]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "gdbsupport/event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdbsupport/gdb_select.h"
68 #include <unordered_map>
69 #include "async-event.h"
70
71 /* Prototypes for local functions */
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static void follow_inferior_reset_breakpoints (void);
78
79 static int currently_stepping (struct thread_info *tp);
80
81 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
82
83 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
84
85 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
86
87 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
88
89 static void resume (gdb_signal sig);
90
91 static void wait_for_inferior (inferior *inf);
92
93 /* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95 static struct async_event_handler *infrun_async_inferior_event_token;
96
97 /* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99 static int infrun_is_async = -1;
100
101 /* See infrun.h. */
102
103 void
104 infrun_async (int enable)
105 {
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120 }
121
122 /* See infrun.h. */
123
124 void
125 mark_infrun_async_event_handler (void)
126 {
127 mark_async_event_handler (infrun_async_inferior_event_token);
128 }
129
130 /* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
133 bool step_stop_if_no_debug = false;
134 static void
135 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137 {
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139 }
140
141 /* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
144
145 static ptid_t previous_inferior_ptid;
146
147 /* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
152 static bool detach_fork = true;
153
154 bool debug_displaced = false;
155 static void
156 show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160 }
161
162 unsigned int debug_infrun = 0;
163 static void
164 show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168 }
169
170
171 /* Support for disabling address space randomization. */
172
173 bool disable_randomization = true;
174
175 static void
176 show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188 }
189
190 static void
191 set_disable_randomization (const char *args, int from_tty,
192 struct cmd_list_element *c)
193 {
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198 }
199
200 /* User interface for non-stop mode. */
201
202 bool non_stop = false;
203 static bool non_stop_1 = false;
204
205 static void
206 set_non_stop (const char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216 }
217
218 static void
219 show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225 }
226
227 /* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
231 bool observer_mode = false;
232 static bool observer_mode_1 = false;
233
234 static void
235 set_observer_mode (const char *args, int from_tty,
236 struct cmd_list_element *c)
237 {
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
253 may_insert_fast_tracepoints = true;
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
261 pagination_enabled = 0;
262 non_stop = non_stop_1 = true;
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268 }
269
270 static void
271 show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273 {
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275 }
276
277 /* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283 void
284 update_observer_mode (void)
285 {
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298 }
299
300 /* Tables of how to react to signals; the user sets them. */
301
302 static unsigned char signal_stop[GDB_SIGNAL_LAST];
303 static unsigned char signal_print[GDB_SIGNAL_LAST];
304 static unsigned char signal_program[GDB_SIGNAL_LAST];
305
306 /* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
308 signal" command. */
309 static unsigned char signal_catch[GDB_SIGNAL_LAST];
310
311 /* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
314 static unsigned char signal_pass[GDB_SIGNAL_LAST];
315
316 #define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324 #define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
332 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335 void
336 update_signals_program_target (void)
337 {
338 target_program_signals (signal_program);
339 }
340
341 /* Value to pass to target_resume() to cause all threads to resume. */
342
343 #define RESUME_ALL minus_one_ptid
344
345 /* Command list pointer for the "stop" placeholder. */
346
347 static struct cmd_list_element *stop_command;
348
349 /* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
351 int stop_on_solib_events;
352
353 /* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356 static void
357 set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
359 {
360 update_solib_breakpoints ();
361 }
362
363 static void
364 show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366 {
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369 }
370
371 /* Nonzero after stop if current stack frame should be printed. */
372
373 static int stop_print_frame;
374
375 /* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378 static process_stratum_target *target_last_proc_target;
379 static ptid_t target_last_wait_ptid;
380 static struct target_waitstatus target_last_waitstatus;
381
382 void init_thread_stepping_state (struct thread_info *tss);
383
384 static const char follow_fork_mode_child[] = "child";
385 static const char follow_fork_mode_parent[] = "parent";
386
387 static const char *const follow_fork_mode_kind_names[] = {
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
391 };
392
393 static const char *follow_fork_mode_string = follow_fork_mode_parent;
394 static void
395 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397 {
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
401 value);
402 }
403 \f
404
405 /* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411 static bool
412 follow_fork_inferior (bool follow_child, bool detach_fork)
413 {
414 int has_vforked;
415 ptid_t parent_ptid, child_ptid;
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
424 && current_ui->prompt_state == PROMPT_BLOCKED
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433 Can not resume the parent process over vfork in the foreground while\n\
434 holding the child stopped. Try \"set detach-on-fork\" or \
435 \"set schedule-multiple\".\n"));
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
454 remove_breakpoints_inf (current_inferior ());
455 }
456
457 if (print_inferior_events)
458 {
459 /* Ensure that we have a process ptid. */
460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
461
462 target_terminal::ours_for_output ();
463 fprintf_filtered (gdb_stdlog,
464 _("[Detaching after %s from child %s]\n"),
465 has_vforked ? "vfork" : "fork",
466 target_pid_to_str (process_ptid).c_str ());
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_ptid.pid ());
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
483
484 set_current_inferior (child_inf);
485 switch_to_no_thread ();
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487 push_target (parent_inf->process_target ());
488 add_thread_silent (child_inf->process_target (), child_ptid);
489 inferior_ptid = child_ptid;
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
498 exec_on_vfork ();
499
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
507 }
508 else
509 {
510 child_inf->aspace = new_address_space ();
511 child_inf->pspace = new program_space (child_inf->aspace);
512 child_inf->removable = 1;
513 set_current_program_space (child_inf->pspace);
514 clone_program_space (child_inf->pspace, parent_inf->pspace);
515
516 /* Let the shared library layer (e.g., solib-svr4) learn
517 about this new process, relocate the cloned exec, pull
518 in shared libraries, and install the solib event
519 breakpoint. If a "cloned-VM" event was propagated
520 better throughout the core, this wouldn't be
521 required. */
522 solib_create_inferior_hook (0);
523 }
524 }
525
526 if (has_vforked)
527 {
528 struct inferior *parent_inf;
529
530 parent_inf = current_inferior ();
531
532 /* If we detached from the child, then we have to be careful
533 to not insert breakpoints in the parent until the child
534 is done with the shared memory region. However, if we're
535 staying attached to the child, then we can and should
536 insert breakpoints, so that we can debug it. A
537 subsequent child exec or exit is enough to know when does
538 the child stops using the parent's address space. */
539 parent_inf->waiting_for_vfork_done = detach_fork;
540 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
541 }
542 }
543 else
544 {
545 /* Follow the child. */
546 struct inferior *parent_inf, *child_inf;
547 struct program_space *parent_pspace;
548
549 if (print_inferior_events)
550 {
551 std::string parent_pid = target_pid_to_str (parent_ptid);
552 std::string child_pid = target_pid_to_str (child_ptid);
553
554 target_terminal::ours_for_output ();
555 fprintf_filtered (gdb_stdlog,
556 _("[Attaching after %s %s to child %s]\n"),
557 parent_pid.c_str (),
558 has_vforked ? "vfork" : "fork",
559 child_pid.c_str ());
560 }
561
562 /* Add the new inferior first, so that the target_detach below
563 doesn't unpush the target. */
564
565 child_inf = add_inferior (child_ptid.pid ());
566
567 parent_inf = current_inferior ();
568 child_inf->attach_flag = parent_inf->attach_flag;
569 copy_terminal_info (child_inf, parent_inf);
570 child_inf->gdbarch = parent_inf->gdbarch;
571 copy_inferior_target_desc_info (child_inf, parent_inf);
572
573 parent_pspace = parent_inf->pspace;
574
575 process_stratum_target *target = parent_inf->process_target ();
576
577 {
578 /* Hold a strong reference to the target while (maybe)
579 detaching the parent. Otherwise detaching could close the
580 target. */
581 auto target_ref = target_ops_ref::new_reference (target);
582
583 /* If we're vforking, we want to hold on to the parent until
584 the child exits or execs. At child exec or exit time we
585 can remove the old breakpoints from the parent and detach
586 or resume debugging it. Otherwise, detach the parent now;
587 we'll want to reuse it's program/address spaces, but we
588 can't set them to the child before removing breakpoints
589 from the parent, otherwise, the breakpoints module could
590 decide to remove breakpoints from the wrong process (since
591 they'd be assigned to the same address space). */
592
593 if (has_vforked)
594 {
595 gdb_assert (child_inf->vfork_parent == NULL);
596 gdb_assert (parent_inf->vfork_child == NULL);
597 child_inf->vfork_parent = parent_inf;
598 child_inf->pending_detach = 0;
599 parent_inf->vfork_child = child_inf;
600 parent_inf->pending_detach = detach_fork;
601 parent_inf->waiting_for_vfork_done = 0;
602 }
603 else if (detach_fork)
604 {
605 if (print_inferior_events)
606 {
607 /* Ensure that we have a process ptid. */
608 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
609
610 target_terminal::ours_for_output ();
611 fprintf_filtered (gdb_stdlog,
612 _("[Detaching after fork from "
613 "parent %s]\n"),
614 target_pid_to_str (process_ptid).c_str ());
615 }
616
617 target_detach (parent_inf, 0);
618 parent_inf = NULL;
619 }
620
621 /* Note that the detach above makes PARENT_INF dangling. */
622
623 /* Add the child thread to the appropriate lists, and switch
624 to this new thread, before cloning the program space, and
625 informing the solib layer about this new process. */
626
627 set_current_inferior (child_inf);
628 push_target (target);
629 }
630
631 add_thread_silent (target, child_ptid);
632 inferior_ptid = child_ptid;
633
634 /* If this is a vfork child, then the address-space is shared
635 with the parent. If we detached from the parent, then we can
636 reuse the parent's program/address spaces. */
637 if (has_vforked || detach_fork)
638 {
639 child_inf->pspace = parent_pspace;
640 child_inf->aspace = child_inf->pspace->aspace;
641
642 exec_on_vfork ();
643 }
644 else
645 {
646 child_inf->aspace = new_address_space ();
647 child_inf->pspace = new program_space (child_inf->aspace);
648 child_inf->removable = 1;
649 child_inf->symfile_flags = SYMFILE_NO_READ;
650 set_current_program_space (child_inf->pspace);
651 clone_program_space (child_inf->pspace, parent_pspace);
652
653 /* Let the shared library layer (e.g., solib-svr4) learn
654 about this new process, relocate the cloned exec, pull in
655 shared libraries, and install the solib event breakpoint.
656 If a "cloned-VM" event was propagated better throughout
657 the core, this wouldn't be required. */
658 solib_create_inferior_hook (0);
659 }
660 }
661
662 return target_follow_fork (follow_child, detach_fork);
663 }
664
665 /* Tell the target to follow the fork we're stopped at. Returns true
666 if the inferior should be resumed; false, if the target for some
667 reason decided it's best not to resume. */
668
669 static bool
670 follow_fork ()
671 {
672 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
673 bool should_resume = true;
674 struct thread_info *tp;
675
676 /* Copy user stepping state to the new inferior thread. FIXME: the
677 followed fork child thread should have a copy of most of the
678 parent thread structure's run control related fields, not just these.
679 Initialized to avoid "may be used uninitialized" warnings from gcc. */
680 struct breakpoint *step_resume_breakpoint = NULL;
681 struct breakpoint *exception_resume_breakpoint = NULL;
682 CORE_ADDR step_range_start = 0;
683 CORE_ADDR step_range_end = 0;
684 struct frame_id step_frame_id = { 0 };
685 struct thread_fsm *thread_fsm = NULL;
686
687 if (!non_stop)
688 {
689 process_stratum_target *wait_target;
690 ptid_t wait_ptid;
691 struct target_waitstatus wait_status;
692
693 /* Get the last target status returned by target_wait(). */
694 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
695
696 /* If not stopped at a fork event, then there's nothing else to
697 do. */
698 if (wait_status.kind != TARGET_WAITKIND_FORKED
699 && wait_status.kind != TARGET_WAITKIND_VFORKED)
700 return 1;
701
702 /* Check if we switched over from WAIT_PTID, since the event was
703 reported. */
704 if (wait_ptid != minus_one_ptid
705 && (current_inferior ()->process_target () != wait_target
706 || inferior_ptid != wait_ptid))
707 {
708 /* We did. Switch back to WAIT_PTID thread, to tell the
709 target to follow it (in either direction). We'll
710 afterwards refuse to resume, and inform the user what
711 happened. */
712 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
713 switch_to_thread (wait_thread);
714 should_resume = false;
715 }
716 }
717
718 tp = inferior_thread ();
719
720 /* If there were any forks/vforks that were caught and are now to be
721 followed, then do so now. */
722 switch (tp->pending_follow.kind)
723 {
724 case TARGET_WAITKIND_FORKED:
725 case TARGET_WAITKIND_VFORKED:
726 {
727 ptid_t parent, child;
728
729 /* If the user did a next/step, etc, over a fork call,
730 preserve the stepping state in the fork child. */
731 if (follow_child && should_resume)
732 {
733 step_resume_breakpoint = clone_momentary_breakpoint
734 (tp->control.step_resume_breakpoint);
735 step_range_start = tp->control.step_range_start;
736 step_range_end = tp->control.step_range_end;
737 step_frame_id = tp->control.step_frame_id;
738 exception_resume_breakpoint
739 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
740 thread_fsm = tp->thread_fsm;
741
742 /* For now, delete the parent's sr breakpoint, otherwise,
743 parent/child sr breakpoints are considered duplicates,
744 and the child version will not be installed. Remove
745 this when the breakpoints module becomes aware of
746 inferiors and address spaces. */
747 delete_step_resume_breakpoint (tp);
748 tp->control.step_range_start = 0;
749 tp->control.step_range_end = 0;
750 tp->control.step_frame_id = null_frame_id;
751 delete_exception_resume_breakpoint (tp);
752 tp->thread_fsm = NULL;
753 }
754
755 parent = inferior_ptid;
756 child = tp->pending_follow.value.related_pid;
757
758 process_stratum_target *parent_targ = tp->inf->process_target ();
759 /* Set up inferior(s) as specified by the caller, and tell the
760 target to do whatever is necessary to follow either parent
761 or child. */
762 if (follow_fork_inferior (follow_child, detach_fork))
763 {
764 /* Target refused to follow, or there's some other reason
765 we shouldn't resume. */
766 should_resume = 0;
767 }
768 else
769 {
770 /* This pending follow fork event is now handled, one way
771 or another. The previous selected thread may be gone
772 from the lists by now, but if it is still around, need
773 to clear the pending follow request. */
774 tp = find_thread_ptid (parent_targ, parent);
775 if (tp)
776 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
777
778 /* This makes sure we don't try to apply the "Switched
779 over from WAIT_PID" logic above. */
780 nullify_last_target_wait_ptid ();
781
782 /* If we followed the child, switch to it... */
783 if (follow_child)
784 {
785 thread_info *child_thr = find_thread_ptid (parent_targ, child);
786 switch_to_thread (child_thr);
787
788 /* ... and preserve the stepping state, in case the
789 user was stepping over the fork call. */
790 if (should_resume)
791 {
792 tp = inferior_thread ();
793 tp->control.step_resume_breakpoint
794 = step_resume_breakpoint;
795 tp->control.step_range_start = step_range_start;
796 tp->control.step_range_end = step_range_end;
797 tp->control.step_frame_id = step_frame_id;
798 tp->control.exception_resume_breakpoint
799 = exception_resume_breakpoint;
800 tp->thread_fsm = thread_fsm;
801 }
802 else
803 {
804 /* If we get here, it was because we're trying to
805 resume from a fork catchpoint, but, the user
806 has switched threads away from the thread that
807 forked. In that case, the resume command
808 issued is most likely not applicable to the
809 child, so just warn, and refuse to resume. */
810 warning (_("Not resuming: switched threads "
811 "before following fork child."));
812 }
813
814 /* Reset breakpoints in the child as appropriate. */
815 follow_inferior_reset_breakpoints ();
816 }
817 }
818 }
819 break;
820 case TARGET_WAITKIND_SPURIOUS:
821 /* Nothing to follow. */
822 break;
823 default:
824 internal_error (__FILE__, __LINE__,
825 "Unexpected pending_follow.kind %d\n",
826 tp->pending_follow.kind);
827 break;
828 }
829
830 return should_resume;
831 }
832
833 static void
834 follow_inferior_reset_breakpoints (void)
835 {
836 struct thread_info *tp = inferior_thread ();
837
838 /* Was there a step_resume breakpoint? (There was if the user
839 did a "next" at the fork() call.) If so, explicitly reset its
840 thread number. Cloned step_resume breakpoints are disabled on
841 creation, so enable it here now that it is associated with the
842 correct thread.
843
844 step_resumes are a form of bp that are made to be per-thread.
845 Since we created the step_resume bp when the parent process
846 was being debugged, and now are switching to the child process,
847 from the breakpoint package's viewpoint, that's a switch of
848 "threads". We must update the bp's notion of which thread
849 it is for, or it'll be ignored when it triggers. */
850
851 if (tp->control.step_resume_breakpoint)
852 {
853 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
854 tp->control.step_resume_breakpoint->loc->enabled = 1;
855 }
856
857 /* Treat exception_resume breakpoints like step_resume breakpoints. */
858 if (tp->control.exception_resume_breakpoint)
859 {
860 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
861 tp->control.exception_resume_breakpoint->loc->enabled = 1;
862 }
863
864 /* Reinsert all breakpoints in the child. The user may have set
865 breakpoints after catching the fork, in which case those
866 were never set in the child, but only in the parent. This makes
867 sure the inserted breakpoints match the breakpoint list. */
868
869 breakpoint_re_set ();
870 insert_breakpoints ();
871 }
872
873 /* The child has exited or execed: resume threads of the parent the
874 user wanted to be executing. */
875
876 static int
877 proceed_after_vfork_done (struct thread_info *thread,
878 void *arg)
879 {
880 int pid = * (int *) arg;
881
882 if (thread->ptid.pid () == pid
883 && thread->state == THREAD_RUNNING
884 && !thread->executing
885 && !thread->stop_requested
886 && thread->suspend.stop_signal == GDB_SIGNAL_0)
887 {
888 if (debug_infrun)
889 fprintf_unfiltered (gdb_stdlog,
890 "infrun: resuming vfork parent thread %s\n",
891 target_pid_to_str (thread->ptid).c_str ());
892
893 switch_to_thread (thread);
894 clear_proceed_status (0);
895 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
896 }
897
898 return 0;
899 }
900
901 /* Save/restore inferior_ptid, current program space and current
902 inferior. Only use this if the current context points at an exited
903 inferior (and therefore there's no current thread to save). */
904 class scoped_restore_exited_inferior
905 {
906 public:
907 scoped_restore_exited_inferior ()
908 : m_saved_ptid (&inferior_ptid)
909 {}
910
911 private:
912 scoped_restore_tmpl<ptid_t> m_saved_ptid;
913 scoped_restore_current_program_space m_pspace;
914 scoped_restore_current_inferior m_inferior;
915 };
916
917 /* Called whenever we notice an exec or exit event, to handle
918 detaching or resuming a vfork parent. */
919
920 static void
921 handle_vfork_child_exec_or_exit (int exec)
922 {
923 struct inferior *inf = current_inferior ();
924
925 if (inf->vfork_parent)
926 {
927 int resume_parent = -1;
928
929 /* This exec or exit marks the end of the shared memory region
930 between the parent and the child. Break the bonds. */
931 inferior *vfork_parent = inf->vfork_parent;
932 inf->vfork_parent->vfork_child = NULL;
933 inf->vfork_parent = NULL;
934
935 /* If the user wanted to detach from the parent, now is the
936 time. */
937 if (vfork_parent->pending_detach)
938 {
939 struct thread_info *tp;
940 struct program_space *pspace;
941 struct address_space *aspace;
942
943 /* follow-fork child, detach-on-fork on. */
944
945 vfork_parent->pending_detach = 0;
946
947 gdb::optional<scoped_restore_exited_inferior>
948 maybe_restore_inferior;
949 gdb::optional<scoped_restore_current_pspace_and_thread>
950 maybe_restore_thread;
951
952 /* If we're handling a child exit, then inferior_ptid points
953 at the inferior's pid, not to a thread. */
954 if (!exec)
955 maybe_restore_inferior.emplace ();
956 else
957 maybe_restore_thread.emplace ();
958
959 /* We're letting loose of the parent. */
960 tp = any_live_thread_of_inferior (vfork_parent);
961 switch_to_thread (tp);
962
963 /* We're about to detach from the parent, which implicitly
964 removes breakpoints from its address space. There's a
965 catch here: we want to reuse the spaces for the child,
966 but, parent/child are still sharing the pspace at this
967 point, although the exec in reality makes the kernel give
968 the child a fresh set of new pages. The problem here is
969 that the breakpoints module being unaware of this, would
970 likely chose the child process to write to the parent
971 address space. Swapping the child temporarily away from
972 the spaces has the desired effect. Yes, this is "sort
973 of" a hack. */
974
975 pspace = inf->pspace;
976 aspace = inf->aspace;
977 inf->aspace = NULL;
978 inf->pspace = NULL;
979
980 if (print_inferior_events)
981 {
982 std::string pidstr
983 = target_pid_to_str (ptid_t (vfork_parent->pid));
984
985 target_terminal::ours_for_output ();
986
987 if (exec)
988 {
989 fprintf_filtered (gdb_stdlog,
990 _("[Detaching vfork parent %s "
991 "after child exec]\n"), pidstr.c_str ());
992 }
993 else
994 {
995 fprintf_filtered (gdb_stdlog,
996 _("[Detaching vfork parent %s "
997 "after child exit]\n"), pidstr.c_str ());
998 }
999 }
1000
1001 target_detach (vfork_parent, 0);
1002
1003 /* Put it back. */
1004 inf->pspace = pspace;
1005 inf->aspace = aspace;
1006 }
1007 else if (exec)
1008 {
1009 /* We're staying attached to the parent, so, really give the
1010 child a new address space. */
1011 inf->pspace = new program_space (maybe_new_address_space ());
1012 inf->aspace = inf->pspace->aspace;
1013 inf->removable = 1;
1014 set_current_program_space (inf->pspace);
1015
1016 resume_parent = vfork_parent->pid;
1017 }
1018 else
1019 {
1020 /* If this is a vfork child exiting, then the pspace and
1021 aspaces were shared with the parent. Since we're
1022 reporting the process exit, we'll be mourning all that is
1023 found in the address space, and switching to null_ptid,
1024 preparing to start a new inferior. But, since we don't
1025 want to clobber the parent's address/program spaces, we
1026 go ahead and create a new one for this exiting
1027 inferior. */
1028
1029 /* Switch to null_ptid while running clone_program_space, so
1030 that clone_program_space doesn't want to read the
1031 selected frame of a dead process. */
1032 scoped_restore restore_ptid
1033 = make_scoped_restore (&inferior_ptid, null_ptid);
1034
1035 inf->pspace = new program_space (maybe_new_address_space ());
1036 inf->aspace = inf->pspace->aspace;
1037 set_current_program_space (inf->pspace);
1038 inf->removable = 1;
1039 inf->symfile_flags = SYMFILE_NO_READ;
1040 clone_program_space (inf->pspace, vfork_parent->pspace);
1041
1042 resume_parent = vfork_parent->pid;
1043 }
1044
1045 gdb_assert (current_program_space == inf->pspace);
1046
1047 if (non_stop && resume_parent != -1)
1048 {
1049 /* If the user wanted the parent to be running, let it go
1050 free now. */
1051 scoped_restore_current_thread restore_thread;
1052
1053 if (debug_infrun)
1054 fprintf_unfiltered (gdb_stdlog,
1055 "infrun: resuming vfork parent process %d\n",
1056 resume_parent);
1057
1058 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1059 }
1060 }
1061 }
1062
1063 /* Enum strings for "set|show follow-exec-mode". */
1064
1065 static const char follow_exec_mode_new[] = "new";
1066 static const char follow_exec_mode_same[] = "same";
1067 static const char *const follow_exec_mode_names[] =
1068 {
1069 follow_exec_mode_new,
1070 follow_exec_mode_same,
1071 NULL,
1072 };
1073
1074 static const char *follow_exec_mode_string = follow_exec_mode_same;
1075 static void
1076 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1077 struct cmd_list_element *c, const char *value)
1078 {
1079 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1080 }
1081
1082 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1083
1084 static void
1085 follow_exec (ptid_t ptid, const char *exec_file_target)
1086 {
1087 struct inferior *inf = current_inferior ();
1088 int pid = ptid.pid ();
1089 ptid_t process_ptid;
1090
1091 /* Switch terminal for any messages produced e.g. by
1092 breakpoint_re_set. */
1093 target_terminal::ours_for_output ();
1094
1095 /* This is an exec event that we actually wish to pay attention to.
1096 Refresh our symbol table to the newly exec'd program, remove any
1097 momentary bp's, etc.
1098
1099 If there are breakpoints, they aren't really inserted now,
1100 since the exec() transformed our inferior into a fresh set
1101 of instructions.
1102
1103 We want to preserve symbolic breakpoints on the list, since
1104 we have hopes that they can be reset after the new a.out's
1105 symbol table is read.
1106
1107 However, any "raw" breakpoints must be removed from the list
1108 (e.g., the solib bp's), since their address is probably invalid
1109 now.
1110
1111 And, we DON'T want to call delete_breakpoints() here, since
1112 that may write the bp's "shadow contents" (the instruction
1113 value that was overwritten with a TRAP instruction). Since
1114 we now have a new a.out, those shadow contents aren't valid. */
1115
1116 mark_breakpoints_out ();
1117
1118 /* The target reports the exec event to the main thread, even if
1119 some other thread does the exec, and even if the main thread was
1120 stopped or already gone. We may still have non-leader threads of
1121 the process on our list. E.g., on targets that don't have thread
1122 exit events (like remote); or on native Linux in non-stop mode if
1123 there were only two threads in the inferior and the non-leader
1124 one is the one that execs (and nothing forces an update of the
1125 thread list up to here). When debugging remotely, it's best to
1126 avoid extra traffic, when possible, so avoid syncing the thread
1127 list with the target, and instead go ahead and delete all threads
1128 of the process but one that reported the event. Note this must
1129 be done before calling update_breakpoints_after_exec, as
1130 otherwise clearing the threads' resources would reference stale
1131 thread breakpoints -- it may have been one of these threads that
1132 stepped across the exec. We could just clear their stepping
1133 states, but as long as we're iterating, might as well delete
1134 them. Deleting them now rather than at the next user-visible
1135 stop provides a nicer sequence of events for user and MI
1136 notifications. */
1137 for (thread_info *th : all_threads_safe ())
1138 if (th->ptid.pid () == pid && th->ptid != ptid)
1139 delete_thread (th);
1140
1141 /* We also need to clear any left over stale state for the
1142 leader/event thread. E.g., if there was any step-resume
1143 breakpoint or similar, it's gone now. We cannot truly
1144 step-to-next statement through an exec(). */
1145 thread_info *th = inferior_thread ();
1146 th->control.step_resume_breakpoint = NULL;
1147 th->control.exception_resume_breakpoint = NULL;
1148 th->control.single_step_breakpoints = NULL;
1149 th->control.step_range_start = 0;
1150 th->control.step_range_end = 0;
1151
1152 /* The user may have had the main thread held stopped in the
1153 previous image (e.g., schedlock on, or non-stop). Release
1154 it now. */
1155 th->stop_requested = 0;
1156
1157 update_breakpoints_after_exec ();
1158
1159 /* What is this a.out's name? */
1160 process_ptid = ptid_t (pid);
1161 printf_unfiltered (_("%s is executing new program: %s\n"),
1162 target_pid_to_str (process_ptid).c_str (),
1163 exec_file_target);
1164
1165 /* We've followed the inferior through an exec. Therefore, the
1166 inferior has essentially been killed & reborn. */
1167
1168 breakpoint_init_inferior (inf_execd);
1169
1170 gdb::unique_xmalloc_ptr<char> exec_file_host
1171 = exec_file_find (exec_file_target, NULL);
1172
1173 /* If we were unable to map the executable target pathname onto a host
1174 pathname, tell the user that. Otherwise GDB's subsequent behavior
1175 is confusing. Maybe it would even be better to stop at this point
1176 so that the user can specify a file manually before continuing. */
1177 if (exec_file_host == NULL)
1178 warning (_("Could not load symbols for executable %s.\n"
1179 "Do you need \"set sysroot\"?"),
1180 exec_file_target);
1181
1182 /* Reset the shared library package. This ensures that we get a
1183 shlib event when the child reaches "_start", at which point the
1184 dld will have had a chance to initialize the child. */
1185 /* Also, loading a symbol file below may trigger symbol lookups, and
1186 we don't want those to be satisfied by the libraries of the
1187 previous incarnation of this process. */
1188 no_shared_libraries (NULL, 0);
1189
1190 if (follow_exec_mode_string == follow_exec_mode_new)
1191 {
1192 /* The user wants to keep the old inferior and program spaces
1193 around. Create a new fresh one, and switch to it. */
1194
1195 /* Do exit processing for the original inferior before setting the new
1196 inferior's pid. Having two inferiors with the same pid would confuse
1197 find_inferior_p(t)id. Transfer the terminal state and info from the
1198 old to the new inferior. */
1199 inf = add_inferior_with_spaces ();
1200 swap_terminal_info (inf, current_inferior ());
1201 exit_inferior_silent (current_inferior ());
1202
1203 inf->pid = pid;
1204 target_follow_exec (inf, exec_file_target);
1205
1206 inferior *org_inferior = current_inferior ();
1207 switch_to_inferior_no_thread (inf);
1208 push_target (org_inferior->process_target ());
1209 thread_info *thr = add_thread (inf->process_target (), ptid);
1210 switch_to_thread (thr);
1211 }
1212 else
1213 {
1214 /* The old description may no longer be fit for the new image.
1215 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1216 old description; we'll read a new one below. No need to do
1217 this on "follow-exec-mode new", as the old inferior stays
1218 around (its description is later cleared/refetched on
1219 restart). */
1220 target_clear_description ();
1221 }
1222
1223 gdb_assert (current_program_space == inf->pspace);
1224
1225 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1226 because the proper displacement for a PIE (Position Independent
1227 Executable) main symbol file will only be computed by
1228 solib_create_inferior_hook below. breakpoint_re_set would fail
1229 to insert the breakpoints with the zero displacement. */
1230 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1231
1232 /* If the target can specify a description, read it. Must do this
1233 after flipping to the new executable (because the target supplied
1234 description must be compatible with the executable's
1235 architecture, and the old executable may e.g., be 32-bit, while
1236 the new one 64-bit), and before anything involving memory or
1237 registers. */
1238 target_find_description ();
1239
1240 solib_create_inferior_hook (0);
1241
1242 jit_inferior_created_hook ();
1243
1244 breakpoint_re_set ();
1245
1246 /* Reinsert all breakpoints. (Those which were symbolic have
1247 been reset to the proper address in the new a.out, thanks
1248 to symbol_file_command...). */
1249 insert_breakpoints ();
1250
1251 /* The next resume of this inferior should bring it to the shlib
1252 startup breakpoints. (If the user had also set bp's on
1253 "main" from the old (parent) process, then they'll auto-
1254 matically get reset there in the new process.). */
1255 }
1256
1257 /* The queue of threads that need to do a step-over operation to get
1258 past e.g., a breakpoint. What technique is used to step over the
1259 breakpoint/watchpoint does not matter -- all threads end up in the
1260 same queue, to maintain rough temporal order of execution, in order
1261 to avoid starvation, otherwise, we could e.g., find ourselves
1262 constantly stepping the same couple threads past their breakpoints
1263 over and over, if the single-step finish fast enough. */
1264 struct thread_info *step_over_queue_head;
1265
1266 /* Bit flags indicating what the thread needs to step over. */
1267
1268 enum step_over_what_flag
1269 {
1270 /* Step over a breakpoint. */
1271 STEP_OVER_BREAKPOINT = 1,
1272
1273 /* Step past a non-continuable watchpoint, in order to let the
1274 instruction execute so we can evaluate the watchpoint
1275 expression. */
1276 STEP_OVER_WATCHPOINT = 2
1277 };
1278 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1279
1280 /* Info about an instruction that is being stepped over. */
1281
1282 struct step_over_info
1283 {
1284 /* If we're stepping past a breakpoint, this is the address space
1285 and address of the instruction the breakpoint is set at. We'll
1286 skip inserting all breakpoints here. Valid iff ASPACE is
1287 non-NULL. */
1288 const address_space *aspace;
1289 CORE_ADDR address;
1290
1291 /* The instruction being stepped over triggers a nonsteppable
1292 watchpoint. If true, we'll skip inserting watchpoints. */
1293 int nonsteppable_watchpoint_p;
1294
1295 /* The thread's global number. */
1296 int thread;
1297 };
1298
1299 /* The step-over info of the location that is being stepped over.
1300
1301 Note that with async/breakpoint always-inserted mode, a user might
1302 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1303 being stepped over. As setting a new breakpoint inserts all
1304 breakpoints, we need to make sure the breakpoint being stepped over
1305 isn't inserted then. We do that by only clearing the step-over
1306 info when the step-over is actually finished (or aborted).
1307
1308 Presently GDB can only step over one breakpoint at any given time.
1309 Given threads that can't run code in the same address space as the
1310 breakpoint's can't really miss the breakpoint, GDB could be taught
1311 to step-over at most one breakpoint per address space (so this info
1312 could move to the address space object if/when GDB is extended).
1313 The set of breakpoints being stepped over will normally be much
1314 smaller than the set of all breakpoints, so a flag in the
1315 breakpoint location structure would be wasteful. A separate list
1316 also saves complexity and run-time, as otherwise we'd have to go
1317 through all breakpoint locations clearing their flag whenever we
1318 start a new sequence. Similar considerations weigh against storing
1319 this info in the thread object. Plus, not all step overs actually
1320 have breakpoint locations -- e.g., stepping past a single-step
1321 breakpoint, or stepping to complete a non-continuable
1322 watchpoint. */
1323 static struct step_over_info step_over_info;
1324
1325 /* Record the address of the breakpoint/instruction we're currently
1326 stepping over.
1327 N.B. We record the aspace and address now, instead of say just the thread,
1328 because when we need the info later the thread may be running. */
1329
1330 static void
1331 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1332 int nonsteppable_watchpoint_p,
1333 int thread)
1334 {
1335 step_over_info.aspace = aspace;
1336 step_over_info.address = address;
1337 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1338 step_over_info.thread = thread;
1339 }
1340
1341 /* Called when we're not longer stepping over a breakpoint / an
1342 instruction, so all breakpoints are free to be (re)inserted. */
1343
1344 static void
1345 clear_step_over_info (void)
1346 {
1347 if (debug_infrun)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "infrun: clear_step_over_info\n");
1350 step_over_info.aspace = NULL;
1351 step_over_info.address = 0;
1352 step_over_info.nonsteppable_watchpoint_p = 0;
1353 step_over_info.thread = -1;
1354 }
1355
1356 /* See infrun.h. */
1357
1358 int
1359 stepping_past_instruction_at (struct address_space *aspace,
1360 CORE_ADDR address)
1361 {
1362 return (step_over_info.aspace != NULL
1363 && breakpoint_address_match (aspace, address,
1364 step_over_info.aspace,
1365 step_over_info.address));
1366 }
1367
1368 /* See infrun.h. */
1369
1370 int
1371 thread_is_stepping_over_breakpoint (int thread)
1372 {
1373 return (step_over_info.thread != -1
1374 && thread == step_over_info.thread);
1375 }
1376
1377 /* See infrun.h. */
1378
1379 int
1380 stepping_past_nonsteppable_watchpoint (void)
1381 {
1382 return step_over_info.nonsteppable_watchpoint_p;
1383 }
1384
1385 /* Returns true if step-over info is valid. */
1386
1387 static int
1388 step_over_info_valid_p (void)
1389 {
1390 return (step_over_info.aspace != NULL
1391 || stepping_past_nonsteppable_watchpoint ());
1392 }
1393
1394 \f
1395 /* Displaced stepping. */
1396
1397 /* In non-stop debugging mode, we must take special care to manage
1398 breakpoints properly; in particular, the traditional strategy for
1399 stepping a thread past a breakpoint it has hit is unsuitable.
1400 'Displaced stepping' is a tactic for stepping one thread past a
1401 breakpoint it has hit while ensuring that other threads running
1402 concurrently will hit the breakpoint as they should.
1403
1404 The traditional way to step a thread T off a breakpoint in a
1405 multi-threaded program in all-stop mode is as follows:
1406
1407 a0) Initially, all threads are stopped, and breakpoints are not
1408 inserted.
1409 a1) We single-step T, leaving breakpoints uninserted.
1410 a2) We insert breakpoints, and resume all threads.
1411
1412 In non-stop debugging, however, this strategy is unsuitable: we
1413 don't want to have to stop all threads in the system in order to
1414 continue or step T past a breakpoint. Instead, we use displaced
1415 stepping:
1416
1417 n0) Initially, T is stopped, other threads are running, and
1418 breakpoints are inserted.
1419 n1) We copy the instruction "under" the breakpoint to a separate
1420 location, outside the main code stream, making any adjustments
1421 to the instruction, register, and memory state as directed by
1422 T's architecture.
1423 n2) We single-step T over the instruction at its new location.
1424 n3) We adjust the resulting register and memory state as directed
1425 by T's architecture. This includes resetting T's PC to point
1426 back into the main instruction stream.
1427 n4) We resume T.
1428
1429 This approach depends on the following gdbarch methods:
1430
1431 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1432 indicate where to copy the instruction, and how much space must
1433 be reserved there. We use these in step n1.
1434
1435 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1436 address, and makes any necessary adjustments to the instruction,
1437 register contents, and memory. We use this in step n1.
1438
1439 - gdbarch_displaced_step_fixup adjusts registers and memory after
1440 we have successfully single-stepped the instruction, to yield the
1441 same effect the instruction would have had if we had executed it
1442 at its original address. We use this in step n3.
1443
1444 The gdbarch_displaced_step_copy_insn and
1445 gdbarch_displaced_step_fixup functions must be written so that
1446 copying an instruction with gdbarch_displaced_step_copy_insn,
1447 single-stepping across the copied instruction, and then applying
1448 gdbarch_displaced_insn_fixup should have the same effects on the
1449 thread's memory and registers as stepping the instruction in place
1450 would have. Exactly which responsibilities fall to the copy and
1451 which fall to the fixup is up to the author of those functions.
1452
1453 See the comments in gdbarch.sh for details.
1454
1455 Note that displaced stepping and software single-step cannot
1456 currently be used in combination, although with some care I think
1457 they could be made to. Software single-step works by placing
1458 breakpoints on all possible subsequent instructions; if the
1459 displaced instruction is a PC-relative jump, those breakpoints
1460 could fall in very strange places --- on pages that aren't
1461 executable, or at addresses that are not proper instruction
1462 boundaries. (We do generally let other threads run while we wait
1463 to hit the software single-step breakpoint, and they might
1464 encounter such a corrupted instruction.) One way to work around
1465 this would be to have gdbarch_displaced_step_copy_insn fully
1466 simulate the effect of PC-relative instructions (and return NULL)
1467 on architectures that use software single-stepping.
1468
1469 In non-stop mode, we can have independent and simultaneous step
1470 requests, so more than one thread may need to simultaneously step
1471 over a breakpoint. The current implementation assumes there is
1472 only one scratch space per process. In this case, we have to
1473 serialize access to the scratch space. If thread A wants to step
1474 over a breakpoint, but we are currently waiting for some other
1475 thread to complete a displaced step, we leave thread A stopped and
1476 place it in the displaced_step_request_queue. Whenever a displaced
1477 step finishes, we pick the next thread in the queue and start a new
1478 displaced step operation on it. See displaced_step_prepare and
1479 displaced_step_fixup for details. */
1480
1481 /* Default destructor for displaced_step_closure. */
1482
1483 displaced_step_closure::~displaced_step_closure () = default;
1484
1485 /* Get the displaced stepping state of process PID. */
1486
1487 static displaced_step_inferior_state *
1488 get_displaced_stepping_state (inferior *inf)
1489 {
1490 return &inf->displaced_step_state;
1491 }
1492
1493 /* Returns true if any inferior has a thread doing a displaced
1494 step. */
1495
1496 static bool
1497 displaced_step_in_progress_any_inferior ()
1498 {
1499 for (inferior *i : all_inferiors ())
1500 {
1501 if (i->displaced_step_state.step_thread != nullptr)
1502 return true;
1503 }
1504
1505 return false;
1506 }
1507
1508 /* Return true if thread represented by PTID is doing a displaced
1509 step. */
1510
1511 static int
1512 displaced_step_in_progress_thread (thread_info *thread)
1513 {
1514 gdb_assert (thread != NULL);
1515
1516 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1517 }
1518
1519 /* Return true if process PID has a thread doing a displaced step. */
1520
1521 static int
1522 displaced_step_in_progress (inferior *inf)
1523 {
1524 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1525 }
1526
1527 /* If inferior is in displaced stepping, and ADDR equals to starting address
1528 of copy area, return corresponding displaced_step_closure. Otherwise,
1529 return NULL. */
1530
1531 struct displaced_step_closure*
1532 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1533 {
1534 displaced_step_inferior_state *displaced
1535 = get_displaced_stepping_state (current_inferior ());
1536
1537 /* If checking the mode of displaced instruction in copy area. */
1538 if (displaced->step_thread != nullptr
1539 && displaced->step_copy == addr)
1540 return displaced->step_closure.get ();
1541
1542 return NULL;
1543 }
1544
1545 static void
1546 infrun_inferior_exit (struct inferior *inf)
1547 {
1548 inf->displaced_step_state.reset ();
1549 }
1550
1551 /* If ON, and the architecture supports it, GDB will use displaced
1552 stepping to step over breakpoints. If OFF, or if the architecture
1553 doesn't support it, GDB will instead use the traditional
1554 hold-and-step approach. If AUTO (which is the default), GDB will
1555 decide which technique to use to step over breakpoints depending on
1556 whether the target works in a non-stop way (see use_displaced_stepping). */
1557
1558 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1559
1560 static void
1561 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1562 struct cmd_list_element *c,
1563 const char *value)
1564 {
1565 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1566 fprintf_filtered (file,
1567 _("Debugger's willingness to use displaced stepping "
1568 "to step over breakpoints is %s (currently %s).\n"),
1569 value, target_is_non_stop_p () ? "on" : "off");
1570 else
1571 fprintf_filtered (file,
1572 _("Debugger's willingness to use displaced stepping "
1573 "to step over breakpoints is %s.\n"), value);
1574 }
1575
1576 /* Return true if the gdbarch implements the required methods to use
1577 displaced stepping. */
1578
1579 static bool
1580 gdbarch_supports_displaced_stepping (gdbarch *arch)
1581 {
1582 /* Only check for the presence of step_copy_insn. Other required methods
1583 are checked by the gdbarch validation. */
1584 return gdbarch_displaced_step_copy_insn_p (arch);
1585 }
1586
1587 /* Return non-zero if displaced stepping can/should be used to step
1588 over breakpoints of thread TP. */
1589
1590 static bool
1591 use_displaced_stepping (thread_info *tp)
1592 {
1593 /* If the user disabled it explicitly, don't use displaced stepping. */
1594 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1595 return false;
1596
1597 /* If "auto", only use displaced stepping if the target operates in a non-stop
1598 way. */
1599 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1600 && !target_is_non_stop_p ())
1601 return false;
1602
1603 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1604
1605 /* If the architecture doesn't implement displaced stepping, don't use
1606 it. */
1607 if (!gdbarch_supports_displaced_stepping (gdbarch))
1608 return false;
1609
1610 /* If recording, don't use displaced stepping. */
1611 if (find_record_target () != nullptr)
1612 return false;
1613
1614 displaced_step_inferior_state *displaced_state
1615 = get_displaced_stepping_state (tp->inf);
1616
1617 /* If displaced stepping failed before for this inferior, don't bother trying
1618 again. */
1619 if (displaced_state->failed_before)
1620 return false;
1621
1622 return true;
1623 }
1624
1625 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1626
1627 static void
1628 displaced_step_reset (displaced_step_inferior_state *displaced)
1629 {
1630 displaced->reset ();
1631 }
1632
1633 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1634 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1635
1636 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1637
1638 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1639 void
1640 displaced_step_dump_bytes (struct ui_file *file,
1641 const gdb_byte *buf,
1642 size_t len)
1643 {
1644 int i;
1645
1646 for (i = 0; i < len; i++)
1647 fprintf_unfiltered (file, "%02x ", buf[i]);
1648 fputs_unfiltered ("\n", file);
1649 }
1650
1651 /* Prepare to single-step, using displaced stepping.
1652
1653 Note that we cannot use displaced stepping when we have a signal to
1654 deliver. If we have a signal to deliver and an instruction to step
1655 over, then after the step, there will be no indication from the
1656 target whether the thread entered a signal handler or ignored the
1657 signal and stepped over the instruction successfully --- both cases
1658 result in a simple SIGTRAP. In the first case we mustn't do a
1659 fixup, and in the second case we must --- but we can't tell which.
1660 Comments in the code for 'random signals' in handle_inferior_event
1661 explain how we handle this case instead.
1662
1663 Returns 1 if preparing was successful -- this thread is going to be
1664 stepped now; 0 if displaced stepping this thread got queued; or -1
1665 if this instruction can't be displaced stepped. */
1666
1667 static int
1668 displaced_step_prepare_throw (thread_info *tp)
1669 {
1670 regcache *regcache = get_thread_regcache (tp);
1671 struct gdbarch *gdbarch = regcache->arch ();
1672 const address_space *aspace = regcache->aspace ();
1673 CORE_ADDR original, copy;
1674 ULONGEST len;
1675 int status;
1676
1677 /* We should never reach this function if the architecture does not
1678 support displaced stepping. */
1679 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1680
1681 /* Nor if the thread isn't meant to step over a breakpoint. */
1682 gdb_assert (tp->control.trap_expected);
1683
1684 /* Disable range stepping while executing in the scratch pad. We
1685 want a single-step even if executing the displaced instruction in
1686 the scratch buffer lands within the stepping range (e.g., a
1687 jump/branch). */
1688 tp->control.may_range_step = 0;
1689
1690 /* We have to displaced step one thread at a time, as we only have
1691 access to a single scratch space per inferior. */
1692
1693 displaced_step_inferior_state *displaced
1694 = get_displaced_stepping_state (tp->inf);
1695
1696 if (displaced->step_thread != nullptr)
1697 {
1698 /* Already waiting for a displaced step to finish. Defer this
1699 request and place in queue. */
1700
1701 if (debug_displaced)
1702 fprintf_unfiltered (gdb_stdlog,
1703 "displaced: deferring step of %s\n",
1704 target_pid_to_str (tp->ptid).c_str ());
1705
1706 thread_step_over_chain_enqueue (tp);
1707 return 0;
1708 }
1709 else
1710 {
1711 if (debug_displaced)
1712 fprintf_unfiltered (gdb_stdlog,
1713 "displaced: stepping %s now\n",
1714 target_pid_to_str (tp->ptid).c_str ());
1715 }
1716
1717 displaced_step_reset (displaced);
1718
1719 scoped_restore_current_thread restore_thread;
1720
1721 switch_to_thread (tp);
1722
1723 original = regcache_read_pc (regcache);
1724
1725 copy = gdbarch_displaced_step_location (gdbarch);
1726 len = gdbarch_max_insn_length (gdbarch);
1727
1728 if (breakpoint_in_range_p (aspace, copy, len))
1729 {
1730 /* There's a breakpoint set in the scratch pad location range
1731 (which is usually around the entry point). We'd either
1732 install it before resuming, which would overwrite/corrupt the
1733 scratch pad, or if it was already inserted, this displaced
1734 step would overwrite it. The latter is OK in the sense that
1735 we already assume that no thread is going to execute the code
1736 in the scratch pad range (after initial startup) anyway, but
1737 the former is unacceptable. Simply punt and fallback to
1738 stepping over this breakpoint in-line. */
1739 if (debug_displaced)
1740 {
1741 fprintf_unfiltered (gdb_stdlog,
1742 "displaced: breakpoint set in scratch pad. "
1743 "Stepping over breakpoint in-line instead.\n");
1744 }
1745
1746 return -1;
1747 }
1748
1749 /* Save the original contents of the copy area. */
1750 displaced->step_saved_copy.resize (len);
1751 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1752 if (status != 0)
1753 throw_error (MEMORY_ERROR,
1754 _("Error accessing memory address %s (%s) for "
1755 "displaced-stepping scratch space."),
1756 paddress (gdbarch, copy), safe_strerror (status));
1757 if (debug_displaced)
1758 {
1759 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1760 paddress (gdbarch, copy));
1761 displaced_step_dump_bytes (gdb_stdlog,
1762 displaced->step_saved_copy.data (),
1763 len);
1764 };
1765
1766 displaced->step_closure
1767 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1768 if (displaced->step_closure == NULL)
1769 {
1770 /* The architecture doesn't know how or want to displaced step
1771 this instruction or instruction sequence. Fallback to
1772 stepping over the breakpoint in-line. */
1773 return -1;
1774 }
1775
1776 /* Save the information we need to fix things up if the step
1777 succeeds. */
1778 displaced->step_thread = tp;
1779 displaced->step_gdbarch = gdbarch;
1780 displaced->step_original = original;
1781 displaced->step_copy = copy;
1782
1783 {
1784 displaced_step_reset_cleanup cleanup (displaced);
1785
1786 /* Resume execution at the copy. */
1787 regcache_write_pc (regcache, copy);
1788
1789 cleanup.release ();
1790 }
1791
1792 if (debug_displaced)
1793 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1794 paddress (gdbarch, copy));
1795
1796 return 1;
1797 }
1798
1799 /* Wrapper for displaced_step_prepare_throw that disabled further
1800 attempts at displaced stepping if we get a memory error. */
1801
1802 static int
1803 displaced_step_prepare (thread_info *thread)
1804 {
1805 int prepared = -1;
1806
1807 try
1808 {
1809 prepared = displaced_step_prepare_throw (thread);
1810 }
1811 catch (const gdb_exception_error &ex)
1812 {
1813 struct displaced_step_inferior_state *displaced_state;
1814
1815 if (ex.error != MEMORY_ERROR
1816 && ex.error != NOT_SUPPORTED_ERROR)
1817 throw;
1818
1819 if (debug_infrun)
1820 {
1821 fprintf_unfiltered (gdb_stdlog,
1822 "infrun: disabling displaced stepping: %s\n",
1823 ex.what ());
1824 }
1825
1826 /* Be verbose if "set displaced-stepping" is "on", silent if
1827 "auto". */
1828 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1829 {
1830 warning (_("disabling displaced stepping: %s"),
1831 ex.what ());
1832 }
1833
1834 /* Disable further displaced stepping attempts. */
1835 displaced_state
1836 = get_displaced_stepping_state (thread->inf);
1837 displaced_state->failed_before = 1;
1838 }
1839
1840 return prepared;
1841 }
1842
1843 static void
1844 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1845 const gdb_byte *myaddr, int len)
1846 {
1847 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1848
1849 inferior_ptid = ptid;
1850 write_memory (memaddr, myaddr, len);
1851 }
1852
1853 /* Restore the contents of the copy area for thread PTID. */
1854
1855 static void
1856 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1857 ptid_t ptid)
1858 {
1859 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1860
1861 write_memory_ptid (ptid, displaced->step_copy,
1862 displaced->step_saved_copy.data (), len);
1863 if (debug_displaced)
1864 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1865 target_pid_to_str (ptid).c_str (),
1866 paddress (displaced->step_gdbarch,
1867 displaced->step_copy));
1868 }
1869
1870 /* If we displaced stepped an instruction successfully, adjust
1871 registers and memory to yield the same effect the instruction would
1872 have had if we had executed it at its original address, and return
1873 1. If the instruction didn't complete, relocate the PC and return
1874 -1. If the thread wasn't displaced stepping, return 0. */
1875
1876 static int
1877 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1878 {
1879 struct displaced_step_inferior_state *displaced
1880 = get_displaced_stepping_state (event_thread->inf);
1881 int ret;
1882
1883 /* Was this event for the thread we displaced? */
1884 if (displaced->step_thread != event_thread)
1885 return 0;
1886
1887 /* Fixup may need to read memory/registers. Switch to the thread
1888 that we're fixing up. Also, target_stopped_by_watchpoint checks
1889 the current thread, and displaced_step_restore performs ptid-dependent
1890 memory accesses using current_inferior() and current_top_target(). */
1891 switch_to_thread (event_thread);
1892
1893 displaced_step_reset_cleanup cleanup (displaced);
1894
1895 displaced_step_restore (displaced, displaced->step_thread->ptid);
1896
1897 /* Did the instruction complete successfully? */
1898 if (signal == GDB_SIGNAL_TRAP
1899 && !(target_stopped_by_watchpoint ()
1900 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1901 || target_have_steppable_watchpoint)))
1902 {
1903 /* Fix up the resulting state. */
1904 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1905 displaced->step_closure.get (),
1906 displaced->step_original,
1907 displaced->step_copy,
1908 get_thread_regcache (displaced->step_thread));
1909 ret = 1;
1910 }
1911 else
1912 {
1913 /* Since the instruction didn't complete, all we can do is
1914 relocate the PC. */
1915 struct regcache *regcache = get_thread_regcache (event_thread);
1916 CORE_ADDR pc = regcache_read_pc (regcache);
1917
1918 pc = displaced->step_original + (pc - displaced->step_copy);
1919 regcache_write_pc (regcache, pc);
1920 ret = -1;
1921 }
1922
1923 return ret;
1924 }
1925
1926 /* Data to be passed around while handling an event. This data is
1927 discarded between events. */
1928 struct execution_control_state
1929 {
1930 process_stratum_target *target;
1931 ptid_t ptid;
1932 /* The thread that got the event, if this was a thread event; NULL
1933 otherwise. */
1934 struct thread_info *event_thread;
1935
1936 struct target_waitstatus ws;
1937 int stop_func_filled_in;
1938 CORE_ADDR stop_func_start;
1939 CORE_ADDR stop_func_end;
1940 const char *stop_func_name;
1941 int wait_some_more;
1942
1943 /* True if the event thread hit the single-step breakpoint of
1944 another thread. Thus the event doesn't cause a stop, the thread
1945 needs to be single-stepped past the single-step breakpoint before
1946 we can switch back to the original stepping thread. */
1947 int hit_singlestep_breakpoint;
1948 };
1949
1950 /* Clear ECS and set it to point at TP. */
1951
1952 static void
1953 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1954 {
1955 memset (ecs, 0, sizeof (*ecs));
1956 ecs->event_thread = tp;
1957 ecs->ptid = tp->ptid;
1958 }
1959
1960 static void keep_going_pass_signal (struct execution_control_state *ecs);
1961 static void prepare_to_wait (struct execution_control_state *ecs);
1962 static int keep_going_stepped_thread (struct thread_info *tp);
1963 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1964
1965 /* Are there any pending step-over requests? If so, run all we can
1966 now and return true. Otherwise, return false. */
1967
1968 static int
1969 start_step_over (void)
1970 {
1971 struct thread_info *tp, *next;
1972
1973 /* Don't start a new step-over if we already have an in-line
1974 step-over operation ongoing. */
1975 if (step_over_info_valid_p ())
1976 return 0;
1977
1978 for (tp = step_over_queue_head; tp != NULL; tp = next)
1979 {
1980 struct execution_control_state ecss;
1981 struct execution_control_state *ecs = &ecss;
1982 step_over_what step_what;
1983 int must_be_in_line;
1984
1985 gdb_assert (!tp->stop_requested);
1986
1987 next = thread_step_over_chain_next (tp);
1988
1989 /* If this inferior already has a displaced step in process,
1990 don't start a new one. */
1991 if (displaced_step_in_progress (tp->inf))
1992 continue;
1993
1994 step_what = thread_still_needs_step_over (tp);
1995 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1996 || ((step_what & STEP_OVER_BREAKPOINT)
1997 && !use_displaced_stepping (tp)));
1998
1999 /* We currently stop all threads of all processes to step-over
2000 in-line. If we need to start a new in-line step-over, let
2001 any pending displaced steps finish first. */
2002 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2003 return 0;
2004
2005 thread_step_over_chain_remove (tp);
2006
2007 if (step_over_queue_head == NULL)
2008 {
2009 if (debug_infrun)
2010 fprintf_unfiltered (gdb_stdlog,
2011 "infrun: step-over queue now empty\n");
2012 }
2013
2014 if (tp->control.trap_expected
2015 || tp->resumed
2016 || tp->executing)
2017 {
2018 internal_error (__FILE__, __LINE__,
2019 "[%s] has inconsistent state: "
2020 "trap_expected=%d, resumed=%d, executing=%d\n",
2021 target_pid_to_str (tp->ptid).c_str (),
2022 tp->control.trap_expected,
2023 tp->resumed,
2024 tp->executing);
2025 }
2026
2027 if (debug_infrun)
2028 fprintf_unfiltered (gdb_stdlog,
2029 "infrun: resuming [%s] for step-over\n",
2030 target_pid_to_str (tp->ptid).c_str ());
2031
2032 /* keep_going_pass_signal skips the step-over if the breakpoint
2033 is no longer inserted. In all-stop, we want to keep looking
2034 for a thread that needs a step-over instead of resuming TP,
2035 because we wouldn't be able to resume anything else until the
2036 target stops again. In non-stop, the resume always resumes
2037 only TP, so it's OK to let the thread resume freely. */
2038 if (!target_is_non_stop_p () && !step_what)
2039 continue;
2040
2041 switch_to_thread (tp);
2042 reset_ecs (ecs, tp);
2043 keep_going_pass_signal (ecs);
2044
2045 if (!ecs->wait_some_more)
2046 error (_("Command aborted."));
2047
2048 gdb_assert (tp->resumed);
2049
2050 /* If we started a new in-line step-over, we're done. */
2051 if (step_over_info_valid_p ())
2052 {
2053 gdb_assert (tp->control.trap_expected);
2054 return 1;
2055 }
2056
2057 if (!target_is_non_stop_p ())
2058 {
2059 /* On all-stop, shouldn't have resumed unless we needed a
2060 step over. */
2061 gdb_assert (tp->control.trap_expected
2062 || tp->step_after_step_resume_breakpoint);
2063
2064 /* With remote targets (at least), in all-stop, we can't
2065 issue any further remote commands until the program stops
2066 again. */
2067 return 1;
2068 }
2069
2070 /* Either the thread no longer needed a step-over, or a new
2071 displaced stepping sequence started. Even in the latter
2072 case, continue looking. Maybe we can also start another
2073 displaced step on a thread of other process. */
2074 }
2075
2076 return 0;
2077 }
2078
2079 /* Update global variables holding ptids to hold NEW_PTID if they were
2080 holding OLD_PTID. */
2081 static void
2082 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2083 {
2084 if (inferior_ptid == old_ptid)
2085 inferior_ptid = new_ptid;
2086 }
2087
2088 \f
2089
2090 static const char schedlock_off[] = "off";
2091 static const char schedlock_on[] = "on";
2092 static const char schedlock_step[] = "step";
2093 static const char schedlock_replay[] = "replay";
2094 static const char *const scheduler_enums[] = {
2095 schedlock_off,
2096 schedlock_on,
2097 schedlock_step,
2098 schedlock_replay,
2099 NULL
2100 };
2101 static const char *scheduler_mode = schedlock_replay;
2102 static void
2103 show_scheduler_mode (struct ui_file *file, int from_tty,
2104 struct cmd_list_element *c, const char *value)
2105 {
2106 fprintf_filtered (file,
2107 _("Mode for locking scheduler "
2108 "during execution is \"%s\".\n"),
2109 value);
2110 }
2111
2112 static void
2113 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2114 {
2115 if (!target_can_lock_scheduler)
2116 {
2117 scheduler_mode = schedlock_off;
2118 error (_("Target '%s' cannot support this command."), target_shortname);
2119 }
2120 }
2121
2122 /* True if execution commands resume all threads of all processes by
2123 default; otherwise, resume only threads of the current inferior
2124 process. */
2125 bool sched_multi = false;
2126
2127 /* Try to setup for software single stepping over the specified location.
2128 Return 1 if target_resume() should use hardware single step.
2129
2130 GDBARCH the current gdbarch.
2131 PC the location to step over. */
2132
2133 static int
2134 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2135 {
2136 int hw_step = 1;
2137
2138 if (execution_direction == EXEC_FORWARD
2139 && gdbarch_software_single_step_p (gdbarch))
2140 hw_step = !insert_single_step_breakpoints (gdbarch);
2141
2142 return hw_step;
2143 }
2144
2145 /* See infrun.h. */
2146
2147 ptid_t
2148 user_visible_resume_ptid (int step)
2149 {
2150 ptid_t resume_ptid;
2151
2152 if (non_stop)
2153 {
2154 /* With non-stop mode on, threads are always handled
2155 individually. */
2156 resume_ptid = inferior_ptid;
2157 }
2158 else if ((scheduler_mode == schedlock_on)
2159 || (scheduler_mode == schedlock_step && step))
2160 {
2161 /* User-settable 'scheduler' mode requires solo thread
2162 resume. */
2163 resume_ptid = inferior_ptid;
2164 }
2165 else if ((scheduler_mode == schedlock_replay)
2166 && target_record_will_replay (minus_one_ptid, execution_direction))
2167 {
2168 /* User-settable 'scheduler' mode requires solo thread resume in replay
2169 mode. */
2170 resume_ptid = inferior_ptid;
2171 }
2172 else if (!sched_multi && target_supports_multi_process ())
2173 {
2174 /* Resume all threads of the current process (and none of other
2175 processes). */
2176 resume_ptid = ptid_t (inferior_ptid.pid ());
2177 }
2178 else
2179 {
2180 /* Resume all threads of all processes. */
2181 resume_ptid = RESUME_ALL;
2182 }
2183
2184 return resume_ptid;
2185 }
2186
2187 /* See infrun.h. */
2188
2189 process_stratum_target *
2190 user_visible_resume_target (ptid_t resume_ptid)
2191 {
2192 return (resume_ptid == minus_one_ptid && sched_multi
2193 ? NULL
2194 : current_inferior ()->process_target ());
2195 }
2196
2197 /* Return a ptid representing the set of threads that we will resume,
2198 in the perspective of the target, assuming run control handling
2199 does not require leaving some threads stopped (e.g., stepping past
2200 breakpoint). USER_STEP indicates whether we're about to start the
2201 target for a stepping command. */
2202
2203 static ptid_t
2204 internal_resume_ptid (int user_step)
2205 {
2206 /* In non-stop, we always control threads individually. Note that
2207 the target may always work in non-stop mode even with "set
2208 non-stop off", in which case user_visible_resume_ptid could
2209 return a wildcard ptid. */
2210 if (target_is_non_stop_p ())
2211 return inferior_ptid;
2212 else
2213 return user_visible_resume_ptid (user_step);
2214 }
2215
2216 /* Wrapper for target_resume, that handles infrun-specific
2217 bookkeeping. */
2218
2219 static void
2220 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2221 {
2222 struct thread_info *tp = inferior_thread ();
2223
2224 gdb_assert (!tp->stop_requested);
2225
2226 /* Install inferior's terminal modes. */
2227 target_terminal::inferior ();
2228
2229 /* Avoid confusing the next resume, if the next stop/resume
2230 happens to apply to another thread. */
2231 tp->suspend.stop_signal = GDB_SIGNAL_0;
2232
2233 /* Advise target which signals may be handled silently.
2234
2235 If we have removed breakpoints because we are stepping over one
2236 in-line (in any thread), we need to receive all signals to avoid
2237 accidentally skipping a breakpoint during execution of a signal
2238 handler.
2239
2240 Likewise if we're displaced stepping, otherwise a trap for a
2241 breakpoint in a signal handler might be confused with the
2242 displaced step finishing. We don't make the displaced_step_fixup
2243 step distinguish the cases instead, because:
2244
2245 - a backtrace while stopped in the signal handler would show the
2246 scratch pad as frame older than the signal handler, instead of
2247 the real mainline code.
2248
2249 - when the thread is later resumed, the signal handler would
2250 return to the scratch pad area, which would no longer be
2251 valid. */
2252 if (step_over_info_valid_p ()
2253 || displaced_step_in_progress (tp->inf))
2254 target_pass_signals ({});
2255 else
2256 target_pass_signals (signal_pass);
2257
2258 target_resume (resume_ptid, step, sig);
2259
2260 target_commit_resume ();
2261
2262 if (target_can_async_p ())
2263 target_async (1);
2264 }
2265
2266 /* Resume the inferior. SIG is the signal to give the inferior
2267 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2268 call 'resume', which handles exceptions. */
2269
2270 static void
2271 resume_1 (enum gdb_signal sig)
2272 {
2273 struct regcache *regcache = get_current_regcache ();
2274 struct gdbarch *gdbarch = regcache->arch ();
2275 struct thread_info *tp = inferior_thread ();
2276 CORE_ADDR pc = regcache_read_pc (regcache);
2277 const address_space *aspace = regcache->aspace ();
2278 ptid_t resume_ptid;
2279 /* This represents the user's step vs continue request. When
2280 deciding whether "set scheduler-locking step" applies, it's the
2281 user's intention that counts. */
2282 const int user_step = tp->control.stepping_command;
2283 /* This represents what we'll actually request the target to do.
2284 This can decay from a step to a continue, if e.g., we need to
2285 implement single-stepping with breakpoints (software
2286 single-step). */
2287 int step;
2288
2289 gdb_assert (!tp->stop_requested);
2290 gdb_assert (!thread_is_in_step_over_chain (tp));
2291
2292 if (tp->suspend.waitstatus_pending_p)
2293 {
2294 if (debug_infrun)
2295 {
2296 std::string statstr
2297 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2298
2299 fprintf_unfiltered (gdb_stdlog,
2300 "infrun: resume: thread %s has pending wait "
2301 "status %s (currently_stepping=%d).\n",
2302 target_pid_to_str (tp->ptid).c_str (),
2303 statstr.c_str (),
2304 currently_stepping (tp));
2305 }
2306
2307 tp->inf->process_target ()->threads_executing = true;
2308 tp->resumed = true;
2309
2310 /* FIXME: What should we do if we are supposed to resume this
2311 thread with a signal? Maybe we should maintain a queue of
2312 pending signals to deliver. */
2313 if (sig != GDB_SIGNAL_0)
2314 {
2315 warning (_("Couldn't deliver signal %s to %s."),
2316 gdb_signal_to_name (sig),
2317 target_pid_to_str (tp->ptid).c_str ());
2318 }
2319
2320 tp->suspend.stop_signal = GDB_SIGNAL_0;
2321
2322 if (target_can_async_p ())
2323 {
2324 target_async (1);
2325 /* Tell the event loop we have an event to process. */
2326 mark_async_event_handler (infrun_async_inferior_event_token);
2327 }
2328 return;
2329 }
2330
2331 tp->stepped_breakpoint = 0;
2332
2333 /* Depends on stepped_breakpoint. */
2334 step = currently_stepping (tp);
2335
2336 if (current_inferior ()->waiting_for_vfork_done)
2337 {
2338 /* Don't try to single-step a vfork parent that is waiting for
2339 the child to get out of the shared memory region (by exec'ing
2340 or exiting). This is particularly important on software
2341 single-step archs, as the child process would trip on the
2342 software single step breakpoint inserted for the parent
2343 process. Since the parent will not actually execute any
2344 instruction until the child is out of the shared region (such
2345 are vfork's semantics), it is safe to simply continue it.
2346 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2347 the parent, and tell it to `keep_going', which automatically
2348 re-sets it stepping. */
2349 if (debug_infrun)
2350 fprintf_unfiltered (gdb_stdlog,
2351 "infrun: resume : clear step\n");
2352 step = 0;
2353 }
2354
2355 if (debug_infrun)
2356 fprintf_unfiltered (gdb_stdlog,
2357 "infrun: resume (step=%d, signal=%s), "
2358 "trap_expected=%d, current thread [%s] at %s\n",
2359 step, gdb_signal_to_symbol_string (sig),
2360 tp->control.trap_expected,
2361 target_pid_to_str (inferior_ptid).c_str (),
2362 paddress (gdbarch, pc));
2363
2364 /* Normally, by the time we reach `resume', the breakpoints are either
2365 removed or inserted, as appropriate. The exception is if we're sitting
2366 at a permanent breakpoint; we need to step over it, but permanent
2367 breakpoints can't be removed. So we have to test for it here. */
2368 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2369 {
2370 if (sig != GDB_SIGNAL_0)
2371 {
2372 /* We have a signal to pass to the inferior. The resume
2373 may, or may not take us to the signal handler. If this
2374 is a step, we'll need to stop in the signal handler, if
2375 there's one, (if the target supports stepping into
2376 handlers), or in the next mainline instruction, if
2377 there's no handler. If this is a continue, we need to be
2378 sure to run the handler with all breakpoints inserted.
2379 In all cases, set a breakpoint at the current address
2380 (where the handler returns to), and once that breakpoint
2381 is hit, resume skipping the permanent breakpoint. If
2382 that breakpoint isn't hit, then we've stepped into the
2383 signal handler (or hit some other event). We'll delete
2384 the step-resume breakpoint then. */
2385
2386 if (debug_infrun)
2387 fprintf_unfiltered (gdb_stdlog,
2388 "infrun: resume: skipping permanent breakpoint, "
2389 "deliver signal first\n");
2390
2391 clear_step_over_info ();
2392 tp->control.trap_expected = 0;
2393
2394 if (tp->control.step_resume_breakpoint == NULL)
2395 {
2396 /* Set a "high-priority" step-resume, as we don't want
2397 user breakpoints at PC to trigger (again) when this
2398 hits. */
2399 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2400 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2401
2402 tp->step_after_step_resume_breakpoint = step;
2403 }
2404
2405 insert_breakpoints ();
2406 }
2407 else
2408 {
2409 /* There's no signal to pass, we can go ahead and skip the
2410 permanent breakpoint manually. */
2411 if (debug_infrun)
2412 fprintf_unfiltered (gdb_stdlog,
2413 "infrun: resume: skipping permanent breakpoint\n");
2414 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2415 /* Update pc to reflect the new address from which we will
2416 execute instructions. */
2417 pc = regcache_read_pc (regcache);
2418
2419 if (step)
2420 {
2421 /* We've already advanced the PC, so the stepping part
2422 is done. Now we need to arrange for a trap to be
2423 reported to handle_inferior_event. Set a breakpoint
2424 at the current PC, and run to it. Don't update
2425 prev_pc, because if we end in
2426 switch_back_to_stepped_thread, we want the "expected
2427 thread advanced also" branch to be taken. IOW, we
2428 don't want this thread to step further from PC
2429 (overstep). */
2430 gdb_assert (!step_over_info_valid_p ());
2431 insert_single_step_breakpoint (gdbarch, aspace, pc);
2432 insert_breakpoints ();
2433
2434 resume_ptid = internal_resume_ptid (user_step);
2435 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2436 tp->resumed = true;
2437 return;
2438 }
2439 }
2440 }
2441
2442 /* If we have a breakpoint to step over, make sure to do a single
2443 step only. Same if we have software watchpoints. */
2444 if (tp->control.trap_expected || bpstat_should_step ())
2445 tp->control.may_range_step = 0;
2446
2447 /* If displaced stepping is enabled, step over breakpoints by executing a
2448 copy of the instruction at a different address.
2449
2450 We can't use displaced stepping when we have a signal to deliver;
2451 the comments for displaced_step_prepare explain why. The
2452 comments in the handle_inferior event for dealing with 'random
2453 signals' explain what we do instead.
2454
2455 We can't use displaced stepping when we are waiting for vfork_done
2456 event, displaced stepping breaks the vfork child similarly as single
2457 step software breakpoint. */
2458 if (tp->control.trap_expected
2459 && use_displaced_stepping (tp)
2460 && !step_over_info_valid_p ()
2461 && sig == GDB_SIGNAL_0
2462 && !current_inferior ()->waiting_for_vfork_done)
2463 {
2464 int prepared = displaced_step_prepare (tp);
2465
2466 if (prepared == 0)
2467 {
2468 if (debug_infrun)
2469 fprintf_unfiltered (gdb_stdlog,
2470 "Got placed in step-over queue\n");
2471
2472 tp->control.trap_expected = 0;
2473 return;
2474 }
2475 else if (prepared < 0)
2476 {
2477 /* Fallback to stepping over the breakpoint in-line. */
2478
2479 if (target_is_non_stop_p ())
2480 stop_all_threads ();
2481
2482 set_step_over_info (regcache->aspace (),
2483 regcache_read_pc (regcache), 0, tp->global_num);
2484
2485 step = maybe_software_singlestep (gdbarch, pc);
2486
2487 insert_breakpoints ();
2488 }
2489 else if (prepared > 0)
2490 {
2491 struct displaced_step_inferior_state *displaced;
2492
2493 /* Update pc to reflect the new address from which we will
2494 execute instructions due to displaced stepping. */
2495 pc = regcache_read_pc (get_thread_regcache (tp));
2496
2497 displaced = get_displaced_stepping_state (tp->inf);
2498 step = gdbarch_displaced_step_hw_singlestep
2499 (gdbarch, displaced->step_closure.get ());
2500 }
2501 }
2502
2503 /* Do we need to do it the hard way, w/temp breakpoints? */
2504 else if (step)
2505 step = maybe_software_singlestep (gdbarch, pc);
2506
2507 /* Currently, our software single-step implementation leads to different
2508 results than hardware single-stepping in one situation: when stepping
2509 into delivering a signal which has an associated signal handler,
2510 hardware single-step will stop at the first instruction of the handler,
2511 while software single-step will simply skip execution of the handler.
2512
2513 For now, this difference in behavior is accepted since there is no
2514 easy way to actually implement single-stepping into a signal handler
2515 without kernel support.
2516
2517 However, there is one scenario where this difference leads to follow-on
2518 problems: if we're stepping off a breakpoint by removing all breakpoints
2519 and then single-stepping. In this case, the software single-step
2520 behavior means that even if there is a *breakpoint* in the signal
2521 handler, GDB still would not stop.
2522
2523 Fortunately, we can at least fix this particular issue. We detect
2524 here the case where we are about to deliver a signal while software
2525 single-stepping with breakpoints removed. In this situation, we
2526 revert the decisions to remove all breakpoints and insert single-
2527 step breakpoints, and instead we install a step-resume breakpoint
2528 at the current address, deliver the signal without stepping, and
2529 once we arrive back at the step-resume breakpoint, actually step
2530 over the breakpoint we originally wanted to step over. */
2531 if (thread_has_single_step_breakpoints_set (tp)
2532 && sig != GDB_SIGNAL_0
2533 && step_over_info_valid_p ())
2534 {
2535 /* If we have nested signals or a pending signal is delivered
2536 immediately after a handler returns, might already have
2537 a step-resume breakpoint set on the earlier handler. We cannot
2538 set another step-resume breakpoint; just continue on until the
2539 original breakpoint is hit. */
2540 if (tp->control.step_resume_breakpoint == NULL)
2541 {
2542 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2543 tp->step_after_step_resume_breakpoint = 1;
2544 }
2545
2546 delete_single_step_breakpoints (tp);
2547
2548 clear_step_over_info ();
2549 tp->control.trap_expected = 0;
2550
2551 insert_breakpoints ();
2552 }
2553
2554 /* If STEP is set, it's a request to use hardware stepping
2555 facilities. But in that case, we should never
2556 use singlestep breakpoint. */
2557 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2558
2559 /* Decide the set of threads to ask the target to resume. */
2560 if (tp->control.trap_expected)
2561 {
2562 /* We're allowing a thread to run past a breakpoint it has
2563 hit, either by single-stepping the thread with the breakpoint
2564 removed, or by displaced stepping, with the breakpoint inserted.
2565 In the former case, we need to single-step only this thread,
2566 and keep others stopped, as they can miss this breakpoint if
2567 allowed to run. That's not really a problem for displaced
2568 stepping, but, we still keep other threads stopped, in case
2569 another thread is also stopped for a breakpoint waiting for
2570 its turn in the displaced stepping queue. */
2571 resume_ptid = inferior_ptid;
2572 }
2573 else
2574 resume_ptid = internal_resume_ptid (user_step);
2575
2576 if (execution_direction != EXEC_REVERSE
2577 && step && breakpoint_inserted_here_p (aspace, pc))
2578 {
2579 /* There are two cases where we currently need to step a
2580 breakpoint instruction when we have a signal to deliver:
2581
2582 - See handle_signal_stop where we handle random signals that
2583 could take out us out of the stepping range. Normally, in
2584 that case we end up continuing (instead of stepping) over the
2585 signal handler with a breakpoint at PC, but there are cases
2586 where we should _always_ single-step, even if we have a
2587 step-resume breakpoint, like when a software watchpoint is
2588 set. Assuming single-stepping and delivering a signal at the
2589 same time would takes us to the signal handler, then we could
2590 have removed the breakpoint at PC to step over it. However,
2591 some hardware step targets (like e.g., Mac OS) can't step
2592 into signal handlers, and for those, we need to leave the
2593 breakpoint at PC inserted, as otherwise if the handler
2594 recurses and executes PC again, it'll miss the breakpoint.
2595 So we leave the breakpoint inserted anyway, but we need to
2596 record that we tried to step a breakpoint instruction, so
2597 that adjust_pc_after_break doesn't end up confused.
2598
2599 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2600 in one thread after another thread that was stepping had been
2601 momentarily paused for a step-over. When we re-resume the
2602 stepping thread, it may be resumed from that address with a
2603 breakpoint that hasn't trapped yet. Seen with
2604 gdb.threads/non-stop-fair-events.exp, on targets that don't
2605 do displaced stepping. */
2606
2607 if (debug_infrun)
2608 fprintf_unfiltered (gdb_stdlog,
2609 "infrun: resume: [%s] stepped breakpoint\n",
2610 target_pid_to_str (tp->ptid).c_str ());
2611
2612 tp->stepped_breakpoint = 1;
2613
2614 /* Most targets can step a breakpoint instruction, thus
2615 executing it normally. But if this one cannot, just
2616 continue and we will hit it anyway. */
2617 if (gdbarch_cannot_step_breakpoint (gdbarch))
2618 step = 0;
2619 }
2620
2621 if (debug_displaced
2622 && tp->control.trap_expected
2623 && use_displaced_stepping (tp)
2624 && !step_over_info_valid_p ())
2625 {
2626 struct regcache *resume_regcache = get_thread_regcache (tp);
2627 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2628 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2629 gdb_byte buf[4];
2630
2631 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2632 paddress (resume_gdbarch, actual_pc));
2633 read_memory (actual_pc, buf, sizeof (buf));
2634 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2635 }
2636
2637 if (tp->control.may_range_step)
2638 {
2639 /* If we're resuming a thread with the PC out of the step
2640 range, then we're doing some nested/finer run control
2641 operation, like stepping the thread out of the dynamic
2642 linker or the displaced stepping scratch pad. We
2643 shouldn't have allowed a range step then. */
2644 gdb_assert (pc_in_thread_step_range (pc, tp));
2645 }
2646
2647 do_target_resume (resume_ptid, step, sig);
2648 tp->resumed = true;
2649 }
2650
2651 /* Resume the inferior. SIG is the signal to give the inferior
2652 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2653 rolls back state on error. */
2654
2655 static void
2656 resume (gdb_signal sig)
2657 {
2658 try
2659 {
2660 resume_1 (sig);
2661 }
2662 catch (const gdb_exception &ex)
2663 {
2664 /* If resuming is being aborted for any reason, delete any
2665 single-step breakpoint resume_1 may have created, to avoid
2666 confusing the following resumption, and to avoid leaving
2667 single-step breakpoints perturbing other threads, in case
2668 we're running in non-stop mode. */
2669 if (inferior_ptid != null_ptid)
2670 delete_single_step_breakpoints (inferior_thread ());
2671 throw;
2672 }
2673 }
2674
2675 \f
2676 /* Proceeding. */
2677
2678 /* See infrun.h. */
2679
2680 /* Counter that tracks number of user visible stops. This can be used
2681 to tell whether a command has proceeded the inferior past the
2682 current location. This allows e.g., inferior function calls in
2683 breakpoint commands to not interrupt the command list. When the
2684 call finishes successfully, the inferior is standing at the same
2685 breakpoint as if nothing happened (and so we don't call
2686 normal_stop). */
2687 static ULONGEST current_stop_id;
2688
2689 /* See infrun.h. */
2690
2691 ULONGEST
2692 get_stop_id (void)
2693 {
2694 return current_stop_id;
2695 }
2696
2697 /* Called when we report a user visible stop. */
2698
2699 static void
2700 new_stop_id (void)
2701 {
2702 current_stop_id++;
2703 }
2704
2705 /* Clear out all variables saying what to do when inferior is continued.
2706 First do this, then set the ones you want, then call `proceed'. */
2707
2708 static void
2709 clear_proceed_status_thread (struct thread_info *tp)
2710 {
2711 if (debug_infrun)
2712 fprintf_unfiltered (gdb_stdlog,
2713 "infrun: clear_proceed_status_thread (%s)\n",
2714 target_pid_to_str (tp->ptid).c_str ());
2715
2716 /* If we're starting a new sequence, then the previous finished
2717 single-step is no longer relevant. */
2718 if (tp->suspend.waitstatus_pending_p)
2719 {
2720 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2721 {
2722 if (debug_infrun)
2723 fprintf_unfiltered (gdb_stdlog,
2724 "infrun: clear_proceed_status: pending "
2725 "event of %s was a finished step. "
2726 "Discarding.\n",
2727 target_pid_to_str (tp->ptid).c_str ());
2728
2729 tp->suspend.waitstatus_pending_p = 0;
2730 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2731 }
2732 else if (debug_infrun)
2733 {
2734 std::string statstr
2735 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2736
2737 fprintf_unfiltered (gdb_stdlog,
2738 "infrun: clear_proceed_status_thread: thread %s "
2739 "has pending wait status %s "
2740 "(currently_stepping=%d).\n",
2741 target_pid_to_str (tp->ptid).c_str (),
2742 statstr.c_str (),
2743 currently_stepping (tp));
2744 }
2745 }
2746
2747 /* If this signal should not be seen by program, give it zero.
2748 Used for debugging signals. */
2749 if (!signal_pass_state (tp->suspend.stop_signal))
2750 tp->suspend.stop_signal = GDB_SIGNAL_0;
2751
2752 delete tp->thread_fsm;
2753 tp->thread_fsm = NULL;
2754
2755 tp->control.trap_expected = 0;
2756 tp->control.step_range_start = 0;
2757 tp->control.step_range_end = 0;
2758 tp->control.may_range_step = 0;
2759 tp->control.step_frame_id = null_frame_id;
2760 tp->control.step_stack_frame_id = null_frame_id;
2761 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2762 tp->control.step_start_function = NULL;
2763 tp->stop_requested = 0;
2764
2765 tp->control.stop_step = 0;
2766
2767 tp->control.proceed_to_finish = 0;
2768
2769 tp->control.stepping_command = 0;
2770
2771 /* Discard any remaining commands or status from previous stop. */
2772 bpstat_clear (&tp->control.stop_bpstat);
2773 }
2774
2775 void
2776 clear_proceed_status (int step)
2777 {
2778 /* With scheduler-locking replay, stop replaying other threads if we're
2779 not replaying the user-visible resume ptid.
2780
2781 This is a convenience feature to not require the user to explicitly
2782 stop replaying the other threads. We're assuming that the user's
2783 intent is to resume tracing the recorded process. */
2784 if (!non_stop && scheduler_mode == schedlock_replay
2785 && target_record_is_replaying (minus_one_ptid)
2786 && !target_record_will_replay (user_visible_resume_ptid (step),
2787 execution_direction))
2788 target_record_stop_replaying ();
2789
2790 if (!non_stop && inferior_ptid != null_ptid)
2791 {
2792 ptid_t resume_ptid = user_visible_resume_ptid (step);
2793 process_stratum_target *resume_target
2794 = user_visible_resume_target (resume_ptid);
2795
2796 /* In all-stop mode, delete the per-thread status of all threads
2797 we're about to resume, implicitly and explicitly. */
2798 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2799 clear_proceed_status_thread (tp);
2800 }
2801
2802 if (inferior_ptid != null_ptid)
2803 {
2804 struct inferior *inferior;
2805
2806 if (non_stop)
2807 {
2808 /* If in non-stop mode, only delete the per-thread status of
2809 the current thread. */
2810 clear_proceed_status_thread (inferior_thread ());
2811 }
2812
2813 inferior = current_inferior ();
2814 inferior->control.stop_soon = NO_STOP_QUIETLY;
2815 }
2816
2817 gdb::observers::about_to_proceed.notify ();
2818 }
2819
2820 /* Returns true if TP is still stopped at a breakpoint that needs
2821 stepping-over in order to make progress. If the breakpoint is gone
2822 meanwhile, we can skip the whole step-over dance. */
2823
2824 static int
2825 thread_still_needs_step_over_bp (struct thread_info *tp)
2826 {
2827 if (tp->stepping_over_breakpoint)
2828 {
2829 struct regcache *regcache = get_thread_regcache (tp);
2830
2831 if (breakpoint_here_p (regcache->aspace (),
2832 regcache_read_pc (regcache))
2833 == ordinary_breakpoint_here)
2834 return 1;
2835
2836 tp->stepping_over_breakpoint = 0;
2837 }
2838
2839 return 0;
2840 }
2841
2842 /* Check whether thread TP still needs to start a step-over in order
2843 to make progress when resumed. Returns an bitwise or of enum
2844 step_over_what bits, indicating what needs to be stepped over. */
2845
2846 static step_over_what
2847 thread_still_needs_step_over (struct thread_info *tp)
2848 {
2849 step_over_what what = 0;
2850
2851 if (thread_still_needs_step_over_bp (tp))
2852 what |= STEP_OVER_BREAKPOINT;
2853
2854 if (tp->stepping_over_watchpoint
2855 && !target_have_steppable_watchpoint)
2856 what |= STEP_OVER_WATCHPOINT;
2857
2858 return what;
2859 }
2860
2861 /* Returns true if scheduler locking applies. STEP indicates whether
2862 we're about to do a step/next-like command to a thread. */
2863
2864 static int
2865 schedlock_applies (struct thread_info *tp)
2866 {
2867 return (scheduler_mode == schedlock_on
2868 || (scheduler_mode == schedlock_step
2869 && tp->control.stepping_command)
2870 || (scheduler_mode == schedlock_replay
2871 && target_record_will_replay (minus_one_ptid,
2872 execution_direction)));
2873 }
2874
2875 /* Calls target_commit_resume on all targets. */
2876
2877 static void
2878 commit_resume_all_targets ()
2879 {
2880 scoped_restore_current_thread restore_thread;
2881
2882 /* Map between process_target and a representative inferior. This
2883 is to avoid committing a resume in the same target more than
2884 once. Resumptions must be idempotent, so this is an
2885 optimization. */
2886 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2887
2888 for (inferior *inf : all_non_exited_inferiors ())
2889 if (inf->has_execution ())
2890 conn_inf[inf->process_target ()] = inf;
2891
2892 for (const auto &ci : conn_inf)
2893 {
2894 inferior *inf = ci.second;
2895 switch_to_inferior_no_thread (inf);
2896 target_commit_resume ();
2897 }
2898 }
2899
2900 /* Check that all the targets we're about to resume are in non-stop
2901 mode. Ideally, we'd only care whether all targets support
2902 target-async, but we're not there yet. E.g., stop_all_threads
2903 doesn't know how to handle all-stop targets. Also, the remote
2904 protocol in all-stop mode is synchronous, irrespective of
2905 target-async, which means that things like a breakpoint re-set
2906 triggered by one target would try to read memory from all targets
2907 and fail. */
2908
2909 static void
2910 check_multi_target_resumption (process_stratum_target *resume_target)
2911 {
2912 if (!non_stop && resume_target == nullptr)
2913 {
2914 scoped_restore_current_thread restore_thread;
2915
2916 /* This is used to track whether we're resuming more than one
2917 target. */
2918 process_stratum_target *first_connection = nullptr;
2919
2920 /* The first inferior we see with a target that does not work in
2921 always-non-stop mode. */
2922 inferior *first_not_non_stop = nullptr;
2923
2924 for (inferior *inf : all_non_exited_inferiors (resume_target))
2925 {
2926 switch_to_inferior_no_thread (inf);
2927
2928 if (!target_has_execution)
2929 continue;
2930
2931 process_stratum_target *proc_target
2932 = current_inferior ()->process_target();
2933
2934 if (!target_is_non_stop_p ())
2935 first_not_non_stop = inf;
2936
2937 if (first_connection == nullptr)
2938 first_connection = proc_target;
2939 else if (first_connection != proc_target
2940 && first_not_non_stop != nullptr)
2941 {
2942 switch_to_inferior_no_thread (first_not_non_stop);
2943
2944 proc_target = current_inferior ()->process_target();
2945
2946 error (_("Connection %d (%s) does not support "
2947 "multi-target resumption."),
2948 proc_target->connection_number,
2949 make_target_connection_string (proc_target).c_str ());
2950 }
2951 }
2952 }
2953 }
2954
2955 /* Basic routine for continuing the program in various fashions.
2956
2957 ADDR is the address to resume at, or -1 for resume where stopped.
2958 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2959 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2960
2961 You should call clear_proceed_status before calling proceed. */
2962
2963 void
2964 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2965 {
2966 struct regcache *regcache;
2967 struct gdbarch *gdbarch;
2968 CORE_ADDR pc;
2969 struct execution_control_state ecss;
2970 struct execution_control_state *ecs = &ecss;
2971 int started;
2972
2973 /* If we're stopped at a fork/vfork, follow the branch set by the
2974 "set follow-fork-mode" command; otherwise, we'll just proceed
2975 resuming the current thread. */
2976 if (!follow_fork ())
2977 {
2978 /* The target for some reason decided not to resume. */
2979 normal_stop ();
2980 if (target_can_async_p ())
2981 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2982 return;
2983 }
2984
2985 /* We'll update this if & when we switch to a new thread. */
2986 previous_inferior_ptid = inferior_ptid;
2987
2988 regcache = get_current_regcache ();
2989 gdbarch = regcache->arch ();
2990 const address_space *aspace = regcache->aspace ();
2991
2992 pc = regcache_read_pc (regcache);
2993 thread_info *cur_thr = inferior_thread ();
2994
2995 /* Fill in with reasonable starting values. */
2996 init_thread_stepping_state (cur_thr);
2997
2998 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2999
3000 ptid_t resume_ptid
3001 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3002 process_stratum_target *resume_target
3003 = user_visible_resume_target (resume_ptid);
3004
3005 check_multi_target_resumption (resume_target);
3006
3007 if (addr == (CORE_ADDR) -1)
3008 {
3009 if (pc == cur_thr->suspend.stop_pc
3010 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3011 && execution_direction != EXEC_REVERSE)
3012 /* There is a breakpoint at the address we will resume at,
3013 step one instruction before inserting breakpoints so that
3014 we do not stop right away (and report a second hit at this
3015 breakpoint).
3016
3017 Note, we don't do this in reverse, because we won't
3018 actually be executing the breakpoint insn anyway.
3019 We'll be (un-)executing the previous instruction. */
3020 cur_thr->stepping_over_breakpoint = 1;
3021 else if (gdbarch_single_step_through_delay_p (gdbarch)
3022 && gdbarch_single_step_through_delay (gdbarch,
3023 get_current_frame ()))
3024 /* We stepped onto an instruction that needs to be stepped
3025 again before re-inserting the breakpoint, do so. */
3026 cur_thr->stepping_over_breakpoint = 1;
3027 }
3028 else
3029 {
3030 regcache_write_pc (regcache, addr);
3031 }
3032
3033 if (siggnal != GDB_SIGNAL_DEFAULT)
3034 cur_thr->suspend.stop_signal = siggnal;
3035
3036 /* If an exception is thrown from this point on, make sure to
3037 propagate GDB's knowledge of the executing state to the
3038 frontend/user running state. */
3039 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3040
3041 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3042 threads (e.g., we might need to set threads stepping over
3043 breakpoints first), from the user/frontend's point of view, all
3044 threads in RESUME_PTID are now running. Unless we're calling an
3045 inferior function, as in that case we pretend the inferior
3046 doesn't run at all. */
3047 if (!cur_thr->control.in_infcall)
3048 set_running (resume_target, resume_ptid, true);
3049
3050 if (debug_infrun)
3051 fprintf_unfiltered (gdb_stdlog,
3052 "infrun: proceed (addr=%s, signal=%s)\n",
3053 paddress (gdbarch, addr),
3054 gdb_signal_to_symbol_string (siggnal));
3055
3056 annotate_starting ();
3057
3058 /* Make sure that output from GDB appears before output from the
3059 inferior. */
3060 gdb_flush (gdb_stdout);
3061
3062 /* Since we've marked the inferior running, give it the terminal. A
3063 QUIT/Ctrl-C from here on is forwarded to the target (which can
3064 still detect attempts to unblock a stuck connection with repeated
3065 Ctrl-C from within target_pass_ctrlc). */
3066 target_terminal::inferior ();
3067
3068 /* In a multi-threaded task we may select another thread and
3069 then continue or step.
3070
3071 But if a thread that we're resuming had stopped at a breakpoint,
3072 it will immediately cause another breakpoint stop without any
3073 execution (i.e. it will report a breakpoint hit incorrectly). So
3074 we must step over it first.
3075
3076 Look for threads other than the current (TP) that reported a
3077 breakpoint hit and haven't been resumed yet since. */
3078
3079 /* If scheduler locking applies, we can avoid iterating over all
3080 threads. */
3081 if (!non_stop && !schedlock_applies (cur_thr))
3082 {
3083 for (thread_info *tp : all_non_exited_threads (resume_target,
3084 resume_ptid))
3085 {
3086 switch_to_thread_no_regs (tp);
3087
3088 /* Ignore the current thread here. It's handled
3089 afterwards. */
3090 if (tp == cur_thr)
3091 continue;
3092
3093 if (!thread_still_needs_step_over (tp))
3094 continue;
3095
3096 gdb_assert (!thread_is_in_step_over_chain (tp));
3097
3098 if (debug_infrun)
3099 fprintf_unfiltered (gdb_stdlog,
3100 "infrun: need to step-over [%s] first\n",
3101 target_pid_to_str (tp->ptid).c_str ());
3102
3103 thread_step_over_chain_enqueue (tp);
3104 }
3105
3106 switch_to_thread (cur_thr);
3107 }
3108
3109 /* Enqueue the current thread last, so that we move all other
3110 threads over their breakpoints first. */
3111 if (cur_thr->stepping_over_breakpoint)
3112 thread_step_over_chain_enqueue (cur_thr);
3113
3114 /* If the thread isn't started, we'll still need to set its prev_pc,
3115 so that switch_back_to_stepped_thread knows the thread hasn't
3116 advanced. Must do this before resuming any thread, as in
3117 all-stop/remote, once we resume we can't send any other packet
3118 until the target stops again. */
3119 cur_thr->prev_pc = regcache_read_pc (regcache);
3120
3121 {
3122 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3123
3124 started = start_step_over ();
3125
3126 if (step_over_info_valid_p ())
3127 {
3128 /* Either this thread started a new in-line step over, or some
3129 other thread was already doing one. In either case, don't
3130 resume anything else until the step-over is finished. */
3131 }
3132 else if (started && !target_is_non_stop_p ())
3133 {
3134 /* A new displaced stepping sequence was started. In all-stop,
3135 we can't talk to the target anymore until it next stops. */
3136 }
3137 else if (!non_stop && target_is_non_stop_p ())
3138 {
3139 /* In all-stop, but the target is always in non-stop mode.
3140 Start all other threads that are implicitly resumed too. */
3141 for (thread_info *tp : all_non_exited_threads (resume_target,
3142 resume_ptid))
3143 {
3144 switch_to_thread_no_regs (tp);
3145
3146 if (!tp->inf->has_execution ())
3147 {
3148 if (debug_infrun)
3149 fprintf_unfiltered (gdb_stdlog,
3150 "infrun: proceed: [%s] target has "
3151 "no execution\n",
3152 target_pid_to_str (tp->ptid).c_str ());
3153 continue;
3154 }
3155
3156 if (tp->resumed)
3157 {
3158 if (debug_infrun)
3159 fprintf_unfiltered (gdb_stdlog,
3160 "infrun: proceed: [%s] resumed\n",
3161 target_pid_to_str (tp->ptid).c_str ());
3162 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3163 continue;
3164 }
3165
3166 if (thread_is_in_step_over_chain (tp))
3167 {
3168 if (debug_infrun)
3169 fprintf_unfiltered (gdb_stdlog,
3170 "infrun: proceed: [%s] needs step-over\n",
3171 target_pid_to_str (tp->ptid).c_str ());
3172 continue;
3173 }
3174
3175 if (debug_infrun)
3176 fprintf_unfiltered (gdb_stdlog,
3177 "infrun: proceed: resuming %s\n",
3178 target_pid_to_str (tp->ptid).c_str ());
3179
3180 reset_ecs (ecs, tp);
3181 switch_to_thread (tp);
3182 keep_going_pass_signal (ecs);
3183 if (!ecs->wait_some_more)
3184 error (_("Command aborted."));
3185 }
3186 }
3187 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3188 {
3189 /* The thread wasn't started, and isn't queued, run it now. */
3190 reset_ecs (ecs, cur_thr);
3191 switch_to_thread (cur_thr);
3192 keep_going_pass_signal (ecs);
3193 if (!ecs->wait_some_more)
3194 error (_("Command aborted."));
3195 }
3196 }
3197
3198 commit_resume_all_targets ();
3199
3200 finish_state.release ();
3201
3202 /* If we've switched threads above, switch back to the previously
3203 current thread. We don't want the user to see a different
3204 selected thread. */
3205 switch_to_thread (cur_thr);
3206
3207 /* Tell the event loop to wait for it to stop. If the target
3208 supports asynchronous execution, it'll do this from within
3209 target_resume. */
3210 if (!target_can_async_p ())
3211 mark_async_event_handler (infrun_async_inferior_event_token);
3212 }
3213 \f
3214
3215 /* Start remote-debugging of a machine over a serial link. */
3216
3217 void
3218 start_remote (int from_tty)
3219 {
3220 inferior *inf = current_inferior ();
3221 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3222
3223 /* Always go on waiting for the target, regardless of the mode. */
3224 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3225 indicate to wait_for_inferior that a target should timeout if
3226 nothing is returned (instead of just blocking). Because of this,
3227 targets expecting an immediate response need to, internally, set
3228 things up so that the target_wait() is forced to eventually
3229 timeout. */
3230 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3231 differentiate to its caller what the state of the target is after
3232 the initial open has been performed. Here we're assuming that
3233 the target has stopped. It should be possible to eventually have
3234 target_open() return to the caller an indication that the target
3235 is currently running and GDB state should be set to the same as
3236 for an async run. */
3237 wait_for_inferior (inf);
3238
3239 /* Now that the inferior has stopped, do any bookkeeping like
3240 loading shared libraries. We want to do this before normal_stop,
3241 so that the displayed frame is up to date. */
3242 post_create_inferior (current_top_target (), from_tty);
3243
3244 normal_stop ();
3245 }
3246
3247 /* Initialize static vars when a new inferior begins. */
3248
3249 void
3250 init_wait_for_inferior (void)
3251 {
3252 /* These are meaningless until the first time through wait_for_inferior. */
3253
3254 breakpoint_init_inferior (inf_starting);
3255
3256 clear_proceed_status (0);
3257
3258 nullify_last_target_wait_ptid ();
3259
3260 previous_inferior_ptid = inferior_ptid;
3261 }
3262
3263 \f
3264
3265 static void handle_inferior_event (struct execution_control_state *ecs);
3266
3267 static void handle_step_into_function (struct gdbarch *gdbarch,
3268 struct execution_control_state *ecs);
3269 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3270 struct execution_control_state *ecs);
3271 static void handle_signal_stop (struct execution_control_state *ecs);
3272 static void check_exception_resume (struct execution_control_state *,
3273 struct frame_info *);
3274
3275 static void end_stepping_range (struct execution_control_state *ecs);
3276 static void stop_waiting (struct execution_control_state *ecs);
3277 static void keep_going (struct execution_control_state *ecs);
3278 static void process_event_stop_test (struct execution_control_state *ecs);
3279 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3280
3281 /* This function is attached as a "thread_stop_requested" observer.
3282 Cleanup local state that assumed the PTID was to be resumed, and
3283 report the stop to the frontend. */
3284
3285 static void
3286 infrun_thread_stop_requested (ptid_t ptid)
3287 {
3288 process_stratum_target *curr_target = current_inferior ()->process_target ();
3289
3290 /* PTID was requested to stop. If the thread was already stopped,
3291 but the user/frontend doesn't know about that yet (e.g., the
3292 thread had been temporarily paused for some step-over), set up
3293 for reporting the stop now. */
3294 for (thread_info *tp : all_threads (curr_target, ptid))
3295 {
3296 if (tp->state != THREAD_RUNNING)
3297 continue;
3298 if (tp->executing)
3299 continue;
3300
3301 /* Remove matching threads from the step-over queue, so
3302 start_step_over doesn't try to resume them
3303 automatically. */
3304 if (thread_is_in_step_over_chain (tp))
3305 thread_step_over_chain_remove (tp);
3306
3307 /* If the thread is stopped, but the user/frontend doesn't
3308 know about that yet, queue a pending event, as if the
3309 thread had just stopped now. Unless the thread already had
3310 a pending event. */
3311 if (!tp->suspend.waitstatus_pending_p)
3312 {
3313 tp->suspend.waitstatus_pending_p = 1;
3314 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3315 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3316 }
3317
3318 /* Clear the inline-frame state, since we're re-processing the
3319 stop. */
3320 clear_inline_frame_state (tp);
3321
3322 /* If this thread was paused because some other thread was
3323 doing an inline-step over, let that finish first. Once
3324 that happens, we'll restart all threads and consume pending
3325 stop events then. */
3326 if (step_over_info_valid_p ())
3327 continue;
3328
3329 /* Otherwise we can process the (new) pending event now. Set
3330 it so this pending event is considered by
3331 do_target_wait. */
3332 tp->resumed = true;
3333 }
3334 }
3335
3336 static void
3337 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3338 {
3339 if (target_last_proc_target == tp->inf->process_target ()
3340 && target_last_wait_ptid == tp->ptid)
3341 nullify_last_target_wait_ptid ();
3342 }
3343
3344 /* Delete the step resume, single-step and longjmp/exception resume
3345 breakpoints of TP. */
3346
3347 static void
3348 delete_thread_infrun_breakpoints (struct thread_info *tp)
3349 {
3350 delete_step_resume_breakpoint (tp);
3351 delete_exception_resume_breakpoint (tp);
3352 delete_single_step_breakpoints (tp);
3353 }
3354
3355 /* If the target still has execution, call FUNC for each thread that
3356 just stopped. In all-stop, that's all the non-exited threads; in
3357 non-stop, that's the current thread, only. */
3358
3359 typedef void (*for_each_just_stopped_thread_callback_func)
3360 (struct thread_info *tp);
3361
3362 static void
3363 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3364 {
3365 if (!target_has_execution || inferior_ptid == null_ptid)
3366 return;
3367
3368 if (target_is_non_stop_p ())
3369 {
3370 /* If in non-stop mode, only the current thread stopped. */
3371 func (inferior_thread ());
3372 }
3373 else
3374 {
3375 /* In all-stop mode, all threads have stopped. */
3376 for (thread_info *tp : all_non_exited_threads ())
3377 func (tp);
3378 }
3379 }
3380
3381 /* Delete the step resume and longjmp/exception resume breakpoints of
3382 the threads that just stopped. */
3383
3384 static void
3385 delete_just_stopped_threads_infrun_breakpoints (void)
3386 {
3387 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3388 }
3389
3390 /* Delete the single-step breakpoints of the threads that just
3391 stopped. */
3392
3393 static void
3394 delete_just_stopped_threads_single_step_breakpoints (void)
3395 {
3396 for_each_just_stopped_thread (delete_single_step_breakpoints);
3397 }
3398
3399 /* See infrun.h. */
3400
3401 void
3402 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3403 const struct target_waitstatus *ws)
3404 {
3405 std::string status_string = target_waitstatus_to_string (ws);
3406 string_file stb;
3407
3408 /* The text is split over several lines because it was getting too long.
3409 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3410 output as a unit; we want only one timestamp printed if debug_timestamp
3411 is set. */
3412
3413 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3414 waiton_ptid.pid (),
3415 waiton_ptid.lwp (),
3416 waiton_ptid.tid ());
3417 if (waiton_ptid.pid () != -1)
3418 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3419 stb.printf (", status) =\n");
3420 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3421 result_ptid.pid (),
3422 result_ptid.lwp (),
3423 result_ptid.tid (),
3424 target_pid_to_str (result_ptid).c_str ());
3425 stb.printf ("infrun: %s\n", status_string.c_str ());
3426
3427 /* This uses %s in part to handle %'s in the text, but also to avoid
3428 a gcc error: the format attribute requires a string literal. */
3429 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3430 }
3431
3432 /* Select a thread at random, out of those which are resumed and have
3433 had events. */
3434
3435 static struct thread_info *
3436 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3437 {
3438 int num_events = 0;
3439
3440 auto has_event = [&] (thread_info *tp)
3441 {
3442 return (tp->ptid.matches (waiton_ptid)
3443 && tp->resumed
3444 && tp->suspend.waitstatus_pending_p);
3445 };
3446
3447 /* First see how many events we have. Count only resumed threads
3448 that have an event pending. */
3449 for (thread_info *tp : inf->non_exited_threads ())
3450 if (has_event (tp))
3451 num_events++;
3452
3453 if (num_events == 0)
3454 return NULL;
3455
3456 /* Now randomly pick a thread out of those that have had events. */
3457 int random_selector = (int) ((num_events * (double) rand ())
3458 / (RAND_MAX + 1.0));
3459
3460 if (debug_infrun && num_events > 1)
3461 fprintf_unfiltered (gdb_stdlog,
3462 "infrun: Found %d events, selecting #%d\n",
3463 num_events, random_selector);
3464
3465 /* Select the Nth thread that has had an event. */
3466 for (thread_info *tp : inf->non_exited_threads ())
3467 if (has_event (tp))
3468 if (random_selector-- == 0)
3469 return tp;
3470
3471 gdb_assert_not_reached ("event thread not found");
3472 }
3473
3474 /* Wrapper for target_wait that first checks whether threads have
3475 pending statuses to report before actually asking the target for
3476 more events. INF is the inferior we're using to call target_wait
3477 on. */
3478
3479 static ptid_t
3480 do_target_wait_1 (inferior *inf, ptid_t ptid,
3481 target_waitstatus *status, int options)
3482 {
3483 ptid_t event_ptid;
3484 struct thread_info *tp;
3485
3486 /* We know that we are looking for an event in the target of inferior
3487 INF, but we don't know which thread the event might come from. As
3488 such we want to make sure that INFERIOR_PTID is reset so that none of
3489 the wait code relies on it - doing so is always a mistake. */
3490 switch_to_inferior_no_thread (inf);
3491
3492 /* First check if there is a resumed thread with a wait status
3493 pending. */
3494 if (ptid == minus_one_ptid || ptid.is_pid ())
3495 {
3496 tp = random_pending_event_thread (inf, ptid);
3497 }
3498 else
3499 {
3500 if (debug_infrun)
3501 fprintf_unfiltered (gdb_stdlog,
3502 "infrun: Waiting for specific thread %s.\n",
3503 target_pid_to_str (ptid).c_str ());
3504
3505 /* We have a specific thread to check. */
3506 tp = find_thread_ptid (inf, ptid);
3507 gdb_assert (tp != NULL);
3508 if (!tp->suspend.waitstatus_pending_p)
3509 tp = NULL;
3510 }
3511
3512 if (tp != NULL
3513 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3514 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3515 {
3516 struct regcache *regcache = get_thread_regcache (tp);
3517 struct gdbarch *gdbarch = regcache->arch ();
3518 CORE_ADDR pc;
3519 int discard = 0;
3520
3521 pc = regcache_read_pc (regcache);
3522
3523 if (pc != tp->suspend.stop_pc)
3524 {
3525 if (debug_infrun)
3526 fprintf_unfiltered (gdb_stdlog,
3527 "infrun: PC of %s changed. was=%s, now=%s\n",
3528 target_pid_to_str (tp->ptid).c_str (),
3529 paddress (gdbarch, tp->suspend.stop_pc),
3530 paddress (gdbarch, pc));
3531 discard = 1;
3532 }
3533 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3534 {
3535 if (debug_infrun)
3536 fprintf_unfiltered (gdb_stdlog,
3537 "infrun: previous breakpoint of %s, at %s gone\n",
3538 target_pid_to_str (tp->ptid).c_str (),
3539 paddress (gdbarch, pc));
3540
3541 discard = 1;
3542 }
3543
3544 if (discard)
3545 {
3546 if (debug_infrun)
3547 fprintf_unfiltered (gdb_stdlog,
3548 "infrun: pending event of %s cancelled.\n",
3549 target_pid_to_str (tp->ptid).c_str ());
3550
3551 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3552 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3553 }
3554 }
3555
3556 if (tp != NULL)
3557 {
3558 if (debug_infrun)
3559 {
3560 std::string statstr
3561 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3562
3563 fprintf_unfiltered (gdb_stdlog,
3564 "infrun: Using pending wait status %s for %s.\n",
3565 statstr.c_str (),
3566 target_pid_to_str (tp->ptid).c_str ());
3567 }
3568
3569 /* Now that we've selected our final event LWP, un-adjust its PC
3570 if it was a software breakpoint (and the target doesn't
3571 always adjust the PC itself). */
3572 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3573 && !target_supports_stopped_by_sw_breakpoint ())
3574 {
3575 struct regcache *regcache;
3576 struct gdbarch *gdbarch;
3577 int decr_pc;
3578
3579 regcache = get_thread_regcache (tp);
3580 gdbarch = regcache->arch ();
3581
3582 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3583 if (decr_pc != 0)
3584 {
3585 CORE_ADDR pc;
3586
3587 pc = regcache_read_pc (regcache);
3588 regcache_write_pc (regcache, pc + decr_pc);
3589 }
3590 }
3591
3592 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3593 *status = tp->suspend.waitstatus;
3594 tp->suspend.waitstatus_pending_p = 0;
3595
3596 /* Wake up the event loop again, until all pending events are
3597 processed. */
3598 if (target_is_async_p ())
3599 mark_async_event_handler (infrun_async_inferior_event_token);
3600 return tp->ptid;
3601 }
3602
3603 /* But if we don't find one, we'll have to wait. */
3604
3605 if (deprecated_target_wait_hook)
3606 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3607 else
3608 event_ptid = target_wait (ptid, status, options);
3609
3610 return event_ptid;
3611 }
3612
3613 /* Returns true if INF has any resumed thread with a status
3614 pending. */
3615
3616 static bool
3617 threads_are_resumed_pending_p (inferior *inf)
3618 {
3619 for (thread_info *tp : inf->non_exited_threads ())
3620 if (tp->resumed
3621 && tp->suspend.waitstatus_pending_p)
3622 return true;
3623
3624 return false;
3625 }
3626
3627 /* Wrapper for target_wait that first checks whether threads have
3628 pending statuses to report before actually asking the target for
3629 more events. Polls for events from all inferiors/targets. */
3630
3631 static bool
3632 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3633 {
3634 int num_inferiors = 0;
3635 int random_selector;
3636
3637 /* For fairness, we pick the first inferior/target to poll at
3638 random, and then continue polling the rest of the inferior list
3639 starting from that one in a circular fashion until the whole list
3640 is polled once. */
3641
3642 auto inferior_matches = [&wait_ptid] (inferior *inf)
3643 {
3644 return (inf->process_target () != NULL
3645 && (threads_are_executing (inf->process_target ())
3646 || threads_are_resumed_pending_p (inf))
3647 && ptid_t (inf->pid).matches (wait_ptid));
3648 };
3649
3650 /* First see how many resumed inferiors we have. */
3651 for (inferior *inf : all_inferiors ())
3652 if (inferior_matches (inf))
3653 num_inferiors++;
3654
3655 if (num_inferiors == 0)
3656 {
3657 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3658 return false;
3659 }
3660
3661 /* Now randomly pick an inferior out of those that were resumed. */
3662 random_selector = (int)
3663 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3664
3665 if (debug_infrun && num_inferiors > 1)
3666 fprintf_unfiltered (gdb_stdlog,
3667 "infrun: Found %d inferiors, starting at #%d\n",
3668 num_inferiors, random_selector);
3669
3670 /* Select the Nth inferior that was resumed. */
3671
3672 inferior *selected = nullptr;
3673
3674 for (inferior *inf : all_inferiors ())
3675 if (inferior_matches (inf))
3676 if (random_selector-- == 0)
3677 {
3678 selected = inf;
3679 break;
3680 }
3681
3682 /* Now poll for events out of each of the resumed inferior's
3683 targets, starting from the selected one. */
3684
3685 auto do_wait = [&] (inferior *inf)
3686 {
3687 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3688 ecs->target = inf->process_target ();
3689 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3690 };
3691
3692 /* Needed in all-stop+target-non-stop mode, because we end up here
3693 spuriously after the target is all stopped and we've already
3694 reported the stop to the user, polling for events. */
3695 scoped_restore_current_thread restore_thread;
3696
3697 int inf_num = selected->num;
3698 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3699 if (inferior_matches (inf))
3700 if (do_wait (inf))
3701 return true;
3702
3703 for (inferior *inf = inferior_list;
3704 inf != NULL && inf->num < inf_num;
3705 inf = inf->next)
3706 if (inferior_matches (inf))
3707 if (do_wait (inf))
3708 return true;
3709
3710 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3711 return false;
3712 }
3713
3714 /* Prepare and stabilize the inferior for detaching it. E.g.,
3715 detaching while a thread is displaced stepping is a recipe for
3716 crashing it, as nothing would readjust the PC out of the scratch
3717 pad. */
3718
3719 void
3720 prepare_for_detach (void)
3721 {
3722 struct inferior *inf = current_inferior ();
3723 ptid_t pid_ptid = ptid_t (inf->pid);
3724
3725 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3726
3727 /* Is any thread of this process displaced stepping? If not,
3728 there's nothing else to do. */
3729 if (displaced->step_thread == nullptr)
3730 return;
3731
3732 if (debug_infrun)
3733 fprintf_unfiltered (gdb_stdlog,
3734 "displaced-stepping in-process while detaching");
3735
3736 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3737
3738 while (displaced->step_thread != nullptr)
3739 {
3740 struct execution_control_state ecss;
3741 struct execution_control_state *ecs;
3742
3743 ecs = &ecss;
3744 memset (ecs, 0, sizeof (*ecs));
3745
3746 overlay_cache_invalid = 1;
3747 /* Flush target cache before starting to handle each event.
3748 Target was running and cache could be stale. This is just a
3749 heuristic. Running threads may modify target memory, but we
3750 don't get any event. */
3751 target_dcache_invalidate ();
3752
3753 do_target_wait (pid_ptid, ecs, 0);
3754
3755 if (debug_infrun)
3756 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3757
3758 /* If an error happens while handling the event, propagate GDB's
3759 knowledge of the executing state to the frontend/user running
3760 state. */
3761 scoped_finish_thread_state finish_state (inf->process_target (),
3762 minus_one_ptid);
3763
3764 /* Now figure out what to do with the result of the result. */
3765 handle_inferior_event (ecs);
3766
3767 /* No error, don't finish the state yet. */
3768 finish_state.release ();
3769
3770 /* Breakpoints and watchpoints are not installed on the target
3771 at this point, and signals are passed directly to the
3772 inferior, so this must mean the process is gone. */
3773 if (!ecs->wait_some_more)
3774 {
3775 restore_detaching.release ();
3776 error (_("Program exited while detaching"));
3777 }
3778 }
3779
3780 restore_detaching.release ();
3781 }
3782
3783 /* Wait for control to return from inferior to debugger.
3784
3785 If inferior gets a signal, we may decide to start it up again
3786 instead of returning. That is why there is a loop in this function.
3787 When this function actually returns it means the inferior
3788 should be left stopped and GDB should read more commands. */
3789
3790 static void
3791 wait_for_inferior (inferior *inf)
3792 {
3793 if (debug_infrun)
3794 fprintf_unfiltered
3795 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3796
3797 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3798
3799 /* If an error happens while handling the event, propagate GDB's
3800 knowledge of the executing state to the frontend/user running
3801 state. */
3802 scoped_finish_thread_state finish_state
3803 (inf->process_target (), minus_one_ptid);
3804
3805 while (1)
3806 {
3807 struct execution_control_state ecss;
3808 struct execution_control_state *ecs = &ecss;
3809
3810 memset (ecs, 0, sizeof (*ecs));
3811
3812 overlay_cache_invalid = 1;
3813
3814 /* Flush target cache before starting to handle each event.
3815 Target was running and cache could be stale. This is just a
3816 heuristic. Running threads may modify target memory, but we
3817 don't get any event. */
3818 target_dcache_invalidate ();
3819
3820 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3821 ecs->target = inf->process_target ();
3822
3823 if (debug_infrun)
3824 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3825
3826 /* Now figure out what to do with the result of the result. */
3827 handle_inferior_event (ecs);
3828
3829 if (!ecs->wait_some_more)
3830 break;
3831 }
3832
3833 /* No error, don't finish the state yet. */
3834 finish_state.release ();
3835 }
3836
3837 /* Cleanup that reinstalls the readline callback handler, if the
3838 target is running in the background. If while handling the target
3839 event something triggered a secondary prompt, like e.g., a
3840 pagination prompt, we'll have removed the callback handler (see
3841 gdb_readline_wrapper_line). Need to do this as we go back to the
3842 event loop, ready to process further input. Note this has no
3843 effect if the handler hasn't actually been removed, because calling
3844 rl_callback_handler_install resets the line buffer, thus losing
3845 input. */
3846
3847 static void
3848 reinstall_readline_callback_handler_cleanup ()
3849 {
3850 struct ui *ui = current_ui;
3851
3852 if (!ui->async)
3853 {
3854 /* We're not going back to the top level event loop yet. Don't
3855 install the readline callback, as it'd prep the terminal,
3856 readline-style (raw, noecho) (e.g., --batch). We'll install
3857 it the next time the prompt is displayed, when we're ready
3858 for input. */
3859 return;
3860 }
3861
3862 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3863 gdb_rl_callback_handler_reinstall ();
3864 }
3865
3866 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3867 that's just the event thread. In all-stop, that's all threads. */
3868
3869 static void
3870 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3871 {
3872 if (ecs->event_thread != NULL
3873 && ecs->event_thread->thread_fsm != NULL)
3874 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3875
3876 if (!non_stop)
3877 {
3878 for (thread_info *thr : all_non_exited_threads ())
3879 {
3880 if (thr->thread_fsm == NULL)
3881 continue;
3882 if (thr == ecs->event_thread)
3883 continue;
3884
3885 switch_to_thread (thr);
3886 thr->thread_fsm->clean_up (thr);
3887 }
3888
3889 if (ecs->event_thread != NULL)
3890 switch_to_thread (ecs->event_thread);
3891 }
3892 }
3893
3894 /* Helper for all_uis_check_sync_execution_done that works on the
3895 current UI. */
3896
3897 static void
3898 check_curr_ui_sync_execution_done (void)
3899 {
3900 struct ui *ui = current_ui;
3901
3902 if (ui->prompt_state == PROMPT_NEEDED
3903 && ui->async
3904 && !gdb_in_secondary_prompt_p (ui))
3905 {
3906 target_terminal::ours ();
3907 gdb::observers::sync_execution_done.notify ();
3908 ui_register_input_event_handler (ui);
3909 }
3910 }
3911
3912 /* See infrun.h. */
3913
3914 void
3915 all_uis_check_sync_execution_done (void)
3916 {
3917 SWITCH_THRU_ALL_UIS ()
3918 {
3919 check_curr_ui_sync_execution_done ();
3920 }
3921 }
3922
3923 /* See infrun.h. */
3924
3925 void
3926 all_uis_on_sync_execution_starting (void)
3927 {
3928 SWITCH_THRU_ALL_UIS ()
3929 {
3930 if (current_ui->prompt_state == PROMPT_NEEDED)
3931 async_disable_stdin ();
3932 }
3933 }
3934
3935 /* Asynchronous version of wait_for_inferior. It is called by the
3936 event loop whenever a change of state is detected on the file
3937 descriptor corresponding to the target. It can be called more than
3938 once to complete a single execution command. In such cases we need
3939 to keep the state in a global variable ECSS. If it is the last time
3940 that this function is called for a single execution command, then
3941 report to the user that the inferior has stopped, and do the
3942 necessary cleanups. */
3943
3944 void
3945 fetch_inferior_event (void *client_data)
3946 {
3947 struct execution_control_state ecss;
3948 struct execution_control_state *ecs = &ecss;
3949 int cmd_done = 0;
3950
3951 memset (ecs, 0, sizeof (*ecs));
3952
3953 /* Events are always processed with the main UI as current UI. This
3954 way, warnings, debug output, etc. are always consistently sent to
3955 the main console. */
3956 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3957
3958 /* End up with readline processing input, if necessary. */
3959 {
3960 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3961
3962 /* We're handling a live event, so make sure we're doing live
3963 debugging. If we're looking at traceframes while the target is
3964 running, we're going to need to get back to that mode after
3965 handling the event. */
3966 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3967 if (non_stop)
3968 {
3969 maybe_restore_traceframe.emplace ();
3970 set_current_traceframe (-1);
3971 }
3972
3973 /* The user/frontend should not notice a thread switch due to
3974 internal events. Make sure we revert to the user selected
3975 thread and frame after handling the event and running any
3976 breakpoint commands. */
3977 scoped_restore_current_thread restore_thread;
3978
3979 overlay_cache_invalid = 1;
3980 /* Flush target cache before starting to handle each event. Target
3981 was running and cache could be stale. This is just a heuristic.
3982 Running threads may modify target memory, but we don't get any
3983 event. */
3984 target_dcache_invalidate ();
3985
3986 scoped_restore save_exec_dir
3987 = make_scoped_restore (&execution_direction,
3988 target_execution_direction ());
3989
3990 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3991 return;
3992
3993 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3994
3995 /* Switch to the target that generated the event, so we can do
3996 target calls. Any inferior bound to the target will do, so we
3997 just switch to the first we find. */
3998 for (inferior *inf : all_inferiors (ecs->target))
3999 {
4000 switch_to_inferior_no_thread (inf);
4001 break;
4002 }
4003
4004 if (debug_infrun)
4005 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
4006
4007 /* If an error happens while handling the event, propagate GDB's
4008 knowledge of the executing state to the frontend/user running
4009 state. */
4010 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4011 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4012
4013 /* Get executed before scoped_restore_current_thread above to apply
4014 still for the thread which has thrown the exception. */
4015 auto defer_bpstat_clear
4016 = make_scope_exit (bpstat_clear_actions);
4017 auto defer_delete_threads
4018 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4019
4020 /* Now figure out what to do with the result of the result. */
4021 handle_inferior_event (ecs);
4022
4023 if (!ecs->wait_some_more)
4024 {
4025 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4026 int should_stop = 1;
4027 struct thread_info *thr = ecs->event_thread;
4028
4029 delete_just_stopped_threads_infrun_breakpoints ();
4030
4031 if (thr != NULL)
4032 {
4033 struct thread_fsm *thread_fsm = thr->thread_fsm;
4034
4035 if (thread_fsm != NULL)
4036 should_stop = thread_fsm->should_stop (thr);
4037 }
4038
4039 if (!should_stop)
4040 {
4041 keep_going (ecs);
4042 }
4043 else
4044 {
4045 bool should_notify_stop = true;
4046 int proceeded = 0;
4047
4048 clean_up_just_stopped_threads_fsms (ecs);
4049
4050 if (thr != NULL && thr->thread_fsm != NULL)
4051 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4052
4053 if (should_notify_stop)
4054 {
4055 /* We may not find an inferior if this was a process exit. */
4056 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4057 proceeded = normal_stop ();
4058 }
4059
4060 if (!proceeded)
4061 {
4062 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4063 cmd_done = 1;
4064 }
4065
4066 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4067 previously selected thread is gone. We have two
4068 choices - switch to no thread selected, or restore the
4069 previously selected thread (now exited). We chose the
4070 later, just because that's what GDB used to do. After
4071 this, "info threads" says "The current thread <Thread
4072 ID 2> has terminated." instead of "No thread
4073 selected.". */
4074 if (!non_stop
4075 && cmd_done
4076 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4077 restore_thread.dont_restore ();
4078 }
4079 }
4080
4081 defer_delete_threads.release ();
4082 defer_bpstat_clear.release ();
4083
4084 /* No error, don't finish the thread states yet. */
4085 finish_state.release ();
4086
4087 /* This scope is used to ensure that readline callbacks are
4088 reinstalled here. */
4089 }
4090
4091 /* If a UI was in sync execution mode, and now isn't, restore its
4092 prompt (a synchronous execution command has finished, and we're
4093 ready for input). */
4094 all_uis_check_sync_execution_done ();
4095
4096 if (cmd_done
4097 && exec_done_display_p
4098 && (inferior_ptid == null_ptid
4099 || inferior_thread ()->state != THREAD_RUNNING))
4100 printf_unfiltered (_("completed.\n"));
4101 }
4102
4103 /* See infrun.h. */
4104
4105 void
4106 set_step_info (thread_info *tp, struct frame_info *frame,
4107 struct symtab_and_line sal)
4108 {
4109 /* This can be removed once this function no longer implicitly relies on the
4110 inferior_ptid value. */
4111 gdb_assert (inferior_ptid == tp->ptid);
4112
4113 tp->control.step_frame_id = get_frame_id (frame);
4114 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4115
4116 tp->current_symtab = sal.symtab;
4117 tp->current_line = sal.line;
4118 }
4119
4120 /* Clear context switchable stepping state. */
4121
4122 void
4123 init_thread_stepping_state (struct thread_info *tss)
4124 {
4125 tss->stepped_breakpoint = 0;
4126 tss->stepping_over_breakpoint = 0;
4127 tss->stepping_over_watchpoint = 0;
4128 tss->step_after_step_resume_breakpoint = 0;
4129 }
4130
4131 /* See infrun.h. */
4132
4133 void
4134 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4135 target_waitstatus status)
4136 {
4137 target_last_proc_target = target;
4138 target_last_wait_ptid = ptid;
4139 target_last_waitstatus = status;
4140 }
4141
4142 /* See infrun.h. */
4143
4144 void
4145 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4146 target_waitstatus *status)
4147 {
4148 if (target != nullptr)
4149 *target = target_last_proc_target;
4150 if (ptid != nullptr)
4151 *ptid = target_last_wait_ptid;
4152 if (status != nullptr)
4153 *status = target_last_waitstatus;
4154 }
4155
4156 /* See infrun.h. */
4157
4158 void
4159 nullify_last_target_wait_ptid (void)
4160 {
4161 target_last_proc_target = nullptr;
4162 target_last_wait_ptid = minus_one_ptid;
4163 target_last_waitstatus = {};
4164 }
4165
4166 /* Switch thread contexts. */
4167
4168 static void
4169 context_switch (execution_control_state *ecs)
4170 {
4171 if (debug_infrun
4172 && ecs->ptid != inferior_ptid
4173 && (inferior_ptid == null_ptid
4174 || ecs->event_thread != inferior_thread ()))
4175 {
4176 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4177 target_pid_to_str (inferior_ptid).c_str ());
4178 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4179 target_pid_to_str (ecs->ptid).c_str ());
4180 }
4181
4182 switch_to_thread (ecs->event_thread);
4183 }
4184
4185 /* If the target can't tell whether we've hit breakpoints
4186 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4187 check whether that could have been caused by a breakpoint. If so,
4188 adjust the PC, per gdbarch_decr_pc_after_break. */
4189
4190 static void
4191 adjust_pc_after_break (struct thread_info *thread,
4192 struct target_waitstatus *ws)
4193 {
4194 struct regcache *regcache;
4195 struct gdbarch *gdbarch;
4196 CORE_ADDR breakpoint_pc, decr_pc;
4197
4198 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4199 we aren't, just return.
4200
4201 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4202 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4203 implemented by software breakpoints should be handled through the normal
4204 breakpoint layer.
4205
4206 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4207 different signals (SIGILL or SIGEMT for instance), but it is less
4208 clear where the PC is pointing afterwards. It may not match
4209 gdbarch_decr_pc_after_break. I don't know any specific target that
4210 generates these signals at breakpoints (the code has been in GDB since at
4211 least 1992) so I can not guess how to handle them here.
4212
4213 In earlier versions of GDB, a target with
4214 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4215 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4216 target with both of these set in GDB history, and it seems unlikely to be
4217 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4218
4219 if (ws->kind != TARGET_WAITKIND_STOPPED)
4220 return;
4221
4222 if (ws->value.sig != GDB_SIGNAL_TRAP)
4223 return;
4224
4225 /* In reverse execution, when a breakpoint is hit, the instruction
4226 under it has already been de-executed. The reported PC always
4227 points at the breakpoint address, so adjusting it further would
4228 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4229 architecture:
4230
4231 B1 0x08000000 : INSN1
4232 B2 0x08000001 : INSN2
4233 0x08000002 : INSN3
4234 PC -> 0x08000003 : INSN4
4235
4236 Say you're stopped at 0x08000003 as above. Reverse continuing
4237 from that point should hit B2 as below. Reading the PC when the
4238 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4239 been de-executed already.
4240
4241 B1 0x08000000 : INSN1
4242 B2 PC -> 0x08000001 : INSN2
4243 0x08000002 : INSN3
4244 0x08000003 : INSN4
4245
4246 We can't apply the same logic as for forward execution, because
4247 we would wrongly adjust the PC to 0x08000000, since there's a
4248 breakpoint at PC - 1. We'd then report a hit on B1, although
4249 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4250 behaviour. */
4251 if (execution_direction == EXEC_REVERSE)
4252 return;
4253
4254 /* If the target can tell whether the thread hit a SW breakpoint,
4255 trust it. Targets that can tell also adjust the PC
4256 themselves. */
4257 if (target_supports_stopped_by_sw_breakpoint ())
4258 return;
4259
4260 /* Note that relying on whether a breakpoint is planted in memory to
4261 determine this can fail. E.g,. the breakpoint could have been
4262 removed since. Or the thread could have been told to step an
4263 instruction the size of a breakpoint instruction, and only
4264 _after_ was a breakpoint inserted at its address. */
4265
4266 /* If this target does not decrement the PC after breakpoints, then
4267 we have nothing to do. */
4268 regcache = get_thread_regcache (thread);
4269 gdbarch = regcache->arch ();
4270
4271 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4272 if (decr_pc == 0)
4273 return;
4274
4275 const address_space *aspace = regcache->aspace ();
4276
4277 /* Find the location where (if we've hit a breakpoint) the
4278 breakpoint would be. */
4279 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4280
4281 /* If the target can't tell whether a software breakpoint triggered,
4282 fallback to figuring it out based on breakpoints we think were
4283 inserted in the target, and on whether the thread was stepped or
4284 continued. */
4285
4286 /* Check whether there actually is a software breakpoint inserted at
4287 that location.
4288
4289 If in non-stop mode, a race condition is possible where we've
4290 removed a breakpoint, but stop events for that breakpoint were
4291 already queued and arrive later. To suppress those spurious
4292 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4293 and retire them after a number of stop events are reported. Note
4294 this is an heuristic and can thus get confused. The real fix is
4295 to get the "stopped by SW BP and needs adjustment" info out of
4296 the target/kernel (and thus never reach here; see above). */
4297 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4298 || (target_is_non_stop_p ()
4299 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4300 {
4301 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4302
4303 if (record_full_is_used ())
4304 restore_operation_disable.emplace
4305 (record_full_gdb_operation_disable_set ());
4306
4307 /* When using hardware single-step, a SIGTRAP is reported for both
4308 a completed single-step and a software breakpoint. Need to
4309 differentiate between the two, as the latter needs adjusting
4310 but the former does not.
4311
4312 The SIGTRAP can be due to a completed hardware single-step only if
4313 - we didn't insert software single-step breakpoints
4314 - this thread is currently being stepped
4315
4316 If any of these events did not occur, we must have stopped due
4317 to hitting a software breakpoint, and have to back up to the
4318 breakpoint address.
4319
4320 As a special case, we could have hardware single-stepped a
4321 software breakpoint. In this case (prev_pc == breakpoint_pc),
4322 we also need to back up to the breakpoint address. */
4323
4324 if (thread_has_single_step_breakpoints_set (thread)
4325 || !currently_stepping (thread)
4326 || (thread->stepped_breakpoint
4327 && thread->prev_pc == breakpoint_pc))
4328 regcache_write_pc (regcache, breakpoint_pc);
4329 }
4330 }
4331
4332 static int
4333 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4334 {
4335 for (frame = get_prev_frame (frame);
4336 frame != NULL;
4337 frame = get_prev_frame (frame))
4338 {
4339 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4340 return 1;
4341 if (get_frame_type (frame) != INLINE_FRAME)
4342 break;
4343 }
4344
4345 return 0;
4346 }
4347
4348 /* Look for an inline frame that is marked for skip.
4349 If PREV_FRAME is TRUE start at the previous frame,
4350 otherwise start at the current frame. Stop at the
4351 first non-inline frame, or at the frame where the
4352 step started. */
4353
4354 static bool
4355 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4356 {
4357 struct frame_info *frame = get_current_frame ();
4358
4359 if (prev_frame)
4360 frame = get_prev_frame (frame);
4361
4362 for (; frame != NULL; frame = get_prev_frame (frame))
4363 {
4364 const char *fn = NULL;
4365 symtab_and_line sal;
4366 struct symbol *sym;
4367
4368 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4369 break;
4370 if (get_frame_type (frame) != INLINE_FRAME)
4371 break;
4372
4373 sal = find_frame_sal (frame);
4374 sym = get_frame_function (frame);
4375
4376 if (sym != NULL)
4377 fn = sym->print_name ();
4378
4379 if (sal.line != 0
4380 && function_name_is_marked_for_skip (fn, sal))
4381 return true;
4382 }
4383
4384 return false;
4385 }
4386
4387 /* If the event thread has the stop requested flag set, pretend it
4388 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4389 target_stop). */
4390
4391 static bool
4392 handle_stop_requested (struct execution_control_state *ecs)
4393 {
4394 if (ecs->event_thread->stop_requested)
4395 {
4396 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4397 ecs->ws.value.sig = GDB_SIGNAL_0;
4398 handle_signal_stop (ecs);
4399 return true;
4400 }
4401 return false;
4402 }
4403
4404 /* Auxiliary function that handles syscall entry/return events.
4405 It returns 1 if the inferior should keep going (and GDB
4406 should ignore the event), or 0 if the event deserves to be
4407 processed. */
4408
4409 static int
4410 handle_syscall_event (struct execution_control_state *ecs)
4411 {
4412 struct regcache *regcache;
4413 int syscall_number;
4414
4415 context_switch (ecs);
4416
4417 regcache = get_thread_regcache (ecs->event_thread);
4418 syscall_number = ecs->ws.value.syscall_number;
4419 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4420
4421 if (catch_syscall_enabled () > 0
4422 && catching_syscall_number (syscall_number) > 0)
4423 {
4424 if (debug_infrun)
4425 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4426 syscall_number);
4427
4428 ecs->event_thread->control.stop_bpstat
4429 = bpstat_stop_status (regcache->aspace (),
4430 ecs->event_thread->suspend.stop_pc,
4431 ecs->event_thread, &ecs->ws);
4432
4433 if (handle_stop_requested (ecs))
4434 return 0;
4435
4436 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4437 {
4438 /* Catchpoint hit. */
4439 return 0;
4440 }
4441 }
4442
4443 if (handle_stop_requested (ecs))
4444 return 0;
4445
4446 /* If no catchpoint triggered for this, then keep going. */
4447 keep_going (ecs);
4448 return 1;
4449 }
4450
4451 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4452
4453 static void
4454 fill_in_stop_func (struct gdbarch *gdbarch,
4455 struct execution_control_state *ecs)
4456 {
4457 if (!ecs->stop_func_filled_in)
4458 {
4459 const block *block;
4460
4461 /* Don't care about return value; stop_func_start and stop_func_name
4462 will both be 0 if it doesn't work. */
4463 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4464 &ecs->stop_func_name,
4465 &ecs->stop_func_start,
4466 &ecs->stop_func_end,
4467 &block);
4468
4469 /* The call to find_pc_partial_function, above, will set
4470 stop_func_start and stop_func_end to the start and end
4471 of the range containing the stop pc. If this range
4472 contains the entry pc for the block (which is always the
4473 case for contiguous blocks), advance stop_func_start past
4474 the function's start offset and entrypoint. Note that
4475 stop_func_start is NOT advanced when in a range of a
4476 non-contiguous block that does not contain the entry pc. */
4477 if (block != nullptr
4478 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4479 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4480 {
4481 ecs->stop_func_start
4482 += gdbarch_deprecated_function_start_offset (gdbarch);
4483
4484 if (gdbarch_skip_entrypoint_p (gdbarch))
4485 ecs->stop_func_start
4486 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4487 }
4488
4489 ecs->stop_func_filled_in = 1;
4490 }
4491 }
4492
4493
4494 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4495
4496 static enum stop_kind
4497 get_inferior_stop_soon (execution_control_state *ecs)
4498 {
4499 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4500
4501 gdb_assert (inf != NULL);
4502 return inf->control.stop_soon;
4503 }
4504
4505 /* Poll for one event out of the current target. Store the resulting
4506 waitstatus in WS, and return the event ptid. Does not block. */
4507
4508 static ptid_t
4509 poll_one_curr_target (struct target_waitstatus *ws)
4510 {
4511 ptid_t event_ptid;
4512
4513 overlay_cache_invalid = 1;
4514
4515 /* Flush target cache before starting to handle each event.
4516 Target was running and cache could be stale. This is just a
4517 heuristic. Running threads may modify target memory, but we
4518 don't get any event. */
4519 target_dcache_invalidate ();
4520
4521 if (deprecated_target_wait_hook)
4522 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4523 else
4524 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4525
4526 if (debug_infrun)
4527 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4528
4529 return event_ptid;
4530 }
4531
4532 /* An event reported by wait_one. */
4533
4534 struct wait_one_event
4535 {
4536 /* The target the event came out of. */
4537 process_stratum_target *target;
4538
4539 /* The PTID the event was for. */
4540 ptid_t ptid;
4541
4542 /* The waitstatus. */
4543 target_waitstatus ws;
4544 };
4545
4546 /* Wait for one event out of any target. */
4547
4548 static wait_one_event
4549 wait_one ()
4550 {
4551 while (1)
4552 {
4553 for (inferior *inf : all_inferiors ())
4554 {
4555 process_stratum_target *target = inf->process_target ();
4556 if (target == NULL
4557 || !target->is_async_p ()
4558 || !target->threads_executing)
4559 continue;
4560
4561 switch_to_inferior_no_thread (inf);
4562
4563 wait_one_event event;
4564 event.target = target;
4565 event.ptid = poll_one_curr_target (&event.ws);
4566
4567 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4568 {
4569 /* If nothing is resumed, remove the target from the
4570 event loop. */
4571 target_async (0);
4572 }
4573 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4574 return event;
4575 }
4576
4577 /* Block waiting for some event. */
4578
4579 fd_set readfds;
4580 int nfds = 0;
4581
4582 FD_ZERO (&readfds);
4583
4584 for (inferior *inf : all_inferiors ())
4585 {
4586 process_stratum_target *target = inf->process_target ();
4587 if (target == NULL
4588 || !target->is_async_p ()
4589 || !target->threads_executing)
4590 continue;
4591
4592 int fd = target->async_wait_fd ();
4593 FD_SET (fd, &readfds);
4594 if (nfds <= fd)
4595 nfds = fd + 1;
4596 }
4597
4598 if (nfds == 0)
4599 {
4600 /* No waitable targets left. All must be stopped. */
4601 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4602 }
4603
4604 QUIT;
4605
4606 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4607 if (numfds < 0)
4608 {
4609 if (errno == EINTR)
4610 continue;
4611 else
4612 perror_with_name ("interruptible_select");
4613 }
4614 }
4615 }
4616
4617 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4618 instead of the current thread. */
4619 #define THREAD_STOPPED_BY(REASON) \
4620 static int \
4621 thread_stopped_by_ ## REASON (ptid_t ptid) \
4622 { \
4623 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4624 inferior_ptid = ptid; \
4625 \
4626 return target_stopped_by_ ## REASON (); \
4627 }
4628
4629 /* Generate thread_stopped_by_watchpoint. */
4630 THREAD_STOPPED_BY (watchpoint)
4631 /* Generate thread_stopped_by_sw_breakpoint. */
4632 THREAD_STOPPED_BY (sw_breakpoint)
4633 /* Generate thread_stopped_by_hw_breakpoint. */
4634 THREAD_STOPPED_BY (hw_breakpoint)
4635
4636 /* Save the thread's event and stop reason to process it later. */
4637
4638 static void
4639 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4640 {
4641 if (debug_infrun)
4642 {
4643 std::string statstr = target_waitstatus_to_string (ws);
4644
4645 fprintf_unfiltered (gdb_stdlog,
4646 "infrun: saving status %s for %d.%ld.%ld\n",
4647 statstr.c_str (),
4648 tp->ptid.pid (),
4649 tp->ptid.lwp (),
4650 tp->ptid.tid ());
4651 }
4652
4653 /* Record for later. */
4654 tp->suspend.waitstatus = *ws;
4655 tp->suspend.waitstatus_pending_p = 1;
4656
4657 struct regcache *regcache = get_thread_regcache (tp);
4658 const address_space *aspace = regcache->aspace ();
4659
4660 if (ws->kind == TARGET_WAITKIND_STOPPED
4661 && ws->value.sig == GDB_SIGNAL_TRAP)
4662 {
4663 CORE_ADDR pc = regcache_read_pc (regcache);
4664
4665 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4666
4667 if (thread_stopped_by_watchpoint (tp->ptid))
4668 {
4669 tp->suspend.stop_reason
4670 = TARGET_STOPPED_BY_WATCHPOINT;
4671 }
4672 else if (target_supports_stopped_by_sw_breakpoint ()
4673 && thread_stopped_by_sw_breakpoint (tp->ptid))
4674 {
4675 tp->suspend.stop_reason
4676 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4677 }
4678 else if (target_supports_stopped_by_hw_breakpoint ()
4679 && thread_stopped_by_hw_breakpoint (tp->ptid))
4680 {
4681 tp->suspend.stop_reason
4682 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4683 }
4684 else if (!target_supports_stopped_by_hw_breakpoint ()
4685 && hardware_breakpoint_inserted_here_p (aspace,
4686 pc))
4687 {
4688 tp->suspend.stop_reason
4689 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4690 }
4691 else if (!target_supports_stopped_by_sw_breakpoint ()
4692 && software_breakpoint_inserted_here_p (aspace,
4693 pc))
4694 {
4695 tp->suspend.stop_reason
4696 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4697 }
4698 else if (!thread_has_single_step_breakpoints_set (tp)
4699 && currently_stepping (tp))
4700 {
4701 tp->suspend.stop_reason
4702 = TARGET_STOPPED_BY_SINGLE_STEP;
4703 }
4704 }
4705 }
4706
4707 /* See infrun.h. */
4708
4709 void
4710 stop_all_threads (void)
4711 {
4712 /* We may need multiple passes to discover all threads. */
4713 int pass;
4714 int iterations = 0;
4715
4716 gdb_assert (exists_non_stop_target ());
4717
4718 if (debug_infrun)
4719 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4720
4721 scoped_restore_current_thread restore_thread;
4722
4723 target_thread_events (1);
4724 SCOPE_EXIT { target_thread_events (0); };
4725
4726 /* Request threads to stop, and then wait for the stops. Because
4727 threads we already know about can spawn more threads while we're
4728 trying to stop them, and we only learn about new threads when we
4729 update the thread list, do this in a loop, and keep iterating
4730 until two passes find no threads that need to be stopped. */
4731 for (pass = 0; pass < 2; pass++, iterations++)
4732 {
4733 if (debug_infrun)
4734 fprintf_unfiltered (gdb_stdlog,
4735 "infrun: stop_all_threads, pass=%d, "
4736 "iterations=%d\n", pass, iterations);
4737 while (1)
4738 {
4739 int need_wait = 0;
4740
4741 update_thread_list ();
4742
4743 /* Go through all threads looking for threads that we need
4744 to tell the target to stop. */
4745 for (thread_info *t : all_non_exited_threads ())
4746 {
4747 /* For a single-target setting with an all-stop target,
4748 we would not even arrive here. For a multi-target
4749 setting, until GDB is able to handle a mixture of
4750 all-stop and non-stop targets, simply skip all-stop
4751 targets' threads. This should be fine due to the
4752 protection of 'check_multi_target_resumption'. */
4753
4754 switch_to_thread_no_regs (t);
4755 if (!target_is_non_stop_p ())
4756 continue;
4757
4758 if (t->executing)
4759 {
4760 /* If already stopping, don't request a stop again.
4761 We just haven't seen the notification yet. */
4762 if (!t->stop_requested)
4763 {
4764 if (debug_infrun)
4765 fprintf_unfiltered (gdb_stdlog,
4766 "infrun: %s executing, "
4767 "need stop\n",
4768 target_pid_to_str (t->ptid).c_str ());
4769 target_stop (t->ptid);
4770 t->stop_requested = 1;
4771 }
4772 else
4773 {
4774 if (debug_infrun)
4775 fprintf_unfiltered (gdb_stdlog,
4776 "infrun: %s executing, "
4777 "already stopping\n",
4778 target_pid_to_str (t->ptid).c_str ());
4779 }
4780
4781 if (t->stop_requested)
4782 need_wait = 1;
4783 }
4784 else
4785 {
4786 if (debug_infrun)
4787 fprintf_unfiltered (gdb_stdlog,
4788 "infrun: %s not executing\n",
4789 target_pid_to_str (t->ptid).c_str ());
4790
4791 /* The thread may be not executing, but still be
4792 resumed with a pending status to process. */
4793 t->resumed = false;
4794 }
4795 }
4796
4797 if (!need_wait)
4798 break;
4799
4800 /* If we find new threads on the second iteration, restart
4801 over. We want to see two iterations in a row with all
4802 threads stopped. */
4803 if (pass > 0)
4804 pass = -1;
4805
4806 wait_one_event event = wait_one ();
4807
4808 if (debug_infrun)
4809 {
4810 fprintf_unfiltered (gdb_stdlog,
4811 "infrun: stop_all_threads %s %s\n",
4812 target_waitstatus_to_string (&event.ws).c_str (),
4813 target_pid_to_str (event.ptid).c_str ());
4814 }
4815
4816 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4817 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4818 || event.ws.kind == TARGET_WAITKIND_EXITED
4819 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4820 {
4821 /* All resumed threads exited
4822 or one thread/process exited/signalled. */
4823 }
4824 else
4825 {
4826 thread_info *t = find_thread_ptid (event.target, event.ptid);
4827 if (t == NULL)
4828 t = add_thread (event.target, event.ptid);
4829
4830 t->stop_requested = 0;
4831 t->executing = 0;
4832 t->resumed = false;
4833 t->control.may_range_step = 0;
4834
4835 /* This may be the first time we see the inferior report
4836 a stop. */
4837 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4838 if (inf->needs_setup)
4839 {
4840 switch_to_thread_no_regs (t);
4841 setup_inferior (0);
4842 }
4843
4844 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4845 && event.ws.value.sig == GDB_SIGNAL_0)
4846 {
4847 /* We caught the event that we intended to catch, so
4848 there's no event pending. */
4849 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4850 t->suspend.waitstatus_pending_p = 0;
4851
4852 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4853 {
4854 /* Add it back to the step-over queue. */
4855 if (debug_infrun)
4856 {
4857 fprintf_unfiltered (gdb_stdlog,
4858 "infrun: displaced-step of %s "
4859 "canceled: adding back to the "
4860 "step-over queue\n",
4861 target_pid_to_str (t->ptid).c_str ());
4862 }
4863 t->control.trap_expected = 0;
4864 thread_step_over_chain_enqueue (t);
4865 }
4866 }
4867 else
4868 {
4869 enum gdb_signal sig;
4870 struct regcache *regcache;
4871
4872 if (debug_infrun)
4873 {
4874 std::string statstr = target_waitstatus_to_string (&event.ws);
4875
4876 fprintf_unfiltered (gdb_stdlog,
4877 "infrun: target_wait %s, saving "
4878 "status for %d.%ld.%ld\n",
4879 statstr.c_str (),
4880 t->ptid.pid (),
4881 t->ptid.lwp (),
4882 t->ptid.tid ());
4883 }
4884
4885 /* Record for later. */
4886 save_waitstatus (t, &event.ws);
4887
4888 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4889 ? event.ws.value.sig : GDB_SIGNAL_0);
4890
4891 if (displaced_step_fixup (t, sig) < 0)
4892 {
4893 /* Add it back to the step-over queue. */
4894 t->control.trap_expected = 0;
4895 thread_step_over_chain_enqueue (t);
4896 }
4897
4898 regcache = get_thread_regcache (t);
4899 t->suspend.stop_pc = regcache_read_pc (regcache);
4900
4901 if (debug_infrun)
4902 {
4903 fprintf_unfiltered (gdb_stdlog,
4904 "infrun: saved stop_pc=%s for %s "
4905 "(currently_stepping=%d)\n",
4906 paddress (target_gdbarch (),
4907 t->suspend.stop_pc),
4908 target_pid_to_str (t->ptid).c_str (),
4909 currently_stepping (t));
4910 }
4911 }
4912 }
4913 }
4914 }
4915
4916 if (debug_infrun)
4917 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4918 }
4919
4920 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4921
4922 static int
4923 handle_no_resumed (struct execution_control_state *ecs)
4924 {
4925 if (target_can_async_p ())
4926 {
4927 struct ui *ui;
4928 int any_sync = 0;
4929
4930 ALL_UIS (ui)
4931 {
4932 if (ui->prompt_state == PROMPT_BLOCKED)
4933 {
4934 any_sync = 1;
4935 break;
4936 }
4937 }
4938 if (!any_sync)
4939 {
4940 /* There were no unwaited-for children left in the target, but,
4941 we're not synchronously waiting for events either. Just
4942 ignore. */
4943
4944 if (debug_infrun)
4945 fprintf_unfiltered (gdb_stdlog,
4946 "infrun: TARGET_WAITKIND_NO_RESUMED "
4947 "(ignoring: bg)\n");
4948 prepare_to_wait (ecs);
4949 return 1;
4950 }
4951 }
4952
4953 /* Otherwise, if we were running a synchronous execution command, we
4954 may need to cancel it and give the user back the terminal.
4955
4956 In non-stop mode, the target can't tell whether we've already
4957 consumed previous stop events, so it can end up sending us a
4958 no-resumed event like so:
4959
4960 #0 - thread 1 is left stopped
4961
4962 #1 - thread 2 is resumed and hits breakpoint
4963 -> TARGET_WAITKIND_STOPPED
4964
4965 #2 - thread 3 is resumed and exits
4966 this is the last resumed thread, so
4967 -> TARGET_WAITKIND_NO_RESUMED
4968
4969 #3 - gdb processes stop for thread 2 and decides to re-resume
4970 it.
4971
4972 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4973 thread 2 is now resumed, so the event should be ignored.
4974
4975 IOW, if the stop for thread 2 doesn't end a foreground command,
4976 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4977 event. But it could be that the event meant that thread 2 itself
4978 (or whatever other thread was the last resumed thread) exited.
4979
4980 To address this we refresh the thread list and check whether we
4981 have resumed threads _now_. In the example above, this removes
4982 thread 3 from the thread list. If thread 2 was re-resumed, we
4983 ignore this event. If we find no thread resumed, then we cancel
4984 the synchronous command show "no unwaited-for " to the user. */
4985 update_thread_list ();
4986
4987 for (thread_info *thread : all_non_exited_threads (ecs->target))
4988 {
4989 if (thread->executing
4990 || thread->suspend.waitstatus_pending_p)
4991 {
4992 /* There were no unwaited-for children left in the target at
4993 some point, but there are now. Just ignore. */
4994 if (debug_infrun)
4995 fprintf_unfiltered (gdb_stdlog,
4996 "infrun: TARGET_WAITKIND_NO_RESUMED "
4997 "(ignoring: found resumed)\n");
4998 prepare_to_wait (ecs);
4999 return 1;
5000 }
5001 }
5002
5003 /* Note however that we may find no resumed thread because the whole
5004 process exited meanwhile (thus updating the thread list results
5005 in an empty thread list). In this case we know we'll be getting
5006 a process exit event shortly. */
5007 for (inferior *inf : all_non_exited_inferiors (ecs->target))
5008 {
5009 thread_info *thread = any_live_thread_of_inferior (inf);
5010 if (thread == NULL)
5011 {
5012 if (debug_infrun)
5013 fprintf_unfiltered (gdb_stdlog,
5014 "infrun: TARGET_WAITKIND_NO_RESUMED "
5015 "(expect process exit)\n");
5016 prepare_to_wait (ecs);
5017 return 1;
5018 }
5019 }
5020
5021 /* Go ahead and report the event. */
5022 return 0;
5023 }
5024
5025 /* Given an execution control state that has been freshly filled in by
5026 an event from the inferior, figure out what it means and take
5027 appropriate action.
5028
5029 The alternatives are:
5030
5031 1) stop_waiting and return; to really stop and return to the
5032 debugger.
5033
5034 2) keep_going and return; to wait for the next event (set
5035 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5036 once). */
5037
5038 static void
5039 handle_inferior_event (struct execution_control_state *ecs)
5040 {
5041 /* Make sure that all temporary struct value objects that were
5042 created during the handling of the event get deleted at the
5043 end. */
5044 scoped_value_mark free_values;
5045
5046 enum stop_kind stop_soon;
5047
5048 if (debug_infrun)
5049 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5050 target_waitstatus_to_string (&ecs->ws).c_str ());
5051
5052 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5053 {
5054 /* We had an event in the inferior, but we are not interested in
5055 handling it at this level. The lower layers have already
5056 done what needs to be done, if anything.
5057
5058 One of the possible circumstances for this is when the
5059 inferior produces output for the console. The inferior has
5060 not stopped, and we are ignoring the event. Another possible
5061 circumstance is any event which the lower level knows will be
5062 reported multiple times without an intervening resume. */
5063 prepare_to_wait (ecs);
5064 return;
5065 }
5066
5067 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5068 {
5069 prepare_to_wait (ecs);
5070 return;
5071 }
5072
5073 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5074 && handle_no_resumed (ecs))
5075 return;
5076
5077 /* Cache the last target/ptid/waitstatus. */
5078 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5079
5080 /* Always clear state belonging to the previous time we stopped. */
5081 stop_stack_dummy = STOP_NONE;
5082
5083 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5084 {
5085 /* No unwaited-for children left. IOW, all resumed children
5086 have exited. */
5087 stop_print_frame = 0;
5088 stop_waiting (ecs);
5089 return;
5090 }
5091
5092 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5093 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5094 {
5095 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5096 /* If it's a new thread, add it to the thread database. */
5097 if (ecs->event_thread == NULL)
5098 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5099
5100 /* Disable range stepping. If the next step request could use a
5101 range, this will be end up re-enabled then. */
5102 ecs->event_thread->control.may_range_step = 0;
5103 }
5104
5105 /* Dependent on valid ECS->EVENT_THREAD. */
5106 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5107
5108 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5109 reinit_frame_cache ();
5110
5111 breakpoint_retire_moribund ();
5112
5113 /* First, distinguish signals caused by the debugger from signals
5114 that have to do with the program's own actions. Note that
5115 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5116 on the operating system version. Here we detect when a SIGILL or
5117 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5118 something similar for SIGSEGV, since a SIGSEGV will be generated
5119 when we're trying to execute a breakpoint instruction on a
5120 non-executable stack. This happens for call dummy breakpoints
5121 for architectures like SPARC that place call dummies on the
5122 stack. */
5123 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5124 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5125 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5126 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5127 {
5128 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5129
5130 if (breakpoint_inserted_here_p (regcache->aspace (),
5131 regcache_read_pc (regcache)))
5132 {
5133 if (debug_infrun)
5134 fprintf_unfiltered (gdb_stdlog,
5135 "infrun: Treating signal as SIGTRAP\n");
5136 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5137 }
5138 }
5139
5140 /* Mark the non-executing threads accordingly. In all-stop, all
5141 threads of all processes are stopped when we get any event
5142 reported. In non-stop mode, only the event thread stops. */
5143 {
5144 ptid_t mark_ptid;
5145
5146 if (!target_is_non_stop_p ())
5147 mark_ptid = minus_one_ptid;
5148 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5149 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5150 {
5151 /* If we're handling a process exit in non-stop mode, even
5152 though threads haven't been deleted yet, one would think
5153 that there is nothing to do, as threads of the dead process
5154 will be soon deleted, and threads of any other process were
5155 left running. However, on some targets, threads survive a
5156 process exit event. E.g., for the "checkpoint" command,
5157 when the current checkpoint/fork exits, linux-fork.c
5158 automatically switches to another fork from within
5159 target_mourn_inferior, by associating the same
5160 inferior/thread to another fork. We haven't mourned yet at
5161 this point, but we must mark any threads left in the
5162 process as not-executing so that finish_thread_state marks
5163 them stopped (in the user's perspective) if/when we present
5164 the stop to the user. */
5165 mark_ptid = ptid_t (ecs->ptid.pid ());
5166 }
5167 else
5168 mark_ptid = ecs->ptid;
5169
5170 set_executing (ecs->target, mark_ptid, false);
5171
5172 /* Likewise the resumed flag. */
5173 set_resumed (ecs->target, mark_ptid, false);
5174 }
5175
5176 switch (ecs->ws.kind)
5177 {
5178 case TARGET_WAITKIND_LOADED:
5179 context_switch (ecs);
5180 /* Ignore gracefully during startup of the inferior, as it might
5181 be the shell which has just loaded some objects, otherwise
5182 add the symbols for the newly loaded objects. Also ignore at
5183 the beginning of an attach or remote session; we will query
5184 the full list of libraries once the connection is
5185 established. */
5186
5187 stop_soon = get_inferior_stop_soon (ecs);
5188 if (stop_soon == NO_STOP_QUIETLY)
5189 {
5190 struct regcache *regcache;
5191
5192 regcache = get_thread_regcache (ecs->event_thread);
5193
5194 handle_solib_event ();
5195
5196 ecs->event_thread->control.stop_bpstat
5197 = bpstat_stop_status (regcache->aspace (),
5198 ecs->event_thread->suspend.stop_pc,
5199 ecs->event_thread, &ecs->ws);
5200
5201 if (handle_stop_requested (ecs))
5202 return;
5203
5204 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5205 {
5206 /* A catchpoint triggered. */
5207 process_event_stop_test (ecs);
5208 return;
5209 }
5210
5211 /* If requested, stop when the dynamic linker notifies
5212 gdb of events. This allows the user to get control
5213 and place breakpoints in initializer routines for
5214 dynamically loaded objects (among other things). */
5215 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5216 if (stop_on_solib_events)
5217 {
5218 /* Make sure we print "Stopped due to solib-event" in
5219 normal_stop. */
5220 stop_print_frame = 1;
5221
5222 stop_waiting (ecs);
5223 return;
5224 }
5225 }
5226
5227 /* If we are skipping through a shell, or through shared library
5228 loading that we aren't interested in, resume the program. If
5229 we're running the program normally, also resume. */
5230 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5231 {
5232 /* Loading of shared libraries might have changed breakpoint
5233 addresses. Make sure new breakpoints are inserted. */
5234 if (stop_soon == NO_STOP_QUIETLY)
5235 insert_breakpoints ();
5236 resume (GDB_SIGNAL_0);
5237 prepare_to_wait (ecs);
5238 return;
5239 }
5240
5241 /* But stop if we're attaching or setting up a remote
5242 connection. */
5243 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5244 || stop_soon == STOP_QUIETLY_REMOTE)
5245 {
5246 if (debug_infrun)
5247 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5248 stop_waiting (ecs);
5249 return;
5250 }
5251
5252 internal_error (__FILE__, __LINE__,
5253 _("unhandled stop_soon: %d"), (int) stop_soon);
5254
5255 case TARGET_WAITKIND_SPURIOUS:
5256 if (handle_stop_requested (ecs))
5257 return;
5258 context_switch (ecs);
5259 resume (GDB_SIGNAL_0);
5260 prepare_to_wait (ecs);
5261 return;
5262
5263 case TARGET_WAITKIND_THREAD_CREATED:
5264 if (handle_stop_requested (ecs))
5265 return;
5266 context_switch (ecs);
5267 if (!switch_back_to_stepped_thread (ecs))
5268 keep_going (ecs);
5269 return;
5270
5271 case TARGET_WAITKIND_EXITED:
5272 case TARGET_WAITKIND_SIGNALLED:
5273 inferior_ptid = ecs->ptid;
5274 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
5275 set_current_program_space (current_inferior ()->pspace);
5276 handle_vfork_child_exec_or_exit (0);
5277 target_terminal::ours (); /* Must do this before mourn anyway. */
5278
5279 /* Clearing any previous state of convenience variables. */
5280 clear_exit_convenience_vars ();
5281
5282 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5283 {
5284 /* Record the exit code in the convenience variable $_exitcode, so
5285 that the user can inspect this again later. */
5286 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5287 (LONGEST) ecs->ws.value.integer);
5288
5289 /* Also record this in the inferior itself. */
5290 current_inferior ()->has_exit_code = 1;
5291 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5292
5293 /* Support the --return-child-result option. */
5294 return_child_result_value = ecs->ws.value.integer;
5295
5296 gdb::observers::exited.notify (ecs->ws.value.integer);
5297 }
5298 else
5299 {
5300 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5301
5302 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5303 {
5304 /* Set the value of the internal variable $_exitsignal,
5305 which holds the signal uncaught by the inferior. */
5306 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5307 gdbarch_gdb_signal_to_target (gdbarch,
5308 ecs->ws.value.sig));
5309 }
5310 else
5311 {
5312 /* We don't have access to the target's method used for
5313 converting between signal numbers (GDB's internal
5314 representation <-> target's representation).
5315 Therefore, we cannot do a good job at displaying this
5316 information to the user. It's better to just warn
5317 her about it (if infrun debugging is enabled), and
5318 give up. */
5319 if (debug_infrun)
5320 fprintf_filtered (gdb_stdlog, _("\
5321 Cannot fill $_exitsignal with the correct signal number.\n"));
5322 }
5323
5324 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5325 }
5326
5327 gdb_flush (gdb_stdout);
5328 target_mourn_inferior (inferior_ptid);
5329 stop_print_frame = 0;
5330 stop_waiting (ecs);
5331 return;
5332
5333 case TARGET_WAITKIND_FORKED:
5334 case TARGET_WAITKIND_VFORKED:
5335 /* Check whether the inferior is displaced stepping. */
5336 {
5337 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5338 struct gdbarch *gdbarch = regcache->arch ();
5339
5340 /* If checking displaced stepping is supported, and thread
5341 ecs->ptid is displaced stepping. */
5342 if (displaced_step_in_progress_thread (ecs->event_thread))
5343 {
5344 struct inferior *parent_inf
5345 = find_inferior_ptid (ecs->target, ecs->ptid);
5346 struct regcache *child_regcache;
5347 CORE_ADDR parent_pc;
5348
5349 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5350 {
5351 struct displaced_step_inferior_state *displaced
5352 = get_displaced_stepping_state (parent_inf);
5353
5354 /* Restore scratch pad for child process. */
5355 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5356 }
5357
5358 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5359 indicating that the displaced stepping of syscall instruction
5360 has been done. Perform cleanup for parent process here. Note
5361 that this operation also cleans up the child process for vfork,
5362 because their pages are shared. */
5363 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5364 /* Start a new step-over in another thread if there's one
5365 that needs it. */
5366 start_step_over ();
5367
5368 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5369 the child's PC is also within the scratchpad. Set the child's PC
5370 to the parent's PC value, which has already been fixed up.
5371 FIXME: we use the parent's aspace here, although we're touching
5372 the child, because the child hasn't been added to the inferior
5373 list yet at this point. */
5374
5375 child_regcache
5376 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5377 ecs->ws.value.related_pid,
5378 gdbarch,
5379 parent_inf->aspace);
5380 /* Read PC value of parent process. */
5381 parent_pc = regcache_read_pc (regcache);
5382
5383 if (debug_displaced)
5384 fprintf_unfiltered (gdb_stdlog,
5385 "displaced: write child pc from %s to %s\n",
5386 paddress (gdbarch,
5387 regcache_read_pc (child_regcache)),
5388 paddress (gdbarch, parent_pc));
5389
5390 regcache_write_pc (child_regcache, parent_pc);
5391 }
5392 }
5393
5394 context_switch (ecs);
5395
5396 /* Immediately detach breakpoints from the child before there's
5397 any chance of letting the user delete breakpoints from the
5398 breakpoint lists. If we don't do this early, it's easy to
5399 leave left over traps in the child, vis: "break foo; catch
5400 fork; c; <fork>; del; c; <child calls foo>". We only follow
5401 the fork on the last `continue', and by that time the
5402 breakpoint at "foo" is long gone from the breakpoint table.
5403 If we vforked, then we don't need to unpatch here, since both
5404 parent and child are sharing the same memory pages; we'll
5405 need to unpatch at follow/detach time instead to be certain
5406 that new breakpoints added between catchpoint hit time and
5407 vfork follow are detached. */
5408 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5409 {
5410 /* This won't actually modify the breakpoint list, but will
5411 physically remove the breakpoints from the child. */
5412 detach_breakpoints (ecs->ws.value.related_pid);
5413 }
5414
5415 delete_just_stopped_threads_single_step_breakpoints ();
5416
5417 /* In case the event is caught by a catchpoint, remember that
5418 the event is to be followed at the next resume of the thread,
5419 and not immediately. */
5420 ecs->event_thread->pending_follow = ecs->ws;
5421
5422 ecs->event_thread->suspend.stop_pc
5423 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5424
5425 ecs->event_thread->control.stop_bpstat
5426 = bpstat_stop_status (get_current_regcache ()->aspace (),
5427 ecs->event_thread->suspend.stop_pc,
5428 ecs->event_thread, &ecs->ws);
5429
5430 if (handle_stop_requested (ecs))
5431 return;
5432
5433 /* If no catchpoint triggered for this, then keep going. Note
5434 that we're interested in knowing the bpstat actually causes a
5435 stop, not just if it may explain the signal. Software
5436 watchpoints, for example, always appear in the bpstat. */
5437 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5438 {
5439 bool follow_child
5440 = (follow_fork_mode_string == follow_fork_mode_child);
5441
5442 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5443
5444 process_stratum_target *targ
5445 = ecs->event_thread->inf->process_target ();
5446
5447 bool should_resume = follow_fork ();
5448
5449 /* Note that one of these may be an invalid pointer,
5450 depending on detach_fork. */
5451 thread_info *parent = ecs->event_thread;
5452 thread_info *child
5453 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5454
5455 /* At this point, the parent is marked running, and the
5456 child is marked stopped. */
5457
5458 /* If not resuming the parent, mark it stopped. */
5459 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5460 parent->set_running (false);
5461
5462 /* If resuming the child, mark it running. */
5463 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5464 child->set_running (true);
5465
5466 /* In non-stop mode, also resume the other branch. */
5467 if (!detach_fork && (non_stop
5468 || (sched_multi && target_is_non_stop_p ())))
5469 {
5470 if (follow_child)
5471 switch_to_thread (parent);
5472 else
5473 switch_to_thread (child);
5474
5475 ecs->event_thread = inferior_thread ();
5476 ecs->ptid = inferior_ptid;
5477 keep_going (ecs);
5478 }
5479
5480 if (follow_child)
5481 switch_to_thread (child);
5482 else
5483 switch_to_thread (parent);
5484
5485 ecs->event_thread = inferior_thread ();
5486 ecs->ptid = inferior_ptid;
5487
5488 if (should_resume)
5489 keep_going (ecs);
5490 else
5491 stop_waiting (ecs);
5492 return;
5493 }
5494 process_event_stop_test (ecs);
5495 return;
5496
5497 case TARGET_WAITKIND_VFORK_DONE:
5498 /* Done with the shared memory region. Re-insert breakpoints in
5499 the parent, and keep going. */
5500
5501 context_switch (ecs);
5502
5503 current_inferior ()->waiting_for_vfork_done = 0;
5504 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5505
5506 if (handle_stop_requested (ecs))
5507 return;
5508
5509 /* This also takes care of reinserting breakpoints in the
5510 previously locked inferior. */
5511 keep_going (ecs);
5512 return;
5513
5514 case TARGET_WAITKIND_EXECD:
5515
5516 /* Note we can't read registers yet (the stop_pc), because we
5517 don't yet know the inferior's post-exec architecture.
5518 'stop_pc' is explicitly read below instead. */
5519 switch_to_thread_no_regs (ecs->event_thread);
5520
5521 /* Do whatever is necessary to the parent branch of the vfork. */
5522 handle_vfork_child_exec_or_exit (1);
5523
5524 /* This causes the eventpoints and symbol table to be reset.
5525 Must do this now, before trying to determine whether to
5526 stop. */
5527 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5528
5529 /* In follow_exec we may have deleted the original thread and
5530 created a new one. Make sure that the event thread is the
5531 execd thread for that case (this is a nop otherwise). */
5532 ecs->event_thread = inferior_thread ();
5533
5534 ecs->event_thread->suspend.stop_pc
5535 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5536
5537 ecs->event_thread->control.stop_bpstat
5538 = bpstat_stop_status (get_current_regcache ()->aspace (),
5539 ecs->event_thread->suspend.stop_pc,
5540 ecs->event_thread, &ecs->ws);
5541
5542 /* Note that this may be referenced from inside
5543 bpstat_stop_status above, through inferior_has_execd. */
5544 xfree (ecs->ws.value.execd_pathname);
5545 ecs->ws.value.execd_pathname = NULL;
5546
5547 if (handle_stop_requested (ecs))
5548 return;
5549
5550 /* If no catchpoint triggered for this, then keep going. */
5551 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5552 {
5553 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5554 keep_going (ecs);
5555 return;
5556 }
5557 process_event_stop_test (ecs);
5558 return;
5559
5560 /* Be careful not to try to gather much state about a thread
5561 that's in a syscall. It's frequently a losing proposition. */
5562 case TARGET_WAITKIND_SYSCALL_ENTRY:
5563 /* Getting the current syscall number. */
5564 if (handle_syscall_event (ecs) == 0)
5565 process_event_stop_test (ecs);
5566 return;
5567
5568 /* Before examining the threads further, step this thread to
5569 get it entirely out of the syscall. (We get notice of the
5570 event when the thread is just on the verge of exiting a
5571 syscall. Stepping one instruction seems to get it back
5572 into user code.) */
5573 case TARGET_WAITKIND_SYSCALL_RETURN:
5574 if (handle_syscall_event (ecs) == 0)
5575 process_event_stop_test (ecs);
5576 return;
5577
5578 case TARGET_WAITKIND_STOPPED:
5579 handle_signal_stop (ecs);
5580 return;
5581
5582 case TARGET_WAITKIND_NO_HISTORY:
5583 /* Reverse execution: target ran out of history info. */
5584
5585 /* Switch to the stopped thread. */
5586 context_switch (ecs);
5587 if (debug_infrun)
5588 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5589
5590 delete_just_stopped_threads_single_step_breakpoints ();
5591 ecs->event_thread->suspend.stop_pc
5592 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5593
5594 if (handle_stop_requested (ecs))
5595 return;
5596
5597 gdb::observers::no_history.notify ();
5598 stop_waiting (ecs);
5599 return;
5600 }
5601 }
5602
5603 /* Restart threads back to what they were trying to do back when we
5604 paused them for an in-line step-over. The EVENT_THREAD thread is
5605 ignored. */
5606
5607 static void
5608 restart_threads (struct thread_info *event_thread)
5609 {
5610 /* In case the instruction just stepped spawned a new thread. */
5611 update_thread_list ();
5612
5613 for (thread_info *tp : all_non_exited_threads ())
5614 {
5615 switch_to_thread_no_regs (tp);
5616
5617 if (tp == event_thread)
5618 {
5619 if (debug_infrun)
5620 fprintf_unfiltered (gdb_stdlog,
5621 "infrun: restart threads: "
5622 "[%s] is event thread\n",
5623 target_pid_to_str (tp->ptid).c_str ());
5624 continue;
5625 }
5626
5627 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5628 {
5629 if (debug_infrun)
5630 fprintf_unfiltered (gdb_stdlog,
5631 "infrun: restart threads: "
5632 "[%s] not meant to be running\n",
5633 target_pid_to_str (tp->ptid).c_str ());
5634 continue;
5635 }
5636
5637 if (tp->resumed)
5638 {
5639 if (debug_infrun)
5640 fprintf_unfiltered (gdb_stdlog,
5641 "infrun: restart threads: [%s] resumed\n",
5642 target_pid_to_str (tp->ptid).c_str ());
5643 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5644 continue;
5645 }
5646
5647 if (thread_is_in_step_over_chain (tp))
5648 {
5649 if (debug_infrun)
5650 fprintf_unfiltered (gdb_stdlog,
5651 "infrun: restart threads: "
5652 "[%s] needs step-over\n",
5653 target_pid_to_str (tp->ptid).c_str ());
5654 gdb_assert (!tp->resumed);
5655 continue;
5656 }
5657
5658
5659 if (tp->suspend.waitstatus_pending_p)
5660 {
5661 if (debug_infrun)
5662 fprintf_unfiltered (gdb_stdlog,
5663 "infrun: restart threads: "
5664 "[%s] has pending status\n",
5665 target_pid_to_str (tp->ptid).c_str ());
5666 tp->resumed = true;
5667 continue;
5668 }
5669
5670 gdb_assert (!tp->stop_requested);
5671
5672 /* If some thread needs to start a step-over at this point, it
5673 should still be in the step-over queue, and thus skipped
5674 above. */
5675 if (thread_still_needs_step_over (tp))
5676 {
5677 internal_error (__FILE__, __LINE__,
5678 "thread [%s] needs a step-over, but not in "
5679 "step-over queue\n",
5680 target_pid_to_str (tp->ptid).c_str ());
5681 }
5682
5683 if (currently_stepping (tp))
5684 {
5685 if (debug_infrun)
5686 fprintf_unfiltered (gdb_stdlog,
5687 "infrun: restart threads: [%s] was stepping\n",
5688 target_pid_to_str (tp->ptid).c_str ());
5689 keep_going_stepped_thread (tp);
5690 }
5691 else
5692 {
5693 struct execution_control_state ecss;
5694 struct execution_control_state *ecs = &ecss;
5695
5696 if (debug_infrun)
5697 fprintf_unfiltered (gdb_stdlog,
5698 "infrun: restart threads: [%s] continuing\n",
5699 target_pid_to_str (tp->ptid).c_str ());
5700 reset_ecs (ecs, tp);
5701 switch_to_thread (tp);
5702 keep_going_pass_signal (ecs);
5703 }
5704 }
5705 }
5706
5707 /* Callback for iterate_over_threads. Find a resumed thread that has
5708 a pending waitstatus. */
5709
5710 static int
5711 resumed_thread_with_pending_status (struct thread_info *tp,
5712 void *arg)
5713 {
5714 return (tp->resumed
5715 && tp->suspend.waitstatus_pending_p);
5716 }
5717
5718 /* Called when we get an event that may finish an in-line or
5719 out-of-line (displaced stepping) step-over started previously.
5720 Return true if the event is processed and we should go back to the
5721 event loop; false if the caller should continue processing the
5722 event. */
5723
5724 static int
5725 finish_step_over (struct execution_control_state *ecs)
5726 {
5727 int had_step_over_info;
5728
5729 displaced_step_fixup (ecs->event_thread,
5730 ecs->event_thread->suspend.stop_signal);
5731
5732 had_step_over_info = step_over_info_valid_p ();
5733
5734 if (had_step_over_info)
5735 {
5736 /* If we're stepping over a breakpoint with all threads locked,
5737 then only the thread that was stepped should be reporting
5738 back an event. */
5739 gdb_assert (ecs->event_thread->control.trap_expected);
5740
5741 clear_step_over_info ();
5742 }
5743
5744 if (!target_is_non_stop_p ())
5745 return 0;
5746
5747 /* Start a new step-over in another thread if there's one that
5748 needs it. */
5749 start_step_over ();
5750
5751 /* If we were stepping over a breakpoint before, and haven't started
5752 a new in-line step-over sequence, then restart all other threads
5753 (except the event thread). We can't do this in all-stop, as then
5754 e.g., we wouldn't be able to issue any other remote packet until
5755 these other threads stop. */
5756 if (had_step_over_info && !step_over_info_valid_p ())
5757 {
5758 struct thread_info *pending;
5759
5760 /* If we only have threads with pending statuses, the restart
5761 below won't restart any thread and so nothing re-inserts the
5762 breakpoint we just stepped over. But we need it inserted
5763 when we later process the pending events, otherwise if
5764 another thread has a pending event for this breakpoint too,
5765 we'd discard its event (because the breakpoint that
5766 originally caused the event was no longer inserted). */
5767 context_switch (ecs);
5768 insert_breakpoints ();
5769
5770 restart_threads (ecs->event_thread);
5771
5772 /* If we have events pending, go through handle_inferior_event
5773 again, picking up a pending event at random. This avoids
5774 thread starvation. */
5775
5776 /* But not if we just stepped over a watchpoint in order to let
5777 the instruction execute so we can evaluate its expression.
5778 The set of watchpoints that triggered is recorded in the
5779 breakpoint objects themselves (see bp->watchpoint_triggered).
5780 If we processed another event first, that other event could
5781 clobber this info. */
5782 if (ecs->event_thread->stepping_over_watchpoint)
5783 return 0;
5784
5785 pending = iterate_over_threads (resumed_thread_with_pending_status,
5786 NULL);
5787 if (pending != NULL)
5788 {
5789 struct thread_info *tp = ecs->event_thread;
5790 struct regcache *regcache;
5791
5792 if (debug_infrun)
5793 {
5794 fprintf_unfiltered (gdb_stdlog,
5795 "infrun: found resumed threads with "
5796 "pending events, saving status\n");
5797 }
5798
5799 gdb_assert (pending != tp);
5800
5801 /* Record the event thread's event for later. */
5802 save_waitstatus (tp, &ecs->ws);
5803 /* This was cleared early, by handle_inferior_event. Set it
5804 so this pending event is considered by
5805 do_target_wait. */
5806 tp->resumed = true;
5807
5808 gdb_assert (!tp->executing);
5809
5810 regcache = get_thread_regcache (tp);
5811 tp->suspend.stop_pc = regcache_read_pc (regcache);
5812
5813 if (debug_infrun)
5814 {
5815 fprintf_unfiltered (gdb_stdlog,
5816 "infrun: saved stop_pc=%s for %s "
5817 "(currently_stepping=%d)\n",
5818 paddress (target_gdbarch (),
5819 tp->suspend.stop_pc),
5820 target_pid_to_str (tp->ptid).c_str (),
5821 currently_stepping (tp));
5822 }
5823
5824 /* This in-line step-over finished; clear this so we won't
5825 start a new one. This is what handle_signal_stop would
5826 do, if we returned false. */
5827 tp->stepping_over_breakpoint = 0;
5828
5829 /* Wake up the event loop again. */
5830 mark_async_event_handler (infrun_async_inferior_event_token);
5831
5832 prepare_to_wait (ecs);
5833 return 1;
5834 }
5835 }
5836
5837 return 0;
5838 }
5839
5840 /* Come here when the program has stopped with a signal. */
5841
5842 static void
5843 handle_signal_stop (struct execution_control_state *ecs)
5844 {
5845 struct frame_info *frame;
5846 struct gdbarch *gdbarch;
5847 int stopped_by_watchpoint;
5848 enum stop_kind stop_soon;
5849 int random_signal;
5850
5851 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5852
5853 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5854
5855 /* Do we need to clean up the state of a thread that has
5856 completed a displaced single-step? (Doing so usually affects
5857 the PC, so do it here, before we set stop_pc.) */
5858 if (finish_step_over (ecs))
5859 return;
5860
5861 /* If we either finished a single-step or hit a breakpoint, but
5862 the user wanted this thread to be stopped, pretend we got a
5863 SIG0 (generic unsignaled stop). */
5864 if (ecs->event_thread->stop_requested
5865 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5866 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5867
5868 ecs->event_thread->suspend.stop_pc
5869 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5870
5871 if (debug_infrun)
5872 {
5873 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5874 struct gdbarch *reg_gdbarch = regcache->arch ();
5875
5876 switch_to_thread (ecs->event_thread);
5877
5878 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5879 paddress (reg_gdbarch,
5880 ecs->event_thread->suspend.stop_pc));
5881 if (target_stopped_by_watchpoint ())
5882 {
5883 CORE_ADDR addr;
5884
5885 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5886
5887 if (target_stopped_data_address (current_top_target (), &addr))
5888 fprintf_unfiltered (gdb_stdlog,
5889 "infrun: stopped data address = %s\n",
5890 paddress (reg_gdbarch, addr));
5891 else
5892 fprintf_unfiltered (gdb_stdlog,
5893 "infrun: (no data address available)\n");
5894 }
5895 }
5896
5897 /* This is originated from start_remote(), start_inferior() and
5898 shared libraries hook functions. */
5899 stop_soon = get_inferior_stop_soon (ecs);
5900 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5901 {
5902 context_switch (ecs);
5903 if (debug_infrun)
5904 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5905 stop_print_frame = 1;
5906 stop_waiting (ecs);
5907 return;
5908 }
5909
5910 /* This originates from attach_command(). We need to overwrite
5911 the stop_signal here, because some kernels don't ignore a
5912 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5913 See more comments in inferior.h. On the other hand, if we
5914 get a non-SIGSTOP, report it to the user - assume the backend
5915 will handle the SIGSTOP if it should show up later.
5916
5917 Also consider that the attach is complete when we see a
5918 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5919 target extended-remote report it instead of a SIGSTOP
5920 (e.g. gdbserver). We already rely on SIGTRAP being our
5921 signal, so this is no exception.
5922
5923 Also consider that the attach is complete when we see a
5924 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5925 the target to stop all threads of the inferior, in case the
5926 low level attach operation doesn't stop them implicitly. If
5927 they weren't stopped implicitly, then the stub will report a
5928 GDB_SIGNAL_0, meaning: stopped for no particular reason
5929 other than GDB's request. */
5930 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5931 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5932 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5933 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5934 {
5935 stop_print_frame = 1;
5936 stop_waiting (ecs);
5937 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5938 return;
5939 }
5940
5941 /* See if something interesting happened to the non-current thread. If
5942 so, then switch to that thread. */
5943 if (ecs->ptid != inferior_ptid)
5944 {
5945 if (debug_infrun)
5946 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5947
5948 context_switch (ecs);
5949
5950 if (deprecated_context_hook)
5951 deprecated_context_hook (ecs->event_thread->global_num);
5952 }
5953
5954 /* At this point, get hold of the now-current thread's frame. */
5955 frame = get_current_frame ();
5956 gdbarch = get_frame_arch (frame);
5957
5958 /* Pull the single step breakpoints out of the target. */
5959 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5960 {
5961 struct regcache *regcache;
5962 CORE_ADDR pc;
5963
5964 regcache = get_thread_regcache (ecs->event_thread);
5965 const address_space *aspace = regcache->aspace ();
5966
5967 pc = regcache_read_pc (regcache);
5968
5969 /* However, before doing so, if this single-step breakpoint was
5970 actually for another thread, set this thread up for moving
5971 past it. */
5972 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5973 aspace, pc))
5974 {
5975 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5976 {
5977 if (debug_infrun)
5978 {
5979 fprintf_unfiltered (gdb_stdlog,
5980 "infrun: [%s] hit another thread's "
5981 "single-step breakpoint\n",
5982 target_pid_to_str (ecs->ptid).c_str ());
5983 }
5984 ecs->hit_singlestep_breakpoint = 1;
5985 }
5986 }
5987 else
5988 {
5989 if (debug_infrun)
5990 {
5991 fprintf_unfiltered (gdb_stdlog,
5992 "infrun: [%s] hit its "
5993 "single-step breakpoint\n",
5994 target_pid_to_str (ecs->ptid).c_str ());
5995 }
5996 }
5997 }
5998 delete_just_stopped_threads_single_step_breakpoints ();
5999
6000 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6001 && ecs->event_thread->control.trap_expected
6002 && ecs->event_thread->stepping_over_watchpoint)
6003 stopped_by_watchpoint = 0;
6004 else
6005 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6006
6007 /* If necessary, step over this watchpoint. We'll be back to display
6008 it in a moment. */
6009 if (stopped_by_watchpoint
6010 && (target_have_steppable_watchpoint
6011 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6012 {
6013 /* At this point, we are stopped at an instruction which has
6014 attempted to write to a piece of memory under control of
6015 a watchpoint. The instruction hasn't actually executed
6016 yet. If we were to evaluate the watchpoint expression
6017 now, we would get the old value, and therefore no change
6018 would seem to have occurred.
6019
6020 In order to make watchpoints work `right', we really need
6021 to complete the memory write, and then evaluate the
6022 watchpoint expression. We do this by single-stepping the
6023 target.
6024
6025 It may not be necessary to disable the watchpoint to step over
6026 it. For example, the PA can (with some kernel cooperation)
6027 single step over a watchpoint without disabling the watchpoint.
6028
6029 It is far more common to need to disable a watchpoint to step
6030 the inferior over it. If we have non-steppable watchpoints,
6031 we must disable the current watchpoint; it's simplest to
6032 disable all watchpoints.
6033
6034 Any breakpoint at PC must also be stepped over -- if there's
6035 one, it will have already triggered before the watchpoint
6036 triggered, and we either already reported it to the user, or
6037 it didn't cause a stop and we called keep_going. In either
6038 case, if there was a breakpoint at PC, we must be trying to
6039 step past it. */
6040 ecs->event_thread->stepping_over_watchpoint = 1;
6041 keep_going (ecs);
6042 return;
6043 }
6044
6045 ecs->event_thread->stepping_over_breakpoint = 0;
6046 ecs->event_thread->stepping_over_watchpoint = 0;
6047 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6048 ecs->event_thread->control.stop_step = 0;
6049 stop_print_frame = 1;
6050 stopped_by_random_signal = 0;
6051 bpstat stop_chain = NULL;
6052
6053 /* Hide inlined functions starting here, unless we just performed stepi or
6054 nexti. After stepi and nexti, always show the innermost frame (not any
6055 inline function call sites). */
6056 if (ecs->event_thread->control.step_range_end != 1)
6057 {
6058 const address_space *aspace
6059 = get_thread_regcache (ecs->event_thread)->aspace ();
6060
6061 /* skip_inline_frames is expensive, so we avoid it if we can
6062 determine that the address is one where functions cannot have
6063 been inlined. This improves performance with inferiors that
6064 load a lot of shared libraries, because the solib event
6065 breakpoint is defined as the address of a function (i.e. not
6066 inline). Note that we have to check the previous PC as well
6067 as the current one to catch cases when we have just
6068 single-stepped off a breakpoint prior to reinstating it.
6069 Note that we're assuming that the code we single-step to is
6070 not inline, but that's not definitive: there's nothing
6071 preventing the event breakpoint function from containing
6072 inlined code, and the single-step ending up there. If the
6073 user had set a breakpoint on that inlined code, the missing
6074 skip_inline_frames call would break things. Fortunately
6075 that's an extremely unlikely scenario. */
6076 if (!pc_at_non_inline_function (aspace,
6077 ecs->event_thread->suspend.stop_pc,
6078 &ecs->ws)
6079 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6080 && ecs->event_thread->control.trap_expected
6081 && pc_at_non_inline_function (aspace,
6082 ecs->event_thread->prev_pc,
6083 &ecs->ws)))
6084 {
6085 stop_chain = build_bpstat_chain (aspace,
6086 ecs->event_thread->suspend.stop_pc,
6087 &ecs->ws);
6088 skip_inline_frames (ecs->event_thread, stop_chain);
6089
6090 /* Re-fetch current thread's frame in case that invalidated
6091 the frame cache. */
6092 frame = get_current_frame ();
6093 gdbarch = get_frame_arch (frame);
6094 }
6095 }
6096
6097 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6098 && ecs->event_thread->control.trap_expected
6099 && gdbarch_single_step_through_delay_p (gdbarch)
6100 && currently_stepping (ecs->event_thread))
6101 {
6102 /* We're trying to step off a breakpoint. Turns out that we're
6103 also on an instruction that needs to be stepped multiple
6104 times before it's been fully executing. E.g., architectures
6105 with a delay slot. It needs to be stepped twice, once for
6106 the instruction and once for the delay slot. */
6107 int step_through_delay
6108 = gdbarch_single_step_through_delay (gdbarch, frame);
6109
6110 if (debug_infrun && step_through_delay)
6111 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
6112 if (ecs->event_thread->control.step_range_end == 0
6113 && step_through_delay)
6114 {
6115 /* The user issued a continue when stopped at a breakpoint.
6116 Set up for another trap and get out of here. */
6117 ecs->event_thread->stepping_over_breakpoint = 1;
6118 keep_going (ecs);
6119 return;
6120 }
6121 else if (step_through_delay)
6122 {
6123 /* The user issued a step when stopped at a breakpoint.
6124 Maybe we should stop, maybe we should not - the delay
6125 slot *might* correspond to a line of source. In any
6126 case, don't decide that here, just set
6127 ecs->stepping_over_breakpoint, making sure we
6128 single-step again before breakpoints are re-inserted. */
6129 ecs->event_thread->stepping_over_breakpoint = 1;
6130 }
6131 }
6132
6133 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6134 handles this event. */
6135 ecs->event_thread->control.stop_bpstat
6136 = bpstat_stop_status (get_current_regcache ()->aspace (),
6137 ecs->event_thread->suspend.stop_pc,
6138 ecs->event_thread, &ecs->ws, stop_chain);
6139
6140 /* Following in case break condition called a
6141 function. */
6142 stop_print_frame = 1;
6143
6144 /* This is where we handle "moribund" watchpoints. Unlike
6145 software breakpoints traps, hardware watchpoint traps are
6146 always distinguishable from random traps. If no high-level
6147 watchpoint is associated with the reported stop data address
6148 anymore, then the bpstat does not explain the signal ---
6149 simply make sure to ignore it if `stopped_by_watchpoint' is
6150 set. */
6151
6152 if (debug_infrun
6153 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6154 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6155 GDB_SIGNAL_TRAP)
6156 && stopped_by_watchpoint)
6157 fprintf_unfiltered (gdb_stdlog,
6158 "infrun: no user watchpoint explains "
6159 "watchpoint SIGTRAP, ignoring\n");
6160
6161 /* NOTE: cagney/2003-03-29: These checks for a random signal
6162 at one stage in the past included checks for an inferior
6163 function call's call dummy's return breakpoint. The original
6164 comment, that went with the test, read:
6165
6166 ``End of a stack dummy. Some systems (e.g. Sony news) give
6167 another signal besides SIGTRAP, so check here as well as
6168 above.''
6169
6170 If someone ever tries to get call dummys on a
6171 non-executable stack to work (where the target would stop
6172 with something like a SIGSEGV), then those tests might need
6173 to be re-instated. Given, however, that the tests were only
6174 enabled when momentary breakpoints were not being used, I
6175 suspect that it won't be the case.
6176
6177 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6178 be necessary for call dummies on a non-executable stack on
6179 SPARC. */
6180
6181 /* See if the breakpoints module can explain the signal. */
6182 random_signal
6183 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6184 ecs->event_thread->suspend.stop_signal);
6185
6186 /* Maybe this was a trap for a software breakpoint that has since
6187 been removed. */
6188 if (random_signal && target_stopped_by_sw_breakpoint ())
6189 {
6190 if (gdbarch_program_breakpoint_here_p (gdbarch,
6191 ecs->event_thread->suspend.stop_pc))
6192 {
6193 struct regcache *regcache;
6194 int decr_pc;
6195
6196 /* Re-adjust PC to what the program would see if GDB was not
6197 debugging it. */
6198 regcache = get_thread_regcache (ecs->event_thread);
6199 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6200 if (decr_pc != 0)
6201 {
6202 gdb::optional<scoped_restore_tmpl<int>>
6203 restore_operation_disable;
6204
6205 if (record_full_is_used ())
6206 restore_operation_disable.emplace
6207 (record_full_gdb_operation_disable_set ());
6208
6209 regcache_write_pc (regcache,
6210 ecs->event_thread->suspend.stop_pc + decr_pc);
6211 }
6212 }
6213 else
6214 {
6215 /* A delayed software breakpoint event. Ignore the trap. */
6216 if (debug_infrun)
6217 fprintf_unfiltered (gdb_stdlog,
6218 "infrun: delayed software breakpoint "
6219 "trap, ignoring\n");
6220 random_signal = 0;
6221 }
6222 }
6223
6224 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6225 has since been removed. */
6226 if (random_signal && target_stopped_by_hw_breakpoint ())
6227 {
6228 /* A delayed hardware breakpoint event. Ignore the trap. */
6229 if (debug_infrun)
6230 fprintf_unfiltered (gdb_stdlog,
6231 "infrun: delayed hardware breakpoint/watchpoint "
6232 "trap, ignoring\n");
6233 random_signal = 0;
6234 }
6235
6236 /* If not, perhaps stepping/nexting can. */
6237 if (random_signal)
6238 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6239 && currently_stepping (ecs->event_thread));
6240
6241 /* Perhaps the thread hit a single-step breakpoint of _another_
6242 thread. Single-step breakpoints are transparent to the
6243 breakpoints module. */
6244 if (random_signal)
6245 random_signal = !ecs->hit_singlestep_breakpoint;
6246
6247 /* No? Perhaps we got a moribund watchpoint. */
6248 if (random_signal)
6249 random_signal = !stopped_by_watchpoint;
6250
6251 /* Always stop if the user explicitly requested this thread to
6252 remain stopped. */
6253 if (ecs->event_thread->stop_requested)
6254 {
6255 random_signal = 1;
6256 if (debug_infrun)
6257 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6258 }
6259
6260 /* For the program's own signals, act according to
6261 the signal handling tables. */
6262
6263 if (random_signal)
6264 {
6265 /* Signal not for debugging purposes. */
6266 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6267 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6268
6269 if (debug_infrun)
6270 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6271 gdb_signal_to_symbol_string (stop_signal));
6272
6273 stopped_by_random_signal = 1;
6274
6275 /* Always stop on signals if we're either just gaining control
6276 of the program, or the user explicitly requested this thread
6277 to remain stopped. */
6278 if (stop_soon != NO_STOP_QUIETLY
6279 || ecs->event_thread->stop_requested
6280 || (!inf->detaching
6281 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6282 {
6283 stop_waiting (ecs);
6284 return;
6285 }
6286
6287 /* Notify observers the signal has "handle print" set. Note we
6288 returned early above if stopping; normal_stop handles the
6289 printing in that case. */
6290 if (signal_print[ecs->event_thread->suspend.stop_signal])
6291 {
6292 /* The signal table tells us to print about this signal. */
6293 target_terminal::ours_for_output ();
6294 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6295 target_terminal::inferior ();
6296 }
6297
6298 /* Clear the signal if it should not be passed. */
6299 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6300 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6301
6302 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6303 && ecs->event_thread->control.trap_expected
6304 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6305 {
6306 /* We were just starting a new sequence, attempting to
6307 single-step off of a breakpoint and expecting a SIGTRAP.
6308 Instead this signal arrives. This signal will take us out
6309 of the stepping range so GDB needs to remember to, when
6310 the signal handler returns, resume stepping off that
6311 breakpoint. */
6312 /* To simplify things, "continue" is forced to use the same
6313 code paths as single-step - set a breakpoint at the
6314 signal return address and then, once hit, step off that
6315 breakpoint. */
6316 if (debug_infrun)
6317 fprintf_unfiltered (gdb_stdlog,
6318 "infrun: signal arrived while stepping over "
6319 "breakpoint\n");
6320
6321 insert_hp_step_resume_breakpoint_at_frame (frame);
6322 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6323 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6324 ecs->event_thread->control.trap_expected = 0;
6325
6326 /* If we were nexting/stepping some other thread, switch to
6327 it, so that we don't continue it, losing control. */
6328 if (!switch_back_to_stepped_thread (ecs))
6329 keep_going (ecs);
6330 return;
6331 }
6332
6333 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6334 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6335 ecs->event_thread)
6336 || ecs->event_thread->control.step_range_end == 1)
6337 && frame_id_eq (get_stack_frame_id (frame),
6338 ecs->event_thread->control.step_stack_frame_id)
6339 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6340 {
6341 /* The inferior is about to take a signal that will take it
6342 out of the single step range. Set a breakpoint at the
6343 current PC (which is presumably where the signal handler
6344 will eventually return) and then allow the inferior to
6345 run free.
6346
6347 Note that this is only needed for a signal delivered
6348 while in the single-step range. Nested signals aren't a
6349 problem as they eventually all return. */
6350 if (debug_infrun)
6351 fprintf_unfiltered (gdb_stdlog,
6352 "infrun: signal may take us out of "
6353 "single-step range\n");
6354
6355 clear_step_over_info ();
6356 insert_hp_step_resume_breakpoint_at_frame (frame);
6357 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6358 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6359 ecs->event_thread->control.trap_expected = 0;
6360 keep_going (ecs);
6361 return;
6362 }
6363
6364 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6365 when either there's a nested signal, or when there's a
6366 pending signal enabled just as the signal handler returns
6367 (leaving the inferior at the step-resume-breakpoint without
6368 actually executing it). Either way continue until the
6369 breakpoint is really hit. */
6370
6371 if (!switch_back_to_stepped_thread (ecs))
6372 {
6373 if (debug_infrun)
6374 fprintf_unfiltered (gdb_stdlog,
6375 "infrun: random signal, keep going\n");
6376
6377 keep_going (ecs);
6378 }
6379 return;
6380 }
6381
6382 process_event_stop_test (ecs);
6383 }
6384
6385 /* Come here when we've got some debug event / signal we can explain
6386 (IOW, not a random signal), and test whether it should cause a
6387 stop, or whether we should resume the inferior (transparently).
6388 E.g., could be a breakpoint whose condition evaluates false; we
6389 could be still stepping within the line; etc. */
6390
6391 static void
6392 process_event_stop_test (struct execution_control_state *ecs)
6393 {
6394 struct symtab_and_line stop_pc_sal;
6395 struct frame_info *frame;
6396 struct gdbarch *gdbarch;
6397 CORE_ADDR jmp_buf_pc;
6398 struct bpstat_what what;
6399
6400 /* Handle cases caused by hitting a breakpoint. */
6401
6402 frame = get_current_frame ();
6403 gdbarch = get_frame_arch (frame);
6404
6405 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6406
6407 if (what.call_dummy)
6408 {
6409 stop_stack_dummy = what.call_dummy;
6410 }
6411
6412 /* A few breakpoint types have callbacks associated (e.g.,
6413 bp_jit_event). Run them now. */
6414 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6415
6416 /* If we hit an internal event that triggers symbol changes, the
6417 current frame will be invalidated within bpstat_what (e.g., if we
6418 hit an internal solib event). Re-fetch it. */
6419 frame = get_current_frame ();
6420 gdbarch = get_frame_arch (frame);
6421
6422 switch (what.main_action)
6423 {
6424 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6425 /* If we hit the breakpoint at longjmp while stepping, we
6426 install a momentary breakpoint at the target of the
6427 jmp_buf. */
6428
6429 if (debug_infrun)
6430 fprintf_unfiltered (gdb_stdlog,
6431 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6432
6433 ecs->event_thread->stepping_over_breakpoint = 1;
6434
6435 if (what.is_longjmp)
6436 {
6437 struct value *arg_value;
6438
6439 /* If we set the longjmp breakpoint via a SystemTap probe,
6440 then use it to extract the arguments. The destination PC
6441 is the third argument to the probe. */
6442 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6443 if (arg_value)
6444 {
6445 jmp_buf_pc = value_as_address (arg_value);
6446 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6447 }
6448 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6449 || !gdbarch_get_longjmp_target (gdbarch,
6450 frame, &jmp_buf_pc))
6451 {
6452 if (debug_infrun)
6453 fprintf_unfiltered (gdb_stdlog,
6454 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6455 "(!gdbarch_get_longjmp_target)\n");
6456 keep_going (ecs);
6457 return;
6458 }
6459
6460 /* Insert a breakpoint at resume address. */
6461 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6462 }
6463 else
6464 check_exception_resume (ecs, frame);
6465 keep_going (ecs);
6466 return;
6467
6468 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6469 {
6470 struct frame_info *init_frame;
6471
6472 /* There are several cases to consider.
6473
6474 1. The initiating frame no longer exists. In this case we
6475 must stop, because the exception or longjmp has gone too
6476 far.
6477
6478 2. The initiating frame exists, and is the same as the
6479 current frame. We stop, because the exception or longjmp
6480 has been caught.
6481
6482 3. The initiating frame exists and is different from the
6483 current frame. This means the exception or longjmp has
6484 been caught beneath the initiating frame, so keep going.
6485
6486 4. longjmp breakpoint has been placed just to protect
6487 against stale dummy frames and user is not interested in
6488 stopping around longjmps. */
6489
6490 if (debug_infrun)
6491 fprintf_unfiltered (gdb_stdlog,
6492 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6493
6494 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6495 != NULL);
6496 delete_exception_resume_breakpoint (ecs->event_thread);
6497
6498 if (what.is_longjmp)
6499 {
6500 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6501
6502 if (!frame_id_p (ecs->event_thread->initiating_frame))
6503 {
6504 /* Case 4. */
6505 keep_going (ecs);
6506 return;
6507 }
6508 }
6509
6510 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6511
6512 if (init_frame)
6513 {
6514 struct frame_id current_id
6515 = get_frame_id (get_current_frame ());
6516 if (frame_id_eq (current_id,
6517 ecs->event_thread->initiating_frame))
6518 {
6519 /* Case 2. Fall through. */
6520 }
6521 else
6522 {
6523 /* Case 3. */
6524 keep_going (ecs);
6525 return;
6526 }
6527 }
6528
6529 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6530 exists. */
6531 delete_step_resume_breakpoint (ecs->event_thread);
6532
6533 end_stepping_range (ecs);
6534 }
6535 return;
6536
6537 case BPSTAT_WHAT_SINGLE:
6538 if (debug_infrun)
6539 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6540 ecs->event_thread->stepping_over_breakpoint = 1;
6541 /* Still need to check other stuff, at least the case where we
6542 are stepping and step out of the right range. */
6543 break;
6544
6545 case BPSTAT_WHAT_STEP_RESUME:
6546 if (debug_infrun)
6547 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6548
6549 delete_step_resume_breakpoint (ecs->event_thread);
6550 if (ecs->event_thread->control.proceed_to_finish
6551 && execution_direction == EXEC_REVERSE)
6552 {
6553 struct thread_info *tp = ecs->event_thread;
6554
6555 /* We are finishing a function in reverse, and just hit the
6556 step-resume breakpoint at the start address of the
6557 function, and we're almost there -- just need to back up
6558 by one more single-step, which should take us back to the
6559 function call. */
6560 tp->control.step_range_start = tp->control.step_range_end = 1;
6561 keep_going (ecs);
6562 return;
6563 }
6564 fill_in_stop_func (gdbarch, ecs);
6565 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6566 && execution_direction == EXEC_REVERSE)
6567 {
6568 /* We are stepping over a function call in reverse, and just
6569 hit the step-resume breakpoint at the start address of
6570 the function. Go back to single-stepping, which should
6571 take us back to the function call. */
6572 ecs->event_thread->stepping_over_breakpoint = 1;
6573 keep_going (ecs);
6574 return;
6575 }
6576 break;
6577
6578 case BPSTAT_WHAT_STOP_NOISY:
6579 if (debug_infrun)
6580 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6581 stop_print_frame = 1;
6582
6583 /* Assume the thread stopped for a breapoint. We'll still check
6584 whether a/the breakpoint is there when the thread is next
6585 resumed. */
6586 ecs->event_thread->stepping_over_breakpoint = 1;
6587
6588 stop_waiting (ecs);
6589 return;
6590
6591 case BPSTAT_WHAT_STOP_SILENT:
6592 if (debug_infrun)
6593 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6594 stop_print_frame = 0;
6595
6596 /* Assume the thread stopped for a breapoint. We'll still check
6597 whether a/the breakpoint is there when the thread is next
6598 resumed. */
6599 ecs->event_thread->stepping_over_breakpoint = 1;
6600 stop_waiting (ecs);
6601 return;
6602
6603 case BPSTAT_WHAT_HP_STEP_RESUME:
6604 if (debug_infrun)
6605 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6606
6607 delete_step_resume_breakpoint (ecs->event_thread);
6608 if (ecs->event_thread->step_after_step_resume_breakpoint)
6609 {
6610 /* Back when the step-resume breakpoint was inserted, we
6611 were trying to single-step off a breakpoint. Go back to
6612 doing that. */
6613 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6614 ecs->event_thread->stepping_over_breakpoint = 1;
6615 keep_going (ecs);
6616 return;
6617 }
6618 break;
6619
6620 case BPSTAT_WHAT_KEEP_CHECKING:
6621 break;
6622 }
6623
6624 /* If we stepped a permanent breakpoint and we had a high priority
6625 step-resume breakpoint for the address we stepped, but we didn't
6626 hit it, then we must have stepped into the signal handler. The
6627 step-resume was only necessary to catch the case of _not_
6628 stepping into the handler, so delete it, and fall through to
6629 checking whether the step finished. */
6630 if (ecs->event_thread->stepped_breakpoint)
6631 {
6632 struct breakpoint *sr_bp
6633 = ecs->event_thread->control.step_resume_breakpoint;
6634
6635 if (sr_bp != NULL
6636 && sr_bp->loc->permanent
6637 && sr_bp->type == bp_hp_step_resume
6638 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6639 {
6640 if (debug_infrun)
6641 fprintf_unfiltered (gdb_stdlog,
6642 "infrun: stepped permanent breakpoint, stopped in "
6643 "handler\n");
6644 delete_step_resume_breakpoint (ecs->event_thread);
6645 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6646 }
6647 }
6648
6649 /* We come here if we hit a breakpoint but should not stop for it.
6650 Possibly we also were stepping and should stop for that. So fall
6651 through and test for stepping. But, if not stepping, do not
6652 stop. */
6653
6654 /* In all-stop mode, if we're currently stepping but have stopped in
6655 some other thread, we need to switch back to the stepped thread. */
6656 if (switch_back_to_stepped_thread (ecs))
6657 return;
6658
6659 if (ecs->event_thread->control.step_resume_breakpoint)
6660 {
6661 if (debug_infrun)
6662 fprintf_unfiltered (gdb_stdlog,
6663 "infrun: step-resume breakpoint is inserted\n");
6664
6665 /* Having a step-resume breakpoint overrides anything
6666 else having to do with stepping commands until
6667 that breakpoint is reached. */
6668 keep_going (ecs);
6669 return;
6670 }
6671
6672 if (ecs->event_thread->control.step_range_end == 0)
6673 {
6674 if (debug_infrun)
6675 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6676 /* Likewise if we aren't even stepping. */
6677 keep_going (ecs);
6678 return;
6679 }
6680
6681 /* Re-fetch current thread's frame in case the code above caused
6682 the frame cache to be re-initialized, making our FRAME variable
6683 a dangling pointer. */
6684 frame = get_current_frame ();
6685 gdbarch = get_frame_arch (frame);
6686 fill_in_stop_func (gdbarch, ecs);
6687
6688 /* If stepping through a line, keep going if still within it.
6689
6690 Note that step_range_end is the address of the first instruction
6691 beyond the step range, and NOT the address of the last instruction
6692 within it!
6693
6694 Note also that during reverse execution, we may be stepping
6695 through a function epilogue and therefore must detect when
6696 the current-frame changes in the middle of a line. */
6697
6698 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6699 ecs->event_thread)
6700 && (execution_direction != EXEC_REVERSE
6701 || frame_id_eq (get_frame_id (frame),
6702 ecs->event_thread->control.step_frame_id)))
6703 {
6704 if (debug_infrun)
6705 fprintf_unfiltered
6706 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6707 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6708 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6709
6710 /* Tentatively re-enable range stepping; `resume' disables it if
6711 necessary (e.g., if we're stepping over a breakpoint or we
6712 have software watchpoints). */
6713 ecs->event_thread->control.may_range_step = 1;
6714
6715 /* When stepping backward, stop at beginning of line range
6716 (unless it's the function entry point, in which case
6717 keep going back to the call point). */
6718 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6719 if (stop_pc == ecs->event_thread->control.step_range_start
6720 && stop_pc != ecs->stop_func_start
6721 && execution_direction == EXEC_REVERSE)
6722 end_stepping_range (ecs);
6723 else
6724 keep_going (ecs);
6725
6726 return;
6727 }
6728
6729 /* We stepped out of the stepping range. */
6730
6731 /* If we are stepping at the source level and entered the runtime
6732 loader dynamic symbol resolution code...
6733
6734 EXEC_FORWARD: we keep on single stepping until we exit the run
6735 time loader code and reach the callee's address.
6736
6737 EXEC_REVERSE: we've already executed the callee (backward), and
6738 the runtime loader code is handled just like any other
6739 undebuggable function call. Now we need only keep stepping
6740 backward through the trampoline code, and that's handled further
6741 down, so there is nothing for us to do here. */
6742
6743 if (execution_direction != EXEC_REVERSE
6744 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6745 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6746 {
6747 CORE_ADDR pc_after_resolver =
6748 gdbarch_skip_solib_resolver (gdbarch,
6749 ecs->event_thread->suspend.stop_pc);
6750
6751 if (debug_infrun)
6752 fprintf_unfiltered (gdb_stdlog,
6753 "infrun: stepped into dynsym resolve code\n");
6754
6755 if (pc_after_resolver)
6756 {
6757 /* Set up a step-resume breakpoint at the address
6758 indicated by SKIP_SOLIB_RESOLVER. */
6759 symtab_and_line sr_sal;
6760 sr_sal.pc = pc_after_resolver;
6761 sr_sal.pspace = get_frame_program_space (frame);
6762
6763 insert_step_resume_breakpoint_at_sal (gdbarch,
6764 sr_sal, null_frame_id);
6765 }
6766
6767 keep_going (ecs);
6768 return;
6769 }
6770
6771 /* Step through an indirect branch thunk. */
6772 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6773 && gdbarch_in_indirect_branch_thunk (gdbarch,
6774 ecs->event_thread->suspend.stop_pc))
6775 {
6776 if (debug_infrun)
6777 fprintf_unfiltered (gdb_stdlog,
6778 "infrun: stepped into indirect branch thunk\n");
6779 keep_going (ecs);
6780 return;
6781 }
6782
6783 if (ecs->event_thread->control.step_range_end != 1
6784 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6785 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6786 && get_frame_type (frame) == SIGTRAMP_FRAME)
6787 {
6788 if (debug_infrun)
6789 fprintf_unfiltered (gdb_stdlog,
6790 "infrun: stepped into signal trampoline\n");
6791 /* The inferior, while doing a "step" or "next", has ended up in
6792 a signal trampoline (either by a signal being delivered or by
6793 the signal handler returning). Just single-step until the
6794 inferior leaves the trampoline (either by calling the handler
6795 or returning). */
6796 keep_going (ecs);
6797 return;
6798 }
6799
6800 /* If we're in the return path from a shared library trampoline,
6801 we want to proceed through the trampoline when stepping. */
6802 /* macro/2012-04-25: This needs to come before the subroutine
6803 call check below as on some targets return trampolines look
6804 like subroutine calls (MIPS16 return thunks). */
6805 if (gdbarch_in_solib_return_trampoline (gdbarch,
6806 ecs->event_thread->suspend.stop_pc,
6807 ecs->stop_func_name)
6808 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6809 {
6810 /* Determine where this trampoline returns. */
6811 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6812 CORE_ADDR real_stop_pc
6813 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6814
6815 if (debug_infrun)
6816 fprintf_unfiltered (gdb_stdlog,
6817 "infrun: stepped into solib return tramp\n");
6818
6819 /* Only proceed through if we know where it's going. */
6820 if (real_stop_pc)
6821 {
6822 /* And put the step-breakpoint there and go until there. */
6823 symtab_and_line sr_sal;
6824 sr_sal.pc = real_stop_pc;
6825 sr_sal.section = find_pc_overlay (sr_sal.pc);
6826 sr_sal.pspace = get_frame_program_space (frame);
6827
6828 /* Do not specify what the fp should be when we stop since
6829 on some machines the prologue is where the new fp value
6830 is established. */
6831 insert_step_resume_breakpoint_at_sal (gdbarch,
6832 sr_sal, null_frame_id);
6833
6834 /* Restart without fiddling with the step ranges or
6835 other state. */
6836 keep_going (ecs);
6837 return;
6838 }
6839 }
6840
6841 /* Check for subroutine calls. The check for the current frame
6842 equalling the step ID is not necessary - the check of the
6843 previous frame's ID is sufficient - but it is a common case and
6844 cheaper than checking the previous frame's ID.
6845
6846 NOTE: frame_id_eq will never report two invalid frame IDs as
6847 being equal, so to get into this block, both the current and
6848 previous frame must have valid frame IDs. */
6849 /* The outer_frame_id check is a heuristic to detect stepping
6850 through startup code. If we step over an instruction which
6851 sets the stack pointer from an invalid value to a valid value,
6852 we may detect that as a subroutine call from the mythical
6853 "outermost" function. This could be fixed by marking
6854 outermost frames as !stack_p,code_p,special_p. Then the
6855 initial outermost frame, before sp was valid, would
6856 have code_addr == &_start. See the comment in frame_id_eq
6857 for more. */
6858 if (!frame_id_eq (get_stack_frame_id (frame),
6859 ecs->event_thread->control.step_stack_frame_id)
6860 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6861 ecs->event_thread->control.step_stack_frame_id)
6862 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6863 outer_frame_id)
6864 || (ecs->event_thread->control.step_start_function
6865 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6866 {
6867 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6868 CORE_ADDR real_stop_pc;
6869
6870 if (debug_infrun)
6871 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6872
6873 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6874 {
6875 /* I presume that step_over_calls is only 0 when we're
6876 supposed to be stepping at the assembly language level
6877 ("stepi"). Just stop. */
6878 /* And this works the same backward as frontward. MVS */
6879 end_stepping_range (ecs);
6880 return;
6881 }
6882
6883 /* Reverse stepping through solib trampolines. */
6884
6885 if (execution_direction == EXEC_REVERSE
6886 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6887 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6888 || (ecs->stop_func_start == 0
6889 && in_solib_dynsym_resolve_code (stop_pc))))
6890 {
6891 /* Any solib trampoline code can be handled in reverse
6892 by simply continuing to single-step. We have already
6893 executed the solib function (backwards), and a few
6894 steps will take us back through the trampoline to the
6895 caller. */
6896 keep_going (ecs);
6897 return;
6898 }
6899
6900 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6901 {
6902 /* We're doing a "next".
6903
6904 Normal (forward) execution: set a breakpoint at the
6905 callee's return address (the address at which the caller
6906 will resume).
6907
6908 Reverse (backward) execution. set the step-resume
6909 breakpoint at the start of the function that we just
6910 stepped into (backwards), and continue to there. When we
6911 get there, we'll need to single-step back to the caller. */
6912
6913 if (execution_direction == EXEC_REVERSE)
6914 {
6915 /* If we're already at the start of the function, we've either
6916 just stepped backward into a single instruction function,
6917 or stepped back out of a signal handler to the first instruction
6918 of the function. Just keep going, which will single-step back
6919 to the caller. */
6920 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6921 {
6922 /* Normal function call return (static or dynamic). */
6923 symtab_and_line sr_sal;
6924 sr_sal.pc = ecs->stop_func_start;
6925 sr_sal.pspace = get_frame_program_space (frame);
6926 insert_step_resume_breakpoint_at_sal (gdbarch,
6927 sr_sal, null_frame_id);
6928 }
6929 }
6930 else
6931 insert_step_resume_breakpoint_at_caller (frame);
6932
6933 keep_going (ecs);
6934 return;
6935 }
6936
6937 /* If we are in a function call trampoline (a stub between the
6938 calling routine and the real function), locate the real
6939 function. That's what tells us (a) whether we want to step
6940 into it at all, and (b) what prologue we want to run to the
6941 end of, if we do step into it. */
6942 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6943 if (real_stop_pc == 0)
6944 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6945 if (real_stop_pc != 0)
6946 ecs->stop_func_start = real_stop_pc;
6947
6948 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6949 {
6950 symtab_and_line sr_sal;
6951 sr_sal.pc = ecs->stop_func_start;
6952 sr_sal.pspace = get_frame_program_space (frame);
6953
6954 insert_step_resume_breakpoint_at_sal (gdbarch,
6955 sr_sal, null_frame_id);
6956 keep_going (ecs);
6957 return;
6958 }
6959
6960 /* If we have line number information for the function we are
6961 thinking of stepping into and the function isn't on the skip
6962 list, step into it.
6963
6964 If there are several symtabs at that PC (e.g. with include
6965 files), just want to know whether *any* of them have line
6966 numbers. find_pc_line handles this. */
6967 {
6968 struct symtab_and_line tmp_sal;
6969
6970 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6971 if (tmp_sal.line != 0
6972 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6973 tmp_sal)
6974 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6975 {
6976 if (execution_direction == EXEC_REVERSE)
6977 handle_step_into_function_backward (gdbarch, ecs);
6978 else
6979 handle_step_into_function (gdbarch, ecs);
6980 return;
6981 }
6982 }
6983
6984 /* If we have no line number and the step-stop-if-no-debug is
6985 set, we stop the step so that the user has a chance to switch
6986 in assembly mode. */
6987 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6988 && step_stop_if_no_debug)
6989 {
6990 end_stepping_range (ecs);
6991 return;
6992 }
6993
6994 if (execution_direction == EXEC_REVERSE)
6995 {
6996 /* If we're already at the start of the function, we've either just
6997 stepped backward into a single instruction function without line
6998 number info, or stepped back out of a signal handler to the first
6999 instruction of the function without line number info. Just keep
7000 going, which will single-step back to the caller. */
7001 if (ecs->stop_func_start != stop_pc)
7002 {
7003 /* Set a breakpoint at callee's start address.
7004 From there we can step once and be back in the caller. */
7005 symtab_and_line sr_sal;
7006 sr_sal.pc = ecs->stop_func_start;
7007 sr_sal.pspace = get_frame_program_space (frame);
7008 insert_step_resume_breakpoint_at_sal (gdbarch,
7009 sr_sal, null_frame_id);
7010 }
7011 }
7012 else
7013 /* Set a breakpoint at callee's return address (the address
7014 at which the caller will resume). */
7015 insert_step_resume_breakpoint_at_caller (frame);
7016
7017 keep_going (ecs);
7018 return;
7019 }
7020
7021 /* Reverse stepping through solib trampolines. */
7022
7023 if (execution_direction == EXEC_REVERSE
7024 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7025 {
7026 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7027
7028 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7029 || (ecs->stop_func_start == 0
7030 && in_solib_dynsym_resolve_code (stop_pc)))
7031 {
7032 /* Any solib trampoline code can be handled in reverse
7033 by simply continuing to single-step. We have already
7034 executed the solib function (backwards), and a few
7035 steps will take us back through the trampoline to the
7036 caller. */
7037 keep_going (ecs);
7038 return;
7039 }
7040 else if (in_solib_dynsym_resolve_code (stop_pc))
7041 {
7042 /* Stepped backward into the solib dynsym resolver.
7043 Set a breakpoint at its start and continue, then
7044 one more step will take us out. */
7045 symtab_and_line sr_sal;
7046 sr_sal.pc = ecs->stop_func_start;
7047 sr_sal.pspace = get_frame_program_space (frame);
7048 insert_step_resume_breakpoint_at_sal (gdbarch,
7049 sr_sal, null_frame_id);
7050 keep_going (ecs);
7051 return;
7052 }
7053 }
7054
7055 /* This always returns the sal for the inner-most frame when we are in a
7056 stack of inlined frames, even if GDB actually believes that it is in a
7057 more outer frame. This is checked for below by calls to
7058 inline_skipped_frames. */
7059 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7060
7061 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7062 the trampoline processing logic, however, there are some trampolines
7063 that have no names, so we should do trampoline handling first. */
7064 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7065 && ecs->stop_func_name == NULL
7066 && stop_pc_sal.line == 0)
7067 {
7068 if (debug_infrun)
7069 fprintf_unfiltered (gdb_stdlog,
7070 "infrun: stepped into undebuggable function\n");
7071
7072 /* The inferior just stepped into, or returned to, an
7073 undebuggable function (where there is no debugging information
7074 and no line number corresponding to the address where the
7075 inferior stopped). Since we want to skip this kind of code,
7076 we keep going until the inferior returns from this
7077 function - unless the user has asked us not to (via
7078 set step-mode) or we no longer know how to get back
7079 to the call site. */
7080 if (step_stop_if_no_debug
7081 || !frame_id_p (frame_unwind_caller_id (frame)))
7082 {
7083 /* If we have no line number and the step-stop-if-no-debug
7084 is set, we stop the step so that the user has a chance to
7085 switch in assembly mode. */
7086 end_stepping_range (ecs);
7087 return;
7088 }
7089 else
7090 {
7091 /* Set a breakpoint at callee's return address (the address
7092 at which the caller will resume). */
7093 insert_step_resume_breakpoint_at_caller (frame);
7094 keep_going (ecs);
7095 return;
7096 }
7097 }
7098
7099 if (ecs->event_thread->control.step_range_end == 1)
7100 {
7101 /* It is stepi or nexti. We always want to stop stepping after
7102 one instruction. */
7103 if (debug_infrun)
7104 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
7105 end_stepping_range (ecs);
7106 return;
7107 }
7108
7109 if (stop_pc_sal.line == 0)
7110 {
7111 /* We have no line number information. That means to stop
7112 stepping (does this always happen right after one instruction,
7113 when we do "s" in a function with no line numbers,
7114 or can this happen as a result of a return or longjmp?). */
7115 if (debug_infrun)
7116 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
7117 end_stepping_range (ecs);
7118 return;
7119 }
7120
7121 /* Look for "calls" to inlined functions, part one. If the inline
7122 frame machinery detected some skipped call sites, we have entered
7123 a new inline function. */
7124
7125 if (frame_id_eq (get_frame_id (get_current_frame ()),
7126 ecs->event_thread->control.step_frame_id)
7127 && inline_skipped_frames (ecs->event_thread))
7128 {
7129 if (debug_infrun)
7130 fprintf_unfiltered (gdb_stdlog,
7131 "infrun: stepped into inlined function\n");
7132
7133 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7134
7135 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7136 {
7137 /* For "step", we're going to stop. But if the call site
7138 for this inlined function is on the same source line as
7139 we were previously stepping, go down into the function
7140 first. Otherwise stop at the call site. */
7141
7142 if (call_sal.line == ecs->event_thread->current_line
7143 && call_sal.symtab == ecs->event_thread->current_symtab)
7144 {
7145 step_into_inline_frame (ecs->event_thread);
7146 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7147 {
7148 keep_going (ecs);
7149 return;
7150 }
7151 }
7152
7153 end_stepping_range (ecs);
7154 return;
7155 }
7156 else
7157 {
7158 /* For "next", we should stop at the call site if it is on a
7159 different source line. Otherwise continue through the
7160 inlined function. */
7161 if (call_sal.line == ecs->event_thread->current_line
7162 && call_sal.symtab == ecs->event_thread->current_symtab)
7163 keep_going (ecs);
7164 else
7165 end_stepping_range (ecs);
7166 return;
7167 }
7168 }
7169
7170 /* Look for "calls" to inlined functions, part two. If we are still
7171 in the same real function we were stepping through, but we have
7172 to go further up to find the exact frame ID, we are stepping
7173 through a more inlined call beyond its call site. */
7174
7175 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7176 && !frame_id_eq (get_frame_id (get_current_frame ()),
7177 ecs->event_thread->control.step_frame_id)
7178 && stepped_in_from (get_current_frame (),
7179 ecs->event_thread->control.step_frame_id))
7180 {
7181 if (debug_infrun)
7182 fprintf_unfiltered (gdb_stdlog,
7183 "infrun: stepping through inlined function\n");
7184
7185 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7186 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7187 keep_going (ecs);
7188 else
7189 end_stepping_range (ecs);
7190 return;
7191 }
7192
7193 bool refresh_step_info = true;
7194 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7195 && (ecs->event_thread->current_line != stop_pc_sal.line
7196 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7197 {
7198 if (stop_pc_sal.is_stmt)
7199 {
7200 /* We are at the start of a different line. So stop. Note that
7201 we don't stop if we step into the middle of a different line.
7202 That is said to make things like for (;;) statements work
7203 better. */
7204 if (debug_infrun)
7205 fprintf_unfiltered (gdb_stdlog,
7206 "infrun: stepped to a different line\n");
7207 end_stepping_range (ecs);
7208 return;
7209 }
7210 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7211 ecs->event_thread->control.step_frame_id))
7212 {
7213 /* We are at the start of a different line, however, this line is
7214 not marked as a statement, and we have not changed frame. We
7215 ignore this line table entry, and continue stepping forward,
7216 looking for a better place to stop. */
7217 refresh_step_info = false;
7218 if (debug_infrun)
7219 fprintf_unfiltered (gdb_stdlog,
7220 "infrun: stepped to a different line, but "
7221 "it's not the start of a statement\n");
7222 }
7223 }
7224
7225 /* We aren't done stepping.
7226
7227 Optimize by setting the stepping range to the line.
7228 (We might not be in the original line, but if we entered a
7229 new line in mid-statement, we continue stepping. This makes
7230 things like for(;;) statements work better.)
7231
7232 If we entered a SAL that indicates a non-statement line table entry,
7233 then we update the stepping range, but we don't update the step info,
7234 which includes things like the line number we are stepping away from.
7235 This means we will stop when we find a line table entry that is marked
7236 as is-statement, even if it matches the non-statement one we just
7237 stepped into. */
7238
7239 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7240 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7241 ecs->event_thread->control.may_range_step = 1;
7242 if (refresh_step_info)
7243 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7244
7245 if (debug_infrun)
7246 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7247 keep_going (ecs);
7248 }
7249
7250 /* In all-stop mode, if we're currently stepping but have stopped in
7251 some other thread, we may need to switch back to the stepped
7252 thread. Returns true we set the inferior running, false if we left
7253 it stopped (and the event needs further processing). */
7254
7255 static int
7256 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7257 {
7258 if (!target_is_non_stop_p ())
7259 {
7260 struct thread_info *stepping_thread;
7261
7262 /* If any thread is blocked on some internal breakpoint, and we
7263 simply need to step over that breakpoint to get it going
7264 again, do that first. */
7265
7266 /* However, if we see an event for the stepping thread, then we
7267 know all other threads have been moved past their breakpoints
7268 already. Let the caller check whether the step is finished,
7269 etc., before deciding to move it past a breakpoint. */
7270 if (ecs->event_thread->control.step_range_end != 0)
7271 return 0;
7272
7273 /* Check if the current thread is blocked on an incomplete
7274 step-over, interrupted by a random signal. */
7275 if (ecs->event_thread->control.trap_expected
7276 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7277 {
7278 if (debug_infrun)
7279 {
7280 fprintf_unfiltered (gdb_stdlog,
7281 "infrun: need to finish step-over of [%s]\n",
7282 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7283 }
7284 keep_going (ecs);
7285 return 1;
7286 }
7287
7288 /* Check if the current thread is blocked by a single-step
7289 breakpoint of another thread. */
7290 if (ecs->hit_singlestep_breakpoint)
7291 {
7292 if (debug_infrun)
7293 {
7294 fprintf_unfiltered (gdb_stdlog,
7295 "infrun: need to step [%s] over single-step "
7296 "breakpoint\n",
7297 target_pid_to_str (ecs->ptid).c_str ());
7298 }
7299 keep_going (ecs);
7300 return 1;
7301 }
7302
7303 /* If this thread needs yet another step-over (e.g., stepping
7304 through a delay slot), do it first before moving on to
7305 another thread. */
7306 if (thread_still_needs_step_over (ecs->event_thread))
7307 {
7308 if (debug_infrun)
7309 {
7310 fprintf_unfiltered (gdb_stdlog,
7311 "infrun: thread [%s] still needs step-over\n",
7312 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7313 }
7314 keep_going (ecs);
7315 return 1;
7316 }
7317
7318 /* If scheduler locking applies even if not stepping, there's no
7319 need to walk over threads. Above we've checked whether the
7320 current thread is stepping. If some other thread not the
7321 event thread is stepping, then it must be that scheduler
7322 locking is not in effect. */
7323 if (schedlock_applies (ecs->event_thread))
7324 return 0;
7325
7326 /* Otherwise, we no longer expect a trap in the current thread.
7327 Clear the trap_expected flag before switching back -- this is
7328 what keep_going does as well, if we call it. */
7329 ecs->event_thread->control.trap_expected = 0;
7330
7331 /* Likewise, clear the signal if it should not be passed. */
7332 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7333 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7334
7335 /* Do all pending step-overs before actually proceeding with
7336 step/next/etc. */
7337 if (start_step_over ())
7338 {
7339 prepare_to_wait (ecs);
7340 return 1;
7341 }
7342
7343 /* Look for the stepping/nexting thread. */
7344 stepping_thread = NULL;
7345
7346 for (thread_info *tp : all_non_exited_threads ())
7347 {
7348 switch_to_thread_no_regs (tp);
7349
7350 /* Ignore threads of processes the caller is not
7351 resuming. */
7352 if (!sched_multi
7353 && (tp->inf->process_target () != ecs->target
7354 || tp->inf->pid != ecs->ptid.pid ()))
7355 continue;
7356
7357 /* When stepping over a breakpoint, we lock all threads
7358 except the one that needs to move past the breakpoint.
7359 If a non-event thread has this set, the "incomplete
7360 step-over" check above should have caught it earlier. */
7361 if (tp->control.trap_expected)
7362 {
7363 internal_error (__FILE__, __LINE__,
7364 "[%s] has inconsistent state: "
7365 "trap_expected=%d\n",
7366 target_pid_to_str (tp->ptid).c_str (),
7367 tp->control.trap_expected);
7368 }
7369
7370 /* Did we find the stepping thread? */
7371 if (tp->control.step_range_end)
7372 {
7373 /* Yep. There should only one though. */
7374 gdb_assert (stepping_thread == NULL);
7375
7376 /* The event thread is handled at the top, before we
7377 enter this loop. */
7378 gdb_assert (tp != ecs->event_thread);
7379
7380 /* If some thread other than the event thread is
7381 stepping, then scheduler locking can't be in effect,
7382 otherwise we wouldn't have resumed the current event
7383 thread in the first place. */
7384 gdb_assert (!schedlock_applies (tp));
7385
7386 stepping_thread = tp;
7387 }
7388 }
7389
7390 if (stepping_thread != NULL)
7391 {
7392 if (debug_infrun)
7393 fprintf_unfiltered (gdb_stdlog,
7394 "infrun: switching back to stepped thread\n");
7395
7396 if (keep_going_stepped_thread (stepping_thread))
7397 {
7398 prepare_to_wait (ecs);
7399 return 1;
7400 }
7401 }
7402
7403 switch_to_thread (ecs->event_thread);
7404 }
7405
7406 return 0;
7407 }
7408
7409 /* Set a previously stepped thread back to stepping. Returns true on
7410 success, false if the resume is not possible (e.g., the thread
7411 vanished). */
7412
7413 static int
7414 keep_going_stepped_thread (struct thread_info *tp)
7415 {
7416 struct frame_info *frame;
7417 struct execution_control_state ecss;
7418 struct execution_control_state *ecs = &ecss;
7419
7420 /* If the stepping thread exited, then don't try to switch back and
7421 resume it, which could fail in several different ways depending
7422 on the target. Instead, just keep going.
7423
7424 We can find a stepping dead thread in the thread list in two
7425 cases:
7426
7427 - The target supports thread exit events, and when the target
7428 tries to delete the thread from the thread list, inferior_ptid
7429 pointed at the exiting thread. In such case, calling
7430 delete_thread does not really remove the thread from the list;
7431 instead, the thread is left listed, with 'exited' state.
7432
7433 - The target's debug interface does not support thread exit
7434 events, and so we have no idea whatsoever if the previously
7435 stepping thread is still alive. For that reason, we need to
7436 synchronously query the target now. */
7437
7438 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7439 {
7440 if (debug_infrun)
7441 fprintf_unfiltered (gdb_stdlog,
7442 "infrun: not resuming previously "
7443 "stepped thread, it has vanished\n");
7444
7445 delete_thread (tp);
7446 return 0;
7447 }
7448
7449 if (debug_infrun)
7450 fprintf_unfiltered (gdb_stdlog,
7451 "infrun: resuming previously stepped thread\n");
7452
7453 reset_ecs (ecs, tp);
7454 switch_to_thread (tp);
7455
7456 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7457 frame = get_current_frame ();
7458
7459 /* If the PC of the thread we were trying to single-step has
7460 changed, then that thread has trapped or been signaled, but the
7461 event has not been reported to GDB yet. Re-poll the target
7462 looking for this particular thread's event (i.e. temporarily
7463 enable schedlock) by:
7464
7465 - setting a break at the current PC
7466 - resuming that particular thread, only (by setting trap
7467 expected)
7468
7469 This prevents us continuously moving the single-step breakpoint
7470 forward, one instruction at a time, overstepping. */
7471
7472 if (tp->suspend.stop_pc != tp->prev_pc)
7473 {
7474 ptid_t resume_ptid;
7475
7476 if (debug_infrun)
7477 fprintf_unfiltered (gdb_stdlog,
7478 "infrun: expected thread advanced also (%s -> %s)\n",
7479 paddress (target_gdbarch (), tp->prev_pc),
7480 paddress (target_gdbarch (), tp->suspend.stop_pc));
7481
7482 /* Clear the info of the previous step-over, as it's no longer
7483 valid (if the thread was trying to step over a breakpoint, it
7484 has already succeeded). It's what keep_going would do too,
7485 if we called it. Do this before trying to insert the sss
7486 breakpoint, otherwise if we were previously trying to step
7487 over this exact address in another thread, the breakpoint is
7488 skipped. */
7489 clear_step_over_info ();
7490 tp->control.trap_expected = 0;
7491
7492 insert_single_step_breakpoint (get_frame_arch (frame),
7493 get_frame_address_space (frame),
7494 tp->suspend.stop_pc);
7495
7496 tp->resumed = true;
7497 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7498 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7499 }
7500 else
7501 {
7502 if (debug_infrun)
7503 fprintf_unfiltered (gdb_stdlog,
7504 "infrun: expected thread still hasn't advanced\n");
7505
7506 keep_going_pass_signal (ecs);
7507 }
7508 return 1;
7509 }
7510
7511 /* Is thread TP in the middle of (software or hardware)
7512 single-stepping? (Note the result of this function must never be
7513 passed directly as target_resume's STEP parameter.) */
7514
7515 static int
7516 currently_stepping (struct thread_info *tp)
7517 {
7518 return ((tp->control.step_range_end
7519 && tp->control.step_resume_breakpoint == NULL)
7520 || tp->control.trap_expected
7521 || tp->stepped_breakpoint
7522 || bpstat_should_step ());
7523 }
7524
7525 /* Inferior has stepped into a subroutine call with source code that
7526 we should not step over. Do step to the first line of code in
7527 it. */
7528
7529 static void
7530 handle_step_into_function (struct gdbarch *gdbarch,
7531 struct execution_control_state *ecs)
7532 {
7533 fill_in_stop_func (gdbarch, ecs);
7534
7535 compunit_symtab *cust
7536 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7537 if (cust != NULL && compunit_language (cust) != language_asm)
7538 ecs->stop_func_start
7539 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7540
7541 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7542 /* Use the step_resume_break to step until the end of the prologue,
7543 even if that involves jumps (as it seems to on the vax under
7544 4.2). */
7545 /* If the prologue ends in the middle of a source line, continue to
7546 the end of that source line (if it is still within the function).
7547 Otherwise, just go to end of prologue. */
7548 if (stop_func_sal.end
7549 && stop_func_sal.pc != ecs->stop_func_start
7550 && stop_func_sal.end < ecs->stop_func_end)
7551 ecs->stop_func_start = stop_func_sal.end;
7552
7553 /* Architectures which require breakpoint adjustment might not be able
7554 to place a breakpoint at the computed address. If so, the test
7555 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7556 ecs->stop_func_start to an address at which a breakpoint may be
7557 legitimately placed.
7558
7559 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7560 made, GDB will enter an infinite loop when stepping through
7561 optimized code consisting of VLIW instructions which contain
7562 subinstructions corresponding to different source lines. On
7563 FR-V, it's not permitted to place a breakpoint on any but the
7564 first subinstruction of a VLIW instruction. When a breakpoint is
7565 set, GDB will adjust the breakpoint address to the beginning of
7566 the VLIW instruction. Thus, we need to make the corresponding
7567 adjustment here when computing the stop address. */
7568
7569 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7570 {
7571 ecs->stop_func_start
7572 = gdbarch_adjust_breakpoint_address (gdbarch,
7573 ecs->stop_func_start);
7574 }
7575
7576 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7577 {
7578 /* We are already there: stop now. */
7579 end_stepping_range (ecs);
7580 return;
7581 }
7582 else
7583 {
7584 /* Put the step-breakpoint there and go until there. */
7585 symtab_and_line sr_sal;
7586 sr_sal.pc = ecs->stop_func_start;
7587 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7588 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7589
7590 /* Do not specify what the fp should be when we stop since on
7591 some machines the prologue is where the new fp value is
7592 established. */
7593 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7594
7595 /* And make sure stepping stops right away then. */
7596 ecs->event_thread->control.step_range_end
7597 = ecs->event_thread->control.step_range_start;
7598 }
7599 keep_going (ecs);
7600 }
7601
7602 /* Inferior has stepped backward into a subroutine call with source
7603 code that we should not step over. Do step to the beginning of the
7604 last line of code in it. */
7605
7606 static void
7607 handle_step_into_function_backward (struct gdbarch *gdbarch,
7608 struct execution_control_state *ecs)
7609 {
7610 struct compunit_symtab *cust;
7611 struct symtab_and_line stop_func_sal;
7612
7613 fill_in_stop_func (gdbarch, ecs);
7614
7615 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7616 if (cust != NULL && compunit_language (cust) != language_asm)
7617 ecs->stop_func_start
7618 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7619
7620 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7621
7622 /* OK, we're just going to keep stepping here. */
7623 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7624 {
7625 /* We're there already. Just stop stepping now. */
7626 end_stepping_range (ecs);
7627 }
7628 else
7629 {
7630 /* Else just reset the step range and keep going.
7631 No step-resume breakpoint, they don't work for
7632 epilogues, which can have multiple entry paths. */
7633 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7634 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7635 keep_going (ecs);
7636 }
7637 return;
7638 }
7639
7640 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7641 This is used to both functions and to skip over code. */
7642
7643 static void
7644 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7645 struct symtab_and_line sr_sal,
7646 struct frame_id sr_id,
7647 enum bptype sr_type)
7648 {
7649 /* There should never be more than one step-resume or longjmp-resume
7650 breakpoint per thread, so we should never be setting a new
7651 step_resume_breakpoint when one is already active. */
7652 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7653 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7654
7655 if (debug_infrun)
7656 fprintf_unfiltered (gdb_stdlog,
7657 "infrun: inserting step-resume breakpoint at %s\n",
7658 paddress (gdbarch, sr_sal.pc));
7659
7660 inferior_thread ()->control.step_resume_breakpoint
7661 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7662 }
7663
7664 void
7665 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7666 struct symtab_and_line sr_sal,
7667 struct frame_id sr_id)
7668 {
7669 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7670 sr_sal, sr_id,
7671 bp_step_resume);
7672 }
7673
7674 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7675 This is used to skip a potential signal handler.
7676
7677 This is called with the interrupted function's frame. The signal
7678 handler, when it returns, will resume the interrupted function at
7679 RETURN_FRAME.pc. */
7680
7681 static void
7682 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7683 {
7684 gdb_assert (return_frame != NULL);
7685
7686 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7687
7688 symtab_and_line sr_sal;
7689 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7690 sr_sal.section = find_pc_overlay (sr_sal.pc);
7691 sr_sal.pspace = get_frame_program_space (return_frame);
7692
7693 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7694 get_stack_frame_id (return_frame),
7695 bp_hp_step_resume);
7696 }
7697
7698 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7699 is used to skip a function after stepping into it (for "next" or if
7700 the called function has no debugging information).
7701
7702 The current function has almost always been reached by single
7703 stepping a call or return instruction. NEXT_FRAME belongs to the
7704 current function, and the breakpoint will be set at the caller's
7705 resume address.
7706
7707 This is a separate function rather than reusing
7708 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7709 get_prev_frame, which may stop prematurely (see the implementation
7710 of frame_unwind_caller_id for an example). */
7711
7712 static void
7713 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7714 {
7715 /* We shouldn't have gotten here if we don't know where the call site
7716 is. */
7717 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7718
7719 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7720
7721 symtab_and_line sr_sal;
7722 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7723 frame_unwind_caller_pc (next_frame));
7724 sr_sal.section = find_pc_overlay (sr_sal.pc);
7725 sr_sal.pspace = frame_unwind_program_space (next_frame);
7726
7727 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7728 frame_unwind_caller_id (next_frame));
7729 }
7730
7731 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7732 new breakpoint at the target of a jmp_buf. The handling of
7733 longjmp-resume uses the same mechanisms used for handling
7734 "step-resume" breakpoints. */
7735
7736 static void
7737 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7738 {
7739 /* There should never be more than one longjmp-resume breakpoint per
7740 thread, so we should never be setting a new
7741 longjmp_resume_breakpoint when one is already active. */
7742 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7743
7744 if (debug_infrun)
7745 fprintf_unfiltered (gdb_stdlog,
7746 "infrun: inserting longjmp-resume breakpoint at %s\n",
7747 paddress (gdbarch, pc));
7748
7749 inferior_thread ()->control.exception_resume_breakpoint =
7750 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7751 }
7752
7753 /* Insert an exception resume breakpoint. TP is the thread throwing
7754 the exception. The block B is the block of the unwinder debug hook
7755 function. FRAME is the frame corresponding to the call to this
7756 function. SYM is the symbol of the function argument holding the
7757 target PC of the exception. */
7758
7759 static void
7760 insert_exception_resume_breakpoint (struct thread_info *tp,
7761 const struct block *b,
7762 struct frame_info *frame,
7763 struct symbol *sym)
7764 {
7765 try
7766 {
7767 struct block_symbol vsym;
7768 struct value *value;
7769 CORE_ADDR handler;
7770 struct breakpoint *bp;
7771
7772 vsym = lookup_symbol_search_name (sym->search_name (),
7773 b, VAR_DOMAIN);
7774 value = read_var_value (vsym.symbol, vsym.block, frame);
7775 /* If the value was optimized out, revert to the old behavior. */
7776 if (! value_optimized_out (value))
7777 {
7778 handler = value_as_address (value);
7779
7780 if (debug_infrun)
7781 fprintf_unfiltered (gdb_stdlog,
7782 "infrun: exception resume at %lx\n",
7783 (unsigned long) handler);
7784
7785 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7786 handler,
7787 bp_exception_resume).release ();
7788
7789 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7790 frame = NULL;
7791
7792 bp->thread = tp->global_num;
7793 inferior_thread ()->control.exception_resume_breakpoint = bp;
7794 }
7795 }
7796 catch (const gdb_exception_error &e)
7797 {
7798 /* We want to ignore errors here. */
7799 }
7800 }
7801
7802 /* A helper for check_exception_resume that sets an
7803 exception-breakpoint based on a SystemTap probe. */
7804
7805 static void
7806 insert_exception_resume_from_probe (struct thread_info *tp,
7807 const struct bound_probe *probe,
7808 struct frame_info *frame)
7809 {
7810 struct value *arg_value;
7811 CORE_ADDR handler;
7812 struct breakpoint *bp;
7813
7814 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7815 if (!arg_value)
7816 return;
7817
7818 handler = value_as_address (arg_value);
7819
7820 if (debug_infrun)
7821 fprintf_unfiltered (gdb_stdlog,
7822 "infrun: exception resume at %s\n",
7823 paddress (probe->objfile->arch (),
7824 handler));
7825
7826 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7827 handler, bp_exception_resume).release ();
7828 bp->thread = tp->global_num;
7829 inferior_thread ()->control.exception_resume_breakpoint = bp;
7830 }
7831
7832 /* This is called when an exception has been intercepted. Check to
7833 see whether the exception's destination is of interest, and if so,
7834 set an exception resume breakpoint there. */
7835
7836 static void
7837 check_exception_resume (struct execution_control_state *ecs,
7838 struct frame_info *frame)
7839 {
7840 struct bound_probe probe;
7841 struct symbol *func;
7842
7843 /* First see if this exception unwinding breakpoint was set via a
7844 SystemTap probe point. If so, the probe has two arguments: the
7845 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7846 set a breakpoint there. */
7847 probe = find_probe_by_pc (get_frame_pc (frame));
7848 if (probe.prob)
7849 {
7850 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7851 return;
7852 }
7853
7854 func = get_frame_function (frame);
7855 if (!func)
7856 return;
7857
7858 try
7859 {
7860 const struct block *b;
7861 struct block_iterator iter;
7862 struct symbol *sym;
7863 int argno = 0;
7864
7865 /* The exception breakpoint is a thread-specific breakpoint on
7866 the unwinder's debug hook, declared as:
7867
7868 void _Unwind_DebugHook (void *cfa, void *handler);
7869
7870 The CFA argument indicates the frame to which control is
7871 about to be transferred. HANDLER is the destination PC.
7872
7873 We ignore the CFA and set a temporary breakpoint at HANDLER.
7874 This is not extremely efficient but it avoids issues in gdb
7875 with computing the DWARF CFA, and it also works even in weird
7876 cases such as throwing an exception from inside a signal
7877 handler. */
7878
7879 b = SYMBOL_BLOCK_VALUE (func);
7880 ALL_BLOCK_SYMBOLS (b, iter, sym)
7881 {
7882 if (!SYMBOL_IS_ARGUMENT (sym))
7883 continue;
7884
7885 if (argno == 0)
7886 ++argno;
7887 else
7888 {
7889 insert_exception_resume_breakpoint (ecs->event_thread,
7890 b, frame, sym);
7891 break;
7892 }
7893 }
7894 }
7895 catch (const gdb_exception_error &e)
7896 {
7897 }
7898 }
7899
7900 static void
7901 stop_waiting (struct execution_control_state *ecs)
7902 {
7903 if (debug_infrun)
7904 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7905
7906 /* Let callers know we don't want to wait for the inferior anymore. */
7907 ecs->wait_some_more = 0;
7908
7909 /* If all-stop, but there exists a non-stop target, stop all
7910 threads now that we're presenting the stop to the user. */
7911 if (!non_stop && exists_non_stop_target ())
7912 stop_all_threads ();
7913 }
7914
7915 /* Like keep_going, but passes the signal to the inferior, even if the
7916 signal is set to nopass. */
7917
7918 static void
7919 keep_going_pass_signal (struct execution_control_state *ecs)
7920 {
7921 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7922 gdb_assert (!ecs->event_thread->resumed);
7923
7924 /* Save the pc before execution, to compare with pc after stop. */
7925 ecs->event_thread->prev_pc
7926 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7927
7928 if (ecs->event_thread->control.trap_expected)
7929 {
7930 struct thread_info *tp = ecs->event_thread;
7931
7932 if (debug_infrun)
7933 fprintf_unfiltered (gdb_stdlog,
7934 "infrun: %s has trap_expected set, "
7935 "resuming to collect trap\n",
7936 target_pid_to_str (tp->ptid).c_str ());
7937
7938 /* We haven't yet gotten our trap, and either: intercepted a
7939 non-signal event (e.g., a fork); or took a signal which we
7940 are supposed to pass through to the inferior. Simply
7941 continue. */
7942 resume (ecs->event_thread->suspend.stop_signal);
7943 }
7944 else if (step_over_info_valid_p ())
7945 {
7946 /* Another thread is stepping over a breakpoint in-line. If
7947 this thread needs a step-over too, queue the request. In
7948 either case, this resume must be deferred for later. */
7949 struct thread_info *tp = ecs->event_thread;
7950
7951 if (ecs->hit_singlestep_breakpoint
7952 || thread_still_needs_step_over (tp))
7953 {
7954 if (debug_infrun)
7955 fprintf_unfiltered (gdb_stdlog,
7956 "infrun: step-over already in progress: "
7957 "step-over for %s deferred\n",
7958 target_pid_to_str (tp->ptid).c_str ());
7959 thread_step_over_chain_enqueue (tp);
7960 }
7961 else
7962 {
7963 if (debug_infrun)
7964 fprintf_unfiltered (gdb_stdlog,
7965 "infrun: step-over in progress: "
7966 "resume of %s deferred\n",
7967 target_pid_to_str (tp->ptid).c_str ());
7968 }
7969 }
7970 else
7971 {
7972 struct regcache *regcache = get_current_regcache ();
7973 int remove_bp;
7974 int remove_wps;
7975 step_over_what step_what;
7976
7977 /* Either the trap was not expected, but we are continuing
7978 anyway (if we got a signal, the user asked it be passed to
7979 the child)
7980 -- or --
7981 We got our expected trap, but decided we should resume from
7982 it.
7983
7984 We're going to run this baby now!
7985
7986 Note that insert_breakpoints won't try to re-insert
7987 already inserted breakpoints. Therefore, we don't
7988 care if breakpoints were already inserted, or not. */
7989
7990 /* If we need to step over a breakpoint, and we're not using
7991 displaced stepping to do so, insert all breakpoints
7992 (watchpoints, etc.) but the one we're stepping over, step one
7993 instruction, and then re-insert the breakpoint when that step
7994 is finished. */
7995
7996 step_what = thread_still_needs_step_over (ecs->event_thread);
7997
7998 remove_bp = (ecs->hit_singlestep_breakpoint
7999 || (step_what & STEP_OVER_BREAKPOINT));
8000 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
8001
8002 /* We can't use displaced stepping if we need to step past a
8003 watchpoint. The instruction copied to the scratch pad would
8004 still trigger the watchpoint. */
8005 if (remove_bp
8006 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8007 {
8008 set_step_over_info (regcache->aspace (),
8009 regcache_read_pc (regcache), remove_wps,
8010 ecs->event_thread->global_num);
8011 }
8012 else if (remove_wps)
8013 set_step_over_info (NULL, 0, remove_wps, -1);
8014
8015 /* If we now need to do an in-line step-over, we need to stop
8016 all other threads. Note this must be done before
8017 insert_breakpoints below, because that removes the breakpoint
8018 we're about to step over, otherwise other threads could miss
8019 it. */
8020 if (step_over_info_valid_p () && target_is_non_stop_p ())
8021 stop_all_threads ();
8022
8023 /* Stop stepping if inserting breakpoints fails. */
8024 try
8025 {
8026 insert_breakpoints ();
8027 }
8028 catch (const gdb_exception_error &e)
8029 {
8030 exception_print (gdb_stderr, e);
8031 stop_waiting (ecs);
8032 clear_step_over_info ();
8033 return;
8034 }
8035
8036 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8037
8038 resume (ecs->event_thread->suspend.stop_signal);
8039 }
8040
8041 prepare_to_wait (ecs);
8042 }
8043
8044 /* Called when we should continue running the inferior, because the
8045 current event doesn't cause a user visible stop. This does the
8046 resuming part; waiting for the next event is done elsewhere. */
8047
8048 static void
8049 keep_going (struct execution_control_state *ecs)
8050 {
8051 if (ecs->event_thread->control.trap_expected
8052 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8053 ecs->event_thread->control.trap_expected = 0;
8054
8055 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8056 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8057 keep_going_pass_signal (ecs);
8058 }
8059
8060 /* This function normally comes after a resume, before
8061 handle_inferior_event exits. It takes care of any last bits of
8062 housekeeping, and sets the all-important wait_some_more flag. */
8063
8064 static void
8065 prepare_to_wait (struct execution_control_state *ecs)
8066 {
8067 if (debug_infrun)
8068 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
8069
8070 ecs->wait_some_more = 1;
8071
8072 if (!target_is_async_p ())
8073 mark_infrun_async_event_handler ();
8074 }
8075
8076 /* We are done with the step range of a step/next/si/ni command.
8077 Called once for each n of a "step n" operation. */
8078
8079 static void
8080 end_stepping_range (struct execution_control_state *ecs)
8081 {
8082 ecs->event_thread->control.stop_step = 1;
8083 stop_waiting (ecs);
8084 }
8085
8086 /* Several print_*_reason functions to print why the inferior has stopped.
8087 We always print something when the inferior exits, or receives a signal.
8088 The rest of the cases are dealt with later on in normal_stop and
8089 print_it_typical. Ideally there should be a call to one of these
8090 print_*_reason functions functions from handle_inferior_event each time
8091 stop_waiting is called.
8092
8093 Note that we don't call these directly, instead we delegate that to
8094 the interpreters, through observers. Interpreters then call these
8095 with whatever uiout is right. */
8096
8097 void
8098 print_end_stepping_range_reason (struct ui_out *uiout)
8099 {
8100 /* For CLI-like interpreters, print nothing. */
8101
8102 if (uiout->is_mi_like_p ())
8103 {
8104 uiout->field_string ("reason",
8105 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8106 }
8107 }
8108
8109 void
8110 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8111 {
8112 annotate_signalled ();
8113 if (uiout->is_mi_like_p ())
8114 uiout->field_string
8115 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8116 uiout->text ("\nProgram terminated with signal ");
8117 annotate_signal_name ();
8118 uiout->field_string ("signal-name",
8119 gdb_signal_to_name (siggnal));
8120 annotate_signal_name_end ();
8121 uiout->text (", ");
8122 annotate_signal_string ();
8123 uiout->field_string ("signal-meaning",
8124 gdb_signal_to_string (siggnal));
8125 annotate_signal_string_end ();
8126 uiout->text (".\n");
8127 uiout->text ("The program no longer exists.\n");
8128 }
8129
8130 void
8131 print_exited_reason (struct ui_out *uiout, int exitstatus)
8132 {
8133 struct inferior *inf = current_inferior ();
8134 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8135
8136 annotate_exited (exitstatus);
8137 if (exitstatus)
8138 {
8139 if (uiout->is_mi_like_p ())
8140 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8141 std::string exit_code_str
8142 = string_printf ("0%o", (unsigned int) exitstatus);
8143 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8144 plongest (inf->num), pidstr.c_str (),
8145 string_field ("exit-code", exit_code_str.c_str ()));
8146 }
8147 else
8148 {
8149 if (uiout->is_mi_like_p ())
8150 uiout->field_string
8151 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8152 uiout->message ("[Inferior %s (%s) exited normally]\n",
8153 plongest (inf->num), pidstr.c_str ());
8154 }
8155 }
8156
8157 /* Some targets/architectures can do extra processing/display of
8158 segmentation faults. E.g., Intel MPX boundary faults.
8159 Call the architecture dependent function to handle the fault. */
8160
8161 static void
8162 handle_segmentation_fault (struct ui_out *uiout)
8163 {
8164 struct regcache *regcache = get_current_regcache ();
8165 struct gdbarch *gdbarch = regcache->arch ();
8166
8167 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8168 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8169 }
8170
8171 void
8172 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8173 {
8174 struct thread_info *thr = inferior_thread ();
8175
8176 annotate_signal ();
8177
8178 if (uiout->is_mi_like_p ())
8179 ;
8180 else if (show_thread_that_caused_stop ())
8181 {
8182 const char *name;
8183
8184 uiout->text ("\nThread ");
8185 uiout->field_string ("thread-id", print_thread_id (thr));
8186
8187 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8188 if (name != NULL)
8189 {
8190 uiout->text (" \"");
8191 uiout->field_string ("name", name);
8192 uiout->text ("\"");
8193 }
8194 }
8195 else
8196 uiout->text ("\nProgram");
8197
8198 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8199 uiout->text (" stopped");
8200 else
8201 {
8202 uiout->text (" received signal ");
8203 annotate_signal_name ();
8204 if (uiout->is_mi_like_p ())
8205 uiout->field_string
8206 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8207 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8208 annotate_signal_name_end ();
8209 uiout->text (", ");
8210 annotate_signal_string ();
8211 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8212
8213 if (siggnal == GDB_SIGNAL_SEGV)
8214 handle_segmentation_fault (uiout);
8215
8216 annotate_signal_string_end ();
8217 }
8218 uiout->text (".\n");
8219 }
8220
8221 void
8222 print_no_history_reason (struct ui_out *uiout)
8223 {
8224 uiout->text ("\nNo more reverse-execution history.\n");
8225 }
8226
8227 /* Print current location without a level number, if we have changed
8228 functions or hit a breakpoint. Print source line if we have one.
8229 bpstat_print contains the logic deciding in detail what to print,
8230 based on the event(s) that just occurred. */
8231
8232 static void
8233 print_stop_location (struct target_waitstatus *ws)
8234 {
8235 int bpstat_ret;
8236 enum print_what source_flag;
8237 int do_frame_printing = 1;
8238 struct thread_info *tp = inferior_thread ();
8239
8240 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8241 switch (bpstat_ret)
8242 {
8243 case PRINT_UNKNOWN:
8244 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8245 should) carry around the function and does (or should) use
8246 that when doing a frame comparison. */
8247 if (tp->control.stop_step
8248 && frame_id_eq (tp->control.step_frame_id,
8249 get_frame_id (get_current_frame ()))
8250 && (tp->control.step_start_function
8251 == find_pc_function (tp->suspend.stop_pc)))
8252 {
8253 /* Finished step, just print source line. */
8254 source_flag = SRC_LINE;
8255 }
8256 else
8257 {
8258 /* Print location and source line. */
8259 source_flag = SRC_AND_LOC;
8260 }
8261 break;
8262 case PRINT_SRC_AND_LOC:
8263 /* Print location and source line. */
8264 source_flag = SRC_AND_LOC;
8265 break;
8266 case PRINT_SRC_ONLY:
8267 source_flag = SRC_LINE;
8268 break;
8269 case PRINT_NOTHING:
8270 /* Something bogus. */
8271 source_flag = SRC_LINE;
8272 do_frame_printing = 0;
8273 break;
8274 default:
8275 internal_error (__FILE__, __LINE__, _("Unknown value."));
8276 }
8277
8278 /* The behavior of this routine with respect to the source
8279 flag is:
8280 SRC_LINE: Print only source line
8281 LOCATION: Print only location
8282 SRC_AND_LOC: Print location and source line. */
8283 if (do_frame_printing)
8284 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8285 }
8286
8287 /* See infrun.h. */
8288
8289 void
8290 print_stop_event (struct ui_out *uiout, bool displays)
8291 {
8292 struct target_waitstatus last;
8293 struct thread_info *tp;
8294
8295 get_last_target_status (nullptr, nullptr, &last);
8296
8297 {
8298 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8299
8300 print_stop_location (&last);
8301
8302 /* Display the auto-display expressions. */
8303 if (displays)
8304 do_displays ();
8305 }
8306
8307 tp = inferior_thread ();
8308 if (tp->thread_fsm != NULL
8309 && tp->thread_fsm->finished_p ())
8310 {
8311 struct return_value_info *rv;
8312
8313 rv = tp->thread_fsm->return_value ();
8314 if (rv != NULL)
8315 print_return_value (uiout, rv);
8316 }
8317 }
8318
8319 /* See infrun.h. */
8320
8321 void
8322 maybe_remove_breakpoints (void)
8323 {
8324 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8325 {
8326 if (remove_breakpoints ())
8327 {
8328 target_terminal::ours_for_output ();
8329 printf_filtered (_("Cannot remove breakpoints because "
8330 "program is no longer writable.\nFurther "
8331 "execution is probably impossible.\n"));
8332 }
8333 }
8334 }
8335
8336 /* The execution context that just caused a normal stop. */
8337
8338 struct stop_context
8339 {
8340 stop_context ();
8341 ~stop_context ();
8342
8343 DISABLE_COPY_AND_ASSIGN (stop_context);
8344
8345 bool changed () const;
8346
8347 /* The stop ID. */
8348 ULONGEST stop_id;
8349
8350 /* The event PTID. */
8351
8352 ptid_t ptid;
8353
8354 /* If stopp for a thread event, this is the thread that caused the
8355 stop. */
8356 struct thread_info *thread;
8357
8358 /* The inferior that caused the stop. */
8359 int inf_num;
8360 };
8361
8362 /* Initializes a new stop context. If stopped for a thread event, this
8363 takes a strong reference to the thread. */
8364
8365 stop_context::stop_context ()
8366 {
8367 stop_id = get_stop_id ();
8368 ptid = inferior_ptid;
8369 inf_num = current_inferior ()->num;
8370
8371 if (inferior_ptid != null_ptid)
8372 {
8373 /* Take a strong reference so that the thread can't be deleted
8374 yet. */
8375 thread = inferior_thread ();
8376 thread->incref ();
8377 }
8378 else
8379 thread = NULL;
8380 }
8381
8382 /* Release a stop context previously created with save_stop_context.
8383 Releases the strong reference to the thread as well. */
8384
8385 stop_context::~stop_context ()
8386 {
8387 if (thread != NULL)
8388 thread->decref ();
8389 }
8390
8391 /* Return true if the current context no longer matches the saved stop
8392 context. */
8393
8394 bool
8395 stop_context::changed () const
8396 {
8397 if (ptid != inferior_ptid)
8398 return true;
8399 if (inf_num != current_inferior ()->num)
8400 return true;
8401 if (thread != NULL && thread->state != THREAD_STOPPED)
8402 return true;
8403 if (get_stop_id () != stop_id)
8404 return true;
8405 return false;
8406 }
8407
8408 /* See infrun.h. */
8409
8410 int
8411 normal_stop (void)
8412 {
8413 struct target_waitstatus last;
8414
8415 get_last_target_status (nullptr, nullptr, &last);
8416
8417 new_stop_id ();
8418
8419 /* If an exception is thrown from this point on, make sure to
8420 propagate GDB's knowledge of the executing state to the
8421 frontend/user running state. A QUIT is an easy exception to see
8422 here, so do this before any filtered output. */
8423
8424 ptid_t finish_ptid = null_ptid;
8425
8426 if (!non_stop)
8427 finish_ptid = minus_one_ptid;
8428 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8429 || last.kind == TARGET_WAITKIND_EXITED)
8430 {
8431 /* On some targets, we may still have live threads in the
8432 inferior when we get a process exit event. E.g., for
8433 "checkpoint", when the current checkpoint/fork exits,
8434 linux-fork.c automatically switches to another fork from
8435 within target_mourn_inferior. */
8436 if (inferior_ptid != null_ptid)
8437 finish_ptid = ptid_t (inferior_ptid.pid ());
8438 }
8439 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8440 finish_ptid = inferior_ptid;
8441
8442 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8443 if (finish_ptid != null_ptid)
8444 {
8445 maybe_finish_thread_state.emplace
8446 (user_visible_resume_target (finish_ptid), finish_ptid);
8447 }
8448
8449 /* As we're presenting a stop, and potentially removing breakpoints,
8450 update the thread list so we can tell whether there are threads
8451 running on the target. With target remote, for example, we can
8452 only learn about new threads when we explicitly update the thread
8453 list. Do this before notifying the interpreters about signal
8454 stops, end of stepping ranges, etc., so that the "new thread"
8455 output is emitted before e.g., "Program received signal FOO",
8456 instead of after. */
8457 update_thread_list ();
8458
8459 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8460 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8461
8462 /* As with the notification of thread events, we want to delay
8463 notifying the user that we've switched thread context until
8464 the inferior actually stops.
8465
8466 There's no point in saying anything if the inferior has exited.
8467 Note that SIGNALLED here means "exited with a signal", not
8468 "received a signal".
8469
8470 Also skip saying anything in non-stop mode. In that mode, as we
8471 don't want GDB to switch threads behind the user's back, to avoid
8472 races where the user is typing a command to apply to thread x,
8473 but GDB switches to thread y before the user finishes entering
8474 the command, fetch_inferior_event installs a cleanup to restore
8475 the current thread back to the thread the user had selected right
8476 after this event is handled, so we're not really switching, only
8477 informing of a stop. */
8478 if (!non_stop
8479 && previous_inferior_ptid != inferior_ptid
8480 && target_has_execution
8481 && last.kind != TARGET_WAITKIND_SIGNALLED
8482 && last.kind != TARGET_WAITKIND_EXITED
8483 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8484 {
8485 SWITCH_THRU_ALL_UIS ()
8486 {
8487 target_terminal::ours_for_output ();
8488 printf_filtered (_("[Switching to %s]\n"),
8489 target_pid_to_str (inferior_ptid).c_str ());
8490 annotate_thread_changed ();
8491 }
8492 previous_inferior_ptid = inferior_ptid;
8493 }
8494
8495 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8496 {
8497 SWITCH_THRU_ALL_UIS ()
8498 if (current_ui->prompt_state == PROMPT_BLOCKED)
8499 {
8500 target_terminal::ours_for_output ();
8501 printf_filtered (_("No unwaited-for children left.\n"));
8502 }
8503 }
8504
8505 /* Note: this depends on the update_thread_list call above. */
8506 maybe_remove_breakpoints ();
8507
8508 /* If an auto-display called a function and that got a signal,
8509 delete that auto-display to avoid an infinite recursion. */
8510
8511 if (stopped_by_random_signal)
8512 disable_current_display ();
8513
8514 SWITCH_THRU_ALL_UIS ()
8515 {
8516 async_enable_stdin ();
8517 }
8518
8519 /* Let the user/frontend see the threads as stopped. */
8520 maybe_finish_thread_state.reset ();
8521
8522 /* Select innermost stack frame - i.e., current frame is frame 0,
8523 and current location is based on that. Handle the case where the
8524 dummy call is returning after being stopped. E.g. the dummy call
8525 previously hit a breakpoint. (If the dummy call returns
8526 normally, we won't reach here.) Do this before the stop hook is
8527 run, so that it doesn't get to see the temporary dummy frame,
8528 which is not where we'll present the stop. */
8529 if (has_stack_frames ())
8530 {
8531 if (stop_stack_dummy == STOP_STACK_DUMMY)
8532 {
8533 /* Pop the empty frame that contains the stack dummy. This
8534 also restores inferior state prior to the call (struct
8535 infcall_suspend_state). */
8536 struct frame_info *frame = get_current_frame ();
8537
8538 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8539 frame_pop (frame);
8540 /* frame_pop calls reinit_frame_cache as the last thing it
8541 does which means there's now no selected frame. */
8542 }
8543
8544 select_frame (get_current_frame ());
8545
8546 /* Set the current source location. */
8547 set_current_sal_from_frame (get_current_frame ());
8548 }
8549
8550 /* Look up the hook_stop and run it (CLI internally handles problem
8551 of stop_command's pre-hook not existing). */
8552 if (stop_command != NULL)
8553 {
8554 stop_context saved_context;
8555
8556 try
8557 {
8558 execute_cmd_pre_hook (stop_command);
8559 }
8560 catch (const gdb_exception &ex)
8561 {
8562 exception_fprintf (gdb_stderr, ex,
8563 "Error while running hook_stop:\n");
8564 }
8565
8566 /* If the stop hook resumes the target, then there's no point in
8567 trying to notify about the previous stop; its context is
8568 gone. Likewise if the command switches thread or inferior --
8569 the observers would print a stop for the wrong
8570 thread/inferior. */
8571 if (saved_context.changed ())
8572 return 1;
8573 }
8574
8575 /* Notify observers about the stop. This is where the interpreters
8576 print the stop event. */
8577 if (inferior_ptid != null_ptid)
8578 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8579 stop_print_frame);
8580 else
8581 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8582
8583 annotate_stopped ();
8584
8585 if (target_has_execution)
8586 {
8587 if (last.kind != TARGET_WAITKIND_SIGNALLED
8588 && last.kind != TARGET_WAITKIND_EXITED
8589 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8590 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8591 Delete any breakpoint that is to be deleted at the next stop. */
8592 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8593 }
8594
8595 /* Try to get rid of automatically added inferiors that are no
8596 longer needed. Keeping those around slows down things linearly.
8597 Note that this never removes the current inferior. */
8598 prune_inferiors ();
8599
8600 return 0;
8601 }
8602 \f
8603 int
8604 signal_stop_state (int signo)
8605 {
8606 return signal_stop[signo];
8607 }
8608
8609 int
8610 signal_print_state (int signo)
8611 {
8612 return signal_print[signo];
8613 }
8614
8615 int
8616 signal_pass_state (int signo)
8617 {
8618 return signal_program[signo];
8619 }
8620
8621 static void
8622 signal_cache_update (int signo)
8623 {
8624 if (signo == -1)
8625 {
8626 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8627 signal_cache_update (signo);
8628
8629 return;
8630 }
8631
8632 signal_pass[signo] = (signal_stop[signo] == 0
8633 && signal_print[signo] == 0
8634 && signal_program[signo] == 1
8635 && signal_catch[signo] == 0);
8636 }
8637
8638 int
8639 signal_stop_update (int signo, int state)
8640 {
8641 int ret = signal_stop[signo];
8642
8643 signal_stop[signo] = state;
8644 signal_cache_update (signo);
8645 return ret;
8646 }
8647
8648 int
8649 signal_print_update (int signo, int state)
8650 {
8651 int ret = signal_print[signo];
8652
8653 signal_print[signo] = state;
8654 signal_cache_update (signo);
8655 return ret;
8656 }
8657
8658 int
8659 signal_pass_update (int signo, int state)
8660 {
8661 int ret = signal_program[signo];
8662
8663 signal_program[signo] = state;
8664 signal_cache_update (signo);
8665 return ret;
8666 }
8667
8668 /* Update the global 'signal_catch' from INFO and notify the
8669 target. */
8670
8671 void
8672 signal_catch_update (const unsigned int *info)
8673 {
8674 int i;
8675
8676 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8677 signal_catch[i] = info[i] > 0;
8678 signal_cache_update (-1);
8679 target_pass_signals (signal_pass);
8680 }
8681
8682 static void
8683 sig_print_header (void)
8684 {
8685 printf_filtered (_("Signal Stop\tPrint\tPass "
8686 "to program\tDescription\n"));
8687 }
8688
8689 static void
8690 sig_print_info (enum gdb_signal oursig)
8691 {
8692 const char *name = gdb_signal_to_name (oursig);
8693 int name_padding = 13 - strlen (name);
8694
8695 if (name_padding <= 0)
8696 name_padding = 0;
8697
8698 printf_filtered ("%s", name);
8699 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8700 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8701 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8702 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8703 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8704 }
8705
8706 /* Specify how various signals in the inferior should be handled. */
8707
8708 static void
8709 handle_command (const char *args, int from_tty)
8710 {
8711 int digits, wordlen;
8712 int sigfirst, siglast;
8713 enum gdb_signal oursig;
8714 int allsigs;
8715
8716 if (args == NULL)
8717 {
8718 error_no_arg (_("signal to handle"));
8719 }
8720
8721 /* Allocate and zero an array of flags for which signals to handle. */
8722
8723 const size_t nsigs = GDB_SIGNAL_LAST;
8724 unsigned char sigs[nsigs] {};
8725
8726 /* Break the command line up into args. */
8727
8728 gdb_argv built_argv (args);
8729
8730 /* Walk through the args, looking for signal oursigs, signal names, and
8731 actions. Signal numbers and signal names may be interspersed with
8732 actions, with the actions being performed for all signals cumulatively
8733 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8734
8735 for (char *arg : built_argv)
8736 {
8737 wordlen = strlen (arg);
8738 for (digits = 0; isdigit (arg[digits]); digits++)
8739 {;
8740 }
8741 allsigs = 0;
8742 sigfirst = siglast = -1;
8743
8744 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8745 {
8746 /* Apply action to all signals except those used by the
8747 debugger. Silently skip those. */
8748 allsigs = 1;
8749 sigfirst = 0;
8750 siglast = nsigs - 1;
8751 }
8752 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8753 {
8754 SET_SIGS (nsigs, sigs, signal_stop);
8755 SET_SIGS (nsigs, sigs, signal_print);
8756 }
8757 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8758 {
8759 UNSET_SIGS (nsigs, sigs, signal_program);
8760 }
8761 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8762 {
8763 SET_SIGS (nsigs, sigs, signal_print);
8764 }
8765 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8766 {
8767 SET_SIGS (nsigs, sigs, signal_program);
8768 }
8769 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8770 {
8771 UNSET_SIGS (nsigs, sigs, signal_stop);
8772 }
8773 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8774 {
8775 SET_SIGS (nsigs, sigs, signal_program);
8776 }
8777 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8778 {
8779 UNSET_SIGS (nsigs, sigs, signal_print);
8780 UNSET_SIGS (nsigs, sigs, signal_stop);
8781 }
8782 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8783 {
8784 UNSET_SIGS (nsigs, sigs, signal_program);
8785 }
8786 else if (digits > 0)
8787 {
8788 /* It is numeric. The numeric signal refers to our own
8789 internal signal numbering from target.h, not to host/target
8790 signal number. This is a feature; users really should be
8791 using symbolic names anyway, and the common ones like
8792 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8793
8794 sigfirst = siglast = (int)
8795 gdb_signal_from_command (atoi (arg));
8796 if (arg[digits] == '-')
8797 {
8798 siglast = (int)
8799 gdb_signal_from_command (atoi (arg + digits + 1));
8800 }
8801 if (sigfirst > siglast)
8802 {
8803 /* Bet he didn't figure we'd think of this case... */
8804 std::swap (sigfirst, siglast);
8805 }
8806 }
8807 else
8808 {
8809 oursig = gdb_signal_from_name (arg);
8810 if (oursig != GDB_SIGNAL_UNKNOWN)
8811 {
8812 sigfirst = siglast = (int) oursig;
8813 }
8814 else
8815 {
8816 /* Not a number and not a recognized flag word => complain. */
8817 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8818 }
8819 }
8820
8821 /* If any signal numbers or symbol names were found, set flags for
8822 which signals to apply actions to. */
8823
8824 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8825 {
8826 switch ((enum gdb_signal) signum)
8827 {
8828 case GDB_SIGNAL_TRAP:
8829 case GDB_SIGNAL_INT:
8830 if (!allsigs && !sigs[signum])
8831 {
8832 if (query (_("%s is used by the debugger.\n\
8833 Are you sure you want to change it? "),
8834 gdb_signal_to_name ((enum gdb_signal) signum)))
8835 {
8836 sigs[signum] = 1;
8837 }
8838 else
8839 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8840 }
8841 break;
8842 case GDB_SIGNAL_0:
8843 case GDB_SIGNAL_DEFAULT:
8844 case GDB_SIGNAL_UNKNOWN:
8845 /* Make sure that "all" doesn't print these. */
8846 break;
8847 default:
8848 sigs[signum] = 1;
8849 break;
8850 }
8851 }
8852 }
8853
8854 for (int signum = 0; signum < nsigs; signum++)
8855 if (sigs[signum])
8856 {
8857 signal_cache_update (-1);
8858 target_pass_signals (signal_pass);
8859 target_program_signals (signal_program);
8860
8861 if (from_tty)
8862 {
8863 /* Show the results. */
8864 sig_print_header ();
8865 for (; signum < nsigs; signum++)
8866 if (sigs[signum])
8867 sig_print_info ((enum gdb_signal) signum);
8868 }
8869
8870 break;
8871 }
8872 }
8873
8874 /* Complete the "handle" command. */
8875
8876 static void
8877 handle_completer (struct cmd_list_element *ignore,
8878 completion_tracker &tracker,
8879 const char *text, const char *word)
8880 {
8881 static const char * const keywords[] =
8882 {
8883 "all",
8884 "stop",
8885 "ignore",
8886 "print",
8887 "pass",
8888 "nostop",
8889 "noignore",
8890 "noprint",
8891 "nopass",
8892 NULL,
8893 };
8894
8895 signal_completer (ignore, tracker, text, word);
8896 complete_on_enum (tracker, keywords, word, word);
8897 }
8898
8899 enum gdb_signal
8900 gdb_signal_from_command (int num)
8901 {
8902 if (num >= 1 && num <= 15)
8903 return (enum gdb_signal) num;
8904 error (_("Only signals 1-15 are valid as numeric signals.\n\
8905 Use \"info signals\" for a list of symbolic signals."));
8906 }
8907
8908 /* Print current contents of the tables set by the handle command.
8909 It is possible we should just be printing signals actually used
8910 by the current target (but for things to work right when switching
8911 targets, all signals should be in the signal tables). */
8912
8913 static void
8914 info_signals_command (const char *signum_exp, int from_tty)
8915 {
8916 enum gdb_signal oursig;
8917
8918 sig_print_header ();
8919
8920 if (signum_exp)
8921 {
8922 /* First see if this is a symbol name. */
8923 oursig = gdb_signal_from_name (signum_exp);
8924 if (oursig == GDB_SIGNAL_UNKNOWN)
8925 {
8926 /* No, try numeric. */
8927 oursig =
8928 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8929 }
8930 sig_print_info (oursig);
8931 return;
8932 }
8933
8934 printf_filtered ("\n");
8935 /* These ugly casts brought to you by the native VAX compiler. */
8936 for (oursig = GDB_SIGNAL_FIRST;
8937 (int) oursig < (int) GDB_SIGNAL_LAST;
8938 oursig = (enum gdb_signal) ((int) oursig + 1))
8939 {
8940 QUIT;
8941
8942 if (oursig != GDB_SIGNAL_UNKNOWN
8943 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8944 sig_print_info (oursig);
8945 }
8946
8947 printf_filtered (_("\nUse the \"handle\" command "
8948 "to change these tables.\n"));
8949 }
8950
8951 /* The $_siginfo convenience variable is a bit special. We don't know
8952 for sure the type of the value until we actually have a chance to
8953 fetch the data. The type can change depending on gdbarch, so it is
8954 also dependent on which thread you have selected.
8955
8956 1. making $_siginfo be an internalvar that creates a new value on
8957 access.
8958
8959 2. making the value of $_siginfo be an lval_computed value. */
8960
8961 /* This function implements the lval_computed support for reading a
8962 $_siginfo value. */
8963
8964 static void
8965 siginfo_value_read (struct value *v)
8966 {
8967 LONGEST transferred;
8968
8969 /* If we can access registers, so can we access $_siginfo. Likewise
8970 vice versa. */
8971 validate_registers_access ();
8972
8973 transferred =
8974 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8975 NULL,
8976 value_contents_all_raw (v),
8977 value_offset (v),
8978 TYPE_LENGTH (value_type (v)));
8979
8980 if (transferred != TYPE_LENGTH (value_type (v)))
8981 error (_("Unable to read siginfo"));
8982 }
8983
8984 /* This function implements the lval_computed support for writing a
8985 $_siginfo value. */
8986
8987 static void
8988 siginfo_value_write (struct value *v, struct value *fromval)
8989 {
8990 LONGEST transferred;
8991
8992 /* If we can access registers, so can we access $_siginfo. Likewise
8993 vice versa. */
8994 validate_registers_access ();
8995
8996 transferred = target_write (current_top_target (),
8997 TARGET_OBJECT_SIGNAL_INFO,
8998 NULL,
8999 value_contents_all_raw (fromval),
9000 value_offset (v),
9001 TYPE_LENGTH (value_type (fromval)));
9002
9003 if (transferred != TYPE_LENGTH (value_type (fromval)))
9004 error (_("Unable to write siginfo"));
9005 }
9006
9007 static const struct lval_funcs siginfo_value_funcs =
9008 {
9009 siginfo_value_read,
9010 siginfo_value_write
9011 };
9012
9013 /* Return a new value with the correct type for the siginfo object of
9014 the current thread using architecture GDBARCH. Return a void value
9015 if there's no object available. */
9016
9017 static struct value *
9018 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9019 void *ignore)
9020 {
9021 if (target_has_stack
9022 && inferior_ptid != null_ptid
9023 && gdbarch_get_siginfo_type_p (gdbarch))
9024 {
9025 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9026
9027 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
9028 }
9029
9030 return allocate_value (builtin_type (gdbarch)->builtin_void);
9031 }
9032
9033 \f
9034 /* infcall_suspend_state contains state about the program itself like its
9035 registers and any signal it received when it last stopped.
9036 This state must be restored regardless of how the inferior function call
9037 ends (either successfully, or after it hits a breakpoint or signal)
9038 if the program is to properly continue where it left off. */
9039
9040 class infcall_suspend_state
9041 {
9042 public:
9043 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9044 once the inferior function call has finished. */
9045 infcall_suspend_state (struct gdbarch *gdbarch,
9046 const struct thread_info *tp,
9047 struct regcache *regcache)
9048 : m_thread_suspend (tp->suspend),
9049 m_registers (new readonly_detached_regcache (*regcache))
9050 {
9051 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9052
9053 if (gdbarch_get_siginfo_type_p (gdbarch))
9054 {
9055 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9056 size_t len = TYPE_LENGTH (type);
9057
9058 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9059
9060 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9061 siginfo_data.get (), 0, len) != len)
9062 {
9063 /* Errors ignored. */
9064 siginfo_data.reset (nullptr);
9065 }
9066 }
9067
9068 if (siginfo_data)
9069 {
9070 m_siginfo_gdbarch = gdbarch;
9071 m_siginfo_data = std::move (siginfo_data);
9072 }
9073 }
9074
9075 /* Return a pointer to the stored register state. */
9076
9077 readonly_detached_regcache *registers () const
9078 {
9079 return m_registers.get ();
9080 }
9081
9082 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9083
9084 void restore (struct gdbarch *gdbarch,
9085 struct thread_info *tp,
9086 struct regcache *regcache) const
9087 {
9088 tp->suspend = m_thread_suspend;
9089
9090 if (m_siginfo_gdbarch == gdbarch)
9091 {
9092 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9093
9094 /* Errors ignored. */
9095 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9096 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9097 }
9098
9099 /* The inferior can be gone if the user types "print exit(0)"
9100 (and perhaps other times). */
9101 if (target_has_execution)
9102 /* NB: The register write goes through to the target. */
9103 regcache->restore (registers ());
9104 }
9105
9106 private:
9107 /* How the current thread stopped before the inferior function call was
9108 executed. */
9109 struct thread_suspend_state m_thread_suspend;
9110
9111 /* The registers before the inferior function call was executed. */
9112 std::unique_ptr<readonly_detached_regcache> m_registers;
9113
9114 /* Format of SIGINFO_DATA or NULL if it is not present. */
9115 struct gdbarch *m_siginfo_gdbarch = nullptr;
9116
9117 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9118 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9119 content would be invalid. */
9120 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9121 };
9122
9123 infcall_suspend_state_up
9124 save_infcall_suspend_state ()
9125 {
9126 struct thread_info *tp = inferior_thread ();
9127 struct regcache *regcache = get_current_regcache ();
9128 struct gdbarch *gdbarch = regcache->arch ();
9129
9130 infcall_suspend_state_up inf_state
9131 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9132
9133 /* Having saved the current state, adjust the thread state, discarding
9134 any stop signal information. The stop signal is not useful when
9135 starting an inferior function call, and run_inferior_call will not use
9136 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9137 tp->suspend.stop_signal = GDB_SIGNAL_0;
9138
9139 return inf_state;
9140 }
9141
9142 /* Restore inferior session state to INF_STATE. */
9143
9144 void
9145 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9146 {
9147 struct thread_info *tp = inferior_thread ();
9148 struct regcache *regcache = get_current_regcache ();
9149 struct gdbarch *gdbarch = regcache->arch ();
9150
9151 inf_state->restore (gdbarch, tp, regcache);
9152 discard_infcall_suspend_state (inf_state);
9153 }
9154
9155 void
9156 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9157 {
9158 delete inf_state;
9159 }
9160
9161 readonly_detached_regcache *
9162 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9163 {
9164 return inf_state->registers ();
9165 }
9166
9167 /* infcall_control_state contains state regarding gdb's control of the
9168 inferior itself like stepping control. It also contains session state like
9169 the user's currently selected frame. */
9170
9171 struct infcall_control_state
9172 {
9173 struct thread_control_state thread_control;
9174 struct inferior_control_state inferior_control;
9175
9176 /* Other fields: */
9177 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9178 int stopped_by_random_signal = 0;
9179
9180 /* ID if the selected frame when the inferior function call was made. */
9181 struct frame_id selected_frame_id {};
9182 };
9183
9184 /* Save all of the information associated with the inferior<==>gdb
9185 connection. */
9186
9187 infcall_control_state_up
9188 save_infcall_control_state ()
9189 {
9190 infcall_control_state_up inf_status (new struct infcall_control_state);
9191 struct thread_info *tp = inferior_thread ();
9192 struct inferior *inf = current_inferior ();
9193
9194 inf_status->thread_control = tp->control;
9195 inf_status->inferior_control = inf->control;
9196
9197 tp->control.step_resume_breakpoint = NULL;
9198 tp->control.exception_resume_breakpoint = NULL;
9199
9200 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9201 chain. If caller's caller is walking the chain, they'll be happier if we
9202 hand them back the original chain when restore_infcall_control_state is
9203 called. */
9204 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9205
9206 /* Other fields: */
9207 inf_status->stop_stack_dummy = stop_stack_dummy;
9208 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9209
9210 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9211
9212 return inf_status;
9213 }
9214
9215 static void
9216 restore_selected_frame (const frame_id &fid)
9217 {
9218 frame_info *frame = frame_find_by_id (fid);
9219
9220 /* If inf_status->selected_frame_id is NULL, there was no previously
9221 selected frame. */
9222 if (frame == NULL)
9223 {
9224 warning (_("Unable to restore previously selected frame."));
9225 return;
9226 }
9227
9228 select_frame (frame);
9229 }
9230
9231 /* Restore inferior session state to INF_STATUS. */
9232
9233 void
9234 restore_infcall_control_state (struct infcall_control_state *inf_status)
9235 {
9236 struct thread_info *tp = inferior_thread ();
9237 struct inferior *inf = current_inferior ();
9238
9239 if (tp->control.step_resume_breakpoint)
9240 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9241
9242 if (tp->control.exception_resume_breakpoint)
9243 tp->control.exception_resume_breakpoint->disposition
9244 = disp_del_at_next_stop;
9245
9246 /* Handle the bpstat_copy of the chain. */
9247 bpstat_clear (&tp->control.stop_bpstat);
9248
9249 tp->control = inf_status->thread_control;
9250 inf->control = inf_status->inferior_control;
9251
9252 /* Other fields: */
9253 stop_stack_dummy = inf_status->stop_stack_dummy;
9254 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9255
9256 if (target_has_stack)
9257 {
9258 /* The point of the try/catch is that if the stack is clobbered,
9259 walking the stack might encounter a garbage pointer and
9260 error() trying to dereference it. */
9261 try
9262 {
9263 restore_selected_frame (inf_status->selected_frame_id);
9264 }
9265 catch (const gdb_exception_error &ex)
9266 {
9267 exception_fprintf (gdb_stderr, ex,
9268 "Unable to restore previously selected frame:\n");
9269 /* Error in restoring the selected frame. Select the
9270 innermost frame. */
9271 select_frame (get_current_frame ());
9272 }
9273 }
9274
9275 delete inf_status;
9276 }
9277
9278 void
9279 discard_infcall_control_state (struct infcall_control_state *inf_status)
9280 {
9281 if (inf_status->thread_control.step_resume_breakpoint)
9282 inf_status->thread_control.step_resume_breakpoint->disposition
9283 = disp_del_at_next_stop;
9284
9285 if (inf_status->thread_control.exception_resume_breakpoint)
9286 inf_status->thread_control.exception_resume_breakpoint->disposition
9287 = disp_del_at_next_stop;
9288
9289 /* See save_infcall_control_state for info on stop_bpstat. */
9290 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9291
9292 delete inf_status;
9293 }
9294 \f
9295 /* See infrun.h. */
9296
9297 void
9298 clear_exit_convenience_vars (void)
9299 {
9300 clear_internalvar (lookup_internalvar ("_exitsignal"));
9301 clear_internalvar (lookup_internalvar ("_exitcode"));
9302 }
9303 \f
9304
9305 /* User interface for reverse debugging:
9306 Set exec-direction / show exec-direction commands
9307 (returns error unless target implements to_set_exec_direction method). */
9308
9309 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9310 static const char exec_forward[] = "forward";
9311 static const char exec_reverse[] = "reverse";
9312 static const char *exec_direction = exec_forward;
9313 static const char *const exec_direction_names[] = {
9314 exec_forward,
9315 exec_reverse,
9316 NULL
9317 };
9318
9319 static void
9320 set_exec_direction_func (const char *args, int from_tty,
9321 struct cmd_list_element *cmd)
9322 {
9323 if (target_can_execute_reverse)
9324 {
9325 if (!strcmp (exec_direction, exec_forward))
9326 execution_direction = EXEC_FORWARD;
9327 else if (!strcmp (exec_direction, exec_reverse))
9328 execution_direction = EXEC_REVERSE;
9329 }
9330 else
9331 {
9332 exec_direction = exec_forward;
9333 error (_("Target does not support this operation."));
9334 }
9335 }
9336
9337 static void
9338 show_exec_direction_func (struct ui_file *out, int from_tty,
9339 struct cmd_list_element *cmd, const char *value)
9340 {
9341 switch (execution_direction) {
9342 case EXEC_FORWARD:
9343 fprintf_filtered (out, _("Forward.\n"));
9344 break;
9345 case EXEC_REVERSE:
9346 fprintf_filtered (out, _("Reverse.\n"));
9347 break;
9348 default:
9349 internal_error (__FILE__, __LINE__,
9350 _("bogus execution_direction value: %d"),
9351 (int) execution_direction);
9352 }
9353 }
9354
9355 static void
9356 show_schedule_multiple (struct ui_file *file, int from_tty,
9357 struct cmd_list_element *c, const char *value)
9358 {
9359 fprintf_filtered (file, _("Resuming the execution of threads "
9360 "of all processes is %s.\n"), value);
9361 }
9362
9363 /* Implementation of `siginfo' variable. */
9364
9365 static const struct internalvar_funcs siginfo_funcs =
9366 {
9367 siginfo_make_value,
9368 NULL,
9369 NULL
9370 };
9371
9372 /* Callback for infrun's target events source. This is marked when a
9373 thread has a pending status to process. */
9374
9375 static void
9376 infrun_async_inferior_event_handler (gdb_client_data data)
9377 {
9378 inferior_event_handler (INF_REG_EVENT, NULL);
9379 }
9380
9381 void _initialize_infrun ();
9382 void
9383 _initialize_infrun ()
9384 {
9385 struct cmd_list_element *c;
9386
9387 /* Register extra event sources in the event loop. */
9388 infrun_async_inferior_event_token
9389 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9390
9391 add_info ("signals", info_signals_command, _("\
9392 What debugger does when program gets various signals.\n\
9393 Specify a signal as argument to print info on that signal only."));
9394 add_info_alias ("handle", "signals", 0);
9395
9396 c = add_com ("handle", class_run, handle_command, _("\
9397 Specify how to handle signals.\n\
9398 Usage: handle SIGNAL [ACTIONS]\n\
9399 Args are signals and actions to apply to those signals.\n\
9400 If no actions are specified, the current settings for the specified signals\n\
9401 will be displayed instead.\n\
9402 \n\
9403 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9404 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9405 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9406 The special arg \"all\" is recognized to mean all signals except those\n\
9407 used by the debugger, typically SIGTRAP and SIGINT.\n\
9408 \n\
9409 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9410 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9411 Stop means reenter debugger if this signal happens (implies print).\n\
9412 Print means print a message if this signal happens.\n\
9413 Pass means let program see this signal; otherwise program doesn't know.\n\
9414 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9415 Pass and Stop may be combined.\n\
9416 \n\
9417 Multiple signals may be specified. Signal numbers and signal names\n\
9418 may be interspersed with actions, with the actions being performed for\n\
9419 all signals cumulatively specified."));
9420 set_cmd_completer (c, handle_completer);
9421
9422 if (!dbx_commands)
9423 stop_command = add_cmd ("stop", class_obscure,
9424 not_just_help_class_command, _("\
9425 There is no `stop' command, but you can set a hook on `stop'.\n\
9426 This allows you to set a list of commands to be run each time execution\n\
9427 of the program stops."), &cmdlist);
9428
9429 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9430 Set inferior debugging."), _("\
9431 Show inferior debugging."), _("\
9432 When non-zero, inferior specific debugging is enabled."),
9433 NULL,
9434 show_debug_infrun,
9435 &setdebuglist, &showdebuglist);
9436
9437 add_setshow_boolean_cmd ("displaced", class_maintenance,
9438 &debug_displaced, _("\
9439 Set displaced stepping debugging."), _("\
9440 Show displaced stepping debugging."), _("\
9441 When non-zero, displaced stepping specific debugging is enabled."),
9442 NULL,
9443 show_debug_displaced,
9444 &setdebuglist, &showdebuglist);
9445
9446 add_setshow_boolean_cmd ("non-stop", no_class,
9447 &non_stop_1, _("\
9448 Set whether gdb controls the inferior in non-stop mode."), _("\
9449 Show whether gdb controls the inferior in non-stop mode."), _("\
9450 When debugging a multi-threaded program and this setting is\n\
9451 off (the default, also called all-stop mode), when one thread stops\n\
9452 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9453 all other threads in the program while you interact with the thread of\n\
9454 interest. When you continue or step a thread, you can allow the other\n\
9455 threads to run, or have them remain stopped, but while you inspect any\n\
9456 thread's state, all threads stop.\n\
9457 \n\
9458 In non-stop mode, when one thread stops, other threads can continue\n\
9459 to run freely. You'll be able to step each thread independently,\n\
9460 leave it stopped or free to run as needed."),
9461 set_non_stop,
9462 show_non_stop,
9463 &setlist,
9464 &showlist);
9465
9466 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9467 {
9468 signal_stop[i] = 1;
9469 signal_print[i] = 1;
9470 signal_program[i] = 1;
9471 signal_catch[i] = 0;
9472 }
9473
9474 /* Signals caused by debugger's own actions should not be given to
9475 the program afterwards.
9476
9477 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9478 explicitly specifies that it should be delivered to the target
9479 program. Typically, that would occur when a user is debugging a
9480 target monitor on a simulator: the target monitor sets a
9481 breakpoint; the simulator encounters this breakpoint and halts
9482 the simulation handing control to GDB; GDB, noting that the stop
9483 address doesn't map to any known breakpoint, returns control back
9484 to the simulator; the simulator then delivers the hardware
9485 equivalent of a GDB_SIGNAL_TRAP to the program being
9486 debugged. */
9487 signal_program[GDB_SIGNAL_TRAP] = 0;
9488 signal_program[GDB_SIGNAL_INT] = 0;
9489
9490 /* Signals that are not errors should not normally enter the debugger. */
9491 signal_stop[GDB_SIGNAL_ALRM] = 0;
9492 signal_print[GDB_SIGNAL_ALRM] = 0;
9493 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9494 signal_print[GDB_SIGNAL_VTALRM] = 0;
9495 signal_stop[GDB_SIGNAL_PROF] = 0;
9496 signal_print[GDB_SIGNAL_PROF] = 0;
9497 signal_stop[GDB_SIGNAL_CHLD] = 0;
9498 signal_print[GDB_SIGNAL_CHLD] = 0;
9499 signal_stop[GDB_SIGNAL_IO] = 0;
9500 signal_print[GDB_SIGNAL_IO] = 0;
9501 signal_stop[GDB_SIGNAL_POLL] = 0;
9502 signal_print[GDB_SIGNAL_POLL] = 0;
9503 signal_stop[GDB_SIGNAL_URG] = 0;
9504 signal_print[GDB_SIGNAL_URG] = 0;
9505 signal_stop[GDB_SIGNAL_WINCH] = 0;
9506 signal_print[GDB_SIGNAL_WINCH] = 0;
9507 signal_stop[GDB_SIGNAL_PRIO] = 0;
9508 signal_print[GDB_SIGNAL_PRIO] = 0;
9509
9510 /* These signals are used internally by user-level thread
9511 implementations. (See signal(5) on Solaris.) Like the above
9512 signals, a healthy program receives and handles them as part of
9513 its normal operation. */
9514 signal_stop[GDB_SIGNAL_LWP] = 0;
9515 signal_print[GDB_SIGNAL_LWP] = 0;
9516 signal_stop[GDB_SIGNAL_WAITING] = 0;
9517 signal_print[GDB_SIGNAL_WAITING] = 0;
9518 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9519 signal_print[GDB_SIGNAL_CANCEL] = 0;
9520 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9521 signal_print[GDB_SIGNAL_LIBRT] = 0;
9522
9523 /* Update cached state. */
9524 signal_cache_update (-1);
9525
9526 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9527 &stop_on_solib_events, _("\
9528 Set stopping for shared library events."), _("\
9529 Show stopping for shared library events."), _("\
9530 If nonzero, gdb will give control to the user when the dynamic linker\n\
9531 notifies gdb of shared library events. The most common event of interest\n\
9532 to the user would be loading/unloading of a new library."),
9533 set_stop_on_solib_events,
9534 show_stop_on_solib_events,
9535 &setlist, &showlist);
9536
9537 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9538 follow_fork_mode_kind_names,
9539 &follow_fork_mode_string, _("\
9540 Set debugger response to a program call of fork or vfork."), _("\
9541 Show debugger response to a program call of fork or vfork."), _("\
9542 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9543 parent - the original process is debugged after a fork\n\
9544 child - the new process is debugged after a fork\n\
9545 The unfollowed process will continue to run.\n\
9546 By default, the debugger will follow the parent process."),
9547 NULL,
9548 show_follow_fork_mode_string,
9549 &setlist, &showlist);
9550
9551 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9552 follow_exec_mode_names,
9553 &follow_exec_mode_string, _("\
9554 Set debugger response to a program call of exec."), _("\
9555 Show debugger response to a program call of exec."), _("\
9556 An exec call replaces the program image of a process.\n\
9557 \n\
9558 follow-exec-mode can be:\n\
9559 \n\
9560 new - the debugger creates a new inferior and rebinds the process\n\
9561 to this new inferior. The program the process was running before\n\
9562 the exec call can be restarted afterwards by restarting the original\n\
9563 inferior.\n\
9564 \n\
9565 same - the debugger keeps the process bound to the same inferior.\n\
9566 The new executable image replaces the previous executable loaded in\n\
9567 the inferior. Restarting the inferior after the exec call restarts\n\
9568 the executable the process was running after the exec call.\n\
9569 \n\
9570 By default, the debugger will use the same inferior."),
9571 NULL,
9572 show_follow_exec_mode_string,
9573 &setlist, &showlist);
9574
9575 add_setshow_enum_cmd ("scheduler-locking", class_run,
9576 scheduler_enums, &scheduler_mode, _("\
9577 Set mode for locking scheduler during execution."), _("\
9578 Show mode for locking scheduler during execution."), _("\
9579 off == no locking (threads may preempt at any time)\n\
9580 on == full locking (no thread except the current thread may run)\n\
9581 This applies to both normal execution and replay mode.\n\
9582 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9583 In this mode, other threads may run during other commands.\n\
9584 This applies to both normal execution and replay mode.\n\
9585 replay == scheduler locked in replay mode and unlocked during normal execution."),
9586 set_schedlock_func, /* traps on target vector */
9587 show_scheduler_mode,
9588 &setlist, &showlist);
9589
9590 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9591 Set mode for resuming threads of all processes."), _("\
9592 Show mode for resuming threads of all processes."), _("\
9593 When on, execution commands (such as 'continue' or 'next') resume all\n\
9594 threads of all processes. When off (which is the default), execution\n\
9595 commands only resume the threads of the current process. The set of\n\
9596 threads that are resumed is further refined by the scheduler-locking\n\
9597 mode (see help set scheduler-locking)."),
9598 NULL,
9599 show_schedule_multiple,
9600 &setlist, &showlist);
9601
9602 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9603 Set mode of the step operation."), _("\
9604 Show mode of the step operation."), _("\
9605 When set, doing a step over a function without debug line information\n\
9606 will stop at the first instruction of that function. Otherwise, the\n\
9607 function is skipped and the step command stops at a different source line."),
9608 NULL,
9609 show_step_stop_if_no_debug,
9610 &setlist, &showlist);
9611
9612 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9613 &can_use_displaced_stepping, _("\
9614 Set debugger's willingness to use displaced stepping."), _("\
9615 Show debugger's willingness to use displaced stepping."), _("\
9616 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9617 supported by the target architecture. If off, gdb will not use displaced\n\
9618 stepping to step over breakpoints, even if such is supported by the target\n\
9619 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9620 if the target architecture supports it and non-stop mode is active, but will not\n\
9621 use it in all-stop mode (see help set non-stop)."),
9622 NULL,
9623 show_can_use_displaced_stepping,
9624 &setlist, &showlist);
9625
9626 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9627 &exec_direction, _("Set direction of execution.\n\
9628 Options are 'forward' or 'reverse'."),
9629 _("Show direction of execution (forward/reverse)."),
9630 _("Tells gdb whether to execute forward or backward."),
9631 set_exec_direction_func, show_exec_direction_func,
9632 &setlist, &showlist);
9633
9634 /* Set/show detach-on-fork: user-settable mode. */
9635
9636 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9637 Set whether gdb will detach the child of a fork."), _("\
9638 Show whether gdb will detach the child of a fork."), _("\
9639 Tells gdb whether to detach the child of a fork."),
9640 NULL, NULL, &setlist, &showlist);
9641
9642 /* Set/show disable address space randomization mode. */
9643
9644 add_setshow_boolean_cmd ("disable-randomization", class_support,
9645 &disable_randomization, _("\
9646 Set disabling of debuggee's virtual address space randomization."), _("\
9647 Show disabling of debuggee's virtual address space randomization."), _("\
9648 When this mode is on (which is the default), randomization of the virtual\n\
9649 address space is disabled. Standalone programs run with the randomization\n\
9650 enabled by default on some platforms."),
9651 &set_disable_randomization,
9652 &show_disable_randomization,
9653 &setlist, &showlist);
9654
9655 /* ptid initializations */
9656 inferior_ptid = null_ptid;
9657 target_last_wait_ptid = minus_one_ptid;
9658
9659 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9660 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9661 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9662 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9663
9664 /* Explicitly create without lookup, since that tries to create a
9665 value with a void typed value, and when we get here, gdbarch
9666 isn't initialized yet. At this point, we're quite sure there
9667 isn't another convenience variable of the same name. */
9668 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9669
9670 add_setshow_boolean_cmd ("observer", no_class,
9671 &observer_mode_1, _("\
9672 Set whether gdb controls the inferior in observer mode."), _("\
9673 Show whether gdb controls the inferior in observer mode."), _("\
9674 In observer mode, GDB can get data from the inferior, but not\n\
9675 affect its execution. Registers and memory may not be changed,\n\
9676 breakpoints may not be set, and the program cannot be interrupted\n\
9677 or signalled."),
9678 set_observer_mode,
9679 show_observer_mode,
9680 &setlist,
9681 &showlist);
9682 }