char *disassembly_flavor = att_flavor;
596 \f
597
598 /* Use the program counter to determine the contents and size of a
599 breakpoint instruction. Return a pointer to a string of bytes that
600 encode a breakpoint instruction, store the length of the string in
601 *LEN and optionally adjust *PC to point to the correct memory
602 location for inserting the breakpoint.
603
604 On the i386 we have a single breakpoint that fits in a single byte
605 and can be inserted anywhere.
606
607 This function is 64-bit safe. */
608
609 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
610
611 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
612
613 \f
614 /* Displaced instruction handling. */
615
616 /* Skip the legacy instruction prefixes in INSN.
617 Not all prefixes are valid for any particular insn
618 but we needn't care, the insn will fault if it's invalid.
619 The result is a pointer to the first opcode byte,
620 or NULL if we run off the end of the buffer. */
621
622 static gdb_byte *
623 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
624 {
625 gdb_byte *end = insn + max_len;
626
627 while (insn < end)
628 {
629 switch (*insn)
630 {
631 case DATA_PREFIX_OPCODE:
632 case ADDR_PREFIX_OPCODE:
633 case CS_PREFIX_OPCODE:
634 case DS_PREFIX_OPCODE:
635 case ES_PREFIX_OPCODE:
636 case FS_PREFIX_OPCODE:
637 case GS_PREFIX_OPCODE:
638 case SS_PREFIX_OPCODE:
639 case LOCK_PREFIX_OPCODE:
640 case REPE_PREFIX_OPCODE:
641 case REPNE_PREFIX_OPCODE:
642 ++insn;
643 continue;
644 default:
645 return insn;
646 }
647 }
648
649 return NULL;
650 }
651
652 static int
653 i386_absolute_jmp_p (const gdb_byte *insn)
654 {
655 /* jmp far (absolute address in operand). */
656 if (insn[0] == 0xea)
657 return 1;
658
659 if (insn[0] == 0xff)
660 {
661 /* jump near, absolute indirect (/4). */
662 if ((insn[1] & 0x38) == 0x20)
663 return 1;
664
665 /* jump far, absolute indirect (/5). */
666 if ((insn[1] & 0x38) == 0x28)
667 return 1;
668 }
669
670 return 0;
671 }
672
673 /* Return non-zero if INSN is a jump, zero otherwise. */
674
675 static int
676 i386_jmp_p (const gdb_byte *insn)
677 {
678 /* jump short, relative. */
679 if (insn[0] == 0xeb)
680 return 1;
681
682 /* jump near, relative. */
683 if (insn[0] == 0xe9)
684 return 1;
685
686 return i386_absolute_jmp_p (insn);
687 }
688
689 static int
690 i386_absolute_call_p (const gdb_byte *insn)
691 {
692 /* call far, absolute. */
693 if (insn[0] == 0x9a)
694 return 1;
695
696 if (insn[0] == 0xff)
697 {
698 /* Call near, absolute indirect (/2). */
699 if ((insn[1] & 0x38) == 0x10)
700 return 1;
701
702 /* Call far, absolute indirect (/3). */
703 if ((insn[1] & 0x38) == 0x18)
704 return 1;
705 }
706
707 return 0;
708 }
709
710 static int
711 i386_ret_p (const gdb_byte *insn)
712 {
713 switch (insn[0])
714 {
715 case 0xc2: /* ret near, pop N bytes. */
716 case 0xc3: /* ret near */
717 case 0xca: /* ret far, pop N bytes. */
718 case 0xcb: /* ret far */
719 case 0xcf: /* iret */
720 return 1;
721
722 default:
723 return 0;
724 }
725 }
726
727 static int
728 i386_call_p (const gdb_byte *insn)
729 {
730 if (i386_absolute_call_p (insn))
731 return 1;
732
733 /* call near, relative. */
734 if (insn[0] == 0xe8)
735 return 1;
736
737 return 0;
738 }
739
740 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
741 length in bytes. Otherwise, return zero. */
742
743 static int
744 i386_syscall_p (const gdb_byte *insn, int *lengthp)
745 {
746 /* Is it 'int $0x80'? */
747 if ((insn[0] == 0xcd && insn[1] == 0x80)
748 /* Or is it 'sysenter'? */
749 || (insn[0] == 0x0f && insn[1] == 0x34)
750 /* Or is it 'syscall'? */
751 || (insn[0] == 0x0f && insn[1] == 0x05))
752 {
753 *lengthp = 2;
754 return 1;
755 }
756
757 return 0;
758 }
759
760 /* The gdbarch insn_is_call method. */
761
762 static int
763 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
764 {
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_call_p (insn);
771 }
772
773 /* The gdbarch insn_is_ret method. */
774
775 static int
776 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
777 {
778 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
779
780 read_code (addr, buf, I386_MAX_INSN_LEN);
781 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
782
783 return i386_ret_p (insn);
784 }
785
786 /* The gdbarch insn_is_jump method. */
787
788 static int
789 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
790 {
791 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
792
793 read_code (addr, buf, I386_MAX_INSN_LEN);
794 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
795
796 return i386_jmp_p (insn);
797 }
798
799 /* Some kernels may run one past a syscall insn, so we have to cope. */
800
801 displaced_step_closure_up
802 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
803 CORE_ADDR from, CORE_ADDR to,
804 struct regcache *regs)
805 {
806 size_t len = gdbarch_max_insn_length (gdbarch);
807 std::unique_ptr<i386_displaced_step_closure> closure
808 (new i386_displaced_step_closure (len));
809 gdb_byte *buf = closure->buf.data ();
810
811 read_memory (from, buf, len);
812
813 /* GDB may get control back after the insn after the syscall.
814 Presumably this is a kernel bug.
815 If this is a syscall, make sure there's a nop afterwards. */
816 {
817 int syscall_length;
818 gdb_byte *insn;
819
820 insn = i386_skip_prefixes (buf, len);
821 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
822 insn[syscall_length] = NOP_OPCODE;
823 }
824
825 write_memory (to, buf, len);
826
827 if (debug_displaced)
828 {
829 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
830 paddress (gdbarch, from), paddress (gdbarch, to));
831 displaced_step_dump_bytes (gdb_stdlog, buf, len);
832 }
833
834 return closure;
835 }
836
837 /* Fix up the state of registers and memory after having single-stepped
838 a displaced instruction. */
839
840 void
841 i386_displaced_step_fixup (struct gdbarch *gdbarch,
842 struct displaced_step_closure *closure_,
843 CORE_ADDR from, CORE_ADDR to,
844 struct regcache *regs)
845 {
846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
847
848 /* The offset we applied to the instruction's address.
849 This could well be negative (when viewed as a signed 32-bit
850 value), but ULONGEST won't reflect that, so take care when
851 applying it. */
852 ULONGEST insn_offset = to - from;
853
854 i386_displaced_step_closure *closure
855 = (i386_displaced_step_closure *) closure_;
856 gdb_byte *insn = closure->buf.data ();
857 /* The start of the insn, needed in case we see some prefixes. */
858 gdb_byte *insn_start = insn;
859
860 if (debug_displaced)
861 fprintf_unfiltered (gdb_stdlog,
862 "displaced: fixup (%s, %s), "
863 "insn = 0x%02x 0x%02x ...\n",
864 paddress (gdbarch, from), paddress (gdbarch, to),
865 insn[0], insn[1]);
866
867 /* The list of issues to contend with here is taken from
868 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
869 Yay for Free Software! */
870
871 /* Relocate the %eip, if necessary. */
872
873 /* The instruction recognizers we use assume any leading prefixes
874 have been skipped. */
875 {
876 /* This is the size of the buffer in closure. */
877 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
878 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
879 /* If there are too many prefixes, just ignore the insn.
880 It will fault when run. */
881 if (opcode != NULL)
882 insn = opcode;
883 }
884
885 /* Except in the case of absolute or indirect jump or call
886 instructions, or a return instruction, the new eip is relative to
887 the displaced instruction; make it relative. Well, signal
888 handler returns don't need relocation either, but we use the
889 value of %eip to recognize those; see below. */
890 if (! i386_absolute_jmp_p (insn)
891 && ! i386_absolute_call_p (insn)
892 && ! i386_ret_p (insn))
893 {
894 ULONGEST orig_eip;
895 int insn_len;
896
897 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
898
899 /* A signal trampoline system call changes the %eip, resuming
900 execution of the main program after the signal handler has
901 returned. That makes them like 'return' instructions; we
902 shouldn't relocate %eip.
903
904 But most system calls don't, and we do need to relocate %eip.
905
906 Our heuristic for distinguishing these cases: if stepping
907 over the system call instruction left control directly after
908 the instruction, the we relocate --- control almost certainly
909 doesn't belong in the displaced copy. Otherwise, we assume
910 the instruction has put control where it belongs, and leave
911 it unrelocated. Goodness help us if there are PC-relative
912 system calls. */
913 if (i386_syscall_p (insn, &insn_len)
914 && orig_eip != to + (insn - insn_start) + insn_len
915 /* GDB can get control back after the insn after the syscall.
916 Presumably this is a kernel bug.
917 i386_displaced_step_copy_insn ensures its a nop,
918 we add one to the length for it. */
919 && orig_eip != to + (insn - insn_start) + insn_len + 1)
920 {
921 if (debug_displaced)
922 fprintf_unfiltered (gdb_stdlog,
923 "displaced: syscall changed %%eip; "
924 "not relocating\n");
925 }
926 else
927 {
928 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
929
930 /* If we just stepped over a breakpoint insn, we don't backup
931 the pc on purpose; this is to match behaviour without
932 stepping. */
933
934 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
935
936 if (debug_displaced)
937 fprintf_unfiltered (gdb_stdlog,
938 "displaced: "
939 "relocated %%eip from %s to %s\n",
940 paddress (gdbarch, orig_eip),
941 paddress (gdbarch, eip));
942 }
943 }
944
945 /* If the instruction was PUSHFL, then the TF bit will be set in the
946 pushed value, and should be cleared. We'll leave this for later,
947 since GDB already messes up the TF flag when stepping over a
948 pushfl. */
949
950 /* If the instruction was a call, the return address now atop the
951 stack is the address following the copied instruction. We need
952 to make it the address following the original instruction. */
953 if (i386_call_p (insn))
954 {
955 ULONGEST esp;
956 ULONGEST retaddr;
957 const ULONGEST retaddr_len = 4;
958
959 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
960 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
961 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
962 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
963
964 if (debug_displaced)
965 fprintf_unfiltered (gdb_stdlog,
966 "displaced: relocated return addr at %s to %s\n",
967 paddress (gdbarch, esp),
968 paddress (gdbarch, retaddr));
969 }
970 }
971
972 static void
973 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
974 {
975 target_write_memory (*to, buf, len);
976 *to += len;
977 }
978
979 static void
980 i386_relocate_instruction (struct gdbarch *gdbarch,
981 CORE_ADDR *to, CORE_ADDR oldloc)
982 {
983 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
984 gdb_byte buf[I386_MAX_INSN_LEN];
985 int offset = 0, rel32, newrel;
986 int insn_length;
987 gdb_byte *insn = buf;
988
989 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
990
991 insn_length = gdb_buffered_insn_length (gdbarch, insn,
992 I386_MAX_INSN_LEN, oldloc);
993
994 /* Get past the prefixes. */
995 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
996
997 /* Adjust calls with 32-bit relative addresses as push/jump, with
998 the address pushed being the location where the original call in
999 the user program would return to. */
1000 if (insn[0] == 0xe8)
1001 {
1002 gdb_byte push_buf[16];
1003 unsigned int ret_addr;
1004
1005 /* Where "ret" in the original code will return to. */
1006 ret_addr = oldloc + insn_length;
1007 push_buf[0] = 0x68; /* pushq $... */
1008 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1009 /* Push the push. */
1010 append_insns (to, 5, push_buf);
1011
1012 /* Convert the relative call to a relative jump. */
1013 insn[0] = 0xe9;
1014
1015 /* Adjust the destination offset. */
1016 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1017 newrel = (oldloc - *to) + rel32;
1018 store_signed_integer (insn + 1, 4, byte_order, newrel);
1019
1020 if (debug_displaced)
1021 fprintf_unfiltered (gdb_stdlog,
1022 "Adjusted insn rel32=%s at %s to"
1023 " rel32=%s at %s\n",
1024 hex_string (rel32), paddress (gdbarch, oldloc),
1025 hex_string (newrel), paddress (gdbarch, *to));
1026
1027 /* Write the adjusted jump into its displaced location. */
1028 append_insns (to, 5, insn);
1029 return;
1030 }
1031
1032 /* Adjust jumps with 32-bit relative addresses. Calls are already
1033 handled above. */
1034 if (insn[0] == 0xe9)
1035 offset = 1;
1036 /* Adjust conditional jumps. */
1037 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1038 offset = 2;
1039
1040 if (offset)
1041 {
1042 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1043 newrel = (oldloc - *to) + rel32;
1044 store_signed_integer (insn + offset, 4, byte_order, newrel);
1045 if (debug_displaced)
1046 fprintf_unfiltered (gdb_stdlog,
1047 "Adjusted insn rel32=%s at %s to"
1048 " rel32=%s at %s\n",
1049 hex_string (rel32), paddress (gdbarch, oldloc),
1050 hex_string (newrel), paddress (gdbarch, *to));
1051 }
1052
1053 /* Write the adjusted instructions into their displaced
1054 location. */
1055 append_insns (to, insn_length, buf);
1056 }
1057
1058 \f
1059 #ifdef I386_REGNO_TO_SYMMETRY
1060 #error "The Sequent Symmetry is no longer supported."
1061 #endif
1062
1063 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1064 and %esp "belong" to the calling function. Therefore these
1065 registers should be saved if they're going to be modified. */
1066
1067 /* The maximum number of saved registers. This should include all
1068 registers mentioned above, and %eip. */
1069 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1070
1071 struct i386_frame_cache
1072 {
1073 /* Base address. */
1074 CORE_ADDR base;
1075 int base_p;
1076 LONGEST sp_offset;
1077 CORE_ADDR pc;
1078
1079 /* Saved registers. */
1080 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1081 CORE_ADDR saved_sp;
1082 int saved_sp_reg;
1083 int pc_in_eax;
1084
1085 /* Stack space reserved for local variables. */
1086 long locals;
1087 };
1088
1089 /* Allocate and initialize a frame cache. */
1090
1091 static struct i386_frame_cache *
1092 i386_alloc_frame_cache (void)
1093 {
1094 struct i386_frame_cache *cache;
1095 int i;
1096
1097 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1098
1099 /* Base address. */
1100 cache->base_p = 0;
1101 cache->base = 0;
1102 cache->sp_offset = -4;
1103 cache->pc = 0;
1104
1105 /* Saved registers. We initialize these to -1 since zero is a valid
1106 offset (that's where %ebp is supposed to be stored). */
1107 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1108 cache->saved_regs[i] = -1;
1109 cache->saved_sp = 0;
1110 cache->saved_sp_reg = -1;
1111 cache->pc_in_eax = 0;
1112
1113 /* Frameless until proven otherwise. */
1114 cache->locals = -1;
1115
1116 return cache;
1117 }
1118
1119 /* If the instruction at PC is a jump, return the address of its
1120 target. Otherwise, return PC. */
1121
1122 static CORE_ADDR
1123 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1124 {
1125 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1126 gdb_byte op;
1127 long delta = 0;
1128 int data16 = 0;
1129
1130 if (target_read_code (pc, &op, 1))
1131 return pc;
1132
1133 if (op == 0x66)
1134 {
1135 data16 = 1;
1136
1137 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1138 }
1139
1140 switch (op)
1141 {
1142 case 0xe9:
1143 /* Relative jump: if data16 == 0, disp32, else disp16. */
1144 if (data16)
1145 {
1146 delta = read_memory_integer (pc + 2, 2, byte_order);
1147
1148 /* Include the size of the jmp instruction (including the
1149 0x66 prefix). */
1150 delta += 4;
1151 }
1152 else
1153 {
1154 delta = read_memory_integer (pc + 1, 4, byte_order);
1155
1156 /* Include the size of the jmp instruction. */
1157 delta += 5;
1158 }
1159 break;
1160 case 0xeb:
1161 /* Relative jump, disp8 (ignore data16). */
1162 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1163
1164 delta += data16 + 2;
1165 break;
1166 }
1167
1168 return pc + delta;
1169 }
1170
1171 /* Check whether PC points at a prologue for a function returning a
1172 structure or union. If so, it updates CACHE and returns the
1173 address of the first instruction after the code sequence that
1174 removes the "hidden" argument from the stack or CURRENT_PC,
1175 whichever is smaller. Otherwise, return PC. */
1176
1177 static CORE_ADDR
1178 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1179 struct i386_frame_cache *cache)
1180 {
1181 /* Functions that return a structure or union start with:
1182
1183 popl %eax 0x58
1184 xchgl %eax, (%esp) 0x87 0x04 0x24
1185 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1186
1187 (the System V compiler puts out the second `xchg' instruction,
1188 and the assembler doesn't try to optimize it, so the 'sib' form
1189 gets generated). This sequence is used to get the address of the
1190 return buffer for a function that returns a structure. */
1191 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1192 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1193 gdb_byte buf[4];
1194 gdb_byte op;
1195
1196 if (current_pc <= pc)
1197 return pc;
1198
1199 if (target_read_code (pc, &op, 1))
1200 return pc;
1201
1202 if (op != 0x58) /* popl %eax */
1203 return pc;
1204
1205 if (target_read_code (pc + 1, buf, 4))
1206 return pc;
1207
1208 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1209 return pc;
1210
1211 if (current_pc == pc)
1212 {
1213 cache->sp_offset += 4;
1214 return current_pc;
1215 }
1216
1217 if (current_pc == pc + 1)
1218 {
1219 cache->pc_in_eax = 1;
1220 return current_pc;
1221 }
1222
1223 if (buf[1] == proto1[1])
1224 return pc + 4;
1225 else
1226 return pc + 5;
1227 }
1228
1229 static CORE_ADDR
1230 i386_skip_probe (CORE_ADDR pc)
1231 {
1232 /* A function may start with
1233
1234 pushl constant
1235 call _probe
1236 addl $4, %esp
1237
1238 followed by
1239
1240 pushl %ebp
1241
1242 etc. */
1243 gdb_byte buf[8];
1244 gdb_byte op;
1245
1246 if (target_read_code (pc, &op, 1))
1247 return pc;
1248
1249 if (op == 0x68 || op == 0x6a)
1250 {
1251 int delta;
1252
1253 /* Skip past the `pushl' instruction; it has either a one-byte or a
1254 four-byte operand, depending on the opcode. */
1255 if (op == 0x68)
1256 delta = 5;
1257 else
1258 delta = 2;
1259
1260 /* Read the following 8 bytes, which should be `call _probe' (6
1261 bytes) followed by `addl $4,%esp' (2 bytes). */
1262 read_memory (pc + delta, buf, sizeof (buf));
1263 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1264 pc += delta + sizeof (buf);
1265 }
1266
1267 return pc;
1268 }
1269
1270 /* GCC 4.1 and later, can put code in the prologue to realign the
1271 stack pointer. Check whether PC points to such code, and update
1272 CACHE accordingly. Return the first instruction after the code
1273 sequence or CURRENT_PC, whichever is smaller. If we don't
1274 recognize the code, return PC. */
1275
1276 static CORE_ADDR
1277 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1278 struct i386_frame_cache *cache)
1279 {
1280 /* There are 2 code sequences to re-align stack before the frame
1281 gets set up:
1282
1283 1. Use a caller-saved saved register:
1284
1285 leal 4(%esp), %reg
1286 andl $-XXX, %esp
1287 pushl -4(%reg)
1288
1289 2. Use a callee-saved saved register:
1290
1291 pushl %reg
1292 leal 8(%esp), %reg
1293 andl $-XXX, %esp
1294 pushl -4(%reg)
1295
1296 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1297
1298 0x83 0xe4 0xf0 andl $-16, %esp
1299 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1300 */
1301
1302 gdb_byte buf[14];
1303 int reg;
1304 int offset, offset_and;
1305 static int regnums[8] = {
1306 I386_EAX_REGNUM, /* %eax */
1307 I386_ECX_REGNUM, /* %ecx */
1308 I386_EDX_REGNUM, /* %edx */
1309 I386_EBX_REGNUM, /* %ebx */
1310 I386_ESP_REGNUM, /* %esp */
1311 I386_EBP_REGNUM, /* %ebp */
1312 I386_ESI_REGNUM, /* %esi */
1313 I386_EDI_REGNUM /* %edi */
1314 };
1315
1316 if (target_read_code (pc, buf, sizeof buf))
1317 return pc;
1318
1319 /* Check caller-saved saved register. The first instruction has
1320 to be "leal 4(%esp), %reg". */
1321 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1322 {
1323 /* MOD must be binary 10 and R/M must be binary 100. */
1324 if ((buf[1] & 0xc7) != 0x44)
1325 return pc;
1326
1327 /* REG has register number. */
1328 reg = (buf[1] >> 3) & 7;
1329 offset = 4;
1330 }
1331 else
1332 {
1333 /* Check callee-saved saved register. The first instruction
1334 has to be "pushl %reg". */
1335 if ((buf[0] & 0xf8) != 0x50)
1336 return pc;
1337
1338 /* Get register. */
1339 reg = buf[0] & 0x7;
1340
1341 /* The next instruction has to be "leal 8(%esp), %reg". */
1342 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1343 return pc;
1344
1345 /* MOD must be binary 10 and R/M must be binary 100. */
1346 if ((buf[2] & 0xc7) != 0x44)
1347 return pc;
1348
1349 /* REG has register number. Registers in pushl and leal have to
1350 be the same. */
1351 if (reg != ((buf[2] >> 3) & 7))
1352 return pc;
1353
1354 offset = 5;
1355 }
1356
1357 /* Rigister can't be %esp nor %ebp. */
1358 if (reg == 4 || reg == 5)
1359 return pc;
1360
1361 /* The next instruction has to be "andl $-XXX, %esp". */
1362 if (buf[offset + 1] != 0xe4
1363 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1364 return pc;
1365
1366 offset_and = offset;
1367 offset += buf[offset] == 0x81 ? 6 : 3;
1368
1369 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1370 0xfc. REG must be binary 110 and MOD must be binary 01. */
1371 if (buf[offset] != 0xff
1372 || buf[offset + 2] != 0xfc
1373 || (buf[offset + 1] & 0xf8) != 0x70)
1374 return pc;
1375
1376 /* R/M has register. Registers in leal and pushl have to be the
1377 same. */
1378 if (reg != (buf[offset + 1] & 7))
1379 return pc;
1380
1381 if (current_pc > pc + offset_and)
1382 cache->saved_sp_reg = regnums[reg];
1383
1384 return std::min (pc + offset + 3, current_pc);
1385 }
1386
1387 /* Maximum instruction length we need to handle. */
1388 #define I386_MAX_MATCHED_INSN_LEN 6
1389
1390 /* Instruction description. */
1391 struct i386_insn
1392 {
1393 size_t len;
1394 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1395 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1396 };
1397
1398 /* Return whether instruction at PC matches PATTERN. */
1399
1400 static int
1401 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1402 {
1403 gdb_byte op;
1404
1405 if (target_read_code (pc, &op, 1))
1406 return 0;
1407
1408 if ((op & pattern.mask[0]) == pattern.insn[0])
1409 {
1410 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1411 int insn_matched = 1;
1412 size_t i;
1413
1414 gdb_assert (pattern.len > 1);
1415 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1416
1417 if (target_read_code (pc + 1, buf, pattern.len - 1))
1418 return 0;
1419
1420 for (i = 1; i < pattern.len; i++)
1421 {
1422 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1423 insn_matched = 0;
1424 }
1425 return insn_matched;
1426 }
1427 return 0;
1428 }
1429
1430 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1431 the first instruction description that matches. Otherwise, return
1432 NULL. */
1433
1434 static struct i386_insn *
1435 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1436 {
1437 struct i386_insn *pattern;
1438
1439 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1440 {
1441 if (i386_match_pattern (pc, *pattern))
1442 return pattern;
1443 }
1444
1445 return NULL;
1446 }
1447
1448 /* Return whether PC points inside a sequence of instructions that
1449 matches INSN_PATTERNS. */
1450
1451 static int
1452 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1453 {
1454 CORE_ADDR current_pc;
1455 int ix, i;
1456 struct i386_insn *insn;
1457
1458 insn = i386_match_insn (pc, insn_patterns);
1459 if (insn == NULL)
1460 return 0;
1461
1462 current_pc = pc;
1463 ix = insn - insn_patterns;
1464 for (i = ix - 1; i >= 0; i--)
1465 {
1466 current_pc -= insn_patterns[i].len;
1467
1468 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1469 return 0;
1470 }
1471
1472 current_pc = pc + insn->len;
1473 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1474 {
1475 if (!i386_match_pattern (current_pc, *insn))
1476 return 0;
1477
1478 current_pc += insn->len;
1479 }
1480
1481 return 1;
1482 }
1483
1484 /* Some special instructions that might be migrated by GCC into the
1485 part of the prologue that sets up the new stack frame. Because the
1486 stack frame hasn't been setup yet, no registers have been saved
1487 yet, and only the scratch registers %eax, %ecx and %edx can be
1488 touched. */
1489
1490 struct i386_insn i386_frame_setup_skip_insns[] =
1491 {
1492 /* Check for `movb imm8, r' and `movl imm32, r'.
1493
1494 ??? Should we handle 16-bit operand-sizes here? */
1495
1496 /* `movb imm8, %al' and `movb imm8, %ah' */
1497 /* `movb imm8, %cl' and `movb imm8, %ch' */
1498 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1499 /* `movb imm8, %dl' and `movb imm8, %dh' */
1500 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1501 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1502 { 5, { 0xb8 }, { 0xfe } },
1503 /* `movl imm32, %edx' */
1504 { 5, { 0xba }, { 0xff } },
1505
1506 /* Check for `mov imm32, r32'. Note that there is an alternative
1507 encoding for `mov m32, %eax'.
1508
1509 ??? Should we handle SIB addressing here?
1510 ??? Should we handle 16-bit operand-sizes here? */
1511
1512 /* `movl m32, %eax' */
1513 { 5, { 0xa1 }, { 0xff } },
1514 /* `movl m32, %eax' and `mov; m32, %ecx' */
1515 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1516 /* `movl m32, %edx' */
1517 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1518
1519 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1520 Because of the symmetry, there are actually two ways to encode
1521 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1522 opcode bytes 0x31 and 0x33 for `xorl'. */
1523
1524 /* `subl %eax, %eax' */
1525 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1526 /* `subl %ecx, %ecx' */
1527 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1528 /* `subl %edx, %edx' */
1529 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1530 /* `xorl %eax, %eax' */
1531 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1532 /* `xorl %ecx, %ecx' */
1533 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1534 /* `xorl %edx, %edx' */
1535 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1536 { 0 }
1537 };
1538
1539
1540 /* Check whether PC points to a no-op instruction. */
1541 static CORE_ADDR
1542 i386_skip_noop (CORE_ADDR pc)
1543 {
1544 gdb_byte op;
1545 int check = 1;
1546
1547 if (target_read_code (pc, &op, 1))
1548 return pc;
1549
1550 while (check)
1551 {
1552 check = 0;
1553 /* Ignore `nop' instruction. */
1554 if (op == 0x90)
1555 {
1556 pc += 1;
1557 if (target_read_code (pc, &op, 1))
1558 return pc;
1559 check = 1;
1560 }
1561 /* Ignore no-op instruction `mov %edi, %edi'.
1562 Microsoft system dlls often start with
1563 a `mov %edi,%edi' instruction.
1564 The 5 bytes before the function start are
1565 filled with `nop' instructions.
1566 This pattern can be used for hot-patching:
1567 The `mov %edi, %edi' instruction can be replaced by a
1568 near jump to the location of the 5 `nop' instructions
1569 which can be replaced by a 32-bit jump to anywhere
1570 in the 32-bit address space. */
1571
1572 else if (op == 0x8b)
1573 {
1574 if (target_read_code (pc + 1, &op, 1))
1575 return pc;
1576
1577 if (op == 0xff)
1578 {
1579 pc += 2;
1580 if (target_read_code (pc, &op, 1))
1581 return pc;
1582
1583 check = 1;
1584 }
1585 }
1586 }
1587 return pc;
1588 }
1589
1590 /* Check whether PC points at a code that sets up a new stack frame.
1591 If so, it updates CACHE and returns the address of the first
1592 instruction after the sequence that sets up the frame or LIMIT,
1593 whichever is smaller. If we don't recognize the code, return PC. */
1594
1595 static CORE_ADDR
1596 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1597 CORE_ADDR pc, CORE_ADDR limit,
1598 struct i386_frame_cache *cache)
1599 {
1600 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1601 struct i386_insn *insn;
1602 gdb_byte op;
1603 int skip = 0;
1604
1605 if (limit <= pc)
1606 return limit;
1607
1608 if (target_read_code (pc, &op, 1))
1609 return pc;
1610
1611 if (op == 0x55) /* pushl %ebp */
1612 {
1613 /* Take into account that we've executed the `pushl %ebp' that
1614 starts this instruction sequence. */
1615 cache->saved_regs[I386_EBP_REGNUM] = 0;
1616 cache->sp_offset += 4;
1617 pc++;
1618
1619 /* If that's all, return now. */
1620 if (limit <= pc)
1621 return limit;
1622
1623 /* Check for some special instructions that might be migrated by
1624 GCC into the prologue and skip them. At this point in the
1625 prologue, code should only touch the scratch registers %eax,
1626 %ecx and %edx, so while the number of possibilities is sheer,
1627 it is limited.
1628
1629 Make sure we only skip these instructions if we later see the
1630 `movl %esp, %ebp' that actually sets up the frame. */
1631 while (pc + skip < limit)
1632 {
1633 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1634 if (insn == NULL)
1635 break;
1636
1637 skip += insn->len;
1638 }
1639
1640 /* If that's all, return now. */
1641 if (limit <= pc + skip)
1642 return limit;
1643
1644 if (target_read_code (pc + skip, &op, 1))
1645 return pc + skip;
1646
1647 /* The i386 prologue looks like
1648
1649 push %ebp
1650 mov %esp,%ebp
1651 sub $0x10,%esp
1652
1653 and a different prologue can be generated for atom.
1654
1655 push %ebp
1656 lea (%esp),%ebp
1657 lea -0x10(%esp),%esp
1658
1659 We handle both of them here. */
1660
1661 switch (op)
1662 {
1663 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1664 case 0x8b:
1665 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1666 != 0xec)
1667 return pc;
1668 pc += (skip + 2);
1669 break;
1670 case 0x89:
1671 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1672 != 0xe5)
1673 return pc;
1674 pc += (skip + 2);
1675 break;
1676 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1677 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1678 != 0x242c)
1679 return pc;
1680 pc += (skip + 3);
1681 break;
1682 default:
1683 return pc;
1684 }
1685
1686 /* OK, we actually have a frame. We just don't know how large
1687 it is yet. Set its size to zero. We'll adjust it if
1688 necessary. We also now commit to skipping the special
1689 instructions mentioned before. */
1690 cache->locals = 0;
1691
1692 /* If that's all, return now. */
1693 if (limit <= pc)
1694 return limit;
1695
1696 /* Check for stack adjustment
1697
1698 subl $XXX, %esp
1699 or
1700 lea -XXX(%esp),%esp
1701
1702 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1703 reg, so we don't have to worry about a data16 prefix. */
1704 if (target_read_code (pc, &op, 1))
1705 return pc;
1706 if (op == 0x83)
1707 {
1708 /* `subl' with 8-bit immediate. */
1709 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1710 /* Some instruction starting with 0x83 other than `subl'. */
1711 return pc;
1712
1713 /* `subl' with signed 8-bit immediate (though it wouldn't
1714 make sense to be negative). */
1715 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1716 return pc + 3;
1717 }
1718 else if (op == 0x81)
1719 {
1720 /* Maybe it is `subl' with a 32-bit immediate. */
1721 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1722 /* Some instruction starting with 0x81 other than `subl'. */
1723 return pc;
1724
1725 /* It is `subl' with a 32-bit immediate. */
1726 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1727 return pc + 6;
1728 }
1729 else if (op == 0x8d)
1730 {
1731 /* The ModR/M byte is 0x64. */
1732 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1733 return pc;
1734 /* 'lea' with 8-bit displacement. */
1735 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1736 return pc + 4;
1737 }
1738 else
1739 {
1740 /* Some instruction other than `subl' nor 'lea'. */
1741 return pc;
1742 }
1743 }
1744 else if (op == 0xc8) /* enter */
1745 {
1746 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1747 return pc + 4;
1748 }
1749
1750 return pc;
1751 }
1752
1753 /* Check whether PC points at code that saves registers on the stack.
1754 If so, it updates CACHE and returns the address of the first
1755 instruction after the register saves or CURRENT_PC, whichever is
1756 smaller. Otherwise, return PC. */
1757
1758 static CORE_ADDR
1759 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1760 struct i386_frame_cache *cache)
1761 {
1762 CORE_ADDR offset = 0;
1763 gdb_byte op;
1764 int i;
1765
1766 if (cache->locals > 0)
1767 offset -= cache->locals;
1768 for (i = 0; i < 8 && pc < current_pc; i++)
1769 {
1770 if (target_read_code (pc, &op, 1))
1771 return pc;
1772 if (op < 0x50 || op > 0x57)
1773 break;
1774
1775 offset -= 4;
1776 cache->saved_regs[op - 0x50] = offset;
1777 cache->sp_offset += 4;
1778 pc++;
1779 }
1780
1781 return pc;
1782 }
1783
1784 /* Do a full analysis of the prologue at PC and update CACHE
1785 accordingly. Bail out early if CURRENT_PC is reached. Return the
1786 address where the analysis stopped.
1787
1788 We handle these cases:
1789
1790 The startup sequence can be at the start of the function, or the
1791 function can start with a branch to startup code at the end.
1792
1793 %ebp can be set up with either the 'enter' instruction, or "pushl
1794 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1795 once used in the System V compiler).
1796
1797 Local space is allocated just below the saved %ebp by either the
1798 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1799 16-bit unsigned argument for space to allocate, and the 'addl'
1800 instruction could have either a signed byte, or 32-bit immediate.
1801
1802 Next, the registers used by this function are pushed. With the
1803 System V compiler they will always be in the order: %edi, %esi,
1804 %ebx (and sometimes a harmless bug causes it to also save but not
1805 restore %eax); however, the code below is willing to see the pushes
1806 in any order, and will handle up to 8 of them.
1807
1808 If the setup sequence is at the end of the function, then the next
1809 instruction will be a branch back to the start. */
1810
1811 static CORE_ADDR
1812 i386_analyze_prologue (struct gdbarch *gdbarch,
1813 CORE_ADDR pc, CORE_ADDR current_pc,
1814 struct i386_frame_cache *cache)
1815 {
1816 pc = i386_skip_noop (pc);
1817 pc = i386_follow_jump (gdbarch, pc);
1818 pc = i386_analyze_struct_return (pc, current_pc, cache);
1819 pc = i386_skip_probe (pc);
1820 pc = i386_analyze_stack_align (pc, current_pc, cache);
1821 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1822 return i386_analyze_register_saves (pc, current_pc, cache);
1823 }
1824
1825 /* Return PC of first real instruction. */
1826
1827 static CORE_ADDR
1828 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1829 {
1830 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1831
1832 static gdb_byte pic_pat[6] =
1833 {
1834 0xe8, 0, 0, 0, 0, /* call 0x0 */
1835 0x5b, /* popl %ebx */
1836 };
1837 struct i386_frame_cache cache;
1838 CORE_ADDR pc;
1839 gdb_byte op;
1840 int i;
1841 CORE_ADDR func_addr;
1842
1843 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1844 {
1845 CORE_ADDR post_prologue_pc
1846 = skip_prologue_using_sal (gdbarch, func_addr);
1847 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1848
1849 /* Clang always emits a line note before the prologue and another
1850 one after. We trust clang to emit usable line notes. */
1851 if (post_prologue_pc
1852 && (cust != NULL
1853 && COMPUNIT_PRODUCER (cust) != NULL
1854 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1855 return std::max (start_pc, post_prologue_pc);
1856 }
1857
1858 cache.locals = -1;
1859 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1860 if (cache.locals < 0)
1861 return start_pc;
1862
1863 /* Found valid frame setup. */
1864
1865 /* The native cc on SVR4 in -K PIC mode inserts the following code
1866 to get the address of the global offset table (GOT) into register
1867 %ebx:
1868
1869 call 0x0
1870 popl %ebx
1871 movl %ebx,x(%ebp) (optional)
1872 addl y,%ebx
1873
1874 This code is with the rest of the prologue (at the end of the
1875 function), so we have to skip it to get to the first real
1876 instruction at the start of the function. */
1877
1878 for (i = 0; i < 6; i++)
1879 {
1880 if (target_read_code (pc + i, &op, 1))
1881 return pc;
1882
1883 if (pic_pat[i] != op)
1884 break;
1885 }
1886 if (i == 6)
1887 {
1888 int delta = 6;
1889
1890 if (target_read_code (pc + delta, &op, 1))
1891 return pc;
1892
1893 if (op == 0x89) /* movl %ebx, x(%ebp) */
1894 {
1895 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1896
1897 if (op == 0x5d) /* One byte offset from %ebp. */
1898 delta += 3;
1899 else if (op == 0x9d) /* Four byte offset from %ebp. */
1900 delta += 6;
1901 else /* Unexpected instruction. */
1902 delta = 0;
1903
1904 if (target_read_code (pc + delta, &op, 1))
1905 return pc;
1906 }
1907
1908 /* addl y,%ebx */
1909 if (delta > 0 && op == 0x81
1910 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1911 == 0xc3)
1912 {
1913 pc += delta + 6;
1914 }
1915 }
1916
1917 /* If the function starts with a branch (to startup code at the end)
1918 the last instruction should bring us back to the first
1919 instruction of the real code. */
1920 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1921 pc = i386_follow_jump (gdbarch, pc);
1922
1923 return pc;
1924 }
1925
1926 /* Check that the code pointed to by PC corresponds to a call to
1927 __main, skip it if so. Return PC otherwise. */
1928
1929 CORE_ADDR
1930 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1931 {
1932 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1933 gdb_byte op;
1934
1935 if (target_read_code (pc, &op, 1))
1936 return pc;
1937 if (op == 0xe8)
1938 {
1939 gdb_byte buf[4];
1940
1941 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1942 {
1943 /* Make sure address is computed correctly as a 32bit
1944 integer even if CORE_ADDR is 64 bit wide. */
1945 struct bound_minimal_symbol s;
1946 CORE_ADDR call_dest;
1947
1948 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1949 call_dest = call_dest & 0xffffffffU;
1950 s = lookup_minimal_symbol_by_pc (call_dest);
1951 if (s.minsym != NULL
1952 && s.minsym->linkage_name () != NULL
1953 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1954 pc += 5;
1955 }
1956 }
1957
1958 return pc;
1959 }
1960
1961 /* This function is 64-bit safe. */
1962
1963 static CORE_ADDR
1964 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1965 {
1966 gdb_byte buf[8];
1967
1968 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1969 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1970 }
1971 \f
1972
1973 /* Normal frames. */
1974
1975 static void
1976 i386_frame_cache_1 (struct frame_info *this_frame,
1977 struct i386_frame_cache *cache)
1978 {
1979 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1980 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1981 gdb_byte buf[4];
1982 int i;
1983
1984 cache->pc = get_frame_func (this_frame);
1985
1986 /* In principle, for normal frames, %ebp holds the frame pointer,
1987 which holds the base address for the current stack frame.
1988 However, for functions that don't need it, the frame pointer is
1989 optional. For these "frameless" functions the frame pointer is
1990 actually the frame pointer of the calling frame. Signal
1991 trampolines are just a special case of a "frameless" function.
1992 They (usually) share their frame pointer with the frame that was
1993 in progress when the signal occurred. */
1994
1995 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1996 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1997 if (cache->base == 0)
1998 {
1999 cache->base_p = 1;
2000 return;
2001 }
2002
2003 /* For normal frames, %eip is stored at 4(%ebp). */
2004 cache->saved_regs[I386_EIP_REGNUM] = 4;
2005
2006 if (cache->pc != 0)
2007 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2008 cache);
2009
2010 if (cache->locals < 0)
2011 {
2012 /* We didn't find a valid frame, which means that CACHE->base
2013 currently holds the frame pointer for our calling frame. If
2014 we're at the start of a function, or somewhere half-way its
2015 prologue, the function's frame probably hasn't been fully
2016 setup yet. Try to reconstruct the base address for the stack
2017 frame by looking at the stack pointer. For truly "frameless"
2018 functions this might work too. */
2019
2020 if (cache->saved_sp_reg != -1)
2021 {
2022 /* Saved stack pointer has been saved. */
2023 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2024 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2025
2026 /* We're halfway aligning the stack. */
2027 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2028 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2029
2030 /* This will be added back below. */
2031 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2032 }
2033 else if (cache->pc != 0
2034 || target_read_code (get_frame_pc (this_frame), buf, 1))
2035 {
2036 /* We're in a known function, but did not find a frame
2037 setup. Assume that the function does not use %ebp.
2038 Alternatively, we may have jumped to an invalid
2039 address; in that case there is definitely no new
2040 frame in %ebp. */
2041 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2042 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2043 + cache->sp_offset;
2044 }
2045 else
2046 /* We're in an unknown function. We could not find the start
2047 of the function to analyze the prologue; our best option is
2048 to assume a typical frame layout with the caller's %ebp
2049 saved. */
2050 cache->saved_regs[I386_EBP_REGNUM] = 0;
2051 }
2052
2053 if (cache->saved_sp_reg != -1)
2054 {
2055 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2056 register may be unavailable). */
2057 if (cache->saved_sp == 0
2058 && deprecated_frame_register_read (this_frame,
2059 cache->saved_sp_reg, buf))
2060 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2061 }
2062 /* Now that we have the base address for the stack frame we can
2063 calculate the value of %esp in the calling frame. */
2064 else if (cache->saved_sp == 0)
2065 cache->saved_sp = cache->base + 8;
2066
2067 /* Adjust all the saved registers such that they contain addresses
2068 instead of offsets. */
2069 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2070 if (cache->saved_regs[i] != -1)
2071 cache->saved_regs[i] += cache->base;
2072
2073 cache->base_p = 1;
2074 }
2075
2076 static struct i386_frame_cache *
2077 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2078 {
2079 struct i386_frame_cache *cache;
2080
2081 if (*this_cache)
2082 return (struct i386_frame_cache *) *this_cache;
2083
2084 cache = i386_alloc_frame_cache ();
2085 *this_cache = cache;
2086
2087 try
2088 {
2089 i386_frame_cache_1 (this_frame, cache);
2090 }
2091 catch (const gdb_exception_error &ex)
2092 {
2093 if (ex.error != NOT_AVAILABLE_ERROR)
2094 throw;
2095 }
2096
2097 return cache;
2098 }
2099
2100 static void
2101 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2102 struct frame_id *this_id)
2103 {
2104 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2105
2106 if (!cache->base_p)
2107 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2108 else if (cache->base == 0)
2109 {
2110 /* This marks the outermost frame. */
2111 }
2112 else
2113 {
2114 /* See the end of i386_push_dummy_call. */
2115 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2116 }
2117 }
2118
2119 static enum unwind_stop_reason
2120 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2121 void **this_cache)
2122 {
2123 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2124
2125 if (!cache->base_p)
2126 return UNWIND_UNAVAILABLE;
2127
2128 /* This marks the outermost frame. */
2129 if (cache->base == 0)
2130 return UNWIND_OUTERMOST;
2131
2132 return UNWIND_NO_REASON;
2133 }
2134
2135 static struct value *
2136 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2137 int regnum)
2138 {
2139 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2140
2141 gdb_assert (regnum >= 0);
2142
2143 /* The System V ABI says that:
2144
2145 "The flags register contains the system flags, such as the
2146 direction flag and the carry flag. The direction flag must be
2147 set to the forward (that is, zero) direction before entry and
2148 upon exit from a function. Other user flags have no specified
2149 role in the standard calling sequence and are not preserved."
2150
2151 To guarantee the "upon exit" part of that statement we fake a
2152 saved flags register that has its direction flag cleared.
2153
2154 Note that GCC doesn't seem to rely on the fact that the direction
2155 flag is cleared after a function return; it always explicitly
2156 clears the flag before operations where it matters.
2157
2158 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2159 right thing to do. The way we fake the flags register here makes
2160 it impossible to change it. */
2161
2162 if (regnum == I386_EFLAGS_REGNUM)
2163 {
2164 ULONGEST val;
2165
2166 val = get_frame_register_unsigned (this_frame, regnum);
2167 val &= ~(1 << 10);
2168 return frame_unwind_got_constant (this_frame, regnum, val);
2169 }
2170
2171 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2172 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2173
2174 if (regnum == I386_ESP_REGNUM
2175 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2176 {
2177 /* If the SP has been saved, but we don't know where, then this
2178 means that SAVED_SP_REG register was found unavailable back
2179 when we built the cache. */
2180 if (cache->saved_sp == 0)
2181 return frame_unwind_got_register (this_frame, regnum,
2182 cache->saved_sp_reg);
2183 else
2184 return frame_unwind_got_constant (this_frame, regnum,
2185 cache->saved_sp);
2186 }
2187
2188 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2189 return frame_unwind_got_memory (this_frame, regnum,
2190 cache->saved_regs[regnum]);
2191
2192 return frame_unwind_got_register (this_frame, regnum, regnum);
2193 }
2194
2195 static const struct frame_unwind i386_frame_unwind =
2196 {
2197 NORMAL_FRAME,
2198 i386_frame_unwind_stop_reason,
2199 i386_frame_this_id,
2200 i386_frame_prev_register,
2201 NULL,
2202 default_frame_sniffer
2203 };
2204
2205 /* Normal frames, but in a function epilogue. */
2206
2207 /* Implement the stack_frame_destroyed_p gdbarch method.
2208
2209 The epilogue is defined here as the 'ret' instruction, which will
2210 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2211 the function's stack frame. */
2212
2213 static int
2214 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2215 {
2216 gdb_byte insn;
2217 struct compunit_symtab *cust;
2218
2219 cust = find_pc_compunit_symtab (pc);
2220 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2221 return 0;
2222
2223 if (target_read_memory (pc, &insn, 1))
2224 return 0; /* Can't read memory at pc. */
2225
2226 if (insn != 0xc3) /* 'ret' instruction. */
2227 return 0;
2228
2229 return 1;
2230 }
2231
2232 static int
2233 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2234 struct frame_info *this_frame,
2235 void **this_prologue_cache)
2236 {
2237 if (frame_relative_level (this_frame) == 0)
2238 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2239 get_frame_pc (this_frame));
2240 else
2241 return 0;
2242 }
2243
2244 static struct i386_frame_cache *
2245 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2246 {
2247 struct i386_frame_cache *cache;
2248 CORE_ADDR sp;
2249
2250 if (*this_cache)
2251 return (struct i386_frame_cache *) *this_cache;
2252
2253 cache = i386_alloc_frame_cache ();
2254 *this_cache = cache;
2255
2256 try
2257 {
2258 cache->pc = get_frame_func (this_frame);
2259
2260 /* At this point the stack looks as if we just entered the
2261 function, with the return address at the top of the
2262 stack. */
2263 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2264 cache->base = sp + cache->sp_offset;
2265 cache->saved_sp = cache->base + 8;
2266 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2267
2268 cache->base_p = 1;
2269 }
2270 catch (const gdb_exception_error &ex)
2271 {
2272 if (ex.error != NOT_AVAILABLE_ERROR)
2273 throw;
2274 }
2275
2276 return cache;
2277 }
2278
2279 static enum unwind_stop_reason
2280 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2281 void **this_cache)
2282 {
2283 struct i386_frame_cache *cache =
2284 i386_epilogue_frame_cache (this_frame, this_cache);
2285
2286 if (!cache->base_p)
2287 return UNWIND_UNAVAILABLE;
2288
2289 return UNWIND_NO_REASON;
2290 }
2291
2292 static void
2293 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2294 void **this_cache,
2295 struct frame_id *this_id)
2296 {
2297 struct i386_frame_cache *cache =
2298 i386_epilogue_frame_cache (this_frame, this_cache);
2299
2300 if (!cache->base_p)
2301 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2302 else
2303 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2304 }
2305
2306 static struct value *
2307 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2308 void **this_cache, int regnum)
2309 {
2310 /* Make sure we've initialized the cache. */
2311 i386_epilogue_frame_cache (this_frame, this_cache);
2312
2313 return i386_frame_prev_register (this_frame, this_cache, regnum);
2314 }
2315
2316 static const struct frame_unwind i386_epilogue_frame_unwind =
2317 {
2318 NORMAL_FRAME,
2319 i386_epilogue_frame_unwind_stop_reason,
2320 i386_epilogue_frame_this_id,
2321 i386_epilogue_frame_prev_register,
2322 NULL,
2323 i386_epilogue_frame_sniffer
2324 };
2325 \f
2326
2327 /* Stack-based trampolines. */
2328
2329 /* These trampolines are used on cross x86 targets, when taking the
2330 address of a nested function. When executing these trampolines,
2331 no stack frame is set up, so we are in a similar situation as in
2332 epilogues and i386_epilogue_frame_this_id can be re-used. */
2333
2334 /* Static chain passed in register. */
2335
2336 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2337 {
2338 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339 { 5, { 0xb8 }, { 0xfe } },
2340
2341 /* `jmp imm32' */
2342 { 5, { 0xe9 }, { 0xff } },
2343
2344 {0}
2345 };
2346
2347 /* Static chain passed on stack (when regparm=3). */
2348
2349 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2350 {
2351 /* `push imm32' */
2352 { 5, { 0x68 }, { 0xff } },
2353
2354 /* `jmp imm32' */
2355 { 5, { 0xe9 }, { 0xff } },
2356
2357 {0}
2358 };
2359
2360 /* Return whether PC points inside a stack trampoline. */
2361
2362 static int
2363 i386_in_stack_tramp_p (CORE_ADDR pc)
2364 {
2365 gdb_byte insn;
2366 const char *name;
2367
2368 /* A stack trampoline is detected if no name is associated
2369 to the current pc and if it points inside a trampoline
2370 sequence. */
2371
2372 find_pc_partial_function (pc, &name, NULL, NULL);
2373 if (name)
2374 return 0;
2375
2376 if (target_read_memory (pc, &insn, 1))
2377 return 0;
2378
2379 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2380 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2381 return 0;
2382
2383 return 1;
2384 }
2385
2386 static int
2387 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2388 struct frame_info *this_frame,
2389 void **this_cache)
2390 {
2391 if (frame_relative_level (this_frame) == 0)
2392 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2393 else
2394 return 0;
2395 }
2396
2397 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2398 {
2399 NORMAL_FRAME,
2400 i386_epilogue_frame_unwind_stop_reason,
2401 i386_epilogue_frame_this_id,
2402 i386_epilogue_frame_prev_register,
2403 NULL,
2404 i386_stack_tramp_frame_sniffer
2405 };
2406 \f
2407 /* Generate a bytecode expression to get the value of the saved PC. */
2408
2409 static void
2410 i386_gen_return_address (struct gdbarch *gdbarch,
2411 struct agent_expr *ax, struct axs_value *value,
2412 CORE_ADDR scope)
2413 {
2414 /* The following sequence assumes the traditional use of the base
2415 register. */
2416 ax_reg (ax, I386_EBP_REGNUM);
2417 ax_const_l (ax, 4);
2418 ax_simple (ax, aop_add);
2419 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2420 value->kind = axs_lvalue_memory;
2421 }
2422 \f
2423
2424 /* Signal trampolines. */
2425
2426 static struct i386_frame_cache *
2427 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2428 {
2429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2431 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2432 struct i386_frame_cache *cache;
2433 CORE_ADDR addr;
2434 gdb_byte buf[4];
2435
2436 if (*this_cache)
2437 return (struct i386_frame_cache *) *this_cache;
2438
2439 cache = i386_alloc_frame_cache ();
2440
2441 try
2442 {
2443 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2444 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2445
2446 addr = tdep->sigcontext_addr (this_frame);
2447 if (tdep->sc_reg_offset)
2448 {
2449 int i;
2450
2451 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2452
2453 for (i = 0; i < tdep->sc_num_regs; i++)
2454 if (tdep->sc_reg_offset[i] != -1)
2455 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2456 }
2457 else
2458 {
2459 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2460 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2461 }
2462
2463 cache->base_p = 1;
2464 }
2465 catch (const gdb_exception_error &ex)
2466 {
2467 if (ex.error != NOT_AVAILABLE_ERROR)
2468 throw;
2469 }
2470
2471 *this_cache = cache;
2472 return cache;
2473 }
2474
2475 static enum unwind_stop_reason
2476 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2477 void **this_cache)
2478 {
2479 struct i386_frame_cache *cache =
2480 i386_sigtramp_frame_cache (this_frame, this_cache);
2481
2482 if (!cache->base_p)
2483 return UNWIND_UNAVAILABLE;
2484
2485 return UNWIND_NO_REASON;
2486 }
2487
2488 static void
2489 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2490 struct frame_id *this_id)
2491 {
2492 struct i386_frame_cache *cache =
2493 i386_sigtramp_frame_cache (this_frame, this_cache);
2494
2495 if (!cache->base_p)
2496 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2497 else
2498 {
2499 /* See the end of i386_push_dummy_call. */
2500 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2501 }
2502 }
2503
2504 static struct value *
2505 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2506 void **this_cache, int regnum)
2507 {
2508 /* Make sure we've initialized the cache. */
2509 i386_sigtramp_frame_cache (this_frame, this_cache);
2510
2511 return i386_frame_prev_register (this_frame, this_cache, regnum);
2512 }
2513
2514 static int
2515 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2516 struct frame_info *this_frame,
2517 void **this_prologue_cache)
2518 {
2519 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2520
2521 /* We shouldn't even bother if we don't have a sigcontext_addr
2522 handler. */
2523 if (tdep->sigcontext_addr == NULL)
2524 return 0;
2525
2526 if (tdep->sigtramp_p != NULL)
2527 {
2528 if (tdep->sigtramp_p (this_frame))
2529 return 1;
2530 }
2531
2532 if (tdep->sigtramp_start != 0)
2533 {
2534 CORE_ADDR pc = get_frame_pc (this_frame);
2535
2536 gdb_assert (tdep->sigtramp_end != 0);
2537 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2538 return 1;
2539 }
2540
2541 return 0;
2542 }
2543
2544 static const struct frame_unwind i386_sigtramp_frame_unwind =
2545 {
2546 SIGTRAMP_FRAME,
2547 i386_sigtramp_frame_unwind_stop_reason,
2548 i386_sigtramp_frame_this_id,
2549 i386_sigtramp_frame_prev_register,
2550 NULL,
2551 i386_sigtramp_frame_sniffer
2552 };
2553 \f
2554
2555 static CORE_ADDR
2556 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2557 {
2558 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2559
2560 return cache->base;
2561 }
2562
2563 static const struct frame_base i386_frame_base =
2564 {
2565 &i386_frame_unwind,
2566 i386_frame_base_address,
2567 i386_frame_base_address,
2568 i386_frame_base_address
2569 };
2570
2571 static struct frame_id
2572 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2573 {
2574 CORE_ADDR fp;
2575
2576 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2577
2578 /* See the end of i386_push_dummy_call. */
2579 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2580 }
2581
2582 /* _Decimal128 function return values need 16-byte alignment on the
2583 stack. */
2584
2585 static CORE_ADDR
2586 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2587 {
2588 return sp & -(CORE_ADDR)16;
2589 }
2590 \f
2591
2592 /* Figure out where the longjmp will land. Slurp the args out of the
2593 stack. We expect the first arg to be a pointer to the jmp_buf
2594 structure from which we extract the address that we will land at.
2595 This address is copied into PC. This routine returns non-zero on
2596 success. */
2597
2598 static int
2599 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2600 {
2601 gdb_byte buf[4];
2602 CORE_ADDR sp, jb_addr;
2603 struct gdbarch *gdbarch = get_frame_arch (frame);
2604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2605 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2606
2607 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2608 longjmp will land. */
2609 if (jb_pc_offset == -1)
2610 return 0;
2611
2612 get_frame_register (frame, I386_ESP_REGNUM, buf);
2613 sp = extract_unsigned_integer (buf, 4, byte_order);
2614 if (target_read_memory (sp + 4, buf, 4))
2615 return 0;
2616
2617 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2618 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2619 return 0;
2620
2621 *pc = extract_unsigned_integer (buf, 4, byte_order);
2622 return 1;
2623 }
2624 \f
2625
2626 /* Check whether TYPE must be 16-byte-aligned when passed as a
2627 function argument. 16-byte vectors, _Decimal128 and structures or
2628 unions containing such types must be 16-byte-aligned; other
2629 arguments are 4-byte-aligned. */
2630
2631 static int
2632 i386_16_byte_align_p (struct type *type)
2633 {
2634 type = check_typedef (type);
2635 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2636 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2637 && TYPE_LENGTH (type) == 16)
2638 return 1;
2639 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2640 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2641 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2642 || TYPE_CODE (type) == TYPE_CODE_UNION)
2643 {
2644 int i;
2645 for (i = 0; i < TYPE_NFIELDS (type); i++)
2646 {
2647 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2648 return 1;
2649 }
2650 }
2651 return 0;
2652 }
2653
2654 /* Implementation for set_gdbarch_push_dummy_code. */
2655
2656 static CORE_ADDR
2657 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2658 struct value **args, int nargs, struct type *value_type,
2659 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2660 struct regcache *regcache)
2661 {
2662 /* Use 0xcc breakpoint - 1 byte. */
2663 *bp_addr = sp - 1;
2664 *real_pc = funaddr;
2665
2666 /* Keep the stack aligned. */
2667 return sp - 16;
2668 }
2669
2670 static CORE_ADDR
2671 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2672 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2673 struct value **args, CORE_ADDR sp,
2674 function_call_return_method return_method,
2675 CORE_ADDR struct_addr)
2676 {
2677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2678 gdb_byte buf[4];
2679 int i;
2680 int write_pass;
2681 int args_space = 0;
2682
2683 /* BND registers can be in arbitrary values at the moment of the
2684 inferior call. This can cause boundary violations that are not
2685 due to a real bug or even desired by the user. The best to be done
2686 is set the BND registers to allow access to the whole memory, INIT
2687 state, before pushing the inferior call. */
2688 i387_reset_bnd_regs (gdbarch, regcache);
2689
2690 /* Determine the total space required for arguments and struct
2691 return address in a first pass (allowing for 16-byte-aligned
2692 arguments), then push arguments in a second pass. */
2693
2694 for (write_pass = 0; write_pass < 2; write_pass++)
2695 {
2696 int args_space_used = 0;
2697
2698 if (return_method == return_method_struct)
2699 {
2700 if (write_pass)
2701 {
2702 /* Push value address. */
2703 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2704 write_memory (sp, buf, 4);
2705 args_space_used += 4;
2706 }
2707 else
2708 args_space += 4;
2709 }
2710
2711 for (i = 0; i < nargs; i++)
2712 {
2713 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2714
2715 if (write_pass)
2716 {
2717 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2718 args_space_used = align_up (args_space_used, 16);
2719
2720 write_memory (sp + args_space_used,
2721 value_contents_all (args[i]), len);
2722 /* The System V ABI says that:
2723
2724 "An argument's size is increased, if necessary, to make it a
2725 multiple of [32-bit] words. This may require tail padding,
2726 depending on the size of the argument."
2727
2728 This makes sure the stack stays word-aligned. */
2729 args_space_used += align_up (len, 4);
2730 }
2731 else
2732 {
2733 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2734 args_space = align_up (args_space, 16);
2735 args_space += align_up (len, 4);
2736 }
2737 }
2738
2739 if (!write_pass)
2740 {
2741 sp -= args_space;
2742
2743 /* The original System V ABI only requires word alignment,
2744 but modern incarnations need 16-byte alignment in order
2745 to support SSE. Since wasting a few bytes here isn't
2746 harmful we unconditionally enforce 16-byte alignment. */
2747 sp &= ~0xf;
2748 }
2749 }
2750
2751 /* Store return address. */
2752 sp -= 4;
2753 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2754 write_memory (sp, buf, 4);
2755
2756 /* Finally, update the stack pointer... */
2757 store_unsigned_integer (buf, 4, byte_order, sp);
2758 regcache->cooked_write (I386_ESP_REGNUM, buf);
2759
2760 /* ...and fake a frame pointer. */
2761 regcache->cooked_write (I386_EBP_REGNUM, buf);
2762
2763 /* MarkK wrote: This "+ 8" is all over the place:
2764 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2765 i386_dummy_id). It's there, since all frame unwinders for
2766 a given target have to agree (within a certain margin) on the
2767 definition of the stack address of a frame. Otherwise frame id
2768 comparison might not work correctly. Since DWARF2/GCC uses the
2769 stack address *before* the function call as a frame's CFA. On
2770 the i386, when %ebp is used as a frame pointer, the offset
2771 between the contents %ebp and the CFA as defined by GCC. */
2772 return sp + 8;
2773 }
2774
2775 /* These registers are used for returning integers (and on some
2776 targets also for returning `struct' and `union' values when their
2777 size and alignment match an integer type). */
2778 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2779 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2780
2781 /* Read, for architecture GDBARCH, a function return value of TYPE
2782 from REGCACHE, and copy that into VALBUF. */
2783
2784 static void
2785 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2786 struct regcache *regcache, gdb_byte *valbuf)
2787 {
2788 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2789 int len = TYPE_LENGTH (type);
2790 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2791
2792 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2793 {
2794 if (tdep->st0_regnum < 0)
2795 {
2796 warning (_("Cannot find floating-point return value."));
2797 memset (valbuf, 0, len);
2798 return;
2799 }
2800
2801 /* Floating-point return values can be found in %st(0). Convert
2802 its contents to the desired type. This is probably not
2803 exactly how it would happen on the target itself, but it is
2804 the best we can do. */
2805 regcache->raw_read (I386_ST0_REGNUM, buf);
2806 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2807 }
2808 else
2809 {
2810 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2811 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2812
2813 if (len <= low_size)
2814 {
2815 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2816 memcpy (valbuf, buf, len);
2817 }
2818 else if (len <= (low_size + high_size))
2819 {
2820 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2821 memcpy (valbuf, buf, low_size);
2822 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2823 memcpy (valbuf + low_size, buf, len - low_size);
2824 }
2825 else
2826 internal_error (__FILE__, __LINE__,
2827 _("Cannot extract return value of %d bytes long."),
2828 len);
2829 }
2830 }
2831
2832 /* Write, for architecture GDBARCH, a function return value of TYPE
2833 from VALBUF into REGCACHE. */
2834
2835 static void
2836 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2837 struct regcache *regcache, const gdb_byte *valbuf)
2838 {
2839 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2840 int len = TYPE_LENGTH (type);
2841
2842 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2843 {
2844 ULONGEST fstat;
2845 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2846
2847 if (tdep->st0_regnum < 0)
2848 {
2849 warning (_("Cannot set floating-point return value."));
2850 return;
2851 }
2852
2853 /* Returning floating-point values is a bit tricky. Apart from
2854 storing the return value in %st(0), we have to simulate the
2855 state of the FPU at function return point. */
2856
2857 /* Convert the value found in VALBUF to the extended
2858 floating-point format used by the FPU. This is probably
2859 not exactly how it would happen on the target itself, but
2860 it is the best we can do. */
2861 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2862 regcache->raw_write (I386_ST0_REGNUM, buf);
2863
2864 /* Set the top of the floating-point register stack to 7. The
2865 actual value doesn't really matter, but 7 is what a normal
2866 function return would end up with if the program started out
2867 with a freshly initialized FPU. */
2868 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2869 fstat |= (7 << 11);
2870 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2871
2872 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2873 the floating-point register stack to 7, the appropriate value
2874 for the tag word is 0x3fff. */
2875 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2876 }
2877 else
2878 {
2879 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2880 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2881
2882 if (len <= low_size)
2883 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2884 else if (len <= (low_size + high_size))
2885 {
2886 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2887 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2888 valbuf + low_size);
2889 }
2890 else
2891 internal_error (__FILE__, __LINE__,
2892 _("Cannot store return value of %d bytes long."), len);
2893 }
2894 }
2895 \f
2896
2897 /* This is the variable that is set with "set struct-convention", and
2898 its legitimate values. */
2899 static const char default_struct_convention[] = "default";
2900 static const char pcc_struct_convention[] = "pcc";
2901 static const char reg_struct_convention[] = "reg";
2902 static const char *const valid_conventions[] =
2903 {
2904 default_struct_convention,
2905 pcc_struct_convention,
2906 reg_struct_convention,
2907 NULL
2908 };
2909 static const char *struct_convention = default_struct_convention;
2910
2911 /* Return non-zero if TYPE, which is assumed to be a structure,
2912 a union type, or an array type, should be returned in registers
2913 for architecture GDBARCH. */
2914
2915 static int
2916 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2917 {
2918 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2919 enum type_code code = TYPE_CODE (type);
2920 int len = TYPE_LENGTH (type);
2921
2922 gdb_assert (code == TYPE_CODE_STRUCT
2923 || code == TYPE_CODE_UNION
2924 || code == TYPE_CODE_ARRAY);
2925
2926 if (struct_convention == pcc_struct_convention
2927 || (struct_convention == default_struct_convention
2928 && tdep->struct_return == pcc_struct_return))
2929 return 0;
2930
2931 /* Structures consisting of a single `float', `double' or 'long
2932 double' member are returned in %st(0). */
2933 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2934 {
2935 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2936 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2937 return (len == 4 || len == 8 || len == 12);
2938 }
2939
2940 return (len == 1 || len == 2 || len == 4 || len == 8);
2941 }
2942
2943 /* Determine, for architecture GDBARCH, how a return value of TYPE
2944 should be returned. If it is supposed to be returned in registers,
2945 and READBUF is non-zero, read the appropriate value from REGCACHE,
2946 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2947 from WRITEBUF into REGCACHE. */
2948
2949 static enum return_value_convention
2950 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2951 struct type *type, struct regcache *regcache,
2952 gdb_byte *readbuf, const gdb_byte *writebuf)
2953 {
2954 enum type_code code = TYPE_CODE (type);
2955
2956 if (((code == TYPE_CODE_STRUCT
2957 || code == TYPE_CODE_UNION
2958 || code == TYPE_CODE_ARRAY)
2959 && !i386_reg_struct_return_p (gdbarch, type))
2960 /* Complex double and long double uses the struct return convention. */
2961 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2962 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2963 /* 128-bit decimal float uses the struct return convention. */
2964 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2965 {
2966 /* The System V ABI says that:
2967
2968 "A function that returns a structure or union also sets %eax
2969 to the value of the original address of the caller's area
2970 before it returns. Thus when the caller receives control
2971 again, the address of the returned object resides in register
2972 %eax and can be used to access the object."
2973
2974 So the ABI guarantees that we can always find the return
2975 value just after the function has returned. */
2976
2977 /* Note that the ABI doesn't mention functions returning arrays,
2978 which is something possible in certain languages such as Ada.
2979 In this case, the value is returned as if it was wrapped in
2980 a record, so the convention applied to records also applies
2981 to arrays. */
2982
2983 if (readbuf)
2984 {
2985 ULONGEST addr;
2986
2987 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2988 read_memory (addr, readbuf, TYPE_LENGTH (type));
2989 }
2990
2991 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2992 }
2993
2994 /* This special case is for structures consisting of a single
2995 `float', `double' or 'long double' member. These structures are
2996 returned in %st(0). For these structures, we call ourselves
2997 recursively, changing TYPE into the type of the first member of
2998 the structure. Since that should work for all structures that
2999 have only one member, we don't bother to check the member's type
3000 here. */
3001 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3002 {
3003 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3004 return i386_return_value (gdbarch, function, type, regcache,
3005 readbuf, writebuf);
3006 }
3007
3008 if (readbuf)
3009 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3010 if (writebuf)
3011 i386_store_return_value (gdbarch, type, regcache, writebuf);
3012
3013 return RETURN_VALUE_REGISTER_CONVENTION;
3014 }
3015 \f
3016
3017 struct type *
3018 i387_ext_type (struct gdbarch *gdbarch)
3019 {
3020 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3021
3022 if (!tdep->i387_ext_type)
3023 {
3024 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3025 gdb_assert (tdep->i387_ext_type != NULL);
3026 }
3027
3028 return tdep->i387_ext_type;
3029 }
3030
3031 /* Construct type for pseudo BND registers. We can't use
3032 tdesc_find_type since a complement of one value has to be used
3033 to describe the upper bound. */
3034
3035 static struct type *
3036 i386_bnd_type (struct gdbarch *gdbarch)
3037 {
3038 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3039
3040
3041 if (!tdep->i386_bnd_type)
3042 {
3043 struct type *t;
3044 const struct builtin_type *bt = builtin_type (gdbarch);
3045
3046 /* The type we're building is described bellow: */
3047 #if 0
3048 struct __bound128
3049 {
3050 void *lbound;
3051 void *ubound; /* One complement of raw ubound field. */
3052 };
3053 #endif
3054
3055 t = arch_composite_type (gdbarch,
3056 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3057
3058 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3059 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3060
3061 TYPE_NAME (t) = "builtin_type_bound128";
3062 tdep->i386_bnd_type = t;
3063 }
3064
3065 return tdep->i386_bnd_type;
3066 }
3067
3068 /* Construct vector type for pseudo ZMM registers. We can't use
3069 tdesc_find_type since ZMM isn't described in target description. */
3070
3071 static struct type *
3072 i386_zmm_type (struct gdbarch *gdbarch)
3073 {
3074 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3075
3076 if (!tdep->i386_zmm_type)
3077 {
3078 const struct builtin_type *bt = builtin_type (gdbarch);
3079
3080 /* The type we're building is this: */
3081 #if 0
3082 union __gdb_builtin_type_vec512i
3083 {
3084 int128_t uint128[4];
3085 int64_t v4_int64[8];
3086 int32_t v8_int32[16];
3087 int16_t v16_int16[32];
3088 int8_t v32_int8[64];
3089 double v4_double[8];
3090 float v8_float[16];
3091 };
3092 #endif
3093
3094 struct type *t;
3095
3096 t = arch_composite_type (gdbarch,
3097 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3098 append_composite_type_field (t, "v16_float",
3099 init_vector_type (bt->builtin_float, 16));
3100 append_composite_type_field (t, "v8_double",
3101 init_vector_type (bt->builtin_double, 8));
3102 append_composite_type_field (t, "v64_int8",
3103 init_vector_type (bt->builtin_int8, 64));
3104 append_composite_type_field (t, "v32_int16",
3105 init_vector_type (bt->builtin_int16, 32));
3106 append_composite_type_field (t, "v16_int32",
3107 init_vector_type (bt->builtin_int32, 16));
3108 append_composite_type_field (t, "v8_int64",
3109 init_vector_type (bt->builtin_int64, 8));
3110 append_composite_type_field (t, "v4_int128",
3111 init_vector_type (bt->builtin_int128, 4));
3112
3113 TYPE_VECTOR (t) = 1;
3114 TYPE_NAME (t) = "builtin_type_vec512i";
3115 tdep->i386_zmm_type = t;
3116 }
3117
3118 return tdep->i386_zmm_type;
3119 }
3120
3121 /* Construct vector type for pseudo YMM registers. We can't use
3122 tdesc_find_type since YMM isn't described in target description. */
3123
3124 static struct type *
3125 i386_ymm_type (struct gdbarch *gdbarch)
3126 {
3127 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3128
3129 if (!tdep->i386_ymm_type)
3130 {
3131 const struct builtin_type *bt = builtin_type (gdbarch);
3132
3133 /* The type we're building is this: */
3134 #if 0
3135 union __gdb_builtin_type_vec256i
3136 {
3137 int128_t uint128[2];
3138 int64_t v2_int64[4];
3139 int32_t v4_int32[8];
3140 int16_t v8_int16[16];
3141 int8_t v16_int8[32];
3142 double v2_double[4];
3143 float v4_float[8];
3144 };
3145 #endif
3146
3147 struct type *t;
3148
3149 t = arch_composite_type (gdbarch,
3150 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3151 append_composite_type_field (t, "v8_float",
3152 init_vector_type (bt->builtin_float, 8));
3153 append_composite_type_field (t, "v4_double",
3154 init_vector_type (bt->builtin_double, 4));
3155 append_composite_type_field (t, "v32_int8",
3156 init_vector_type (bt->builtin_int8, 32));
3157 append_composite_type_field (t, "v16_int16",
3158 init_vector_type (bt->builtin_int16, 16));
3159 append_composite_type_field (t, "v8_int32",
3160 init_vector_type (bt->builtin_int32, 8));
3161 append_composite_type_field (t, "v4_int64",
3162 init_vector_type (bt->builtin_int64, 4));
3163 append_composite_type_field (t, "v2_int128",
3164 init_vector_type (bt->builtin_int128, 2));
3165
3166 TYPE_VECTOR (t) = 1;
3167 TYPE_NAME (t) = "builtin_type_vec256i";
3168 tdep->i386_ymm_type = t;
3169 }
3170
3171 return tdep->i386_ymm_type;
3172 }
3173
3174 /* Construct vector type for MMX registers. */
3175 static struct type *
3176 i386_mmx_type (struct gdbarch *gdbarch)
3177 {
3178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3179
3180 if (!tdep->i386_mmx_type)
3181 {
3182 const struct builtin_type *bt = builtin_type (gdbarch);
3183
3184 /* The type we're building is this: */
3185 #if 0
3186 union __gdb_builtin_type_vec64i
3187 {
3188 int64_t uint64;
3189 int32_t v2_int32[2];
3190 int16_t v4_int16[4];
3191 int8_t v8_int8[8];
3192 };
3193 #endif
3194
3195 struct type *t;
3196
3197 t = arch_composite_type (gdbarch,
3198 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3199
3200 append_composite_type_field (t, "uint64", bt->builtin_int64);
3201 append_composite_type_field (t, "v2_int32",
3202 init_vector_type (bt->builtin_int32, 2));
3203 append_composite_type_field (t, "v4_int16",
3204 init_vector_type (bt->builtin_int16, 4));
3205 append_composite_type_field (t, "v8_int8",
3206 init_vector_type (bt->builtin_int8, 8));
3207
3208 TYPE_VECTOR (t) = 1;
3209 TYPE_NAME (t) = "builtin_type_vec64i";
3210 tdep->i386_mmx_type = t;
3211 }
3212
3213 return tdep->i386_mmx_type;
3214 }
3215
3216 /* Return the GDB type object for the "standard" data type of data in
3217 register REGNUM. */
3218
3219 struct type *
3220 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3221 {
3222 if (i386_bnd_regnum_p (gdbarch, regnum))
3223 return i386_bnd_type (gdbarch);
3224 if (i386_mmx_regnum_p (gdbarch, regnum))
3225 return i386_mmx_type (gdbarch);
3226 else if (i386_ymm_regnum_p (gdbarch, regnum))
3227 return i386_ymm_type (gdbarch);
3228 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3229 return i386_ymm_type (gdbarch);
3230 else if (i386_zmm_regnum_p (gdbarch, regnum))
3231 return i386_zmm_type (gdbarch);
3232 else
3233 {
3234 const struct builtin_type *bt = builtin_type (gdbarch);
3235 if (i386_byte_regnum_p (gdbarch, regnum))
3236 return bt->builtin_int8;
3237 else if (i386_word_regnum_p (gdbarch, regnum))
3238 return bt->builtin_int16;
3239 else if (i386_dword_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int32;
3241 else if (i386_k_regnum_p (gdbarch, regnum))
3242 return bt->builtin_int64;
3243 }
3244
3245 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3246 }
3247
3248 /* Map a cooked register onto a raw register or memory. For the i386,
3249 the MMX registers need to be mapped onto floating point registers. */
3250
3251 static int
3252 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3253 {
3254 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3255 int mmxreg, fpreg;
3256 ULONGEST fstat;
3257 int tos;
3258
3259 mmxreg = regnum - tdep->mm0_regnum;
3260 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3261 tos = (fstat >> 11) & 0x7;
3262 fpreg = (mmxreg + tos) % 8;
3263
3264 return (I387_ST0_REGNUM (tdep) + fpreg);
3265 }
3266
3267 /* A helper function for us by i386_pseudo_register_read_value and
3268 amd64_pseudo_register_read_value. It does all the work but reads
3269 the data into an already-allocated value. */
3270
3271 void
3272 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3273 readable_regcache *regcache,
3274 int regnum,
3275 struct value *result_value)
3276 {
3277 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3278 enum register_status status;
3279 gdb_byte *buf = value_contents_raw (result_value);
3280
3281 if (i386_mmx_regnum_p (gdbarch, regnum))
3282 {
3283 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3284
3285 /* Extract (always little endian). */
3286 status = regcache->raw_read (fpnum, raw_buf);
3287 if (status != REG_VALID)
3288 mark_value_bytes_unavailable (result_value, 0,
3289 TYPE_LENGTH (value_type (result_value)));
3290 else
3291 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3292 }
3293 else
3294 {
3295 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3296 if (i386_bnd_regnum_p (gdbarch, regnum))
3297 {
3298 regnum -= tdep->bnd0_regnum;
3299
3300 /* Extract (always little endian). Read lower 128bits. */
3301 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3302 raw_buf);
3303 if (status != REG_VALID)
3304 mark_value_bytes_unavailable (result_value, 0, 16);
3305 else
3306 {
3307 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3308 LONGEST upper, lower;
3309 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3310
3311 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3312 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3313 upper = ~upper;
3314
3315 memcpy (buf, &lower, size);
3316 memcpy (buf + size, &upper, size);
3317 }
3318 }
3319 else if (i386_k_regnum_p (gdbarch, regnum))
3320 {
3321 regnum -= tdep->k0_regnum;
3322
3323 /* Extract (always little endian). */
3324 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3325 if (status != REG_VALID)
3326 mark_value_bytes_unavailable (result_value, 0, 8);
3327 else
3328 memcpy (buf, raw_buf, 8);
3329 }
3330 else if (i386_zmm_regnum_p (gdbarch, regnum))
3331 {
3332 regnum -= tdep->zmm0_regnum;
3333
3334 if (regnum < num_lower_zmm_regs)
3335 {
3336 /* Extract (always little endian). Read lower 128bits. */
3337 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3338 raw_buf);
3339 if (status != REG_VALID)
3340 mark_value_bytes_unavailable (result_value, 0, 16);
3341 else
3342 memcpy (buf, raw_buf, 16);
3343
3344 /* Extract (always little endian). Read upper 128bits. */
3345 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3346 raw_buf);
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 16, 16);
3349 else
3350 memcpy (buf + 16, raw_buf, 16);
3351 }
3352 else
3353 {
3354 /* Extract (always little endian). Read lower 128bits. */
3355 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3356 - num_lower_zmm_regs,
3357 raw_buf);
3358 if (status != REG_VALID)
3359 mark_value_bytes_unavailable (result_value, 0, 16);
3360 else
3361 memcpy (buf, raw_buf, 16);
3362
3363 /* Extract (always little endian). Read upper 128bits. */
3364 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3365 - num_lower_zmm_regs,
3366 raw_buf);
3367 if (status != REG_VALID)
3368 mark_value_bytes_unavailable (result_value, 16, 16);
3369 else
3370 memcpy (buf + 16, raw_buf, 16);
3371 }
3372
3373 /* Read upper 256bits. */
3374 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3375 raw_buf);
3376 if (status != REG_VALID)
3377 mark_value_bytes_unavailable (result_value, 32, 32);
3378 else
3379 memcpy (buf + 32, raw_buf, 32);
3380 }
3381 else if (i386_ymm_regnum_p (gdbarch, regnum))
3382 {
3383 regnum -= tdep->ymm0_regnum;
3384
3385 /* Extract (always little endian). Read lower 128bits. */
3386 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3387 raw_buf);
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 0, 16);
3390 else
3391 memcpy (buf, raw_buf, 16);
3392 /* Read upper 128bits. */
3393 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3394 raw_buf);
3395 if (status != REG_VALID)
3396 mark_value_bytes_unavailable (result_value, 16, 32);
3397 else
3398 memcpy (buf + 16, raw_buf, 16);
3399 }
3400 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3401 {
3402 regnum -= tdep->ymm16_regnum;
3403 /* Extract (always little endian). Read lower 128bits. */
3404 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3405 raw_buf);
3406 if (status != REG_VALID)
3407 mark_value_bytes_unavailable (result_value, 0, 16);
3408 else
3409 memcpy (buf, raw_buf, 16);
3410 /* Read upper 128bits. */
3411 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3412 raw_buf);
3413 if (status != REG_VALID)
3414 mark_value_bytes_unavailable (result_value, 16, 16);
3415 else
3416 memcpy (buf + 16, raw_buf, 16);
3417 }
3418 else if (i386_word_regnum_p (gdbarch, regnum))
3419 {
3420 int gpnum = regnum - tdep->ax_regnum;
3421
3422 /* Extract (always little endian). */
3423 status = regcache->raw_read (gpnum, raw_buf);
3424 if (status != REG_VALID)
3425 mark_value_bytes_unavailable (result_value, 0,
3426 TYPE_LENGTH (value_type (result_value)));
3427 else
3428 memcpy (buf, raw_buf, 2);
3429 }
3430 else if (i386_byte_regnum_p (gdbarch, regnum))
3431 {
3432 int gpnum = regnum - tdep->al_regnum;
3433
3434 /* Extract (always little endian). We read both lower and
3435 upper registers. */
3436 status = regcache->raw_read (gpnum % 4, raw_buf);
3437 if (status != REG_VALID)
3438 mark_value_bytes_unavailable (result_value, 0,
3439 TYPE_LENGTH (value_type (result_value)));
3440 else if (gpnum >= 4)
3441 memcpy (buf, raw_buf + 1, 1);
3442 else
3443 memcpy (buf, raw_buf, 1);
3444 }
3445 else
3446 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3447 }
3448 }
3449
3450 static struct value *
3451 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3452 readable_regcache *regcache,
3453 int regnum)
3454 {
3455 struct value *result;
3456
3457 result = allocate_value (register_type (gdbarch, regnum));
3458 VALUE_LVAL (result) = lval_register;
3459 VALUE_REGNUM (result) = regnum;
3460
3461 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3462
3463 return result;
3464 }
3465
3466 void
3467 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3468 int regnum, const gdb_byte *buf)
3469 {
3470 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3471
3472 if (i386_mmx_regnum_p (gdbarch, regnum))
3473 {
3474 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3475
3476 /* Read ... */
3477 regcache->raw_read (fpnum, raw_buf);
3478 /* ... Modify ... (always little endian). */
3479 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3480 /* ... Write. */
3481 regcache->raw_write (fpnum, raw_buf);
3482 }
3483 else
3484 {
3485 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3486
3487 if (i386_bnd_regnum_p (gdbarch, regnum))
3488 {
3489 ULONGEST upper, lower;
3490 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3491 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3492
3493 /* New values from input value. */
3494 regnum -= tdep->bnd0_regnum;
3495 lower = extract_unsigned_integer (buf, size, byte_order);
3496 upper = extract_unsigned_integer (buf + size, size, byte_order);
3497
3498 /* Fetching register buffer. */
3499 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3500 raw_buf);
3501
3502 upper = ~upper;
3503
3504 /* Set register bits. */
3505 memcpy (raw_buf, &lower, 8);
3506 memcpy (raw_buf + 8, &upper, 8);
3507
3508 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3509 }
3510 else if (i386_k_regnum_p (gdbarch, regnum))
3511 {
3512 regnum -= tdep->k0_regnum;
3513
3514 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3515 }
3516 else if (i386_zmm_regnum_p (gdbarch, regnum))
3517 {
3518 regnum -= tdep->zmm0_regnum;
3519
3520 if (regnum < num_lower_zmm_regs)
3521 {
3522 /* Write lower 128bits. */
3523 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3524 /* Write upper 128bits. */
3525 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3526 }
3527 else
3528 {
3529 /* Write lower 128bits. */
3530 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3531 - num_lower_zmm_regs, buf);
3532 /* Write upper 128bits. */
3533 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3534 - num_lower_zmm_regs, buf + 16);
3535 }
3536 /* Write upper 256bits. */
3537 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3538 }
3539 else if (i386_ymm_regnum_p (gdbarch, regnum))
3540 {
3541 regnum -= tdep->ymm0_regnum;
3542
3543 /* ... Write lower 128bits. */
3544 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3545 /* ... Write upper 128bits. */
3546 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3547 }
3548 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3549 {
3550 regnum -= tdep->ymm16_regnum;
3551
3552 /* ... Write lower 128bits. */
3553 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3554 /* ... Write upper 128bits. */
3555 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3556 }
3557 else if (i386_word_regnum_p (gdbarch, regnum))
3558 {
3559 int gpnum = regnum - tdep->ax_regnum;
3560
3561 /* Read ... */
3562 regcache->raw_read (gpnum, raw_buf);
3563 /* ... Modify ... (always little endian). */
3564 memcpy (raw_buf, buf, 2);
3565 /* ... Write. */
3566 regcache->raw_write (gpnum, raw_buf);
3567 }
3568 else if (i386_byte_regnum_p (gdbarch, regnum))
3569 {
3570 int gpnum = regnum - tdep->al_regnum;
3571
3572 /* Read ... We read both lower and upper registers. */
3573 regcache->raw_read (gpnum % 4, raw_buf);
3574 /* ... Modify ... (always little endian). */
3575 if (gpnum >= 4)
3576 memcpy (raw_buf + 1, buf, 1);
3577 else
3578 memcpy (raw_buf, buf, 1);
3579 /* ... Write. */
3580 regcache->raw_write (gpnum % 4, raw_buf);
3581 }
3582 else
3583 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3584 }
3585 }
3586
3587 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3588
3589 int
3590 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3591 struct agent_expr *ax, int regnum)
3592 {
3593 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3594
3595 if (i386_mmx_regnum_p (gdbarch, regnum))
3596 {
3597 /* MMX to FPU register mapping depends on current TOS. Let's just
3598 not care and collect everything... */
3599 int i;
3600
3601 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3602 for (i = 0; i < 8; i++)
3603 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3604 return 0;
3605 }
3606 else if (i386_bnd_regnum_p (gdbarch, regnum))
3607 {
3608 regnum -= tdep->bnd0_regnum;
3609 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3610 return 0;
3611 }
3612 else if (i386_k_regnum_p (gdbarch, regnum))
3613 {
3614 regnum -= tdep->k0_regnum;
3615 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3616 return 0;
3617 }
3618 else if (i386_zmm_regnum_p (gdbarch, regnum))
3619 {
3620 regnum -= tdep->zmm0_regnum;
3621 if (regnum < num_lower_zmm_regs)
3622 {
3623 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3624 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3625 }
3626 else
3627 {
3628 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3629 - num_lower_zmm_regs);
3630 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3631 - num_lower_zmm_regs);
3632 }
3633 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3634 return 0;
3635 }
3636 else if (i386_ymm_regnum_p (gdbarch, regnum))
3637 {
3638 regnum -= tdep->ymm0_regnum;
3639 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3640 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3641 return 0;
3642 }
3643 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3644 {
3645 regnum -= tdep->ymm16_regnum;
3646 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3647 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3648 return 0;
3649 }
3650 else if (i386_word_regnum_p (gdbarch, regnum))
3651 {
3652 int gpnum = regnum - tdep->ax_regnum;
3653
3654 ax_reg_mask (ax, gpnum);
3655 return 0;
3656 }
3657 else if (i386_byte_regnum_p (gdbarch, regnum))
3658 {
3659 int gpnum = regnum - tdep->al_regnum;
3660
3661 ax_reg_mask (ax, gpnum % 4);
3662 return 0;
3663 }
3664 else
3665 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3666 return 1;
3667 }
3668 \f
3669
3670 /* Return the register number of the register allocated by GCC after
3671 REGNUM, or -1 if there is no such register. */
3672
3673 static int
3674 i386_next_regnum (int regnum)
3675 {
3676 /* GCC allocates the registers in the order:
3677
3678 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3679
3680 Since storing a variable in %esp doesn't make any sense we return
3681 -1 for %ebp and for %esp itself. */
3682 static int next_regnum[] =
3683 {
3684 I386_EDX_REGNUM, /* Slot for %eax. */
3685 I386_EBX_REGNUM, /* Slot for %ecx. */
3686 I386_ECX_REGNUM, /* Slot for %edx. */
3687 I386_ESI_REGNUM, /* Slot for %ebx. */
3688 -1, -1, /* Slots for %esp and %ebp. */
3689 I386_EDI_REGNUM, /* Slot for %esi. */
3690 I386_EBP_REGNUM /* Slot for %edi. */
3691 };
3692
3693 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3694 return next_regnum[regnum];
3695
3696 return -1;
3697 }
3698
3699 /* Return nonzero if a value of type TYPE stored in register REGNUM
3700 needs any special handling. */
3701
3702 static int
3703 i386_convert_register_p (struct gdbarch *gdbarch,
3704 int regnum, struct type *type)
3705 {
3706 int len = TYPE_LENGTH (type);
3707
3708 /* Values may be spread across multiple registers. Most debugging
3709 formats aren't expressive enough to specify the locations, so
3710 some heuristics is involved. Right now we only handle types that
3711 have a length that is a multiple of the word size, since GCC
3712 doesn't seem to put any other types into registers. */
3713 if (len > 4 && len % 4 == 0)
3714 {
3715 int last_regnum = regnum;
3716
3717 while (len > 4)
3718 {
3719 last_regnum = i386_next_regnum (last_regnum);
3720 len -= 4;
3721 }
3722
3723 if (last_regnum != -1)
3724 return 1;
3725 }
3726
3727 return i387_convert_register_p (gdbarch, regnum, type);
3728 }
3729
3730 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3731 return its contents in TO. */
3732
3733 static int
3734 i386_register_to_value (struct frame_info *frame, int regnum,
3735 struct type *type, gdb_byte *to,
3736 int *optimizedp, int *unavailablep)
3737 {
3738 struct gdbarch *gdbarch = get_frame_arch (frame);
3739 int len = TYPE_LENGTH (type);
3740
3741 if (i386_fp_regnum_p (gdbarch, regnum))
3742 return i387_register_to_value (frame, regnum, type, to,
3743 optimizedp, unavailablep);
3744
3745 /* Read a value spread across multiple registers. */
3746
3747 gdb_assert (len > 4 && len % 4 == 0);
3748
3749 while (len > 0)
3750 {
3751 gdb_assert (regnum != -1);
3752 gdb_assert (register_size (gdbarch, regnum) == 4);
3753
3754 if (!get_frame_register_bytes (frame, regnum, 0,
3755 register_size (gdbarch, regnum),
3756 to, optimizedp, unavailablep))
3757 return 0;
3758
3759 regnum = i386_next_regnum (regnum);
3760 len -= 4;
3761 to += 4;
3762 }
3763
3764 *optimizedp = *unavailablep = 0;
3765 return 1;
3766 }
3767
3768 /* Write the contents FROM of a value of type TYPE into register
3769 REGNUM in frame FRAME. */
3770
3771 static void
3772 i386_value_to_register (struct frame_info *frame, int regnum,
3773 struct type *type, const gdb_byte *from)
3774 {
3775 int len = TYPE_LENGTH (type);
3776
3777 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3778 {
3779 i387_value_to_register (frame, regnum, type, from);
3780 return;
3781 }
3782
3783 /* Write a value spread across multiple registers. */
3784
3785 gdb_assert (len > 4 && len % 4 == 0);
3786
3787 while (len > 0)
3788 {
3789 gdb_assert (regnum != -1);
3790 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3791
3792 put_frame_register (frame, regnum, from);
3793 regnum = i386_next_regnum (regnum);
3794 len -= 4;
3795 from += 4;
3796 }
3797 }
3798 \f
3799 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3800 in the general-purpose register set REGSET to register cache
3801 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3802
3803 void
3804 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3805 int regnum, const void *gregs, size_t len)
3806 {
3807 struct gdbarch *gdbarch = regcache->arch ();
3808 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3809 const gdb_byte *regs = (const gdb_byte *) gregs;
3810 int i;
3811
3812 gdb_assert (len >= tdep->sizeof_gregset);
3813
3814 for (i = 0; i < tdep->gregset_num_regs; i++)
3815 {
3816 if ((regnum == i || regnum == -1)
3817 && tdep->gregset_reg_offset[i] != -1)
3818 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3819 }
3820 }
3821
3822 /* Collect register REGNUM from the register cache REGCACHE and store
3823 it in the buffer specified by GREGS and LEN as described by the
3824 general-purpose register set REGSET. If REGNUM is -1, do this for
3825 all registers in REGSET. */
3826
3827 static void
3828 i386_collect_gregset (const struct regset *regset,
3829 const struct regcache *regcache,
3830 int regnum, void *gregs, size_t len)
3831 {
3832 struct gdbarch *gdbarch = regcache->arch ();
3833 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3834 gdb_byte *regs = (gdb_byte *) gregs;
3835 int i;
3836
3837 gdb_assert (len >= tdep->sizeof_gregset);
3838
3839 for (i = 0; i < tdep->gregset_num_regs; i++)
3840 {
3841 if ((regnum == i || regnum == -1)
3842 && tdep->gregset_reg_offset[i] != -1)
3843 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3844 }
3845 }
3846
3847 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3848 in the floating-point register set REGSET to register cache
3849 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3850
3851 static void
3852 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3853 int regnum, const void *fpregs, size_t len)
3854 {
3855 struct gdbarch *gdbarch = regcache->arch ();
3856 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3857
3858 if (len == I387_SIZEOF_FXSAVE)
3859 {
3860 i387_supply_fxsave (regcache, regnum, fpregs);
3861 return;
3862 }
3863
3864 gdb_assert (len >= tdep->sizeof_fpregset);
3865 i387_supply_fsave (regcache, regnum, fpregs);
3866 }
3867
3868 /* Collect register REGNUM from the register cache REGCACHE and store
3869 it in the buffer specified by FPREGS and LEN as described by the
3870 floating-point register set REGSET. If REGNUM is -1, do this for
3871 all registers in REGSET. */
3872
3873 static void
3874 i386_collect_fpregset (const struct regset *regset,
3875 const struct regcache *regcache,
3876 int regnum, void *fpregs, size_t len)
3877 {
3878 struct gdbarch *gdbarch = regcache->arch ();
3879 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3880
3881 if (len == I387_SIZEOF_FXSAVE)
3882 {
3883 i387_collect_fxsave (regcache, regnum, fpregs);
3884 return;
3885 }
3886
3887 gdb_assert (len >= tdep->sizeof_fpregset);
3888 i387_collect_fsave (regcache, regnum, fpregs);
3889 }
3890
3891 /* Register set definitions. */
3892
3893 const struct regset i386_gregset =
3894 {
3895 NULL, i386_supply_gregset, i386_collect_gregset
3896 };
3897
3898 const struct regset i386_fpregset =
3899 {
3900 NULL, i386_supply_fpregset, i386_collect_fpregset
3901 };
3902
3903 /* Default iterator over core file register note sections. */
3904
3905 void
3906 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3907 iterate_over_regset_sections_cb *cb,
3908 void *cb_data,
3909 const struct regcache *regcache)
3910 {
3911 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3912
3913 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3914 cb_data);
3915 if (tdep->sizeof_fpregset)
3916 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3917 NULL, cb_data);
3918 }
3919 \f
3920
3921 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3922
3923 CORE_ADDR
3924 i386_pe_skip_trampoline_code (struct frame_info *frame,
3925 CORE_ADDR pc, char *name)
3926 {
3927 struct gdbarch *gdbarch = get_frame_arch (frame);
3928 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3929
3930 /* jmp *(dest) */
3931 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3932 {
3933 unsigned long indirect =
3934 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3935 struct minimal_symbol *indsym =
3936 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3937 const char *symname = indsym ? indsym->linkage_name () : 0;
3938
3939 if (symname)
3940 {
3941 if (startswith (symname, "__imp_")
3942 || startswith (symname, "_imp_"))
3943 return name ? 1 :
3944 read_memory_unsigned_integer (indirect, 4, byte_order);
3945 }
3946 }
3947 return 0; /* Not a trampoline. */
3948 }
3949 \f
3950
3951 /* Return whether the THIS_FRAME corresponds to a sigtramp
3952 routine. */
3953
3954 int
3955 i386_sigtramp_p (struct frame_info *this_frame)
3956 {
3957 CORE_ADDR pc = get_frame_pc (this_frame);
3958 const char *name;
3959
3960 find_pc_partial_function (pc, &name, NULL, NULL);
3961 return (name && strcmp ("_sigtramp", name) == 0);
3962 }
3963 \f
3964
3965 /* We have two flavours of disassembly. The machinery on this page
3966 deals with switching between those. */
3967
3968 static int
3969 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3970 {
3971 gdb_assert (disassembly_flavor == att_flavor
3972 || disassembly_flavor == intel_flavor);
3973
3974 info->disassembler_options = disassembly_flavor;
3975
3976 return default_print_insn (pc, info);
3977 }
3978 \f
3979
3980 /* There are a few i386 architecture variants that differ only
3981 slightly from the generic i386 target. For now, we don't give them
3982 their own source file, but include them here. As a consequence,
3983 they'll always be included. */
3984
3985 /* System V Release 4 (SVR4). */
3986
3987 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3988 routine. */
3989
3990 static int
3991 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3992 {
3993 CORE_ADDR pc = get_frame_pc (this_frame);
3994 const char *name;
3995
3996 /* The origin of these symbols is currently unknown. */
3997 find_pc_partial_function (pc, &name, NULL, NULL);
3998 return (name && (strcmp ("_sigreturn", name) == 0
3999 || strcmp ("sigvechandler", name) == 0));
4000 }
4001
4002 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4003 address of the associated sigcontext (ucontext) structure. */
4004
4005 static CORE_ADDR
4006 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4007 {
4008 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4009 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4010 gdb_byte buf[4];
4011 CORE_ADDR sp;
4012
4013 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4014 sp = extract_unsigned_integer (buf, 4, byte_order);
4015
4016 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4017 }
4018
4019 \f
4020
4021 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4022 gdbarch.h. */
4023
4024 int
4025 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4026 {
4027 return (*s == '$' /* Literal number. */
4028 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4029 || (*s == '(' && s[1] == '%') /* Register indirection. */
4030 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4031 }
4032
4033 /* Helper function for i386_stap_parse_special_token.
4034
4035 This function parses operands of the form `-8+3+1(%rbp)', which
4036 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4037
4038 Return true if the operand was parsed successfully, false
4039 otherwise. */
4040
4041 static bool
4042 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4043 struct stap_parse_info *p)
4044 {
4045 const char *s = p->arg;
4046
4047 if (isdigit (*s) || *s == '-' || *s == '+')
4048 {
4049 bool got_minus[3];
4050 int i;
4051 long displacements[3];
4052 const char *start;
4053 char *regname;
4054 int len;
4055 struct stoken str;
4056 char *endp;
4057
4058 got_minus[0] = false;
4059 if (*s == '+')
4060 ++s;
4061 else if (*s == '-')
4062 {
4063 ++s;
4064 got_minus[0] = true;
4065 }
4066
4067 if (!isdigit ((unsigned char) *s))
4068 return false;
4069
4070 displacements[0] = strtol (s, &endp, 10);
4071 s = endp;
4072
4073 if (*s != '+' && *s != '-')
4074 {
4075 /* We are not dealing with a triplet. */
4076 return false;
4077 }
4078
4079 got_minus[1] = false;
4080 if (*s == '+')
4081 ++s;
4082 else
4083 {
4084 ++s;
4085 got_minus[1] = true;
4086 }
4087
4088 if (!isdigit ((unsigned char) *s))
4089 return false;
4090
4091 displacements[1] = strtol (s, &endp, 10);
4092 s = endp;
4093
4094 if (*s != '+' && *s != '-')
4095 {
4096 /* We are not dealing with a triplet. */
4097 return false;
4098 }
4099
4100 got_minus[2] = false;
4101 if (*s == '+')
4102 ++s;
4103 else
4104 {
4105 ++s;
4106 got_minus[2] = true;
4107 }
4108
4109 if (!isdigit ((unsigned char) *s))
4110 return false;
4111
4112 displacements[2] = strtol (s, &endp, 10);
4113 s = endp;
4114
4115 if (*s != '(' || s[1] != '%')
4116 return false;
4117
4118 s += 2;
4119 start = s;
4120
4121 while (isalnum (*s))
4122 ++s;
4123
4124 if (*s++ != ')')
4125 return false;
4126
4127 len = s - start - 1;
4128 regname = (char *) alloca (len + 1);
4129
4130 strncpy (regname, start, len);
4131 regname[len] = '\0';
4132
4133 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4134 error (_("Invalid register name `%s' on expression `%s'."),
4135 regname, p->saved_arg);
4136
4137 for (i = 0; i < 3; i++)
4138 {
4139 write_exp_elt_opcode (&p->pstate, OP_LONG);
4140 write_exp_elt_type
4141 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4142 write_exp_elt_longcst (&p->pstate, displacements[i]);
4143 write_exp_elt_opcode (&p->pstate, OP_LONG);
4144 if (got_minus[i])
4145 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4146 }
4147
4148 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4149 str.ptr = regname;
4150 str.length = len;
4151 write_exp_string (&p->pstate, str);
4152 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4153
4154 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4155 write_exp_elt_type (&p->pstate,
4156 builtin_type (gdbarch)->builtin_data_ptr);
4157 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4158
4159 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4160 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4161 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4162
4163 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4164 write_exp_elt_type (&p->pstate,
4165 lookup_pointer_type (p->arg_type));
4166 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4167
4168 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4169
4170 p->arg = s;
4171
4172 return true;
4173 }
4174
4175 return false;
4176 }
4177
4178 /* Helper function for i386_stap_parse_special_token.
4179
4180 This function parses operands of the form `register base +
4181 (register index * size) + offset', as represented in
4182 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4183
4184 Return true if the operand was parsed successfully, false
4185 otherwise. */
4186
4187 static bool
4188 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4189 struct stap_parse_info *p)
4190 {
4191 const char *s = p->arg;
4192
4193 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4194 {
4195 bool offset_minus = false;
4196 long offset = 0;
4197 bool size_minus = false;
4198 long size = 0;
4199 const char *start;
4200 char *base;
4201 int len_base;
4202 char *index;
4203 int len_index;
4204 struct stoken base_token, index_token;
4205
4206 if (*s == '+')
4207 ++s;
4208 else if (*s == '-')
4209 {
4210 ++s;
4211 offset_minus = true;
4212 }
4213
4214 if (offset_minus && !isdigit (*s))
4215 return false;
4216
4217 if (isdigit (*s))
4218 {
4219 char *endp;
4220
4221 offset = strtol (s, &endp, 10);
4222 s = endp;
4223 }
4224
4225 if (*s != '(' || s[1] != '%')
4226 return false;
4227
4228 s += 2;
4229 start = s;
4230
4231 while (isalnum (*s))
4232 ++s;
4233
4234 if (*s != ',' || s[1] != '%')
4235 return false;
4236
4237 len_base = s - start;
4238 base = (char *) alloca (len_base + 1);
4239 strncpy (base, start, len_base);
4240 base[len_base] = '\0';
4241
4242 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4243 error (_("Invalid register name `%s' on expression `%s'."),
4244 base, p->saved_arg);
4245
4246 s += 2;
4247 start = s;
4248
4249 while (isalnum (*s))
4250 ++s;
4251
4252 len_index = s - start;
4253 index = (char *) alloca (len_index + 1);
4254 strncpy (index, start, len_index);
4255 index[len_index] = '\0';
4256
4257 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4258 error (_("Invalid register name `%s' on expression `%s'."),
4259 index, p->saved_arg);
4260
4261 if (*s != ',' && *s != ')')
4262 return false;
4263
4264 if (*s == ',')
4265 {
4266 char *endp;
4267
4268 ++s;
4269 if (*s == '+')
4270 ++s;
4271 else if (*s == '-')
4272 {
4273 ++s;
4274 size_minus = true;
4275 }
4276
4277 size = strtol (s, &endp, 10);
4278 s = endp;
4279
4280 if (*s != ')')
4281 return false;
4282 }
4283
4284 ++s;
4285
4286 if (offset)
4287 {
4288 write_exp_elt_opcode (&p->pstate, OP_LONG);
4289 write_exp_elt_type (&p->pstate,
4290 builtin_type (gdbarch)->builtin_long);
4291 write_exp_elt_longcst (&p->pstate, offset);
4292 write_exp_elt_opcode (&p->pstate, OP_LONG);
4293 if (offset_minus)
4294 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4295 }
4296
4297 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4298 base_token.ptr = base;
4299 base_token.length = len_base;
4300 write_exp_string (&p->pstate, base_token);
4301 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4302
4303 if (offset)
4304 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4305
4306 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4307 index_token.ptr = index;
4308 index_token.length = len_index;
4309 write_exp_string (&p->pstate, index_token);
4310 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4311
4312 if (size)
4313 {
4314 write_exp_elt_opcode (&p->pstate, OP_LONG);
4315 write_exp_elt_type (&p->pstate,
4316 builtin_type (gdbarch)->builtin_long);
4317 write_exp_elt_longcst (&p->pstate, size);
4318 write_exp_elt_opcode (&p->pstate, OP_LONG);
4319 if (size_minus)
4320 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4321 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4322 }
4323
4324 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4325
4326 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4327 write_exp_elt_type (&p->pstate,
4328 lookup_pointer_type (p->arg_type));
4329 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4330
4331 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4332
4333 p->arg = s;
4334
4335 return true;
4336 }
4337
4338 return false;
4339 }
4340
4341 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4342 gdbarch.h. */
4343
4344 int
4345 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4346 struct stap_parse_info *p)
4347 {
4348 /* In order to parse special tokens, we use a state-machine that go
4349 through every known token and try to get a match. */
4350 enum
4351 {
4352 TRIPLET,
4353 THREE_ARG_DISPLACEMENT,
4354 DONE
4355 };
4356 int current_state;
4357
4358 current_state = TRIPLET;
4359
4360 /* The special tokens to be parsed here are:
4361
4362 - `register base + (register index * size) + offset', as represented
4363 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4364
4365 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4366 `*(-8 + 3 - 1 + (void *) $eax)'. */
4367
4368 while (current_state != DONE)
4369 {
4370 switch (current_state)
4371 {
4372 case TRIPLET:
4373 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4374 return 1;
4375 break;
4376
4377 case THREE_ARG_DISPLACEMENT:
4378 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4379 return 1;
4380 break;
4381 }
4382
4383 /* Advancing to the next state. */
4384 ++current_state;
4385 }
4386
4387 return 0;
4388 }
4389
4390 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4391 gdbarch.h. */
4392
4393 static std::string
4394 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4395 const std::string &regname, int regnum)
4396 {
4397 static const std::unordered_set<std::string> reg_assoc
4398 = { "ax", "bx", "cx", "dx",
4399 "si", "di", "bp", "sp" };
4400
4401 /* If we are dealing with a register whose size is less than the size
4402 specified by the "[-]N@" prefix, and it is one of the registers that
4403 we know has an extended variant available, then use the extended
4404 version of the register instead. */
4405 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4406 && reg_assoc.find (regname) != reg_assoc.end ())
4407 return "e" + regname;
4408
4409 /* Otherwise, just use the requested register. */
4410 return regname;
4411 }
4412
4413 \f
4414
4415 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4416 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4417
4418 static const char *
4419 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4420 {
4421 return "(x86_64|i.86)";
4422 }
4423
4424 \f
4425
4426 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4427
4428 static bool
4429 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4430 {
4431 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4432 I386_EAX_REGNUM, I386_EIP_REGNUM);
4433 }
4434
4435 /* Generic ELF. */
4436
4437 void
4438 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4439 {
4440 static const char *const stap_integer_prefixes[] = { "$", NULL };
4441 static const char *const stap_register_prefixes[] = { "%", NULL };
4442 static const char *const stap_register_indirection_prefixes[] = { "(",
4443 NULL };
4444 static const char *const stap_register_indirection_suffixes[] = { ")",
4445 NULL };
4446
4447 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4448 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4449
4450 /* Registering SystemTap handlers. */
4451 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4452 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4453 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4454 stap_register_indirection_prefixes);
4455 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4456 stap_register_indirection_suffixes);
4457 set_gdbarch_stap_is_single_operand (gdbarch,
4458 i386_stap_is_single_operand);
4459 set_gdbarch_stap_parse_special_token (gdbarch,
4460 i386_stap_parse_special_token);
4461 set_gdbarch_stap_adjust_register (gdbarch,
4462 i386_stap_adjust_register);
4463
4464 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4465 i386_in_indirect_branch_thunk);
4466 }
4467
4468 /* System V Release 4 (SVR4). */
4469
4470 void
4471 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4472 {
4473 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4474
4475 /* System V Release 4 uses ELF. */
4476 i386_elf_init_abi (info, gdbarch);
4477
4478 /* System V Release 4 has shared libraries. */
4479 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4480
4481 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4482 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4483 tdep->sc_pc_offset = 36 + 14 * 4;
4484 tdep->sc_sp_offset = 36 + 17 * 4;
4485
4486 tdep->jb_pc_offset = 20;
4487 }
4488
4489 \f
4490
4491 /* i386 register groups. In addition to the normal groups, add "mmx"
4492 and "sse". */
4493
4494 static struct reggroup *i386_sse_reggroup;
4495 static struct reggroup *i386_mmx_reggroup;
4496
4497 static void
4498 i386_init_reggroups (void)
4499 {
4500 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4501 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4502 }
4503
4504 static void
4505 i386_add_reggroups (struct gdbarch *gdbarch)
4506 {
4507 reggroup_add (gdbarch, i386_sse_reggroup);
4508 reggroup_add (gdbarch, i386_mmx_reggroup);
4509 reggroup_add (gdbarch, general_reggroup);
4510 reggroup_add (gdbarch, float_reggroup);
4511 reggroup_add (gdbarch, all_reggroup);
4512 reggroup_add (gdbarch, save_reggroup);
4513 reggroup_add (gdbarch, restore_reggroup);
4514 reggroup_add (gdbarch, vector_reggroup);
4515 reggroup_add (gdbarch, system_reggroup);
4516 }
4517
4518 int
4519 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4520 struct reggroup *group)
4521 {
4522 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4523 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4524 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4525 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4526 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4527 avx512_p, avx_p, sse_p, pkru_regnum_p;
4528
4529 /* Don't include pseudo registers, except for MMX, in any register
4530 groups. */
4531 if (i386_byte_regnum_p (gdbarch, regnum))
4532 return 0;
4533
4534 if (i386_word_regnum_p (gdbarch, regnum))
4535 return 0;
4536
4537 if (i386_dword_regnum_p (gdbarch, regnum))
4538 return 0;
4539
4540 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4541 if (group == i386_mmx_reggroup)
4542 return mmx_regnum_p;
4543
4544 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4545 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4546 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4547 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4548 if (group == i386_sse_reggroup)
4549 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4550
4551 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4552 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4553 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4554
4555 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4556 == X86_XSTATE_AVX_AVX512_MASK);
4557 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4558 == X86_XSTATE_AVX_MASK) && !avx512_p;
4559 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4560 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4561
4562 if (group == vector_reggroup)
4563 return (mmx_regnum_p
4564 || (zmm_regnum_p && avx512_p)
4565 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4566 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4567 || mxcsr_regnum_p);
4568
4569 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4570 || i386_fpc_regnum_p (gdbarch, regnum));
4571 if (group == float_reggroup)
4572 return fp_regnum_p;
4573
4574 /* For "info reg all", don't include upper YMM registers nor XMM
4575 registers when AVX is supported. */
4576 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4577 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4578 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4579 if (group == all_reggroup
4580 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4581 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4582 || ymmh_regnum_p
4583 || ymmh_avx512_regnum_p
4584 || zmmh_regnum_p))
4585 return 0;
4586
4587 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4588 if (group == all_reggroup
4589 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4590 return bnd_regnum_p;
4591
4592 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4593 if (group == all_reggroup
4594 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4595 return 0;
4596
4597 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4598 if (group == all_reggroup
4599 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4600 return mpx_ctrl_regnum_p;
4601
4602 if (group == general_reggroup)
4603 return (!fp_regnum_p
4604 && !mmx_regnum_p
4605 && !mxcsr_regnum_p
4606 && !xmm_regnum_p
4607 && !xmm_avx512_regnum_p
4608 && !ymm_regnum_p
4609 && !ymmh_regnum_p
4610 && !ymm_avx512_regnum_p
4611 && !ymmh_avx512_regnum_p
4612 && !bndr_regnum_p
4613 && !bnd_regnum_p
4614 && !mpx_ctrl_regnum_p
4615 && !zmm_regnum_p
4616 && !zmmh_regnum_p
4617 && !pkru_regnum_p);
4618
4619 return default_register_reggroup_p (gdbarch, regnum, group);
4620 }
4621 \f
4622
4623 /* Get the ARGIth function argument for the current function. */
4624
4625 static CORE_ADDR
4626 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4627 struct type *type)
4628 {
4629 struct gdbarch *gdbarch = get_frame_arch (frame);
4630 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4631 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4632 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4633 }
4634
4635 #define PREFIX_REPZ 0x01
4636 #define PREFIX_REPNZ 0x02
4637 #define PREFIX_LOCK 0x04
4638 #define PREFIX_DATA 0x08
4639 #define PREFIX_ADDR 0x10
4640
4641 /* operand size */
4642 enum
4643 {
4644 OT_BYTE = 0,
4645 OT_WORD,
4646 OT_LONG,
4647 OT_QUAD,
4648 OT_DQUAD,
4649 };
4650
4651 /* i386 arith/logic operations */
4652 enum
4653 {
4654 OP_ADDL,
4655 OP_ORL,
4656 OP_ADCL,
4657 OP_SBBL,
4658 OP_ANDL,
4659 OP_SUBL,
4660 OP_XORL,
4661 OP_CMPL,
4662 };
4663
4664 struct i386_record_s
4665 {
4666 struct gdbarch *gdbarch;
4667 struct regcache *regcache;
4668 CORE_ADDR orig_addr;
4669 CORE_ADDR addr;
4670 int aflag;
4671 int dflag;
4672 int override;
4673 uint8_t modrm;
4674 uint8_t mod, reg, rm;
4675 int ot;
4676 uint8_t rex_x;
4677 uint8_t rex_b;
4678 int rip_offset;
4679 int popl_esp_hack;
4680 const int *regmap;
4681 };
4682
4683 /* Parse the "modrm" part of the memory address irp->addr points at.
4684 Returns -1 if something goes wrong, 0 otherwise. */
4685
4686 static int
4687 i386_record_modrm (struct i386_record_s *irp)
4688 {
4689 struct gdbarch *gdbarch = irp->gdbarch;
4690
4691 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4692 return -1;
4693
4694 irp->addr++;
4695 irp->mod = (irp->modrm >> 6) & 3;
4696 irp->reg = (irp->modrm >> 3) & 7;
4697 irp->rm = irp->modrm & 7;
4698
4699 return 0;
4700 }
4701
4702 /* Extract the memory address that the current instruction writes to,
4703 and return it in *ADDR. Return -1 if something goes wrong. */
4704
4705 static int
4706 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4707 {
4708 struct gdbarch *gdbarch = irp->gdbarch;
4709 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4710 gdb_byte buf[4];
4711 ULONGEST offset64;
4712
4713 *addr = 0;
4714 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4715 {
4716 /* 32/64 bits */
4717 int havesib = 0;
4718 uint8_t scale = 0;
4719 uint8_t byte;
4720 uint8_t index = 0;
4721 uint8_t base = irp->rm;
4722
4723 if (base == 4)
4724 {
4725 havesib = 1;
4726 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4727 return -1;
4728 irp->addr++;
4729 scale = (byte >> 6) & 3;
4730 index = ((byte >> 3) & 7) | irp->rex_x;
4731 base = (byte & 7);
4732 }
4733 base |= irp->rex_b;
4734
4735 switch (irp->mod)
4736 {
4737 case 0:
4738 if ((base & 7) == 5)
4739 {
4740 base = 0xff;
4741 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4742 return -1;
4743 irp->addr += 4;
4744 *addr = extract_signed_integer (buf, 4, byte_order);
4745 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4746 *addr += irp->addr + irp->rip_offset;
4747 }
4748 break;
4749 case 1:
4750 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4751 return -1;
4752 irp->addr++;
4753 *addr = (int8_t) buf[0];
4754 break;
4755 case 2:
4756 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4757 return -1;
4758 *addr = extract_signed_integer (buf, 4, byte_order);
4759 irp->addr += 4;
4760 break;
4761 }
4762
4763 offset64 = 0;
4764 if (base != 0xff)
4765 {
4766 if (base == 4 && irp->popl_esp_hack)
4767 *addr += irp->popl_esp_hack;
4768 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4769 &offset64);
4770 }
4771 if (irp->aflag == 2)
4772 {
4773 *addr += offset64;
4774 }
4775 else
4776 *addr = (uint32_t) (offset64 + *addr);
4777
4778 if (havesib && (index != 4 || scale != 0))
4779 {
4780 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4781 &offset64);
4782 if (irp->aflag == 2)
4783 *addr += offset64 << scale;
4784 else
4785 *addr = (uint32_t) (*addr + (offset64 << scale));
4786 }
4787
4788 if (!irp->aflag)
4789 {
4790 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4791 address from 32-bit to 64-bit. */
4792 *addr = (uint32_t) *addr;
4793 }
4794 }
4795 else
4796 {
4797 /* 16 bits */
4798 switch (irp->mod)
4799 {
4800 case 0:
4801 if (irp->rm == 6)
4802 {
4803 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4804 return -1;
4805 irp->addr += 2;
4806 *addr = extract_signed_integer (buf, 2, byte_order);
4807 irp->rm = 0;
4808 goto no_rm;
4809 }
4810 break;
4811 case 1:
4812 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4813 return -1;
4814 irp->addr++;
4815 *addr = (int8_t) buf[0];
4816 break;
4817 case 2:
4818 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4819 return -1;
4820 irp->addr += 2;
4821 *addr = extract_signed_integer (buf, 2, byte_order);
4822 break;
4823 }
4824
4825 switch (irp->rm)
4826 {
4827 case 0:
4828 regcache_raw_read_unsigned (irp->regcache,
4829 irp->regmap[X86_RECORD_REBX_REGNUM],
4830 &offset64);
4831 *addr = (uint32_t) (*addr + offset64);
4832 regcache_raw_read_unsigned (irp->regcache,
4833 irp->regmap[X86_RECORD_RESI_REGNUM],
4834 &offset64);
4835 *addr = (uint32_t) (*addr + offset64);
4836 break;
4837 case 1:
4838 regcache_raw_read_unsigned (irp->regcache,
4839 irp->regmap[X86_RECORD_REBX_REGNUM],
4840 &offset64);
4841 *addr = (uint32_t) (*addr + offset64);
4842 regcache_raw_read_unsigned (irp->regcache,
4843 irp->regmap[X86_RECORD_REDI_REGNUM],
4844 &offset64);
4845 *addr = (uint32_t) (*addr + offset64);
4846 break;
4847 case 2:
4848 regcache_raw_read_unsigned (irp->regcache,
4849 irp->regmap[X86_RECORD_REBP_REGNUM],
4850 &offset64);
4851 *addr = (uint32_t) (*addr + offset64);
4852 regcache_raw_read_unsigned (irp->regcache,
4853 irp->regmap[X86_RECORD_RESI_REGNUM],
4854 &offset64);
4855 *addr = (uint32_t) (*addr + offset64);
4856 break;
4857 case 3:
4858 regcache_raw_read_unsigned (irp->regcache,
4859 irp->regmap[X86_RECORD_REBP_REGNUM],
4860 &offset64);
4861 *addr = (uint32_t) (*addr + offset64);
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_REDI_REGNUM],
4864 &offset64);
4865 *addr = (uint32_t) (*addr + offset64);
4866 break;
4867 case 4:
4868 regcache_raw_read_unsigned (irp->regcache,
4869 irp->regmap[X86_RECORD_RESI_REGNUM],
4870 &offset64);
4871 *addr = (uint32_t) (*addr + offset64);
4872 break;
4873 case 5:
4874 regcache_raw_read_unsigned (irp->regcache,
4875 irp->regmap[X86_RECORD_REDI_REGNUM],
4876 &offset64);
4877 *addr = (uint32_t) (*addr + offset64);
4878 break;
4879 case 6:
4880 regcache_raw_read_unsigned (irp->regcache,
4881 irp->regmap[X86_RECORD_REBP_REGNUM],
4882 &offset64);
4883 *addr = (uint32_t) (*addr + offset64);
4884 break;
4885 case 7:
4886 regcache_raw_read_unsigned (irp->regcache,
4887 irp->regmap[X86_RECORD_REBX_REGNUM],
4888 &offset64);
4889 *addr = (uint32_t) (*addr + offset64);
4890 break;
4891 }
4892 *addr &= 0xffff;
4893 }
4894
4895 no_rm:
4896 return 0;
4897 }
4898
4899 /* Record the address and contents of the memory that will be changed
4900 by the current instruction. Return -1 if something goes wrong, 0
4901 otherwise. */
4902
4903 static int
4904 i386_record_lea_modrm (struct i386_record_s *irp)
4905 {
4906 struct gdbarch *gdbarch = irp->gdbarch;
4907 uint64_t addr;
4908
4909 if (irp->override >= 0)
4910 {
4911 if (record_full_memory_query)
4912 {
4913 if (yquery (_("\
4914 Process record ignores the memory change of instruction at address %s\n\
4915 because it can't get the value of the segment register.\n\
4916 Do you want to stop the program?"),
4917 paddress (gdbarch, irp->orig_addr)))
4918 return -1;
4919 }
4920
4921 return 0;
4922 }
4923
4924 if (i386_record_lea_modrm_addr (irp, &addr))
4925 return -1;
4926
4927 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4928 return -1;
4929
4930 return 0;
4931 }
4932
4933 /* Record the effects of a push operation. Return -1 if something
4934 goes wrong, 0 otherwise. */
4935
4936 static int
4937 i386_record_push (struct i386_record_s *irp, int size)
4938 {
4939 ULONGEST addr;
4940
4941 if (record_full_arch_list_add_reg (irp->regcache,
4942 irp->regmap[X86_RECORD_RESP_REGNUM]))
4943 return -1;
4944 regcache_raw_read_unsigned (irp->regcache,
4945 irp->regmap[X86_RECORD_RESP_REGNUM],
4946 &addr);
4947 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4948 return -1;
4949
4950 return 0;
4951 }
4952
4953
4954 /* Defines contents to record. */
4955 #define I386_SAVE_FPU_REGS 0xfffd
4956 #define I386_SAVE_FPU_ENV 0xfffe
4957 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4958
4959 /* Record the values of the floating point registers which will be
4960 changed by the current instruction. Returns -1 if something is
4961 wrong, 0 otherwise. */
4962
4963 static int i386_record_floats (struct gdbarch *gdbarch,
4964 struct i386_record_s *ir,
4965 uint32_t iregnum)
4966 {
4967 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4968 int i;
4969
4970 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4971 happen. Currently we store st0-st7 registers, but we need not store all
4972 registers all the time, in future we use ftag register and record only
4973 those who are not marked as an empty. */
4974
4975 if (I386_SAVE_FPU_REGS == iregnum)
4976 {
4977 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4978 {
4979 if (record_full_arch_list_add_reg (ir->regcache, i))
4980 return -1;
4981 }
4982 }
4983 else if (I386_SAVE_FPU_ENV == iregnum)
4984 {
4985 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4986 {
4987 if (record_full_arch_list_add_reg (ir->regcache, i))
4988 return -1;
4989 }
4990 }
4991 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4992 {
4993 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4994 {
4995 if (record_full_arch_list_add_reg (ir->regcache, i))
4996 return -1;
4997 }
4998 }
4999 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5000 (iregnum <= I387_FOP_REGNUM (tdep)))
5001 {
5002 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5003 return -1;
5004 }
5005 else
5006 {
5007 /* Parameter error. */
5008 return -1;
5009 }
5010 if(I386_SAVE_FPU_ENV != iregnum)
5011 {
5012 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5013 {
5014 if (record_full_arch_list_add_reg (ir->regcache, i))
5015 return -1;
5016 }
5017 }
5018 return 0;
5019 }
5020
5021 /* Parse the current instruction, and record the values of the
5022 registers and memory that will be changed by the current
5023 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5024
5025 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5026 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5027
5028 int
5029 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5030 CORE_ADDR input_addr)
5031 {
5032 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5033 int prefixes = 0;
5034 int regnum = 0;
5035 uint32_t opcode;
5036 uint8_t opcode8;
5037 ULONGEST addr;
5038 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5039 struct i386_record_s ir;
5040 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5041 uint8_t rex_w = -1;
5042 uint8_t rex_r = 0;
5043
5044 memset (&ir, 0, sizeof (struct i386_record_s));
5045 ir.regcache = regcache;
5046 ir.addr = input_addr;
5047 ir.orig_addr = input_addr;
5048 ir.aflag = 1;
5049 ir.dflag = 1;
5050 ir.override = -1;
5051 ir.popl_esp_hack = 0;
5052 ir.regmap = tdep->record_regmap;
5053 ir.gdbarch = gdbarch;
5054
5055 if (record_debug > 1)
5056 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5057 "addr = %s\n",
5058 paddress (gdbarch, ir.addr));
5059
5060 /* prefixes */
5061 while (1)
5062 {
5063 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5064 return -1;
5065 ir.addr++;
5066 switch (opcode8) /* Instruction prefixes */
5067 {
5068 case REPE_PREFIX_OPCODE:
5069 prefixes |= PREFIX_REPZ;
5070 break;
5071 case REPNE_PREFIX_OPCODE:
5072 prefixes |= PREFIX_REPNZ;
5073 break;
5074 case LOCK_PREFIX_OPCODE:
5075 prefixes |= PREFIX_LOCK;
5076 break;
5077 case CS_PREFIX_OPCODE:
5078 ir.override = X86_RECORD_CS_REGNUM;
5079 break;
5080 case SS_PREFIX_OPCODE:
5081 ir.override = X86_RECORD_SS_REGNUM;
5082 break;
5083 case DS_PREFIX_OPCODE:
5084 ir.override = X86_RECORD_DS_REGNUM;
5085 break;
5086 case ES_PREFIX_OPCODE:
5087 ir.override = X86_RECORD_ES_REGNUM;
5088 break;
5089 case FS_PREFIX_OPCODE:
5090 ir.override = X86_RECORD_FS_REGNUM;
5091 break;
5092 case GS_PREFIX_OPCODE:
5093 ir.override = X86_RECORD_GS_REGNUM;
5094 break;
5095 case DATA_PREFIX_OPCODE:
5096 prefixes |= PREFIX_DATA;
5097 break;
5098 case ADDR_PREFIX_OPCODE:
5099 prefixes |= PREFIX_ADDR;
5100 break;
5101 case 0x40: /* i386 inc %eax */
5102 case 0x41: /* i386 inc %ecx */
5103 case 0x42: /* i386 inc %edx */
5104 case 0x43: /* i386 inc %ebx */
5105 case 0x44: /* i386 inc %esp */
5106 case 0x45: /* i386 inc %ebp */
5107 case 0x46: /* i386 inc %esi */
5108 case 0x47: /* i386 inc %edi */
5109 case 0x48: /* i386 dec %eax */
5110 case 0x49: /* i386 dec %ecx */
5111 case 0x4a: /* i386 dec %edx */
5112 case 0x4b: /* i386 dec %ebx */
5113 case 0x4c: /* i386 dec %esp */
5114 case 0x4d: /* i386 dec %ebp */
5115 case 0x4e: /* i386 dec %esi */
5116 case 0x4f: /* i386 dec %edi */
5117 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5118 {
5119 /* REX */
5120 rex_w = (opcode8 >> 3) & 1;
5121 rex_r = (opcode8 & 0x4) << 1;
5122 ir.rex_x = (opcode8 & 0x2) << 2;
5123 ir.rex_b = (opcode8 & 0x1) << 3;
5124 }
5125 else /* 32 bit target */
5126 goto out_prefixes;
5127 break;
5128 default:
5129 goto out_prefixes;
5130 break;
5131 }
5132 }
5133 out_prefixes:
5134 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5135 {
5136 ir.dflag = 2;
5137 }
5138 else
5139 {
5140 if (prefixes & PREFIX_DATA)
5141 ir.dflag ^= 1;
5142 }
5143 if (prefixes & PREFIX_ADDR)
5144 ir.aflag ^= 1;
5145 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5146 ir.aflag = 2;
5147
5148 /* Now check op code. */
5149 opcode = (uint32_t) opcode8;
5150 reswitch:
5151 switch (opcode)
5152 {
5153 case 0x0f:
5154 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5155 return -1;
5156 ir.addr++;
5157 opcode = (uint32_t) opcode8 | 0x0f00;
5158 goto reswitch;
5159 break;
5160
5161 case 0x00: /* arith & logic */
5162 case 0x01:
5163 case 0x02:
5164 case 0x03:
5165 case 0x04:
5166 case 0x05:
5167 case 0x08:
5168 case 0x09:
5169 case 0x0a:
5170 case 0x0b:
5171 case 0x0c:
5172 case 0x0d:
5173 case 0x10:
5174 case 0x11:
5175 case 0x12:
5176 case 0x13:
5177 case 0x14:
5178 case 0x15:
5179 case 0x18:
5180 case 0x19:
5181 case 0x1a:
5182 case 0x1b:
5183 case 0x1c:
5184 case 0x1d:
5185 case 0x20:
5186 case 0x21:
5187 case 0x22:
5188 case 0x23:
5189 case 0x24:
5190 case 0x25:
5191 case 0x28:
5192 case 0x29:
5193 case 0x2a:
5194 case 0x2b:
5195 case 0x2c:
5196 case 0x2d:
5197 case 0x30:
5198 case 0x31:
5199 case 0x32:
5200 case 0x33:
5201 case 0x34:
5202 case 0x35:
5203 case 0x38:
5204 case 0x39:
5205 case 0x3a:
5206 case 0x3b:
5207 case 0x3c:
5208 case 0x3d:
5209 if (((opcode >> 3) & 7) != OP_CMPL)
5210 {
5211 if ((opcode & 1) == 0)
5212 ir.ot = OT_BYTE;
5213 else
5214 ir.ot = ir.dflag + OT_WORD;
5215
5216 switch ((opcode >> 1) & 3)
5217 {
5218 case 0: /* OP Ev, Gv */
5219 if (i386_record_modrm (&ir))
5220 return -1;
5221 if (ir.mod != 3)
5222 {
5223 if (i386_record_lea_modrm (&ir))
5224 return -1;
5225 }
5226 else
5227 {
5228 ir.rm |= ir.rex_b;
5229 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5230 ir.rm &= 0x3;
5231 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5232 }
5233 break;
5234 case 1: /* OP Gv, Ev */
5235 if (i386_record_modrm (&ir))
5236 return -1;
5237 ir.reg |= rex_r;
5238 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5239 ir.reg &= 0x3;
5240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5241 break;
5242 case 2: /* OP A, Iv */
5243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5244 break;
5245 }
5246 }
5247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5248 break;
5249
5250 case 0x80: /* GRP1 */
5251 case 0x81:
5252 case 0x82:
5253 case 0x83:
5254 if (i386_record_modrm (&ir))
5255 return -1;
5256
5257 if (ir.reg != OP_CMPL)
5258 {
5259 if ((opcode & 1) == 0)
5260 ir.ot = OT_BYTE;
5261 else
5262 ir.ot = ir.dflag + OT_WORD;
5263
5264 if (ir.mod != 3)
5265 {
5266 if (opcode == 0x83)
5267 ir.rip_offset = 1;
5268 else
5269 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5270 if (i386_record_lea_modrm (&ir))
5271 return -1;
5272 }
5273 else
5274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5275 }
5276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5277 break;
5278
5279 case 0x40: /* inc */
5280 case 0x41:
5281 case 0x42:
5282 case 0x43:
5283 case 0x44:
5284 case 0x45:
5285 case 0x46:
5286 case 0x47:
5287
5288 case 0x48: /* dec */
5289 case 0x49:
5290 case 0x4a:
5291 case 0x4b:
5292 case 0x4c:
5293 case 0x4d:
5294 case 0x4e:
5295 case 0x4f:
5296
5297 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5299 break;
5300
5301 case 0xf6: /* GRP3 */
5302 case 0xf7:
5303 if ((opcode & 1) == 0)
5304 ir.ot = OT_BYTE;
5305 else
5306 ir.ot = ir.dflag + OT_WORD;
5307 if (i386_record_modrm (&ir))
5308 return -1;
5309
5310 if (ir.mod != 3 && ir.reg == 0)
5311 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5312
5313 switch (ir.reg)
5314 {
5315 case 0: /* test */
5316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5317 break;
5318 case 2: /* not */
5319 case 3: /* neg */
5320 if (ir.mod != 3)
5321 {
5322 if (i386_record_lea_modrm (&ir))
5323 return -1;
5324 }
5325 else
5326 {
5327 ir.rm |= ir.rex_b;
5328 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5329 ir.rm &= 0x3;
5330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5331 }
5332 if (ir.reg == 3) /* neg */
5333 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5334 break;
5335 case 4: /* mul */
5336 case 5: /* imul */
5337 case 6: /* div */
5338 case 7: /* idiv */
5339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5340 if (ir.ot != OT_BYTE)
5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5343 break;
5344 default:
5345 ir.addr -= 2;
5346 opcode = opcode << 8 | ir.modrm;
5347 goto no_support;
5348 break;
5349 }
5350 break;
5351
5352 case 0xfe: /* GRP4 */
5353 case 0xff: /* GRP5 */
5354 if (i386_record_modrm (&ir))
5355 return -1;
5356 if (ir.reg >= 2 && opcode == 0xfe)
5357 {
5358 ir.addr -= 2;
5359 opcode = opcode << 8 | ir.modrm;
5360 goto no_support;
5361 }
5362 switch (ir.reg)
5363 {
5364 case 0: /* inc */
5365 case 1: /* dec */
5366 if ((opcode & 1) == 0)
5367 ir.ot = OT_BYTE;
5368 else
5369 ir.ot = ir.dflag + OT_WORD;
5370 if (ir.mod != 3)
5371 {
5372 if (i386_record_lea_modrm (&ir))
5373 return -1;
5374 }
5375 else
5376 {
5377 ir.rm |= ir.rex_b;
5378 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5379 ir.rm &= 0x3;
5380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5381 }
5382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5383 break;
5384 case 2: /* call */
5385 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5386 ir.dflag = 2;
5387 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5388 return -1;
5389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5390 break;
5391 case 3: /* lcall */
5392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5393 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5394 return -1;
5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5396 break;
5397 case 4: /* jmp */
5398 case 5: /* ljmp */
5399 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5400 break;
5401 case 6: /* push */
5402 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5403 ir.dflag = 2;
5404 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5405 return -1;
5406 break;
5407 default:
5408 ir.addr -= 2;
5409 opcode = opcode << 8 | ir.modrm;
5410 goto no_support;
5411 break;
5412 }
5413 break;
5414
5415 case 0x84: /* test */
5416 case 0x85:
5417 case 0xa8:
5418 case 0xa9:
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5420 break;
5421
5422 case 0x98: /* CWDE/CBW */
5423 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5424 break;
5425
5426 case 0x99: /* CDQ/CWD */
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5429 break;
5430
5431 case 0x0faf: /* imul */
5432 case 0x69:
5433 case 0x6b:
5434 ir.ot = ir.dflag + OT_WORD;
5435 if (i386_record_modrm (&ir))
5436 return -1;
5437 if (opcode == 0x69)
5438 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5439 else if (opcode == 0x6b)
5440 ir.rip_offset = 1;
5441 ir.reg |= rex_r;
5442 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5443 ir.reg &= 0x3;
5444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5446 break;
5447
5448 case 0x0fc0: /* xadd */
5449 case 0x0fc1:
5450 if ((opcode & 1) == 0)
5451 ir.ot = OT_BYTE;
5452 else
5453 ir.ot = ir.dflag + OT_WORD;
5454 if (i386_record_modrm (&ir))
5455 return -1;
5456 ir.reg |= rex_r;
5457 if (ir.mod == 3)
5458 {
5459 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5460 ir.reg &= 0x3;
5461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5462 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5463 ir.rm &= 0x3;
5464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5465 }
5466 else
5467 {
5468 if (i386_record_lea_modrm (&ir))
5469 return -1;
5470 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5471 ir.reg &= 0x3;
5472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5473 }
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5475 break;
5476
5477 case 0x0fb0: /* cmpxchg */
5478 case 0x0fb1:
5479 if ((opcode & 1) == 0)
5480 ir.ot = OT_BYTE;
5481 else
5482 ir.ot = ir.dflag + OT_WORD;
5483 if (i386_record_modrm (&ir))
5484 return -1;
5485 if (ir.mod == 3)
5486 {
5487 ir.reg |= rex_r;
5488 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5489 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5490 ir.reg &= 0x3;
5491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5492 }
5493 else
5494 {
5495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5496 if (i386_record_lea_modrm (&ir))
5497 return -1;
5498 }
5499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5500 break;
5501
5502 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5503 if (i386_record_modrm (&ir))
5504 return -1;
5505 if (ir.mod == 3)
5506 {
5507 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5508 an extended opcode. rdrand has bits 110 (/6) and rdseed
5509 has bits 111 (/7). */
5510 if (ir.reg == 6 || ir.reg == 7)
5511 {
5512 /* The storage register is described by the 3 R/M bits, but the
5513 REX.B prefix may be used to give access to registers
5514 R8~R15. In this case ir.rex_b + R/M will give us the register
5515 in the range R8~R15.
5516
5517 REX.W may also be used to access 64-bit registers, but we
5518 already record entire registers and not just partial bits
5519 of them. */
5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5521 /* These instructions also set conditional bits. */
5522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5523 break;
5524 }
5525 else
5526 {
5527 /* We don't handle this particular instruction yet. */
5528 ir.addr -= 2;
5529 opcode = opcode << 8 | ir.modrm;
5530 goto no_support;
5531 }
5532 }
5533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5535 if (i386_record_lea_modrm (&ir))
5536 return -1;
5537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5538 break;
5539
5540 case 0x50: /* push */
5541 case 0x51:
5542 case 0x52:
5543 case 0x53:
5544 case 0x54:
5545 case 0x55:
5546 case 0x56:
5547 case 0x57:
5548 case 0x68:
5549 case 0x6a:
5550 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5551 ir.dflag = 2;
5552 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5553 return -1;
5554 break;
5555
5556 case 0x06: /* push es */
5557 case 0x0e: /* push cs */
5558 case 0x16: /* push ss */
5559 case 0x1e: /* push ds */
5560 if (ir.regmap[X86_RECORD_R8_REGNUM])
5561 {
5562 ir.addr -= 1;
5563 goto no_support;
5564 }
5565 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5566 return -1;
5567 break;
5568
5569 case 0x0fa0: /* push fs */
5570 case 0x0fa8: /* push gs */
5571 if (ir.regmap[X86_RECORD_R8_REGNUM])
5572 {
5573 ir.addr -= 2;
5574 goto no_support;
5575 }
5576 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5577 return -1;
5578 break;
5579
5580 case 0x60: /* pusha */
5581 if (ir.regmap[X86_RECORD_R8_REGNUM])
5582 {
5583 ir.addr -= 1;
5584 goto no_support;
5585 }
5586 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5587 return -1;
5588 break;
5589
5590 case 0x58: /* pop */
5591 case 0x59:
5592 case 0x5a:
5593 case 0x5b:
5594 case 0x5c:
5595 case 0x5d:
5596 case 0x5e:
5597 case 0x5f:
5598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5599 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5600 break;
5601
5602 case 0x61: /* popa */
5603 if (ir.regmap[X86_RECORD_R8_REGNUM])
5604 {
5605 ir.addr -= 1;
5606 goto no_support;
5607 }
5608 for (regnum = X86_RECORD_REAX_REGNUM;
5609 regnum <= X86_RECORD_REDI_REGNUM;
5610 regnum++)
5611 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5612 break;
5613
5614 case 0x8f: /* pop */
5615 if (ir.regmap[X86_RECORD_R8_REGNUM])
5616 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5617 else
5618 ir.ot = ir.dflag + OT_WORD;
5619 if (i386_record_modrm (&ir))
5620 return -1;
5621 if (ir.mod == 3)
5622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5623 else
5624 {
5625 ir.popl_esp_hack = 1 << ir.ot;
5626 if (i386_record_lea_modrm (&ir))
5627 return -1;
5628 }
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5630 break;
5631
5632 case 0xc8: /* enter */
5633 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5634 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5635 ir.dflag = 2;
5636 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5637 return -1;
5638 break;
5639
5640 case 0xc9: /* leave */
5641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5643 break;
5644
5645 case 0x07: /* pop es */
5646 if (ir.regmap[X86_RECORD_R8_REGNUM])
5647 {
5648 ir.addr -= 1;
5649 goto no_support;
5650 }
5651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5654 break;
5655
5656 case 0x17: /* pop ss */
5657 if (ir.regmap[X86_RECORD_R8_REGNUM])
5658 {
5659 ir.addr -= 1;
5660 goto no_support;
5661 }
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5665 break;
5666
5667 case 0x1f: /* pop ds */
5668 if (ir.regmap[X86_RECORD_R8_REGNUM])
5669 {
5670 ir.addr -= 1;
5671 goto no_support;
5672 }
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5676 break;
5677
5678 case 0x0fa1: /* pop fs */
5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5682 break;
5683
5684 case 0x0fa9: /* pop gs */
5685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5688 break;
5689
5690 case 0x88: /* mov */
5691 case 0x89:
5692 case 0xc6:
5693 case 0xc7:
5694 if ((opcode & 1) == 0)
5695 ir.ot = OT_BYTE;
5696 else
5697 ir.ot = ir.dflag + OT_WORD;
5698
5699 if (i386_record_modrm (&ir))
5700 return -1;
5701
5702 if (ir.mod != 3)
5703 {
5704 if (opcode == 0xc6 || opcode == 0xc7)
5705 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5706 if (i386_record_lea_modrm (&ir))
5707 return -1;
5708 }
5709 else
5710 {
5711 if (opcode == 0xc6 || opcode == 0xc7)
5712 ir.rm |= ir.rex_b;
5713 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5714 ir.rm &= 0x3;
5715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5716 }
5717 break;
5718
5719 case 0x8a: /* mov */
5720 case 0x8b:
5721 if ((opcode & 1) == 0)
5722 ir.ot = OT_BYTE;
5723 else
5724 ir.ot = ir.dflag + OT_WORD;
5725 if (i386_record_modrm (&ir))
5726 return -1;
5727 ir.reg |= rex_r;
5728 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5729 ir.reg &= 0x3;
5730 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5731 break;
5732
5733 case 0x8c: /* mov seg */
5734 if (i386_record_modrm (&ir))
5735 return -1;
5736 if (ir.reg > 5)
5737 {
5738 ir.addr -= 2;
5739 opcode = opcode << 8 | ir.modrm;
5740 goto no_support;
5741 }
5742
5743 if (ir.mod == 3)
5744 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5745 else
5746 {
5747 ir.ot = OT_WORD;
5748 if (i386_record_lea_modrm (&ir))
5749 return -1;
5750 }
5751 break;
5752
5753 case 0x8e: /* mov seg */
5754 if (i386_record_modrm (&ir))
5755 return -1;
5756 switch (ir.reg)
5757 {
5758 case 0:
5759 regnum = X86_RECORD_ES_REGNUM;
5760 break;
5761 case 2:
5762 regnum = X86_RECORD_SS_REGNUM;
5763 break;
5764 case 3:
5765 regnum = X86_RECORD_DS_REGNUM;
5766 break;
5767 case 4:
5768 regnum = X86_RECORD_FS_REGNUM;
5769 break;
5770 case 5:
5771 regnum = X86_RECORD_GS_REGNUM;
5772 break;
5773 default:
5774 ir.addr -= 2;
5775 opcode = opcode << 8 | ir.modrm;
5776 goto no_support;
5777 break;
5778 }
5779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5781 break;
5782
5783 case 0x0fb6: /* movzbS */
5784 case 0x0fb7: /* movzwS */
5785 case 0x0fbe: /* movsbS */
5786 case 0x0fbf: /* movswS */
5787 if (i386_record_modrm (&ir))
5788 return -1;
5789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5790 break;
5791
5792 case 0x8d: /* lea */
5793 if (i386_record_modrm (&ir))
5794 return -1;
5795 if (ir.mod == 3)
5796 {
5797 ir.addr -= 2;
5798 opcode = opcode << 8 | ir.modrm;
5799 goto no_support;
5800 }
5801 ir.ot = ir.dflag;
5802 ir.reg |= rex_r;
5803 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5804 ir.reg &= 0x3;
5805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5806 break;
5807
5808 case 0xa0: /* mov EAX */
5809 case 0xa1:
5810
5811 case 0xd7: /* xlat */
5812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5813 break;
5814
5815 case 0xa2: /* mov EAX */
5816 case 0xa3:
5817 if (ir.override >= 0)
5818 {
5819 if (record_full_memory_query)
5820 {
5821 if (yquery (_("\
5822 Process record ignores the memory change of instruction at address %s\n\
5823 because it can't get the value of the segment register.\n\
5824 Do you want to stop the program?"),
5825 paddress (gdbarch, ir.orig_addr)))
5826 return -1;
5827 }
5828 }
5829 else
5830 {
5831 if ((opcode & 1) == 0)
5832 ir.ot = OT_BYTE;
5833 else
5834 ir.ot = ir.dflag + OT_WORD;
5835 if (ir.aflag == 2)
5836 {
5837 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5838 return -1;
5839 ir.addr += 8;
5840 addr = extract_unsigned_integer (buf, 8, byte_order);
5841 }
5842 else if (ir.aflag)
5843 {
5844 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5845 return -1;
5846 ir.addr += 4;
5847 addr = extract_unsigned_integer (buf, 4, byte_order);
5848 }
5849 else
5850 {
5851 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5852 return -1;
5853 ir.addr += 2;
5854 addr = extract_unsigned_integer (buf, 2, byte_order);
5855 }
5856 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5857 return -1;
5858 }
5859 break;
5860
5861 case 0xb0: /* mov R, Ib */
5862 case 0xb1:
5863 case 0xb2:
5864 case 0xb3:
5865 case 0xb4:
5866 case 0xb5:
5867 case 0xb6:
5868 case 0xb7:
5869 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5870 ? ((opcode & 0x7) | ir.rex_b)
5871 : ((opcode & 0x7) & 0x3));
5872 break;
5873
5874 case 0xb8: /* mov R, Iv */
5875 case 0xb9:
5876 case 0xba:
5877 case 0xbb:
5878 case 0xbc:
5879 case 0xbd:
5880 case 0xbe:
5881 case 0xbf:
5882 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5883 break;
5884
5885 case 0x91: /* xchg R, EAX */
5886 case 0x92:
5887 case 0x93:
5888 case 0x94:
5889 case 0x95:
5890 case 0x96:
5891 case 0x97:
5892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5894 break;
5895
5896 case 0x86: /* xchg Ev, Gv */
5897 case 0x87:
5898 if ((opcode & 1) == 0)
5899 ir.ot = OT_BYTE;
5900 else
5901 ir.ot = ir.dflag + OT_WORD;
5902 if (i386_record_modrm (&ir))
5903 return -1;
5904 if (ir.mod == 3)
5905 {
5906 ir.rm |= ir.rex_b;
5907 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5908 ir.rm &= 0x3;
5909 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5910 }
5911 else
5912 {
5913 if (i386_record_lea_modrm (&ir))
5914 return -1;
5915 }
5916 ir.reg |= rex_r;
5917 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5918 ir.reg &= 0x3;
5919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5920 break;
5921
5922 case 0xc4: /* les Gv */
5923 case 0xc5: /* lds Gv */
5924 if (ir.regmap[X86_RECORD_R8_REGNUM])
5925 {
5926 ir.addr -= 1;
5927 goto no_support;
5928 }
5929 /* FALLTHROUGH */
5930 case 0x0fb2: /* lss Gv */
5931 case 0x0fb4: /* lfs Gv */
5932 case 0x0fb5: /* lgs Gv */
5933 if (i386_record_modrm (&ir))
5934 return -1;
5935 if (ir.mod == 3)
5936 {
5937 if (opcode > 0xff)
5938 ir.addr -= 3;
5939 else
5940 ir.addr -= 2;
5941 opcode = opcode << 8 | ir.modrm;
5942 goto no_support;
5943 }
5944 switch (opcode)
5945 {
5946 case 0xc4: /* les Gv */
5947 regnum = X86_RECORD_ES_REGNUM;
5948 break;
5949 case 0xc5: /* lds Gv */
5950 regnum = X86_RECORD_DS_REGNUM;
5951 break;
5952 case 0x0fb2: /* lss Gv */
5953 regnum = X86_RECORD_SS_REGNUM;
5954 break;
5955 case 0x0fb4: /* lfs Gv */
5956 regnum = X86_RECORD_FS_REGNUM;
5957 break;
5958 case 0x0fb5: /* lgs Gv */
5959 regnum = X86_RECORD_GS_REGNUM;
5960 break;
5961 }
5962 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5965 break;
5966
5967 case 0xc0: /* shifts */
5968 case 0xc1:
5969 case 0xd0:
5970 case 0xd1:
5971 case 0xd2:
5972 case 0xd3:
5973 if ((opcode & 1) == 0)
5974 ir.ot = OT_BYTE;
5975 else
5976 ir.ot = ir.dflag + OT_WORD;
5977 if (i386_record_modrm (&ir))
5978 return -1;
5979 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5980 {
5981 if (i386_record_lea_modrm (&ir))
5982 return -1;
5983 }
5984 else
5985 {
5986 ir.rm |= ir.rex_b;
5987 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5988 ir.rm &= 0x3;
5989 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5990 }
5991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5992 break;
5993
5994 case 0x0fa4:
5995 case 0x0fa5:
5996 case 0x0fac:
5997 case 0x0fad:
5998 if (i386_record_modrm (&ir))
5999 return -1;
6000 if (ir.mod == 3)
6001 {
6002 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6003 return -1;
6004 }
6005 else
6006 {
6007 if (i386_record_lea_modrm (&ir))
6008 return -1;
6009 }
6010 break;
6011
6012 case 0xd8: /* Floats. */
6013 case 0xd9:
6014 case 0xda:
6015 case 0xdb:
6016 case 0xdc:
6017 case 0xdd:
6018 case 0xde:
6019 case 0xdf:
6020 if (i386_record_modrm (&ir))
6021 return -1;
6022 ir.reg |= ((opcode & 7) << 3);
6023 if (ir.mod != 3)
6024 {
6025 /* Memory. */
6026 uint64_t addr64;
6027
6028 if (i386_record_lea_modrm_addr (&ir, &addr64))
6029 return -1;
6030 switch (ir.reg)
6031 {
6032 case 0x02:
6033 case 0x12:
6034 case 0x22:
6035 case 0x32:
6036 /* For fcom, ficom nothing to do. */
6037 break;
6038 case 0x03:
6039 case 0x13:
6040 case 0x23:
6041 case 0x33:
6042 /* For fcomp, ficomp pop FPU stack, store all. */
6043 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6044 return -1;
6045 break;
6046 case 0x00:
6047 case 0x01:
6048 case 0x04:
6049 case 0x05:
6050 case 0x06:
6051 case 0x07:
6052 case 0x10:
6053 case 0x11:
6054 case 0x14:
6055 case 0x15:
6056 case 0x16:
6057 case 0x17:
6058 case 0x20:
6059 case 0x21:
6060 case 0x24:
6061 case 0x25:
6062 case 0x26:
6063 case 0x27:
6064 case 0x30:
6065 case 0x31:
6066 case 0x34:
6067 case 0x35:
6068 case 0x36:
6069 case 0x37:
6070 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6071 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6072 of code, always affects st(0) register. */
6073 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6074 return -1;
6075 break;
6076 case 0x08:
6077 case 0x0a:
6078 case 0x0b:
6079 case 0x18:
6080 case 0x19:
6081 case 0x1a:
6082 case 0x1b:
6083 case 0x1d:
6084 case 0x28:
6085 case 0x29:
6086 case 0x2a:
6087 case 0x2b:
6088 case 0x38:
6089 case 0x39:
6090 case 0x3a:
6091 case 0x3b:
6092 case 0x3c:
6093 case 0x3d:
6094 switch (ir.reg & 7)
6095 {
6096 case 0:
6097 /* Handling fld, fild. */
6098 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6099 return -1;
6100 break;
6101 case 1:
6102 switch (ir.reg >> 4)
6103 {
6104 case 0:
6105 if (record_full_arch_list_add_mem (addr64, 4))
6106 return -1;
6107 break;
6108 case 2:
6109 if (record_full_arch_list_add_mem (addr64, 8))
6110 return -1;
6111 break;
6112 case 3:
6113 break;
6114 default:
6115 if (record_full_arch_list_add_mem (addr64, 2))
6116 return -1;
6117 break;
6118 }
6119 break;
6120 default:
6121 switch (ir.reg >> 4)
6122 {
6123 case 0:
6124 if (record_full_arch_list_add_mem (addr64, 4))
6125 return -1;
6126 if (3 == (ir.reg & 7))
6127 {
6128 /* For fstp m32fp. */
6129 if (i386_record_floats (gdbarch, &ir,
6130 I386_SAVE_FPU_REGS))
6131 return -1;
6132 }
6133 break;
6134 case 1:
6135 if (record_full_arch_list_add_mem (addr64, 4))
6136 return -1;
6137 if ((3 == (ir.reg & 7))
6138 || (5 == (ir.reg & 7))
6139 || (7 == (ir.reg & 7)))
6140 {
6141 /* For fstp insn. */
6142 if (i386_record_floats (gdbarch, &ir,
6143 I386_SAVE_FPU_REGS))
6144 return -1;
6145 }
6146 break;
6147 case 2:
6148 if (record_full_arch_list_add_mem (addr64, 8))
6149 return -1;
6150 if (3 == (ir.reg & 7))
6151 {
6152 /* For fstp m64fp. */
6153 if (i386_record_floats (gdbarch, &ir,
6154 I386_SAVE_FPU_REGS))
6155 return -1;
6156 }
6157 break;
6158 case 3:
6159 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6160 {
6161 /* For fistp, fbld, fild, fbstp. */
6162 if (i386_record_floats (gdbarch, &ir,
6163 I386_SAVE_FPU_REGS))
6164 return -1;
6165 }
6166 /* Fall through */
6167 default:
6168 if (record_full_arch_list_add_mem (addr64, 2))
6169 return -1;
6170 break;
6171 }
6172 break;
6173 }
6174 break;
6175 case 0x0c:
6176 /* Insn fldenv. */
6177 if (i386_record_floats (gdbarch, &ir,
6178 I386_SAVE_FPU_ENV_REG_STACK))
6179 return -1;
6180 break;
6181 case 0x0d:
6182 /* Insn fldcw. */
6183 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6184 return -1;
6185 break;
6186 case 0x2c:
6187 /* Insn frstor. */
6188 if (i386_record_floats (gdbarch, &ir,
6189 I386_SAVE_FPU_ENV_REG_STACK))
6190 return -1;
6191 break;
6192 case 0x0e:
6193 if (ir.dflag)
6194 {
6195 if (record_full_arch_list_add_mem (addr64, 28))
6196 return -1;
6197 }
6198 else
6199 {
6200 if (record_full_arch_list_add_mem (addr64, 14))
6201 return -1;
6202 }
6203 break;
6204 case 0x0f:
6205 case 0x2f:
6206 if (record_full_arch_list_add_mem (addr64, 2))
6207 return -1;
6208 /* Insn fstp, fbstp. */
6209 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6210 return -1;
6211 break;
6212 case 0x1f:
6213 case 0x3e:
6214 if (record_full_arch_list_add_mem (addr64, 10))
6215 return -1;
6216 break;
6217 case 0x2e:
6218 if (ir.dflag)
6219 {
6220 if (record_full_arch_list_add_mem (addr64, 28))
6221 return -1;
6222 addr64 += 28;
6223 }
6224 else
6225 {
6226 if (record_full_arch_list_add_mem (addr64, 14))
6227 return -1;
6228 addr64 += 14;
6229 }
6230 if (record_full_arch_list_add_mem (addr64, 80))
6231 return -1;
6232 /* Insn fsave. */
6233 if (i386_record_floats (gdbarch, &ir,
6234 I386_SAVE_FPU_ENV_REG_STACK))
6235 return -1;
6236 break;
6237 case 0x3f:
6238 if (record_full_arch_list_add_mem (addr64, 8))
6239 return -1;
6240 /* Insn fistp. */
6241 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6242 return -1;
6243 break;
6244 default:
6245 ir.addr -= 2;
6246 opcode = opcode << 8 | ir.modrm;
6247 goto no_support;
6248 break;
6249 }
6250 }
6251 /* Opcode is an extension of modR/M byte. */
6252 else
6253 {
6254 switch (opcode)
6255 {
6256 case 0xd8:
6257 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6258 return -1;
6259 break;
6260 case 0xd9:
6261 if (0x0c == (ir.modrm >> 4))
6262 {
6263 if ((ir.modrm & 0x0f) <= 7)
6264 {
6265 if (i386_record_floats (gdbarch, &ir,
6266 I386_SAVE_FPU_REGS))
6267 return -1;
6268 }
6269 else
6270 {
6271 if (i386_record_floats (gdbarch, &ir,
6272 I387_ST0_REGNUM (tdep)))
6273 return -1;
6274 /* If only st(0) is changing, then we have already
6275 recorded. */
6276 if ((ir.modrm & 0x0f) - 0x08)
6277 {
6278 if (i386_record_floats (gdbarch, &ir,
6279 I387_ST0_REGNUM (tdep) +
6280 ((ir.modrm & 0x0f) - 0x08)))
6281 return -1;
6282 }
6283 }
6284 }
6285 else
6286 {
6287 switch (ir.modrm)
6288 {
6289 case 0xe0:
6290 case 0xe1:
6291 case 0xf0:
6292 case 0xf5:
6293 case 0xf8:
6294 case 0xfa:
6295 case 0xfc:
6296 case 0xfe:
6297 case 0xff:
6298 if (i386_record_floats (gdbarch, &ir,
6299 I387_ST0_REGNUM (tdep)))
6300 return -1;
6301 break;
6302 case 0xf1:
6303 case 0xf2:
6304 case 0xf3:
6305 case 0xf4:
6306 case 0xf6:
6307 case 0xf7:
6308 case 0xe8:
6309 case 0xe9:
6310 case 0xea:
6311 case 0xeb:
6312 case 0xec:
6313 case 0xed:
6314 case 0xee:
6315 case 0xf9:
6316 case 0xfb:
6317 if (i386_record_floats (gdbarch, &ir,
6318 I386_SAVE_FPU_REGS))
6319 return -1;
6320 break;
6321 case 0xfd:
6322 if (i386_record_floats (gdbarch, &ir,
6323 I387_ST0_REGNUM (tdep)))
6324 return -1;
6325 if (i386_record_floats (gdbarch, &ir,
6326 I387_ST0_REGNUM (tdep) + 1))
6327 return -1;
6328 break;
6329 }
6330 }
6331 break;
6332 case 0xda:
6333 if (0xe9 == ir.modrm)
6334 {
6335 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6336 return -1;
6337 }
6338 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6339 {
6340 if (i386_record_floats (gdbarch, &ir,
6341 I387_ST0_REGNUM (tdep)))
6342 return -1;
6343 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6344 {
6345 if (i386_record_floats (gdbarch, &ir,
6346 I387_ST0_REGNUM (tdep) +
6347 (ir.modrm & 0x0f)))
6348 return -1;
6349 }
6350 else if ((ir.modrm & 0x0f) - 0x08)
6351 {
6352 if (i386_record_floats (gdbarch, &ir,
6353 I387_ST0_REGNUM (tdep) +
6354 ((ir.modrm & 0x0f) - 0x08)))
6355 return -1;
6356 }
6357 }
6358 break;
6359 case 0xdb:
6360 if (0xe3 == ir.modrm)
6361 {
6362 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6363 return -1;
6364 }
6365 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6366 {
6367 if (i386_record_floats (gdbarch, &ir,
6368 I387_ST0_REGNUM (tdep)))
6369 return -1;
6370 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6371 {
6372 if (i386_record_floats (gdbarch, &ir,
6373 I387_ST0_REGNUM (tdep) +
6374 (ir.modrm & 0x0f)))
6375 return -1;
6376 }
6377 else if ((ir.modrm & 0x0f) - 0x08)
6378 {
6379 if (i386_record_floats (gdbarch, &ir,
6380 I387_ST0_REGNUM (tdep) +
6381 ((ir.modrm & 0x0f) - 0x08)))
6382 return -1;
6383 }
6384 }
6385 break;
6386 case 0xdc:
6387 if ((0x0c == ir.modrm >> 4)
6388 || (0x0d == ir.modrm >> 4)
6389 || (0x0f == ir.modrm >> 4))
6390 {
6391 if ((ir.modrm & 0x0f) <= 7)
6392 {
6393 if (i386_record_floats (gdbarch, &ir,
6394 I387_ST0_REGNUM (tdep) +
6395 (ir.modrm & 0x0f)))
6396 return -1;
6397 }
6398 else
6399 {
6400 if (i386_record_floats (gdbarch, &ir,
6401 I387_ST0_REGNUM (tdep) +
6402 ((ir.modrm & 0x0f) - 0x08)))
6403 return -1;
6404 }
6405 }
6406 break;
6407 case 0xdd:
6408 if (0x0c == ir.modrm >> 4)
6409 {
6410 if (i386_record_floats (gdbarch, &ir,
6411 I387_FTAG_REGNUM (tdep)))
6412 return -1;
6413 }
6414 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6415 {
6416 if ((ir.modrm & 0x0f) <= 7)
6417 {
6418 if (i386_record_floats (gdbarch, &ir,
6419 I387_ST0_REGNUM (tdep) +
6420 (ir.modrm & 0x0f)))
6421 return -1;
6422 }
6423 else
6424 {
6425 if (i386_record_floats (gdbarch, &ir,
6426 I386_SAVE_FPU_REGS))
6427 return -1;
6428 }
6429 }
6430 break;
6431 case 0xde:
6432 if ((0x0c == ir.modrm >> 4)
6433 || (0x0e == ir.modrm >> 4)
6434 || (0x0f == ir.modrm >> 4)
6435 || (0xd9 == ir.modrm))
6436 {
6437 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6438 return -1;
6439 }
6440 break;
6441 case 0xdf:
6442 if (0xe0 == ir.modrm)
6443 {
6444 if (record_full_arch_list_add_reg (ir.regcache,
6445 I386_EAX_REGNUM))
6446 return -1;
6447 }
6448 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6449 {
6450 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6451 return -1;
6452 }
6453 break;
6454 }
6455 }
6456 break;
6457 /* string ops */
6458 case 0xa4: /* movsS */
6459 case 0xa5:
6460 case 0xaa: /* stosS */
6461 case 0xab:
6462 case 0x6c: /* insS */
6463 case 0x6d:
6464 regcache_raw_read_unsigned (ir.regcache,
6465 ir.regmap[X86_RECORD_RECX_REGNUM],
6466 &addr);
6467 if (addr)
6468 {
6469 ULONGEST es, ds;
6470
6471 if ((opcode & 1) == 0)
6472 ir.ot = OT_BYTE;
6473 else
6474 ir.ot = ir.dflag + OT_WORD;
6475 regcache_raw_read_unsigned (ir.regcache,
6476 ir.regmap[X86_RECORD_REDI_REGNUM],
6477 &addr);
6478
6479 regcache_raw_read_unsigned (ir.regcache,
6480 ir.regmap[X86_RECORD_ES_REGNUM],
6481 &es);
6482 regcache_raw_read_unsigned (ir.regcache,
6483 ir.regmap[X86_RECORD_DS_REGNUM],
6484 &ds);
6485 if (ir.aflag && (es != ds))
6486 {
6487 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6488 if (record_full_memory_query)
6489 {
6490 if (yquery (_("\
6491 Process record ignores the memory change of instruction at address %s\n\
6492 because it can't get the value of the segment register.\n\
6493 Do you want to stop the program?"),
6494 paddress (gdbarch, ir.orig_addr)))
6495 return -1;
6496 }
6497 }
6498 else
6499 {
6500 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6501 return -1;
6502 }
6503
6504 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6506 if (opcode == 0xa4 || opcode == 0xa5)
6507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6510 }
6511 break;
6512
6513 case 0xa6: /* cmpsS */
6514 case 0xa7:
6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6517 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6520 break;
6521
6522 case 0xac: /* lodsS */
6523 case 0xad:
6524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6526 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6529 break;
6530
6531 case 0xae: /* scasS */
6532 case 0xaf:
6533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6534 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6537 break;
6538
6539 case 0x6e: /* outsS */
6540 case 0x6f:
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6542 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6545 break;
6546
6547 case 0xe4: /* port I/O */
6548 case 0xe5:
6549 case 0xec:
6550 case 0xed:
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6553 break;
6554
6555 case 0xe6:
6556 case 0xe7:
6557 case 0xee:
6558 case 0xef:
6559 break;
6560
6561 /* control */
6562 case 0xc2: /* ret im */
6563 case 0xc3: /* ret */
6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6566 break;
6567
6568 case 0xca: /* lret im */
6569 case 0xcb: /* lret */
6570 case 0xcf: /* iret */
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6574 break;
6575
6576 case 0xe8: /* call im */
6577 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6578 ir.dflag = 2;
6579 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6580 return -1;
6581 break;
6582
6583 case 0x9a: /* lcall im */
6584 if (ir.regmap[X86_RECORD_R8_REGNUM])
6585 {
6586 ir.addr -= 1;
6587 goto no_support;
6588 }
6589 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6590 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6591 return -1;
6592 break;
6593
6594 case 0xe9: /* jmp im */
6595 case 0xea: /* ljmp im */
6596 case 0xeb: /* jmp Jb */
6597 case 0x70: /* jcc Jb */
6598 case 0x71:
6599 case 0x72:
6600 case 0x73:
6601 case 0x74:
6602 case 0x75:
6603 case 0x76:
6604 case 0x77:
6605 case 0x78:
6606 case 0x79:
6607 case 0x7a:
6608 case 0x7b:
6609 case 0x7c:
6610 case 0x7d:
6611 case 0x7e:
6612 case 0x7f:
6613 case 0x0f80: /* jcc Jv */
6614 case 0x0f81:
6615 case 0x0f82:
6616 case 0x0f83:
6617 case 0x0f84:
6618 case 0x0f85:
6619 case 0x0f86:
6620 case 0x0f87:
6621 case 0x0f88:
6622 case 0x0f89:
6623 case 0x0f8a:
6624 case 0x0f8b:
6625 case 0x0f8c:
6626 case 0x0f8d:
6627 case 0x0f8e:
6628 case 0x0f8f:
6629 break;
6630
6631 case 0x0f90: /* setcc Gv */
6632 case 0x0f91:
6633 case 0x0f92:
6634 case 0x0f93:
6635 case 0x0f94:
6636 case 0x0f95:
6637 case 0x0f96:
6638 case 0x0f97:
6639 case 0x0f98:
6640 case 0x0f99:
6641 case 0x0f9a:
6642 case 0x0f9b:
6643 case 0x0f9c:
6644 case 0x0f9d:
6645 case 0x0f9e:
6646 case 0x0f9f:
6647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6648 ir.ot = OT_BYTE;
6649 if (i386_record_modrm (&ir))
6650 return -1;
6651 if (ir.mod == 3)
6652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6653 : (ir.rm & 0x3));
6654 else
6655 {
6656 if (i386_record_lea_modrm (&ir))
6657 return -1;
6658 }
6659 break;
6660
6661 case 0x0f40: /* cmov Gv, Ev */
6662 case 0x0f41:
6663 case 0x0f42:
6664 case 0x0f43:
6665 case 0x0f44:
6666 case 0x0f45:
6667 case 0x0f46:
6668 case 0x0f47:
6669 case 0x0f48:
6670 case 0x0f49:
6671 case 0x0f4a:
6672 case 0x0f4b:
6673 case 0x0f4c:
6674 case 0x0f4d:
6675 case 0x0f4e:
6676 case 0x0f4f:
6677 if (i386_record_modrm (&ir))
6678 return -1;
6679 ir.reg |= rex_r;
6680 if (ir.dflag == OT_BYTE)
6681 ir.reg &= 0x3;
6682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6683 break;
6684
6685 /* flags */
6686 case 0x9c: /* pushf */
6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6688 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6689 ir.dflag = 2;
6690 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6691 return -1;
6692 break;
6693
6694 case 0x9d: /* popf */
6695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6697 break;
6698
6699 case 0x9e: /* sahf */
6700 if (ir.regmap[X86_RECORD_R8_REGNUM])
6701 {
6702 ir.addr -= 1;
6703 goto no_support;
6704 }
6705 /* FALLTHROUGH */
6706 case 0xf5: /* cmc */
6707 case 0xf8: /* clc */
6708 case 0xf9: /* stc */
6709 case 0xfc: /* cld */
6710 case 0xfd: /* std */
6711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6712 break;
6713
6714 case 0x9f: /* lahf */
6715 if (ir.regmap[X86_RECORD_R8_REGNUM])
6716 {
6717 ir.addr -= 1;
6718 goto no_support;
6719 }
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6722 break;
6723
6724 /* bit operations */
6725 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6726 ir.ot = ir.dflag + OT_WORD;
6727 if (i386_record_modrm (&ir))
6728 return -1;
6729 if (ir.reg < 4)
6730 {
6731 ir.addr -= 2;
6732 opcode = opcode << 8 | ir.modrm;
6733 goto no_support;
6734 }
6735 if (ir.reg != 4)
6736 {
6737 if (ir.mod == 3)
6738 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6739 else
6740 {
6741 if (i386_record_lea_modrm (&ir))
6742 return -1;
6743 }
6744 }
6745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6746 break;
6747
6748 case 0x0fa3: /* bt Gv, Ev */
6749 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6750 break;
6751
6752 case 0x0fab: /* bts */
6753 case 0x0fb3: /* btr */
6754 case 0x0fbb: /* btc */
6755 ir.ot = ir.dflag + OT_WORD;
6756 if (i386_record_modrm (&ir))
6757 return -1;
6758 if (ir.mod == 3)
6759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6760 else
6761 {
6762 uint64_t addr64;
6763 if (i386_record_lea_modrm_addr (&ir, &addr64))
6764 return -1;
6765 regcache_raw_read_unsigned (ir.regcache,
6766 ir.regmap[ir.reg | rex_r],
6767 &addr);
6768 switch (ir.dflag)
6769 {
6770 case 0:
6771 addr64 += ((int16_t) addr >> 4) << 4;
6772 break;
6773 case 1:
6774 addr64 += ((int32_t) addr >> 5) << 5;
6775 break;
6776 case 2:
6777 addr64 += ((int64_t) addr >> 6) << 6;
6778 break;
6779 }
6780 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6781 return -1;
6782 if (i386_record_lea_modrm (&ir))
6783 return -1;
6784 }
6785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6786 break;
6787
6788 case 0x0fbc: /* bsf */
6789 case 0x0fbd: /* bsr */
6790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6792 break;
6793
6794 /* bcd */
6795 case 0x27: /* daa */
6796 case 0x2f: /* das */
6797 case 0x37: /* aaa */
6798 case 0x3f: /* aas */
6799 case 0xd4: /* aam */
6800 case 0xd5: /* aad */
6801 if (ir.regmap[X86_RECORD_R8_REGNUM])
6802 {
6803 ir.addr -= 1;
6804 goto no_support;
6805 }
6806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6808 break;
6809
6810 /* misc */
6811 case 0x90: /* nop */
6812 if (prefixes & PREFIX_LOCK)
6813 {
6814 ir.addr -= 1;
6815 goto no_support;
6816 }
6817 break;
6818
6819 case 0x9b: /* fwait */
6820 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6821 return -1;
6822 opcode = (uint32_t) opcode8;
6823 ir.addr++;
6824 goto reswitch;
6825 break;
6826
6827 /* XXX */
6828 case 0xcc: /* int3 */
6829 printf_unfiltered (_("Process record does not support instruction "
6830 "int3.\n"));
6831 ir.addr -= 1;
6832 goto no_support;
6833 break;
6834
6835 /* XXX */
6836 case 0xcd: /* int */
6837 {
6838 int ret;
6839 uint8_t interrupt;
6840 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6841 return -1;
6842 ir.addr++;
6843 if (interrupt != 0x80
6844 || tdep->i386_intx80_record == NULL)
6845 {
6846 printf_unfiltered (_("Process record does not support "
6847 "instruction int 0x%02x.\n"),
6848 interrupt);
6849 ir.addr -= 2;
6850 goto no_support;
6851 }
6852 ret = tdep->i386_intx80_record (ir.regcache);
6853 if (ret)
6854 return ret;
6855 }
6856 break;
6857
6858 /* XXX */
6859 case 0xce: /* into */
6860 printf_unfiltered (_("Process record does not support "
6861 "instruction into.\n"));
6862 ir.addr -= 1;
6863 goto no_support;
6864 break;
6865
6866 case 0xfa: /* cli */
6867 case 0xfb: /* sti */
6868 break;
6869
6870 case 0x62: /* bound */
6871 printf_unfiltered (_("Process record does not support "
6872 "instruction bound.\n"));
6873 ir.addr -= 1;
6874 goto no_support;
6875 break;
6876
6877 case 0x0fc8: /* bswap reg */
6878 case 0x0fc9:
6879 case 0x0fca:
6880 case 0x0fcb:
6881 case 0x0fcc:
6882 case 0x0fcd:
6883 case 0x0fce:
6884 case 0x0fcf:
6885 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6886 break;
6887
6888 case 0xd6: /* salc */
6889 if (ir.regmap[X86_RECORD_R8_REGNUM])
6890 {
6891 ir.addr -= 1;
6892 goto no_support;
6893 }
6894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6896 break;
6897
6898 case 0xe0: /* loopnz */
6899 case 0xe1: /* loopz */
6900 case 0xe2: /* loop */
6901 case 0xe3: /* jecxz */
6902 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6904 break;
6905
6906 case 0x0f30: /* wrmsr */
6907 printf_unfiltered (_("Process record does not support "
6908 "instruction wrmsr.\n"));
6909 ir.addr -= 2;
6910 goto no_support;
6911 break;
6912
6913 case 0x0f32: /* rdmsr */
6914 printf_unfiltered (_("Process record does not support "
6915 "instruction rdmsr.\n"));
6916 ir.addr -= 2;
6917 goto no_support;
6918 break;
6919
6920 case 0x0f31: /* rdtsc */
6921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6923 break;
6924
6925 case 0x0f34: /* sysenter */
6926 {
6927 int ret;
6928 if (ir.regmap[X86_RECORD_R8_REGNUM])
6929 {
6930 ir.addr -= 2;
6931 goto no_support;
6932 }
6933 if (tdep->i386_sysenter_record == NULL)
6934 {
6935 printf_unfiltered (_("Process record does not support "
6936 "instruction sysenter.\n"));
6937 ir.addr -= 2;
6938 goto no_support;
6939 }
6940 ret = tdep->i386_sysenter_record (ir.regcache);
6941 if (ret)
6942 return ret;
6943 }
6944 break;
6945
6946 case 0x0f35: /* sysexit */
6947 printf_unfiltered (_("Process record does not support "
6948 "instruction sysexit.\n"));
6949 ir.addr -= 2;
6950 goto no_support;
6951 break;
6952
6953 case 0x0f05: /* syscall */
6954 {
6955 int ret;
6956 if (tdep->i386_syscall_record == NULL)
6957 {
6958 printf_unfiltered (_("Process record does not support "
6959 "instruction syscall.\n"));
6960 ir.addr -= 2;
6961 goto no_support;
6962 }
6963 ret = tdep->i386_syscall_record (ir.regcache);
6964 if (ret)
6965 return ret;
6966 }
6967 break;
6968
6969 case 0x0f07: /* sysret */
6970 printf_unfiltered (_("Process record does not support "
6971 "instruction sysret.\n"));
6972 ir.addr -= 2;
6973 goto no_support;
6974 break;
6975
6976 case 0x0fa2: /* cpuid */
6977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6981 break;
6982
6983 case 0xf4: /* hlt */
6984 printf_unfiltered (_("Process record does not support "
6985 "instruction hlt.\n"));
6986 ir.addr -= 1;
6987 goto no_support;
6988 break;
6989
6990 case 0x0f00:
6991 if (i386_record_modrm (&ir))
6992 return -1;
6993 switch (ir.reg)
6994 {
6995 case 0: /* sldt */
6996 case 1: /* str */
6997 if (ir.mod == 3)
6998 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6999 else
7000 {
7001 ir.ot = OT_WORD;
7002 if (i386_record_lea_modrm (&ir))
7003 return -1;
7004 }
7005 break;
7006 case 2: /* lldt */
7007 case 3: /* ltr */
7008 break;
7009 case 4: /* verr */
7010 case 5: /* verw */
7011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7012 break;
7013 default:
7014 ir.addr -= 3;
7015 opcode = opcode << 8 | ir.modrm;
7016 goto no_support;
7017 break;
7018 }
7019 break;
7020
7021 case 0x0f01:
7022 if (i386_record_modrm (&ir))
7023 return -1;
7024 switch (ir.reg)
7025 {
7026 case 0: /* sgdt */
7027 {
7028 uint64_t addr64;
7029
7030 if (ir.mod == 3)
7031 {
7032 ir.addr -= 3;
7033 opcode = opcode << 8 | ir.modrm;
7034 goto no_support;
7035 }
7036 if (ir.override >= 0)
7037 {
7038 if (record_full_memory_query)
7039 {
7040 if (yquery (_("\
7041 Process record ignores the memory change of instruction at address %s\n\
7042 because it can't get the value of the segment register.\n\
7043 Do you want to stop the program?"),
7044 paddress (gdbarch, ir.orig_addr)))
7045 return -1;
7046 }
7047 }
7048 else
7049 {
7050 if (i386_record_lea_modrm_addr (&ir, &addr64))
7051 return -1;
7052 if (record_full_arch_list_add_mem (addr64, 2))
7053 return -1;
7054 addr64 += 2;
7055 if (ir.regmap[X86_RECORD_R8_REGNUM])
7056 {
7057 if (record_full_arch_list_add_mem (addr64, 8))
7058 return -1;
7059 }
7060 else
7061 {
7062 if (record_full_arch_list_add_mem (addr64, 4))
7063 return -1;
7064 }
7065 }
7066 }
7067 break;
7068 case 1:
7069 if (ir.mod == 3)
7070 {
7071 switch (ir.rm)
7072 {
7073 case 0: /* monitor */
7074 break;
7075 case 1: /* mwait */
7076 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7077 break;
7078 default:
7079 ir.addr -= 3;
7080 opcode = opcode << 8 | ir.modrm;
7081 goto no_support;
7082 break;
7083 }
7084 }
7085 else
7086 {
7087 /* sidt */
7088 if (ir.override >= 0)
7089 {
7090 if (record_full_memory_query)
7091 {
7092 if (yquery (_("\
7093 Process record ignores the memory change of instruction at address %s\n\
7094 because it can't get the value of the segment register.\n\
7095 Do you want to stop the program?"),
7096 paddress (gdbarch, ir.orig_addr)))
7097 return -1;
7098 }
7099 }
7100 else
7101 {
7102 uint64_t addr64;
7103
7104 if (i386_record_lea_modrm_addr (&ir, &addr64))
7105 return -1;
7106 if (record_full_arch_list_add_mem (addr64, 2))
7107 return -1;
7108 addr64 += 2;
7109 if (ir.regmap[X86_RECORD_R8_REGNUM])
7110 {
7111 if (record_full_arch_list_add_mem (addr64, 8))
7112 return -1;
7113 }
7114 else
7115 {
7116 if (record_full_arch_list_add_mem (addr64, 4))
7117 return -1;
7118 }
7119 }
7120 }
7121 break;
7122 case 2: /* lgdt */
7123 if (ir.mod == 3)
7124 {
7125 /* xgetbv */
7126 if (ir.rm == 0)
7127 {
7128 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7129 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7130 break;
7131 }
7132 /* xsetbv */
7133 else if (ir.rm == 1)
7134 break;
7135 }
7136 /* Fall through. */
7137 case 3: /* lidt */
7138 if (ir.mod == 3)
7139 {
7140 ir.addr -= 3;
7141 opcode = opcode << 8 | ir.modrm;
7142 goto no_support;
7143 }
7144 break;
7145 case 4: /* smsw */
7146 if (ir.mod == 3)
7147 {
7148 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7149 return -1;
7150 }
7151 else
7152 {
7153 ir.ot = OT_WORD;
7154 if (i386_record_lea_modrm (&ir))
7155 return -1;
7156 }
7157 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7158 break;
7159 case 6: /* lmsw */
7160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7161 break;
7162 case 7: /* invlpg */
7163 if (ir.mod == 3)
7164 {
7165 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7166 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7167 else
7168 {
7169 ir.addr -= 3;
7170 opcode = opcode << 8 | ir.modrm;
7171 goto no_support;
7172 }
7173 }
7174 else
7175 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7176 break;
7177 default:
7178 ir.addr -= 3;
7179 opcode = opcode << 8 | ir.modrm;
7180 goto no_support;
7181 break;
7182 }
7183 break;
7184
7185 case 0x0f08: /* invd */
7186 case 0x0f09: /* wbinvd */
7187 break;
7188
7189 case 0x63: /* arpl */
7190 if (i386_record_modrm (&ir))
7191 return -1;
7192 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7193 {
7194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7195 ? (ir.reg | rex_r) : ir.rm);
7196 }
7197 else
7198 {
7199 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7200 if (i386_record_lea_modrm (&ir))
7201 return -1;
7202 }
7203 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7205 break;
7206
7207 case 0x0f02: /* lar */
7208 case 0x0f03: /* lsl */
7209 if (i386_record_modrm (&ir))
7210 return -1;
7211 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7212 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7213 break;
7214
7215 case 0x0f18:
7216 if (i386_record_modrm (&ir))
7217 return -1;
7218 if (ir.mod == 3 && ir.reg == 3)
7219 {
7220 ir.addr -= 3;
7221 opcode = opcode << 8 | ir.modrm;
7222 goto no_support;
7223 }
7224 break;
7225
7226 case 0x0f19:
7227 case 0x0f1a:
7228 case 0x0f1b:
7229 case 0x0f1c:
7230 case 0x0f1d:
7231 case 0x0f1e:
7232 case 0x0f1f:
7233 /* nop (multi byte) */
7234 break;
7235
7236 case 0x0f20: /* mov reg, crN */
7237 case 0x0f22: /* mov crN, reg */
7238 if (i386_record_modrm (&ir))
7239 return -1;
7240 if ((ir.modrm & 0xc0) != 0xc0)
7241 {
7242 ir.addr -= 3;
7243 opcode = opcode << 8 | ir.modrm;
7244 goto no_support;
7245 }
7246 switch (ir.reg)
7247 {
7248 case 0:
7249 case 2:
7250 case 3:
7251 case 4:
7252 case 8:
7253 if (opcode & 2)
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7255 else
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7257 break;
7258 default:
7259 ir.addr -= 3;
7260 opcode = opcode << 8 | ir.modrm;
7261 goto no_support;
7262 break;
7263 }
7264 break;
7265
7266 case 0x0f21: /* mov reg, drN */
7267 case 0x0f23: /* mov drN, reg */
7268 if (i386_record_modrm (&ir))
7269 return -1;
7270 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7271 || ir.reg == 5 || ir.reg >= 8)
7272 {
7273 ir.addr -= 3;
7274 opcode = opcode << 8 | ir.modrm;
7275 goto no_support;
7276 }
7277 if (opcode & 2)
7278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7279 else
7280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7281 break;
7282
7283 case 0x0f06: /* clts */
7284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7285 break;
7286
7287 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7288
7289 case 0x0f0d: /* 3DNow! prefetch */
7290 break;
7291
7292 case 0x0f0e: /* 3DNow! femms */
7293 case 0x0f77: /* emms */
7294 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7295 goto no_support;
7296 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7297 break;
7298
7299 case 0x0f0f: /* 3DNow! data */
7300 if (i386_record_modrm (&ir))
7301 return -1;
7302 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7303 return -1;
7304 ir.addr++;
7305 switch (opcode8)
7306 {
7307 case 0x0c: /* 3DNow! pi2fw */
7308 case 0x0d: /* 3DNow! pi2fd */
7309 case 0x1c: /* 3DNow! pf2iw */
7310 case 0x1d: /* 3DNow! pf2id */
7311 case 0x8a: /* 3DNow! pfnacc */
7312 case 0x8e: /* 3DNow! pfpnacc */
7313 case 0x90: /* 3DNow! pfcmpge */
7314 case 0x94: /* 3DNow! pfmin */
7315 case 0x96: /* 3DNow! pfrcp */
7316 case 0x97: /* 3DNow! pfrsqrt */
7317 case 0x9a: /* 3DNow! pfsub */
7318 case 0x9e: /* 3DNow! pfadd */
7319 case 0xa0: /* 3DNow! pfcmpgt */
7320 case 0xa4: /* 3DNow! pfmax */
7321 case 0xa6: /* 3DNow! pfrcpit1 */
7322 case 0xa7: /* 3DNow! pfrsqit1 */
7323 case 0xaa: /* 3DNow! pfsubr */
7324 case 0xae: /* 3DNow! pfacc */
7325 case 0xb0: /* 3DNow! pfcmpeq */
7326 case 0xb4: /* 3DNow! pfmul */
7327 case 0xb6: /* 3DNow! pfrcpit2 */
7328 case 0xb7: /* 3DNow! pmulhrw */
7329 case 0xbb: /* 3DNow! pswapd */
7330 case 0xbf: /* 3DNow! pavgusb */
7331 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7332 goto no_support_3dnow_data;
7333 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7334 break;
7335
7336 default:
7337 no_support_3dnow_data:
7338 opcode = (opcode << 8) | opcode8;
7339 goto no_support;
7340 break;
7341 }
7342 break;
7343
7344 case 0x0faa: /* rsm */
7345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7354 break;
7355
7356 case 0x0fae:
7357 if (i386_record_modrm (&ir))
7358 return -1;
7359 switch(ir.reg)
7360 {
7361 case 0: /* fxsave */
7362 {
7363 uint64_t tmpu64;
7364
7365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7366 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7367 return -1;
7368 if (record_full_arch_list_add_mem (tmpu64, 512))
7369 return -1;
7370 }
7371 break;
7372
7373 case 1: /* fxrstor */
7374 {
7375 int i;
7376
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7378
7379 for (i = I387_MM0_REGNUM (tdep);
7380 i386_mmx_regnum_p (gdbarch, i); i++)
7381 record_full_arch_list_add_reg (ir.regcache, i);
7382
7383 for (i = I387_XMM0_REGNUM (tdep);
7384 i386_xmm_regnum_p (gdbarch, i); i++)
7385 record_full_arch_list_add_reg (ir.regcache, i);
7386
7387 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7388 record_full_arch_list_add_reg (ir.regcache,
7389 I387_MXCSR_REGNUM(tdep));
7390
7391 for (i = I387_ST0_REGNUM (tdep);
7392 i386_fp_regnum_p (gdbarch, i); i++)
7393 record_full_arch_list_add_reg (ir.regcache, i);
7394
7395 for (i = I387_FCTRL_REGNUM (tdep);
7396 i386_fpc_regnum_p (gdbarch, i); i++)
7397 record_full_arch_list_add_reg (ir.regcache, i);
7398 }
7399 break;
7400
7401 case 2: /* ldmxcsr */
7402 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7403 goto no_support;
7404 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7405 break;
7406
7407 case 3: /* stmxcsr */
7408 ir.ot = OT_LONG;
7409 if (i386_record_lea_modrm (&ir))
7410 return -1;
7411 break;
7412
7413 case 5: /* lfence */
7414 case 6: /* mfence */
7415 case 7: /* sfence clflush */
7416 break;
7417
7418 default:
7419 opcode = (opcode << 8) | ir.modrm;
7420 goto no_support;
7421 break;
7422 }
7423 break;
7424
7425 case 0x0fc3: /* movnti */
7426 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7427 if (i386_record_modrm (&ir))
7428 return -1;
7429 if (ir.mod == 3)
7430 goto no_support;
7431 ir.reg |= rex_r;
7432 if (i386_record_lea_modrm (&ir))
7433 return -1;
7434 break;
7435
7436 /* Add prefix to opcode. */
7437 case 0x0f10:
7438 case 0x0f11:
7439 case 0x0f12:
7440 case 0x0f13:
7441 case 0x0f14:
7442 case 0x0f15:
7443 case 0x0f16:
7444 case 0x0f17:
7445 case 0x0f28:
7446 case 0x0f29:
7447 case 0x0f2a:
7448 case 0x0f2b:
7449 case 0x0f2c:
7450 case 0x0f2d:
7451 case 0x0f2e:
7452 case 0x0f2f:
7453 case 0x0f38:
7454 case 0x0f39:
7455 case 0x0f3a:
7456 case 0x0f50:
7457 case 0x0f51:
7458 case 0x0f52:
7459 case 0x0f53:
7460 case 0x0f54:
7461 case 0x0f55:
7462 case 0x0f56:
7463 case 0x0f57:
7464 case 0x0f58:
7465 case 0x0f59:
7466 case 0x0f5a:
7467 case 0x0f5b:
7468 case 0x0f5c:
7469 case 0x0f5d:
7470 case 0x0f5e:
7471 case 0x0f5f:
7472 case 0x0f60:
7473 case 0x0f61:
7474 case 0x0f62:
7475 case 0x0f63:
7476 case 0x0f64:
7477 case 0x0f65:
7478 case 0x0f66:
7479 case 0x0f67:
7480 case 0x0f68:
7481 case 0x0f69:
7482 case 0x0f6a:
7483 case 0x0f6b:
7484 case 0x0f6c:
7485 case 0x0f6d:
7486 case 0x0f6e:
7487 case 0x0f6f:
7488 case 0x0f70:
7489 case 0x0f71:
7490 case 0x0f72:
7491 case 0x0f73:
7492 case 0x0f74:
7493 case 0x0f75:
7494 case 0x0f76:
7495 case 0x0f7c:
7496 case 0x0f7d:
7497 case 0x0f7e:
7498 case 0x0f7f:
7499 case 0x0fb8:
7500 case 0x0fc2:
7501 case 0x0fc4:
7502 case 0x0fc5:
7503 case 0x0fc6:
7504 case 0x0fd0:
7505 case 0x0fd1:
7506 case 0x0fd2:
7507 case 0x0fd3:
7508 case 0x0fd4:
7509 case 0x0fd5:
7510 case 0x0fd6:
7511 case 0x0fd7:
7512 case 0x0fd8:
7513 case 0x0fd9:
7514 case 0x0fda:
7515 case 0x0fdb:
7516 case 0x0fdc:
7517 case 0x0fdd:
7518 case 0x0fde:
7519 case 0x0fdf:
7520 case 0x0fe0:
7521 case 0x0fe1:
7522 case 0x0fe2:
7523 case 0x0fe3:
7524 case 0x0fe4:
7525 case 0x0fe5:
7526 case 0x0fe6:
7527 case 0x0fe7:
7528 case 0x0fe8:
7529 case 0x0fe9:
7530 case 0x0fea:
7531 case 0x0feb:
7532 case 0x0fec:
7533 case 0x0fed:
7534 case 0x0fee:
7535 case 0x0fef:
7536 case 0x0ff0:
7537 case 0x0ff1:
7538 case 0x0ff2:
7539 case 0x0ff3:
7540 case 0x0ff4:
7541 case 0x0ff5:
7542 case 0x0ff6:
7543 case 0x0ff7:
7544 case 0x0ff8:
7545 case 0x0ff9:
7546 case 0x0ffa:
7547 case 0x0ffb:
7548 case 0x0ffc:
7549 case 0x0ffd:
7550 case 0x0ffe:
7551 /* Mask out PREFIX_ADDR. */
7552 switch ((prefixes & ~PREFIX_ADDR))
7553 {
7554 case PREFIX_REPNZ:
7555 opcode |= 0xf20000;
7556 break;
7557 case PREFIX_DATA:
7558 opcode |= 0x660000;
7559 break;
7560 case PREFIX_REPZ:
7561 opcode |= 0xf30000;
7562 break;
7563 }
7564 reswitch_prefix_add:
7565 switch (opcode)
7566 {
7567 case 0x0f38:
7568 case 0x660f38:
7569 case 0xf20f38:
7570 case 0x0f3a:
7571 case 0x660f3a:
7572 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7573 return -1;
7574 ir.addr++;
7575 opcode = (uint32_t) opcode8 | opcode << 8;
7576 goto reswitch_prefix_add;
7577 break;
7578
7579 case 0x0f10: /* movups */
7580 case 0x660f10: /* movupd */
7581 case 0xf30f10: /* movss */
7582 case 0xf20f10: /* movsd */
7583 case 0x0f12: /* movlps */
7584 case 0x660f12: /* movlpd */
7585 case 0xf30f12: /* movsldup */
7586 case 0xf20f12: /* movddup */
7587 case 0x0f14: /* unpcklps */
7588 case 0x660f14: /* unpcklpd */
7589 case 0x0f15: /* unpckhps */
7590 case 0x660f15: /* unpckhpd */
7591 case 0x0f16: /* movhps */
7592 case 0x660f16: /* movhpd */
7593 case 0xf30f16: /* movshdup */
7594 case 0x0f28: /* movaps */
7595 case 0x660f28: /* movapd */
7596 case 0x0f2a: /* cvtpi2ps */
7597 case 0x660f2a: /* cvtpi2pd */
7598 case 0xf30f2a: /* cvtsi2ss */
7599 case 0xf20f2a: /* cvtsi2sd */
7600 case 0x0f2c: /* cvttps2pi */
7601 case 0x660f2c: /* cvttpd2pi */
7602 case 0x0f2d: /* cvtps2pi */
7603 case 0x660f2d: /* cvtpd2pi */
7604 case 0x660f3800: /* pshufb */
7605 case 0x660f3801: /* phaddw */
7606 case 0x660f3802: /* phaddd */
7607 case 0x660f3803: /* phaddsw */
7608 case 0x660f3804: /* pmaddubsw */
7609 case 0x660f3805: /* phsubw */
7610 case 0x660f3806: /* phsubd */
7611 case 0x660f3807: /* phsubsw */
7612 case 0x660f3808: /* psignb */
7613 case 0x660f3809: /* psignw */
7614 case 0x660f380a: /* psignd */
7615 case 0x660f380b: /* pmulhrsw */
7616 case 0x660f3810: /* pblendvb */
7617 case 0x660f3814: /* blendvps */
7618 case 0x660f3815: /* blendvpd */
7619 case 0x660f381c: /* pabsb */
7620 case 0x660f381d: /* pabsw */
7621 case 0x660f381e: /* pabsd */
7622 case 0x660f3820: /* pmovsxbw */
7623 case 0x660f3821: /* pmovsxbd */
7624 case 0x660f3822: /* pmovsxbq */
7625 case 0x660f3823: /* pmovsxwd */
7626 case 0x660f3824: /* pmovsxwq */
7627 case 0x660f3825: /* pmovsxdq */
7628 case 0x660f3828: /* pmuldq */
7629 case 0x660f3829: /* pcmpeqq */
7630 case 0x660f382a: /* movntdqa */
7631 case 0x660f3a08: /* roundps */
7632 case 0x660f3a09: /* roundpd */
7633 case 0x660f3a0a: /* roundss */
7634 case 0x660f3a0b: /* roundsd */
7635 case 0x660f3a0c: /* blendps */
7636 case 0x660f3a0d: /* blendpd */
7637 case 0x660f3a0e: /* pblendw */
7638 case 0x660f3a0f: /* palignr */
7639 case 0x660f3a20: /* pinsrb */
7640 case 0x660f3a21: /* insertps */
7641 case 0x660f3a22: /* pinsrd pinsrq */
7642 case 0x660f3a40: /* dpps */
7643 case 0x660f3a41: /* dppd */
7644 case 0x660f3a42: /* mpsadbw */
7645 case 0x660f3a60: /* pcmpestrm */
7646 case 0x660f3a61: /* pcmpestri */
7647 case 0x660f3a62: /* pcmpistrm */
7648 case 0x660f3a63: /* pcmpistri */
7649 case 0x0f51: /* sqrtps */
7650 case 0x660f51: /* sqrtpd */
7651 case 0xf20f51: /* sqrtsd */
7652 case 0xf30f51: /* sqrtss */
7653 case 0x0f52: /* rsqrtps */
7654 case 0xf30f52: /* rsqrtss */
7655 case 0x0f53: /* rcpps */
7656 case 0xf30f53: /* rcpss */
7657 case 0x0f54: /* andps */
7658 case 0x660f54: /* andpd */
7659 case 0x0f55: /* andnps */
7660 case 0x660f55: /* andnpd */
7661 case 0x0f56: /* orps */
7662 case 0x660f56: /* orpd */
7663 case 0x0f57: /* xorps */
7664 case 0x660f57: /* xorpd */
7665 case 0x0f58: /* addps */
7666 case 0x660f58: /* addpd */
7667 case 0xf20f58: /* addsd */
7668 case 0xf30f58: /* addss */
7669 case 0x0f59: /* mulps */
7670 case 0x660f59: /* mulpd */
7671 case 0xf20f59: /* mulsd */
7672 case 0xf30f59: /* mulss */
7673 case 0x0f5a: /* cvtps2pd */
7674 case 0x660f5a: /* cvtpd2ps */
7675 case 0xf20f5a: /* cvtsd2ss */
7676 case 0xf30f5a: /* cvtss2sd */
7677 case 0x0f5b: /* cvtdq2ps */
7678 case 0x660f5b: /* cvtps2dq */
7679 case 0xf30f5b: /* cvttps2dq */
7680 case 0x0f5c: /* subps */
7681 case 0x660f5c: /* subpd */
7682 case 0xf20f5c: /* subsd */
7683 case 0xf30f5c: /* subss */
7684 case 0x0f5d: /* minps */
7685 case 0x660f5d: /* minpd */
7686 case 0xf20f5d: /* minsd */
7687 case 0xf30f5d: /* minss */
7688 case 0x0f5e: /* divps */
7689 case 0x660f5e: /* divpd */
7690 case 0xf20f5e: /* divsd */
7691 case 0xf30f5e: /* divss */
7692 case 0x0f5f: /* maxps */
7693 case 0x660f5f: /* maxpd */
7694 case 0xf20f5f: /* maxsd */
7695 case 0xf30f5f: /* maxss */
7696 case 0x660f60: /* punpcklbw */
7697 case 0x660f61: /* punpcklwd */
7698 case 0x660f62: /* punpckldq */
7699 case 0x660f63: /* packsswb */
7700 case 0x660f64: /* pcmpgtb */
7701 case 0x660f65: /* pcmpgtw */
7702 case 0x660f66: /* pcmpgtd */
7703 case 0x660f67: /* packuswb */
7704 case 0x660f68: /* punpckhbw */
7705 case 0x660f69: /* punpckhwd */
7706 case 0x660f6a: /* punpckhdq */
7707 case 0x660f6b: /* packssdw */
7708 case 0x660f6c: /* punpcklqdq */
7709 case 0x660f6d: /* punpckhqdq */
7710 case 0x660f6e: /* movd */
7711 case 0x660f6f: /* movdqa */
7712 case 0xf30f6f: /* movdqu */
7713 case 0x660f70: /* pshufd */
7714 case 0xf20f70: /* pshuflw */
7715 case 0xf30f70: /* pshufhw */
7716 case 0x660f74: /* pcmpeqb */
7717 case 0x660f75: /* pcmpeqw */
7718 case 0x660f76: /* pcmpeqd */
7719 case 0x660f7c: /* haddpd */
7720 case 0xf20f7c: /* haddps */
7721 case 0x660f7d: /* hsubpd */
7722 case 0xf20f7d: /* hsubps */
7723 case 0xf30f7e: /* movq */
7724 case 0x0fc2: /* cmpps */
7725 case 0x660fc2: /* cmppd */
7726 case 0xf20fc2: /* cmpsd */
7727 case 0xf30fc2: /* cmpss */
7728 case 0x660fc4: /* pinsrw */
7729 case 0x0fc6: /* shufps */
7730 case 0x660fc6: /* shufpd */
7731 case 0x660fd0: /* addsubpd */
7732 case 0xf20fd0: /* addsubps */
7733 case 0x660fd1: /* psrlw */
7734 case 0x660fd2: /* psrld */
7735 case 0x660fd3: /* psrlq */
7736 case 0x660fd4: /* paddq */
7737 case 0x660fd5: /* pmullw */
7738 case 0xf30fd6: /* movq2dq */
7739 case 0x660fd8: /* psubusb */
7740 case 0x660fd9: /* psubusw */
7741 case 0x660fda: /* pminub */
7742 case 0x660fdb: /* pand */
7743 case 0x660fdc: /* paddusb */
7744 case 0x660fdd: /* paddusw */
7745 case 0x660fde: /* pmaxub */
7746 case 0x660fdf: /* pandn */
7747 case 0x660fe0: /* pavgb */
7748 case 0x660fe1: /* psraw */
7749 case 0x660fe2: /* psrad */
7750 case 0x660fe3: /* pavgw */
7751 case 0x660fe4: /* pmulhuw */
7752 case 0x660fe5: /* pmulhw */
7753 case 0x660fe6: /* cvttpd2dq */
7754 case 0xf20fe6: /* cvtpd2dq */
7755 case 0xf30fe6: /* cvtdq2pd */
7756 case 0x660fe8: /* psubsb */
7757 case 0x660fe9: /* psubsw */
7758 case 0x660fea: /* pminsw */
7759 case 0x660feb: /* por */
7760 case 0x660fec: /* paddsb */
7761 case 0x660fed: /* paddsw */
7762 case 0x660fee: /* pmaxsw */
7763 case 0x660fef: /* pxor */
7764 case 0xf20ff0: /* lddqu */
7765 case 0x660ff1: /* psllw */
7766 case 0x660ff2: /* pslld */
7767 case 0x660ff3: /* psllq */
7768 case 0x660ff4: /* pmuludq */
7769 case 0x660ff5: /* pmaddwd */
7770 case 0x660ff6: /* psadbw */
7771 case 0x660ff8: /* psubb */
7772 case 0x660ff9: /* psubw */
7773 case 0x660ffa: /* psubd */
7774 case 0x660ffb: /* psubq */
7775 case 0x660ffc: /* paddb */
7776 case 0x660ffd: /* paddw */
7777 case 0x660ffe: /* paddd */
7778 if (i386_record_modrm (&ir))
7779 return -1;
7780 ir.reg |= rex_r;
7781 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7782 goto no_support;
7783 record_full_arch_list_add_reg (ir.regcache,
7784 I387_XMM0_REGNUM (tdep) + ir.reg);
7785 if ((opcode & 0xfffffffc) == 0x660f3a60)
7786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7787 break;
7788
7789 case 0x0f11: /* movups */
7790 case 0x660f11: /* movupd */
7791 case 0xf30f11: /* movss */
7792 case 0xf20f11: /* movsd */
7793 case 0x0f13: /* movlps */
7794 case 0x660f13: /* movlpd */
7795 case 0x0f17: /* movhps */
7796 case 0x660f17: /* movhpd */
7797 case 0x0f29: /* movaps */
7798 case 0x660f29: /* movapd */
7799 case 0x660f3a14: /* pextrb */
7800 case 0x660f3a15: /* pextrw */
7801 case 0x660f3a16: /* pextrd pextrq */
7802 case 0x660f3a17: /* extractps */
7803 case 0x660f7f: /* movdqa */
7804 case 0xf30f7f: /* movdqu */
7805 if (i386_record_modrm (&ir))
7806 return -1;
7807 if (ir.mod == 3)
7808 {
7809 if (opcode == 0x0f13 || opcode == 0x660f13
7810 || opcode == 0x0f17 || opcode == 0x660f17)
7811 goto no_support;
7812 ir.rm |= ir.rex_b;
7813 if (!i386_xmm_regnum_p (gdbarch,
7814 I387_XMM0_REGNUM (tdep) + ir.rm))
7815 goto no_support;
7816 record_full_arch_list_add_reg (ir.regcache,
7817 I387_XMM0_REGNUM (tdep) + ir.rm);
7818 }
7819 else
7820 {
7821 switch (opcode)
7822 {
7823 case 0x660f3a14:
7824 ir.ot = OT_BYTE;
7825 break;
7826 case 0x660f3a15:
7827 ir.ot = OT_WORD;
7828 break;
7829 case 0x660f3a16:
7830 ir.ot = OT_LONG;
7831 break;
7832 case 0x660f3a17:
7833 ir.ot = OT_QUAD;
7834 break;
7835 default:
7836 ir.ot = OT_DQUAD;
7837 break;
7838 }
7839 if (i386_record_lea_modrm (&ir))
7840 return -1;
7841 }
7842 break;
7843
7844 case 0x0f2b: /* movntps */
7845 case 0x660f2b: /* movntpd */
7846 case 0x0fe7: /* movntq */
7847 case 0x660fe7: /* movntdq */
7848 if (ir.mod == 3)
7849 goto no_support;
7850 if (opcode == 0x0fe7)
7851 ir.ot = OT_QUAD;
7852 else
7853 ir.ot = OT_DQUAD;
7854 if (i386_record_lea_modrm (&ir))
7855 return -1;
7856 break;
7857
7858 case 0xf30f2c: /* cvttss2si */
7859 case 0xf20f2c: /* cvttsd2si */
7860 case 0xf30f2d: /* cvtss2si */
7861 case 0xf20f2d: /* cvtsd2si */
7862 case 0xf20f38f0: /* crc32 */
7863 case 0xf20f38f1: /* crc32 */
7864 case 0x0f50: /* movmskps */
7865 case 0x660f50: /* movmskpd */
7866 case 0x0fc5: /* pextrw */
7867 case 0x660fc5: /* pextrw */
7868 case 0x0fd7: /* pmovmskb */
7869 case 0x660fd7: /* pmovmskb */
7870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7871 break;
7872
7873 case 0x0f3800: /* pshufb */
7874 case 0x0f3801: /* phaddw */
7875 case 0x0f3802: /* phaddd */
7876 case 0x0f3803: /* phaddsw */
7877 case 0x0f3804: /* pmaddubsw */
7878 case 0x0f3805: /* phsubw */
7879 case 0x0f3806: /* phsubd */
7880 case 0x0f3807: /* phsubsw */
7881 case 0x0f3808: /* psignb */
7882 case 0x0f3809: /* psignw */
7883 case 0x0f380a: /* psignd */
7884 case 0x0f380b: /* pmulhrsw */
7885 case 0x0f381c: /* pabsb */
7886 case 0x0f381d: /* pabsw */
7887 case 0x0f381e: /* pabsd */
7888 case 0x0f382b: /* packusdw */
7889 case 0x0f3830: /* pmovzxbw */
7890 case 0x0f3831: /* pmovzxbd */
7891 case 0x0f3832: /* pmovzxbq */
7892 case 0x0f3833: /* pmovzxwd */
7893 case 0x0f3834: /* pmovzxwq */
7894 case 0x0f3835: /* pmovzxdq */
7895 case 0x0f3837: /* pcmpgtq */
7896 case 0x0f3838: /* pminsb */
7897 case 0x0f3839: /* pminsd */
7898 case 0x0f383a: /* pminuw */
7899 case 0x0f383b: /* pminud */
7900 case 0x0f383c: /* pmaxsb */
7901 case 0x0f383d: /* pmaxsd */
7902 case 0x0f383e: /* pmaxuw */
7903 case 0x0f383f: /* pmaxud */
7904 case 0x0f3840: /* pmulld */
7905 case 0x0f3841: /* phminposuw */
7906 case 0x0f3a0f: /* palignr */
7907 case 0x0f60: /* punpcklbw */
7908 case 0x0f61: /* punpcklwd */
7909 case 0x0f62: /* punpckldq */
7910 case 0x0f63: /* packsswb */
7911 case 0x0f64: /* pcmpgtb */
7912 case 0x0f65: /* pcmpgtw */
7913 case 0x0f66: /* pcmpgtd */
7914 case 0x0f67: /* packuswb */
7915 case 0x0f68: /* punpckhbw */
7916 case 0x0f69: /* punpckhwd */
7917 case 0x0f6a: /* punpckhdq */
7918 case 0x0f6b: /* packssdw */
7919 case 0x0f6e: /* movd */
7920 case 0x0f6f: /* movq */
7921 case 0x0f70: /* pshufw */
7922 case 0x0f74: /* pcmpeqb */
7923 case 0x0f75: /* pcmpeqw */
7924 case 0x0f76: /* pcmpeqd */
7925 case 0x0fc4: /* pinsrw */
7926 case 0x0fd1: /* psrlw */
7927 case 0x0fd2: /* psrld */
7928 case 0x0fd3: /* psrlq */
7929 case 0x0fd4: /* paddq */
7930 case 0x0fd5: /* pmullw */
7931 case 0xf20fd6: /* movdq2q */
7932 case 0x0fd8: /* psubusb */
7933 case 0x0fd9: /* psubusw */
7934 case 0x0fda: /* pminub */
7935 case 0x0fdb: /* pand */
7936 case 0x0fdc: /* paddusb */
7937 case 0x0fdd: /* paddusw */
7938 case 0x0fde: /* pmaxub */
7939 case 0x0fdf: /* pandn */
7940 case 0x0fe0: /* pavgb */
7941 case 0x0fe1: /* psraw */
7942 case 0x0fe2: /* psrad */
7943 case 0x0fe3: /* pavgw */
7944 case 0x0fe4: /* pmulhuw */
7945 case 0x0fe5: /* pmulhw */
7946 case 0x0fe8: /* psubsb */
7947 case 0x0fe9: /* psubsw */
7948 case 0x0fea: /* pminsw */
7949 case 0x0feb: /* por */
7950 case 0x0fec: /* paddsb */
7951 case 0x0fed: /* paddsw */
7952 case 0x0fee: /* pmaxsw */
7953 case 0x0fef: /* pxor */
7954 case 0x0ff1: /* psllw */
7955 case 0x0ff2: /* pslld */
7956 case 0x0ff3: /* psllq */
7957 case 0x0ff4: /* pmuludq */
7958 case 0x0ff5: /* pmaddwd */
7959 case 0x0ff6: /* psadbw */
7960 case 0x0ff8: /* psubb */
7961 case 0x0ff9: /* psubw */
7962 case 0x0ffa: /* psubd */
7963 case 0x0ffb: /* psubq */
7964 case 0x0ffc: /* paddb */
7965 case 0x0ffd: /* paddw */
7966 case 0x0ffe: /* paddd */
7967 if (i386_record_modrm (&ir))
7968 return -1;
7969 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7970 goto no_support;
7971 record_full_arch_list_add_reg (ir.regcache,
7972 I387_MM0_REGNUM (tdep) + ir.reg);
7973 break;
7974
7975 case 0x0f71: /* psllw */
7976 case 0x0f72: /* pslld */
7977 case 0x0f73: /* psllq */
7978 if (i386_record_modrm (&ir))
7979 return -1;
7980 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7981 goto no_support;
7982 record_full_arch_list_add_reg (ir.regcache,
7983 I387_MM0_REGNUM (tdep) + ir.rm);
7984 break;
7985
7986 case 0x660f71: /* psllw */
7987 case 0x660f72: /* pslld */
7988 case 0x660f73: /* psllq */
7989 if (i386_record_modrm (&ir))
7990 return -1;
7991 ir.rm |= ir.rex_b;
7992 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7993 goto no_support;
7994 record_full_arch_list_add_reg (ir.regcache,
7995 I387_XMM0_REGNUM (tdep) + ir.rm);
7996 break;
7997
7998 case 0x0f7e: /* movd */
7999 case 0x660f7e: /* movd */
8000 if (i386_record_modrm (&ir))
8001 return -1;
8002 if (ir.mod == 3)
8003 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8004 else
8005 {
8006 if (ir.dflag == 2)
8007 ir.ot = OT_QUAD;
8008 else
8009 ir.ot = OT_LONG;
8010 if (i386_record_lea_modrm (&ir))
8011 return -1;
8012 }
8013 break;
8014
8015 case 0x0f7f: /* movq */
8016 if (i386_record_modrm (&ir))
8017 return -1;
8018 if (ir.mod == 3)
8019 {
8020 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8021 goto no_support;
8022 record_full_arch_list_add_reg (ir.regcache,
8023 I387_MM0_REGNUM (tdep) + ir.rm);
8024 }
8025 else
8026 {
8027 ir.ot = OT_QUAD;
8028 if (i386_record_lea_modrm (&ir))
8029 return -1;
8030 }
8031 break;
8032
8033 case 0xf30fb8: /* popcnt */
8034 if (i386_record_modrm (&ir))
8035 return -1;
8036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8037 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8038 break;
8039
8040 case 0x660fd6: /* movq */
8041 if (i386_record_modrm (&ir))
8042 return -1;
8043 if (ir.mod == 3)
8044 {
8045 ir.rm |= ir.rex_b;
8046 if (!i386_xmm_regnum_p (gdbarch,
8047 I387_XMM0_REGNUM (tdep) + ir.rm))
8048 goto no_support;
8049 record_full_arch_list_add_reg (ir.regcache,
8050 I387_XMM0_REGNUM (tdep) + ir.rm);
8051 }
8052 else
8053 {
8054 ir.ot = OT_QUAD;
8055 if (i386_record_lea_modrm (&ir))
8056 return -1;
8057 }
8058 break;
8059
8060 case 0x660f3817: /* ptest */
8061 case 0x0f2e: /* ucomiss */
8062 case 0x660f2e: /* ucomisd */
8063 case 0x0f2f: /* comiss */
8064 case 0x660f2f: /* comisd */
8065 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8066 break;
8067
8068 case 0x0ff7: /* maskmovq */
8069 regcache_raw_read_unsigned (ir.regcache,
8070 ir.regmap[X86_RECORD_REDI_REGNUM],
8071 &addr);
8072 if (record_full_arch_list_add_mem (addr, 64))
8073 return -1;
8074 break;
8075
8076 case 0x660ff7: /* maskmovdqu */
8077 regcache_raw_read_unsigned (ir.regcache,
8078 ir.regmap[X86_RECORD_REDI_REGNUM],
8079 &addr);
8080 if (record_full_arch_list_add_mem (addr, 128))
8081 return -1;
8082 break;
8083
8084 default:
8085 goto no_support;
8086 break;
8087 }
8088 break;
8089
8090 default:
8091 goto no_support;
8092 break;
8093 }
8094
8095 /* In the future, maybe still need to deal with need_dasm. */
8096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8097 if (record_full_arch_list_add_end ())
8098 return -1;
8099
8100 return 0;
8101
8102 no_support:
8103 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8104 "at address %s.\n"),
8105 (unsigned int) (opcode),
8106 paddress (gdbarch, ir.orig_addr));
8107 return -1;
8108 }
8109
8110 static const int i386_record_regmap[] =
8111 {
8112 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8113 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8114 0, 0, 0, 0, 0, 0, 0, 0,
8115 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8116 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8117 };
8118
8119 /* Check that the given address appears suitable for a fast
8120 tracepoint, which on x86-64 means that we need an instruction of at
8121 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8122 jump and not have to worry about program jumps to an address in the
8123 middle of the tracepoint jump. On x86, it may be possible to use
8124 4-byte jumps with a 2-byte offset to a trampoline located in the
8125 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8126 of instruction to replace, and 0 if not, plus an explanatory
8127 string. */
8128
8129 static int
8130 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8131 std::string *msg)
8132 {
8133 int len, jumplen;
8134
8135 /* Ask the target for the minimum instruction length supported. */
8136 jumplen = target_get_min_fast_tracepoint_insn_len ();
8137
8138 if (jumplen < 0)
8139 {
8140 /* If the target does not support the get_min_fast_tracepoint_insn_len
8141 operation, assume that fast tracepoints will always be implemented
8142 using 4-byte relative jumps on both x86 and x86-64. */
8143 jumplen = 5;
8144 }
8145 else if (jumplen == 0)
8146 {
8147 /* If the target does support get_min_fast_tracepoint_insn_len but
8148 returns zero, then the IPA has not loaded yet. In this case,
8149 we optimistically assume that truncated 2-byte relative jumps
8150 will be available on x86, and compensate later if this assumption
8151 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8152 jumps will always be used. */
8153 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8154 }
8155
8156 /* Check for fit. */
8157 len = gdb_insn_length (gdbarch, addr);
8158
8159 if (len < jumplen)
8160 {
8161 /* Return a bit of target-specific detail to add to the caller's
8162 generic failure message. */
8163 if (msg)
8164 *msg = string_printf (_("; instruction is only %d bytes long, "
8165 "need at least %d bytes for the jump"),
8166 len, jumplen);
8167 return 0;
8168 }
8169 else
8170 {
8171 if (msg)
8172 msg->clear ();
8173 return 1;
8174 }
8175 }
8176
8177 /* Return a floating-point format for a floating-point variable of
8178 length LEN in bits. If non-NULL, NAME is the name of its type.
8179 If no suitable type is found, return NULL. */
8180
8181 static const struct floatformat **
8182 i386_floatformat_for_type (struct gdbarch *gdbarch,
8183 const char *name, int len)
8184 {
8185 if (len == 128 && name)
8186 if (strcmp (name, "__float128") == 0
8187 || strcmp (name, "_Float128") == 0
8188 || strcmp (name, "complex _Float128") == 0
8189 || strcmp (name, "complex(kind=16)") == 0
8190 || strcmp (name, "real(kind=16)") == 0)
8191 return floatformats_ia64_quad;
8192
8193 return default_floatformat_for_type (gdbarch, name, len);
8194 }
8195
8196 static int
8197 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8198 struct tdesc_arch_data *tdesc_data)
8199 {
8200 const struct target_desc *tdesc = tdep->tdesc;
8201 const struct tdesc_feature *feature_core;
8202
8203 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8204 *feature_avx512, *feature_pkeys, *feature_segments;
8205 int i, num_regs, valid_p;
8206
8207 if (! tdesc_has_registers (tdesc))
8208 return 0;
8209
8210 /* Get core registers. */
8211 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8212 if (feature_core == NULL)
8213 return 0;
8214
8215 /* Get SSE registers. */
8216 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8217
8218 /* Try AVX registers. */
8219 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8220
8221 /* Try MPX registers. */
8222 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8223
8224 /* Try AVX512 registers. */
8225 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8226
8227 /* Try segment base registers. */
8228 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8229
8230 /* Try PKEYS */
8231 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8232
8233 valid_p = 1;
8234
8235 /* The XCR0 bits. */
8236 if (feature_avx512)
8237 {
8238 /* AVX512 register description requires AVX register description. */
8239 if (!feature_avx)
8240 return 0;
8241
8242 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8243
8244 /* It may have been set by OSABI initialization function. */
8245 if (tdep->k0_regnum < 0)
8246 {
8247 tdep->k_register_names = i386_k_names;
8248 tdep->k0_regnum = I386_K0_REGNUM;
8249 }
8250
8251 for (i = 0; i < I387_NUM_K_REGS; i++)
8252 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8253 tdep->k0_regnum + i,
8254 i386_k_names[i]);
8255
8256 if (tdep->num_zmm_regs == 0)
8257 {
8258 tdep->zmmh_register_names = i386_zmmh_names;
8259 tdep->num_zmm_regs = 8;
8260 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8261 }
8262
8263 for (i = 0; i < tdep->num_zmm_regs; i++)
8264 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8265 tdep->zmm0h_regnum + i,
8266 tdep->zmmh_register_names[i]);
8267
8268 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8269 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8270 tdep->xmm16_regnum + i,
8271 tdep->xmm_avx512_register_names[i]);
8272
8273 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8274 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8275 tdep->ymm16h_regnum + i,
8276 tdep->ymm16h_register_names[i]);
8277 }
8278 if (feature_avx)
8279 {
8280 /* AVX register description requires SSE register description. */
8281 if (!feature_sse)
8282 return 0;
8283
8284 if (!feature_avx512)
8285 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8286
8287 /* It may have been set by OSABI initialization function. */
8288 if (tdep->num_ymm_regs == 0)
8289 {
8290 tdep->ymmh_register_names = i386_ymmh_names;
8291 tdep->num_ymm_regs = 8;
8292 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8293 }
8294
8295 for (i = 0; i < tdep->num_ymm_regs; i++)
8296 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8297 tdep->ymm0h_regnum + i,
8298 tdep->ymmh_register_names[i]);
8299 }
8300 else if (feature_sse)
8301 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8302 else
8303 {
8304 tdep->xcr0 = X86_XSTATE_X87_MASK;
8305 tdep->num_xmm_regs = 0;
8306 }
8307
8308 num_regs = tdep->num_core_regs;
8309 for (i = 0; i < num_regs; i++)
8310 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8311 tdep->register_names[i]);
8312
8313 if (feature_sse)
8314 {
8315 /* Need to include %mxcsr, so add one. */
8316 num_regs += tdep->num_xmm_regs + 1;
8317 for (; i < num_regs; i++)
8318 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8319 tdep->register_names[i]);
8320 }
8321
8322 if (feature_mpx)
8323 {
8324 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8325
8326 if (tdep->bnd0r_regnum < 0)
8327 {
8328 tdep->mpx_register_names = i386_mpx_names;
8329 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8330 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8331 }
8332
8333 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8334 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8335 I387_BND0R_REGNUM (tdep) + i,
8336 tdep->mpx_register_names[i]);
8337 }
8338
8339 if (feature_segments)
8340 {
8341 if (tdep->fsbase_regnum < 0)
8342 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8343 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8344 tdep->fsbase_regnum, "fs_base");
8345 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8346 tdep->fsbase_regnum + 1, "gs_base");
8347 }
8348
8349 if (feature_pkeys)
8350 {
8351 tdep->xcr0 |= X86_XSTATE_PKRU;
8352 if (tdep->pkru_regnum < 0)
8353 {
8354 tdep->pkeys_register_names = i386_pkeys_names;
8355 tdep->pkru_regnum = I386_PKRU_REGNUM;
8356 tdep->num_pkeys_regs = 1;
8357 }
8358
8359 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8360 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8361 I387_PKRU_REGNUM (tdep) + i,
8362 tdep->pkeys_register_names[i]);
8363 }
8364
8365 return valid_p;
8366 }
8367
8368 \f
8369
8370 /* Implement the type_align gdbarch function. */
8371
8372 static ULONGEST
8373 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8374 {
8375 type = check_typedef (type);
8376
8377 if (gdbarch_ptr_bit (gdbarch) == 32)
8378 {
8379 if ((TYPE_CODE (type) == TYPE_CODE_INT
8380 || TYPE_CODE (type) == TYPE_CODE_FLT)
8381 && TYPE_LENGTH (type) > 4)
8382 return 4;
8383
8384 /* Handle x86's funny long double. */
8385 if (TYPE_CODE (type) == TYPE_CODE_FLT
8386 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8387 return 4;
8388 }
8389
8390 return 0;
8391 }
8392
8393 \f
8394 /* Note: This is called for both i386 and amd64. */
8395
8396 static struct gdbarch *
8397 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8398 {
8399 struct gdbarch_tdep *tdep;
8400 struct gdbarch *gdbarch;
8401 struct tdesc_arch_data *tdesc_data;
8402 const struct target_desc *tdesc;
8403 int mm0_regnum;
8404 int ymm0_regnum;
8405 int bnd0_regnum;
8406 int num_bnd_cooked;
8407
8408 /* If there is already a candidate, use it. */
8409 arches = gdbarch_list_lookup_by_info (arches, &info);
8410 if (arches != NULL)
8411 return arches->gdbarch;
8412
8413 /* Allocate space for the new architecture. Assume i386 for now. */
8414 tdep = XCNEW (struct gdbarch_tdep);
8415 gdbarch = gdbarch_alloc (&info, tdep);
8416
8417 /* General-purpose registers. */
8418 tdep->gregset_reg_offset = NULL;
8419 tdep->gregset_num_regs = I386_NUM_GREGS;
8420 tdep->sizeof_gregset = 0;
8421
8422 /* Floating-point registers. */
8423 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8424 tdep->fpregset = &i386_fpregset;
8425
8426 /* The default settings include the FPU registers, the MMX registers
8427 and the SSE registers. This can be overridden for a specific ABI
8428 by adjusting the members `st0_regnum', `mm0_regnum' and
8429 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8430 will show up in the output of "info all-registers". */
8431
8432 tdep->st0_regnum = I386_ST0_REGNUM;
8433
8434 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8435 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8436
8437 tdep->jb_pc_offset = -1;
8438 tdep->struct_return = pcc_struct_return;
8439 tdep->sigtramp_start = 0;
8440 tdep->sigtramp_end = 0;
8441 tdep->sigtramp_p = i386_sigtramp_p;
8442 tdep->sigcontext_addr = NULL;
8443 tdep->sc_reg_offset = NULL;
8444 tdep->sc_pc_offset = -1;
8445 tdep->sc_sp_offset = -1;
8446
8447 tdep->xsave_xcr0_offset = -1;
8448
8449 tdep->record_regmap = i386_record_regmap;
8450
8451 set_gdbarch_type_align (gdbarch, i386_type_align);
8452
8453 /* The format used for `long double' on almost all i386 targets is
8454 the i387 extended floating-point format. In fact, of all targets
8455 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8456 on having a `long double' that's not `long' at all. */
8457 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8458
8459 /* Although the i387 extended floating-point has only 80 significant
8460 bits, a `long double' actually takes up 96, probably to enforce
8461 alignment. */
8462 set_gdbarch_long_double_bit (gdbarch, 96);
8463
8464 /* Support for floating-point data type variants. */
8465 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8466
8467 /* Register numbers of various important registers. */
8468 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8469 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8470 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8471 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8472
8473 /* NOTE: kettenis/20040418: GCC does have two possible register
8474 numbering schemes on the i386: dbx and SVR4. These schemes
8475 differ in how they number %ebp, %esp, %eflags, and the
8476 floating-point registers, and are implemented by the arrays
8477 dbx_register_map[] and svr4_dbx_register_map in
8478 gcc/config/i386.c. GCC also defines a third numbering scheme in
8479 gcc/config/i386.c, which it designates as the "default" register
8480 map used in 64bit mode. This last register numbering scheme is
8481 implemented in dbx64_register_map, and is used for AMD64; see
8482 amd64-tdep.c.
8483
8484 Currently, each GCC i386 target always uses the same register
8485 numbering scheme across all its supported debugging formats
8486 i.e. SDB (COFF), stabs and DWARF 2. This is because
8487 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8488 DBX_REGISTER_NUMBER macro which is defined by each target's
8489 respective config header in a manner independent of the requested
8490 output debugging format.
8491
8492 This does not match the arrangement below, which presumes that
8493 the SDB and stabs numbering schemes differ from the DWARF and
8494 DWARF 2 ones. The reason for this arrangement is that it is
8495 likely to get the numbering scheme for the target's
8496 default/native debug format right. For targets where GCC is the
8497 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8498 targets where the native toolchain uses a different numbering
8499 scheme for a particular debug format (stabs-in-ELF on Solaris)
8500 the defaults below will have to be overridden, like
8501 i386_elf_init_abi() does. */
8502
8503 /* Use the dbx register numbering scheme for stabs and COFF. */
8504 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8505 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8506
8507 /* Use the SVR4 register numbering scheme for DWARF 2. */
8508 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8509
8510 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8511 be in use on any of the supported i386 targets. */
8512
8513 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8514
8515 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8516
8517 /* Call dummy code. */
8518 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8519 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8520 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8521 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8522
8523 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8524 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8525 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8526
8527 set_gdbarch_return_value (gdbarch, i386_return_value);
8528
8529 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8530
8531 /* Stack grows downward. */
8532 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8533
8534 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8535 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8536
8537 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8538 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8539
8540 set_gdbarch_frame_args_skip (gdbarch, 8);
8541
8542 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8543
8544 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8545
8546 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8547
8548 /* Add the i386 register groups. */
8549 i386_add_reggroups (gdbarch);
8550 tdep->register_reggroup_p = i386_register_reggroup_p;
8551
8552 /* Helper for function argument information. */
8553 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8554
8555 /* Hook the function epilogue frame unwinder. This unwinder is
8556 appended to the list first, so that it supercedes the DWARF
8557 unwinder in function epilogues (where the DWARF unwinder
8558 currently fails). */
8559 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8560
8561 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8562 to the list before the prologue-based unwinders, so that DWARF
8563 CFI info will be used if it is available. */
8564 dwarf2_append_unwinders (gdbarch);
8565
8566 frame_base_set_default (gdbarch, &i386_frame_base);
8567
8568 /* Pseudo registers may be changed by amd64_init_abi. */
8569 set_gdbarch_pseudo_register_read_value (gdbarch,
8570 i386_pseudo_register_read_value);
8571 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8572 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8573 i386_ax_pseudo_register_collect);
8574
8575 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8576 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8577
8578 /* Override the normal target description method to make the AVX
8579 upper halves anonymous. */
8580 set_gdbarch_register_name (gdbarch, i386_register_name);
8581
8582 /* Even though the default ABI only includes general-purpose registers,
8583 floating-point registers and the SSE registers, we have to leave a
8584 gap for the upper AVX, MPX and AVX512 registers. */
8585 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8586
8587 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8588
8589 /* Get the x86 target description from INFO. */
8590 tdesc = info.target_desc;
8591 if (! tdesc_has_registers (tdesc))
8592 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8593 tdep->tdesc = tdesc;
8594
8595 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8596 tdep->register_names = i386_register_names;
8597
8598 /* No upper YMM registers. */
8599 tdep->ymmh_register_names = NULL;
8600 tdep->ymm0h_regnum = -1;
8601
8602 /* No upper ZMM registers. */
8603 tdep->zmmh_register_names = NULL;
8604 tdep->zmm0h_regnum = -1;
8605
8606 /* No high XMM registers. */
8607 tdep->xmm_avx512_register_names = NULL;
8608 tdep->xmm16_regnum = -1;
8609
8610 /* No upper YMM16-31 registers. */
8611 tdep->ymm16h_register_names = NULL;
8612 tdep->ymm16h_regnum = -1;
8613
8614 tdep->num_byte_regs = 8;
8615 tdep->num_word_regs = 8;
8616 tdep->num_dword_regs = 0;
8617 tdep->num_mmx_regs = 8;
8618 tdep->num_ymm_regs = 0;
8619
8620 /* No MPX registers. */
8621 tdep->bnd0r_regnum = -1;
8622 tdep->bndcfgu_regnum = -1;
8623
8624 /* No AVX512 registers. */
8625 tdep->k0_regnum = -1;
8626 tdep->num_zmm_regs = 0;
8627 tdep->num_ymm_avx512_regs = 0;
8628 tdep->num_xmm_avx512_regs = 0;
8629
8630 /* No PKEYS registers */
8631 tdep->pkru_regnum = -1;
8632 tdep->num_pkeys_regs = 0;
8633
8634 /* No segment base registers. */
8635 tdep->fsbase_regnum = -1;
8636
8637 tdesc_data = tdesc_data_alloc ();
8638
8639 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8640
8641 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8642
8643 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8644 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8645 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8646
8647 /* Hook in ABI-specific overrides, if they have been registered.
8648 Note: If INFO specifies a 64 bit arch, this is where we turn
8649 a 32-bit i386 into a 64-bit amd64. */
8650 info.tdesc_data = tdesc_data;
8651 gdbarch_init_osabi (info, gdbarch);
8652
8653 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8654 {
8655 tdesc_data_cleanup (tdesc_data);
8656 xfree (tdep);
8657 gdbarch_free (gdbarch);
8658 return NULL;
8659 }
8660
8661 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8662
8663 /* Wire in pseudo registers. Number of pseudo registers may be
8664 changed. */
8665 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8666 + tdep->num_word_regs
8667 + tdep->num_dword_regs
8668 + tdep->num_mmx_regs
8669 + tdep->num_ymm_regs
8670 + num_bnd_cooked
8671 + tdep->num_ymm_avx512_regs
8672 + tdep->num_zmm_regs));
8673
8674 /* Target description may be changed. */
8675 tdesc = tdep->tdesc;
8676
8677 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8678
8679 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8680 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8681
8682 /* Make %al the first pseudo-register. */
8683 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8684 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8685
8686 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8687 if (tdep->num_dword_regs)
8688 {
8689 /* Support dword pseudo-register if it hasn't been disabled. */
8690 tdep->eax_regnum = ymm0_regnum;
8691 ymm0_regnum += tdep->num_dword_regs;
8692 }
8693 else
8694 tdep->eax_regnum = -1;
8695
8696 mm0_regnum = ymm0_regnum;
8697 if (tdep->num_ymm_regs)
8698 {
8699 /* Support YMM pseudo-register if it is available. */
8700 tdep->ymm0_regnum = ymm0_regnum;
8701 mm0_regnum += tdep->num_ymm_regs;
8702 }
8703 else
8704 tdep->ymm0_regnum = -1;
8705
8706 if (tdep->num_ymm_avx512_regs)
8707 {
8708 /* Support YMM16-31 pseudo registers if available. */
8709 tdep->ymm16_regnum = mm0_regnum;
8710 mm0_regnum += tdep->num_ymm_avx512_regs;
8711 }
8712 else
8713 tdep->ymm16_regnum = -1;
8714
8715 if (tdep->num_zmm_regs)
8716 {
8717 /* Support ZMM pseudo-register if it is available. */
8718 tdep->zmm0_regnum = mm0_regnum;
8719 mm0_regnum += tdep->num_zmm_regs;
8720 }
8721 else
8722 tdep->zmm0_regnum = -1;
8723
8724 bnd0_regnum = mm0_regnum;
8725 if (tdep->num_mmx_regs != 0)
8726 {
8727 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8728 tdep->mm0_regnum = mm0_regnum;
8729 bnd0_regnum += tdep->num_mmx_regs;
8730 }
8731 else
8732 tdep->mm0_regnum = -1;
8733
8734 if (tdep->bnd0r_regnum > 0)
8735 tdep->bnd0_regnum = bnd0_regnum;
8736 else
8737 tdep-> bnd0_regnum = -1;
8738
8739 /* Hook in the legacy prologue-based unwinders last (fallback). */
8740 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8741 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8742 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8743
8744 /* If we have a register mapping, enable the generic core file
8745 support, unless it has already been enabled. */
8746 if (tdep->gregset_reg_offset
8747 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8748 set_gdbarch_iterate_over_regset_sections
8749 (gdbarch, i386_iterate_over_regset_sections);
8750
8751 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8752 i386_fast_tracepoint_valid_at);
8753
8754 return gdbarch;
8755 }
8756
8757 \f
8758
8759 /* Return the target description for a specified XSAVE feature mask. */
8760
8761 const struct target_desc *
8762 i386_target_description (uint64_t xcr0, bool segments)
8763 {
8764 static target_desc *i386_tdescs \
8765 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8766 target_desc **tdesc;
8767
8768 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8769 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8770 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8771 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8772 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8773 [segments ? 1 : 0];
8774
8775 if (*tdesc == NULL)
8776 *tdesc = i386_create_target_description (xcr0, false, segments);
8777
8778 return *tdesc;
8779 }
8780
8781 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8782
8783 /* Find the bound directory base address. */
8784
8785 static unsigned long
8786 i386_mpx_bd_base (void)
8787 {
8788 struct regcache *rcache;
8789 struct gdbarch_tdep *tdep;
8790 ULONGEST ret;
8791 enum register_status regstatus;
8792
8793 rcache = get_current_regcache ();
8794 tdep = gdbarch_tdep (rcache->arch ());
8795
8796 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8797
8798 if (regstatus != REG_VALID)
8799 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8800
8801 return ret & MPX_BASE_MASK;
8802 }
8803
8804 int
8805 i386_mpx_enabled (void)
8806 {
8807 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8808 const struct target_desc *tdesc = tdep->tdesc;
8809
8810 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8811 }
8812
8813 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8814 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8815 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8816 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8817
8818 /* Find the bound table entry given the pointer location and the base
8819 address of the table. */
8820
8821 static CORE_ADDR
8822 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8823 {
8824 CORE_ADDR offset1;
8825 CORE_ADDR offset2;
8826 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8827 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8828 CORE_ADDR bd_entry_addr;
8829 CORE_ADDR bt_addr;
8830 CORE_ADDR bd_entry;
8831 struct gdbarch *gdbarch = get_current_arch ();
8832 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8833
8834
8835 if (gdbarch_ptr_bit (gdbarch) == 64)
8836 {
8837 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8838 bd_ptr_r_shift = 20;
8839 bd_ptr_l_shift = 3;
8840 bt_select_r_shift = 3;
8841 bt_select_l_shift = 5;
8842 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8843
8844 if ( sizeof (CORE_ADDR) == 4)
8845 error (_("bound table examination not supported\
8846 for 64-bit process with 32-bit GDB"));
8847 }
8848 else
8849 {
8850 mpx_bd_mask = MPX_BD_MASK_32;
8851 bd_ptr_r_shift = 12;
8852 bd_ptr_l_shift = 2;
8853 bt_select_r_shift = 2;
8854 bt_select_l_shift = 4;
8855 bt_mask = MPX_BT_MASK_32;
8856 }
8857
8858 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8859 bd_entry_addr = bd_base + offset1;
8860 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8861
8862 if ((bd_entry & 0x1) == 0)
8863 error (_("Invalid bounds directory entry at %s."),
8864 paddress (get_current_arch (), bd_entry_addr));
8865
8866 /* Clearing status bit. */
8867 bd_entry--;
8868 bt_addr = bd_entry & ~bt_select_r_shift;
8869 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8870
8871 return bt_addr + offset2;
8872 }
8873
8874 /* Print routine for the mpx bounds. */
8875
8876 static void
8877 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8878 {
8879 struct ui_out *uiout = current_uiout;
8880 LONGEST size;
8881 struct gdbarch *gdbarch = get_current_arch ();
8882 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8883 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8884
8885 if (bounds_in_map == 1)
8886 {
8887 uiout->text ("Null bounds on map:");
8888 uiout->text (" pointer value = ");
8889 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8890 uiout->text (".");
8891 uiout->text ("\n");
8892 }
8893 else
8894 {
8895 uiout->text ("{lbound = ");
8896 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8897 uiout->text (", ubound = ");
8898
8899 /* The upper bound is stored in 1's complement. */
8900 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8901 uiout->text ("}: pointer value = ");
8902 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8903
8904 if (gdbarch_ptr_bit (gdbarch) == 64)
8905 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8906 else
8907 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8908
8909 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8910 -1 represents in this sense full memory access, and there is no need
8911 one to the size. */
8912
8913 size = (size > -1 ? size + 1 : size);
8914 uiout->text (", size = ");
8915 uiout->field_string ("size", plongest (size));
8916
8917 uiout->text (", metadata = ");
8918 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8919 uiout->text ("\n");
8920 }
8921 }
8922
8923 /* Implement the command "show mpx bound". */
8924
8925 static void
8926 i386_mpx_info_bounds (const char *args, int from_tty)
8927 {
8928 CORE_ADDR bd_base = 0;
8929 CORE_ADDR addr;
8930 CORE_ADDR bt_entry_addr = 0;
8931 CORE_ADDR bt_entry[4];
8932 int i;
8933 struct gdbarch *gdbarch = get_current_arch ();
8934 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8935
8936 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8937 || !i386_mpx_enabled ())
8938 {
8939 printf_unfiltered (_("Intel Memory Protection Extensions not "
8940 "supported on this target.\n"));
8941 return;
8942 }
8943
8944 if (args == NULL)
8945 {
8946 printf_unfiltered (_("Address of pointer variable expected.\n"));
8947 return;
8948 }
8949
8950 addr = parse_and_eval_address (args);
8951
8952 bd_base = i386_mpx_bd_base ();
8953 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8954
8955 memset (bt_entry, 0, sizeof (bt_entry));
8956
8957 for (i = 0; i < 4; i++)
8958 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8959 + i * TYPE_LENGTH (data_ptr_type),
8960 data_ptr_type);
8961
8962 i386_mpx_print_bounds (bt_entry);
8963 }
8964
8965 /* Implement the command "set mpx bound". */
8966
8967 static void
8968 i386_mpx_set_bounds (const char *args, int from_tty)
8969 {
8970 CORE_ADDR bd_base = 0;
8971 CORE_ADDR addr, lower, upper;
8972 CORE_ADDR bt_entry_addr = 0;
8973 CORE_ADDR bt_entry[2];
8974 const char *input = args;
8975 int i;
8976 struct gdbarch *gdbarch = get_current_arch ();
8977 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8978 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8979
8980 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8981 || !i386_mpx_enabled ())
8982 error (_("Intel Memory Protection Extensions not supported\
8983 on this target."));
8984
8985 if (args == NULL)
8986 error (_("Pointer value expected."));
8987
8988 addr = value_as_address (parse_to_comma_and_eval (&input));
8989
8990 if (input[0] == ',')
8991 ++input;
8992 if (input[0] == '\0')
8993 error (_("wrong number of arguments: missing lower and upper bound."));
8994 lower = value_as_address (parse_to_comma_and_eval (&input));
8995
8996 if (input[0] == ',')
8997 ++input;
8998 if (input[0] == '\0')
8999 error (_("Wrong number of arguments; Missing upper bound."));
9000 upper = value_as_address (parse_to_comma_and_eval (&input));
9001
9002 bd_base = i386_mpx_bd_base ();
9003 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9004 for (i = 0; i < 2; i++)
9005 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9006 + i * TYPE_LENGTH (data_ptr_type),
9007 data_ptr_type);
9008 bt_entry[0] = (uint64_t) lower;
9009 bt_entry[1] = ~(uint64_t) upper;
9010
9011 for (i = 0; i < 2; i++)
9012 write_memory_unsigned_integer (bt_entry_addr
9013 + i * TYPE_LENGTH (data_ptr_type),
9014 TYPE_LENGTH (data_ptr_type), byte_order,
9015 bt_entry[i]);
9016 }
9017
9018 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9019
9020 /* Helper function for the CLI commands. */
9021
9022 static void
9023 set_mpx_cmd (const char *args, int from_tty)
9024 {
9025 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
9026 }
9027
9028 /* Helper function for the CLI commands. */
9029
9030 static void
9031 show_mpx_cmd (const char *args, int from_tty)
9032 {
9033 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9034 }
9035
9036 void _initialize_i386_tdep ();
9037 void
9038 _initialize_i386_tdep ()
9039 {
9040 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9041
9042 /* Add the variable that controls the disassembly flavor. */
9043 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9044 &disassembly_flavor, _("\
9045 Set the disassembly flavor."), _("\
9046 Show the disassembly flavor."), _("\
9047 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9048 NULL,
9049 NULL, /* FIXME: i18n: */
9050 &setlist, &showlist);
9051
9052 /* Add the variable that controls the convention for returning
9053 structs. */
9054 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9055 &struct_convention, _("\
9056 Set the convention for returning small structs."), _("\
9057 Show the convention for returning small structs."), _("\
9058 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9059 is \"default\"."),
9060 NULL,
9061 NULL, /* FIXME: i18n: */
9062 &setlist, &showlist);
9063
9064 /* Add "mpx" prefix for the set commands. */
9065
9066 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
9067 Set Intel Memory Protection Extensions specific variables."),
9068 &mpx_set_cmdlist, "set mpx ",
9069 0 /* allow-unknown */, &setlist);
9070
9071 /* Add "mpx" prefix for the show commands. */
9072
9073 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
9074 Show Intel Memory Protection Extensions specific variables."),
9075 &mpx_show_cmdlist, "show mpx ",
9076 0 /* allow-unknown */, &showlist);
9077
9078 /* Add "bound" command for the show mpx commands list. */
9079
9080 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9081 "Show the memory bounds for a given array/pointer storage\
9082 in the bound table.",
9083 &mpx_show_cmdlist);
9084
9085 /* Add "bound" command for the set mpx commands list. */
9086
9087 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9088 "Set the memory bounds for a given array/pointer storage\
9089 in the bound table.",
9090 &mpx_set_cmdlist);
9091
9092 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9093 i386_svr4_init_abi);
9094
9095 /* Initialize the i386-specific register groups. */
9096 i386_init_reggroups ();
9097
9098 /* Tell remote stub that we support XML target description. */
9099 register_remote_support_xml ("i386");
9100 }