]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
gdb: remove current_top_target function
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2021 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "displaced-stepping.h"
23 #include "infrun.h"
24 #include <ctype.h>
25 #include "symtab.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "breakpoint.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "target-connection.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include "inf-loop.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "observable.h"
41 #include "language.h"
42 #include "solib.h"
43 #include "main.h"
44 #include "block.h"
45 #include "mi/mi-common.h"
46 #include "event-top.h"
47 #include "record.h"
48 #include "record-full.h"
49 #include "inline-frame.h"
50 #include "jit.h"
51 #include "tracepoint.h"
52 #include "skip.h"
53 #include "probe.h"
54 #include "objfiles.h"
55 #include "completer.h"
56 #include "target-descriptions.h"
57 #include "target-dcache.h"
58 #include "terminal.h"
59 #include "solist.h"
60 #include "gdbsupport/event-loop.h"
61 #include "thread-fsm.h"
62 #include "gdbsupport/enum-flags.h"
63 #include "progspace-and-thread.h"
64 #include "gdbsupport/gdb_optional.h"
65 #include "arch-utils.h"
66 #include "gdbsupport/scope-exit.h"
67 #include "gdbsupport/forward-scope-exit.h"
68 #include "gdbsupport/gdb_select.h"
69 #include <unordered_map>
70 #include "async-event.h"
71 #include "gdbsupport/selftest.h"
72 #include "scoped-mock-context.h"
73 #include "test-target.h"
74 #include "gdbsupport/common-debug.h"
75
76 /* Prototypes for local functions */
77
78 static void sig_print_info (enum gdb_signal);
79
80 static void sig_print_header (void);
81
82 static void follow_inferior_reset_breakpoints (void);
83
84 static bool currently_stepping (struct thread_info *tp);
85
86 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
87
88 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
89
90 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
91
92 static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
93
94 static void resume (gdb_signal sig);
95
96 static void wait_for_inferior (inferior *inf);
97
98 /* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100 static struct async_event_handler *infrun_async_inferior_event_token;
101
102 /* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104 static int infrun_is_async = -1;
105
106 /* See infrun.h. */
107
108 void
109 infrun_async (int enable)
110 {
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 infrun_debug_printf ("enable=%d", enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122 }
123
124 /* See infrun.h. */
125
126 void
127 mark_infrun_async_event_handler (void)
128 {
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 }
131
132 /* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135 bool step_stop_if_no_debug = false;
136 static void
137 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141 }
142
143 /* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
146
147 static ptid_t previous_inferior_ptid;
148
149 /* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154 static bool detach_fork = true;
155
156 bool debug_infrun = false;
157 static void
158 show_debug_infrun (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
162 }
163
164 /* Support for disabling address space randomization. */
165
166 bool disable_randomization = true;
167
168 static void
169 show_disable_randomization (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 if (target_supports_disable_randomization ())
173 fprintf_filtered (file,
174 _("Disabling randomization of debuggee's "
175 "virtual address space is %s.\n"),
176 value);
177 else
178 fputs_filtered (_("Disabling randomization of debuggee's "
179 "virtual address space is unsupported on\n"
180 "this platform.\n"), file);
181 }
182
183 static void
184 set_disable_randomization (const char *args, int from_tty,
185 struct cmd_list_element *c)
186 {
187 if (!target_supports_disable_randomization ())
188 error (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform."));
191 }
192
193 /* User interface for non-stop mode. */
194
195 bool non_stop = false;
196 static bool non_stop_1 = false;
197
198 static void
199 set_non_stop (const char *args, int from_tty,
200 struct cmd_list_element *c)
201 {
202 if (target_has_execution ())
203 {
204 non_stop_1 = non_stop;
205 error (_("Cannot change this setting while the inferior is running."));
206 }
207
208 non_stop = non_stop_1;
209 }
210
211 static void
212 show_non_stop (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file,
216 _("Controlling the inferior in non-stop mode is %s.\n"),
217 value);
218 }
219
220 /* "Observer mode" is somewhat like a more extreme version of
221 non-stop, in which all GDB operations that might affect the
222 target's execution have been disabled. */
223
224 static bool observer_mode = false;
225 static bool observer_mode_1 = false;
226
227 static void
228 set_observer_mode (const char *args, int from_tty,
229 struct cmd_list_element *c)
230 {
231 if (target_has_execution ())
232 {
233 observer_mode_1 = observer_mode;
234 error (_("Cannot change this setting while the inferior is running."));
235 }
236
237 observer_mode = observer_mode_1;
238
239 may_write_registers = !observer_mode;
240 may_write_memory = !observer_mode;
241 may_insert_breakpoints = !observer_mode;
242 may_insert_tracepoints = !observer_mode;
243 /* We can insert fast tracepoints in or out of observer mode,
244 but enable them if we're going into this mode. */
245 if (observer_mode)
246 may_insert_fast_tracepoints = true;
247 may_stop = !observer_mode;
248 update_target_permissions ();
249
250 /* Going *into* observer mode we must force non-stop, then
251 going out we leave it that way. */
252 if (observer_mode)
253 {
254 pagination_enabled = 0;
255 non_stop = non_stop_1 = true;
256 }
257
258 if (from_tty)
259 printf_filtered (_("Observer mode is now %s.\n"),
260 (observer_mode ? "on" : "off"));
261 }
262
263 static void
264 show_observer_mode (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266 {
267 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
268 }
269
270 /* This updates the value of observer mode based on changes in
271 permissions. Note that we are deliberately ignoring the values of
272 may-write-registers and may-write-memory, since the user may have
273 reason to enable these during a session, for instance to turn on a
274 debugging-related global. */
275
276 void
277 update_observer_mode (void)
278 {
279 bool newval = (!may_insert_breakpoints
280 && !may_insert_tracepoints
281 && may_insert_fast_tracepoints
282 && !may_stop
283 && non_stop);
284
285 /* Let the user know if things change. */
286 if (newval != observer_mode)
287 printf_filtered (_("Observer mode is now %s.\n"),
288 (newval ? "on" : "off"));
289
290 observer_mode = observer_mode_1 = newval;
291 }
292
293 /* Tables of how to react to signals; the user sets them. */
294
295 static unsigned char signal_stop[GDB_SIGNAL_LAST];
296 static unsigned char signal_print[GDB_SIGNAL_LAST];
297 static unsigned char signal_program[GDB_SIGNAL_LAST];
298
299 /* Table of signals that are registered with "catch signal". A
300 non-zero entry indicates that the signal is caught by some "catch
301 signal" command. */
302 static unsigned char signal_catch[GDB_SIGNAL_LAST];
303
304 /* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
307 static unsigned char signal_pass[GDB_SIGNAL_LAST];
308
309 #define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317 #define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
325 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328 void
329 update_signals_program_target (void)
330 {
331 target_program_signals (signal_program);
332 }
333
334 /* Value to pass to target_resume() to cause all threads to resume. */
335
336 #define RESUME_ALL minus_one_ptid
337
338 /* Command list pointer for the "stop" placeholder. */
339
340 static struct cmd_list_element *stop_command;
341
342 /* Nonzero if we want to give control to the user when we're notified
343 of shared library events by the dynamic linker. */
344 int stop_on_solib_events;
345
346 /* Enable or disable optional shared library event breakpoints
347 as appropriate when the above flag is changed. */
348
349 static void
350 set_stop_on_solib_events (const char *args,
351 int from_tty, struct cmd_list_element *c)
352 {
353 update_solib_breakpoints ();
354 }
355
356 static void
357 show_stop_on_solib_events (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359 {
360 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
361 value);
362 }
363
364 /* True after stop if current stack frame should be printed. */
365
366 static bool stop_print_frame;
367
368 /* This is a cached copy of the target/ptid/waitstatus of the last
369 event returned by target_wait()/deprecated_target_wait_hook().
370 This information is returned by get_last_target_status(). */
371 static process_stratum_target *target_last_proc_target;
372 static ptid_t target_last_wait_ptid;
373 static struct target_waitstatus target_last_waitstatus;
374
375 void init_thread_stepping_state (struct thread_info *tss);
376
377 static const char follow_fork_mode_child[] = "child";
378 static const char follow_fork_mode_parent[] = "parent";
379
380 static const char *const follow_fork_mode_kind_names[] = {
381 follow_fork_mode_child,
382 follow_fork_mode_parent,
383 NULL
384 };
385
386 static const char *follow_fork_mode_string = follow_fork_mode_parent;
387 static void
388 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
389 struct cmd_list_element *c, const char *value)
390 {
391 fprintf_filtered (file,
392 _("Debugger response to a program "
393 "call of fork or vfork is \"%s\".\n"),
394 value);
395 }
396 \f
397
398 /* Handle changes to the inferior list based on the type of fork,
399 which process is being followed, and whether the other process
400 should be detached. On entry inferior_ptid must be the ptid of
401 the fork parent. At return inferior_ptid is the ptid of the
402 followed inferior. */
403
404 static bool
405 follow_fork_inferior (bool follow_child, bool detach_fork)
406 {
407 int has_vforked;
408 ptid_t parent_ptid, child_ptid;
409
410 has_vforked = (inferior_thread ()->pending_follow.kind
411 == TARGET_WAITKIND_VFORKED);
412 parent_ptid = inferior_ptid;
413 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
414
415 if (has_vforked
416 && !non_stop /* Non-stop always resumes both branches. */
417 && current_ui->prompt_state == PROMPT_BLOCKED
418 && !(follow_child || detach_fork || sched_multi))
419 {
420 /* The parent stays blocked inside the vfork syscall until the
421 child execs or exits. If we don't let the child run, then
422 the parent stays blocked. If we're telling the parent to run
423 in the foreground, the user will not be able to ctrl-c to get
424 back the terminal, effectively hanging the debug session. */
425 fprintf_filtered (gdb_stderr, _("\
426 Can not resume the parent process over vfork in the foreground while\n\
427 holding the child stopped. Try \"set detach-on-fork\" or \
428 \"set schedule-multiple\".\n"));
429 return 1;
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
437 /* Before detaching from the child, remove all breakpoints
438 from it. If we forked, then this has already been taken
439 care of by infrun.c. If we vforked however, any
440 breakpoint inserted in the parent is visible in the
441 child, even those added while stopped in a vfork
442 catchpoint. This will remove the breakpoints from the
443 parent also, but they'll be reinserted below. */
444 if (has_vforked)
445 {
446 /* Keep breakpoints list in sync. */
447 remove_breakpoints_inf (current_inferior ());
448 }
449
450 if (print_inferior_events)
451 {
452 /* Ensure that we have a process ptid. */
453 ptid_t process_ptid = ptid_t (child_ptid.pid ());
454
455 target_terminal::ours_for_output ();
456 fprintf_filtered (gdb_stdlog,
457 _("[Detaching after %s from child %s]\n"),
458 has_vforked ? "vfork" : "fork",
459 target_pid_to_str (process_ptid).c_str ());
460 }
461 }
462 else
463 {
464 struct inferior *parent_inf, *child_inf;
465
466 /* Add process to GDB's tables. */
467 child_inf = add_inferior (child_ptid.pid ());
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
475 scoped_restore_current_pspace_and_thread restore_pspace_thread;
476
477 set_current_inferior (child_inf);
478 switch_to_no_thread ();
479 child_inf->symfile_flags = SYMFILE_NO_READ;
480 child_inf->push_target (parent_inf->process_target ());
481 thread_info *child_thr
482 = add_thread_silent (child_inf->process_target (), child_ptid);
483
484 /* If this is a vfork child, then the address-space is
485 shared with the parent. */
486 if (has_vforked)
487 {
488 child_inf->pspace = parent_inf->pspace;
489 child_inf->aspace = parent_inf->aspace;
490
491 exec_on_vfork ();
492
493 /* The parent will be frozen until the child is done
494 with the shared region. Keep track of the
495 parent. */
496 child_inf->vfork_parent = parent_inf;
497 child_inf->pending_detach = 0;
498 parent_inf->vfork_child = child_inf;
499 parent_inf->pending_detach = 0;
500
501 /* Now that the inferiors and program spaces are all
502 wired up, we can switch to the child thread (which
503 switches inferior and program space too). */
504 switch_to_thread (child_thr);
505 }
506 else
507 {
508 child_inf->aspace = new_address_space ();
509 child_inf->pspace = new program_space (child_inf->aspace);
510 child_inf->removable = 1;
511 set_current_program_space (child_inf->pspace);
512 clone_program_space (child_inf->pspace, parent_inf->pspace);
513
514 /* solib_create_inferior_hook relies on the current
515 thread. */
516 switch_to_thread (child_thr);
517
518 /* Let the shared library layer (e.g., solib-svr4) learn
519 about this new process, relocate the cloned exec, pull
520 in shared libraries, and install the solib event
521 breakpoint. If a "cloned-VM" event was propagated
522 better throughout the core, this wouldn't be
523 required. */
524 solib_create_inferior_hook (0);
525 }
526 }
527
528 if (has_vforked)
529 {
530 struct inferior *parent_inf;
531
532 parent_inf = current_inferior ();
533
534 /* If we detached from the child, then we have to be careful
535 to not insert breakpoints in the parent until the child
536 is done with the shared memory region. However, if we're
537 staying attached to the child, then we can and should
538 insert breakpoints, so that we can debug it. A
539 subsequent child exec or exit is enough to know when does
540 the child stops using the parent's address space. */
541 parent_inf->waiting_for_vfork_done = detach_fork;
542 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
543 }
544 }
545 else
546 {
547 /* Follow the child. */
548 struct inferior *parent_inf, *child_inf;
549 struct program_space *parent_pspace;
550
551 if (print_inferior_events)
552 {
553 std::string parent_pid = target_pid_to_str (parent_ptid);
554 std::string child_pid = target_pid_to_str (child_ptid);
555
556 target_terminal::ours_for_output ();
557 fprintf_filtered (gdb_stdlog,
558 _("[Attaching after %s %s to child %s]\n"),
559 parent_pid.c_str (),
560 has_vforked ? "vfork" : "fork",
561 child_pid.c_str ());
562 }
563
564 /* Add the new inferior first, so that the target_detach below
565 doesn't unpush the target. */
566
567 child_inf = add_inferior (child_ptid.pid ());
568
569 parent_inf = current_inferior ();
570 child_inf->attach_flag = parent_inf->attach_flag;
571 copy_terminal_info (child_inf, parent_inf);
572 child_inf->gdbarch = parent_inf->gdbarch;
573 copy_inferior_target_desc_info (child_inf, parent_inf);
574
575 parent_pspace = parent_inf->pspace;
576
577 process_stratum_target *target = parent_inf->process_target ();
578
579 {
580 /* Hold a strong reference to the target while (maybe)
581 detaching the parent. Otherwise detaching could close the
582 target. */
583 auto target_ref = target_ops_ref::new_reference (target);
584
585 /* If we're vforking, we want to hold on to the parent until
586 the child exits or execs. At child exec or exit time we
587 can remove the old breakpoints from the parent and detach
588 or resume debugging it. Otherwise, detach the parent now;
589 we'll want to reuse it's program/address spaces, but we
590 can't set them to the child before removing breakpoints
591 from the parent, otherwise, the breakpoints module could
592 decide to remove breakpoints from the wrong process (since
593 they'd be assigned to the same address space). */
594
595 if (has_vforked)
596 {
597 gdb_assert (child_inf->vfork_parent == NULL);
598 gdb_assert (parent_inf->vfork_child == NULL);
599 child_inf->vfork_parent = parent_inf;
600 child_inf->pending_detach = 0;
601 parent_inf->vfork_child = child_inf;
602 parent_inf->pending_detach = detach_fork;
603 parent_inf->waiting_for_vfork_done = 0;
604 }
605 else if (detach_fork)
606 {
607 if (print_inferior_events)
608 {
609 /* Ensure that we have a process ptid. */
610 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
611
612 target_terminal::ours_for_output ();
613 fprintf_filtered (gdb_stdlog,
614 _("[Detaching after fork from "
615 "parent %s]\n"),
616 target_pid_to_str (process_ptid).c_str ());
617 }
618
619 target_detach (parent_inf, 0);
620 parent_inf = NULL;
621 }
622
623 /* Note that the detach above makes PARENT_INF dangling. */
624
625 /* Add the child thread to the appropriate lists, and switch
626 to this new thread, before cloning the program space, and
627 informing the solib layer about this new process. */
628
629 set_current_inferior (child_inf);
630 child_inf->push_target (target);
631 }
632
633 thread_info *child_thr = add_thread_silent (target, child_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642
643 exec_on_vfork ();
644 }
645 else
646 {
647 child_inf->aspace = new_address_space ();
648 child_inf->pspace = new program_space (child_inf->aspace);
649 child_inf->removable = 1;
650 child_inf->symfile_flags = SYMFILE_NO_READ;
651 set_current_program_space (child_inf->pspace);
652 clone_program_space (child_inf->pspace, parent_pspace);
653
654 /* Let the shared library layer (e.g., solib-svr4) learn
655 about this new process, relocate the cloned exec, pull in
656 shared libraries, and install the solib event breakpoint.
657 If a "cloned-VM" event was propagated better throughout
658 the core, this wouldn't be required. */
659 solib_create_inferior_hook (0);
660 }
661
662 switch_to_thread (child_thr);
663 }
664
665 return target_follow_fork (follow_child, detach_fork);
666 }
667
668 /* Tell the target to follow the fork we're stopped at. Returns true
669 if the inferior should be resumed; false, if the target for some
670 reason decided it's best not to resume. */
671
672 static bool
673 follow_fork ()
674 {
675 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
676 bool should_resume = true;
677 struct thread_info *tp;
678
679 /* Copy user stepping state to the new inferior thread. FIXME: the
680 followed fork child thread should have a copy of most of the
681 parent thread structure's run control related fields, not just these.
682 Initialized to avoid "may be used uninitialized" warnings from gcc. */
683 struct breakpoint *step_resume_breakpoint = NULL;
684 struct breakpoint *exception_resume_breakpoint = NULL;
685 CORE_ADDR step_range_start = 0;
686 CORE_ADDR step_range_end = 0;
687 int current_line = 0;
688 symtab *current_symtab = NULL;
689 struct frame_id step_frame_id = { 0 };
690 struct thread_fsm *thread_fsm = NULL;
691
692 if (!non_stop)
693 {
694 process_stratum_target *wait_target;
695 ptid_t wait_ptid;
696 struct target_waitstatus wait_status;
697
698 /* Get the last target status returned by target_wait(). */
699 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
700
701 /* If not stopped at a fork event, then there's nothing else to
702 do. */
703 if (wait_status.kind != TARGET_WAITKIND_FORKED
704 && wait_status.kind != TARGET_WAITKIND_VFORKED)
705 return 1;
706
707 /* Check if we switched over from WAIT_PTID, since the event was
708 reported. */
709 if (wait_ptid != minus_one_ptid
710 && (current_inferior ()->process_target () != wait_target
711 || inferior_ptid != wait_ptid))
712 {
713 /* We did. Switch back to WAIT_PTID thread, to tell the
714 target to follow it (in either direction). We'll
715 afterwards refuse to resume, and inform the user what
716 happened. */
717 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
718 switch_to_thread (wait_thread);
719 should_resume = false;
720 }
721 }
722
723 tp = inferior_thread ();
724
725 /* If there were any forks/vforks that were caught and are now to be
726 followed, then do so now. */
727 switch (tp->pending_follow.kind)
728 {
729 case TARGET_WAITKIND_FORKED:
730 case TARGET_WAITKIND_VFORKED:
731 {
732 ptid_t parent, child;
733
734 /* If the user did a next/step, etc, over a fork call,
735 preserve the stepping state in the fork child. */
736 if (follow_child && should_resume)
737 {
738 step_resume_breakpoint = clone_momentary_breakpoint
739 (tp->control.step_resume_breakpoint);
740 step_range_start = tp->control.step_range_start;
741 step_range_end = tp->control.step_range_end;
742 current_line = tp->current_line;
743 current_symtab = tp->current_symtab;
744 step_frame_id = tp->control.step_frame_id;
745 exception_resume_breakpoint
746 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
747 thread_fsm = tp->thread_fsm;
748
749 /* For now, delete the parent's sr breakpoint, otherwise,
750 parent/child sr breakpoints are considered duplicates,
751 and the child version will not be installed. Remove
752 this when the breakpoints module becomes aware of
753 inferiors and address spaces. */
754 delete_step_resume_breakpoint (tp);
755 tp->control.step_range_start = 0;
756 tp->control.step_range_end = 0;
757 tp->control.step_frame_id = null_frame_id;
758 delete_exception_resume_breakpoint (tp);
759 tp->thread_fsm = NULL;
760 }
761
762 parent = inferior_ptid;
763 child = tp->pending_follow.value.related_pid;
764
765 process_stratum_target *parent_targ = tp->inf->process_target ();
766 /* Set up inferior(s) as specified by the caller, and tell the
767 target to do whatever is necessary to follow either parent
768 or child. */
769 if (follow_fork_inferior (follow_child, detach_fork))
770 {
771 /* Target refused to follow, or there's some other reason
772 we shouldn't resume. */
773 should_resume = 0;
774 }
775 else
776 {
777 /* This pending follow fork event is now handled, one way
778 or another. The previous selected thread may be gone
779 from the lists by now, but if it is still around, need
780 to clear the pending follow request. */
781 tp = find_thread_ptid (parent_targ, parent);
782 if (tp)
783 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
784
785 /* This makes sure we don't try to apply the "Switched
786 over from WAIT_PID" logic above. */
787 nullify_last_target_wait_ptid ();
788
789 /* If we followed the child, switch to it... */
790 if (follow_child)
791 {
792 thread_info *child_thr = find_thread_ptid (parent_targ, child);
793 switch_to_thread (child_thr);
794
795 /* ... and preserve the stepping state, in case the
796 user was stepping over the fork call. */
797 if (should_resume)
798 {
799 tp = inferior_thread ();
800 tp->control.step_resume_breakpoint
801 = step_resume_breakpoint;
802 tp->control.step_range_start = step_range_start;
803 tp->control.step_range_end = step_range_end;
804 tp->current_line = current_line;
805 tp->current_symtab = current_symtab;
806 tp->control.step_frame_id = step_frame_id;
807 tp->control.exception_resume_breakpoint
808 = exception_resume_breakpoint;
809 tp->thread_fsm = thread_fsm;
810 }
811 else
812 {
813 /* If we get here, it was because we're trying to
814 resume from a fork catchpoint, but, the user
815 has switched threads away from the thread that
816 forked. In that case, the resume command
817 issued is most likely not applicable to the
818 child, so just warn, and refuse to resume. */
819 warning (_("Not resuming: switched threads "
820 "before following fork child."));
821 }
822
823 /* Reset breakpoints in the child as appropriate. */
824 follow_inferior_reset_breakpoints ();
825 }
826 }
827 }
828 break;
829 case TARGET_WAITKIND_SPURIOUS:
830 /* Nothing to follow. */
831 break;
832 default:
833 internal_error (__FILE__, __LINE__,
834 "Unexpected pending_follow.kind %d\n",
835 tp->pending_follow.kind);
836 break;
837 }
838
839 return should_resume;
840 }
841
842 static void
843 follow_inferior_reset_breakpoints (void)
844 {
845 struct thread_info *tp = inferior_thread ();
846
847 /* Was there a step_resume breakpoint? (There was if the user
848 did a "next" at the fork() call.) If so, explicitly reset its
849 thread number. Cloned step_resume breakpoints are disabled on
850 creation, so enable it here now that it is associated with the
851 correct thread.
852
853 step_resumes are a form of bp that are made to be per-thread.
854 Since we created the step_resume bp when the parent process
855 was being debugged, and now are switching to the child process,
856 from the breakpoint package's viewpoint, that's a switch of
857 "threads". We must update the bp's notion of which thread
858 it is for, or it'll be ignored when it triggers. */
859
860 if (tp->control.step_resume_breakpoint)
861 {
862 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
863 tp->control.step_resume_breakpoint->loc->enabled = 1;
864 }
865
866 /* Treat exception_resume breakpoints like step_resume breakpoints. */
867 if (tp->control.exception_resume_breakpoint)
868 {
869 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
870 tp->control.exception_resume_breakpoint->loc->enabled = 1;
871 }
872
873 /* Reinsert all breakpoints in the child. The user may have set
874 breakpoints after catching the fork, in which case those
875 were never set in the child, but only in the parent. This makes
876 sure the inserted breakpoints match the breakpoint list. */
877
878 breakpoint_re_set ();
879 insert_breakpoints ();
880 }
881
882 /* The child has exited or execed: resume threads of the parent the
883 user wanted to be executing. */
884
885 static int
886 proceed_after_vfork_done (struct thread_info *thread,
887 void *arg)
888 {
889 int pid = * (int *) arg;
890
891 if (thread->ptid.pid () == pid
892 && thread->state == THREAD_RUNNING
893 && !thread->executing
894 && !thread->stop_requested
895 && thread->suspend.stop_signal == GDB_SIGNAL_0)
896 {
897 infrun_debug_printf ("resuming vfork parent thread %s",
898 target_pid_to_str (thread->ptid).c_str ());
899
900 switch_to_thread (thread);
901 clear_proceed_status (0);
902 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
903 }
904
905 return 0;
906 }
907
908 /* Called whenever we notice an exec or exit event, to handle
909 detaching or resuming a vfork parent. */
910
911 static void
912 handle_vfork_child_exec_or_exit (int exec)
913 {
914 struct inferior *inf = current_inferior ();
915
916 if (inf->vfork_parent)
917 {
918 int resume_parent = -1;
919
920 /* This exec or exit marks the end of the shared memory region
921 between the parent and the child. Break the bonds. */
922 inferior *vfork_parent = inf->vfork_parent;
923 inf->vfork_parent->vfork_child = NULL;
924 inf->vfork_parent = NULL;
925
926 /* If the user wanted to detach from the parent, now is the
927 time. */
928 if (vfork_parent->pending_detach)
929 {
930 struct program_space *pspace;
931 struct address_space *aspace;
932
933 /* follow-fork child, detach-on-fork on. */
934
935 vfork_parent->pending_detach = 0;
936
937 scoped_restore_current_pspace_and_thread restore_thread;
938
939 /* We're letting loose of the parent. */
940 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
941 switch_to_thread (tp);
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
960 if (print_inferior_events)
961 {
962 std::string pidstr
963 = target_pid_to_str (ptid_t (vfork_parent->pid));
964
965 target_terminal::ours_for_output ();
966
967 if (exec)
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("[Detaching vfork parent %s "
971 "after child exec]\n"), pidstr.c_str ());
972 }
973 else
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("[Detaching vfork parent %s "
977 "after child exit]\n"), pidstr.c_str ());
978 }
979 }
980
981 target_detach (vfork_parent, 0);
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
991 inf->pspace = new program_space (maybe_new_address_space ());
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
996 resume_parent = vfork_parent->pid;
997 }
998 else
999 {
1000 /* If this is a vfork child exiting, then the pspace and
1001 aspaces were shared with the parent. Since we're
1002 reporting the process exit, we'll be mourning all that is
1003 found in the address space, and switching to null_ptid,
1004 preparing to start a new inferior. But, since we don't
1005 want to clobber the parent's address/program spaces, we
1006 go ahead and create a new one for this exiting
1007 inferior. */
1008
1009 /* Switch to no-thread while running clone_program_space, so
1010 that clone_program_space doesn't want to read the
1011 selected frame of a dead process. */
1012 scoped_restore_current_thread restore_thread;
1013 switch_to_no_thread ();
1014
1015 inf->pspace = new program_space (maybe_new_address_space ());
1016 inf->aspace = inf->pspace->aspace;
1017 set_current_program_space (inf->pspace);
1018 inf->removable = 1;
1019 inf->symfile_flags = SYMFILE_NO_READ;
1020 clone_program_space (inf->pspace, vfork_parent->pspace);
1021
1022 resume_parent = vfork_parent->pid;
1023 }
1024
1025 gdb_assert (current_program_space == inf->pspace);
1026
1027 if (non_stop && resume_parent != -1)
1028 {
1029 /* If the user wanted the parent to be running, let it go
1030 free now. */
1031 scoped_restore_current_thread restore_thread;
1032
1033 infrun_debug_printf ("resuming vfork parent process %d",
1034 resume_parent);
1035
1036 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1037 }
1038 }
1039 }
1040
1041 /* Enum strings for "set|show follow-exec-mode". */
1042
1043 static const char follow_exec_mode_new[] = "new";
1044 static const char follow_exec_mode_same[] = "same";
1045 static const char *const follow_exec_mode_names[] =
1046 {
1047 follow_exec_mode_new,
1048 follow_exec_mode_same,
1049 NULL,
1050 };
1051
1052 static const char *follow_exec_mode_string = follow_exec_mode_same;
1053 static void
1054 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056 {
1057 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1058 }
1059
1060 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1061
1062 static void
1063 follow_exec (ptid_t ptid, const char *exec_file_target)
1064 {
1065 struct inferior *inf = current_inferior ();
1066 int pid = ptid.pid ();
1067 ptid_t process_ptid;
1068
1069 /* Switch terminal for any messages produced e.g. by
1070 breakpoint_re_set. */
1071 target_terminal::ours_for_output ();
1072
1073 /* This is an exec event that we actually wish to pay attention to.
1074 Refresh our symbol table to the newly exec'd program, remove any
1075 momentary bp's, etc.
1076
1077 If there are breakpoints, they aren't really inserted now,
1078 since the exec() transformed our inferior into a fresh set
1079 of instructions.
1080
1081 We want to preserve symbolic breakpoints on the list, since
1082 we have hopes that they can be reset after the new a.out's
1083 symbol table is read.
1084
1085 However, any "raw" breakpoints must be removed from the list
1086 (e.g., the solib bp's), since their address is probably invalid
1087 now.
1088
1089 And, we DON'T want to call delete_breakpoints() here, since
1090 that may write the bp's "shadow contents" (the instruction
1091 value that was overwritten with a TRAP instruction). Since
1092 we now have a new a.out, those shadow contents aren't valid. */
1093
1094 mark_breakpoints_out ();
1095
1096 /* The target reports the exec event to the main thread, even if
1097 some other thread does the exec, and even if the main thread was
1098 stopped or already gone. We may still have non-leader threads of
1099 the process on our list. E.g., on targets that don't have thread
1100 exit events (like remote); or on native Linux in non-stop mode if
1101 there were only two threads in the inferior and the non-leader
1102 one is the one that execs (and nothing forces an update of the
1103 thread list up to here). When debugging remotely, it's best to
1104 avoid extra traffic, when possible, so avoid syncing the thread
1105 list with the target, and instead go ahead and delete all threads
1106 of the process but one that reported the event. Note this must
1107 be done before calling update_breakpoints_after_exec, as
1108 otherwise clearing the threads' resources would reference stale
1109 thread breakpoints -- it may have been one of these threads that
1110 stepped across the exec. We could just clear their stepping
1111 states, but as long as we're iterating, might as well delete
1112 them. Deleting them now rather than at the next user-visible
1113 stop provides a nicer sequence of events for user and MI
1114 notifications. */
1115 for (thread_info *th : all_threads_safe ())
1116 if (th->ptid.pid () == pid && th->ptid != ptid)
1117 delete_thread (th);
1118
1119 /* We also need to clear any left over stale state for the
1120 leader/event thread. E.g., if there was any step-resume
1121 breakpoint or similar, it's gone now. We cannot truly
1122 step-to-next statement through an exec(). */
1123 thread_info *th = inferior_thread ();
1124 th->control.step_resume_breakpoint = NULL;
1125 th->control.exception_resume_breakpoint = NULL;
1126 th->control.single_step_breakpoints = NULL;
1127 th->control.step_range_start = 0;
1128 th->control.step_range_end = 0;
1129
1130 /* The user may have had the main thread held stopped in the
1131 previous image (e.g., schedlock on, or non-stop). Release
1132 it now. */
1133 th->stop_requested = 0;
1134
1135 update_breakpoints_after_exec ();
1136
1137 /* What is this a.out's name? */
1138 process_ptid = ptid_t (pid);
1139 printf_unfiltered (_("%s is executing new program: %s\n"),
1140 target_pid_to_str (process_ptid).c_str (),
1141 exec_file_target);
1142
1143 /* We've followed the inferior through an exec. Therefore, the
1144 inferior has essentially been killed & reborn. */
1145
1146 breakpoint_init_inferior (inf_execd);
1147
1148 gdb::unique_xmalloc_ptr<char> exec_file_host
1149 = exec_file_find (exec_file_target, NULL);
1150
1151 /* If we were unable to map the executable target pathname onto a host
1152 pathname, tell the user that. Otherwise GDB's subsequent behavior
1153 is confusing. Maybe it would even be better to stop at this point
1154 so that the user can specify a file manually before continuing. */
1155 if (exec_file_host == NULL)
1156 warning (_("Could not load symbols for executable %s.\n"
1157 "Do you need \"set sysroot\"?"),
1158 exec_file_target);
1159
1160 /* Reset the shared library package. This ensures that we get a
1161 shlib event when the child reaches "_start", at which point the
1162 dld will have had a chance to initialize the child. */
1163 /* Also, loading a symbol file below may trigger symbol lookups, and
1164 we don't want those to be satisfied by the libraries of the
1165 previous incarnation of this process. */
1166 no_shared_libraries (NULL, 0);
1167
1168 if (follow_exec_mode_string == follow_exec_mode_new)
1169 {
1170 /* The user wants to keep the old inferior and program spaces
1171 around. Create a new fresh one, and switch to it. */
1172
1173 /* Do exit processing for the original inferior before setting the new
1174 inferior's pid. Having two inferiors with the same pid would confuse
1175 find_inferior_p(t)id. Transfer the terminal state and info from the
1176 old to the new inferior. */
1177 inf = add_inferior_with_spaces ();
1178 swap_terminal_info (inf, current_inferior ());
1179 exit_inferior_silent (current_inferior ());
1180
1181 inf->pid = pid;
1182 target_follow_exec (inf, exec_file_target);
1183
1184 inferior *org_inferior = current_inferior ();
1185 switch_to_inferior_no_thread (inf);
1186 inf->push_target (org_inferior->process_target ());
1187 thread_info *thr = add_thread (inf->process_target (), ptid);
1188 switch_to_thread (thr);
1189 }
1190 else
1191 {
1192 /* The old description may no longer be fit for the new image.
1193 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1194 old description; we'll read a new one below. No need to do
1195 this on "follow-exec-mode new", as the old inferior stays
1196 around (its description is later cleared/refetched on
1197 restart). */
1198 target_clear_description ();
1199 }
1200
1201 gdb_assert (current_program_space == inf->pspace);
1202
1203 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1204 because the proper displacement for a PIE (Position Independent
1205 Executable) main symbol file will only be computed by
1206 solib_create_inferior_hook below. breakpoint_re_set would fail
1207 to insert the breakpoints with the zero displacement. */
1208 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1209
1210 /* If the target can specify a description, read it. Must do this
1211 after flipping to the new executable (because the target supplied
1212 description must be compatible with the executable's
1213 architecture, and the old executable may e.g., be 32-bit, while
1214 the new one 64-bit), and before anything involving memory or
1215 registers. */
1216 target_find_description ();
1217
1218 gdb::observers::inferior_execd.notify (inf);
1219
1220 breakpoint_re_set ();
1221
1222 /* Reinsert all breakpoints. (Those which were symbolic have
1223 been reset to the proper address in the new a.out, thanks
1224 to symbol_file_command...). */
1225 insert_breakpoints ();
1226
1227 /* The next resume of this inferior should bring it to the shlib
1228 startup breakpoints. (If the user had also set bp's on
1229 "main" from the old (parent) process, then they'll auto-
1230 matically get reset there in the new process.). */
1231 }
1232
1233 /* The chain of threads that need to do a step-over operation to get
1234 past e.g., a breakpoint. What technique is used to step over the
1235 breakpoint/watchpoint does not matter -- all threads end up in the
1236 same queue, to maintain rough temporal order of execution, in order
1237 to avoid starvation, otherwise, we could e.g., find ourselves
1238 constantly stepping the same couple threads past their breakpoints
1239 over and over, if the single-step finish fast enough. */
1240 struct thread_info *global_thread_step_over_chain_head;
1241
1242 /* Bit flags indicating what the thread needs to step over. */
1243
1244 enum step_over_what_flag
1245 {
1246 /* Step over a breakpoint. */
1247 STEP_OVER_BREAKPOINT = 1,
1248
1249 /* Step past a non-continuable watchpoint, in order to let the
1250 instruction execute so we can evaluate the watchpoint
1251 expression. */
1252 STEP_OVER_WATCHPOINT = 2
1253 };
1254 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1255
1256 /* Info about an instruction that is being stepped over. */
1257
1258 struct step_over_info
1259 {
1260 /* If we're stepping past a breakpoint, this is the address space
1261 and address of the instruction the breakpoint is set at. We'll
1262 skip inserting all breakpoints here. Valid iff ASPACE is
1263 non-NULL. */
1264 const address_space *aspace = nullptr;
1265 CORE_ADDR address = 0;
1266
1267 /* The instruction being stepped over triggers a nonsteppable
1268 watchpoint. If true, we'll skip inserting watchpoints. */
1269 int nonsteppable_watchpoint_p = 0;
1270
1271 /* The thread's global number. */
1272 int thread = -1;
1273 };
1274
1275 /* The step-over info of the location that is being stepped over.
1276
1277 Note that with async/breakpoint always-inserted mode, a user might
1278 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1279 being stepped over. As setting a new breakpoint inserts all
1280 breakpoints, we need to make sure the breakpoint being stepped over
1281 isn't inserted then. We do that by only clearing the step-over
1282 info when the step-over is actually finished (or aborted).
1283
1284 Presently GDB can only step over one breakpoint at any given time.
1285 Given threads that can't run code in the same address space as the
1286 breakpoint's can't really miss the breakpoint, GDB could be taught
1287 to step-over at most one breakpoint per address space (so this info
1288 could move to the address space object if/when GDB is extended).
1289 The set of breakpoints being stepped over will normally be much
1290 smaller than the set of all breakpoints, so a flag in the
1291 breakpoint location structure would be wasteful. A separate list
1292 also saves complexity and run-time, as otherwise we'd have to go
1293 through all breakpoint locations clearing their flag whenever we
1294 start a new sequence. Similar considerations weigh against storing
1295 this info in the thread object. Plus, not all step overs actually
1296 have breakpoint locations -- e.g., stepping past a single-step
1297 breakpoint, or stepping to complete a non-continuable
1298 watchpoint. */
1299 static struct step_over_info step_over_info;
1300
1301 /* Record the address of the breakpoint/instruction we're currently
1302 stepping over.
1303 N.B. We record the aspace and address now, instead of say just the thread,
1304 because when we need the info later the thread may be running. */
1305
1306 static void
1307 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1308 int nonsteppable_watchpoint_p,
1309 int thread)
1310 {
1311 step_over_info.aspace = aspace;
1312 step_over_info.address = address;
1313 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1314 step_over_info.thread = thread;
1315 }
1316
1317 /* Called when we're not longer stepping over a breakpoint / an
1318 instruction, so all breakpoints are free to be (re)inserted. */
1319
1320 static void
1321 clear_step_over_info (void)
1322 {
1323 infrun_debug_printf ("clearing step over info");
1324 step_over_info.aspace = NULL;
1325 step_over_info.address = 0;
1326 step_over_info.nonsteppable_watchpoint_p = 0;
1327 step_over_info.thread = -1;
1328 }
1329
1330 /* See infrun.h. */
1331
1332 int
1333 stepping_past_instruction_at (struct address_space *aspace,
1334 CORE_ADDR address)
1335 {
1336 return (step_over_info.aspace != NULL
1337 && breakpoint_address_match (aspace, address,
1338 step_over_info.aspace,
1339 step_over_info.address));
1340 }
1341
1342 /* See infrun.h. */
1343
1344 int
1345 thread_is_stepping_over_breakpoint (int thread)
1346 {
1347 return (step_over_info.thread != -1
1348 && thread == step_over_info.thread);
1349 }
1350
1351 /* See infrun.h. */
1352
1353 int
1354 stepping_past_nonsteppable_watchpoint (void)
1355 {
1356 return step_over_info.nonsteppable_watchpoint_p;
1357 }
1358
1359 /* Returns true if step-over info is valid. */
1360
1361 static bool
1362 step_over_info_valid_p (void)
1363 {
1364 return (step_over_info.aspace != NULL
1365 || stepping_past_nonsteppable_watchpoint ());
1366 }
1367
1368 \f
1369 /* Displaced stepping. */
1370
1371 /* In non-stop debugging mode, we must take special care to manage
1372 breakpoints properly; in particular, the traditional strategy for
1373 stepping a thread past a breakpoint it has hit is unsuitable.
1374 'Displaced stepping' is a tactic for stepping one thread past a
1375 breakpoint it has hit while ensuring that other threads running
1376 concurrently will hit the breakpoint as they should.
1377
1378 The traditional way to step a thread T off a breakpoint in a
1379 multi-threaded program in all-stop mode is as follows:
1380
1381 a0) Initially, all threads are stopped, and breakpoints are not
1382 inserted.
1383 a1) We single-step T, leaving breakpoints uninserted.
1384 a2) We insert breakpoints, and resume all threads.
1385
1386 In non-stop debugging, however, this strategy is unsuitable: we
1387 don't want to have to stop all threads in the system in order to
1388 continue or step T past a breakpoint. Instead, we use displaced
1389 stepping:
1390
1391 n0) Initially, T is stopped, other threads are running, and
1392 breakpoints are inserted.
1393 n1) We copy the instruction "under" the breakpoint to a separate
1394 location, outside the main code stream, making any adjustments
1395 to the instruction, register, and memory state as directed by
1396 T's architecture.
1397 n2) We single-step T over the instruction at its new location.
1398 n3) We adjust the resulting register and memory state as directed
1399 by T's architecture. This includes resetting T's PC to point
1400 back into the main instruction stream.
1401 n4) We resume T.
1402
1403 This approach depends on the following gdbarch methods:
1404
1405 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1406 indicate where to copy the instruction, and how much space must
1407 be reserved there. We use these in step n1.
1408
1409 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1410 address, and makes any necessary adjustments to the instruction,
1411 register contents, and memory. We use this in step n1.
1412
1413 - gdbarch_displaced_step_fixup adjusts registers and memory after
1414 we have successfully single-stepped the instruction, to yield the
1415 same effect the instruction would have had if we had executed it
1416 at its original address. We use this in step n3.
1417
1418 The gdbarch_displaced_step_copy_insn and
1419 gdbarch_displaced_step_fixup functions must be written so that
1420 copying an instruction with gdbarch_displaced_step_copy_insn,
1421 single-stepping across the copied instruction, and then applying
1422 gdbarch_displaced_insn_fixup should have the same effects on the
1423 thread's memory and registers as stepping the instruction in place
1424 would have. Exactly which responsibilities fall to the copy and
1425 which fall to the fixup is up to the author of those functions.
1426
1427 See the comments in gdbarch.sh for details.
1428
1429 Note that displaced stepping and software single-step cannot
1430 currently be used in combination, although with some care I think
1431 they could be made to. Software single-step works by placing
1432 breakpoints on all possible subsequent instructions; if the
1433 displaced instruction is a PC-relative jump, those breakpoints
1434 could fall in very strange places --- on pages that aren't
1435 executable, or at addresses that are not proper instruction
1436 boundaries. (We do generally let other threads run while we wait
1437 to hit the software single-step breakpoint, and they might
1438 encounter such a corrupted instruction.) One way to work around
1439 this would be to have gdbarch_displaced_step_copy_insn fully
1440 simulate the effect of PC-relative instructions (and return NULL)
1441 on architectures that use software single-stepping.
1442
1443 In non-stop mode, we can have independent and simultaneous step
1444 requests, so more than one thread may need to simultaneously step
1445 over a breakpoint. The current implementation assumes there is
1446 only one scratch space per process. In this case, we have to
1447 serialize access to the scratch space. If thread A wants to step
1448 over a breakpoint, but we are currently waiting for some other
1449 thread to complete a displaced step, we leave thread A stopped and
1450 place it in the displaced_step_request_queue. Whenever a displaced
1451 step finishes, we pick the next thread in the queue and start a new
1452 displaced step operation on it. See displaced_step_prepare and
1453 displaced_step_finish for details. */
1454
1455 /* Return true if THREAD is doing a displaced step. */
1456
1457 static bool
1458 displaced_step_in_progress_thread (thread_info *thread)
1459 {
1460 gdb_assert (thread != NULL);
1461
1462 return thread->displaced_step_state.in_progress ();
1463 }
1464
1465 /* Return true if INF has a thread doing a displaced step. */
1466
1467 static bool
1468 displaced_step_in_progress (inferior *inf)
1469 {
1470 return inf->displaced_step_state.in_progress_count > 0;
1471 }
1472
1473 /* Return true if any thread is doing a displaced step. */
1474
1475 static bool
1476 displaced_step_in_progress_any_thread ()
1477 {
1478 for (inferior *inf : all_non_exited_inferiors ())
1479 {
1480 if (displaced_step_in_progress (inf))
1481 return true;
1482 }
1483
1484 return false;
1485 }
1486
1487 static void
1488 infrun_inferior_exit (struct inferior *inf)
1489 {
1490 inf->displaced_step_state.reset ();
1491 }
1492
1493 static void
1494 infrun_inferior_execd (inferior *inf)
1495 {
1496 /* If some threads where was doing a displaced step in this inferior at the
1497 moment of the exec, they no longer exist. Even if the exec'ing thread
1498 doing a displaced step, we don't want to to any fixup nor restore displaced
1499 stepping buffer bytes. */
1500 inf->displaced_step_state.reset ();
1501
1502 for (thread_info *thread : inf->threads ())
1503 thread->displaced_step_state.reset ();
1504
1505 /* Since an in-line step is done with everything else stopped, if there was
1506 one in progress at the time of the exec, it must have been the exec'ing
1507 thread. */
1508 clear_step_over_info ();
1509 }
1510
1511 /* If ON, and the architecture supports it, GDB will use displaced
1512 stepping to step over breakpoints. If OFF, or if the architecture
1513 doesn't support it, GDB will instead use the traditional
1514 hold-and-step approach. If AUTO (which is the default), GDB will
1515 decide which technique to use to step over breakpoints depending on
1516 whether the target works in a non-stop way (see use_displaced_stepping). */
1517
1518 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1519
1520 static void
1521 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1522 struct cmd_list_element *c,
1523 const char *value)
1524 {
1525 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1526 fprintf_filtered (file,
1527 _("Debugger's willingness to use displaced stepping "
1528 "to step over breakpoints is %s (currently %s).\n"),
1529 value, target_is_non_stop_p () ? "on" : "off");
1530 else
1531 fprintf_filtered (file,
1532 _("Debugger's willingness to use displaced stepping "
1533 "to step over breakpoints is %s.\n"), value);
1534 }
1535
1536 /* Return true if the gdbarch implements the required methods to use
1537 displaced stepping. */
1538
1539 static bool
1540 gdbarch_supports_displaced_stepping (gdbarch *arch)
1541 {
1542 /* Only check for the presence of `prepare`. The gdbarch verification ensures
1543 that if `prepare` is provided, so is `finish`. */
1544 return gdbarch_displaced_step_prepare_p (arch);
1545 }
1546
1547 /* Return non-zero if displaced stepping can/should be used to step
1548 over breakpoints of thread TP. */
1549
1550 static bool
1551 use_displaced_stepping (thread_info *tp)
1552 {
1553 /* If the user disabled it explicitly, don't use displaced stepping. */
1554 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1555 return false;
1556
1557 /* If "auto", only use displaced stepping if the target operates in a non-stop
1558 way. */
1559 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1560 && !target_is_non_stop_p ())
1561 return false;
1562
1563 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1564
1565 /* If the architecture doesn't implement displaced stepping, don't use
1566 it. */
1567 if (!gdbarch_supports_displaced_stepping (gdbarch))
1568 return false;
1569
1570 /* If recording, don't use displaced stepping. */
1571 if (find_record_target () != nullptr)
1572 return false;
1573
1574 /* If displaced stepping failed before for this inferior, don't bother trying
1575 again. */
1576 if (tp->inf->displaced_step_state.failed_before)
1577 return false;
1578
1579 return true;
1580 }
1581
1582 /* Simple function wrapper around displaced_step_thread_state::reset. */
1583
1584 static void
1585 displaced_step_reset (displaced_step_thread_state *displaced)
1586 {
1587 displaced->reset ();
1588 }
1589
1590 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1591 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1592
1593 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1594
1595 /* See infrun.h. */
1596
1597 std::string
1598 displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
1599 {
1600 std::string ret;
1601
1602 for (size_t i = 0; i < len; i++)
1603 {
1604 if (i == 0)
1605 ret += string_printf ("%02x", buf[i]);
1606 else
1607 ret += string_printf (" %02x", buf[i]);
1608 }
1609
1610 return ret;
1611 }
1612
1613 /* Prepare to single-step, using displaced stepping.
1614
1615 Note that we cannot use displaced stepping when we have a signal to
1616 deliver. If we have a signal to deliver and an instruction to step
1617 over, then after the step, there will be no indication from the
1618 target whether the thread entered a signal handler or ignored the
1619 signal and stepped over the instruction successfully --- both cases
1620 result in a simple SIGTRAP. In the first case we mustn't do a
1621 fixup, and in the second case we must --- but we can't tell which.
1622 Comments in the code for 'random signals' in handle_inferior_event
1623 explain how we handle this case instead.
1624
1625 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1626 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1627 if displaced stepping this thread got queued; or
1628 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1629 stepped. */
1630
1631 static displaced_step_prepare_status
1632 displaced_step_prepare_throw (thread_info *tp)
1633 {
1634 regcache *regcache = get_thread_regcache (tp);
1635 struct gdbarch *gdbarch = regcache->arch ();
1636 displaced_step_thread_state &disp_step_thread_state
1637 = tp->displaced_step_state;
1638
1639 /* We should never reach this function if the architecture does not
1640 support displaced stepping. */
1641 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1642
1643 /* Nor if the thread isn't meant to step over a breakpoint. */
1644 gdb_assert (tp->control.trap_expected);
1645
1646 /* Disable range stepping while executing in the scratch pad. We
1647 want a single-step even if executing the displaced instruction in
1648 the scratch buffer lands within the stepping range (e.g., a
1649 jump/branch). */
1650 tp->control.may_range_step = 0;
1651
1652 /* We are about to start a displaced step for this thread. If one is already
1653 in progress, something's wrong. */
1654 gdb_assert (!disp_step_thread_state.in_progress ());
1655
1656 if (tp->inf->displaced_step_state.unavailable)
1657 {
1658 /* The gdbarch tells us it's not worth asking to try a prepare because
1659 it is likely that it will return unavailable, so don't bother asking. */
1660
1661 displaced_debug_printf ("deferring step of %s",
1662 target_pid_to_str (tp->ptid).c_str ());
1663
1664 global_thread_step_over_chain_enqueue (tp);
1665 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1666 }
1667
1668 displaced_debug_printf ("displaced-stepping %s now",
1669 target_pid_to_str (tp->ptid).c_str ());
1670
1671 scoped_restore_current_thread restore_thread;
1672
1673 switch_to_thread (tp);
1674
1675 CORE_ADDR original_pc = regcache_read_pc (regcache);
1676 CORE_ADDR displaced_pc;
1677
1678 displaced_step_prepare_status status
1679 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
1680
1681 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
1682 {
1683 displaced_debug_printf ("failed to prepare (%s)",
1684 target_pid_to_str (tp->ptid).c_str ());
1685
1686 return DISPLACED_STEP_PREPARE_STATUS_CANT;
1687 }
1688 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1689 {
1690 /* Not enough displaced stepping resources available, defer this
1691 request by placing it the queue. */
1692
1693 displaced_debug_printf ("not enough resources available, "
1694 "deferring step of %s",
1695 target_pid_to_str (tp->ptid).c_str ());
1696
1697 global_thread_step_over_chain_enqueue (tp);
1698
1699 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1700 }
1701
1702 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1703
1704 /* Save the information we need to fix things up if the step
1705 succeeds. */
1706 disp_step_thread_state.set (gdbarch);
1707
1708 tp->inf->displaced_step_state.in_progress_count++;
1709
1710 displaced_debug_printf ("prepared successfully thread=%s, "
1711 "original_pc=%s, displaced_pc=%s",
1712 target_pid_to_str (tp->ptid).c_str (),
1713 paddress (gdbarch, original_pc),
1714 paddress (gdbarch, displaced_pc));
1715
1716 return DISPLACED_STEP_PREPARE_STATUS_OK;
1717 }
1718
1719 /* Wrapper for displaced_step_prepare_throw that disabled further
1720 attempts at displaced stepping if we get a memory error. */
1721
1722 static displaced_step_prepare_status
1723 displaced_step_prepare (thread_info *thread)
1724 {
1725 displaced_step_prepare_status status
1726 = DISPLACED_STEP_PREPARE_STATUS_CANT;
1727
1728 try
1729 {
1730 status = displaced_step_prepare_throw (thread);
1731 }
1732 catch (const gdb_exception_error &ex)
1733 {
1734 if (ex.error != MEMORY_ERROR
1735 && ex.error != NOT_SUPPORTED_ERROR)
1736 throw;
1737
1738 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1739 ex.what ());
1740
1741 /* Be verbose if "set displaced-stepping" is "on", silent if
1742 "auto". */
1743 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1744 {
1745 warning (_("disabling displaced stepping: %s"),
1746 ex.what ());
1747 }
1748
1749 /* Disable further displaced stepping attempts. */
1750 thread->inf->displaced_step_state.failed_before = 1;
1751 }
1752
1753 return status;
1754 }
1755
1756 /* If we displaced stepped an instruction successfully, adjust registers and
1757 memory to yield the same effect the instruction would have had if we had
1758 executed it at its original address, and return
1759 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete,
1760 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
1761
1762 If the thread wasn't displaced stepping, return
1763 DISPLACED_STEP_FINISH_STATUS_OK as well. */
1764
1765 static displaced_step_finish_status
1766 displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1767 {
1768 displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
1769
1770 /* Was this thread performing a displaced step? */
1771 if (!displaced->in_progress ())
1772 return DISPLACED_STEP_FINISH_STATUS_OK;
1773
1774 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1775 event_thread->inf->displaced_step_state.in_progress_count--;
1776
1777 /* Fixup may need to read memory/registers. Switch to the thread
1778 that we're fixing up. Also, target_stopped_by_watchpoint checks
1779 the current thread, and displaced_step_restore performs ptid-dependent
1780 memory accesses using current_inferior(). */
1781 switch_to_thread (event_thread);
1782
1783 displaced_step_reset_cleanup cleanup (displaced);
1784
1785 /* Do the fixup, and release the resources acquired to do the displaced
1786 step. */
1787 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1788 event_thread, signal);
1789 }
1790
1791 /* Data to be passed around while handling an event. This data is
1792 discarded between events. */
1793 struct execution_control_state
1794 {
1795 process_stratum_target *target;
1796 ptid_t ptid;
1797 /* The thread that got the event, if this was a thread event; NULL
1798 otherwise. */
1799 struct thread_info *event_thread;
1800
1801 struct target_waitstatus ws;
1802 int stop_func_filled_in;
1803 CORE_ADDR stop_func_start;
1804 CORE_ADDR stop_func_end;
1805 const char *stop_func_name;
1806 int wait_some_more;
1807
1808 /* True if the event thread hit the single-step breakpoint of
1809 another thread. Thus the event doesn't cause a stop, the thread
1810 needs to be single-stepped past the single-step breakpoint before
1811 we can switch back to the original stepping thread. */
1812 int hit_singlestep_breakpoint;
1813 };
1814
1815 /* Clear ECS and set it to point at TP. */
1816
1817 static void
1818 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1819 {
1820 memset (ecs, 0, sizeof (*ecs));
1821 ecs->event_thread = tp;
1822 ecs->ptid = tp->ptid;
1823 }
1824
1825 static void keep_going_pass_signal (struct execution_control_state *ecs);
1826 static void prepare_to_wait (struct execution_control_state *ecs);
1827 static bool keep_going_stepped_thread (struct thread_info *tp);
1828 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1829
1830 /* Are there any pending step-over requests? If so, run all we can
1831 now and return true. Otherwise, return false. */
1832
1833 static bool
1834 start_step_over (void)
1835 {
1836 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1837
1838 thread_info *next;
1839
1840 /* Don't start a new step-over if we already have an in-line
1841 step-over operation ongoing. */
1842 if (step_over_info_valid_p ())
1843 return false;
1844
1845 /* Steal the global thread step over chain. As we try to initiate displaced
1846 steps, threads will be enqueued in the global chain if no buffers are
1847 available. If we iterated on the global chain directly, we might iterate
1848 indefinitely. */
1849 thread_info *threads_to_step = global_thread_step_over_chain_head;
1850 global_thread_step_over_chain_head = NULL;
1851
1852 infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1853 thread_step_over_chain_length (threads_to_step));
1854
1855 bool started = false;
1856
1857 /* On scope exit (whatever the reason, return or exception), if there are
1858 threads left in the THREADS_TO_STEP chain, put back these threads in the
1859 global list. */
1860 SCOPE_EXIT
1861 {
1862 if (threads_to_step == nullptr)
1863 infrun_debug_printf ("step-over queue now empty");
1864 else
1865 {
1866 infrun_debug_printf ("putting back %d threads to step in global queue",
1867 thread_step_over_chain_length (threads_to_step));
1868
1869 global_thread_step_over_chain_enqueue_chain (threads_to_step);
1870 }
1871 };
1872
1873 for (thread_info *tp = threads_to_step; tp != NULL; tp = next)
1874 {
1875 struct execution_control_state ecss;
1876 struct execution_control_state *ecs = &ecss;
1877 step_over_what step_what;
1878 int must_be_in_line;
1879
1880 gdb_assert (!tp->stop_requested);
1881
1882 next = thread_step_over_chain_next (threads_to_step, tp);
1883
1884 if (tp->inf->displaced_step_state.unavailable)
1885 {
1886 /* The arch told us to not even try preparing another displaced step
1887 for this inferior. Just leave the thread in THREADS_TO_STEP, it
1888 will get moved to the global chain on scope exit. */
1889 continue;
1890 }
1891
1892 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong
1893 while we try to prepare the displaced step, we don't add it back to
1894 the global step over chain. This is to avoid a thread staying in the
1895 step over chain indefinitely if something goes wrong when resuming it
1896 If the error is intermittent and it still needs a step over, it will
1897 get enqueued again when we try to resume it normally. */
1898 thread_step_over_chain_remove (&threads_to_step, tp);
1899
1900 step_what = thread_still_needs_step_over (tp);
1901 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1902 || ((step_what & STEP_OVER_BREAKPOINT)
1903 && !use_displaced_stepping (tp)));
1904
1905 /* We currently stop all threads of all processes to step-over
1906 in-line. If we need to start a new in-line step-over, let
1907 any pending displaced steps finish first. */
1908 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1909 {
1910 global_thread_step_over_chain_enqueue (tp);
1911 continue;
1912 }
1913
1914 if (tp->control.trap_expected
1915 || tp->resumed
1916 || tp->executing)
1917 {
1918 internal_error (__FILE__, __LINE__,
1919 "[%s] has inconsistent state: "
1920 "trap_expected=%d, resumed=%d, executing=%d\n",
1921 target_pid_to_str (tp->ptid).c_str (),
1922 tp->control.trap_expected,
1923 tp->resumed,
1924 tp->executing);
1925 }
1926
1927 infrun_debug_printf ("resuming [%s] for step-over",
1928 target_pid_to_str (tp->ptid).c_str ());
1929
1930 /* keep_going_pass_signal skips the step-over if the breakpoint
1931 is no longer inserted. In all-stop, we want to keep looking
1932 for a thread that needs a step-over instead of resuming TP,
1933 because we wouldn't be able to resume anything else until the
1934 target stops again. In non-stop, the resume always resumes
1935 only TP, so it's OK to let the thread resume freely. */
1936 if (!target_is_non_stop_p () && !step_what)
1937 continue;
1938
1939 switch_to_thread (tp);
1940 reset_ecs (ecs, tp);
1941 keep_going_pass_signal (ecs);
1942
1943 if (!ecs->wait_some_more)
1944 error (_("Command aborted."));
1945
1946 /* If the thread's step over could not be initiated because no buffers
1947 were available, it was re-added to the global step over chain. */
1948 if (tp->resumed)
1949 {
1950 infrun_debug_printf ("[%s] was resumed.",
1951 target_pid_to_str (tp->ptid).c_str ());
1952 gdb_assert (!thread_is_in_step_over_chain (tp));
1953 }
1954 else
1955 {
1956 infrun_debug_printf ("[%s] was NOT resumed.",
1957 target_pid_to_str (tp->ptid).c_str ());
1958 gdb_assert (thread_is_in_step_over_chain (tp));
1959 }
1960
1961 /* If we started a new in-line step-over, we're done. */
1962 if (step_over_info_valid_p ())
1963 {
1964 gdb_assert (tp->control.trap_expected);
1965 started = true;
1966 break;
1967 }
1968
1969 if (!target_is_non_stop_p ())
1970 {
1971 /* On all-stop, shouldn't have resumed unless we needed a
1972 step over. */
1973 gdb_assert (tp->control.trap_expected
1974 || tp->step_after_step_resume_breakpoint);
1975
1976 /* With remote targets (at least), in all-stop, we can't
1977 issue any further remote commands until the program stops
1978 again. */
1979 started = true;
1980 break;
1981 }
1982
1983 /* Either the thread no longer needed a step-over, or a new
1984 displaced stepping sequence started. Even in the latter
1985 case, continue looking. Maybe we can also start another
1986 displaced step on a thread of other process. */
1987 }
1988
1989 return started;
1990 }
1991
1992 /* Update global variables holding ptids to hold NEW_PTID if they were
1993 holding OLD_PTID. */
1994 static void
1995 infrun_thread_ptid_changed (process_stratum_target *target,
1996 ptid_t old_ptid, ptid_t new_ptid)
1997 {
1998 if (inferior_ptid == old_ptid
1999 && current_inferior ()->process_target () == target)
2000 inferior_ptid = new_ptid;
2001 }
2002
2003 \f
2004
2005 static const char schedlock_off[] = "off";
2006 static const char schedlock_on[] = "on";
2007 static const char schedlock_step[] = "step";
2008 static const char schedlock_replay[] = "replay";
2009 static const char *const scheduler_enums[] = {
2010 schedlock_off,
2011 schedlock_on,
2012 schedlock_step,
2013 schedlock_replay,
2014 NULL
2015 };
2016 static const char *scheduler_mode = schedlock_replay;
2017 static void
2018 show_scheduler_mode (struct ui_file *file, int from_tty,
2019 struct cmd_list_element *c, const char *value)
2020 {
2021 fprintf_filtered (file,
2022 _("Mode for locking scheduler "
2023 "during execution is \"%s\".\n"),
2024 value);
2025 }
2026
2027 static void
2028 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2029 {
2030 if (!target_can_lock_scheduler ())
2031 {
2032 scheduler_mode = schedlock_off;
2033 error (_("Target '%s' cannot support this command."),
2034 target_shortname ());
2035 }
2036 }
2037
2038 /* True if execution commands resume all threads of all processes by
2039 default; otherwise, resume only threads of the current inferior
2040 process. */
2041 bool sched_multi = false;
2042
2043 /* Try to setup for software single stepping over the specified location.
2044 Return true if target_resume() should use hardware single step.
2045
2046 GDBARCH the current gdbarch.
2047 PC the location to step over. */
2048
2049 static bool
2050 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2051 {
2052 bool hw_step = true;
2053
2054 if (execution_direction == EXEC_FORWARD
2055 && gdbarch_software_single_step_p (gdbarch))
2056 hw_step = !insert_single_step_breakpoints (gdbarch);
2057
2058 return hw_step;
2059 }
2060
2061 /* See infrun.h. */
2062
2063 ptid_t
2064 user_visible_resume_ptid (int step)
2065 {
2066 ptid_t resume_ptid;
2067
2068 if (non_stop)
2069 {
2070 /* With non-stop mode on, threads are always handled
2071 individually. */
2072 resume_ptid = inferior_ptid;
2073 }
2074 else if ((scheduler_mode == schedlock_on)
2075 || (scheduler_mode == schedlock_step && step))
2076 {
2077 /* User-settable 'scheduler' mode requires solo thread
2078 resume. */
2079 resume_ptid = inferior_ptid;
2080 }
2081 else if ((scheduler_mode == schedlock_replay)
2082 && target_record_will_replay (minus_one_ptid, execution_direction))
2083 {
2084 /* User-settable 'scheduler' mode requires solo thread resume in replay
2085 mode. */
2086 resume_ptid = inferior_ptid;
2087 }
2088 else if (!sched_multi && target_supports_multi_process ())
2089 {
2090 /* Resume all threads of the current process (and none of other
2091 processes). */
2092 resume_ptid = ptid_t (inferior_ptid.pid ());
2093 }
2094 else
2095 {
2096 /* Resume all threads of all processes. */
2097 resume_ptid = RESUME_ALL;
2098 }
2099
2100 return resume_ptid;
2101 }
2102
2103 /* See infrun.h. */
2104
2105 process_stratum_target *
2106 user_visible_resume_target (ptid_t resume_ptid)
2107 {
2108 return (resume_ptid == minus_one_ptid && sched_multi
2109 ? NULL
2110 : current_inferior ()->process_target ());
2111 }
2112
2113 /* Return a ptid representing the set of threads that we will resume,
2114 in the perspective of the target, assuming run control handling
2115 does not require leaving some threads stopped (e.g., stepping past
2116 breakpoint). USER_STEP indicates whether we're about to start the
2117 target for a stepping command. */
2118
2119 static ptid_t
2120 internal_resume_ptid (int user_step)
2121 {
2122 /* In non-stop, we always control threads individually. Note that
2123 the target may always work in non-stop mode even with "set
2124 non-stop off", in which case user_visible_resume_ptid could
2125 return a wildcard ptid. */
2126 if (target_is_non_stop_p ())
2127 return inferior_ptid;
2128 else
2129 return user_visible_resume_ptid (user_step);
2130 }
2131
2132 /* Wrapper for target_resume, that handles infrun-specific
2133 bookkeeping. */
2134
2135 static void
2136 do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2137 {
2138 struct thread_info *tp = inferior_thread ();
2139
2140 gdb_assert (!tp->stop_requested);
2141
2142 /* Install inferior's terminal modes. */
2143 target_terminal::inferior ();
2144
2145 /* Avoid confusing the next resume, if the next stop/resume
2146 happens to apply to another thread. */
2147 tp->suspend.stop_signal = GDB_SIGNAL_0;
2148
2149 /* Advise target which signals may be handled silently.
2150
2151 If we have removed breakpoints because we are stepping over one
2152 in-line (in any thread), we need to receive all signals to avoid
2153 accidentally skipping a breakpoint during execution of a signal
2154 handler.
2155
2156 Likewise if we're displaced stepping, otherwise a trap for a
2157 breakpoint in a signal handler might be confused with the
2158 displaced step finishing. We don't make the displaced_step_finish
2159 step distinguish the cases instead, because:
2160
2161 - a backtrace while stopped in the signal handler would show the
2162 scratch pad as frame older than the signal handler, instead of
2163 the real mainline code.
2164
2165 - when the thread is later resumed, the signal handler would
2166 return to the scratch pad area, which would no longer be
2167 valid. */
2168 if (step_over_info_valid_p ()
2169 || displaced_step_in_progress (tp->inf))
2170 target_pass_signals ({});
2171 else
2172 target_pass_signals (signal_pass);
2173
2174 target_resume (resume_ptid, step, sig);
2175
2176 target_commit_resume ();
2177
2178 if (target_can_async_p ())
2179 target_async (1);
2180 }
2181
2182 /* Resume the inferior. SIG is the signal to give the inferior
2183 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2184 call 'resume', which handles exceptions. */
2185
2186 static void
2187 resume_1 (enum gdb_signal sig)
2188 {
2189 struct regcache *regcache = get_current_regcache ();
2190 struct gdbarch *gdbarch = regcache->arch ();
2191 struct thread_info *tp = inferior_thread ();
2192 const address_space *aspace = regcache->aspace ();
2193 ptid_t resume_ptid;
2194 /* This represents the user's step vs continue request. When
2195 deciding whether "set scheduler-locking step" applies, it's the
2196 user's intention that counts. */
2197 const int user_step = tp->control.stepping_command;
2198 /* This represents what we'll actually request the target to do.
2199 This can decay from a step to a continue, if e.g., we need to
2200 implement single-stepping with breakpoints (software
2201 single-step). */
2202 bool step;
2203
2204 gdb_assert (!tp->stop_requested);
2205 gdb_assert (!thread_is_in_step_over_chain (tp));
2206
2207 if (tp->suspend.waitstatus_pending_p)
2208 {
2209 infrun_debug_printf
2210 ("thread %s has pending wait "
2211 "status %s (currently_stepping=%d).",
2212 target_pid_to_str (tp->ptid).c_str (),
2213 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2214 currently_stepping (tp));
2215
2216 tp->inf->process_target ()->threads_executing = true;
2217 tp->resumed = true;
2218
2219 /* FIXME: What should we do if we are supposed to resume this
2220 thread with a signal? Maybe we should maintain a queue of
2221 pending signals to deliver. */
2222 if (sig != GDB_SIGNAL_0)
2223 {
2224 warning (_("Couldn't deliver signal %s to %s."),
2225 gdb_signal_to_name (sig),
2226 target_pid_to_str (tp->ptid).c_str ());
2227 }
2228
2229 tp->suspend.stop_signal = GDB_SIGNAL_0;
2230
2231 if (target_can_async_p ())
2232 {
2233 target_async (1);
2234 /* Tell the event loop we have an event to process. */
2235 mark_async_event_handler (infrun_async_inferior_event_token);
2236 }
2237 return;
2238 }
2239
2240 tp->stepped_breakpoint = 0;
2241
2242 /* Depends on stepped_breakpoint. */
2243 step = currently_stepping (tp);
2244
2245 if (current_inferior ()->waiting_for_vfork_done)
2246 {
2247 /* Don't try to single-step a vfork parent that is waiting for
2248 the child to get out of the shared memory region (by exec'ing
2249 or exiting). This is particularly important on software
2250 single-step archs, as the child process would trip on the
2251 software single step breakpoint inserted for the parent
2252 process. Since the parent will not actually execute any
2253 instruction until the child is out of the shared region (such
2254 are vfork's semantics), it is safe to simply continue it.
2255 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2256 the parent, and tell it to `keep_going', which automatically
2257 re-sets it stepping. */
2258 infrun_debug_printf ("resume : clear step");
2259 step = false;
2260 }
2261
2262 CORE_ADDR pc = regcache_read_pc (regcache);
2263
2264 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2265 "current thread [%s] at %s",
2266 step, gdb_signal_to_symbol_string (sig),
2267 tp->control.trap_expected,
2268 target_pid_to_str (inferior_ptid).c_str (),
2269 paddress (gdbarch, pc));
2270
2271 /* Normally, by the time we reach `resume', the breakpoints are either
2272 removed or inserted, as appropriate. The exception is if we're sitting
2273 at a permanent breakpoint; we need to step over it, but permanent
2274 breakpoints can't be removed. So we have to test for it here. */
2275 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2276 {
2277 if (sig != GDB_SIGNAL_0)
2278 {
2279 /* We have a signal to pass to the inferior. The resume
2280 may, or may not take us to the signal handler. If this
2281 is a step, we'll need to stop in the signal handler, if
2282 there's one, (if the target supports stepping into
2283 handlers), or in the next mainline instruction, if
2284 there's no handler. If this is a continue, we need to be
2285 sure to run the handler with all breakpoints inserted.
2286 In all cases, set a breakpoint at the current address
2287 (where the handler returns to), and once that breakpoint
2288 is hit, resume skipping the permanent breakpoint. If
2289 that breakpoint isn't hit, then we've stepped into the
2290 signal handler (or hit some other event). We'll delete
2291 the step-resume breakpoint then. */
2292
2293 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2294 "deliver signal first");
2295
2296 clear_step_over_info ();
2297 tp->control.trap_expected = 0;
2298
2299 if (tp->control.step_resume_breakpoint == NULL)
2300 {
2301 /* Set a "high-priority" step-resume, as we don't want
2302 user breakpoints at PC to trigger (again) when this
2303 hits. */
2304 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2305 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2306
2307 tp->step_after_step_resume_breakpoint = step;
2308 }
2309
2310 insert_breakpoints ();
2311 }
2312 else
2313 {
2314 /* There's no signal to pass, we can go ahead and skip the
2315 permanent breakpoint manually. */
2316 infrun_debug_printf ("skipping permanent breakpoint");
2317 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2318 /* Update pc to reflect the new address from which we will
2319 execute instructions. */
2320 pc = regcache_read_pc (regcache);
2321
2322 if (step)
2323 {
2324 /* We've already advanced the PC, so the stepping part
2325 is done. Now we need to arrange for a trap to be
2326 reported to handle_inferior_event. Set a breakpoint
2327 at the current PC, and run to it. Don't update
2328 prev_pc, because if we end in
2329 switch_back_to_stepped_thread, we want the "expected
2330 thread advanced also" branch to be taken. IOW, we
2331 don't want this thread to step further from PC
2332 (overstep). */
2333 gdb_assert (!step_over_info_valid_p ());
2334 insert_single_step_breakpoint (gdbarch, aspace, pc);
2335 insert_breakpoints ();
2336
2337 resume_ptid = internal_resume_ptid (user_step);
2338 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2339 tp->resumed = true;
2340 return;
2341 }
2342 }
2343 }
2344
2345 /* If we have a breakpoint to step over, make sure to do a single
2346 step only. Same if we have software watchpoints. */
2347 if (tp->control.trap_expected || bpstat_should_step ())
2348 tp->control.may_range_step = 0;
2349
2350 /* If displaced stepping is enabled, step over breakpoints by executing a
2351 copy of the instruction at a different address.
2352
2353 We can't use displaced stepping when we have a signal to deliver;
2354 the comments for displaced_step_prepare explain why. The
2355 comments in the handle_inferior event for dealing with 'random
2356 signals' explain what we do instead.
2357
2358 We can't use displaced stepping when we are waiting for vfork_done
2359 event, displaced stepping breaks the vfork child similarly as single
2360 step software breakpoint. */
2361 if (tp->control.trap_expected
2362 && use_displaced_stepping (tp)
2363 && !step_over_info_valid_p ()
2364 && sig == GDB_SIGNAL_0
2365 && !current_inferior ()->waiting_for_vfork_done)
2366 {
2367 displaced_step_prepare_status prepare_status
2368 = displaced_step_prepare (tp);
2369
2370 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2371 {
2372 infrun_debug_printf ("Got placed in step-over queue");
2373
2374 tp->control.trap_expected = 0;
2375 return;
2376 }
2377 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
2378 {
2379 /* Fallback to stepping over the breakpoint in-line. */
2380
2381 if (target_is_non_stop_p ())
2382 stop_all_threads ();
2383
2384 set_step_over_info (regcache->aspace (),
2385 regcache_read_pc (regcache), 0, tp->global_num);
2386
2387 step = maybe_software_singlestep (gdbarch, pc);
2388
2389 insert_breakpoints ();
2390 }
2391 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2392 {
2393 /* Update pc to reflect the new address from which we will
2394 execute instructions due to displaced stepping. */
2395 pc = regcache_read_pc (get_thread_regcache (tp));
2396
2397 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2398 }
2399 else
2400 gdb_assert_not_reached (_("Invalid displaced_step_prepare_status "
2401 "value."));
2402 }
2403
2404 /* Do we need to do it the hard way, w/temp breakpoints? */
2405 else if (step)
2406 step = maybe_software_singlestep (gdbarch, pc);
2407
2408 /* Currently, our software single-step implementation leads to different
2409 results than hardware single-stepping in one situation: when stepping
2410 into delivering a signal which has an associated signal handler,
2411 hardware single-step will stop at the first instruction of the handler,
2412 while software single-step will simply skip execution of the handler.
2413
2414 For now, this difference in behavior is accepted since there is no
2415 easy way to actually implement single-stepping into a signal handler
2416 without kernel support.
2417
2418 However, there is one scenario where this difference leads to follow-on
2419 problems: if we're stepping off a breakpoint by removing all breakpoints
2420 and then single-stepping. In this case, the software single-step
2421 behavior means that even if there is a *breakpoint* in the signal
2422 handler, GDB still would not stop.
2423
2424 Fortunately, we can at least fix this particular issue. We detect
2425 here the case where we are about to deliver a signal while software
2426 single-stepping with breakpoints removed. In this situation, we
2427 revert the decisions to remove all breakpoints and insert single-
2428 step breakpoints, and instead we install a step-resume breakpoint
2429 at the current address, deliver the signal without stepping, and
2430 once we arrive back at the step-resume breakpoint, actually step
2431 over the breakpoint we originally wanted to step over. */
2432 if (thread_has_single_step_breakpoints_set (tp)
2433 && sig != GDB_SIGNAL_0
2434 && step_over_info_valid_p ())
2435 {
2436 /* If we have nested signals or a pending signal is delivered
2437 immediately after a handler returns, might already have
2438 a step-resume breakpoint set on the earlier handler. We cannot
2439 set another step-resume breakpoint; just continue on until the
2440 original breakpoint is hit. */
2441 if (tp->control.step_resume_breakpoint == NULL)
2442 {
2443 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2444 tp->step_after_step_resume_breakpoint = 1;
2445 }
2446
2447 delete_single_step_breakpoints (tp);
2448
2449 clear_step_over_info ();
2450 tp->control.trap_expected = 0;
2451
2452 insert_breakpoints ();
2453 }
2454
2455 /* If STEP is set, it's a request to use hardware stepping
2456 facilities. But in that case, we should never
2457 use singlestep breakpoint. */
2458 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2459
2460 /* Decide the set of threads to ask the target to resume. */
2461 if (tp->control.trap_expected)
2462 {
2463 /* We're allowing a thread to run past a breakpoint it has
2464 hit, either by single-stepping the thread with the breakpoint
2465 removed, or by displaced stepping, with the breakpoint inserted.
2466 In the former case, we need to single-step only this thread,
2467 and keep others stopped, as they can miss this breakpoint if
2468 allowed to run. That's not really a problem for displaced
2469 stepping, but, we still keep other threads stopped, in case
2470 another thread is also stopped for a breakpoint waiting for
2471 its turn in the displaced stepping queue. */
2472 resume_ptid = inferior_ptid;
2473 }
2474 else
2475 resume_ptid = internal_resume_ptid (user_step);
2476
2477 if (execution_direction != EXEC_REVERSE
2478 && step && breakpoint_inserted_here_p (aspace, pc))
2479 {
2480 /* There are two cases where we currently need to step a
2481 breakpoint instruction when we have a signal to deliver:
2482
2483 - See handle_signal_stop where we handle random signals that
2484 could take out us out of the stepping range. Normally, in
2485 that case we end up continuing (instead of stepping) over the
2486 signal handler with a breakpoint at PC, but there are cases
2487 where we should _always_ single-step, even if we have a
2488 step-resume breakpoint, like when a software watchpoint is
2489 set. Assuming single-stepping and delivering a signal at the
2490 same time would takes us to the signal handler, then we could
2491 have removed the breakpoint at PC to step over it. However,
2492 some hardware step targets (like e.g., Mac OS) can't step
2493 into signal handlers, and for those, we need to leave the
2494 breakpoint at PC inserted, as otherwise if the handler
2495 recurses and executes PC again, it'll miss the breakpoint.
2496 So we leave the breakpoint inserted anyway, but we need to
2497 record that we tried to step a breakpoint instruction, so
2498 that adjust_pc_after_break doesn't end up confused.
2499
2500 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2501 in one thread after another thread that was stepping had been
2502 momentarily paused for a step-over. When we re-resume the
2503 stepping thread, it may be resumed from that address with a
2504 breakpoint that hasn't trapped yet. Seen with
2505 gdb.threads/non-stop-fair-events.exp, on targets that don't
2506 do displaced stepping. */
2507
2508 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2509 target_pid_to_str (tp->ptid).c_str ());
2510
2511 tp->stepped_breakpoint = 1;
2512
2513 /* Most targets can step a breakpoint instruction, thus
2514 executing it normally. But if this one cannot, just
2515 continue and we will hit it anyway. */
2516 if (gdbarch_cannot_step_breakpoint (gdbarch))
2517 step = false;
2518 }
2519
2520 if (debug_displaced
2521 && tp->control.trap_expected
2522 && use_displaced_stepping (tp)
2523 && !step_over_info_valid_p ())
2524 {
2525 struct regcache *resume_regcache = get_thread_regcache (tp);
2526 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2527 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2528 gdb_byte buf[4];
2529
2530 read_memory (actual_pc, buf, sizeof (buf));
2531 displaced_debug_printf ("run %s: %s",
2532 paddress (resume_gdbarch, actual_pc),
2533 displaced_step_dump_bytes
2534 (buf, sizeof (buf)).c_str ());
2535 }
2536
2537 if (tp->control.may_range_step)
2538 {
2539 /* If we're resuming a thread with the PC out of the step
2540 range, then we're doing some nested/finer run control
2541 operation, like stepping the thread out of the dynamic
2542 linker or the displaced stepping scratch pad. We
2543 shouldn't have allowed a range step then. */
2544 gdb_assert (pc_in_thread_step_range (pc, tp));
2545 }
2546
2547 do_target_resume (resume_ptid, step, sig);
2548 tp->resumed = true;
2549 }
2550
2551 /* Resume the inferior. SIG is the signal to give the inferior
2552 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2553 rolls back state on error. */
2554
2555 static void
2556 resume (gdb_signal sig)
2557 {
2558 try
2559 {
2560 resume_1 (sig);
2561 }
2562 catch (const gdb_exception &ex)
2563 {
2564 /* If resuming is being aborted for any reason, delete any
2565 single-step breakpoint resume_1 may have created, to avoid
2566 confusing the following resumption, and to avoid leaving
2567 single-step breakpoints perturbing other threads, in case
2568 we're running in non-stop mode. */
2569 if (inferior_ptid != null_ptid)
2570 delete_single_step_breakpoints (inferior_thread ());
2571 throw;
2572 }
2573 }
2574
2575 \f
2576 /* Proceeding. */
2577
2578 /* See infrun.h. */
2579
2580 /* Counter that tracks number of user visible stops. This can be used
2581 to tell whether a command has proceeded the inferior past the
2582 current location. This allows e.g., inferior function calls in
2583 breakpoint commands to not interrupt the command list. When the
2584 call finishes successfully, the inferior is standing at the same
2585 breakpoint as if nothing happened (and so we don't call
2586 normal_stop). */
2587 static ULONGEST current_stop_id;
2588
2589 /* See infrun.h. */
2590
2591 ULONGEST
2592 get_stop_id (void)
2593 {
2594 return current_stop_id;
2595 }
2596
2597 /* Called when we report a user visible stop. */
2598
2599 static void
2600 new_stop_id (void)
2601 {
2602 current_stop_id++;
2603 }
2604
2605 /* Clear out all variables saying what to do when inferior is continued.
2606 First do this, then set the ones you want, then call `proceed'. */
2607
2608 static void
2609 clear_proceed_status_thread (struct thread_info *tp)
2610 {
2611 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2612
2613 /* If we're starting a new sequence, then the previous finished
2614 single-step is no longer relevant. */
2615 if (tp->suspend.waitstatus_pending_p)
2616 {
2617 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2618 {
2619 infrun_debug_printf ("pending event of %s was a finished step. "
2620 "Discarding.",
2621 target_pid_to_str (tp->ptid).c_str ());
2622
2623 tp->suspend.waitstatus_pending_p = 0;
2624 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2625 }
2626 else
2627 {
2628 infrun_debug_printf
2629 ("thread %s has pending wait status %s (currently_stepping=%d).",
2630 target_pid_to_str (tp->ptid).c_str (),
2631 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2632 currently_stepping (tp));
2633 }
2634 }
2635
2636 /* If this signal should not be seen by program, give it zero.
2637 Used for debugging signals. */
2638 if (!signal_pass_state (tp->suspend.stop_signal))
2639 tp->suspend.stop_signal = GDB_SIGNAL_0;
2640
2641 delete tp->thread_fsm;
2642 tp->thread_fsm = NULL;
2643
2644 tp->control.trap_expected = 0;
2645 tp->control.step_range_start = 0;
2646 tp->control.step_range_end = 0;
2647 tp->control.may_range_step = 0;
2648 tp->control.step_frame_id = null_frame_id;
2649 tp->control.step_stack_frame_id = null_frame_id;
2650 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2651 tp->control.step_start_function = NULL;
2652 tp->stop_requested = 0;
2653
2654 tp->control.stop_step = 0;
2655
2656 tp->control.proceed_to_finish = 0;
2657
2658 tp->control.stepping_command = 0;
2659
2660 /* Discard any remaining commands or status from previous stop. */
2661 bpstat_clear (&tp->control.stop_bpstat);
2662 }
2663
2664 void
2665 clear_proceed_status (int step)
2666 {
2667 /* With scheduler-locking replay, stop replaying other threads if we're
2668 not replaying the user-visible resume ptid.
2669
2670 This is a convenience feature to not require the user to explicitly
2671 stop replaying the other threads. We're assuming that the user's
2672 intent is to resume tracing the recorded process. */
2673 if (!non_stop && scheduler_mode == schedlock_replay
2674 && target_record_is_replaying (minus_one_ptid)
2675 && !target_record_will_replay (user_visible_resume_ptid (step),
2676 execution_direction))
2677 target_record_stop_replaying ();
2678
2679 if (!non_stop && inferior_ptid != null_ptid)
2680 {
2681 ptid_t resume_ptid = user_visible_resume_ptid (step);
2682 process_stratum_target *resume_target
2683 = user_visible_resume_target (resume_ptid);
2684
2685 /* In all-stop mode, delete the per-thread status of all threads
2686 we're about to resume, implicitly and explicitly. */
2687 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2688 clear_proceed_status_thread (tp);
2689 }
2690
2691 if (inferior_ptid != null_ptid)
2692 {
2693 struct inferior *inferior;
2694
2695 if (non_stop)
2696 {
2697 /* If in non-stop mode, only delete the per-thread status of
2698 the current thread. */
2699 clear_proceed_status_thread (inferior_thread ());
2700 }
2701
2702 inferior = current_inferior ();
2703 inferior->control.stop_soon = NO_STOP_QUIETLY;
2704 }
2705
2706 gdb::observers::about_to_proceed.notify ();
2707 }
2708
2709 /* Returns true if TP is still stopped at a breakpoint that needs
2710 stepping-over in order to make progress. If the breakpoint is gone
2711 meanwhile, we can skip the whole step-over dance. */
2712
2713 static bool
2714 thread_still_needs_step_over_bp (struct thread_info *tp)
2715 {
2716 if (tp->stepping_over_breakpoint)
2717 {
2718 struct regcache *regcache = get_thread_regcache (tp);
2719
2720 if (breakpoint_here_p (regcache->aspace (),
2721 regcache_read_pc (regcache))
2722 == ordinary_breakpoint_here)
2723 return true;
2724
2725 tp->stepping_over_breakpoint = 0;
2726 }
2727
2728 return false;
2729 }
2730
2731 /* Check whether thread TP still needs to start a step-over in order
2732 to make progress when resumed. Returns an bitwise or of enum
2733 step_over_what bits, indicating what needs to be stepped over. */
2734
2735 static step_over_what
2736 thread_still_needs_step_over (struct thread_info *tp)
2737 {
2738 step_over_what what = 0;
2739
2740 if (thread_still_needs_step_over_bp (tp))
2741 what |= STEP_OVER_BREAKPOINT;
2742
2743 if (tp->stepping_over_watchpoint
2744 && !target_have_steppable_watchpoint ())
2745 what |= STEP_OVER_WATCHPOINT;
2746
2747 return what;
2748 }
2749
2750 /* Returns true if scheduler locking applies. STEP indicates whether
2751 we're about to do a step/next-like command to a thread. */
2752
2753 static bool
2754 schedlock_applies (struct thread_info *tp)
2755 {
2756 return (scheduler_mode == schedlock_on
2757 || (scheduler_mode == schedlock_step
2758 && tp->control.stepping_command)
2759 || (scheduler_mode == schedlock_replay
2760 && target_record_will_replay (minus_one_ptid,
2761 execution_direction)));
2762 }
2763
2764 /* Calls target_commit_resume on all targets. */
2765
2766 static void
2767 commit_resume_all_targets ()
2768 {
2769 scoped_restore_current_thread restore_thread;
2770
2771 /* Map between process_target and a representative inferior. This
2772 is to avoid committing a resume in the same target more than
2773 once. Resumptions must be idempotent, so this is an
2774 optimization. */
2775 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2776
2777 for (inferior *inf : all_non_exited_inferiors ())
2778 if (inf->has_execution ())
2779 conn_inf[inf->process_target ()] = inf;
2780
2781 for (const auto &ci : conn_inf)
2782 {
2783 inferior *inf = ci.second;
2784 switch_to_inferior_no_thread (inf);
2785 target_commit_resume ();
2786 }
2787 }
2788
2789 /* Check that all the targets we're about to resume are in non-stop
2790 mode. Ideally, we'd only care whether all targets support
2791 target-async, but we're not there yet. E.g., stop_all_threads
2792 doesn't know how to handle all-stop targets. Also, the remote
2793 protocol in all-stop mode is synchronous, irrespective of
2794 target-async, which means that things like a breakpoint re-set
2795 triggered by one target would try to read memory from all targets
2796 and fail. */
2797
2798 static void
2799 check_multi_target_resumption (process_stratum_target *resume_target)
2800 {
2801 if (!non_stop && resume_target == nullptr)
2802 {
2803 scoped_restore_current_thread restore_thread;
2804
2805 /* This is used to track whether we're resuming more than one
2806 target. */
2807 process_stratum_target *first_connection = nullptr;
2808
2809 /* The first inferior we see with a target that does not work in
2810 always-non-stop mode. */
2811 inferior *first_not_non_stop = nullptr;
2812
2813 for (inferior *inf : all_non_exited_inferiors ())
2814 {
2815 switch_to_inferior_no_thread (inf);
2816
2817 if (!target_has_execution ())
2818 continue;
2819
2820 process_stratum_target *proc_target
2821 = current_inferior ()->process_target();
2822
2823 if (!target_is_non_stop_p ())
2824 first_not_non_stop = inf;
2825
2826 if (first_connection == nullptr)
2827 first_connection = proc_target;
2828 else if (first_connection != proc_target
2829 && first_not_non_stop != nullptr)
2830 {
2831 switch_to_inferior_no_thread (first_not_non_stop);
2832
2833 proc_target = current_inferior ()->process_target();
2834
2835 error (_("Connection %d (%s) does not support "
2836 "multi-target resumption."),
2837 proc_target->connection_number,
2838 make_target_connection_string (proc_target).c_str ());
2839 }
2840 }
2841 }
2842 }
2843
2844 /* Basic routine for continuing the program in various fashions.
2845
2846 ADDR is the address to resume at, or -1 for resume where stopped.
2847 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2848 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2849
2850 You should call clear_proceed_status before calling proceed. */
2851
2852 void
2853 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2854 {
2855 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
2856
2857 struct regcache *regcache;
2858 struct gdbarch *gdbarch;
2859 CORE_ADDR pc;
2860 struct execution_control_state ecss;
2861 struct execution_control_state *ecs = &ecss;
2862 bool started;
2863
2864 /* If we're stopped at a fork/vfork, follow the branch set by the
2865 "set follow-fork-mode" command; otherwise, we'll just proceed
2866 resuming the current thread. */
2867 if (!follow_fork ())
2868 {
2869 /* The target for some reason decided not to resume. */
2870 normal_stop ();
2871 if (target_can_async_p ())
2872 inferior_event_handler (INF_EXEC_COMPLETE);
2873 return;
2874 }
2875
2876 /* We'll update this if & when we switch to a new thread. */
2877 previous_inferior_ptid = inferior_ptid;
2878
2879 regcache = get_current_regcache ();
2880 gdbarch = regcache->arch ();
2881 const address_space *aspace = regcache->aspace ();
2882
2883 pc = regcache_read_pc_protected (regcache);
2884
2885 thread_info *cur_thr = inferior_thread ();
2886
2887 /* Fill in with reasonable starting values. */
2888 init_thread_stepping_state (cur_thr);
2889
2890 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2891
2892 ptid_t resume_ptid
2893 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2894 process_stratum_target *resume_target
2895 = user_visible_resume_target (resume_ptid);
2896
2897 check_multi_target_resumption (resume_target);
2898
2899 if (addr == (CORE_ADDR) -1)
2900 {
2901 if (pc == cur_thr->suspend.stop_pc
2902 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2903 && execution_direction != EXEC_REVERSE)
2904 /* There is a breakpoint at the address we will resume at,
2905 step one instruction before inserting breakpoints so that
2906 we do not stop right away (and report a second hit at this
2907 breakpoint).
2908
2909 Note, we don't do this in reverse, because we won't
2910 actually be executing the breakpoint insn anyway.
2911 We'll be (un-)executing the previous instruction. */
2912 cur_thr->stepping_over_breakpoint = 1;
2913 else if (gdbarch_single_step_through_delay_p (gdbarch)
2914 && gdbarch_single_step_through_delay (gdbarch,
2915 get_current_frame ()))
2916 /* We stepped onto an instruction that needs to be stepped
2917 again before re-inserting the breakpoint, do so. */
2918 cur_thr->stepping_over_breakpoint = 1;
2919 }
2920 else
2921 {
2922 regcache_write_pc (regcache, addr);
2923 }
2924
2925 if (siggnal != GDB_SIGNAL_DEFAULT)
2926 cur_thr->suspend.stop_signal = siggnal;
2927
2928 /* If an exception is thrown from this point on, make sure to
2929 propagate GDB's knowledge of the executing state to the
2930 frontend/user running state. */
2931 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
2932
2933 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2934 threads (e.g., we might need to set threads stepping over
2935 breakpoints first), from the user/frontend's point of view, all
2936 threads in RESUME_PTID are now running. Unless we're calling an
2937 inferior function, as in that case we pretend the inferior
2938 doesn't run at all. */
2939 if (!cur_thr->control.in_infcall)
2940 set_running (resume_target, resume_ptid, true);
2941
2942 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
2943 gdb_signal_to_symbol_string (siggnal));
2944
2945 annotate_starting ();
2946
2947 /* Make sure that output from GDB appears before output from the
2948 inferior. */
2949 gdb_flush (gdb_stdout);
2950
2951 /* Since we've marked the inferior running, give it the terminal. A
2952 QUIT/Ctrl-C from here on is forwarded to the target (which can
2953 still detect attempts to unblock a stuck connection with repeated
2954 Ctrl-C from within target_pass_ctrlc). */
2955 target_terminal::inferior ();
2956
2957 /* In a multi-threaded task we may select another thread and
2958 then continue or step.
2959
2960 But if a thread that we're resuming had stopped at a breakpoint,
2961 it will immediately cause another breakpoint stop without any
2962 execution (i.e. it will report a breakpoint hit incorrectly). So
2963 we must step over it first.
2964
2965 Look for threads other than the current (TP) that reported a
2966 breakpoint hit and haven't been resumed yet since. */
2967
2968 /* If scheduler locking applies, we can avoid iterating over all
2969 threads. */
2970 if (!non_stop && !schedlock_applies (cur_thr))
2971 {
2972 for (thread_info *tp : all_non_exited_threads (resume_target,
2973 resume_ptid))
2974 {
2975 switch_to_thread_no_regs (tp);
2976
2977 /* Ignore the current thread here. It's handled
2978 afterwards. */
2979 if (tp == cur_thr)
2980 continue;
2981
2982 if (!thread_still_needs_step_over (tp))
2983 continue;
2984
2985 gdb_assert (!thread_is_in_step_over_chain (tp));
2986
2987 infrun_debug_printf ("need to step-over [%s] first",
2988 target_pid_to_str (tp->ptid).c_str ());
2989
2990 global_thread_step_over_chain_enqueue (tp);
2991 }
2992
2993 switch_to_thread (cur_thr);
2994 }
2995
2996 /* Enqueue the current thread last, so that we move all other
2997 threads over their breakpoints first. */
2998 if (cur_thr->stepping_over_breakpoint)
2999 global_thread_step_over_chain_enqueue (cur_thr);
3000
3001 /* If the thread isn't started, we'll still need to set its prev_pc,
3002 so that switch_back_to_stepped_thread knows the thread hasn't
3003 advanced. Must do this before resuming any thread, as in
3004 all-stop/remote, once we resume we can't send any other packet
3005 until the target stops again. */
3006 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3007
3008 {
3009 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3010
3011 started = start_step_over ();
3012
3013 if (step_over_info_valid_p ())
3014 {
3015 /* Either this thread started a new in-line step over, or some
3016 other thread was already doing one. In either case, don't
3017 resume anything else until the step-over is finished. */
3018 }
3019 else if (started && !target_is_non_stop_p ())
3020 {
3021 /* A new displaced stepping sequence was started. In all-stop,
3022 we can't talk to the target anymore until it next stops. */
3023 }
3024 else if (!non_stop && target_is_non_stop_p ())
3025 {
3026 INFRUN_SCOPED_DEBUG_START_END
3027 ("resuming threads, all-stop-on-top-of-non-stop");
3028
3029 /* In all-stop, but the target is always in non-stop mode.
3030 Start all other threads that are implicitly resumed too. */
3031 for (thread_info *tp : all_non_exited_threads (resume_target,
3032 resume_ptid))
3033 {
3034 switch_to_thread_no_regs (tp);
3035
3036 if (!tp->inf->has_execution ())
3037 {
3038 infrun_debug_printf ("[%s] target has no execution",
3039 target_pid_to_str (tp->ptid).c_str ());
3040 continue;
3041 }
3042
3043 if (tp->resumed)
3044 {
3045 infrun_debug_printf ("[%s] resumed",
3046 target_pid_to_str (tp->ptid).c_str ());
3047 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3048 continue;
3049 }
3050
3051 if (thread_is_in_step_over_chain (tp))
3052 {
3053 infrun_debug_printf ("[%s] needs step-over",
3054 target_pid_to_str (tp->ptid).c_str ());
3055 continue;
3056 }
3057
3058 infrun_debug_printf ("resuming %s",
3059 target_pid_to_str (tp->ptid).c_str ());
3060
3061 reset_ecs (ecs, tp);
3062 switch_to_thread (tp);
3063 keep_going_pass_signal (ecs);
3064 if (!ecs->wait_some_more)
3065 error (_("Command aborted."));
3066 }
3067 }
3068 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3069 {
3070 /* The thread wasn't started, and isn't queued, run it now. */
3071 reset_ecs (ecs, cur_thr);
3072 switch_to_thread (cur_thr);
3073 keep_going_pass_signal (ecs);
3074 if (!ecs->wait_some_more)
3075 error (_("Command aborted."));
3076 }
3077 }
3078
3079 commit_resume_all_targets ();
3080
3081 finish_state.release ();
3082
3083 /* If we've switched threads above, switch back to the previously
3084 current thread. We don't want the user to see a different
3085 selected thread. */
3086 switch_to_thread (cur_thr);
3087
3088 /* Tell the event loop to wait for it to stop. If the target
3089 supports asynchronous execution, it'll do this from within
3090 target_resume. */
3091 if (!target_can_async_p ())
3092 mark_async_event_handler (infrun_async_inferior_event_token);
3093 }
3094 \f
3095
3096 /* Start remote-debugging of a machine over a serial link. */
3097
3098 void
3099 start_remote (int from_tty)
3100 {
3101 inferior *inf = current_inferior ();
3102 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3103
3104 /* Always go on waiting for the target, regardless of the mode. */
3105 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3106 indicate to wait_for_inferior that a target should timeout if
3107 nothing is returned (instead of just blocking). Because of this,
3108 targets expecting an immediate response need to, internally, set
3109 things up so that the target_wait() is forced to eventually
3110 timeout. */
3111 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3112 differentiate to its caller what the state of the target is after
3113 the initial open has been performed. Here we're assuming that
3114 the target has stopped. It should be possible to eventually have
3115 target_open() return to the caller an indication that the target
3116 is currently running and GDB state should be set to the same as
3117 for an async run. */
3118 wait_for_inferior (inf);
3119
3120 /* Now that the inferior has stopped, do any bookkeeping like
3121 loading shared libraries. We want to do this before normal_stop,
3122 so that the displayed frame is up to date. */
3123 post_create_inferior (from_tty);
3124
3125 normal_stop ();
3126 }
3127
3128 /* Initialize static vars when a new inferior begins. */
3129
3130 void
3131 init_wait_for_inferior (void)
3132 {
3133 /* These are meaningless until the first time through wait_for_inferior. */
3134
3135 breakpoint_init_inferior (inf_starting);
3136
3137 clear_proceed_status (0);
3138
3139 nullify_last_target_wait_ptid ();
3140
3141 previous_inferior_ptid = inferior_ptid;
3142 }
3143
3144 \f
3145
3146 static void handle_inferior_event (struct execution_control_state *ecs);
3147
3148 static void handle_step_into_function (struct gdbarch *gdbarch,
3149 struct execution_control_state *ecs);
3150 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3151 struct execution_control_state *ecs);
3152 static void handle_signal_stop (struct execution_control_state *ecs);
3153 static void check_exception_resume (struct execution_control_state *,
3154 struct frame_info *);
3155
3156 static void end_stepping_range (struct execution_control_state *ecs);
3157 static void stop_waiting (struct execution_control_state *ecs);
3158 static void keep_going (struct execution_control_state *ecs);
3159 static void process_event_stop_test (struct execution_control_state *ecs);
3160 static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3161
3162 /* This function is attached as a "thread_stop_requested" observer.
3163 Cleanup local state that assumed the PTID was to be resumed, and
3164 report the stop to the frontend. */
3165
3166 static void
3167 infrun_thread_stop_requested (ptid_t ptid)
3168 {
3169 process_stratum_target *curr_target = current_inferior ()->process_target ();
3170
3171 /* PTID was requested to stop. If the thread was already stopped,
3172 but the user/frontend doesn't know about that yet (e.g., the
3173 thread had been temporarily paused for some step-over), set up
3174 for reporting the stop now. */
3175 for (thread_info *tp : all_threads (curr_target, ptid))
3176 {
3177 if (tp->state != THREAD_RUNNING)
3178 continue;
3179 if (tp->executing)
3180 continue;
3181
3182 /* Remove matching threads from the step-over queue, so
3183 start_step_over doesn't try to resume them
3184 automatically. */
3185 if (thread_is_in_step_over_chain (tp))
3186 global_thread_step_over_chain_remove (tp);
3187
3188 /* If the thread is stopped, but the user/frontend doesn't
3189 know about that yet, queue a pending event, as if the
3190 thread had just stopped now. Unless the thread already had
3191 a pending event. */
3192 if (!tp->suspend.waitstatus_pending_p)
3193 {
3194 tp->suspend.waitstatus_pending_p = 1;
3195 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3196 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3197 }
3198
3199 /* Clear the inline-frame state, since we're re-processing the
3200 stop. */
3201 clear_inline_frame_state (tp);
3202
3203 /* If this thread was paused because some other thread was
3204 doing an inline-step over, let that finish first. Once
3205 that happens, we'll restart all threads and consume pending
3206 stop events then. */
3207 if (step_over_info_valid_p ())
3208 continue;
3209
3210 /* Otherwise we can process the (new) pending event now. Set
3211 it so this pending event is considered by
3212 do_target_wait. */
3213 tp->resumed = true;
3214 }
3215 }
3216
3217 static void
3218 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3219 {
3220 if (target_last_proc_target == tp->inf->process_target ()
3221 && target_last_wait_ptid == tp->ptid)
3222 nullify_last_target_wait_ptid ();
3223 }
3224
3225 /* Delete the step resume, single-step and longjmp/exception resume
3226 breakpoints of TP. */
3227
3228 static void
3229 delete_thread_infrun_breakpoints (struct thread_info *tp)
3230 {
3231 delete_step_resume_breakpoint (tp);
3232 delete_exception_resume_breakpoint (tp);
3233 delete_single_step_breakpoints (tp);
3234 }
3235
3236 /* If the target still has execution, call FUNC for each thread that
3237 just stopped. In all-stop, that's all the non-exited threads; in
3238 non-stop, that's the current thread, only. */
3239
3240 typedef void (*for_each_just_stopped_thread_callback_func)
3241 (struct thread_info *tp);
3242
3243 static void
3244 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3245 {
3246 if (!target_has_execution () || inferior_ptid == null_ptid)
3247 return;
3248
3249 if (target_is_non_stop_p ())
3250 {
3251 /* If in non-stop mode, only the current thread stopped. */
3252 func (inferior_thread ());
3253 }
3254 else
3255 {
3256 /* In all-stop mode, all threads have stopped. */
3257 for (thread_info *tp : all_non_exited_threads ())
3258 func (tp);
3259 }
3260 }
3261
3262 /* Delete the step resume and longjmp/exception resume breakpoints of
3263 the threads that just stopped. */
3264
3265 static void
3266 delete_just_stopped_threads_infrun_breakpoints (void)
3267 {
3268 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3269 }
3270
3271 /* Delete the single-step breakpoints of the threads that just
3272 stopped. */
3273
3274 static void
3275 delete_just_stopped_threads_single_step_breakpoints (void)
3276 {
3277 for_each_just_stopped_thread (delete_single_step_breakpoints);
3278 }
3279
3280 /* See infrun.h. */
3281
3282 void
3283 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3284 const struct target_waitstatus *ws)
3285 {
3286 infrun_debug_printf ("target_wait (%d.%ld.%ld [%s], status) =",
3287 waiton_ptid.pid (),
3288 waiton_ptid.lwp (),
3289 waiton_ptid.tid (),
3290 target_pid_to_str (waiton_ptid).c_str ());
3291 infrun_debug_printf (" %d.%ld.%ld [%s],",
3292 result_ptid.pid (),
3293 result_ptid.lwp (),
3294 result_ptid.tid (),
3295 target_pid_to_str (result_ptid).c_str ());
3296 infrun_debug_printf (" %s", target_waitstatus_to_string (ws).c_str ());
3297 }
3298
3299 /* Select a thread at random, out of those which are resumed and have
3300 had events. */
3301
3302 static struct thread_info *
3303 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3304 {
3305 int num_events = 0;
3306
3307 auto has_event = [&] (thread_info *tp)
3308 {
3309 return (tp->ptid.matches (waiton_ptid)
3310 && tp->resumed
3311 && tp->suspend.waitstatus_pending_p);
3312 };
3313
3314 /* First see how many events we have. Count only resumed threads
3315 that have an event pending. */
3316 for (thread_info *tp : inf->non_exited_threads ())
3317 if (has_event (tp))
3318 num_events++;
3319
3320 if (num_events == 0)
3321 return NULL;
3322
3323 /* Now randomly pick a thread out of those that have had events. */
3324 int random_selector = (int) ((num_events * (double) rand ())
3325 / (RAND_MAX + 1.0));
3326
3327 if (num_events > 1)
3328 infrun_debug_printf ("Found %d events, selecting #%d",
3329 num_events, random_selector);
3330
3331 /* Select the Nth thread that has had an event. */
3332 for (thread_info *tp : inf->non_exited_threads ())
3333 if (has_event (tp))
3334 if (random_selector-- == 0)
3335 return tp;
3336
3337 gdb_assert_not_reached ("event thread not found");
3338 }
3339
3340 /* Wrapper for target_wait that first checks whether threads have
3341 pending statuses to report before actually asking the target for
3342 more events. INF is the inferior we're using to call target_wait
3343 on. */
3344
3345 static ptid_t
3346 do_target_wait_1 (inferior *inf, ptid_t ptid,
3347 target_waitstatus *status, target_wait_flags options)
3348 {
3349 ptid_t event_ptid;
3350 struct thread_info *tp;
3351
3352 /* We know that we are looking for an event in the target of inferior
3353 INF, but we don't know which thread the event might come from. As
3354 such we want to make sure that INFERIOR_PTID is reset so that none of
3355 the wait code relies on it - doing so is always a mistake. */
3356 switch_to_inferior_no_thread (inf);
3357
3358 /* First check if there is a resumed thread with a wait status
3359 pending. */
3360 if (ptid == minus_one_ptid || ptid.is_pid ())
3361 {
3362 tp = random_pending_event_thread (inf, ptid);
3363 }
3364 else
3365 {
3366 infrun_debug_printf ("Waiting for specific thread %s.",
3367 target_pid_to_str (ptid).c_str ());
3368
3369 /* We have a specific thread to check. */
3370 tp = find_thread_ptid (inf, ptid);
3371 gdb_assert (tp != NULL);
3372 if (!tp->suspend.waitstatus_pending_p)
3373 tp = NULL;
3374 }
3375
3376 if (tp != NULL
3377 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3378 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3379 {
3380 struct regcache *regcache = get_thread_regcache (tp);
3381 struct gdbarch *gdbarch = regcache->arch ();
3382 CORE_ADDR pc;
3383 int discard = 0;
3384
3385 pc = regcache_read_pc (regcache);
3386
3387 if (pc != tp->suspend.stop_pc)
3388 {
3389 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3390 target_pid_to_str (tp->ptid).c_str (),
3391 paddress (gdbarch, tp->suspend.stop_pc),
3392 paddress (gdbarch, pc));
3393 discard = 1;
3394 }
3395 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3396 {
3397 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3398 target_pid_to_str (tp->ptid).c_str (),
3399 paddress (gdbarch, pc));
3400
3401 discard = 1;
3402 }
3403
3404 if (discard)
3405 {
3406 infrun_debug_printf ("pending event of %s cancelled.",
3407 target_pid_to_str (tp->ptid).c_str ());
3408
3409 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3410 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3411 }
3412 }
3413
3414 if (tp != NULL)
3415 {
3416 infrun_debug_printf ("Using pending wait status %s for %s.",
3417 target_waitstatus_to_string
3418 (&tp->suspend.waitstatus).c_str (),
3419 target_pid_to_str (tp->ptid).c_str ());
3420
3421 /* Now that we've selected our final event LWP, un-adjust its PC
3422 if it was a software breakpoint (and the target doesn't
3423 always adjust the PC itself). */
3424 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3425 && !target_supports_stopped_by_sw_breakpoint ())
3426 {
3427 struct regcache *regcache;
3428 struct gdbarch *gdbarch;
3429 int decr_pc;
3430
3431 regcache = get_thread_regcache (tp);
3432 gdbarch = regcache->arch ();
3433
3434 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3435 if (decr_pc != 0)
3436 {
3437 CORE_ADDR pc;
3438
3439 pc = regcache_read_pc (regcache);
3440 regcache_write_pc (regcache, pc + decr_pc);
3441 }
3442 }
3443
3444 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3445 *status = tp->suspend.waitstatus;
3446 tp->suspend.waitstatus_pending_p = 0;
3447
3448 /* Wake up the event loop again, until all pending events are
3449 processed. */
3450 if (target_is_async_p ())
3451 mark_async_event_handler (infrun_async_inferior_event_token);
3452 return tp->ptid;
3453 }
3454
3455 /* But if we don't find one, we'll have to wait. */
3456
3457 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3458 a blocking wait. */
3459 if (!target_can_async_p ())
3460 options &= ~TARGET_WNOHANG;
3461
3462 if (deprecated_target_wait_hook)
3463 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3464 else
3465 event_ptid = target_wait (ptid, status, options);
3466
3467 return event_ptid;
3468 }
3469
3470 /* Wrapper for target_wait that first checks whether threads have
3471 pending statuses to report before actually asking the target for
3472 more events. Polls for events from all inferiors/targets. */
3473
3474 static bool
3475 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3476 target_wait_flags options)
3477 {
3478 int num_inferiors = 0;
3479 int random_selector;
3480
3481 /* For fairness, we pick the first inferior/target to poll at random
3482 out of all inferiors that may report events, and then continue
3483 polling the rest of the inferior list starting from that one in a
3484 circular fashion until the whole list is polled once. */
3485
3486 auto inferior_matches = [&wait_ptid] (inferior *inf)
3487 {
3488 return (inf->process_target () != NULL
3489 && ptid_t (inf->pid).matches (wait_ptid));
3490 };
3491
3492 /* First see how many matching inferiors we have. */
3493 for (inferior *inf : all_inferiors ())
3494 if (inferior_matches (inf))
3495 num_inferiors++;
3496
3497 if (num_inferiors == 0)
3498 {
3499 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3500 return false;
3501 }
3502
3503 /* Now randomly pick an inferior out of those that matched. */
3504 random_selector = (int)
3505 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3506
3507 if (num_inferiors > 1)
3508 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3509 num_inferiors, random_selector);
3510
3511 /* Select the Nth inferior that matched. */
3512
3513 inferior *selected = nullptr;
3514
3515 for (inferior *inf : all_inferiors ())
3516 if (inferior_matches (inf))
3517 if (random_selector-- == 0)
3518 {
3519 selected = inf;
3520 break;
3521 }
3522
3523 /* Now poll for events out of each of the matching inferior's
3524 targets, starting from the selected one. */
3525
3526 auto do_wait = [&] (inferior *inf)
3527 {
3528 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3529 ecs->target = inf->process_target ();
3530 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3531 };
3532
3533 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3534 here spuriously after the target is all stopped and we've already
3535 reported the stop to the user, polling for events. */
3536 scoped_restore_current_thread restore_thread;
3537
3538 int inf_num = selected->num;
3539 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3540 if (inferior_matches (inf))
3541 if (do_wait (inf))
3542 return true;
3543
3544 for (inferior *inf = inferior_list;
3545 inf != NULL && inf->num < inf_num;
3546 inf = inf->next)
3547 if (inferior_matches (inf))
3548 if (do_wait (inf))
3549 return true;
3550
3551 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3552 return false;
3553 }
3554
3555 /* An event reported by wait_one. */
3556
3557 struct wait_one_event
3558 {
3559 /* The target the event came out of. */
3560 process_stratum_target *target;
3561
3562 /* The PTID the event was for. */
3563 ptid_t ptid;
3564
3565 /* The waitstatus. */
3566 target_waitstatus ws;
3567 };
3568
3569 static bool handle_one (const wait_one_event &event);
3570 static void restart_threads (struct thread_info *event_thread);
3571
3572 /* Prepare and stabilize the inferior for detaching it. E.g.,
3573 detaching while a thread is displaced stepping is a recipe for
3574 crashing it, as nothing would readjust the PC out of the scratch
3575 pad. */
3576
3577 void
3578 prepare_for_detach (void)
3579 {
3580 struct inferior *inf = current_inferior ();
3581 ptid_t pid_ptid = ptid_t (inf->pid);
3582 scoped_restore_current_thread restore_thread;
3583
3584 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3585
3586 /* Remove all threads of INF from the global step-over chain. We
3587 want to stop any ongoing step-over, not start any new one. */
3588 thread_info *next;
3589 for (thread_info *tp = global_thread_step_over_chain_head;
3590 tp != nullptr;
3591 tp = next)
3592 {
3593 next = global_thread_step_over_chain_next (tp);
3594 if (tp->inf == inf)
3595 global_thread_step_over_chain_remove (tp);
3596 }
3597
3598 /* If we were already in the middle of an inline step-over, and the
3599 thread stepping belongs to the inferior we're detaching, we need
3600 to restart the threads of other inferiors. */
3601 if (step_over_info.thread != -1)
3602 {
3603 infrun_debug_printf ("inline step-over in-process while detaching");
3604
3605 thread_info *thr = find_thread_global_id (step_over_info.thread);
3606 if (thr->inf == inf)
3607 {
3608 /* Since we removed threads of INF from the step-over chain,
3609 we know this won't start a step-over for INF. */
3610 clear_step_over_info ();
3611
3612 if (target_is_non_stop_p ())
3613 {
3614 /* Start a new step-over in another thread if there's
3615 one that needs it. */
3616 start_step_over ();
3617
3618 /* Restart all other threads (except the
3619 previously-stepping thread, since that one is still
3620 running). */
3621 if (!step_over_info_valid_p ())
3622 restart_threads (thr);
3623 }
3624 }
3625 }
3626
3627 if (displaced_step_in_progress (inf))
3628 {
3629 infrun_debug_printf ("displaced-stepping in-process while detaching");
3630
3631 /* Stop threads currently displaced stepping, aborting it. */
3632
3633 for (thread_info *thr : inf->non_exited_threads ())
3634 {
3635 if (thr->displaced_step_state.in_progress ())
3636 {
3637 if (thr->executing)
3638 {
3639 if (!thr->stop_requested)
3640 {
3641 target_stop (thr->ptid);
3642 thr->stop_requested = true;
3643 }
3644 }
3645 else
3646 thr->resumed = false;
3647 }
3648 }
3649
3650 while (displaced_step_in_progress (inf))
3651 {
3652 wait_one_event event;
3653
3654 event.target = inf->process_target ();
3655 event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0);
3656
3657 if (debug_infrun)
3658 print_target_wait_results (pid_ptid, event.ptid, &event.ws);
3659
3660 handle_one (event);
3661 }
3662
3663 /* It's OK to leave some of the threads of INF stopped, since
3664 they'll be detached shortly. */
3665 }
3666 }
3667
3668 /* Wait for control to return from inferior to debugger.
3669
3670 If inferior gets a signal, we may decide to start it up again
3671 instead of returning. That is why there is a loop in this function.
3672 When this function actually returns it means the inferior
3673 should be left stopped and GDB should read more commands. */
3674
3675 static void
3676 wait_for_inferior (inferior *inf)
3677 {
3678 infrun_debug_printf ("wait_for_inferior ()");
3679
3680 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3681
3682 /* If an error happens while handling the event, propagate GDB's
3683 knowledge of the executing state to the frontend/user running
3684 state. */
3685 scoped_finish_thread_state finish_state
3686 (inf->process_target (), minus_one_ptid);
3687
3688 while (1)
3689 {
3690 struct execution_control_state ecss;
3691 struct execution_control_state *ecs = &ecss;
3692
3693 memset (ecs, 0, sizeof (*ecs));
3694
3695 overlay_cache_invalid = 1;
3696
3697 /* Flush target cache before starting to handle each event.
3698 Target was running and cache could be stale. This is just a
3699 heuristic. Running threads may modify target memory, but we
3700 don't get any event. */
3701 target_dcache_invalidate ();
3702
3703 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3704 ecs->target = inf->process_target ();
3705
3706 if (debug_infrun)
3707 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3708
3709 /* Now figure out what to do with the result of the result. */
3710 handle_inferior_event (ecs);
3711
3712 if (!ecs->wait_some_more)
3713 break;
3714 }
3715
3716 /* No error, don't finish the state yet. */
3717 finish_state.release ();
3718 }
3719
3720 /* Cleanup that reinstalls the readline callback handler, if the
3721 target is running in the background. If while handling the target
3722 event something triggered a secondary prompt, like e.g., a
3723 pagination prompt, we'll have removed the callback handler (see
3724 gdb_readline_wrapper_line). Need to do this as we go back to the
3725 event loop, ready to process further input. Note this has no
3726 effect if the handler hasn't actually been removed, because calling
3727 rl_callback_handler_install resets the line buffer, thus losing
3728 input. */
3729
3730 static void
3731 reinstall_readline_callback_handler_cleanup ()
3732 {
3733 struct ui *ui = current_ui;
3734
3735 if (!ui->async)
3736 {
3737 /* We're not going back to the top level event loop yet. Don't
3738 install the readline callback, as it'd prep the terminal,
3739 readline-style (raw, noecho) (e.g., --batch). We'll install
3740 it the next time the prompt is displayed, when we're ready
3741 for input. */
3742 return;
3743 }
3744
3745 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3746 gdb_rl_callback_handler_reinstall ();
3747 }
3748
3749 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3750 that's just the event thread. In all-stop, that's all threads. */
3751
3752 static void
3753 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3754 {
3755 if (ecs->event_thread != NULL
3756 && ecs->event_thread->thread_fsm != NULL)
3757 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3758
3759 if (!non_stop)
3760 {
3761 for (thread_info *thr : all_non_exited_threads ())
3762 {
3763 if (thr->thread_fsm == NULL)
3764 continue;
3765 if (thr == ecs->event_thread)
3766 continue;
3767
3768 switch_to_thread (thr);
3769 thr->thread_fsm->clean_up (thr);
3770 }
3771
3772 if (ecs->event_thread != NULL)
3773 switch_to_thread (ecs->event_thread);
3774 }
3775 }
3776
3777 /* Helper for all_uis_check_sync_execution_done that works on the
3778 current UI. */
3779
3780 static void
3781 check_curr_ui_sync_execution_done (void)
3782 {
3783 struct ui *ui = current_ui;
3784
3785 if (ui->prompt_state == PROMPT_NEEDED
3786 && ui->async
3787 && !gdb_in_secondary_prompt_p (ui))
3788 {
3789 target_terminal::ours ();
3790 gdb::observers::sync_execution_done.notify ();
3791 ui_register_input_event_handler (ui);
3792 }
3793 }
3794
3795 /* See infrun.h. */
3796
3797 void
3798 all_uis_check_sync_execution_done (void)
3799 {
3800 SWITCH_THRU_ALL_UIS ()
3801 {
3802 check_curr_ui_sync_execution_done ();
3803 }
3804 }
3805
3806 /* See infrun.h. */
3807
3808 void
3809 all_uis_on_sync_execution_starting (void)
3810 {
3811 SWITCH_THRU_ALL_UIS ()
3812 {
3813 if (current_ui->prompt_state == PROMPT_NEEDED)
3814 async_disable_stdin ();
3815 }
3816 }
3817
3818 /* Asynchronous version of wait_for_inferior. It is called by the
3819 event loop whenever a change of state is detected on the file
3820 descriptor corresponding to the target. It can be called more than
3821 once to complete a single execution command. In such cases we need
3822 to keep the state in a global variable ECSS. If it is the last time
3823 that this function is called for a single execution command, then
3824 report to the user that the inferior has stopped, and do the
3825 necessary cleanups. */
3826
3827 void
3828 fetch_inferior_event ()
3829 {
3830 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3831
3832 struct execution_control_state ecss;
3833 struct execution_control_state *ecs = &ecss;
3834 int cmd_done = 0;
3835
3836 memset (ecs, 0, sizeof (*ecs));
3837
3838 /* Events are always processed with the main UI as current UI. This
3839 way, warnings, debug output, etc. are always consistently sent to
3840 the main console. */
3841 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3842
3843 /* Temporarily disable pagination. Otherwise, the user would be
3844 given an option to press 'q' to quit, which would cause an early
3845 exit and could leave GDB in a half-baked state. */
3846 scoped_restore save_pagination
3847 = make_scoped_restore (&pagination_enabled, false);
3848
3849 /* End up with readline processing input, if necessary. */
3850 {
3851 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3852
3853 /* We're handling a live event, so make sure we're doing live
3854 debugging. If we're looking at traceframes while the target is
3855 running, we're going to need to get back to that mode after
3856 handling the event. */
3857 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3858 if (non_stop)
3859 {
3860 maybe_restore_traceframe.emplace ();
3861 set_current_traceframe (-1);
3862 }
3863
3864 /* The user/frontend should not notice a thread switch due to
3865 internal events. Make sure we revert to the user selected
3866 thread and frame after handling the event and running any
3867 breakpoint commands. */
3868 scoped_restore_current_thread restore_thread;
3869
3870 overlay_cache_invalid = 1;
3871 /* Flush target cache before starting to handle each event. Target
3872 was running and cache could be stale. This is just a heuristic.
3873 Running threads may modify target memory, but we don't get any
3874 event. */
3875 target_dcache_invalidate ();
3876
3877 scoped_restore save_exec_dir
3878 = make_scoped_restore (&execution_direction,
3879 target_execution_direction ());
3880
3881 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3882 return;
3883
3884 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3885
3886 /* Switch to the target that generated the event, so we can do
3887 target calls. */
3888 switch_to_target_no_thread (ecs->target);
3889
3890 if (debug_infrun)
3891 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3892
3893 /* If an error happens while handling the event, propagate GDB's
3894 knowledge of the executing state to the frontend/user running
3895 state. */
3896 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3897 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3898
3899 /* Get executed before scoped_restore_current_thread above to apply
3900 still for the thread which has thrown the exception. */
3901 auto defer_bpstat_clear
3902 = make_scope_exit (bpstat_clear_actions);
3903 auto defer_delete_threads
3904 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3905
3906 /* Now figure out what to do with the result of the result. */
3907 handle_inferior_event (ecs);
3908
3909 if (!ecs->wait_some_more)
3910 {
3911 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3912 bool should_stop = true;
3913 struct thread_info *thr = ecs->event_thread;
3914
3915 delete_just_stopped_threads_infrun_breakpoints ();
3916
3917 if (thr != NULL)
3918 {
3919 struct thread_fsm *thread_fsm = thr->thread_fsm;
3920
3921 if (thread_fsm != NULL)
3922 should_stop = thread_fsm->should_stop (thr);
3923 }
3924
3925 if (!should_stop)
3926 {
3927 keep_going (ecs);
3928 }
3929 else
3930 {
3931 bool should_notify_stop = true;
3932 int proceeded = 0;
3933
3934 clean_up_just_stopped_threads_fsms (ecs);
3935
3936 if (thr != NULL && thr->thread_fsm != NULL)
3937 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3938
3939 if (should_notify_stop)
3940 {
3941 /* We may not find an inferior if this was a process exit. */
3942 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3943 proceeded = normal_stop ();
3944 }
3945
3946 if (!proceeded)
3947 {
3948 inferior_event_handler (INF_EXEC_COMPLETE);
3949 cmd_done = 1;
3950 }
3951
3952 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3953 previously selected thread is gone. We have two
3954 choices - switch to no thread selected, or restore the
3955 previously selected thread (now exited). We chose the
3956 later, just because that's what GDB used to do. After
3957 this, "info threads" says "The current thread <Thread
3958 ID 2> has terminated." instead of "No thread
3959 selected.". */
3960 if (!non_stop
3961 && cmd_done
3962 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3963 restore_thread.dont_restore ();
3964 }
3965 }
3966
3967 defer_delete_threads.release ();
3968 defer_bpstat_clear.release ();
3969
3970 /* No error, don't finish the thread states yet. */
3971 finish_state.release ();
3972
3973 /* This scope is used to ensure that readline callbacks are
3974 reinstalled here. */
3975 }
3976
3977 /* If a UI was in sync execution mode, and now isn't, restore its
3978 prompt (a synchronous execution command has finished, and we're
3979 ready for input). */
3980 all_uis_check_sync_execution_done ();
3981
3982 if (cmd_done
3983 && exec_done_display_p
3984 && (inferior_ptid == null_ptid
3985 || inferior_thread ()->state != THREAD_RUNNING))
3986 printf_unfiltered (_("completed.\n"));
3987 }
3988
3989 /* See infrun.h. */
3990
3991 void
3992 set_step_info (thread_info *tp, struct frame_info *frame,
3993 struct symtab_and_line sal)
3994 {
3995 /* This can be removed once this function no longer implicitly relies on the
3996 inferior_ptid value. */
3997 gdb_assert (inferior_ptid == tp->ptid);
3998
3999 tp->control.step_frame_id = get_frame_id (frame);
4000 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4001
4002 tp->current_symtab = sal.symtab;
4003 tp->current_line = sal.line;
4004 }
4005
4006 /* Clear context switchable stepping state. */
4007
4008 void
4009 init_thread_stepping_state (struct thread_info *tss)
4010 {
4011 tss->stepped_breakpoint = 0;
4012 tss->stepping_over_breakpoint = 0;
4013 tss->stepping_over_watchpoint = 0;
4014 tss->step_after_step_resume_breakpoint = 0;
4015 }
4016
4017 /* See infrun.h. */
4018
4019 void
4020 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4021 target_waitstatus status)
4022 {
4023 target_last_proc_target = target;
4024 target_last_wait_ptid = ptid;
4025 target_last_waitstatus = status;
4026 }
4027
4028 /* See infrun.h. */
4029
4030 void
4031 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4032 target_waitstatus *status)
4033 {
4034 if (target != nullptr)
4035 *target = target_last_proc_target;
4036 if (ptid != nullptr)
4037 *ptid = target_last_wait_ptid;
4038 if (status != nullptr)
4039 *status = target_last_waitstatus;
4040 }
4041
4042 /* See infrun.h. */
4043
4044 void
4045 nullify_last_target_wait_ptid (void)
4046 {
4047 target_last_proc_target = nullptr;
4048 target_last_wait_ptid = minus_one_ptid;
4049 target_last_waitstatus = {};
4050 }
4051
4052 /* Switch thread contexts. */
4053
4054 static void
4055 context_switch (execution_control_state *ecs)
4056 {
4057 if (ecs->ptid != inferior_ptid
4058 && (inferior_ptid == null_ptid
4059 || ecs->event_thread != inferior_thread ()))
4060 {
4061 infrun_debug_printf ("Switching context from %s to %s",
4062 target_pid_to_str (inferior_ptid).c_str (),
4063 target_pid_to_str (ecs->ptid).c_str ());
4064 }
4065
4066 switch_to_thread (ecs->event_thread);
4067 }
4068
4069 /* If the target can't tell whether we've hit breakpoints
4070 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4071 check whether that could have been caused by a breakpoint. If so,
4072 adjust the PC, per gdbarch_decr_pc_after_break. */
4073
4074 static void
4075 adjust_pc_after_break (struct thread_info *thread,
4076 struct target_waitstatus *ws)
4077 {
4078 struct regcache *regcache;
4079 struct gdbarch *gdbarch;
4080 CORE_ADDR breakpoint_pc, decr_pc;
4081
4082 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4083 we aren't, just return.
4084
4085 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4086 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4087 implemented by software breakpoints should be handled through the normal
4088 breakpoint layer.
4089
4090 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4091 different signals (SIGILL or SIGEMT for instance), but it is less
4092 clear where the PC is pointing afterwards. It may not match
4093 gdbarch_decr_pc_after_break. I don't know any specific target that
4094 generates these signals at breakpoints (the code has been in GDB since at
4095 least 1992) so I can not guess how to handle them here.
4096
4097 In earlier versions of GDB, a target with
4098 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4099 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4100 target with both of these set in GDB history, and it seems unlikely to be
4101 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4102
4103 if (ws->kind != TARGET_WAITKIND_STOPPED)
4104 return;
4105
4106 if (ws->value.sig != GDB_SIGNAL_TRAP)
4107 return;
4108
4109 /* In reverse execution, when a breakpoint is hit, the instruction
4110 under it has already been de-executed. The reported PC always
4111 points at the breakpoint address, so adjusting it further would
4112 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4113 architecture:
4114
4115 B1 0x08000000 : INSN1
4116 B2 0x08000001 : INSN2
4117 0x08000002 : INSN3
4118 PC -> 0x08000003 : INSN4
4119
4120 Say you're stopped at 0x08000003 as above. Reverse continuing
4121 from that point should hit B2 as below. Reading the PC when the
4122 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4123 been de-executed already.
4124
4125 B1 0x08000000 : INSN1
4126 B2 PC -> 0x08000001 : INSN2
4127 0x08000002 : INSN3
4128 0x08000003 : INSN4
4129
4130 We can't apply the same logic as for forward execution, because
4131 we would wrongly adjust the PC to 0x08000000, since there's a
4132 breakpoint at PC - 1. We'd then report a hit on B1, although
4133 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4134 behaviour. */
4135 if (execution_direction == EXEC_REVERSE)
4136 return;
4137
4138 /* If the target can tell whether the thread hit a SW breakpoint,
4139 trust it. Targets that can tell also adjust the PC
4140 themselves. */
4141 if (target_supports_stopped_by_sw_breakpoint ())
4142 return;
4143
4144 /* Note that relying on whether a breakpoint is planted in memory to
4145 determine this can fail. E.g,. the breakpoint could have been
4146 removed since. Or the thread could have been told to step an
4147 instruction the size of a breakpoint instruction, and only
4148 _after_ was a breakpoint inserted at its address. */
4149
4150 /* If this target does not decrement the PC after breakpoints, then
4151 we have nothing to do. */
4152 regcache = get_thread_regcache (thread);
4153 gdbarch = regcache->arch ();
4154
4155 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4156 if (decr_pc == 0)
4157 return;
4158
4159 const address_space *aspace = regcache->aspace ();
4160
4161 /* Find the location where (if we've hit a breakpoint) the
4162 breakpoint would be. */
4163 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4164
4165 /* If the target can't tell whether a software breakpoint triggered,
4166 fallback to figuring it out based on breakpoints we think were
4167 inserted in the target, and on whether the thread was stepped or
4168 continued. */
4169
4170 /* Check whether there actually is a software breakpoint inserted at
4171 that location.
4172
4173 If in non-stop mode, a race condition is possible where we've
4174 removed a breakpoint, but stop events for that breakpoint were
4175 already queued and arrive later. To suppress those spurious
4176 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4177 and retire them after a number of stop events are reported. Note
4178 this is an heuristic and can thus get confused. The real fix is
4179 to get the "stopped by SW BP and needs adjustment" info out of
4180 the target/kernel (and thus never reach here; see above). */
4181 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4182 || (target_is_non_stop_p ()
4183 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4184 {
4185 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4186
4187 if (record_full_is_used ())
4188 restore_operation_disable.emplace
4189 (record_full_gdb_operation_disable_set ());
4190
4191 /* When using hardware single-step, a SIGTRAP is reported for both
4192 a completed single-step and a software breakpoint. Need to
4193 differentiate between the two, as the latter needs adjusting
4194 but the former does not.
4195
4196 The SIGTRAP can be due to a completed hardware single-step only if
4197 - we didn't insert software single-step breakpoints
4198 - this thread is currently being stepped
4199
4200 If any of these events did not occur, we must have stopped due
4201 to hitting a software breakpoint, and have to back up to the
4202 breakpoint address.
4203
4204 As a special case, we could have hardware single-stepped a
4205 software breakpoint. In this case (prev_pc == breakpoint_pc),
4206 we also need to back up to the breakpoint address. */
4207
4208 if (thread_has_single_step_breakpoints_set (thread)
4209 || !currently_stepping (thread)
4210 || (thread->stepped_breakpoint
4211 && thread->prev_pc == breakpoint_pc))
4212 regcache_write_pc (regcache, breakpoint_pc);
4213 }
4214 }
4215
4216 static bool
4217 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4218 {
4219 for (frame = get_prev_frame (frame);
4220 frame != NULL;
4221 frame = get_prev_frame (frame))
4222 {
4223 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4224 return true;
4225
4226 if (get_frame_type (frame) != INLINE_FRAME)
4227 break;
4228 }
4229
4230 return false;
4231 }
4232
4233 /* Look for an inline frame that is marked for skip.
4234 If PREV_FRAME is TRUE start at the previous frame,
4235 otherwise start at the current frame. Stop at the
4236 first non-inline frame, or at the frame where the
4237 step started. */
4238
4239 static bool
4240 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4241 {
4242 struct frame_info *frame = get_current_frame ();
4243
4244 if (prev_frame)
4245 frame = get_prev_frame (frame);
4246
4247 for (; frame != NULL; frame = get_prev_frame (frame))
4248 {
4249 const char *fn = NULL;
4250 symtab_and_line sal;
4251 struct symbol *sym;
4252
4253 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4254 break;
4255 if (get_frame_type (frame) != INLINE_FRAME)
4256 break;
4257
4258 sal = find_frame_sal (frame);
4259 sym = get_frame_function (frame);
4260
4261 if (sym != NULL)
4262 fn = sym->print_name ();
4263
4264 if (sal.line != 0
4265 && function_name_is_marked_for_skip (fn, sal))
4266 return true;
4267 }
4268
4269 return false;
4270 }
4271
4272 /* If the event thread has the stop requested flag set, pretend it
4273 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4274 target_stop). */
4275
4276 static bool
4277 handle_stop_requested (struct execution_control_state *ecs)
4278 {
4279 if (ecs->event_thread->stop_requested)
4280 {
4281 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4282 ecs->ws.value.sig = GDB_SIGNAL_0;
4283 handle_signal_stop (ecs);
4284 return true;
4285 }
4286 return false;
4287 }
4288
4289 /* Auxiliary function that handles syscall entry/return events.
4290 It returns true if the inferior should keep going (and GDB
4291 should ignore the event), or false if the event deserves to be
4292 processed. */
4293
4294 static bool
4295 handle_syscall_event (struct execution_control_state *ecs)
4296 {
4297 struct regcache *regcache;
4298 int syscall_number;
4299
4300 context_switch (ecs);
4301
4302 regcache = get_thread_regcache (ecs->event_thread);
4303 syscall_number = ecs->ws.value.syscall_number;
4304 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4305
4306 if (catch_syscall_enabled () > 0
4307 && catching_syscall_number (syscall_number) > 0)
4308 {
4309 infrun_debug_printf ("syscall number=%d", syscall_number);
4310
4311 ecs->event_thread->control.stop_bpstat
4312 = bpstat_stop_status (regcache->aspace (),
4313 ecs->event_thread->suspend.stop_pc,
4314 ecs->event_thread, &ecs->ws);
4315
4316 if (handle_stop_requested (ecs))
4317 return false;
4318
4319 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4320 {
4321 /* Catchpoint hit. */
4322 return false;
4323 }
4324 }
4325
4326 if (handle_stop_requested (ecs))
4327 return false;
4328
4329 /* If no catchpoint triggered for this, then keep going. */
4330 keep_going (ecs);
4331
4332 return true;
4333 }
4334
4335 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4336
4337 static void
4338 fill_in_stop_func (struct gdbarch *gdbarch,
4339 struct execution_control_state *ecs)
4340 {
4341 if (!ecs->stop_func_filled_in)
4342 {
4343 const block *block;
4344 const general_symbol_info *gsi;
4345
4346 /* Don't care about return value; stop_func_start and stop_func_name
4347 will both be 0 if it doesn't work. */
4348 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4349 &gsi,
4350 &ecs->stop_func_start,
4351 &ecs->stop_func_end,
4352 &block);
4353 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4354
4355 /* The call to find_pc_partial_function, above, will set
4356 stop_func_start and stop_func_end to the start and end
4357 of the range containing the stop pc. If this range
4358 contains the entry pc for the block (which is always the
4359 case for contiguous blocks), advance stop_func_start past
4360 the function's start offset and entrypoint. Note that
4361 stop_func_start is NOT advanced when in a range of a
4362 non-contiguous block that does not contain the entry pc. */
4363 if (block != nullptr
4364 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4365 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4366 {
4367 ecs->stop_func_start
4368 += gdbarch_deprecated_function_start_offset (gdbarch);
4369
4370 if (gdbarch_skip_entrypoint_p (gdbarch))
4371 ecs->stop_func_start
4372 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4373 }
4374
4375 ecs->stop_func_filled_in = 1;
4376 }
4377 }
4378
4379
4380 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4381
4382 static enum stop_kind
4383 get_inferior_stop_soon (execution_control_state *ecs)
4384 {
4385 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4386
4387 gdb_assert (inf != NULL);
4388 return inf->control.stop_soon;
4389 }
4390
4391 /* Poll for one event out of the current target. Store the resulting
4392 waitstatus in WS, and return the event ptid. Does not block. */
4393
4394 static ptid_t
4395 poll_one_curr_target (struct target_waitstatus *ws)
4396 {
4397 ptid_t event_ptid;
4398
4399 overlay_cache_invalid = 1;
4400
4401 /* Flush target cache before starting to handle each event.
4402 Target was running and cache could be stale. This is just a
4403 heuristic. Running threads may modify target memory, but we
4404 don't get any event. */
4405 target_dcache_invalidate ();
4406
4407 if (deprecated_target_wait_hook)
4408 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4409 else
4410 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4411
4412 if (debug_infrun)
4413 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4414
4415 return event_ptid;
4416 }
4417
4418 /* Wait for one event out of any target. */
4419
4420 static wait_one_event
4421 wait_one ()
4422 {
4423 while (1)
4424 {
4425 for (inferior *inf : all_inferiors ())
4426 {
4427 process_stratum_target *target = inf->process_target ();
4428 if (target == NULL
4429 || !target->is_async_p ()
4430 || !target->threads_executing)
4431 continue;
4432
4433 switch_to_inferior_no_thread (inf);
4434
4435 wait_one_event event;
4436 event.target = target;
4437 event.ptid = poll_one_curr_target (&event.ws);
4438
4439 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4440 {
4441 /* If nothing is resumed, remove the target from the
4442 event loop. */
4443 target_async (0);
4444 }
4445 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4446 return event;
4447 }
4448
4449 /* Block waiting for some event. */
4450
4451 fd_set readfds;
4452 int nfds = 0;
4453
4454 FD_ZERO (&readfds);
4455
4456 for (inferior *inf : all_inferiors ())
4457 {
4458 process_stratum_target *target = inf->process_target ();
4459 if (target == NULL
4460 || !target->is_async_p ()
4461 || !target->threads_executing)
4462 continue;
4463
4464 int fd = target->async_wait_fd ();
4465 FD_SET (fd, &readfds);
4466 if (nfds <= fd)
4467 nfds = fd + 1;
4468 }
4469
4470 if (nfds == 0)
4471 {
4472 /* No waitable targets left. All must be stopped. */
4473 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4474 }
4475
4476 QUIT;
4477
4478 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4479 if (numfds < 0)
4480 {
4481 if (errno == EINTR)
4482 continue;
4483 else
4484 perror_with_name ("interruptible_select");
4485 }
4486 }
4487 }
4488
4489 /* Save the thread's event and stop reason to process it later. */
4490
4491 static void
4492 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4493 {
4494 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4495 target_waitstatus_to_string (ws).c_str (),
4496 tp->ptid.pid (),
4497 tp->ptid.lwp (),
4498 tp->ptid.tid ());
4499
4500 /* Record for later. */
4501 tp->suspend.waitstatus = *ws;
4502 tp->suspend.waitstatus_pending_p = 1;
4503
4504 struct regcache *regcache = get_thread_regcache (tp);
4505 const address_space *aspace = regcache->aspace ();
4506
4507 if (ws->kind == TARGET_WAITKIND_STOPPED
4508 && ws->value.sig == GDB_SIGNAL_TRAP)
4509 {
4510 CORE_ADDR pc = regcache_read_pc (regcache);
4511
4512 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4513
4514 scoped_restore_current_thread restore_thread;
4515 switch_to_thread (tp);
4516
4517 if (target_stopped_by_watchpoint ())
4518 {
4519 tp->suspend.stop_reason
4520 = TARGET_STOPPED_BY_WATCHPOINT;
4521 }
4522 else if (target_supports_stopped_by_sw_breakpoint ()
4523 && target_stopped_by_sw_breakpoint ())
4524 {
4525 tp->suspend.stop_reason
4526 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4527 }
4528 else if (target_supports_stopped_by_hw_breakpoint ()
4529 && target_stopped_by_hw_breakpoint ())
4530 {
4531 tp->suspend.stop_reason
4532 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4533 }
4534 else if (!target_supports_stopped_by_hw_breakpoint ()
4535 && hardware_breakpoint_inserted_here_p (aspace,
4536 pc))
4537 {
4538 tp->suspend.stop_reason
4539 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4540 }
4541 else if (!target_supports_stopped_by_sw_breakpoint ()
4542 && software_breakpoint_inserted_here_p (aspace,
4543 pc))
4544 {
4545 tp->suspend.stop_reason
4546 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4547 }
4548 else if (!thread_has_single_step_breakpoints_set (tp)
4549 && currently_stepping (tp))
4550 {
4551 tp->suspend.stop_reason
4552 = TARGET_STOPPED_BY_SINGLE_STEP;
4553 }
4554 }
4555 }
4556
4557 /* Mark the non-executing threads accordingly. In all-stop, all
4558 threads of all processes are stopped when we get any event
4559 reported. In non-stop mode, only the event thread stops. */
4560
4561 static void
4562 mark_non_executing_threads (process_stratum_target *target,
4563 ptid_t event_ptid,
4564 struct target_waitstatus ws)
4565 {
4566 ptid_t mark_ptid;
4567
4568 if (!target_is_non_stop_p ())
4569 mark_ptid = minus_one_ptid;
4570 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4571 || ws.kind == TARGET_WAITKIND_EXITED)
4572 {
4573 /* If we're handling a process exit in non-stop mode, even
4574 though threads haven't been deleted yet, one would think
4575 that there is nothing to do, as threads of the dead process
4576 will be soon deleted, and threads of any other process were
4577 left running. However, on some targets, threads survive a
4578 process exit event. E.g., for the "checkpoint" command,
4579 when the current checkpoint/fork exits, linux-fork.c
4580 automatically switches to another fork from within
4581 target_mourn_inferior, by associating the same
4582 inferior/thread to another fork. We haven't mourned yet at
4583 this point, but we must mark any threads left in the
4584 process as not-executing so that finish_thread_state marks
4585 them stopped (in the user's perspective) if/when we present
4586 the stop to the user. */
4587 mark_ptid = ptid_t (event_ptid.pid ());
4588 }
4589 else
4590 mark_ptid = event_ptid;
4591
4592 set_executing (target, mark_ptid, false);
4593
4594 /* Likewise the resumed flag. */
4595 set_resumed (target, mark_ptid, false);
4596 }
4597
4598 /* Handle one event after stopping threads. If the eventing thread
4599 reports back any interesting event, we leave it pending. If the
4600 eventing thread was in the middle of a displaced step, we
4601 cancel/finish it, and unless the thread's inferior is being
4602 detached, put the thread back in the step-over chain. Returns true
4603 if there are no resumed threads left in the target (thus there's no
4604 point in waiting further), false otherwise. */
4605
4606 static bool
4607 handle_one (const wait_one_event &event)
4608 {
4609 infrun_debug_printf
4610 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4611 target_pid_to_str (event.ptid).c_str ());
4612
4613 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4614 {
4615 /* All resumed threads exited. */
4616 return true;
4617 }
4618 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4619 || event.ws.kind == TARGET_WAITKIND_EXITED
4620 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4621 {
4622 /* One thread/process exited/signalled. */
4623
4624 thread_info *t = nullptr;
4625
4626 /* The target may have reported just a pid. If so, try
4627 the first non-exited thread. */
4628 if (event.ptid.is_pid ())
4629 {
4630 int pid = event.ptid.pid ();
4631 inferior *inf = find_inferior_pid (event.target, pid);
4632 for (thread_info *tp : inf->non_exited_threads ())
4633 {
4634 t = tp;
4635 break;
4636 }
4637
4638 /* If there is no available thread, the event would
4639 have to be appended to a per-inferior event list,
4640 which does not exist (and if it did, we'd have
4641 to adjust run control command to be able to
4642 resume such an inferior). We assert here instead
4643 of going into an infinite loop. */
4644 gdb_assert (t != nullptr);
4645
4646 infrun_debug_printf
4647 ("using %s", target_pid_to_str (t->ptid).c_str ());
4648 }
4649 else
4650 {
4651 t = find_thread_ptid (event.target, event.ptid);
4652 /* Check if this is the first time we see this thread.
4653 Don't bother adding if it individually exited. */
4654 if (t == nullptr
4655 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4656 t = add_thread (event.target, event.ptid);
4657 }
4658
4659 if (t != nullptr)
4660 {
4661 /* Set the threads as non-executing to avoid
4662 another stop attempt on them. */
4663 switch_to_thread_no_regs (t);
4664 mark_non_executing_threads (event.target, event.ptid,
4665 event.ws);
4666 save_waitstatus (t, &event.ws);
4667 t->stop_requested = false;
4668 }
4669 }
4670 else
4671 {
4672 thread_info *t = find_thread_ptid (event.target, event.ptid);
4673 if (t == NULL)
4674 t = add_thread (event.target, event.ptid);
4675
4676 t->stop_requested = 0;
4677 t->executing = 0;
4678 t->resumed = false;
4679 t->control.may_range_step = 0;
4680
4681 /* This may be the first time we see the inferior report
4682 a stop. */
4683 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4684 if (inf->needs_setup)
4685 {
4686 switch_to_thread_no_regs (t);
4687 setup_inferior (0);
4688 }
4689
4690 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4691 && event.ws.value.sig == GDB_SIGNAL_0)
4692 {
4693 /* We caught the event that we intended to catch, so
4694 there's no event pending. */
4695 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4696 t->suspend.waitstatus_pending_p = 0;
4697
4698 if (displaced_step_finish (t, GDB_SIGNAL_0)
4699 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4700 {
4701 /* Add it back to the step-over queue. */
4702 infrun_debug_printf
4703 ("displaced-step of %s canceled",
4704 target_pid_to_str (t->ptid).c_str ());
4705
4706 t->control.trap_expected = 0;
4707 if (!t->inf->detaching)
4708 global_thread_step_over_chain_enqueue (t);
4709 }
4710 }
4711 else
4712 {
4713 enum gdb_signal sig;
4714 struct regcache *regcache;
4715
4716 infrun_debug_printf
4717 ("target_wait %s, saving status for %d.%ld.%ld",
4718 target_waitstatus_to_string (&event.ws).c_str (),
4719 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4720
4721 /* Record for later. */
4722 save_waitstatus (t, &event.ws);
4723
4724 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4725 ? event.ws.value.sig : GDB_SIGNAL_0);
4726
4727 if (displaced_step_finish (t, sig)
4728 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4729 {
4730 /* Add it back to the step-over queue. */
4731 t->control.trap_expected = 0;
4732 if (!t->inf->detaching)
4733 global_thread_step_over_chain_enqueue (t);
4734 }
4735
4736 regcache = get_thread_regcache (t);
4737 t->suspend.stop_pc = regcache_read_pc (regcache);
4738
4739 infrun_debug_printf ("saved stop_pc=%s for %s "
4740 "(currently_stepping=%d)",
4741 paddress (target_gdbarch (),
4742 t->suspend.stop_pc),
4743 target_pid_to_str (t->ptid).c_str (),
4744 currently_stepping (t));
4745 }
4746 }
4747
4748 return false;
4749 }
4750
4751 /* See infrun.h. */
4752
4753 void
4754 stop_all_threads (void)
4755 {
4756 /* We may need multiple passes to discover all threads. */
4757 int pass;
4758 int iterations = 0;
4759
4760 gdb_assert (exists_non_stop_target ());
4761
4762 infrun_debug_printf ("starting");
4763
4764 scoped_restore_current_thread restore_thread;
4765
4766 /* Enable thread events of all targets. */
4767 for (auto *target : all_non_exited_process_targets ())
4768 {
4769 switch_to_target_no_thread (target);
4770 target_thread_events (true);
4771 }
4772
4773 SCOPE_EXIT
4774 {
4775 /* Disable thread events of all targets. */
4776 for (auto *target : all_non_exited_process_targets ())
4777 {
4778 switch_to_target_no_thread (target);
4779 target_thread_events (false);
4780 }
4781
4782 /* Use debug_prefixed_printf directly to get a meaningful function
4783 name. */
4784 if (debug_infrun)
4785 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
4786 };
4787
4788 /* Request threads to stop, and then wait for the stops. Because
4789 threads we already know about can spawn more threads while we're
4790 trying to stop them, and we only learn about new threads when we
4791 update the thread list, do this in a loop, and keep iterating
4792 until two passes find no threads that need to be stopped. */
4793 for (pass = 0; pass < 2; pass++, iterations++)
4794 {
4795 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
4796 while (1)
4797 {
4798 int waits_needed = 0;
4799
4800 for (auto *target : all_non_exited_process_targets ())
4801 {
4802 switch_to_target_no_thread (target);
4803 update_thread_list ();
4804 }
4805
4806 /* Go through all threads looking for threads that we need
4807 to tell the target to stop. */
4808 for (thread_info *t : all_non_exited_threads ())
4809 {
4810 /* For a single-target setting with an all-stop target,
4811 we would not even arrive here. For a multi-target
4812 setting, until GDB is able to handle a mixture of
4813 all-stop and non-stop targets, simply skip all-stop
4814 targets' threads. This should be fine due to the
4815 protection of 'check_multi_target_resumption'. */
4816
4817 switch_to_thread_no_regs (t);
4818 if (!target_is_non_stop_p ())
4819 continue;
4820
4821 if (t->executing)
4822 {
4823 /* If already stopping, don't request a stop again.
4824 We just haven't seen the notification yet. */
4825 if (!t->stop_requested)
4826 {
4827 infrun_debug_printf (" %s executing, need stop",
4828 target_pid_to_str (t->ptid).c_str ());
4829 target_stop (t->ptid);
4830 t->stop_requested = 1;
4831 }
4832 else
4833 {
4834 infrun_debug_printf (" %s executing, already stopping",
4835 target_pid_to_str (t->ptid).c_str ());
4836 }
4837
4838 if (t->stop_requested)
4839 waits_needed++;
4840 }
4841 else
4842 {
4843 infrun_debug_printf (" %s not executing",
4844 target_pid_to_str (t->ptid).c_str ());
4845
4846 /* The thread may be not executing, but still be
4847 resumed with a pending status to process. */
4848 t->resumed = false;
4849 }
4850 }
4851
4852 if (waits_needed == 0)
4853 break;
4854
4855 /* If we find new threads on the second iteration, restart
4856 over. We want to see two iterations in a row with all
4857 threads stopped. */
4858 if (pass > 0)
4859 pass = -1;
4860
4861 for (int i = 0; i < waits_needed; i++)
4862 {
4863 wait_one_event event = wait_one ();
4864 if (handle_one (event))
4865 break;
4866 }
4867 }
4868 }
4869 }
4870
4871 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4872
4873 static bool
4874 handle_no_resumed (struct execution_control_state *ecs)
4875 {
4876 if (target_can_async_p ())
4877 {
4878 bool any_sync = false;
4879
4880 for (ui *ui : all_uis ())
4881 {
4882 if (ui->prompt_state == PROMPT_BLOCKED)
4883 {
4884 any_sync = true;
4885 break;
4886 }
4887 }
4888 if (!any_sync)
4889 {
4890 /* There were no unwaited-for children left in the target, but,
4891 we're not synchronously waiting for events either. Just
4892 ignore. */
4893
4894 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4895 prepare_to_wait (ecs);
4896 return true;
4897 }
4898 }
4899
4900 /* Otherwise, if we were running a synchronous execution command, we
4901 may need to cancel it and give the user back the terminal.
4902
4903 In non-stop mode, the target can't tell whether we've already
4904 consumed previous stop events, so it can end up sending us a
4905 no-resumed event like so:
4906
4907 #0 - thread 1 is left stopped
4908
4909 #1 - thread 2 is resumed and hits breakpoint
4910 -> TARGET_WAITKIND_STOPPED
4911
4912 #2 - thread 3 is resumed and exits
4913 this is the last resumed thread, so
4914 -> TARGET_WAITKIND_NO_RESUMED
4915
4916 #3 - gdb processes stop for thread 2 and decides to re-resume
4917 it.
4918
4919 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4920 thread 2 is now resumed, so the event should be ignored.
4921
4922 IOW, if the stop for thread 2 doesn't end a foreground command,
4923 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4924 event. But it could be that the event meant that thread 2 itself
4925 (or whatever other thread was the last resumed thread) exited.
4926
4927 To address this we refresh the thread list and check whether we
4928 have resumed threads _now_. In the example above, this removes
4929 thread 3 from the thread list. If thread 2 was re-resumed, we
4930 ignore this event. If we find no thread resumed, then we cancel
4931 the synchronous command and show "no unwaited-for " to the
4932 user. */
4933
4934 inferior *curr_inf = current_inferior ();
4935
4936 scoped_restore_current_thread restore_thread;
4937
4938 for (auto *target : all_non_exited_process_targets ())
4939 {
4940 switch_to_target_no_thread (target);
4941 update_thread_list ();
4942 }
4943
4944 /* If:
4945
4946 - the current target has no thread executing, and
4947 - the current inferior is native, and
4948 - the current inferior is the one which has the terminal, and
4949 - we did nothing,
4950
4951 then a Ctrl-C from this point on would remain stuck in the
4952 kernel, until a thread resumes and dequeues it. That would
4953 result in the GDB CLI not reacting to Ctrl-C, not able to
4954 interrupt the program. To address this, if the current inferior
4955 no longer has any thread executing, we give the terminal to some
4956 other inferior that has at least one thread executing. */
4957 bool swap_terminal = true;
4958
4959 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4960 whether to report it to the user. */
4961 bool ignore_event = false;
4962
4963 for (thread_info *thread : all_non_exited_threads ())
4964 {
4965 if (swap_terminal && thread->executing)
4966 {
4967 if (thread->inf != curr_inf)
4968 {
4969 target_terminal::ours ();
4970
4971 switch_to_thread (thread);
4972 target_terminal::inferior ();
4973 }
4974 swap_terminal = false;
4975 }
4976
4977 if (!ignore_event
4978 && (thread->executing
4979 || thread->suspend.waitstatus_pending_p))
4980 {
4981 /* Either there were no unwaited-for children left in the
4982 target at some point, but there are now, or some target
4983 other than the eventing one has unwaited-for children
4984 left. Just ignore. */
4985 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
4986 "(ignoring: found resumed)");
4987
4988 ignore_event = true;
4989 }
4990
4991 if (ignore_event && !swap_terminal)
4992 break;
4993 }
4994
4995 if (ignore_event)
4996 {
4997 switch_to_inferior_no_thread (curr_inf);
4998 prepare_to_wait (ecs);
4999 return true;
5000 }
5001
5002 /* Go ahead and report the event. */
5003 return false;
5004 }
5005
5006 /* Given an execution control state that has been freshly filled in by
5007 an event from the inferior, figure out what it means and take
5008 appropriate action.
5009
5010 The alternatives are:
5011
5012 1) stop_waiting and return; to really stop and return to the
5013 debugger.
5014
5015 2) keep_going and return; to wait for the next event (set
5016 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5017 once). */
5018
5019 static void
5020 handle_inferior_event (struct execution_control_state *ecs)
5021 {
5022 /* Make sure that all temporary struct value objects that were
5023 created during the handling of the event get deleted at the
5024 end. */
5025 scoped_value_mark free_values;
5026
5027 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5028
5029 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5030 {
5031 /* We had an event in the inferior, but we are not interested in
5032 handling it at this level. The lower layers have already
5033 done what needs to be done, if anything.
5034
5035 One of the possible circumstances for this is when the
5036 inferior produces output for the console. The inferior has
5037 not stopped, and we are ignoring the event. Another possible
5038 circumstance is any event which the lower level knows will be
5039 reported multiple times without an intervening resume. */
5040 prepare_to_wait (ecs);
5041 return;
5042 }
5043
5044 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5045 {
5046 prepare_to_wait (ecs);
5047 return;
5048 }
5049
5050 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5051 && handle_no_resumed (ecs))
5052 return;
5053
5054 /* Cache the last target/ptid/waitstatus. */
5055 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5056
5057 /* Always clear state belonging to the previous time we stopped. */
5058 stop_stack_dummy = STOP_NONE;
5059
5060 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5061 {
5062 /* No unwaited-for children left. IOW, all resumed children
5063 have exited. */
5064 stop_print_frame = false;
5065 stop_waiting (ecs);
5066 return;
5067 }
5068
5069 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5070 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5071 {
5072 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5073 /* If it's a new thread, add it to the thread database. */
5074 if (ecs->event_thread == NULL)
5075 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5076
5077 /* Disable range stepping. If the next step request could use a
5078 range, this will be end up re-enabled then. */
5079 ecs->event_thread->control.may_range_step = 0;
5080 }
5081
5082 /* Dependent on valid ECS->EVENT_THREAD. */
5083 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5084
5085 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5086 reinit_frame_cache ();
5087
5088 breakpoint_retire_moribund ();
5089
5090 /* First, distinguish signals caused by the debugger from signals
5091 that have to do with the program's own actions. Note that
5092 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5093 on the operating system version. Here we detect when a SIGILL or
5094 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5095 something similar for SIGSEGV, since a SIGSEGV will be generated
5096 when we're trying to execute a breakpoint instruction on a
5097 non-executable stack. This happens for call dummy breakpoints
5098 for architectures like SPARC that place call dummies on the
5099 stack. */
5100 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5101 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5102 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5103 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5104 {
5105 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5106
5107 if (breakpoint_inserted_here_p (regcache->aspace (),
5108 regcache_read_pc (regcache)))
5109 {
5110 infrun_debug_printf ("Treating signal as SIGTRAP");
5111 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5112 }
5113 }
5114
5115 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5116
5117 switch (ecs->ws.kind)
5118 {
5119 case TARGET_WAITKIND_LOADED:
5120 {
5121 context_switch (ecs);
5122 /* Ignore gracefully during startup of the inferior, as it might
5123 be the shell which has just loaded some objects, otherwise
5124 add the symbols for the newly loaded objects. Also ignore at
5125 the beginning of an attach or remote session; we will query
5126 the full list of libraries once the connection is
5127 established. */
5128
5129 stop_kind stop_soon = get_inferior_stop_soon (ecs);
5130 if (stop_soon == NO_STOP_QUIETLY)
5131 {
5132 struct regcache *regcache;
5133
5134 regcache = get_thread_regcache (ecs->event_thread);
5135
5136 handle_solib_event ();
5137
5138 ecs->event_thread->control.stop_bpstat
5139 = bpstat_stop_status (regcache->aspace (),
5140 ecs->event_thread->suspend.stop_pc,
5141 ecs->event_thread, &ecs->ws);
5142
5143 if (handle_stop_requested (ecs))
5144 return;
5145
5146 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5147 {
5148 /* A catchpoint triggered. */
5149 process_event_stop_test (ecs);
5150 return;
5151 }
5152
5153 /* If requested, stop when the dynamic linker notifies
5154 gdb of events. This allows the user to get control
5155 and place breakpoints in initializer routines for
5156 dynamically loaded objects (among other things). */
5157 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5158 if (stop_on_solib_events)
5159 {
5160 /* Make sure we print "Stopped due to solib-event" in
5161 normal_stop. */
5162 stop_print_frame = true;
5163
5164 stop_waiting (ecs);
5165 return;
5166 }
5167 }
5168
5169 /* If we are skipping through a shell, or through shared library
5170 loading that we aren't interested in, resume the program. If
5171 we're running the program normally, also resume. */
5172 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5173 {
5174 /* Loading of shared libraries might have changed breakpoint
5175 addresses. Make sure new breakpoints are inserted. */
5176 if (stop_soon == NO_STOP_QUIETLY)
5177 insert_breakpoints ();
5178 resume (GDB_SIGNAL_0);
5179 prepare_to_wait (ecs);
5180 return;
5181 }
5182
5183 /* But stop if we're attaching or setting up a remote
5184 connection. */
5185 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5186 || stop_soon == STOP_QUIETLY_REMOTE)
5187 {
5188 infrun_debug_printf ("quietly stopped");
5189 stop_waiting (ecs);
5190 return;
5191 }
5192
5193 internal_error (__FILE__, __LINE__,
5194 _("unhandled stop_soon: %d"), (int) stop_soon);
5195 }
5196
5197 case TARGET_WAITKIND_SPURIOUS:
5198 if (handle_stop_requested (ecs))
5199 return;
5200 context_switch (ecs);
5201 resume (GDB_SIGNAL_0);
5202 prepare_to_wait (ecs);
5203 return;
5204
5205 case TARGET_WAITKIND_THREAD_CREATED:
5206 if (handle_stop_requested (ecs))
5207 return;
5208 context_switch (ecs);
5209 if (!switch_back_to_stepped_thread (ecs))
5210 keep_going (ecs);
5211 return;
5212
5213 case TARGET_WAITKIND_EXITED:
5214 case TARGET_WAITKIND_SIGNALLED:
5215 {
5216 /* Depending on the system, ecs->ptid may point to a thread or
5217 to a process. On some targets, target_mourn_inferior may
5218 need to have access to the just-exited thread. That is the
5219 case of GNU/Linux's "checkpoint" support, for example.
5220 Call the switch_to_xxx routine as appropriate. */
5221 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5222 if (thr != nullptr)
5223 switch_to_thread (thr);
5224 else
5225 {
5226 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5227 switch_to_inferior_no_thread (inf);
5228 }
5229 }
5230 handle_vfork_child_exec_or_exit (0);
5231 target_terminal::ours (); /* Must do this before mourn anyway. */
5232
5233 /* Clearing any previous state of convenience variables. */
5234 clear_exit_convenience_vars ();
5235
5236 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5237 {
5238 /* Record the exit code in the convenience variable $_exitcode, so
5239 that the user can inspect this again later. */
5240 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5241 (LONGEST) ecs->ws.value.integer);
5242
5243 /* Also record this in the inferior itself. */
5244 current_inferior ()->has_exit_code = 1;
5245 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5246
5247 /* Support the --return-child-result option. */
5248 return_child_result_value = ecs->ws.value.integer;
5249
5250 gdb::observers::exited.notify (ecs->ws.value.integer);
5251 }
5252 else
5253 {
5254 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5255
5256 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5257 {
5258 /* Set the value of the internal variable $_exitsignal,
5259 which holds the signal uncaught by the inferior. */
5260 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5261 gdbarch_gdb_signal_to_target (gdbarch,
5262 ecs->ws.value.sig));
5263 }
5264 else
5265 {
5266 /* We don't have access to the target's method used for
5267 converting between signal numbers (GDB's internal
5268 representation <-> target's representation).
5269 Therefore, we cannot do a good job at displaying this
5270 information to the user. It's better to just warn
5271 her about it (if infrun debugging is enabled), and
5272 give up. */
5273 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5274 "signal number.");
5275 }
5276
5277 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5278 }
5279
5280 gdb_flush (gdb_stdout);
5281 target_mourn_inferior (inferior_ptid);
5282 stop_print_frame = false;
5283 stop_waiting (ecs);
5284 return;
5285
5286 case TARGET_WAITKIND_FORKED:
5287 case TARGET_WAITKIND_VFORKED:
5288 /* Check whether the inferior is displaced stepping. */
5289 {
5290 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5291 struct gdbarch *gdbarch = regcache->arch ();
5292 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
5293
5294 /* If this is a fork (child gets its own address space copy) and some
5295 displaced step buffers were in use at the time of the fork, restore
5296 the displaced step buffer bytes in the child process. */
5297 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5298 gdbarch_displaced_step_restore_all_in_ptid
5299 (gdbarch, parent_inf, ecs->ws.value.related_pid);
5300
5301 /* If displaced stepping is supported, and thread ecs->ptid is
5302 displaced stepping. */
5303 if (displaced_step_in_progress_thread (ecs->event_thread))
5304 {
5305 struct regcache *child_regcache;
5306 CORE_ADDR parent_pc;
5307
5308 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5309 indicating that the displaced stepping of syscall instruction
5310 has been done. Perform cleanup for parent process here. Note
5311 that this operation also cleans up the child process for vfork,
5312 because their pages are shared. */
5313 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5314 /* Start a new step-over in another thread if there's one
5315 that needs it. */
5316 start_step_over ();
5317
5318 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5319 the child's PC is also within the scratchpad. Set the child's PC
5320 to the parent's PC value, which has already been fixed up.
5321 FIXME: we use the parent's aspace here, although we're touching
5322 the child, because the child hasn't been added to the inferior
5323 list yet at this point. */
5324
5325 child_regcache
5326 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5327 ecs->ws.value.related_pid,
5328 gdbarch,
5329 parent_inf->aspace);
5330 /* Read PC value of parent process. */
5331 parent_pc = regcache_read_pc (regcache);
5332
5333 displaced_debug_printf ("write child pc from %s to %s",
5334 paddress (gdbarch,
5335 regcache_read_pc (child_regcache)),
5336 paddress (gdbarch, parent_pc));
5337
5338 regcache_write_pc (child_regcache, parent_pc);
5339 }
5340 }
5341
5342 context_switch (ecs);
5343
5344 /* Immediately detach breakpoints from the child before there's
5345 any chance of letting the user delete breakpoints from the
5346 breakpoint lists. If we don't do this early, it's easy to
5347 leave left over traps in the child, vis: "break foo; catch
5348 fork; c; <fork>; del; c; <child calls foo>". We only follow
5349 the fork on the last `continue', and by that time the
5350 breakpoint at "foo" is long gone from the breakpoint table.
5351 If we vforked, then we don't need to unpatch here, since both
5352 parent and child are sharing the same memory pages; we'll
5353 need to unpatch at follow/detach time instead to be certain
5354 that new breakpoints added between catchpoint hit time and
5355 vfork follow are detached. */
5356 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5357 {
5358 /* This won't actually modify the breakpoint list, but will
5359 physically remove the breakpoints from the child. */
5360 detach_breakpoints (ecs->ws.value.related_pid);
5361 }
5362
5363 delete_just_stopped_threads_single_step_breakpoints ();
5364
5365 /* In case the event is caught by a catchpoint, remember that
5366 the event is to be followed at the next resume of the thread,
5367 and not immediately. */
5368 ecs->event_thread->pending_follow = ecs->ws;
5369
5370 ecs->event_thread->suspend.stop_pc
5371 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5372
5373 ecs->event_thread->control.stop_bpstat
5374 = bpstat_stop_status (get_current_regcache ()->aspace (),
5375 ecs->event_thread->suspend.stop_pc,
5376 ecs->event_thread, &ecs->ws);
5377
5378 if (handle_stop_requested (ecs))
5379 return;
5380
5381 /* If no catchpoint triggered for this, then keep going. Note
5382 that we're interested in knowing the bpstat actually causes a
5383 stop, not just if it may explain the signal. Software
5384 watchpoints, for example, always appear in the bpstat. */
5385 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5386 {
5387 bool follow_child
5388 = (follow_fork_mode_string == follow_fork_mode_child);
5389
5390 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5391
5392 process_stratum_target *targ
5393 = ecs->event_thread->inf->process_target ();
5394
5395 bool should_resume = follow_fork ();
5396
5397 /* Note that one of these may be an invalid pointer,
5398 depending on detach_fork. */
5399 thread_info *parent = ecs->event_thread;
5400 thread_info *child
5401 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5402
5403 /* At this point, the parent is marked running, and the
5404 child is marked stopped. */
5405
5406 /* If not resuming the parent, mark it stopped. */
5407 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5408 parent->set_running (false);
5409
5410 /* If resuming the child, mark it running. */
5411 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5412 child->set_running (true);
5413
5414 /* In non-stop mode, also resume the other branch. */
5415 if (!detach_fork && (non_stop
5416 || (sched_multi && target_is_non_stop_p ())))
5417 {
5418 if (follow_child)
5419 switch_to_thread (parent);
5420 else
5421 switch_to_thread (child);
5422
5423 ecs->event_thread = inferior_thread ();
5424 ecs->ptid = inferior_ptid;
5425 keep_going (ecs);
5426 }
5427
5428 if (follow_child)
5429 switch_to_thread (child);
5430 else
5431 switch_to_thread (parent);
5432
5433 ecs->event_thread = inferior_thread ();
5434 ecs->ptid = inferior_ptid;
5435
5436 if (should_resume)
5437 keep_going (ecs);
5438 else
5439 stop_waiting (ecs);
5440 return;
5441 }
5442 process_event_stop_test (ecs);
5443 return;
5444
5445 case TARGET_WAITKIND_VFORK_DONE:
5446 /* Done with the shared memory region. Re-insert breakpoints in
5447 the parent, and keep going. */
5448
5449 context_switch (ecs);
5450
5451 current_inferior ()->waiting_for_vfork_done = 0;
5452 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5453
5454 if (handle_stop_requested (ecs))
5455 return;
5456
5457 /* This also takes care of reinserting breakpoints in the
5458 previously locked inferior. */
5459 keep_going (ecs);
5460 return;
5461
5462 case TARGET_WAITKIND_EXECD:
5463
5464 /* Note we can't read registers yet (the stop_pc), because we
5465 don't yet know the inferior's post-exec architecture.
5466 'stop_pc' is explicitly read below instead. */
5467 switch_to_thread_no_regs (ecs->event_thread);
5468
5469 /* Do whatever is necessary to the parent branch of the vfork. */
5470 handle_vfork_child_exec_or_exit (1);
5471
5472 /* This causes the eventpoints and symbol table to be reset.
5473 Must do this now, before trying to determine whether to
5474 stop. */
5475 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5476
5477 /* In follow_exec we may have deleted the original thread and
5478 created a new one. Make sure that the event thread is the
5479 execd thread for that case (this is a nop otherwise). */
5480 ecs->event_thread = inferior_thread ();
5481
5482 ecs->event_thread->suspend.stop_pc
5483 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5484
5485 ecs->event_thread->control.stop_bpstat
5486 = bpstat_stop_status (get_current_regcache ()->aspace (),
5487 ecs->event_thread->suspend.stop_pc,
5488 ecs->event_thread, &ecs->ws);
5489
5490 /* Note that this may be referenced from inside
5491 bpstat_stop_status above, through inferior_has_execd. */
5492 xfree (ecs->ws.value.execd_pathname);
5493 ecs->ws.value.execd_pathname = NULL;
5494
5495 if (handle_stop_requested (ecs))
5496 return;
5497
5498 /* If no catchpoint triggered for this, then keep going. */
5499 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5500 {
5501 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5502 keep_going (ecs);
5503 return;
5504 }
5505 process_event_stop_test (ecs);
5506 return;
5507
5508 /* Be careful not to try to gather much state about a thread
5509 that's in a syscall. It's frequently a losing proposition. */
5510 case TARGET_WAITKIND_SYSCALL_ENTRY:
5511 /* Getting the current syscall number. */
5512 if (handle_syscall_event (ecs) == 0)
5513 process_event_stop_test (ecs);
5514 return;
5515
5516 /* Before examining the threads further, step this thread to
5517 get it entirely out of the syscall. (We get notice of the
5518 event when the thread is just on the verge of exiting a
5519 syscall. Stepping one instruction seems to get it back
5520 into user code.) */
5521 case TARGET_WAITKIND_SYSCALL_RETURN:
5522 if (handle_syscall_event (ecs) == 0)
5523 process_event_stop_test (ecs);
5524 return;
5525
5526 case TARGET_WAITKIND_STOPPED:
5527 handle_signal_stop (ecs);
5528 return;
5529
5530 case TARGET_WAITKIND_NO_HISTORY:
5531 /* Reverse execution: target ran out of history info. */
5532
5533 /* Switch to the stopped thread. */
5534 context_switch (ecs);
5535 infrun_debug_printf ("stopped");
5536
5537 delete_just_stopped_threads_single_step_breakpoints ();
5538 ecs->event_thread->suspend.stop_pc
5539 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5540
5541 if (handle_stop_requested (ecs))
5542 return;
5543
5544 gdb::observers::no_history.notify ();
5545 stop_waiting (ecs);
5546 return;
5547 }
5548 }
5549
5550 /* Restart threads back to what they were trying to do back when we
5551 paused them for an in-line step-over. The EVENT_THREAD thread is
5552 ignored. */
5553
5554 static void
5555 restart_threads (struct thread_info *event_thread)
5556 {
5557 /* In case the instruction just stepped spawned a new thread. */
5558 update_thread_list ();
5559
5560 for (thread_info *tp : all_non_exited_threads ())
5561 {
5562 if (tp->inf->detaching)
5563 {
5564 infrun_debug_printf ("restart threads: [%s] inferior detaching",
5565 target_pid_to_str (tp->ptid).c_str ());
5566 continue;
5567 }
5568
5569 switch_to_thread_no_regs (tp);
5570
5571 if (tp == event_thread)
5572 {
5573 infrun_debug_printf ("restart threads: [%s] is event thread",
5574 target_pid_to_str (tp->ptid).c_str ());
5575 continue;
5576 }
5577
5578 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5579 {
5580 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5581 target_pid_to_str (tp->ptid).c_str ());
5582 continue;
5583 }
5584
5585 if (tp->resumed)
5586 {
5587 infrun_debug_printf ("restart threads: [%s] resumed",
5588 target_pid_to_str (tp->ptid).c_str ());
5589 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5590 continue;
5591 }
5592
5593 if (thread_is_in_step_over_chain (tp))
5594 {
5595 infrun_debug_printf ("restart threads: [%s] needs step-over",
5596 target_pid_to_str (tp->ptid).c_str ());
5597 gdb_assert (!tp->resumed);
5598 continue;
5599 }
5600
5601
5602 if (tp->suspend.waitstatus_pending_p)
5603 {
5604 infrun_debug_printf ("restart threads: [%s] has pending status",
5605 target_pid_to_str (tp->ptid).c_str ());
5606 tp->resumed = true;
5607 continue;
5608 }
5609
5610 gdb_assert (!tp->stop_requested);
5611
5612 /* If some thread needs to start a step-over at this point, it
5613 should still be in the step-over queue, and thus skipped
5614 above. */
5615 if (thread_still_needs_step_over (tp))
5616 {
5617 internal_error (__FILE__, __LINE__,
5618 "thread [%s] needs a step-over, but not in "
5619 "step-over queue\n",
5620 target_pid_to_str (tp->ptid).c_str ());
5621 }
5622
5623 if (currently_stepping (tp))
5624 {
5625 infrun_debug_printf ("restart threads: [%s] was stepping",
5626 target_pid_to_str (tp->ptid).c_str ());
5627 keep_going_stepped_thread (tp);
5628 }
5629 else
5630 {
5631 struct execution_control_state ecss;
5632 struct execution_control_state *ecs = &ecss;
5633
5634 infrun_debug_printf ("restart threads: [%s] continuing",
5635 target_pid_to_str (tp->ptid).c_str ());
5636 reset_ecs (ecs, tp);
5637 switch_to_thread (tp);
5638 keep_going_pass_signal (ecs);
5639 }
5640 }
5641 }
5642
5643 /* Callback for iterate_over_threads. Find a resumed thread that has
5644 a pending waitstatus. */
5645
5646 static int
5647 resumed_thread_with_pending_status (struct thread_info *tp,
5648 void *arg)
5649 {
5650 return (tp->resumed
5651 && tp->suspend.waitstatus_pending_p);
5652 }
5653
5654 /* Called when we get an event that may finish an in-line or
5655 out-of-line (displaced stepping) step-over started previously.
5656 Return true if the event is processed and we should go back to the
5657 event loop; false if the caller should continue processing the
5658 event. */
5659
5660 static int
5661 finish_step_over (struct execution_control_state *ecs)
5662 {
5663 displaced_step_finish (ecs->event_thread,
5664 ecs->event_thread->suspend.stop_signal);
5665
5666 bool had_step_over_info = step_over_info_valid_p ();
5667
5668 if (had_step_over_info)
5669 {
5670 /* If we're stepping over a breakpoint with all threads locked,
5671 then only the thread that was stepped should be reporting
5672 back an event. */
5673 gdb_assert (ecs->event_thread->control.trap_expected);
5674
5675 clear_step_over_info ();
5676 }
5677
5678 if (!target_is_non_stop_p ())
5679 return 0;
5680
5681 /* Start a new step-over in another thread if there's one that
5682 needs it. */
5683 start_step_over ();
5684
5685 /* If we were stepping over a breakpoint before, and haven't started
5686 a new in-line step-over sequence, then restart all other threads
5687 (except the event thread). We can't do this in all-stop, as then
5688 e.g., we wouldn't be able to issue any other remote packet until
5689 these other threads stop. */
5690 if (had_step_over_info && !step_over_info_valid_p ())
5691 {
5692 struct thread_info *pending;
5693
5694 /* If we only have threads with pending statuses, the restart
5695 below won't restart any thread and so nothing re-inserts the
5696 breakpoint we just stepped over. But we need it inserted
5697 when we later process the pending events, otherwise if
5698 another thread has a pending event for this breakpoint too,
5699 we'd discard its event (because the breakpoint that
5700 originally caused the event was no longer inserted). */
5701 context_switch (ecs);
5702 insert_breakpoints ();
5703
5704 restart_threads (ecs->event_thread);
5705
5706 /* If we have events pending, go through handle_inferior_event
5707 again, picking up a pending event at random. This avoids
5708 thread starvation. */
5709
5710 /* But not if we just stepped over a watchpoint in order to let
5711 the instruction execute so we can evaluate its expression.
5712 The set of watchpoints that triggered is recorded in the
5713 breakpoint objects themselves (see bp->watchpoint_triggered).
5714 If we processed another event first, that other event could
5715 clobber this info. */
5716 if (ecs->event_thread->stepping_over_watchpoint)
5717 return 0;
5718
5719 pending = iterate_over_threads (resumed_thread_with_pending_status,
5720 NULL);
5721 if (pending != NULL)
5722 {
5723 struct thread_info *tp = ecs->event_thread;
5724 struct regcache *regcache;
5725
5726 infrun_debug_printf ("found resumed threads with "
5727 "pending events, saving status");
5728
5729 gdb_assert (pending != tp);
5730
5731 /* Record the event thread's event for later. */
5732 save_waitstatus (tp, &ecs->ws);
5733 /* This was cleared early, by handle_inferior_event. Set it
5734 so this pending event is considered by
5735 do_target_wait. */
5736 tp->resumed = true;
5737
5738 gdb_assert (!tp->executing);
5739
5740 regcache = get_thread_regcache (tp);
5741 tp->suspend.stop_pc = regcache_read_pc (regcache);
5742
5743 infrun_debug_printf ("saved stop_pc=%s for %s "
5744 "(currently_stepping=%d)",
5745 paddress (target_gdbarch (),
5746 tp->suspend.stop_pc),
5747 target_pid_to_str (tp->ptid).c_str (),
5748 currently_stepping (tp));
5749
5750 /* This in-line step-over finished; clear this so we won't
5751 start a new one. This is what handle_signal_stop would
5752 do, if we returned false. */
5753 tp->stepping_over_breakpoint = 0;
5754
5755 /* Wake up the event loop again. */
5756 mark_async_event_handler (infrun_async_inferior_event_token);
5757
5758 prepare_to_wait (ecs);
5759 return 1;
5760 }
5761 }
5762
5763 return 0;
5764 }
5765
5766 /* Come here when the program has stopped with a signal. */
5767
5768 static void
5769 handle_signal_stop (struct execution_control_state *ecs)
5770 {
5771 struct frame_info *frame;
5772 struct gdbarch *gdbarch;
5773 int stopped_by_watchpoint;
5774 enum stop_kind stop_soon;
5775 int random_signal;
5776
5777 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5778
5779 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5780
5781 /* Do we need to clean up the state of a thread that has
5782 completed a displaced single-step? (Doing so usually affects
5783 the PC, so do it here, before we set stop_pc.) */
5784 if (finish_step_over (ecs))
5785 return;
5786
5787 /* If we either finished a single-step or hit a breakpoint, but
5788 the user wanted this thread to be stopped, pretend we got a
5789 SIG0 (generic unsignaled stop). */
5790 if (ecs->event_thread->stop_requested
5791 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5792 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5793
5794 ecs->event_thread->suspend.stop_pc
5795 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5796
5797 context_switch (ecs);
5798
5799 if (deprecated_context_hook)
5800 deprecated_context_hook (ecs->event_thread->global_num);
5801
5802 if (debug_infrun)
5803 {
5804 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5805 struct gdbarch *reg_gdbarch = regcache->arch ();
5806
5807 infrun_debug_printf ("stop_pc=%s",
5808 paddress (reg_gdbarch,
5809 ecs->event_thread->suspend.stop_pc));
5810 if (target_stopped_by_watchpoint ())
5811 {
5812 CORE_ADDR addr;
5813
5814 infrun_debug_printf ("stopped by watchpoint");
5815
5816 if (target_stopped_data_address (current_inferior ()->top_target (),
5817 &addr))
5818 infrun_debug_printf ("stopped data address=%s",
5819 paddress (reg_gdbarch, addr));
5820 else
5821 infrun_debug_printf ("(no data address available)");
5822 }
5823 }
5824
5825 /* This is originated from start_remote(), start_inferior() and
5826 shared libraries hook functions. */
5827 stop_soon = get_inferior_stop_soon (ecs);
5828 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5829 {
5830 infrun_debug_printf ("quietly stopped");
5831 stop_print_frame = true;
5832 stop_waiting (ecs);
5833 return;
5834 }
5835
5836 /* This originates from attach_command(). We need to overwrite
5837 the stop_signal here, because some kernels don't ignore a
5838 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5839 See more comments in inferior.h. On the other hand, if we
5840 get a non-SIGSTOP, report it to the user - assume the backend
5841 will handle the SIGSTOP if it should show up later.
5842
5843 Also consider that the attach is complete when we see a
5844 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5845 target extended-remote report it instead of a SIGSTOP
5846 (e.g. gdbserver). We already rely on SIGTRAP being our
5847 signal, so this is no exception.
5848
5849 Also consider that the attach is complete when we see a
5850 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5851 the target to stop all threads of the inferior, in case the
5852 low level attach operation doesn't stop them implicitly. If
5853 they weren't stopped implicitly, then the stub will report a
5854 GDB_SIGNAL_0, meaning: stopped for no particular reason
5855 other than GDB's request. */
5856 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5857 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5858 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5859 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5860 {
5861 stop_print_frame = true;
5862 stop_waiting (ecs);
5863 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5864 return;
5865 }
5866
5867 /* At this point, get hold of the now-current thread's frame. */
5868 frame = get_current_frame ();
5869 gdbarch = get_frame_arch (frame);
5870
5871 /* Pull the single step breakpoints out of the target. */
5872 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5873 {
5874 struct regcache *regcache;
5875 CORE_ADDR pc;
5876
5877 regcache = get_thread_regcache (ecs->event_thread);
5878 const address_space *aspace = regcache->aspace ();
5879
5880 pc = regcache_read_pc (regcache);
5881
5882 /* However, before doing so, if this single-step breakpoint was
5883 actually for another thread, set this thread up for moving
5884 past it. */
5885 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5886 aspace, pc))
5887 {
5888 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5889 {
5890 infrun_debug_printf ("[%s] hit another thread's single-step "
5891 "breakpoint",
5892 target_pid_to_str (ecs->ptid).c_str ());
5893 ecs->hit_singlestep_breakpoint = 1;
5894 }
5895 }
5896 else
5897 {
5898 infrun_debug_printf ("[%s] hit its single-step breakpoint",
5899 target_pid_to_str (ecs->ptid).c_str ());
5900 }
5901 }
5902 delete_just_stopped_threads_single_step_breakpoints ();
5903
5904 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5905 && ecs->event_thread->control.trap_expected
5906 && ecs->event_thread->stepping_over_watchpoint)
5907 stopped_by_watchpoint = 0;
5908 else
5909 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5910
5911 /* If necessary, step over this watchpoint. We'll be back to display
5912 it in a moment. */
5913 if (stopped_by_watchpoint
5914 && (target_have_steppable_watchpoint ()
5915 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5916 {
5917 /* At this point, we are stopped at an instruction which has
5918 attempted to write to a piece of memory under control of
5919 a watchpoint. The instruction hasn't actually executed
5920 yet. If we were to evaluate the watchpoint expression
5921 now, we would get the old value, and therefore no change
5922 would seem to have occurred.
5923
5924 In order to make watchpoints work `right', we really need
5925 to complete the memory write, and then evaluate the
5926 watchpoint expression. We do this by single-stepping the
5927 target.
5928
5929 It may not be necessary to disable the watchpoint to step over
5930 it. For example, the PA can (with some kernel cooperation)
5931 single step over a watchpoint without disabling the watchpoint.
5932
5933 It is far more common to need to disable a watchpoint to step
5934 the inferior over it. If we have non-steppable watchpoints,
5935 we must disable the current watchpoint; it's simplest to
5936 disable all watchpoints.
5937
5938 Any breakpoint at PC must also be stepped over -- if there's
5939 one, it will have already triggered before the watchpoint
5940 triggered, and we either already reported it to the user, or
5941 it didn't cause a stop and we called keep_going. In either
5942 case, if there was a breakpoint at PC, we must be trying to
5943 step past it. */
5944 ecs->event_thread->stepping_over_watchpoint = 1;
5945 keep_going (ecs);
5946 return;
5947 }
5948
5949 ecs->event_thread->stepping_over_breakpoint = 0;
5950 ecs->event_thread->stepping_over_watchpoint = 0;
5951 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5952 ecs->event_thread->control.stop_step = 0;
5953 stop_print_frame = true;
5954 stopped_by_random_signal = 0;
5955 bpstat stop_chain = NULL;
5956
5957 /* Hide inlined functions starting here, unless we just performed stepi or
5958 nexti. After stepi and nexti, always show the innermost frame (not any
5959 inline function call sites). */
5960 if (ecs->event_thread->control.step_range_end != 1)
5961 {
5962 const address_space *aspace
5963 = get_thread_regcache (ecs->event_thread)->aspace ();
5964
5965 /* skip_inline_frames is expensive, so we avoid it if we can
5966 determine that the address is one where functions cannot have
5967 been inlined. This improves performance with inferiors that
5968 load a lot of shared libraries, because the solib event
5969 breakpoint is defined as the address of a function (i.e. not
5970 inline). Note that we have to check the previous PC as well
5971 as the current one to catch cases when we have just
5972 single-stepped off a breakpoint prior to reinstating it.
5973 Note that we're assuming that the code we single-step to is
5974 not inline, but that's not definitive: there's nothing
5975 preventing the event breakpoint function from containing
5976 inlined code, and the single-step ending up there. If the
5977 user had set a breakpoint on that inlined code, the missing
5978 skip_inline_frames call would break things. Fortunately
5979 that's an extremely unlikely scenario. */
5980 if (!pc_at_non_inline_function (aspace,
5981 ecs->event_thread->suspend.stop_pc,
5982 &ecs->ws)
5983 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5984 && ecs->event_thread->control.trap_expected
5985 && pc_at_non_inline_function (aspace,
5986 ecs->event_thread->prev_pc,
5987 &ecs->ws)))
5988 {
5989 stop_chain = build_bpstat_chain (aspace,
5990 ecs->event_thread->suspend.stop_pc,
5991 &ecs->ws);
5992 skip_inline_frames (ecs->event_thread, stop_chain);
5993
5994 /* Re-fetch current thread's frame in case that invalidated
5995 the frame cache. */
5996 frame = get_current_frame ();
5997 gdbarch = get_frame_arch (frame);
5998 }
5999 }
6000
6001 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6002 && ecs->event_thread->control.trap_expected
6003 && gdbarch_single_step_through_delay_p (gdbarch)
6004 && currently_stepping (ecs->event_thread))
6005 {
6006 /* We're trying to step off a breakpoint. Turns out that we're
6007 also on an instruction that needs to be stepped multiple
6008 times before it's been fully executing. E.g., architectures
6009 with a delay slot. It needs to be stepped twice, once for
6010 the instruction and once for the delay slot. */
6011 int step_through_delay
6012 = gdbarch_single_step_through_delay (gdbarch, frame);
6013
6014 if (step_through_delay)
6015 infrun_debug_printf ("step through delay");
6016
6017 if (ecs->event_thread->control.step_range_end == 0
6018 && step_through_delay)
6019 {
6020 /* The user issued a continue when stopped at a breakpoint.
6021 Set up for another trap and get out of here. */
6022 ecs->event_thread->stepping_over_breakpoint = 1;
6023 keep_going (ecs);
6024 return;
6025 }
6026 else if (step_through_delay)
6027 {
6028 /* The user issued a step when stopped at a breakpoint.
6029 Maybe we should stop, maybe we should not - the delay
6030 slot *might* correspond to a line of source. In any
6031 case, don't decide that here, just set
6032 ecs->stepping_over_breakpoint, making sure we
6033 single-step again before breakpoints are re-inserted. */
6034 ecs->event_thread->stepping_over_breakpoint = 1;
6035 }
6036 }
6037
6038 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6039 handles this event. */
6040 ecs->event_thread->control.stop_bpstat
6041 = bpstat_stop_status (get_current_regcache ()->aspace (),
6042 ecs->event_thread->suspend.stop_pc,
6043 ecs->event_thread, &ecs->ws, stop_chain);
6044
6045 /* Following in case break condition called a
6046 function. */
6047 stop_print_frame = true;
6048
6049 /* This is where we handle "moribund" watchpoints. Unlike
6050 software breakpoints traps, hardware watchpoint traps are
6051 always distinguishable from random traps. If no high-level
6052 watchpoint is associated with the reported stop data address
6053 anymore, then the bpstat does not explain the signal ---
6054 simply make sure to ignore it if `stopped_by_watchpoint' is
6055 set. */
6056
6057 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6058 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6059 GDB_SIGNAL_TRAP)
6060 && stopped_by_watchpoint)
6061 {
6062 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6063 "ignoring");
6064 }
6065
6066 /* NOTE: cagney/2003-03-29: These checks for a random signal
6067 at one stage in the past included checks for an inferior
6068 function call's call dummy's return breakpoint. The original
6069 comment, that went with the test, read:
6070
6071 ``End of a stack dummy. Some systems (e.g. Sony news) give
6072 another signal besides SIGTRAP, so check here as well as
6073 above.''
6074
6075 If someone ever tries to get call dummys on a
6076 non-executable stack to work (where the target would stop
6077 with something like a SIGSEGV), then those tests might need
6078 to be re-instated. Given, however, that the tests were only
6079 enabled when momentary breakpoints were not being used, I
6080 suspect that it won't be the case.
6081
6082 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6083 be necessary for call dummies on a non-executable stack on
6084 SPARC. */
6085
6086 /* See if the breakpoints module can explain the signal. */
6087 random_signal
6088 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6089 ecs->event_thread->suspend.stop_signal);
6090
6091 /* Maybe this was a trap for a software breakpoint that has since
6092 been removed. */
6093 if (random_signal && target_stopped_by_sw_breakpoint ())
6094 {
6095 if (gdbarch_program_breakpoint_here_p (gdbarch,
6096 ecs->event_thread->suspend.stop_pc))
6097 {
6098 struct regcache *regcache;
6099 int decr_pc;
6100
6101 /* Re-adjust PC to what the program would see if GDB was not
6102 debugging it. */
6103 regcache = get_thread_regcache (ecs->event_thread);
6104 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6105 if (decr_pc != 0)
6106 {
6107 gdb::optional<scoped_restore_tmpl<int>>
6108 restore_operation_disable;
6109
6110 if (record_full_is_used ())
6111 restore_operation_disable.emplace
6112 (record_full_gdb_operation_disable_set ());
6113
6114 regcache_write_pc (regcache,
6115 ecs->event_thread->suspend.stop_pc + decr_pc);
6116 }
6117 }
6118 else
6119 {
6120 /* A delayed software breakpoint event. Ignore the trap. */
6121 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6122 random_signal = 0;
6123 }
6124 }
6125
6126 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6127 has since been removed. */
6128 if (random_signal && target_stopped_by_hw_breakpoint ())
6129 {
6130 /* A delayed hardware breakpoint event. Ignore the trap. */
6131 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6132 "trap, ignoring");
6133 random_signal = 0;
6134 }
6135
6136 /* If not, perhaps stepping/nexting can. */
6137 if (random_signal)
6138 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6139 && currently_stepping (ecs->event_thread));
6140
6141 /* Perhaps the thread hit a single-step breakpoint of _another_
6142 thread. Single-step breakpoints are transparent to the
6143 breakpoints module. */
6144 if (random_signal)
6145 random_signal = !ecs->hit_singlestep_breakpoint;
6146
6147 /* No? Perhaps we got a moribund watchpoint. */
6148 if (random_signal)
6149 random_signal = !stopped_by_watchpoint;
6150
6151 /* Always stop if the user explicitly requested this thread to
6152 remain stopped. */
6153 if (ecs->event_thread->stop_requested)
6154 {
6155 random_signal = 1;
6156 infrun_debug_printf ("user-requested stop");
6157 }
6158
6159 /* For the program's own signals, act according to
6160 the signal handling tables. */
6161
6162 if (random_signal)
6163 {
6164 /* Signal not for debugging purposes. */
6165 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6166
6167 infrun_debug_printf ("random signal (%s)",
6168 gdb_signal_to_symbol_string (stop_signal));
6169
6170 stopped_by_random_signal = 1;
6171
6172 /* Always stop on signals if we're either just gaining control
6173 of the program, or the user explicitly requested this thread
6174 to remain stopped. */
6175 if (stop_soon != NO_STOP_QUIETLY
6176 || ecs->event_thread->stop_requested
6177 || signal_stop_state (ecs->event_thread->suspend.stop_signal))
6178 {
6179 stop_waiting (ecs);
6180 return;
6181 }
6182
6183 /* Notify observers the signal has "handle print" set. Note we
6184 returned early above if stopping; normal_stop handles the
6185 printing in that case. */
6186 if (signal_print[ecs->event_thread->suspend.stop_signal])
6187 {
6188 /* The signal table tells us to print about this signal. */
6189 target_terminal::ours_for_output ();
6190 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6191 target_terminal::inferior ();
6192 }
6193
6194 /* Clear the signal if it should not be passed. */
6195 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6196 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6197
6198 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6199 && ecs->event_thread->control.trap_expected
6200 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6201 {
6202 /* We were just starting a new sequence, attempting to
6203 single-step off of a breakpoint and expecting a SIGTRAP.
6204 Instead this signal arrives. This signal will take us out
6205 of the stepping range so GDB needs to remember to, when
6206 the signal handler returns, resume stepping off that
6207 breakpoint. */
6208 /* To simplify things, "continue" is forced to use the same
6209 code paths as single-step - set a breakpoint at the
6210 signal return address and then, once hit, step off that
6211 breakpoint. */
6212 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6213
6214 insert_hp_step_resume_breakpoint_at_frame (frame);
6215 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6216 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6217 ecs->event_thread->control.trap_expected = 0;
6218
6219 /* If we were nexting/stepping some other thread, switch to
6220 it, so that we don't continue it, losing control. */
6221 if (!switch_back_to_stepped_thread (ecs))
6222 keep_going (ecs);
6223 return;
6224 }
6225
6226 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6227 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6228 ecs->event_thread)
6229 || ecs->event_thread->control.step_range_end == 1)
6230 && frame_id_eq (get_stack_frame_id (frame),
6231 ecs->event_thread->control.step_stack_frame_id)
6232 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6233 {
6234 /* The inferior is about to take a signal that will take it
6235 out of the single step range. Set a breakpoint at the
6236 current PC (which is presumably where the signal handler
6237 will eventually return) and then allow the inferior to
6238 run free.
6239
6240 Note that this is only needed for a signal delivered
6241 while in the single-step range. Nested signals aren't a
6242 problem as they eventually all return. */
6243 infrun_debug_printf ("signal may take us out of single-step range");
6244
6245 clear_step_over_info ();
6246 insert_hp_step_resume_breakpoint_at_frame (frame);
6247 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6248 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6249 ecs->event_thread->control.trap_expected = 0;
6250 keep_going (ecs);
6251 return;
6252 }
6253
6254 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6255 when either there's a nested signal, or when there's a
6256 pending signal enabled just as the signal handler returns
6257 (leaving the inferior at the step-resume-breakpoint without
6258 actually executing it). Either way continue until the
6259 breakpoint is really hit. */
6260
6261 if (!switch_back_to_stepped_thread (ecs))
6262 {
6263 infrun_debug_printf ("random signal, keep going");
6264
6265 keep_going (ecs);
6266 }
6267 return;
6268 }
6269
6270 process_event_stop_test (ecs);
6271 }
6272
6273 /* Come here when we've got some debug event / signal we can explain
6274 (IOW, not a random signal), and test whether it should cause a
6275 stop, or whether we should resume the inferior (transparently).
6276 E.g., could be a breakpoint whose condition evaluates false; we
6277 could be still stepping within the line; etc. */
6278
6279 static void
6280 process_event_stop_test (struct execution_control_state *ecs)
6281 {
6282 struct symtab_and_line stop_pc_sal;
6283 struct frame_info *frame;
6284 struct gdbarch *gdbarch;
6285 CORE_ADDR jmp_buf_pc;
6286 struct bpstat_what what;
6287
6288 /* Handle cases caused by hitting a breakpoint. */
6289
6290 frame = get_current_frame ();
6291 gdbarch = get_frame_arch (frame);
6292
6293 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6294
6295 if (what.call_dummy)
6296 {
6297 stop_stack_dummy = what.call_dummy;
6298 }
6299
6300 /* A few breakpoint types have callbacks associated (e.g.,
6301 bp_jit_event). Run them now. */
6302 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6303
6304 /* If we hit an internal event that triggers symbol changes, the
6305 current frame will be invalidated within bpstat_what (e.g., if we
6306 hit an internal solib event). Re-fetch it. */
6307 frame = get_current_frame ();
6308 gdbarch = get_frame_arch (frame);
6309
6310 switch (what.main_action)
6311 {
6312 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6313 /* If we hit the breakpoint at longjmp while stepping, we
6314 install a momentary breakpoint at the target of the
6315 jmp_buf. */
6316
6317 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6318
6319 ecs->event_thread->stepping_over_breakpoint = 1;
6320
6321 if (what.is_longjmp)
6322 {
6323 struct value *arg_value;
6324
6325 /* If we set the longjmp breakpoint via a SystemTap probe,
6326 then use it to extract the arguments. The destination PC
6327 is the third argument to the probe. */
6328 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6329 if (arg_value)
6330 {
6331 jmp_buf_pc = value_as_address (arg_value);
6332 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6333 }
6334 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6335 || !gdbarch_get_longjmp_target (gdbarch,
6336 frame, &jmp_buf_pc))
6337 {
6338 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6339 "(!gdbarch_get_longjmp_target)");
6340 keep_going (ecs);
6341 return;
6342 }
6343
6344 /* Insert a breakpoint at resume address. */
6345 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6346 }
6347 else
6348 check_exception_resume (ecs, frame);
6349 keep_going (ecs);
6350 return;
6351
6352 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6353 {
6354 struct frame_info *init_frame;
6355
6356 /* There are several cases to consider.
6357
6358 1. The initiating frame no longer exists. In this case we
6359 must stop, because the exception or longjmp has gone too
6360 far.
6361
6362 2. The initiating frame exists, and is the same as the
6363 current frame. We stop, because the exception or longjmp
6364 has been caught.
6365
6366 3. The initiating frame exists and is different from the
6367 current frame. This means the exception or longjmp has
6368 been caught beneath the initiating frame, so keep going.
6369
6370 4. longjmp breakpoint has been placed just to protect
6371 against stale dummy frames and user is not interested in
6372 stopping around longjmps. */
6373
6374 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6375
6376 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6377 != NULL);
6378 delete_exception_resume_breakpoint (ecs->event_thread);
6379
6380 if (what.is_longjmp)
6381 {
6382 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6383
6384 if (!frame_id_p (ecs->event_thread->initiating_frame))
6385 {
6386 /* Case 4. */
6387 keep_going (ecs);
6388 return;
6389 }
6390 }
6391
6392 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6393
6394 if (init_frame)
6395 {
6396 struct frame_id current_id
6397 = get_frame_id (get_current_frame ());
6398 if (frame_id_eq (current_id,
6399 ecs->event_thread->initiating_frame))
6400 {
6401 /* Case 2. Fall through. */
6402 }
6403 else
6404 {
6405 /* Case 3. */
6406 keep_going (ecs);
6407 return;
6408 }
6409 }
6410
6411 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6412 exists. */
6413 delete_step_resume_breakpoint (ecs->event_thread);
6414
6415 end_stepping_range (ecs);
6416 }
6417 return;
6418
6419 case BPSTAT_WHAT_SINGLE:
6420 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6421 ecs->event_thread->stepping_over_breakpoint = 1;
6422 /* Still need to check other stuff, at least the case where we
6423 are stepping and step out of the right range. */
6424 break;
6425
6426 case BPSTAT_WHAT_STEP_RESUME:
6427 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6428
6429 delete_step_resume_breakpoint (ecs->event_thread);
6430 if (ecs->event_thread->control.proceed_to_finish
6431 && execution_direction == EXEC_REVERSE)
6432 {
6433 struct thread_info *tp = ecs->event_thread;
6434
6435 /* We are finishing a function in reverse, and just hit the
6436 step-resume breakpoint at the start address of the
6437 function, and we're almost there -- just need to back up
6438 by one more single-step, which should take us back to the
6439 function call. */
6440 tp->control.step_range_start = tp->control.step_range_end = 1;
6441 keep_going (ecs);
6442 return;
6443 }
6444 fill_in_stop_func (gdbarch, ecs);
6445 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6446 && execution_direction == EXEC_REVERSE)
6447 {
6448 /* We are stepping over a function call in reverse, and just
6449 hit the step-resume breakpoint at the start address of
6450 the function. Go back to single-stepping, which should
6451 take us back to the function call. */
6452 ecs->event_thread->stepping_over_breakpoint = 1;
6453 keep_going (ecs);
6454 return;
6455 }
6456 break;
6457
6458 case BPSTAT_WHAT_STOP_NOISY:
6459 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6460 stop_print_frame = true;
6461
6462 /* Assume the thread stopped for a breakpoint. We'll still check
6463 whether a/the breakpoint is there when the thread is next
6464 resumed. */
6465 ecs->event_thread->stepping_over_breakpoint = 1;
6466
6467 stop_waiting (ecs);
6468 return;
6469
6470 case BPSTAT_WHAT_STOP_SILENT:
6471 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6472 stop_print_frame = false;
6473
6474 /* Assume the thread stopped for a breakpoint. We'll still check
6475 whether a/the breakpoint is there when the thread is next
6476 resumed. */
6477 ecs->event_thread->stepping_over_breakpoint = 1;
6478 stop_waiting (ecs);
6479 return;
6480
6481 case BPSTAT_WHAT_HP_STEP_RESUME:
6482 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6483
6484 delete_step_resume_breakpoint (ecs->event_thread);
6485 if (ecs->event_thread->step_after_step_resume_breakpoint)
6486 {
6487 /* Back when the step-resume breakpoint was inserted, we
6488 were trying to single-step off a breakpoint. Go back to
6489 doing that. */
6490 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6491 ecs->event_thread->stepping_over_breakpoint = 1;
6492 keep_going (ecs);
6493 return;
6494 }
6495 break;
6496
6497 case BPSTAT_WHAT_KEEP_CHECKING:
6498 break;
6499 }
6500
6501 /* If we stepped a permanent breakpoint and we had a high priority
6502 step-resume breakpoint for the address we stepped, but we didn't
6503 hit it, then we must have stepped into the signal handler. The
6504 step-resume was only necessary to catch the case of _not_
6505 stepping into the handler, so delete it, and fall through to
6506 checking whether the step finished. */
6507 if (ecs->event_thread->stepped_breakpoint)
6508 {
6509 struct breakpoint *sr_bp
6510 = ecs->event_thread->control.step_resume_breakpoint;
6511
6512 if (sr_bp != NULL
6513 && sr_bp->loc->permanent
6514 && sr_bp->type == bp_hp_step_resume
6515 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6516 {
6517 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6518 delete_step_resume_breakpoint (ecs->event_thread);
6519 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6520 }
6521 }
6522
6523 /* We come here if we hit a breakpoint but should not stop for it.
6524 Possibly we also were stepping and should stop for that. So fall
6525 through and test for stepping. But, if not stepping, do not
6526 stop. */
6527
6528 /* In all-stop mode, if we're currently stepping but have stopped in
6529 some other thread, we need to switch back to the stepped thread. */
6530 if (switch_back_to_stepped_thread (ecs))
6531 return;
6532
6533 if (ecs->event_thread->control.step_resume_breakpoint)
6534 {
6535 infrun_debug_printf ("step-resume breakpoint is inserted");
6536
6537 /* Having a step-resume breakpoint overrides anything
6538 else having to do with stepping commands until
6539 that breakpoint is reached. */
6540 keep_going (ecs);
6541 return;
6542 }
6543
6544 if (ecs->event_thread->control.step_range_end == 0)
6545 {
6546 infrun_debug_printf ("no stepping, continue");
6547 /* Likewise if we aren't even stepping. */
6548 keep_going (ecs);
6549 return;
6550 }
6551
6552 /* Re-fetch current thread's frame in case the code above caused
6553 the frame cache to be re-initialized, making our FRAME variable
6554 a dangling pointer. */
6555 frame = get_current_frame ();
6556 gdbarch = get_frame_arch (frame);
6557 fill_in_stop_func (gdbarch, ecs);
6558
6559 /* If stepping through a line, keep going if still within it.
6560
6561 Note that step_range_end is the address of the first instruction
6562 beyond the step range, and NOT the address of the last instruction
6563 within it!
6564
6565 Note also that during reverse execution, we may be stepping
6566 through a function epilogue and therefore must detect when
6567 the current-frame changes in the middle of a line. */
6568
6569 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6570 ecs->event_thread)
6571 && (execution_direction != EXEC_REVERSE
6572 || frame_id_eq (get_frame_id (frame),
6573 ecs->event_thread->control.step_frame_id)))
6574 {
6575 infrun_debug_printf
6576 ("stepping inside range [%s-%s]",
6577 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6578 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6579
6580 /* Tentatively re-enable range stepping; `resume' disables it if
6581 necessary (e.g., if we're stepping over a breakpoint or we
6582 have software watchpoints). */
6583 ecs->event_thread->control.may_range_step = 1;
6584
6585 /* When stepping backward, stop at beginning of line range
6586 (unless it's the function entry point, in which case
6587 keep going back to the call point). */
6588 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6589 if (stop_pc == ecs->event_thread->control.step_range_start
6590 && stop_pc != ecs->stop_func_start
6591 && execution_direction == EXEC_REVERSE)
6592 end_stepping_range (ecs);
6593 else
6594 keep_going (ecs);
6595
6596 return;
6597 }
6598
6599 /* We stepped out of the stepping range. */
6600
6601 /* If we are stepping at the source level and entered the runtime
6602 loader dynamic symbol resolution code...
6603
6604 EXEC_FORWARD: we keep on single stepping until we exit the run
6605 time loader code and reach the callee's address.
6606
6607 EXEC_REVERSE: we've already executed the callee (backward), and
6608 the runtime loader code is handled just like any other
6609 undebuggable function call. Now we need only keep stepping
6610 backward through the trampoline code, and that's handled further
6611 down, so there is nothing for us to do here. */
6612
6613 if (execution_direction != EXEC_REVERSE
6614 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6615 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6616 {
6617 CORE_ADDR pc_after_resolver =
6618 gdbarch_skip_solib_resolver (gdbarch,
6619 ecs->event_thread->suspend.stop_pc);
6620
6621 infrun_debug_printf ("stepped into dynsym resolve code");
6622
6623 if (pc_after_resolver)
6624 {
6625 /* Set up a step-resume breakpoint at the address
6626 indicated by SKIP_SOLIB_RESOLVER. */
6627 symtab_and_line sr_sal;
6628 sr_sal.pc = pc_after_resolver;
6629 sr_sal.pspace = get_frame_program_space (frame);
6630
6631 insert_step_resume_breakpoint_at_sal (gdbarch,
6632 sr_sal, null_frame_id);
6633 }
6634
6635 keep_going (ecs);
6636 return;
6637 }
6638
6639 /* Step through an indirect branch thunk. */
6640 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6641 && gdbarch_in_indirect_branch_thunk (gdbarch,
6642 ecs->event_thread->suspend.stop_pc))
6643 {
6644 infrun_debug_printf ("stepped into indirect branch thunk");
6645 keep_going (ecs);
6646 return;
6647 }
6648
6649 if (ecs->event_thread->control.step_range_end != 1
6650 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6651 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6652 && get_frame_type (frame) == SIGTRAMP_FRAME)
6653 {
6654 infrun_debug_printf ("stepped into signal trampoline");
6655 /* The inferior, while doing a "step" or "next", has ended up in
6656 a signal trampoline (either by a signal being delivered or by
6657 the signal handler returning). Just single-step until the
6658 inferior leaves the trampoline (either by calling the handler
6659 or returning). */
6660 keep_going (ecs);
6661 return;
6662 }
6663
6664 /* If we're in the return path from a shared library trampoline,
6665 we want to proceed through the trampoline when stepping. */
6666 /* macro/2012-04-25: This needs to come before the subroutine
6667 call check below as on some targets return trampolines look
6668 like subroutine calls (MIPS16 return thunks). */
6669 if (gdbarch_in_solib_return_trampoline (gdbarch,
6670 ecs->event_thread->suspend.stop_pc,
6671 ecs->stop_func_name)
6672 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6673 {
6674 /* Determine where this trampoline returns. */
6675 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6676 CORE_ADDR real_stop_pc
6677 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6678
6679 infrun_debug_printf ("stepped into solib return tramp");
6680
6681 /* Only proceed through if we know where it's going. */
6682 if (real_stop_pc)
6683 {
6684 /* And put the step-breakpoint there and go until there. */
6685 symtab_and_line sr_sal;
6686 sr_sal.pc = real_stop_pc;
6687 sr_sal.section = find_pc_overlay (sr_sal.pc);
6688 sr_sal.pspace = get_frame_program_space (frame);
6689
6690 /* Do not specify what the fp should be when we stop since
6691 on some machines the prologue is where the new fp value
6692 is established. */
6693 insert_step_resume_breakpoint_at_sal (gdbarch,
6694 sr_sal, null_frame_id);
6695
6696 /* Restart without fiddling with the step ranges or
6697 other state. */
6698 keep_going (ecs);
6699 return;
6700 }
6701 }
6702
6703 /* Check for subroutine calls. The check for the current frame
6704 equalling the step ID is not necessary - the check of the
6705 previous frame's ID is sufficient - but it is a common case and
6706 cheaper than checking the previous frame's ID.
6707
6708 NOTE: frame_id_eq will never report two invalid frame IDs as
6709 being equal, so to get into this block, both the current and
6710 previous frame must have valid frame IDs. */
6711 /* The outer_frame_id check is a heuristic to detect stepping
6712 through startup code. If we step over an instruction which
6713 sets the stack pointer from an invalid value to a valid value,
6714 we may detect that as a subroutine call from the mythical
6715 "outermost" function. This could be fixed by marking
6716 outermost frames as !stack_p,code_p,special_p. Then the
6717 initial outermost frame, before sp was valid, would
6718 have code_addr == &_start. See the comment in frame_id_eq
6719 for more. */
6720 if (!frame_id_eq (get_stack_frame_id (frame),
6721 ecs->event_thread->control.step_stack_frame_id)
6722 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6723 ecs->event_thread->control.step_stack_frame_id)
6724 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6725 outer_frame_id)
6726 || (ecs->event_thread->control.step_start_function
6727 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6728 {
6729 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6730 CORE_ADDR real_stop_pc;
6731
6732 infrun_debug_printf ("stepped into subroutine");
6733
6734 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6735 {
6736 /* I presume that step_over_calls is only 0 when we're
6737 supposed to be stepping at the assembly language level
6738 ("stepi"). Just stop. */
6739 /* And this works the same backward as frontward. MVS */
6740 end_stepping_range (ecs);
6741 return;
6742 }
6743
6744 /* Reverse stepping through solib trampolines. */
6745
6746 if (execution_direction == EXEC_REVERSE
6747 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6748 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6749 || (ecs->stop_func_start == 0
6750 && in_solib_dynsym_resolve_code (stop_pc))))
6751 {
6752 /* Any solib trampoline code can be handled in reverse
6753 by simply continuing to single-step. We have already
6754 executed the solib function (backwards), and a few
6755 steps will take us back through the trampoline to the
6756 caller. */
6757 keep_going (ecs);
6758 return;
6759 }
6760
6761 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6762 {
6763 /* We're doing a "next".
6764
6765 Normal (forward) execution: set a breakpoint at the
6766 callee's return address (the address at which the caller
6767 will resume).
6768
6769 Reverse (backward) execution. set the step-resume
6770 breakpoint at the start of the function that we just
6771 stepped into (backwards), and continue to there. When we
6772 get there, we'll need to single-step back to the caller. */
6773
6774 if (execution_direction == EXEC_REVERSE)
6775 {
6776 /* If we're already at the start of the function, we've either
6777 just stepped backward into a single instruction function,
6778 or stepped back out of a signal handler to the first instruction
6779 of the function. Just keep going, which will single-step back
6780 to the caller. */
6781 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6782 {
6783 /* Normal function call return (static or dynamic). */
6784 symtab_and_line sr_sal;
6785 sr_sal.pc = ecs->stop_func_start;
6786 sr_sal.pspace = get_frame_program_space (frame);
6787 insert_step_resume_breakpoint_at_sal (gdbarch,
6788 sr_sal, null_frame_id);
6789 }
6790 }
6791 else
6792 insert_step_resume_breakpoint_at_caller (frame);
6793
6794 keep_going (ecs);
6795 return;
6796 }
6797
6798 /* If we are in a function call trampoline (a stub between the
6799 calling routine and the real function), locate the real
6800 function. That's what tells us (a) whether we want to step
6801 into it at all, and (b) what prologue we want to run to the
6802 end of, if we do step into it. */
6803 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6804 if (real_stop_pc == 0)
6805 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6806 if (real_stop_pc != 0)
6807 ecs->stop_func_start = real_stop_pc;
6808
6809 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6810 {
6811 symtab_and_line sr_sal;
6812 sr_sal.pc = ecs->stop_func_start;
6813 sr_sal.pspace = get_frame_program_space (frame);
6814
6815 insert_step_resume_breakpoint_at_sal (gdbarch,
6816 sr_sal, null_frame_id);
6817 keep_going (ecs);
6818 return;
6819 }
6820
6821 /* If we have line number information for the function we are
6822 thinking of stepping into and the function isn't on the skip
6823 list, step into it.
6824
6825 If there are several symtabs at that PC (e.g. with include
6826 files), just want to know whether *any* of them have line
6827 numbers. find_pc_line handles this. */
6828 {
6829 struct symtab_and_line tmp_sal;
6830
6831 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6832 if (tmp_sal.line != 0
6833 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6834 tmp_sal)
6835 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6836 {
6837 if (execution_direction == EXEC_REVERSE)
6838 handle_step_into_function_backward (gdbarch, ecs);
6839 else
6840 handle_step_into_function (gdbarch, ecs);
6841 return;
6842 }
6843 }
6844
6845 /* If we have no line number and the step-stop-if-no-debug is
6846 set, we stop the step so that the user has a chance to switch
6847 in assembly mode. */
6848 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6849 && step_stop_if_no_debug)
6850 {
6851 end_stepping_range (ecs);
6852 return;
6853 }
6854
6855 if (execution_direction == EXEC_REVERSE)
6856 {
6857 /* If we're already at the start of the function, we've either just
6858 stepped backward into a single instruction function without line
6859 number info, or stepped back out of a signal handler to the first
6860 instruction of the function without line number info. Just keep
6861 going, which will single-step back to the caller. */
6862 if (ecs->stop_func_start != stop_pc)
6863 {
6864 /* Set a breakpoint at callee's start address.
6865 From there we can step once and be back in the caller. */
6866 symtab_and_line sr_sal;
6867 sr_sal.pc = ecs->stop_func_start;
6868 sr_sal.pspace = get_frame_program_space (frame);
6869 insert_step_resume_breakpoint_at_sal (gdbarch,
6870 sr_sal, null_frame_id);
6871 }
6872 }
6873 else
6874 /* Set a breakpoint at callee's return address (the address
6875 at which the caller will resume). */
6876 insert_step_resume_breakpoint_at_caller (frame);
6877
6878 keep_going (ecs);
6879 return;
6880 }
6881
6882 /* Reverse stepping through solib trampolines. */
6883
6884 if (execution_direction == EXEC_REVERSE
6885 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6886 {
6887 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6888
6889 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6890 || (ecs->stop_func_start == 0
6891 && in_solib_dynsym_resolve_code (stop_pc)))
6892 {
6893 /* Any solib trampoline code can be handled in reverse
6894 by simply continuing to single-step. We have already
6895 executed the solib function (backwards), and a few
6896 steps will take us back through the trampoline to the
6897 caller. */
6898 keep_going (ecs);
6899 return;
6900 }
6901 else if (in_solib_dynsym_resolve_code (stop_pc))
6902 {
6903 /* Stepped backward into the solib dynsym resolver.
6904 Set a breakpoint at its start and continue, then
6905 one more step will take us out. */
6906 symtab_and_line sr_sal;
6907 sr_sal.pc = ecs->stop_func_start;
6908 sr_sal.pspace = get_frame_program_space (frame);
6909 insert_step_resume_breakpoint_at_sal (gdbarch,
6910 sr_sal, null_frame_id);
6911 keep_going (ecs);
6912 return;
6913 }
6914 }
6915
6916 /* This always returns the sal for the inner-most frame when we are in a
6917 stack of inlined frames, even if GDB actually believes that it is in a
6918 more outer frame. This is checked for below by calls to
6919 inline_skipped_frames. */
6920 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6921
6922 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6923 the trampoline processing logic, however, there are some trampolines
6924 that have no names, so we should do trampoline handling first. */
6925 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6926 && ecs->stop_func_name == NULL
6927 && stop_pc_sal.line == 0)
6928 {
6929 infrun_debug_printf ("stepped into undebuggable function");
6930
6931 /* The inferior just stepped into, or returned to, an
6932 undebuggable function (where there is no debugging information
6933 and no line number corresponding to the address where the
6934 inferior stopped). Since we want to skip this kind of code,
6935 we keep going until the inferior returns from this
6936 function - unless the user has asked us not to (via
6937 set step-mode) or we no longer know how to get back
6938 to the call site. */
6939 if (step_stop_if_no_debug
6940 || !frame_id_p (frame_unwind_caller_id (frame)))
6941 {
6942 /* If we have no line number and the step-stop-if-no-debug
6943 is set, we stop the step so that the user has a chance to
6944 switch in assembly mode. */
6945 end_stepping_range (ecs);
6946 return;
6947 }
6948 else
6949 {
6950 /* Set a breakpoint at callee's return address (the address
6951 at which the caller will resume). */
6952 insert_step_resume_breakpoint_at_caller (frame);
6953 keep_going (ecs);
6954 return;
6955 }
6956 }
6957
6958 if (ecs->event_thread->control.step_range_end == 1)
6959 {
6960 /* It is stepi or nexti. We always want to stop stepping after
6961 one instruction. */
6962 infrun_debug_printf ("stepi/nexti");
6963 end_stepping_range (ecs);
6964 return;
6965 }
6966
6967 if (stop_pc_sal.line == 0)
6968 {
6969 /* We have no line number information. That means to stop
6970 stepping (does this always happen right after one instruction,
6971 when we do "s" in a function with no line numbers,
6972 or can this happen as a result of a return or longjmp?). */
6973 infrun_debug_printf ("line number info");
6974 end_stepping_range (ecs);
6975 return;
6976 }
6977
6978 /* Look for "calls" to inlined functions, part one. If the inline
6979 frame machinery detected some skipped call sites, we have entered
6980 a new inline function. */
6981
6982 if (frame_id_eq (get_frame_id (get_current_frame ()),
6983 ecs->event_thread->control.step_frame_id)
6984 && inline_skipped_frames (ecs->event_thread))
6985 {
6986 infrun_debug_printf ("stepped into inlined function");
6987
6988 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6989
6990 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6991 {
6992 /* For "step", we're going to stop. But if the call site
6993 for this inlined function is on the same source line as
6994 we were previously stepping, go down into the function
6995 first. Otherwise stop at the call site. */
6996
6997 if (call_sal.line == ecs->event_thread->current_line
6998 && call_sal.symtab == ecs->event_thread->current_symtab)
6999 {
7000 step_into_inline_frame (ecs->event_thread);
7001 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7002 {
7003 keep_going (ecs);
7004 return;
7005 }
7006 }
7007
7008 end_stepping_range (ecs);
7009 return;
7010 }
7011 else
7012 {
7013 /* For "next", we should stop at the call site if it is on a
7014 different source line. Otherwise continue through the
7015 inlined function. */
7016 if (call_sal.line == ecs->event_thread->current_line
7017 && call_sal.symtab == ecs->event_thread->current_symtab)
7018 keep_going (ecs);
7019 else
7020 end_stepping_range (ecs);
7021 return;
7022 }
7023 }
7024
7025 /* Look for "calls" to inlined functions, part two. If we are still
7026 in the same real function we were stepping through, but we have
7027 to go further up to find the exact frame ID, we are stepping
7028 through a more inlined call beyond its call site. */
7029
7030 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7031 && !frame_id_eq (get_frame_id (get_current_frame ()),
7032 ecs->event_thread->control.step_frame_id)
7033 && stepped_in_from (get_current_frame (),
7034 ecs->event_thread->control.step_frame_id))
7035 {
7036 infrun_debug_printf ("stepping through inlined function");
7037
7038 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7039 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7040 keep_going (ecs);
7041 else
7042 end_stepping_range (ecs);
7043 return;
7044 }
7045
7046 bool refresh_step_info = true;
7047 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7048 && (ecs->event_thread->current_line != stop_pc_sal.line
7049 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7050 {
7051 /* We are at a different line. */
7052
7053 if (stop_pc_sal.is_stmt)
7054 {
7055 /* We are at the start of a statement.
7056
7057 So stop. Note that we don't stop if we step into the middle of a
7058 statement. That is said to make things like for (;;) statements
7059 work better. */
7060 infrun_debug_printf ("stepped to a different line");
7061 end_stepping_range (ecs);
7062 return;
7063 }
7064 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7065 ecs->event_thread->control.step_frame_id))
7066 {
7067 /* We are not at the start of a statement, and we have not changed
7068 frame.
7069
7070 We ignore this line table entry, and continue stepping forward,
7071 looking for a better place to stop. */
7072 refresh_step_info = false;
7073 infrun_debug_printf ("stepped to a different line, but "
7074 "it's not the start of a statement");
7075 }
7076 else
7077 {
7078 /* We are not the start of a statement, and we have changed frame.
7079
7080 We ignore this line table entry, and continue stepping forward,
7081 looking for a better place to stop. Keep refresh_step_info at
7082 true to note that the frame has changed, but ignore the line
7083 number to make sure we don't ignore a subsequent entry with the
7084 same line number. */
7085 stop_pc_sal.line = 0;
7086 infrun_debug_printf ("stepped to a different frame, but "
7087 "it's not the start of a statement");
7088 }
7089 }
7090
7091 /* We aren't done stepping.
7092
7093 Optimize by setting the stepping range to the line.
7094 (We might not be in the original line, but if we entered a
7095 new line in mid-statement, we continue stepping. This makes
7096 things like for(;;) statements work better.)
7097
7098 If we entered a SAL that indicates a non-statement line table entry,
7099 then we update the stepping range, but we don't update the step info,
7100 which includes things like the line number we are stepping away from.
7101 This means we will stop when we find a line table entry that is marked
7102 as is-statement, even if it matches the non-statement one we just
7103 stepped into. */
7104
7105 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7106 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7107 ecs->event_thread->control.may_range_step = 1;
7108 if (refresh_step_info)
7109 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7110
7111 infrun_debug_printf ("keep going");
7112 keep_going (ecs);
7113 }
7114
7115 static bool restart_stepped_thread (process_stratum_target *resume_target,
7116 ptid_t resume_ptid);
7117
7118 /* In all-stop mode, if we're currently stepping but have stopped in
7119 some other thread, we may need to switch back to the stepped
7120 thread. Returns true we set the inferior running, false if we left
7121 it stopped (and the event needs further processing). */
7122
7123 static bool
7124 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7125 {
7126 if (!target_is_non_stop_p ())
7127 {
7128 /* If any thread is blocked on some internal breakpoint, and we
7129 simply need to step over that breakpoint to get it going
7130 again, do that first. */
7131
7132 /* However, if we see an event for the stepping thread, then we
7133 know all other threads have been moved past their breakpoints
7134 already. Let the caller check whether the step is finished,
7135 etc., before deciding to move it past a breakpoint. */
7136 if (ecs->event_thread->control.step_range_end != 0)
7137 return false;
7138
7139 /* Check if the current thread is blocked on an incomplete
7140 step-over, interrupted by a random signal. */
7141 if (ecs->event_thread->control.trap_expected
7142 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7143 {
7144 infrun_debug_printf
7145 ("need to finish step-over of [%s]",
7146 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7147 keep_going (ecs);
7148 return true;
7149 }
7150
7151 /* Check if the current thread is blocked by a single-step
7152 breakpoint of another thread. */
7153 if (ecs->hit_singlestep_breakpoint)
7154 {
7155 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7156 target_pid_to_str (ecs->ptid).c_str ());
7157 keep_going (ecs);
7158 return true;
7159 }
7160
7161 /* If this thread needs yet another step-over (e.g., stepping
7162 through a delay slot), do it first before moving on to
7163 another thread. */
7164 if (thread_still_needs_step_over (ecs->event_thread))
7165 {
7166 infrun_debug_printf
7167 ("thread [%s] still needs step-over",
7168 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7169 keep_going (ecs);
7170 return true;
7171 }
7172
7173 /* If scheduler locking applies even if not stepping, there's no
7174 need to walk over threads. Above we've checked whether the
7175 current thread is stepping. If some other thread not the
7176 event thread is stepping, then it must be that scheduler
7177 locking is not in effect. */
7178 if (schedlock_applies (ecs->event_thread))
7179 return false;
7180
7181 /* Otherwise, we no longer expect a trap in the current thread.
7182 Clear the trap_expected flag before switching back -- this is
7183 what keep_going does as well, if we call it. */
7184 ecs->event_thread->control.trap_expected = 0;
7185
7186 /* Likewise, clear the signal if it should not be passed. */
7187 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7188 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7189
7190 if (restart_stepped_thread (ecs->target, ecs->ptid))
7191 {
7192 prepare_to_wait (ecs);
7193 return true;
7194 }
7195
7196 switch_to_thread (ecs->event_thread);
7197 }
7198
7199 return false;
7200 }
7201
7202 /* Look for the thread that was stepping, and resume it.
7203 RESUME_TARGET / RESUME_PTID indicate the set of threads the caller
7204 is resuming. Return true if a thread was started, false
7205 otherwise. */
7206
7207 static bool
7208 restart_stepped_thread (process_stratum_target *resume_target,
7209 ptid_t resume_ptid)
7210 {
7211 /* Do all pending step-overs before actually proceeding with
7212 step/next/etc. */
7213 if (start_step_over ())
7214 return true;
7215
7216 for (thread_info *tp : all_threads_safe ())
7217 {
7218 if (tp->state == THREAD_EXITED)
7219 continue;
7220
7221 if (tp->suspend.waitstatus_pending_p)
7222 continue;
7223
7224 /* Ignore threads of processes the caller is not
7225 resuming. */
7226 if (!sched_multi
7227 && (tp->inf->process_target () != resume_target
7228 || tp->inf->pid != resume_ptid.pid ()))
7229 continue;
7230
7231 if (tp->control.trap_expected)
7232 {
7233 infrun_debug_printf ("switching back to stepped thread (step-over)");
7234
7235 if (keep_going_stepped_thread (tp))
7236 return true;
7237 }
7238 }
7239
7240 for (thread_info *tp : all_threads_safe ())
7241 {
7242 if (tp->state == THREAD_EXITED)
7243 continue;
7244
7245 if (tp->suspend.waitstatus_pending_p)
7246 continue;
7247
7248 /* Ignore threads of processes the caller is not
7249 resuming. */
7250 if (!sched_multi
7251 && (tp->inf->process_target () != resume_target
7252 || tp->inf->pid != resume_ptid.pid ()))
7253 continue;
7254
7255 /* Did we find the stepping thread? */
7256 if (tp->control.step_range_end)
7257 {
7258 infrun_debug_printf ("switching back to stepped thread (stepping)");
7259
7260 if (keep_going_stepped_thread (tp))
7261 return true;
7262 }
7263 }
7264
7265 return false;
7266 }
7267
7268 /* See infrun.h. */
7269
7270 void
7271 restart_after_all_stop_detach (process_stratum_target *proc_target)
7272 {
7273 /* Note we don't check target_is_non_stop_p() here, because the
7274 current inferior may no longer have a process_stratum target
7275 pushed, as we just detached. */
7276
7277 /* See if we have a THREAD_RUNNING thread that need to be
7278 re-resumed. If we have any thread that is already executing,
7279 then we don't need to resume the target -- it is already been
7280 resumed. With the remote target (in all-stop), it's even
7281 impossible to issue another resumption if the target is already
7282 resumed, until the target reports a stop. */
7283 for (thread_info *thr : all_threads (proc_target))
7284 {
7285 if (thr->state != THREAD_RUNNING)
7286 continue;
7287
7288 /* If we have any thread that is already executing, then we
7289 don't need to resume the target -- it is already been
7290 resumed. */
7291 if (thr->executing)
7292 return;
7293
7294 /* If we have a pending event to process, skip resuming the
7295 target and go straight to processing it. */
7296 if (thr->resumed && thr->suspend.waitstatus_pending_p)
7297 return;
7298 }
7299
7300 /* Alright, we need to re-resume the target. If a thread was
7301 stepping, we need to restart it stepping. */
7302 if (restart_stepped_thread (proc_target, minus_one_ptid))
7303 return;
7304
7305 /* Otherwise, find the first THREAD_RUNNING thread and resume
7306 it. */
7307 for (thread_info *thr : all_threads (proc_target))
7308 {
7309 if (thr->state != THREAD_RUNNING)
7310 continue;
7311
7312 execution_control_state ecs;
7313 reset_ecs (&ecs, thr);
7314 switch_to_thread (thr);
7315 keep_going (&ecs);
7316 return;
7317 }
7318 }
7319
7320 /* Set a previously stepped thread back to stepping. Returns true on
7321 success, false if the resume is not possible (e.g., the thread
7322 vanished). */
7323
7324 static bool
7325 keep_going_stepped_thread (struct thread_info *tp)
7326 {
7327 struct frame_info *frame;
7328 struct execution_control_state ecss;
7329 struct execution_control_state *ecs = &ecss;
7330
7331 /* If the stepping thread exited, then don't try to switch back and
7332 resume it, which could fail in several different ways depending
7333 on the target. Instead, just keep going.
7334
7335 We can find a stepping dead thread in the thread list in two
7336 cases:
7337
7338 - The target supports thread exit events, and when the target
7339 tries to delete the thread from the thread list, inferior_ptid
7340 pointed at the exiting thread. In such case, calling
7341 delete_thread does not really remove the thread from the list;
7342 instead, the thread is left listed, with 'exited' state.
7343
7344 - The target's debug interface does not support thread exit
7345 events, and so we have no idea whatsoever if the previously
7346 stepping thread is still alive. For that reason, we need to
7347 synchronously query the target now. */
7348
7349 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7350 {
7351 infrun_debug_printf ("not resuming previously stepped thread, it has "
7352 "vanished");
7353
7354 delete_thread (tp);
7355 return false;
7356 }
7357
7358 infrun_debug_printf ("resuming previously stepped thread");
7359
7360 reset_ecs (ecs, tp);
7361 switch_to_thread (tp);
7362
7363 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7364 frame = get_current_frame ();
7365
7366 /* If the PC of the thread we were trying to single-step has
7367 changed, then that thread has trapped or been signaled, but the
7368 event has not been reported to GDB yet. Re-poll the target
7369 looking for this particular thread's event (i.e. temporarily
7370 enable schedlock) by:
7371
7372 - setting a break at the current PC
7373 - resuming that particular thread, only (by setting trap
7374 expected)
7375
7376 This prevents us continuously moving the single-step breakpoint
7377 forward, one instruction at a time, overstepping. */
7378
7379 if (tp->suspend.stop_pc != tp->prev_pc)
7380 {
7381 ptid_t resume_ptid;
7382
7383 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7384 paddress (target_gdbarch (), tp->prev_pc),
7385 paddress (target_gdbarch (), tp->suspend.stop_pc));
7386
7387 /* Clear the info of the previous step-over, as it's no longer
7388 valid (if the thread was trying to step over a breakpoint, it
7389 has already succeeded). It's what keep_going would do too,
7390 if we called it. Do this before trying to insert the sss
7391 breakpoint, otherwise if we were previously trying to step
7392 over this exact address in another thread, the breakpoint is
7393 skipped. */
7394 clear_step_over_info ();
7395 tp->control.trap_expected = 0;
7396
7397 insert_single_step_breakpoint (get_frame_arch (frame),
7398 get_frame_address_space (frame),
7399 tp->suspend.stop_pc);
7400
7401 tp->resumed = true;
7402 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7403 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7404 }
7405 else
7406 {
7407 infrun_debug_printf ("expected thread still hasn't advanced");
7408
7409 keep_going_pass_signal (ecs);
7410 }
7411
7412 return true;
7413 }
7414
7415 /* Is thread TP in the middle of (software or hardware)
7416 single-stepping? (Note the result of this function must never be
7417 passed directly as target_resume's STEP parameter.) */
7418
7419 static bool
7420 currently_stepping (struct thread_info *tp)
7421 {
7422 return ((tp->control.step_range_end
7423 && tp->control.step_resume_breakpoint == NULL)
7424 || tp->control.trap_expected
7425 || tp->stepped_breakpoint
7426 || bpstat_should_step ());
7427 }
7428
7429 /* Inferior has stepped into a subroutine call with source code that
7430 we should not step over. Do step to the first line of code in
7431 it. */
7432
7433 static void
7434 handle_step_into_function (struct gdbarch *gdbarch,
7435 struct execution_control_state *ecs)
7436 {
7437 fill_in_stop_func (gdbarch, ecs);
7438
7439 compunit_symtab *cust
7440 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7441 if (cust != NULL && compunit_language (cust) != language_asm)
7442 ecs->stop_func_start
7443 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7444
7445 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7446 /* Use the step_resume_break to step until the end of the prologue,
7447 even if that involves jumps (as it seems to on the vax under
7448 4.2). */
7449 /* If the prologue ends in the middle of a source line, continue to
7450 the end of that source line (if it is still within the function).
7451 Otherwise, just go to end of prologue. */
7452 if (stop_func_sal.end
7453 && stop_func_sal.pc != ecs->stop_func_start
7454 && stop_func_sal.end < ecs->stop_func_end)
7455 ecs->stop_func_start = stop_func_sal.end;
7456
7457 /* Architectures which require breakpoint adjustment might not be able
7458 to place a breakpoint at the computed address. If so, the test
7459 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7460 ecs->stop_func_start to an address at which a breakpoint may be
7461 legitimately placed.
7462
7463 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7464 made, GDB will enter an infinite loop when stepping through
7465 optimized code consisting of VLIW instructions which contain
7466 subinstructions corresponding to different source lines. On
7467 FR-V, it's not permitted to place a breakpoint on any but the
7468 first subinstruction of a VLIW instruction. When a breakpoint is
7469 set, GDB will adjust the breakpoint address to the beginning of
7470 the VLIW instruction. Thus, we need to make the corresponding
7471 adjustment here when computing the stop address. */
7472
7473 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7474 {
7475 ecs->stop_func_start
7476 = gdbarch_adjust_breakpoint_address (gdbarch,
7477 ecs->stop_func_start);
7478 }
7479
7480 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7481 {
7482 /* We are already there: stop now. */
7483 end_stepping_range (ecs);
7484 return;
7485 }
7486 else
7487 {
7488 /* Put the step-breakpoint there and go until there. */
7489 symtab_and_line sr_sal;
7490 sr_sal.pc = ecs->stop_func_start;
7491 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7492 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7493
7494 /* Do not specify what the fp should be when we stop since on
7495 some machines the prologue is where the new fp value is
7496 established. */
7497 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7498
7499 /* And make sure stepping stops right away then. */
7500 ecs->event_thread->control.step_range_end
7501 = ecs->event_thread->control.step_range_start;
7502 }
7503 keep_going (ecs);
7504 }
7505
7506 /* Inferior has stepped backward into a subroutine call with source
7507 code that we should not step over. Do step to the beginning of the
7508 last line of code in it. */
7509
7510 static void
7511 handle_step_into_function_backward (struct gdbarch *gdbarch,
7512 struct execution_control_state *ecs)
7513 {
7514 struct compunit_symtab *cust;
7515 struct symtab_and_line stop_func_sal;
7516
7517 fill_in_stop_func (gdbarch, ecs);
7518
7519 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7520 if (cust != NULL && compunit_language (cust) != language_asm)
7521 ecs->stop_func_start
7522 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7523
7524 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7525
7526 /* OK, we're just going to keep stepping here. */
7527 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7528 {
7529 /* We're there already. Just stop stepping now. */
7530 end_stepping_range (ecs);
7531 }
7532 else
7533 {
7534 /* Else just reset the step range and keep going.
7535 No step-resume breakpoint, they don't work for
7536 epilogues, which can have multiple entry paths. */
7537 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7538 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7539 keep_going (ecs);
7540 }
7541 return;
7542 }
7543
7544 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7545 This is used to both functions and to skip over code. */
7546
7547 static void
7548 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7549 struct symtab_and_line sr_sal,
7550 struct frame_id sr_id,
7551 enum bptype sr_type)
7552 {
7553 /* There should never be more than one step-resume or longjmp-resume
7554 breakpoint per thread, so we should never be setting a new
7555 step_resume_breakpoint when one is already active. */
7556 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7557 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7558
7559 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7560 paddress (gdbarch, sr_sal.pc));
7561
7562 inferior_thread ()->control.step_resume_breakpoint
7563 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7564 }
7565
7566 void
7567 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7568 struct symtab_and_line sr_sal,
7569 struct frame_id sr_id)
7570 {
7571 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7572 sr_sal, sr_id,
7573 bp_step_resume);
7574 }
7575
7576 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7577 This is used to skip a potential signal handler.
7578
7579 This is called with the interrupted function's frame. The signal
7580 handler, when it returns, will resume the interrupted function at
7581 RETURN_FRAME.pc. */
7582
7583 static void
7584 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7585 {
7586 gdb_assert (return_frame != NULL);
7587
7588 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7589
7590 symtab_and_line sr_sal;
7591 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7592 sr_sal.section = find_pc_overlay (sr_sal.pc);
7593 sr_sal.pspace = get_frame_program_space (return_frame);
7594
7595 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7596 get_stack_frame_id (return_frame),
7597 bp_hp_step_resume);
7598 }
7599
7600 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7601 is used to skip a function after stepping into it (for "next" or if
7602 the called function has no debugging information).
7603
7604 The current function has almost always been reached by single
7605 stepping a call or return instruction. NEXT_FRAME belongs to the
7606 current function, and the breakpoint will be set at the caller's
7607 resume address.
7608
7609 This is a separate function rather than reusing
7610 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7611 get_prev_frame, which may stop prematurely (see the implementation
7612 of frame_unwind_caller_id for an example). */
7613
7614 static void
7615 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7616 {
7617 /* We shouldn't have gotten here if we don't know where the call site
7618 is. */
7619 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7620
7621 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7622
7623 symtab_and_line sr_sal;
7624 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7625 frame_unwind_caller_pc (next_frame));
7626 sr_sal.section = find_pc_overlay (sr_sal.pc);
7627 sr_sal.pspace = frame_unwind_program_space (next_frame);
7628
7629 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7630 frame_unwind_caller_id (next_frame));
7631 }
7632
7633 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7634 new breakpoint at the target of a jmp_buf. The handling of
7635 longjmp-resume uses the same mechanisms used for handling
7636 "step-resume" breakpoints. */
7637
7638 static void
7639 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7640 {
7641 /* There should never be more than one longjmp-resume breakpoint per
7642 thread, so we should never be setting a new
7643 longjmp_resume_breakpoint when one is already active. */
7644 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7645
7646 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7647 paddress (gdbarch, pc));
7648
7649 inferior_thread ()->control.exception_resume_breakpoint =
7650 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7651 }
7652
7653 /* Insert an exception resume breakpoint. TP is the thread throwing
7654 the exception. The block B is the block of the unwinder debug hook
7655 function. FRAME is the frame corresponding to the call to this
7656 function. SYM is the symbol of the function argument holding the
7657 target PC of the exception. */
7658
7659 static void
7660 insert_exception_resume_breakpoint (struct thread_info *tp,
7661 const struct block *b,
7662 struct frame_info *frame,
7663 struct symbol *sym)
7664 {
7665 try
7666 {
7667 struct block_symbol vsym;
7668 struct value *value;
7669 CORE_ADDR handler;
7670 struct breakpoint *bp;
7671
7672 vsym = lookup_symbol_search_name (sym->search_name (),
7673 b, VAR_DOMAIN);
7674 value = read_var_value (vsym.symbol, vsym.block, frame);
7675 /* If the value was optimized out, revert to the old behavior. */
7676 if (! value_optimized_out (value))
7677 {
7678 handler = value_as_address (value);
7679
7680 infrun_debug_printf ("exception resume at %lx",
7681 (unsigned long) handler);
7682
7683 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7684 handler,
7685 bp_exception_resume).release ();
7686
7687 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7688 frame = NULL;
7689
7690 bp->thread = tp->global_num;
7691 inferior_thread ()->control.exception_resume_breakpoint = bp;
7692 }
7693 }
7694 catch (const gdb_exception_error &e)
7695 {
7696 /* We want to ignore errors here. */
7697 }
7698 }
7699
7700 /* A helper for check_exception_resume that sets an
7701 exception-breakpoint based on a SystemTap probe. */
7702
7703 static void
7704 insert_exception_resume_from_probe (struct thread_info *tp,
7705 const struct bound_probe *probe,
7706 struct frame_info *frame)
7707 {
7708 struct value *arg_value;
7709 CORE_ADDR handler;
7710 struct breakpoint *bp;
7711
7712 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7713 if (!arg_value)
7714 return;
7715
7716 handler = value_as_address (arg_value);
7717
7718 infrun_debug_printf ("exception resume at %s",
7719 paddress (probe->objfile->arch (), handler));
7720
7721 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7722 handler, bp_exception_resume).release ();
7723 bp->thread = tp->global_num;
7724 inferior_thread ()->control.exception_resume_breakpoint = bp;
7725 }
7726
7727 /* This is called when an exception has been intercepted. Check to
7728 see whether the exception's destination is of interest, and if so,
7729 set an exception resume breakpoint there. */
7730
7731 static void
7732 check_exception_resume (struct execution_control_state *ecs,
7733 struct frame_info *frame)
7734 {
7735 struct bound_probe probe;
7736 struct symbol *func;
7737
7738 /* First see if this exception unwinding breakpoint was set via a
7739 SystemTap probe point. If so, the probe has two arguments: the
7740 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7741 set a breakpoint there. */
7742 probe = find_probe_by_pc (get_frame_pc (frame));
7743 if (probe.prob)
7744 {
7745 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7746 return;
7747 }
7748
7749 func = get_frame_function (frame);
7750 if (!func)
7751 return;
7752
7753 try
7754 {
7755 const struct block *b;
7756 struct block_iterator iter;
7757 struct symbol *sym;
7758 int argno = 0;
7759
7760 /* The exception breakpoint is a thread-specific breakpoint on
7761 the unwinder's debug hook, declared as:
7762
7763 void _Unwind_DebugHook (void *cfa, void *handler);
7764
7765 The CFA argument indicates the frame to which control is
7766 about to be transferred. HANDLER is the destination PC.
7767
7768 We ignore the CFA and set a temporary breakpoint at HANDLER.
7769 This is not extremely efficient but it avoids issues in gdb
7770 with computing the DWARF CFA, and it also works even in weird
7771 cases such as throwing an exception from inside a signal
7772 handler. */
7773
7774 b = SYMBOL_BLOCK_VALUE (func);
7775 ALL_BLOCK_SYMBOLS (b, iter, sym)
7776 {
7777 if (!SYMBOL_IS_ARGUMENT (sym))
7778 continue;
7779
7780 if (argno == 0)
7781 ++argno;
7782 else
7783 {
7784 insert_exception_resume_breakpoint (ecs->event_thread,
7785 b, frame, sym);
7786 break;
7787 }
7788 }
7789 }
7790 catch (const gdb_exception_error &e)
7791 {
7792 }
7793 }
7794
7795 static void
7796 stop_waiting (struct execution_control_state *ecs)
7797 {
7798 infrun_debug_printf ("stop_waiting");
7799
7800 /* Let callers know we don't want to wait for the inferior anymore. */
7801 ecs->wait_some_more = 0;
7802
7803 /* If all-stop, but there exists a non-stop target, stop all
7804 threads now that we're presenting the stop to the user. */
7805 if (!non_stop && exists_non_stop_target ())
7806 stop_all_threads ();
7807 }
7808
7809 /* Like keep_going, but passes the signal to the inferior, even if the
7810 signal is set to nopass. */
7811
7812 static void
7813 keep_going_pass_signal (struct execution_control_state *ecs)
7814 {
7815 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7816 gdb_assert (!ecs->event_thread->resumed);
7817
7818 /* Save the pc before execution, to compare with pc after stop. */
7819 ecs->event_thread->prev_pc
7820 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7821
7822 if (ecs->event_thread->control.trap_expected)
7823 {
7824 struct thread_info *tp = ecs->event_thread;
7825
7826 infrun_debug_printf ("%s has trap_expected set, "
7827 "resuming to collect trap",
7828 target_pid_to_str (tp->ptid).c_str ());
7829
7830 /* We haven't yet gotten our trap, and either: intercepted a
7831 non-signal event (e.g., a fork); or took a signal which we
7832 are supposed to pass through to the inferior. Simply
7833 continue. */
7834 resume (ecs->event_thread->suspend.stop_signal);
7835 }
7836 else if (step_over_info_valid_p ())
7837 {
7838 /* Another thread is stepping over a breakpoint in-line. If
7839 this thread needs a step-over too, queue the request. In
7840 either case, this resume must be deferred for later. */
7841 struct thread_info *tp = ecs->event_thread;
7842
7843 if (ecs->hit_singlestep_breakpoint
7844 || thread_still_needs_step_over (tp))
7845 {
7846 infrun_debug_printf ("step-over already in progress: "
7847 "step-over for %s deferred",
7848 target_pid_to_str (tp->ptid).c_str ());
7849 global_thread_step_over_chain_enqueue (tp);
7850 }
7851 else
7852 {
7853 infrun_debug_printf ("step-over in progress: resume of %s deferred",
7854 target_pid_to_str (tp->ptid).c_str ());
7855 }
7856 }
7857 else
7858 {
7859 struct regcache *regcache = get_current_regcache ();
7860 int remove_bp;
7861 int remove_wps;
7862 step_over_what step_what;
7863
7864 /* Either the trap was not expected, but we are continuing
7865 anyway (if we got a signal, the user asked it be passed to
7866 the child)
7867 -- or --
7868 We got our expected trap, but decided we should resume from
7869 it.
7870
7871 We're going to run this baby now!
7872
7873 Note that insert_breakpoints won't try to re-insert
7874 already inserted breakpoints. Therefore, we don't
7875 care if breakpoints were already inserted, or not. */
7876
7877 /* If we need to step over a breakpoint, and we're not using
7878 displaced stepping to do so, insert all breakpoints
7879 (watchpoints, etc.) but the one we're stepping over, step one
7880 instruction, and then re-insert the breakpoint when that step
7881 is finished. */
7882
7883 step_what = thread_still_needs_step_over (ecs->event_thread);
7884
7885 remove_bp = (ecs->hit_singlestep_breakpoint
7886 || (step_what & STEP_OVER_BREAKPOINT));
7887 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7888
7889 /* We can't use displaced stepping if we need to step past a
7890 watchpoint. The instruction copied to the scratch pad would
7891 still trigger the watchpoint. */
7892 if (remove_bp
7893 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7894 {
7895 set_step_over_info (regcache->aspace (),
7896 regcache_read_pc (regcache), remove_wps,
7897 ecs->event_thread->global_num);
7898 }
7899 else if (remove_wps)
7900 set_step_over_info (NULL, 0, remove_wps, -1);
7901
7902 /* If we now need to do an in-line step-over, we need to stop
7903 all other threads. Note this must be done before
7904 insert_breakpoints below, because that removes the breakpoint
7905 we're about to step over, otherwise other threads could miss
7906 it. */
7907 if (step_over_info_valid_p () && target_is_non_stop_p ())
7908 stop_all_threads ();
7909
7910 /* Stop stepping if inserting breakpoints fails. */
7911 try
7912 {
7913 insert_breakpoints ();
7914 }
7915 catch (const gdb_exception_error &e)
7916 {
7917 exception_print (gdb_stderr, e);
7918 stop_waiting (ecs);
7919 clear_step_over_info ();
7920 return;
7921 }
7922
7923 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7924
7925 resume (ecs->event_thread->suspend.stop_signal);
7926 }
7927
7928 prepare_to_wait (ecs);
7929 }
7930
7931 /* Called when we should continue running the inferior, because the
7932 current event doesn't cause a user visible stop. This does the
7933 resuming part; waiting for the next event is done elsewhere. */
7934
7935 static void
7936 keep_going (struct execution_control_state *ecs)
7937 {
7938 if (ecs->event_thread->control.trap_expected
7939 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7940 ecs->event_thread->control.trap_expected = 0;
7941
7942 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7943 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7944 keep_going_pass_signal (ecs);
7945 }
7946
7947 /* This function normally comes after a resume, before
7948 handle_inferior_event exits. It takes care of any last bits of
7949 housekeeping, and sets the all-important wait_some_more flag. */
7950
7951 static void
7952 prepare_to_wait (struct execution_control_state *ecs)
7953 {
7954 infrun_debug_printf ("prepare_to_wait");
7955
7956 ecs->wait_some_more = 1;
7957
7958 /* If the target can't async, emulate it by marking the infrun event
7959 handler such that as soon as we get back to the event-loop, we
7960 immediately end up in fetch_inferior_event again calling
7961 target_wait. */
7962 if (!target_can_async_p ())
7963 mark_infrun_async_event_handler ();
7964 }
7965
7966 /* We are done with the step range of a step/next/si/ni command.
7967 Called once for each n of a "step n" operation. */
7968
7969 static void
7970 end_stepping_range (struct execution_control_state *ecs)
7971 {
7972 ecs->event_thread->control.stop_step = 1;
7973 stop_waiting (ecs);
7974 }
7975
7976 /* Several print_*_reason functions to print why the inferior has stopped.
7977 We always print something when the inferior exits, or receives a signal.
7978 The rest of the cases are dealt with later on in normal_stop and
7979 print_it_typical. Ideally there should be a call to one of these
7980 print_*_reason functions functions from handle_inferior_event each time
7981 stop_waiting is called.
7982
7983 Note that we don't call these directly, instead we delegate that to
7984 the interpreters, through observers. Interpreters then call these
7985 with whatever uiout is right. */
7986
7987 void
7988 print_end_stepping_range_reason (struct ui_out *uiout)
7989 {
7990 /* For CLI-like interpreters, print nothing. */
7991
7992 if (uiout->is_mi_like_p ())
7993 {
7994 uiout->field_string ("reason",
7995 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7996 }
7997 }
7998
7999 void
8000 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8001 {
8002 annotate_signalled ();
8003 if (uiout->is_mi_like_p ())
8004 uiout->field_string
8005 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8006 uiout->text ("\nProgram terminated with signal ");
8007 annotate_signal_name ();
8008 uiout->field_string ("signal-name",
8009 gdb_signal_to_name (siggnal));
8010 annotate_signal_name_end ();
8011 uiout->text (", ");
8012 annotate_signal_string ();
8013 uiout->field_string ("signal-meaning",
8014 gdb_signal_to_string (siggnal));
8015 annotate_signal_string_end ();
8016 uiout->text (".\n");
8017 uiout->text ("The program no longer exists.\n");
8018 }
8019
8020 void
8021 print_exited_reason (struct ui_out *uiout, int exitstatus)
8022 {
8023 struct inferior *inf = current_inferior ();
8024 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8025
8026 annotate_exited (exitstatus);
8027 if (exitstatus)
8028 {
8029 if (uiout->is_mi_like_p ())
8030 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8031 std::string exit_code_str
8032 = string_printf ("0%o", (unsigned int) exitstatus);
8033 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8034 plongest (inf->num), pidstr.c_str (),
8035 string_field ("exit-code", exit_code_str.c_str ()));
8036 }
8037 else
8038 {
8039 if (uiout->is_mi_like_p ())
8040 uiout->field_string
8041 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8042 uiout->message ("[Inferior %s (%s) exited normally]\n",
8043 plongest (inf->num), pidstr.c_str ());
8044 }
8045 }
8046
8047 void
8048 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8049 {
8050 struct thread_info *thr = inferior_thread ();
8051
8052 annotate_signal ();
8053
8054 if (uiout->is_mi_like_p ())
8055 ;
8056 else if (show_thread_that_caused_stop ())
8057 {
8058 const char *name;
8059
8060 uiout->text ("\nThread ");
8061 uiout->field_string ("thread-id", print_thread_id (thr));
8062
8063 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8064 if (name != NULL)
8065 {
8066 uiout->text (" \"");
8067 uiout->field_string ("name", name);
8068 uiout->text ("\"");
8069 }
8070 }
8071 else
8072 uiout->text ("\nProgram");
8073
8074 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8075 uiout->text (" stopped");
8076 else
8077 {
8078 uiout->text (" received signal ");
8079 annotate_signal_name ();
8080 if (uiout->is_mi_like_p ())
8081 uiout->field_string
8082 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8083 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8084 annotate_signal_name_end ();
8085 uiout->text (", ");
8086 annotate_signal_string ();
8087 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8088
8089 struct regcache *regcache = get_current_regcache ();
8090 struct gdbarch *gdbarch = regcache->arch ();
8091 if (gdbarch_report_signal_info_p (gdbarch))
8092 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8093
8094 annotate_signal_string_end ();
8095 }
8096 uiout->text (".\n");
8097 }
8098
8099 void
8100 print_no_history_reason (struct ui_out *uiout)
8101 {
8102 uiout->text ("\nNo more reverse-execution history.\n");
8103 }
8104
8105 /* Print current location without a level number, if we have changed
8106 functions or hit a breakpoint. Print source line if we have one.
8107 bpstat_print contains the logic deciding in detail what to print,
8108 based on the event(s) that just occurred. */
8109
8110 static void
8111 print_stop_location (struct target_waitstatus *ws)
8112 {
8113 int bpstat_ret;
8114 enum print_what source_flag;
8115 int do_frame_printing = 1;
8116 struct thread_info *tp = inferior_thread ();
8117
8118 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8119 switch (bpstat_ret)
8120 {
8121 case PRINT_UNKNOWN:
8122 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8123 should) carry around the function and does (or should) use
8124 that when doing a frame comparison. */
8125 if (tp->control.stop_step
8126 && frame_id_eq (tp->control.step_frame_id,
8127 get_frame_id (get_current_frame ()))
8128 && (tp->control.step_start_function
8129 == find_pc_function (tp->suspend.stop_pc)))
8130 {
8131 /* Finished step, just print source line. */
8132 source_flag = SRC_LINE;
8133 }
8134 else
8135 {
8136 /* Print location and source line. */
8137 source_flag = SRC_AND_LOC;
8138 }
8139 break;
8140 case PRINT_SRC_AND_LOC:
8141 /* Print location and source line. */
8142 source_flag = SRC_AND_LOC;
8143 break;
8144 case PRINT_SRC_ONLY:
8145 source_flag = SRC_LINE;
8146 break;
8147 case PRINT_NOTHING:
8148 /* Something bogus. */
8149 source_flag = SRC_LINE;
8150 do_frame_printing = 0;
8151 break;
8152 default:
8153 internal_error (__FILE__, __LINE__, _("Unknown value."));
8154 }
8155
8156 /* The behavior of this routine with respect to the source
8157 flag is:
8158 SRC_LINE: Print only source line
8159 LOCATION: Print only location
8160 SRC_AND_LOC: Print location and source line. */
8161 if (do_frame_printing)
8162 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8163 }
8164
8165 /* See infrun.h. */
8166
8167 void
8168 print_stop_event (struct ui_out *uiout, bool displays)
8169 {
8170 struct target_waitstatus last;
8171 struct thread_info *tp;
8172
8173 get_last_target_status (nullptr, nullptr, &last);
8174
8175 {
8176 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8177
8178 print_stop_location (&last);
8179
8180 /* Display the auto-display expressions. */
8181 if (displays)
8182 do_displays ();
8183 }
8184
8185 tp = inferior_thread ();
8186 if (tp->thread_fsm != NULL
8187 && tp->thread_fsm->finished_p ())
8188 {
8189 struct return_value_info *rv;
8190
8191 rv = tp->thread_fsm->return_value ();
8192 if (rv != NULL)
8193 print_return_value (uiout, rv);
8194 }
8195 }
8196
8197 /* See infrun.h. */
8198
8199 void
8200 maybe_remove_breakpoints (void)
8201 {
8202 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8203 {
8204 if (remove_breakpoints ())
8205 {
8206 target_terminal::ours_for_output ();
8207 printf_filtered (_("Cannot remove breakpoints because "
8208 "program is no longer writable.\nFurther "
8209 "execution is probably impossible.\n"));
8210 }
8211 }
8212 }
8213
8214 /* The execution context that just caused a normal stop. */
8215
8216 struct stop_context
8217 {
8218 stop_context ();
8219
8220 DISABLE_COPY_AND_ASSIGN (stop_context);
8221
8222 bool changed () const;
8223
8224 /* The stop ID. */
8225 ULONGEST stop_id;
8226
8227 /* The event PTID. */
8228
8229 ptid_t ptid;
8230
8231 /* If stopp for a thread event, this is the thread that caused the
8232 stop. */
8233 thread_info_ref thread;
8234
8235 /* The inferior that caused the stop. */
8236 int inf_num;
8237 };
8238
8239 /* Initializes a new stop context. If stopped for a thread event, this
8240 takes a strong reference to the thread. */
8241
8242 stop_context::stop_context ()
8243 {
8244 stop_id = get_stop_id ();
8245 ptid = inferior_ptid;
8246 inf_num = current_inferior ()->num;
8247
8248 if (inferior_ptid != null_ptid)
8249 {
8250 /* Take a strong reference so that the thread can't be deleted
8251 yet. */
8252 thread = thread_info_ref::new_reference (inferior_thread ());
8253 }
8254 }
8255
8256 /* Return true if the current context no longer matches the saved stop
8257 context. */
8258
8259 bool
8260 stop_context::changed () const
8261 {
8262 if (ptid != inferior_ptid)
8263 return true;
8264 if (inf_num != current_inferior ()->num)
8265 return true;
8266 if (thread != NULL && thread->state != THREAD_STOPPED)
8267 return true;
8268 if (get_stop_id () != stop_id)
8269 return true;
8270 return false;
8271 }
8272
8273 /* See infrun.h. */
8274
8275 int
8276 normal_stop (void)
8277 {
8278 struct target_waitstatus last;
8279
8280 get_last_target_status (nullptr, nullptr, &last);
8281
8282 new_stop_id ();
8283
8284 /* If an exception is thrown from this point on, make sure to
8285 propagate GDB's knowledge of the executing state to the
8286 frontend/user running state. A QUIT is an easy exception to see
8287 here, so do this before any filtered output. */
8288
8289 ptid_t finish_ptid = null_ptid;
8290
8291 if (!non_stop)
8292 finish_ptid = minus_one_ptid;
8293 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8294 || last.kind == TARGET_WAITKIND_EXITED)
8295 {
8296 /* On some targets, we may still have live threads in the
8297 inferior when we get a process exit event. E.g., for
8298 "checkpoint", when the current checkpoint/fork exits,
8299 linux-fork.c automatically switches to another fork from
8300 within target_mourn_inferior. */
8301 if (inferior_ptid != null_ptid)
8302 finish_ptid = ptid_t (inferior_ptid.pid ());
8303 }
8304 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8305 finish_ptid = inferior_ptid;
8306
8307 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8308 if (finish_ptid != null_ptid)
8309 {
8310 maybe_finish_thread_state.emplace
8311 (user_visible_resume_target (finish_ptid), finish_ptid);
8312 }
8313
8314 /* As we're presenting a stop, and potentially removing breakpoints,
8315 update the thread list so we can tell whether there are threads
8316 running on the target. With target remote, for example, we can
8317 only learn about new threads when we explicitly update the thread
8318 list. Do this before notifying the interpreters about signal
8319 stops, end of stepping ranges, etc., so that the "new thread"
8320 output is emitted before e.g., "Program received signal FOO",
8321 instead of after. */
8322 update_thread_list ();
8323
8324 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8325 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8326
8327 /* As with the notification of thread events, we want to delay
8328 notifying the user that we've switched thread context until
8329 the inferior actually stops.
8330
8331 There's no point in saying anything if the inferior has exited.
8332 Note that SIGNALLED here means "exited with a signal", not
8333 "received a signal".
8334
8335 Also skip saying anything in non-stop mode. In that mode, as we
8336 don't want GDB to switch threads behind the user's back, to avoid
8337 races where the user is typing a command to apply to thread x,
8338 but GDB switches to thread y before the user finishes entering
8339 the command, fetch_inferior_event installs a cleanup to restore
8340 the current thread back to the thread the user had selected right
8341 after this event is handled, so we're not really switching, only
8342 informing of a stop. */
8343 if (!non_stop
8344 && previous_inferior_ptid != inferior_ptid
8345 && target_has_execution ()
8346 && last.kind != TARGET_WAITKIND_SIGNALLED
8347 && last.kind != TARGET_WAITKIND_EXITED
8348 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8349 {
8350 SWITCH_THRU_ALL_UIS ()
8351 {
8352 target_terminal::ours_for_output ();
8353 printf_filtered (_("[Switching to %s]\n"),
8354 target_pid_to_str (inferior_ptid).c_str ());
8355 annotate_thread_changed ();
8356 }
8357 previous_inferior_ptid = inferior_ptid;
8358 }
8359
8360 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8361 {
8362 SWITCH_THRU_ALL_UIS ()
8363 if (current_ui->prompt_state == PROMPT_BLOCKED)
8364 {
8365 target_terminal::ours_for_output ();
8366 printf_filtered (_("No unwaited-for children left.\n"));
8367 }
8368 }
8369
8370 /* Note: this depends on the update_thread_list call above. */
8371 maybe_remove_breakpoints ();
8372
8373 /* If an auto-display called a function and that got a signal,
8374 delete that auto-display to avoid an infinite recursion. */
8375
8376 if (stopped_by_random_signal)
8377 disable_current_display ();
8378
8379 SWITCH_THRU_ALL_UIS ()
8380 {
8381 async_enable_stdin ();
8382 }
8383
8384 /* Let the user/frontend see the threads as stopped. */
8385 maybe_finish_thread_state.reset ();
8386
8387 /* Select innermost stack frame - i.e., current frame is frame 0,
8388 and current location is based on that. Handle the case where the
8389 dummy call is returning after being stopped. E.g. the dummy call
8390 previously hit a breakpoint. (If the dummy call returns
8391 normally, we won't reach here.) Do this before the stop hook is
8392 run, so that it doesn't get to see the temporary dummy frame,
8393 which is not where we'll present the stop. */
8394 if (has_stack_frames ())
8395 {
8396 if (stop_stack_dummy == STOP_STACK_DUMMY)
8397 {
8398 /* Pop the empty frame that contains the stack dummy. This
8399 also restores inferior state prior to the call (struct
8400 infcall_suspend_state). */
8401 struct frame_info *frame = get_current_frame ();
8402
8403 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8404 frame_pop (frame);
8405 /* frame_pop calls reinit_frame_cache as the last thing it
8406 does which means there's now no selected frame. */
8407 }
8408
8409 select_frame (get_current_frame ());
8410
8411 /* Set the current source location. */
8412 set_current_sal_from_frame (get_current_frame ());
8413 }
8414
8415 /* Look up the hook_stop and run it (CLI internally handles problem
8416 of stop_command's pre-hook not existing). */
8417 if (stop_command != NULL)
8418 {
8419 stop_context saved_context;
8420
8421 try
8422 {
8423 execute_cmd_pre_hook (stop_command);
8424 }
8425 catch (const gdb_exception &ex)
8426 {
8427 exception_fprintf (gdb_stderr, ex,
8428 "Error while running hook_stop:\n");
8429 }
8430
8431 /* If the stop hook resumes the target, then there's no point in
8432 trying to notify about the previous stop; its context is
8433 gone. Likewise if the command switches thread or inferior --
8434 the observers would print a stop for the wrong
8435 thread/inferior. */
8436 if (saved_context.changed ())
8437 return 1;
8438 }
8439
8440 /* Notify observers about the stop. This is where the interpreters
8441 print the stop event. */
8442 if (inferior_ptid != null_ptid)
8443 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8444 stop_print_frame);
8445 else
8446 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8447
8448 annotate_stopped ();
8449
8450 if (target_has_execution ())
8451 {
8452 if (last.kind != TARGET_WAITKIND_SIGNALLED
8453 && last.kind != TARGET_WAITKIND_EXITED
8454 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8455 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8456 Delete any breakpoint that is to be deleted at the next stop. */
8457 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8458 }
8459
8460 /* Try to get rid of automatically added inferiors that are no
8461 longer needed. Keeping those around slows down things linearly.
8462 Note that this never removes the current inferior. */
8463 prune_inferiors ();
8464
8465 return 0;
8466 }
8467 \f
8468 int
8469 signal_stop_state (int signo)
8470 {
8471 return signal_stop[signo];
8472 }
8473
8474 int
8475 signal_print_state (int signo)
8476 {
8477 return signal_print[signo];
8478 }
8479
8480 int
8481 signal_pass_state (int signo)
8482 {
8483 return signal_program[signo];
8484 }
8485
8486 static void
8487 signal_cache_update (int signo)
8488 {
8489 if (signo == -1)
8490 {
8491 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8492 signal_cache_update (signo);
8493
8494 return;
8495 }
8496
8497 signal_pass[signo] = (signal_stop[signo] == 0
8498 && signal_print[signo] == 0
8499 && signal_program[signo] == 1
8500 && signal_catch[signo] == 0);
8501 }
8502
8503 int
8504 signal_stop_update (int signo, int state)
8505 {
8506 int ret = signal_stop[signo];
8507
8508 signal_stop[signo] = state;
8509 signal_cache_update (signo);
8510 return ret;
8511 }
8512
8513 int
8514 signal_print_update (int signo, int state)
8515 {
8516 int ret = signal_print[signo];
8517
8518 signal_print[signo] = state;
8519 signal_cache_update (signo);
8520 return ret;
8521 }
8522
8523 int
8524 signal_pass_update (int signo, int state)
8525 {
8526 int ret = signal_program[signo];
8527
8528 signal_program[signo] = state;
8529 signal_cache_update (signo);
8530 return ret;
8531 }
8532
8533 /* Update the global 'signal_catch' from INFO and notify the
8534 target. */
8535
8536 void
8537 signal_catch_update (const unsigned int *info)
8538 {
8539 int i;
8540
8541 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8542 signal_catch[i] = info[i] > 0;
8543 signal_cache_update (-1);
8544 target_pass_signals (signal_pass);
8545 }
8546
8547 static void
8548 sig_print_header (void)
8549 {
8550 printf_filtered (_("Signal Stop\tPrint\tPass "
8551 "to program\tDescription\n"));
8552 }
8553
8554 static void
8555 sig_print_info (enum gdb_signal oursig)
8556 {
8557 const char *name = gdb_signal_to_name (oursig);
8558 int name_padding = 13 - strlen (name);
8559
8560 if (name_padding <= 0)
8561 name_padding = 0;
8562
8563 printf_filtered ("%s", name);
8564 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8565 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8566 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8567 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8568 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8569 }
8570
8571 /* Specify how various signals in the inferior should be handled. */
8572
8573 static void
8574 handle_command (const char *args, int from_tty)
8575 {
8576 int digits, wordlen;
8577 int sigfirst, siglast;
8578 enum gdb_signal oursig;
8579 int allsigs;
8580
8581 if (args == NULL)
8582 {
8583 error_no_arg (_("signal to handle"));
8584 }
8585
8586 /* Allocate and zero an array of flags for which signals to handle. */
8587
8588 const size_t nsigs = GDB_SIGNAL_LAST;
8589 unsigned char sigs[nsigs] {};
8590
8591 /* Break the command line up into args. */
8592
8593 gdb_argv built_argv (args);
8594
8595 /* Walk through the args, looking for signal oursigs, signal names, and
8596 actions. Signal numbers and signal names may be interspersed with
8597 actions, with the actions being performed for all signals cumulatively
8598 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8599
8600 for (char *arg : built_argv)
8601 {
8602 wordlen = strlen (arg);
8603 for (digits = 0; isdigit (arg[digits]); digits++)
8604 {;
8605 }
8606 allsigs = 0;
8607 sigfirst = siglast = -1;
8608
8609 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8610 {
8611 /* Apply action to all signals except those used by the
8612 debugger. Silently skip those. */
8613 allsigs = 1;
8614 sigfirst = 0;
8615 siglast = nsigs - 1;
8616 }
8617 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8618 {
8619 SET_SIGS (nsigs, sigs, signal_stop);
8620 SET_SIGS (nsigs, sigs, signal_print);
8621 }
8622 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8623 {
8624 UNSET_SIGS (nsigs, sigs, signal_program);
8625 }
8626 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8627 {
8628 SET_SIGS (nsigs, sigs, signal_print);
8629 }
8630 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8631 {
8632 SET_SIGS (nsigs, sigs, signal_program);
8633 }
8634 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8635 {
8636 UNSET_SIGS (nsigs, sigs, signal_stop);
8637 }
8638 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8639 {
8640 SET_SIGS (nsigs, sigs, signal_program);
8641 }
8642 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8643 {
8644 UNSET_SIGS (nsigs, sigs, signal_print);
8645 UNSET_SIGS (nsigs, sigs, signal_stop);
8646 }
8647 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8648 {
8649 UNSET_SIGS (nsigs, sigs, signal_program);
8650 }
8651 else if (digits > 0)
8652 {
8653 /* It is numeric. The numeric signal refers to our own
8654 internal signal numbering from target.h, not to host/target
8655 signal number. This is a feature; users really should be
8656 using symbolic names anyway, and the common ones like
8657 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8658
8659 sigfirst = siglast = (int)
8660 gdb_signal_from_command (atoi (arg));
8661 if (arg[digits] == '-')
8662 {
8663 siglast = (int)
8664 gdb_signal_from_command (atoi (arg + digits + 1));
8665 }
8666 if (sigfirst > siglast)
8667 {
8668 /* Bet he didn't figure we'd think of this case... */
8669 std::swap (sigfirst, siglast);
8670 }
8671 }
8672 else
8673 {
8674 oursig = gdb_signal_from_name (arg);
8675 if (oursig != GDB_SIGNAL_UNKNOWN)
8676 {
8677 sigfirst = siglast = (int) oursig;
8678 }
8679 else
8680 {
8681 /* Not a number and not a recognized flag word => complain. */
8682 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8683 }
8684 }
8685
8686 /* If any signal numbers or symbol names were found, set flags for
8687 which signals to apply actions to. */
8688
8689 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8690 {
8691 switch ((enum gdb_signal) signum)
8692 {
8693 case GDB_SIGNAL_TRAP:
8694 case GDB_SIGNAL_INT:
8695 if (!allsigs && !sigs[signum])
8696 {
8697 if (query (_("%s is used by the debugger.\n\
8698 Are you sure you want to change it? "),
8699 gdb_signal_to_name ((enum gdb_signal) signum)))
8700 {
8701 sigs[signum] = 1;
8702 }
8703 else
8704 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8705 }
8706 break;
8707 case GDB_SIGNAL_0:
8708 case GDB_SIGNAL_DEFAULT:
8709 case GDB_SIGNAL_UNKNOWN:
8710 /* Make sure that "all" doesn't print these. */
8711 break;
8712 default:
8713 sigs[signum] = 1;
8714 break;
8715 }
8716 }
8717 }
8718
8719 for (int signum = 0; signum < nsigs; signum++)
8720 if (sigs[signum])
8721 {
8722 signal_cache_update (-1);
8723 target_pass_signals (signal_pass);
8724 target_program_signals (signal_program);
8725
8726 if (from_tty)
8727 {
8728 /* Show the results. */
8729 sig_print_header ();
8730 for (; signum < nsigs; signum++)
8731 if (sigs[signum])
8732 sig_print_info ((enum gdb_signal) signum);
8733 }
8734
8735 break;
8736 }
8737 }
8738
8739 /* Complete the "handle" command. */
8740
8741 static void
8742 handle_completer (struct cmd_list_element *ignore,
8743 completion_tracker &tracker,
8744 const char *text, const char *word)
8745 {
8746 static const char * const keywords[] =
8747 {
8748 "all",
8749 "stop",
8750 "ignore",
8751 "print",
8752 "pass",
8753 "nostop",
8754 "noignore",
8755 "noprint",
8756 "nopass",
8757 NULL,
8758 };
8759
8760 signal_completer (ignore, tracker, text, word);
8761 complete_on_enum (tracker, keywords, word, word);
8762 }
8763
8764 enum gdb_signal
8765 gdb_signal_from_command (int num)
8766 {
8767 if (num >= 1 && num <= 15)
8768 return (enum gdb_signal) num;
8769 error (_("Only signals 1-15 are valid as numeric signals.\n\
8770 Use \"info signals\" for a list of symbolic signals."));
8771 }
8772
8773 /* Print current contents of the tables set by the handle command.
8774 It is possible we should just be printing signals actually used
8775 by the current target (but for things to work right when switching
8776 targets, all signals should be in the signal tables). */
8777
8778 static void
8779 info_signals_command (const char *signum_exp, int from_tty)
8780 {
8781 enum gdb_signal oursig;
8782
8783 sig_print_header ();
8784
8785 if (signum_exp)
8786 {
8787 /* First see if this is a symbol name. */
8788 oursig = gdb_signal_from_name (signum_exp);
8789 if (oursig == GDB_SIGNAL_UNKNOWN)
8790 {
8791 /* No, try numeric. */
8792 oursig =
8793 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8794 }
8795 sig_print_info (oursig);
8796 return;
8797 }
8798
8799 printf_filtered ("\n");
8800 /* These ugly casts brought to you by the native VAX compiler. */
8801 for (oursig = GDB_SIGNAL_FIRST;
8802 (int) oursig < (int) GDB_SIGNAL_LAST;
8803 oursig = (enum gdb_signal) ((int) oursig + 1))
8804 {
8805 QUIT;
8806
8807 if (oursig != GDB_SIGNAL_UNKNOWN
8808 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8809 sig_print_info (oursig);
8810 }
8811
8812 printf_filtered (_("\nUse the \"handle\" command "
8813 "to change these tables.\n"));
8814 }
8815
8816 /* The $_siginfo convenience variable is a bit special. We don't know
8817 for sure the type of the value until we actually have a chance to
8818 fetch the data. The type can change depending on gdbarch, so it is
8819 also dependent on which thread you have selected.
8820
8821 1. making $_siginfo be an internalvar that creates a new value on
8822 access.
8823
8824 2. making the value of $_siginfo be an lval_computed value. */
8825
8826 /* This function implements the lval_computed support for reading a
8827 $_siginfo value. */
8828
8829 static void
8830 siginfo_value_read (struct value *v)
8831 {
8832 LONGEST transferred;
8833
8834 /* If we can access registers, so can we access $_siginfo. Likewise
8835 vice versa. */
8836 validate_registers_access ();
8837
8838 transferred =
8839 target_read (current_inferior ()->top_target (),
8840 TARGET_OBJECT_SIGNAL_INFO,
8841 NULL,
8842 value_contents_all_raw (v),
8843 value_offset (v),
8844 TYPE_LENGTH (value_type (v)));
8845
8846 if (transferred != TYPE_LENGTH (value_type (v)))
8847 error (_("Unable to read siginfo"));
8848 }
8849
8850 /* This function implements the lval_computed support for writing a
8851 $_siginfo value. */
8852
8853 static void
8854 siginfo_value_write (struct value *v, struct value *fromval)
8855 {
8856 LONGEST transferred;
8857
8858 /* If we can access registers, so can we access $_siginfo. Likewise
8859 vice versa. */
8860 validate_registers_access ();
8861
8862 transferred = target_write (current_inferior ()->top_target (),
8863 TARGET_OBJECT_SIGNAL_INFO,
8864 NULL,
8865 value_contents_all_raw (fromval),
8866 value_offset (v),
8867 TYPE_LENGTH (value_type (fromval)));
8868
8869 if (transferred != TYPE_LENGTH (value_type (fromval)))
8870 error (_("Unable to write siginfo"));
8871 }
8872
8873 static const struct lval_funcs siginfo_value_funcs =
8874 {
8875 siginfo_value_read,
8876 siginfo_value_write
8877 };
8878
8879 /* Return a new value with the correct type for the siginfo object of
8880 the current thread using architecture GDBARCH. Return a void value
8881 if there's no object available. */
8882
8883 static struct value *
8884 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8885 void *ignore)
8886 {
8887 if (target_has_stack ()
8888 && inferior_ptid != null_ptid
8889 && gdbarch_get_siginfo_type_p (gdbarch))
8890 {
8891 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8892
8893 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8894 }
8895
8896 return allocate_value (builtin_type (gdbarch)->builtin_void);
8897 }
8898
8899 \f
8900 /* infcall_suspend_state contains state about the program itself like its
8901 registers and any signal it received when it last stopped.
8902 This state must be restored regardless of how the inferior function call
8903 ends (either successfully, or after it hits a breakpoint or signal)
8904 if the program is to properly continue where it left off. */
8905
8906 class infcall_suspend_state
8907 {
8908 public:
8909 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8910 once the inferior function call has finished. */
8911 infcall_suspend_state (struct gdbarch *gdbarch,
8912 const struct thread_info *tp,
8913 struct regcache *regcache)
8914 : m_thread_suspend (tp->suspend),
8915 m_registers (new readonly_detached_regcache (*regcache))
8916 {
8917 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8918
8919 if (gdbarch_get_siginfo_type_p (gdbarch))
8920 {
8921 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8922 size_t len = TYPE_LENGTH (type);
8923
8924 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8925
8926 if (target_read (current_inferior ()->top_target (),
8927 TARGET_OBJECT_SIGNAL_INFO, NULL,
8928 siginfo_data.get (), 0, len) != len)
8929 {
8930 /* Errors ignored. */
8931 siginfo_data.reset (nullptr);
8932 }
8933 }
8934
8935 if (siginfo_data)
8936 {
8937 m_siginfo_gdbarch = gdbarch;
8938 m_siginfo_data = std::move (siginfo_data);
8939 }
8940 }
8941
8942 /* Return a pointer to the stored register state. */
8943
8944 readonly_detached_regcache *registers () const
8945 {
8946 return m_registers.get ();
8947 }
8948
8949 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8950
8951 void restore (struct gdbarch *gdbarch,
8952 struct thread_info *tp,
8953 struct regcache *regcache) const
8954 {
8955 tp->suspend = m_thread_suspend;
8956
8957 if (m_siginfo_gdbarch == gdbarch)
8958 {
8959 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8960
8961 /* Errors ignored. */
8962 target_write (current_inferior ()->top_target (),
8963 TARGET_OBJECT_SIGNAL_INFO, NULL,
8964 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8965 }
8966
8967 /* The inferior can be gone if the user types "print exit(0)"
8968 (and perhaps other times). */
8969 if (target_has_execution ())
8970 /* NB: The register write goes through to the target. */
8971 regcache->restore (registers ());
8972 }
8973
8974 private:
8975 /* How the current thread stopped before the inferior function call was
8976 executed. */
8977 struct thread_suspend_state m_thread_suspend;
8978
8979 /* The registers before the inferior function call was executed. */
8980 std::unique_ptr<readonly_detached_regcache> m_registers;
8981
8982 /* Format of SIGINFO_DATA or NULL if it is not present. */
8983 struct gdbarch *m_siginfo_gdbarch = nullptr;
8984
8985 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8986 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8987 content would be invalid. */
8988 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8989 };
8990
8991 infcall_suspend_state_up
8992 save_infcall_suspend_state ()
8993 {
8994 struct thread_info *tp = inferior_thread ();
8995 struct regcache *regcache = get_current_regcache ();
8996 struct gdbarch *gdbarch = regcache->arch ();
8997
8998 infcall_suspend_state_up inf_state
8999 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9000
9001 /* Having saved the current state, adjust the thread state, discarding
9002 any stop signal information. The stop signal is not useful when
9003 starting an inferior function call, and run_inferior_call will not use
9004 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9005 tp->suspend.stop_signal = GDB_SIGNAL_0;
9006
9007 return inf_state;
9008 }
9009
9010 /* Restore inferior session state to INF_STATE. */
9011
9012 void
9013 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9014 {
9015 struct thread_info *tp = inferior_thread ();
9016 struct regcache *regcache = get_current_regcache ();
9017 struct gdbarch *gdbarch = regcache->arch ();
9018
9019 inf_state->restore (gdbarch, tp, regcache);
9020 discard_infcall_suspend_state (inf_state);
9021 }
9022
9023 void
9024 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9025 {
9026 delete inf_state;
9027 }
9028
9029 readonly_detached_regcache *
9030 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9031 {
9032 return inf_state->registers ();
9033 }
9034
9035 /* infcall_control_state contains state regarding gdb's control of the
9036 inferior itself like stepping control. It also contains session state like
9037 the user's currently selected frame. */
9038
9039 struct infcall_control_state
9040 {
9041 struct thread_control_state thread_control;
9042 struct inferior_control_state inferior_control;
9043
9044 /* Other fields: */
9045 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9046 int stopped_by_random_signal = 0;
9047
9048 /* ID and level of the selected frame when the inferior function
9049 call was made. */
9050 struct frame_id selected_frame_id {};
9051 int selected_frame_level = -1;
9052 };
9053
9054 /* Save all of the information associated with the inferior<==>gdb
9055 connection. */
9056
9057 infcall_control_state_up
9058 save_infcall_control_state ()
9059 {
9060 infcall_control_state_up inf_status (new struct infcall_control_state);
9061 struct thread_info *tp = inferior_thread ();
9062 struct inferior *inf = current_inferior ();
9063
9064 inf_status->thread_control = tp->control;
9065 inf_status->inferior_control = inf->control;
9066
9067 tp->control.step_resume_breakpoint = NULL;
9068 tp->control.exception_resume_breakpoint = NULL;
9069
9070 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9071 chain. If caller's caller is walking the chain, they'll be happier if we
9072 hand them back the original chain when restore_infcall_control_state is
9073 called. */
9074 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9075
9076 /* Other fields: */
9077 inf_status->stop_stack_dummy = stop_stack_dummy;
9078 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9079
9080 save_selected_frame (&inf_status->selected_frame_id,
9081 &inf_status->selected_frame_level);
9082
9083 return inf_status;
9084 }
9085
9086 /* Restore inferior session state to INF_STATUS. */
9087
9088 void
9089 restore_infcall_control_state (struct infcall_control_state *inf_status)
9090 {
9091 struct thread_info *tp = inferior_thread ();
9092 struct inferior *inf = current_inferior ();
9093
9094 if (tp->control.step_resume_breakpoint)
9095 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9096
9097 if (tp->control.exception_resume_breakpoint)
9098 tp->control.exception_resume_breakpoint->disposition
9099 = disp_del_at_next_stop;
9100
9101 /* Handle the bpstat_copy of the chain. */
9102 bpstat_clear (&tp->control.stop_bpstat);
9103
9104 tp->control = inf_status->thread_control;
9105 inf->control = inf_status->inferior_control;
9106
9107 /* Other fields: */
9108 stop_stack_dummy = inf_status->stop_stack_dummy;
9109 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9110
9111 if (target_has_stack ())
9112 {
9113 restore_selected_frame (inf_status->selected_frame_id,
9114 inf_status->selected_frame_level);
9115 }
9116
9117 delete inf_status;
9118 }
9119
9120 void
9121 discard_infcall_control_state (struct infcall_control_state *inf_status)
9122 {
9123 if (inf_status->thread_control.step_resume_breakpoint)
9124 inf_status->thread_control.step_resume_breakpoint->disposition
9125 = disp_del_at_next_stop;
9126
9127 if (inf_status->thread_control.exception_resume_breakpoint)
9128 inf_status->thread_control.exception_resume_breakpoint->disposition
9129 = disp_del_at_next_stop;
9130
9131 /* See save_infcall_control_state for info on stop_bpstat. */
9132 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9133
9134 delete inf_status;
9135 }
9136 \f
9137 /* See infrun.h. */
9138
9139 void
9140 clear_exit_convenience_vars (void)
9141 {
9142 clear_internalvar (lookup_internalvar ("_exitsignal"));
9143 clear_internalvar (lookup_internalvar ("_exitcode"));
9144 }
9145 \f
9146
9147 /* User interface for reverse debugging:
9148 Set exec-direction / show exec-direction commands
9149 (returns error unless target implements to_set_exec_direction method). */
9150
9151 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9152 static const char exec_forward[] = "forward";
9153 static const char exec_reverse[] = "reverse";
9154 static const char *exec_direction = exec_forward;
9155 static const char *const exec_direction_names[] = {
9156 exec_forward,
9157 exec_reverse,
9158 NULL
9159 };
9160
9161 static void
9162 set_exec_direction_func (const char *args, int from_tty,
9163 struct cmd_list_element *cmd)
9164 {
9165 if (target_can_execute_reverse ())
9166 {
9167 if (!strcmp (exec_direction, exec_forward))
9168 execution_direction = EXEC_FORWARD;
9169 else if (!strcmp (exec_direction, exec_reverse))
9170 execution_direction = EXEC_REVERSE;
9171 }
9172 else
9173 {
9174 exec_direction = exec_forward;
9175 error (_("Target does not support this operation."));
9176 }
9177 }
9178
9179 static void
9180 show_exec_direction_func (struct ui_file *out, int from_tty,
9181 struct cmd_list_element *cmd, const char *value)
9182 {
9183 switch (execution_direction) {
9184 case EXEC_FORWARD:
9185 fprintf_filtered (out, _("Forward.\n"));
9186 break;
9187 case EXEC_REVERSE:
9188 fprintf_filtered (out, _("Reverse.\n"));
9189 break;
9190 default:
9191 internal_error (__FILE__, __LINE__,
9192 _("bogus execution_direction value: %d"),
9193 (int) execution_direction);
9194 }
9195 }
9196
9197 static void
9198 show_schedule_multiple (struct ui_file *file, int from_tty,
9199 struct cmd_list_element *c, const char *value)
9200 {
9201 fprintf_filtered (file, _("Resuming the execution of threads "
9202 "of all processes is %s.\n"), value);
9203 }
9204
9205 /* Implementation of `siginfo' variable. */
9206
9207 static const struct internalvar_funcs siginfo_funcs =
9208 {
9209 siginfo_make_value,
9210 NULL,
9211 NULL
9212 };
9213
9214 /* Callback for infrun's target events source. This is marked when a
9215 thread has a pending status to process. */
9216
9217 static void
9218 infrun_async_inferior_event_handler (gdb_client_data data)
9219 {
9220 clear_async_event_handler (infrun_async_inferior_event_token);
9221 inferior_event_handler (INF_REG_EVENT);
9222 }
9223
9224 #if GDB_SELF_TEST
9225 namespace selftests
9226 {
9227
9228 /* Verify that when two threads with the same ptid exist (from two different
9229 targets) and one of them changes ptid, we only update inferior_ptid if
9230 it is appropriate. */
9231
9232 static void
9233 infrun_thread_ptid_changed ()
9234 {
9235 gdbarch *arch = current_inferior ()->gdbarch;
9236
9237 /* The thread which inferior_ptid represents changes ptid. */
9238 {
9239 scoped_restore_current_pspace_and_thread restore;
9240
9241 scoped_mock_context<test_target_ops> target1 (arch);
9242 scoped_mock_context<test_target_ops> target2 (arch);
9243 target2.mock_inferior.next = &target1.mock_inferior;
9244
9245 ptid_t old_ptid (111, 222);
9246 ptid_t new_ptid (111, 333);
9247
9248 target1.mock_inferior.pid = old_ptid.pid ();
9249 target1.mock_thread.ptid = old_ptid;
9250 target2.mock_inferior.pid = old_ptid.pid ();
9251 target2.mock_thread.ptid = old_ptid;
9252
9253 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9254 set_current_inferior (&target1.mock_inferior);
9255
9256 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9257
9258 gdb_assert (inferior_ptid == new_ptid);
9259 }
9260
9261 /* A thread with the same ptid as inferior_ptid, but from another target,
9262 changes ptid. */
9263 {
9264 scoped_restore_current_pspace_and_thread restore;
9265
9266 scoped_mock_context<test_target_ops> target1 (arch);
9267 scoped_mock_context<test_target_ops> target2 (arch);
9268 target2.mock_inferior.next = &target1.mock_inferior;
9269
9270 ptid_t old_ptid (111, 222);
9271 ptid_t new_ptid (111, 333);
9272
9273 target1.mock_inferior.pid = old_ptid.pid ();
9274 target1.mock_thread.ptid = old_ptid;
9275 target2.mock_inferior.pid = old_ptid.pid ();
9276 target2.mock_thread.ptid = old_ptid;
9277
9278 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9279 set_current_inferior (&target2.mock_inferior);
9280
9281 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9282
9283 gdb_assert (inferior_ptid == old_ptid);
9284 }
9285 }
9286
9287 } /* namespace selftests */
9288
9289 #endif /* GDB_SELF_TEST */
9290
9291 void _initialize_infrun ();
9292 void
9293 _initialize_infrun ()
9294 {
9295 struct cmd_list_element *c;
9296
9297 /* Register extra event sources in the event loop. */
9298 infrun_async_inferior_event_token
9299 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9300 "infrun");
9301
9302 add_info ("signals", info_signals_command, _("\
9303 What debugger does when program gets various signals.\n\
9304 Specify a signal as argument to print info on that signal only."));
9305 add_info_alias ("handle", "signals", 0);
9306
9307 c = add_com ("handle", class_run, handle_command, _("\
9308 Specify how to handle signals.\n\
9309 Usage: handle SIGNAL [ACTIONS]\n\
9310 Args are signals and actions to apply to those signals.\n\
9311 If no actions are specified, the current settings for the specified signals\n\
9312 will be displayed instead.\n\
9313 \n\
9314 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9315 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9316 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9317 The special arg \"all\" is recognized to mean all signals except those\n\
9318 used by the debugger, typically SIGTRAP and SIGINT.\n\
9319 \n\
9320 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9321 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9322 Stop means reenter debugger if this signal happens (implies print).\n\
9323 Print means print a message if this signal happens.\n\
9324 Pass means let program see this signal; otherwise program doesn't know.\n\
9325 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9326 Pass and Stop may be combined.\n\
9327 \n\
9328 Multiple signals may be specified. Signal numbers and signal names\n\
9329 may be interspersed with actions, with the actions being performed for\n\
9330 all signals cumulatively specified."));
9331 set_cmd_completer (c, handle_completer);
9332
9333 if (!dbx_commands)
9334 stop_command = add_cmd ("stop", class_obscure,
9335 not_just_help_class_command, _("\
9336 There is no `stop' command, but you can set a hook on `stop'.\n\
9337 This allows you to set a list of commands to be run each time execution\n\
9338 of the program stops."), &cmdlist);
9339
9340 add_setshow_boolean_cmd
9341 ("infrun", class_maintenance, &debug_infrun,
9342 _("Set inferior debugging."),
9343 _("Show inferior debugging."),
9344 _("When non-zero, inferior specific debugging is enabled."),
9345 NULL, show_debug_infrun, &setdebuglist, &showdebuglist);
9346
9347 add_setshow_boolean_cmd ("non-stop", no_class,
9348 &non_stop_1, _("\
9349 Set whether gdb controls the inferior in non-stop mode."), _("\
9350 Show whether gdb controls the inferior in non-stop mode."), _("\
9351 When debugging a multi-threaded program and this setting is\n\
9352 off (the default, also called all-stop mode), when one thread stops\n\
9353 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9354 all other threads in the program while you interact with the thread of\n\
9355 interest. When you continue or step a thread, you can allow the other\n\
9356 threads to run, or have them remain stopped, but while you inspect any\n\
9357 thread's state, all threads stop.\n\
9358 \n\
9359 In non-stop mode, when one thread stops, other threads can continue\n\
9360 to run freely. You'll be able to step each thread independently,\n\
9361 leave it stopped or free to run as needed."),
9362 set_non_stop,
9363 show_non_stop,
9364 &setlist,
9365 &showlist);
9366
9367 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9368 {
9369 signal_stop[i] = 1;
9370 signal_print[i] = 1;
9371 signal_program[i] = 1;
9372 signal_catch[i] = 0;
9373 }
9374
9375 /* Signals caused by debugger's own actions should not be given to
9376 the program afterwards.
9377
9378 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9379 explicitly specifies that it should be delivered to the target
9380 program. Typically, that would occur when a user is debugging a
9381 target monitor on a simulator: the target monitor sets a
9382 breakpoint; the simulator encounters this breakpoint and halts
9383 the simulation handing control to GDB; GDB, noting that the stop
9384 address doesn't map to any known breakpoint, returns control back
9385 to the simulator; the simulator then delivers the hardware
9386 equivalent of a GDB_SIGNAL_TRAP to the program being
9387 debugged. */
9388 signal_program[GDB_SIGNAL_TRAP] = 0;
9389 signal_program[GDB_SIGNAL_INT] = 0;
9390
9391 /* Signals that are not errors should not normally enter the debugger. */
9392 signal_stop[GDB_SIGNAL_ALRM] = 0;
9393 signal_print[GDB_SIGNAL_ALRM] = 0;
9394 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9395 signal_print[GDB_SIGNAL_VTALRM] = 0;
9396 signal_stop[GDB_SIGNAL_PROF] = 0;
9397 signal_print[GDB_SIGNAL_PROF] = 0;
9398 signal_stop[GDB_SIGNAL_CHLD] = 0;
9399 signal_print[GDB_SIGNAL_CHLD] = 0;
9400 signal_stop[GDB_SIGNAL_IO] = 0;
9401 signal_print[GDB_SIGNAL_IO] = 0;
9402 signal_stop[GDB_SIGNAL_POLL] = 0;
9403 signal_print[GDB_SIGNAL_POLL] = 0;
9404 signal_stop[GDB_SIGNAL_URG] = 0;
9405 signal_print[GDB_SIGNAL_URG] = 0;
9406 signal_stop[GDB_SIGNAL_WINCH] = 0;
9407 signal_print[GDB_SIGNAL_WINCH] = 0;
9408 signal_stop[GDB_SIGNAL_PRIO] = 0;
9409 signal_print[GDB_SIGNAL_PRIO] = 0;
9410
9411 /* These signals are used internally by user-level thread
9412 implementations. (See signal(5) on Solaris.) Like the above
9413 signals, a healthy program receives and handles them as part of
9414 its normal operation. */
9415 signal_stop[GDB_SIGNAL_LWP] = 0;
9416 signal_print[GDB_SIGNAL_LWP] = 0;
9417 signal_stop[GDB_SIGNAL_WAITING] = 0;
9418 signal_print[GDB_SIGNAL_WAITING] = 0;
9419 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9420 signal_print[GDB_SIGNAL_CANCEL] = 0;
9421 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9422 signal_print[GDB_SIGNAL_LIBRT] = 0;
9423
9424 /* Update cached state. */
9425 signal_cache_update (-1);
9426
9427 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9428 &stop_on_solib_events, _("\
9429 Set stopping for shared library events."), _("\
9430 Show stopping for shared library events."), _("\
9431 If nonzero, gdb will give control to the user when the dynamic linker\n\
9432 notifies gdb of shared library events. The most common event of interest\n\
9433 to the user would be loading/unloading of a new library."),
9434 set_stop_on_solib_events,
9435 show_stop_on_solib_events,
9436 &setlist, &showlist);
9437
9438 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9439 follow_fork_mode_kind_names,
9440 &follow_fork_mode_string, _("\
9441 Set debugger response to a program call of fork or vfork."), _("\
9442 Show debugger response to a program call of fork or vfork."), _("\
9443 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9444 parent - the original process is debugged after a fork\n\
9445 child - the new process is debugged after a fork\n\
9446 The unfollowed process will continue to run.\n\
9447 By default, the debugger will follow the parent process."),
9448 NULL,
9449 show_follow_fork_mode_string,
9450 &setlist, &showlist);
9451
9452 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9453 follow_exec_mode_names,
9454 &follow_exec_mode_string, _("\
9455 Set debugger response to a program call of exec."), _("\
9456 Show debugger response to a program call of exec."), _("\
9457 An exec call replaces the program image of a process.\n\
9458 \n\
9459 follow-exec-mode can be:\n\
9460 \n\
9461 new - the debugger creates a new inferior and rebinds the process\n\
9462 to this new inferior. The program the process was running before\n\
9463 the exec call can be restarted afterwards by restarting the original\n\
9464 inferior.\n\
9465 \n\
9466 same - the debugger keeps the process bound to the same inferior.\n\
9467 The new executable image replaces the previous executable loaded in\n\
9468 the inferior. Restarting the inferior after the exec call restarts\n\
9469 the executable the process was running after the exec call.\n\
9470 \n\
9471 By default, the debugger will use the same inferior."),
9472 NULL,
9473 show_follow_exec_mode_string,
9474 &setlist, &showlist);
9475
9476 add_setshow_enum_cmd ("scheduler-locking", class_run,
9477 scheduler_enums, &scheduler_mode, _("\
9478 Set mode for locking scheduler during execution."), _("\
9479 Show mode for locking scheduler during execution."), _("\
9480 off == no locking (threads may preempt at any time)\n\
9481 on == full locking (no thread except the current thread may run)\n\
9482 This applies to both normal execution and replay mode.\n\
9483 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9484 In this mode, other threads may run during other commands.\n\
9485 This applies to both normal execution and replay mode.\n\
9486 replay == scheduler locked in replay mode and unlocked during normal execution."),
9487 set_schedlock_func, /* traps on target vector */
9488 show_scheduler_mode,
9489 &setlist, &showlist);
9490
9491 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9492 Set mode for resuming threads of all processes."), _("\
9493 Show mode for resuming threads of all processes."), _("\
9494 When on, execution commands (such as 'continue' or 'next') resume all\n\
9495 threads of all processes. When off (which is the default), execution\n\
9496 commands only resume the threads of the current process. The set of\n\
9497 threads that are resumed is further refined by the scheduler-locking\n\
9498 mode (see help set scheduler-locking)."),
9499 NULL,
9500 show_schedule_multiple,
9501 &setlist, &showlist);
9502
9503 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9504 Set mode of the step operation."), _("\
9505 Show mode of the step operation."), _("\
9506 When set, doing a step over a function without debug line information\n\
9507 will stop at the first instruction of that function. Otherwise, the\n\
9508 function is skipped and the step command stops at a different source line."),
9509 NULL,
9510 show_step_stop_if_no_debug,
9511 &setlist, &showlist);
9512
9513 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9514 &can_use_displaced_stepping, _("\
9515 Set debugger's willingness to use displaced stepping."), _("\
9516 Show debugger's willingness to use displaced stepping."), _("\
9517 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9518 supported by the target architecture. If off, gdb will not use displaced\n\
9519 stepping to step over breakpoints, even if such is supported by the target\n\
9520 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9521 if the target architecture supports it and non-stop mode is active, but will not\n\
9522 use it in all-stop mode (see help set non-stop)."),
9523 NULL,
9524 show_can_use_displaced_stepping,
9525 &setlist, &showlist);
9526
9527 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9528 &exec_direction, _("Set direction of execution.\n\
9529 Options are 'forward' or 'reverse'."),
9530 _("Show direction of execution (forward/reverse)."),
9531 _("Tells gdb whether to execute forward or backward."),
9532 set_exec_direction_func, show_exec_direction_func,
9533 &setlist, &showlist);
9534
9535 /* Set/show detach-on-fork: user-settable mode. */
9536
9537 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9538 Set whether gdb will detach the child of a fork."), _("\
9539 Show whether gdb will detach the child of a fork."), _("\
9540 Tells gdb whether to detach the child of a fork."),
9541 NULL, NULL, &setlist, &showlist);
9542
9543 /* Set/show disable address space randomization mode. */
9544
9545 add_setshow_boolean_cmd ("disable-randomization", class_support,
9546 &disable_randomization, _("\
9547 Set disabling of debuggee's virtual address space randomization."), _("\
9548 Show disabling of debuggee's virtual address space randomization."), _("\
9549 When this mode is on (which is the default), randomization of the virtual\n\
9550 address space is disabled. Standalone programs run with the randomization\n\
9551 enabled by default on some platforms."),
9552 &set_disable_randomization,
9553 &show_disable_randomization,
9554 &setlist, &showlist);
9555
9556 /* ptid initializations */
9557 inferior_ptid = null_ptid;
9558 target_last_wait_ptid = minus_one_ptid;
9559
9560 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9561 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9562 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9563 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9564 gdb::observers::inferior_execd.attach (infrun_inferior_execd);
9565
9566 /* Explicitly create without lookup, since that tries to create a
9567 value with a void typed value, and when we get here, gdbarch
9568 isn't initialized yet. At this point, we're quite sure there
9569 isn't another convenience variable of the same name. */
9570 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9571
9572 add_setshow_boolean_cmd ("observer", no_class,
9573 &observer_mode_1, _("\
9574 Set whether gdb controls the inferior in observer mode."), _("\
9575 Show whether gdb controls the inferior in observer mode."), _("\
9576 In observer mode, GDB can get data from the inferior, but not\n\
9577 affect its execution. Registers and memory may not be changed,\n\
9578 breakpoints may not be set, and the program cannot be interrupted\n\
9579 or signalled."),
9580 set_observer_mode,
9581 show_observer_mode,
9582 &setlist,
9583 &showlist);
9584
9585 #if GDB_SELF_TEST
9586 selftests::register_test ("infrun_thread_ptid_changed",
9587 selftests::infrun_thread_ptid_changed);
9588 #endif
9589 }