]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
Merge async and sync code paths some more
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65
66 /* Prototypes for local functions */
67
68 static void signals_info (char *, int);
69
70 static void handle_command (char *, int);
71
72 static void sig_print_info (enum gdb_signal);
73
74 static void sig_print_header (void);
75
76 static void resume_cleanups (void *);
77
78 static int hook_stop_stub (void *);
79
80 static int restore_selected_frame (void *);
81
82 static int follow_fork (void);
83
84 static int follow_fork_inferior (int follow_child, int detach_fork);
85
86 static void follow_inferior_reset_breakpoints (void);
87
88 static void set_schedlock_func (char *args, int from_tty,
89 struct cmd_list_element *c);
90
91 static int currently_stepping (struct thread_info *tp);
92
93 void _initialize_infrun (void);
94
95 void nullify_last_target_wait_ptid (void);
96
97 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
98
99 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
101 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
103 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
104
105 /* Asynchronous signal handler registered as event loop source for
106 when we have pending events ready to be passed to the core. */
107 static struct async_event_handler *infrun_async_inferior_event_token;
108
109 /* Stores whether infrun_async was previously enabled or disabled.
110 Starts off as -1, indicating "never enabled/disabled". */
111 static int infrun_is_async = -1;
112
113 /* See infrun.h. */
114
115 void
116 infrun_async (int enable)
117 {
118 if (infrun_is_async != enable)
119 {
120 infrun_is_async = enable;
121
122 if (debug_infrun)
123 fprintf_unfiltered (gdb_stdlog,
124 "infrun: infrun_async(%d)\n",
125 enable);
126
127 if (enable)
128 mark_async_event_handler (infrun_async_inferior_event_token);
129 else
130 clear_async_event_handler (infrun_async_inferior_event_token);
131 }
132 }
133
134 /* See infrun.h. */
135
136 void
137 mark_infrun_async_event_handler (void)
138 {
139 mark_async_event_handler (infrun_async_inferior_event_token);
140 }
141
142 /* When set, stop the 'step' command if we enter a function which has
143 no line number information. The normal behavior is that we step
144 over such function. */
145 int step_stop_if_no_debug = 0;
146 static void
147 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
148 struct cmd_list_element *c, const char *value)
149 {
150 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
151 }
152
153 /* In asynchronous mode, but simulating synchronous execution. */
154
155 int sync_execution = 0;
156
157 /* proceed and normal_stop use this to notify the user when the
158 inferior stopped in a different thread than it had been running
159 in. */
160
161 static ptid_t previous_inferior_ptid;
162
163 /* If set (default for legacy reasons), when following a fork, GDB
164 will detach from one of the fork branches, child or parent.
165 Exactly which branch is detached depends on 'set follow-fork-mode'
166 setting. */
167
168 static int detach_fork = 1;
169
170 int debug_displaced = 0;
171 static void
172 show_debug_displaced (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
174 {
175 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
176 }
177
178 unsigned int debug_infrun = 0;
179 static void
180 show_debug_infrun (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
184 }
185
186
187 /* Support for disabling address space randomization. */
188
189 int disable_randomization = 1;
190
191 static void
192 show_disable_randomization (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194 {
195 if (target_supports_disable_randomization ())
196 fprintf_filtered (file,
197 _("Disabling randomization of debuggee's "
198 "virtual address space is %s.\n"),
199 value);
200 else
201 fputs_filtered (_("Disabling randomization of debuggee's "
202 "virtual address space is unsupported on\n"
203 "this platform.\n"), file);
204 }
205
206 static void
207 set_disable_randomization (char *args, int from_tty,
208 struct cmd_list_element *c)
209 {
210 if (!target_supports_disable_randomization ())
211 error (_("Disabling randomization of debuggee's "
212 "virtual address space is unsupported on\n"
213 "this platform."));
214 }
215
216 /* User interface for non-stop mode. */
217
218 int non_stop = 0;
219 static int non_stop_1 = 0;
220
221 static void
222 set_non_stop (char *args, int from_tty,
223 struct cmd_list_element *c)
224 {
225 if (target_has_execution)
226 {
227 non_stop_1 = non_stop;
228 error (_("Cannot change this setting while the inferior is running."));
229 }
230
231 non_stop = non_stop_1;
232 }
233
234 static void
235 show_non_stop (struct ui_file *file, int from_tty,
236 struct cmd_list_element *c, const char *value)
237 {
238 fprintf_filtered (file,
239 _("Controlling the inferior in non-stop mode is %s.\n"),
240 value);
241 }
242
243 /* "Observer mode" is somewhat like a more extreme version of
244 non-stop, in which all GDB operations that might affect the
245 target's execution have been disabled. */
246
247 int observer_mode = 0;
248 static int observer_mode_1 = 0;
249
250 static void
251 set_observer_mode (char *args, int from_tty,
252 struct cmd_list_element *c)
253 {
254 if (target_has_execution)
255 {
256 observer_mode_1 = observer_mode;
257 error (_("Cannot change this setting while the inferior is running."));
258 }
259
260 observer_mode = observer_mode_1;
261
262 may_write_registers = !observer_mode;
263 may_write_memory = !observer_mode;
264 may_insert_breakpoints = !observer_mode;
265 may_insert_tracepoints = !observer_mode;
266 /* We can insert fast tracepoints in or out of observer mode,
267 but enable them if we're going into this mode. */
268 if (observer_mode)
269 may_insert_fast_tracepoints = 1;
270 may_stop = !observer_mode;
271 update_target_permissions ();
272
273 /* Going *into* observer mode we must force non-stop, then
274 going out we leave it that way. */
275 if (observer_mode)
276 {
277 pagination_enabled = 0;
278 non_stop = non_stop_1 = 1;
279 }
280
281 if (from_tty)
282 printf_filtered (_("Observer mode is now %s.\n"),
283 (observer_mode ? "on" : "off"));
284 }
285
286 static void
287 show_observer_mode (struct ui_file *file, int from_tty,
288 struct cmd_list_element *c, const char *value)
289 {
290 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
291 }
292
293 /* This updates the value of observer mode based on changes in
294 permissions. Note that we are deliberately ignoring the values of
295 may-write-registers and may-write-memory, since the user may have
296 reason to enable these during a session, for instance to turn on a
297 debugging-related global. */
298
299 void
300 update_observer_mode (void)
301 {
302 int newval;
303
304 newval = (!may_insert_breakpoints
305 && !may_insert_tracepoints
306 && may_insert_fast_tracepoints
307 && !may_stop
308 && non_stop);
309
310 /* Let the user know if things change. */
311 if (newval != observer_mode)
312 printf_filtered (_("Observer mode is now %s.\n"),
313 (newval ? "on" : "off"));
314
315 observer_mode = observer_mode_1 = newval;
316 }
317
318 /* Tables of how to react to signals; the user sets them. */
319
320 static unsigned char *signal_stop;
321 static unsigned char *signal_print;
322 static unsigned char *signal_program;
323
324 /* Table of signals that are registered with "catch signal". A
325 non-zero entry indicates that the signal is caught by some "catch
326 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
327 signals. */
328 static unsigned char *signal_catch;
329
330 /* Table of signals that the target may silently handle.
331 This is automatically determined from the flags above,
332 and simply cached here. */
333 static unsigned char *signal_pass;
334
335 #define SET_SIGS(nsigs,sigs,flags) \
336 do { \
337 int signum = (nsigs); \
338 while (signum-- > 0) \
339 if ((sigs)[signum]) \
340 (flags)[signum] = 1; \
341 } while (0)
342
343 #define UNSET_SIGS(nsigs,sigs,flags) \
344 do { \
345 int signum = (nsigs); \
346 while (signum-- > 0) \
347 if ((sigs)[signum]) \
348 (flags)[signum] = 0; \
349 } while (0)
350
351 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
352 this function is to avoid exporting `signal_program'. */
353
354 void
355 update_signals_program_target (void)
356 {
357 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
358 }
359
360 /* Value to pass to target_resume() to cause all threads to resume. */
361
362 #define RESUME_ALL minus_one_ptid
363
364 /* Command list pointer for the "stop" placeholder. */
365
366 static struct cmd_list_element *stop_command;
367
368 /* Nonzero if we want to give control to the user when we're notified
369 of shared library events by the dynamic linker. */
370 int stop_on_solib_events;
371
372 /* Enable or disable optional shared library event breakpoints
373 as appropriate when the above flag is changed. */
374
375 static void
376 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
377 {
378 update_solib_breakpoints ();
379 }
380
381 static void
382 show_stop_on_solib_events (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
386 value);
387 }
388
389 /* Nonzero means expecting a trace trap
390 and should stop the inferior and return silently when it happens. */
391
392 int stop_after_trap;
393
394 /* Nonzero after stop if current stack frame should be printed. */
395
396 static int stop_print_frame;
397
398 /* This is a cached copy of the pid/waitstatus of the last event
399 returned by target_wait()/deprecated_target_wait_hook(). This
400 information is returned by get_last_target_status(). */
401 static ptid_t target_last_wait_ptid;
402 static struct target_waitstatus target_last_waitstatus;
403
404 static void context_switch (ptid_t ptid);
405
406 void init_thread_stepping_state (struct thread_info *tss);
407
408 static const char follow_fork_mode_child[] = "child";
409 static const char follow_fork_mode_parent[] = "parent";
410
411 static const char *const follow_fork_mode_kind_names[] = {
412 follow_fork_mode_child,
413 follow_fork_mode_parent,
414 NULL
415 };
416
417 static const char *follow_fork_mode_string = follow_fork_mode_parent;
418 static void
419 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
420 struct cmd_list_element *c, const char *value)
421 {
422 fprintf_filtered (file,
423 _("Debugger response to a program "
424 "call of fork or vfork is \"%s\".\n"),
425 value);
426 }
427 \f
428
429 /* Handle changes to the inferior list based on the type of fork,
430 which process is being followed, and whether the other process
431 should be detached. On entry inferior_ptid must be the ptid of
432 the fork parent. At return inferior_ptid is the ptid of the
433 followed inferior. */
434
435 static int
436 follow_fork_inferior (int follow_child, int detach_fork)
437 {
438 int has_vforked;
439 ptid_t parent_ptid, child_ptid;
440
441 has_vforked = (inferior_thread ()->pending_follow.kind
442 == TARGET_WAITKIND_VFORKED);
443 parent_ptid = inferior_ptid;
444 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
445
446 if (has_vforked
447 && !non_stop /* Non-stop always resumes both branches. */
448 && (!target_is_async_p () || sync_execution)
449 && !(follow_child || detach_fork || sched_multi))
450 {
451 /* The parent stays blocked inside the vfork syscall until the
452 child execs or exits. If we don't let the child run, then
453 the parent stays blocked. If we're telling the parent to run
454 in the foreground, the user will not be able to ctrl-c to get
455 back the terminal, effectively hanging the debug session. */
456 fprintf_filtered (gdb_stderr, _("\
457 Can not resume the parent process over vfork in the foreground while\n\
458 holding the child stopped. Try \"set detach-on-fork\" or \
459 \"set schedule-multiple\".\n"));
460 /* FIXME output string > 80 columns. */
461 return 1;
462 }
463
464 if (!follow_child)
465 {
466 /* Detach new forked process? */
467 if (detach_fork)
468 {
469 struct cleanup *old_chain;
470
471 /* Before detaching from the child, remove all breakpoints
472 from it. If we forked, then this has already been taken
473 care of by infrun.c. If we vforked however, any
474 breakpoint inserted in the parent is visible in the
475 child, even those added while stopped in a vfork
476 catchpoint. This will remove the breakpoints from the
477 parent also, but they'll be reinserted below. */
478 if (has_vforked)
479 {
480 /* Keep breakpoints list in sync. */
481 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
482 }
483
484 if (info_verbose || debug_infrun)
485 {
486 /* Ensure that we have a process ptid. */
487 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
488
489 target_terminal_ours_for_output ();
490 fprintf_filtered (gdb_stdlog,
491 _("Detaching after %s from child %s.\n"),
492 has_vforked ? "vfork" : "fork",
493 target_pid_to_str (process_ptid));
494 }
495 }
496 else
497 {
498 struct inferior *parent_inf, *child_inf;
499 struct cleanup *old_chain;
500
501 /* Add process to GDB's tables. */
502 child_inf = add_inferior (ptid_get_pid (child_ptid));
503
504 parent_inf = current_inferior ();
505 child_inf->attach_flag = parent_inf->attach_flag;
506 copy_terminal_info (child_inf, parent_inf);
507 child_inf->gdbarch = parent_inf->gdbarch;
508 copy_inferior_target_desc_info (child_inf, parent_inf);
509
510 old_chain = save_inferior_ptid ();
511 save_current_program_space ();
512
513 inferior_ptid = child_ptid;
514 add_thread (inferior_ptid);
515 child_inf->symfile_flags = SYMFILE_NO_READ;
516
517 /* If this is a vfork child, then the address-space is
518 shared with the parent. */
519 if (has_vforked)
520 {
521 child_inf->pspace = parent_inf->pspace;
522 child_inf->aspace = parent_inf->aspace;
523
524 /* The parent will be frozen until the child is done
525 with the shared region. Keep track of the
526 parent. */
527 child_inf->vfork_parent = parent_inf;
528 child_inf->pending_detach = 0;
529 parent_inf->vfork_child = child_inf;
530 parent_inf->pending_detach = 0;
531 }
532 else
533 {
534 child_inf->aspace = new_address_space ();
535 child_inf->pspace = add_program_space (child_inf->aspace);
536 child_inf->removable = 1;
537 set_current_program_space (child_inf->pspace);
538 clone_program_space (child_inf->pspace, parent_inf->pspace);
539
540 /* Let the shared library layer (e.g., solib-svr4) learn
541 about this new process, relocate the cloned exec, pull
542 in shared libraries, and install the solib event
543 breakpoint. If a "cloned-VM" event was propagated
544 better throughout the core, this wouldn't be
545 required. */
546 solib_create_inferior_hook (0);
547 }
548
549 do_cleanups (old_chain);
550 }
551
552 if (has_vforked)
553 {
554 struct inferior *parent_inf;
555
556 parent_inf = current_inferior ();
557
558 /* If we detached from the child, then we have to be careful
559 to not insert breakpoints in the parent until the child
560 is done with the shared memory region. However, if we're
561 staying attached to the child, then we can and should
562 insert breakpoints, so that we can debug it. A
563 subsequent child exec or exit is enough to know when does
564 the child stops using the parent's address space. */
565 parent_inf->waiting_for_vfork_done = detach_fork;
566 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
567 }
568 }
569 else
570 {
571 /* Follow the child. */
572 struct inferior *parent_inf, *child_inf;
573 struct program_space *parent_pspace;
574
575 if (info_verbose || debug_infrun)
576 {
577 target_terminal_ours_for_output ();
578 fprintf_filtered (gdb_stdlog,
579 _("Attaching after %s %s to child %s.\n"),
580 target_pid_to_str (parent_ptid),
581 has_vforked ? "vfork" : "fork",
582 target_pid_to_str (child_ptid));
583 }
584
585 /* Add the new inferior first, so that the target_detach below
586 doesn't unpush the target. */
587
588 child_inf = add_inferior (ptid_get_pid (child_ptid));
589
590 parent_inf = current_inferior ();
591 child_inf->attach_flag = parent_inf->attach_flag;
592 copy_terminal_info (child_inf, parent_inf);
593 child_inf->gdbarch = parent_inf->gdbarch;
594 copy_inferior_target_desc_info (child_inf, parent_inf);
595
596 parent_pspace = parent_inf->pspace;
597
598 /* If we're vforking, we want to hold on to the parent until the
599 child exits or execs. At child exec or exit time we can
600 remove the old breakpoints from the parent and detach or
601 resume debugging it. Otherwise, detach the parent now; we'll
602 want to reuse it's program/address spaces, but we can't set
603 them to the child before removing breakpoints from the
604 parent, otherwise, the breakpoints module could decide to
605 remove breakpoints from the wrong process (since they'd be
606 assigned to the same address space). */
607
608 if (has_vforked)
609 {
610 gdb_assert (child_inf->vfork_parent == NULL);
611 gdb_assert (parent_inf->vfork_child == NULL);
612 child_inf->vfork_parent = parent_inf;
613 child_inf->pending_detach = 0;
614 parent_inf->vfork_child = child_inf;
615 parent_inf->pending_detach = detach_fork;
616 parent_inf->waiting_for_vfork_done = 0;
617 }
618 else if (detach_fork)
619 {
620 if (info_verbose || debug_infrun)
621 {
622 /* Ensure that we have a process ptid. */
623 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
624
625 target_terminal_ours_for_output ();
626 fprintf_filtered (gdb_stdlog,
627 _("Detaching after fork from "
628 "child %s.\n"),
629 target_pid_to_str (process_ptid));
630 }
631
632 target_detach (NULL, 0);
633 }
634
635 /* Note that the detach above makes PARENT_INF dangling. */
636
637 /* Add the child thread to the appropriate lists, and switch to
638 this new thread, before cloning the program space, and
639 informing the solib layer about this new process. */
640
641 inferior_ptid = child_ptid;
642 add_thread (inferior_ptid);
643
644 /* If this is a vfork child, then the address-space is shared
645 with the parent. If we detached from the parent, then we can
646 reuse the parent's program/address spaces. */
647 if (has_vforked || detach_fork)
648 {
649 child_inf->pspace = parent_pspace;
650 child_inf->aspace = child_inf->pspace->aspace;
651 }
652 else
653 {
654 child_inf->aspace = new_address_space ();
655 child_inf->pspace = add_program_space (child_inf->aspace);
656 child_inf->removable = 1;
657 child_inf->symfile_flags = SYMFILE_NO_READ;
658 set_current_program_space (child_inf->pspace);
659 clone_program_space (child_inf->pspace, parent_pspace);
660
661 /* Let the shared library layer (e.g., solib-svr4) learn
662 about this new process, relocate the cloned exec, pull in
663 shared libraries, and install the solib event breakpoint.
664 If a "cloned-VM" event was propagated better throughout
665 the core, this wouldn't be required. */
666 solib_create_inferior_hook (0);
667 }
668 }
669
670 return target_follow_fork (follow_child, detach_fork);
671 }
672
673 /* Tell the target to follow the fork we're stopped at. Returns true
674 if the inferior should be resumed; false, if the target for some
675 reason decided it's best not to resume. */
676
677 static int
678 follow_fork (void)
679 {
680 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
681 int should_resume = 1;
682 struct thread_info *tp;
683
684 /* Copy user stepping state to the new inferior thread. FIXME: the
685 followed fork child thread should have a copy of most of the
686 parent thread structure's run control related fields, not just these.
687 Initialized to avoid "may be used uninitialized" warnings from gcc. */
688 struct breakpoint *step_resume_breakpoint = NULL;
689 struct breakpoint *exception_resume_breakpoint = NULL;
690 CORE_ADDR step_range_start = 0;
691 CORE_ADDR step_range_end = 0;
692 struct frame_id step_frame_id = { 0 };
693 struct interp *command_interp = NULL;
694
695 if (!non_stop)
696 {
697 ptid_t wait_ptid;
698 struct target_waitstatus wait_status;
699
700 /* Get the last target status returned by target_wait(). */
701 get_last_target_status (&wait_ptid, &wait_status);
702
703 /* If not stopped at a fork event, then there's nothing else to
704 do. */
705 if (wait_status.kind != TARGET_WAITKIND_FORKED
706 && wait_status.kind != TARGET_WAITKIND_VFORKED)
707 return 1;
708
709 /* Check if we switched over from WAIT_PTID, since the event was
710 reported. */
711 if (!ptid_equal (wait_ptid, minus_one_ptid)
712 && !ptid_equal (inferior_ptid, wait_ptid))
713 {
714 /* We did. Switch back to WAIT_PTID thread, to tell the
715 target to follow it (in either direction). We'll
716 afterwards refuse to resume, and inform the user what
717 happened. */
718 switch_to_thread (wait_ptid);
719 should_resume = 0;
720 }
721 }
722
723 tp = inferior_thread ();
724
725 /* If there were any forks/vforks that were caught and are now to be
726 followed, then do so now. */
727 switch (tp->pending_follow.kind)
728 {
729 case TARGET_WAITKIND_FORKED:
730 case TARGET_WAITKIND_VFORKED:
731 {
732 ptid_t parent, child;
733
734 /* If the user did a next/step, etc, over a fork call,
735 preserve the stepping state in the fork child. */
736 if (follow_child && should_resume)
737 {
738 step_resume_breakpoint = clone_momentary_breakpoint
739 (tp->control.step_resume_breakpoint);
740 step_range_start = tp->control.step_range_start;
741 step_range_end = tp->control.step_range_end;
742 step_frame_id = tp->control.step_frame_id;
743 exception_resume_breakpoint
744 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
745 command_interp = tp->control.command_interp;
746
747 /* For now, delete the parent's sr breakpoint, otherwise,
748 parent/child sr breakpoints are considered duplicates,
749 and the child version will not be installed. Remove
750 this when the breakpoints module becomes aware of
751 inferiors and address spaces. */
752 delete_step_resume_breakpoint (tp);
753 tp->control.step_range_start = 0;
754 tp->control.step_range_end = 0;
755 tp->control.step_frame_id = null_frame_id;
756 delete_exception_resume_breakpoint (tp);
757 tp->control.command_interp = NULL;
758 }
759
760 parent = inferior_ptid;
761 child = tp->pending_follow.value.related_pid;
762
763 /* Set up inferior(s) as specified by the caller, and tell the
764 target to do whatever is necessary to follow either parent
765 or child. */
766 if (follow_fork_inferior (follow_child, detach_fork))
767 {
768 /* Target refused to follow, or there's some other reason
769 we shouldn't resume. */
770 should_resume = 0;
771 }
772 else
773 {
774 /* This pending follow fork event is now handled, one way
775 or another. The previous selected thread may be gone
776 from the lists by now, but if it is still around, need
777 to clear the pending follow request. */
778 tp = find_thread_ptid (parent);
779 if (tp)
780 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
781
782 /* This makes sure we don't try to apply the "Switched
783 over from WAIT_PID" logic above. */
784 nullify_last_target_wait_ptid ();
785
786 /* If we followed the child, switch to it... */
787 if (follow_child)
788 {
789 switch_to_thread (child);
790
791 /* ... and preserve the stepping state, in case the
792 user was stepping over the fork call. */
793 if (should_resume)
794 {
795 tp = inferior_thread ();
796 tp->control.step_resume_breakpoint
797 = step_resume_breakpoint;
798 tp->control.step_range_start = step_range_start;
799 tp->control.step_range_end = step_range_end;
800 tp->control.step_frame_id = step_frame_id;
801 tp->control.exception_resume_breakpoint
802 = exception_resume_breakpoint;
803 tp->control.command_interp = command_interp;
804 }
805 else
806 {
807 /* If we get here, it was because we're trying to
808 resume from a fork catchpoint, but, the user
809 has switched threads away from the thread that
810 forked. In that case, the resume command
811 issued is most likely not applicable to the
812 child, so just warn, and refuse to resume. */
813 warning (_("Not resuming: switched threads "
814 "before following fork child."));
815 }
816
817 /* Reset breakpoints in the child as appropriate. */
818 follow_inferior_reset_breakpoints ();
819 }
820 else
821 switch_to_thread (parent);
822 }
823 }
824 break;
825 case TARGET_WAITKIND_SPURIOUS:
826 /* Nothing to follow. */
827 break;
828 default:
829 internal_error (__FILE__, __LINE__,
830 "Unexpected pending_follow.kind %d\n",
831 tp->pending_follow.kind);
832 break;
833 }
834
835 return should_resume;
836 }
837
838 static void
839 follow_inferior_reset_breakpoints (void)
840 {
841 struct thread_info *tp = inferior_thread ();
842
843 /* Was there a step_resume breakpoint? (There was if the user
844 did a "next" at the fork() call.) If so, explicitly reset its
845 thread number. Cloned step_resume breakpoints are disabled on
846 creation, so enable it here now that it is associated with the
847 correct thread.
848
849 step_resumes are a form of bp that are made to be per-thread.
850 Since we created the step_resume bp when the parent process
851 was being debugged, and now are switching to the child process,
852 from the breakpoint package's viewpoint, that's a switch of
853 "threads". We must update the bp's notion of which thread
854 it is for, or it'll be ignored when it triggers. */
855
856 if (tp->control.step_resume_breakpoint)
857 {
858 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
859 tp->control.step_resume_breakpoint->loc->enabled = 1;
860 }
861
862 /* Treat exception_resume breakpoints like step_resume breakpoints. */
863 if (tp->control.exception_resume_breakpoint)
864 {
865 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
866 tp->control.exception_resume_breakpoint->loc->enabled = 1;
867 }
868
869 /* Reinsert all breakpoints in the child. The user may have set
870 breakpoints after catching the fork, in which case those
871 were never set in the child, but only in the parent. This makes
872 sure the inserted breakpoints match the breakpoint list. */
873
874 breakpoint_re_set ();
875 insert_breakpoints ();
876 }
877
878 /* The child has exited or execed: resume threads of the parent the
879 user wanted to be executing. */
880
881 static int
882 proceed_after_vfork_done (struct thread_info *thread,
883 void *arg)
884 {
885 int pid = * (int *) arg;
886
887 if (ptid_get_pid (thread->ptid) == pid
888 && is_running (thread->ptid)
889 && !is_executing (thread->ptid)
890 && !thread->stop_requested
891 && thread->suspend.stop_signal == GDB_SIGNAL_0)
892 {
893 if (debug_infrun)
894 fprintf_unfiltered (gdb_stdlog,
895 "infrun: resuming vfork parent thread %s\n",
896 target_pid_to_str (thread->ptid));
897
898 switch_to_thread (thread->ptid);
899 clear_proceed_status (0);
900 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
901 }
902
903 return 0;
904 }
905
906 /* Called whenever we notice an exec or exit event, to handle
907 detaching or resuming a vfork parent. */
908
909 static void
910 handle_vfork_child_exec_or_exit (int exec)
911 {
912 struct inferior *inf = current_inferior ();
913
914 if (inf->vfork_parent)
915 {
916 int resume_parent = -1;
917
918 /* This exec or exit marks the end of the shared memory region
919 between the parent and the child. If the user wanted to
920 detach from the parent, now is the time. */
921
922 if (inf->vfork_parent->pending_detach)
923 {
924 struct thread_info *tp;
925 struct cleanup *old_chain;
926 struct program_space *pspace;
927 struct address_space *aspace;
928
929 /* follow-fork child, detach-on-fork on. */
930
931 inf->vfork_parent->pending_detach = 0;
932
933 if (!exec)
934 {
935 /* If we're handling a child exit, then inferior_ptid
936 points at the inferior's pid, not to a thread. */
937 old_chain = save_inferior_ptid ();
938 save_current_program_space ();
939 save_current_inferior ();
940 }
941 else
942 old_chain = save_current_space_and_thread ();
943
944 /* We're letting loose of the parent. */
945 tp = any_live_thread_of_process (inf->vfork_parent->pid);
946 switch_to_thread (tp->ptid);
947
948 /* We're about to detach from the parent, which implicitly
949 removes breakpoints from its address space. There's a
950 catch here: we want to reuse the spaces for the child,
951 but, parent/child are still sharing the pspace at this
952 point, although the exec in reality makes the kernel give
953 the child a fresh set of new pages. The problem here is
954 that the breakpoints module being unaware of this, would
955 likely chose the child process to write to the parent
956 address space. Swapping the child temporarily away from
957 the spaces has the desired effect. Yes, this is "sort
958 of" a hack. */
959
960 pspace = inf->pspace;
961 aspace = inf->aspace;
962 inf->aspace = NULL;
963 inf->pspace = NULL;
964
965 if (debug_infrun || info_verbose)
966 {
967 target_terminal_ours_for_output ();
968
969 if (exec)
970 {
971 fprintf_filtered (gdb_stdlog,
972 _("Detaching vfork parent process "
973 "%d after child exec.\n"),
974 inf->vfork_parent->pid);
975 }
976 else
977 {
978 fprintf_filtered (gdb_stdlog,
979 _("Detaching vfork parent process "
980 "%d after child exit.\n"),
981 inf->vfork_parent->pid);
982 }
983 }
984
985 target_detach (NULL, 0);
986
987 /* Put it back. */
988 inf->pspace = pspace;
989 inf->aspace = aspace;
990
991 do_cleanups (old_chain);
992 }
993 else if (exec)
994 {
995 /* We're staying attached to the parent, so, really give the
996 child a new address space. */
997 inf->pspace = add_program_space (maybe_new_address_space ());
998 inf->aspace = inf->pspace->aspace;
999 inf->removable = 1;
1000 set_current_program_space (inf->pspace);
1001
1002 resume_parent = inf->vfork_parent->pid;
1003
1004 /* Break the bonds. */
1005 inf->vfork_parent->vfork_child = NULL;
1006 }
1007 else
1008 {
1009 struct cleanup *old_chain;
1010 struct program_space *pspace;
1011
1012 /* If this is a vfork child exiting, then the pspace and
1013 aspaces were shared with the parent. Since we're
1014 reporting the process exit, we'll be mourning all that is
1015 found in the address space, and switching to null_ptid,
1016 preparing to start a new inferior. But, since we don't
1017 want to clobber the parent's address/program spaces, we
1018 go ahead and create a new one for this exiting
1019 inferior. */
1020
1021 /* Switch to null_ptid, so that clone_program_space doesn't want
1022 to read the selected frame of a dead process. */
1023 old_chain = save_inferior_ptid ();
1024 inferior_ptid = null_ptid;
1025
1026 /* This inferior is dead, so avoid giving the breakpoints
1027 module the option to write through to it (cloning a
1028 program space resets breakpoints). */
1029 inf->aspace = NULL;
1030 inf->pspace = NULL;
1031 pspace = add_program_space (maybe_new_address_space ());
1032 set_current_program_space (pspace);
1033 inf->removable = 1;
1034 inf->symfile_flags = SYMFILE_NO_READ;
1035 clone_program_space (pspace, inf->vfork_parent->pspace);
1036 inf->pspace = pspace;
1037 inf->aspace = pspace->aspace;
1038
1039 /* Put back inferior_ptid. We'll continue mourning this
1040 inferior. */
1041 do_cleanups (old_chain);
1042
1043 resume_parent = inf->vfork_parent->pid;
1044 /* Break the bonds. */
1045 inf->vfork_parent->vfork_child = NULL;
1046 }
1047
1048 inf->vfork_parent = NULL;
1049
1050 gdb_assert (current_program_space == inf->pspace);
1051
1052 if (non_stop && resume_parent != -1)
1053 {
1054 /* If the user wanted the parent to be running, let it go
1055 free now. */
1056 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1057
1058 if (debug_infrun)
1059 fprintf_unfiltered (gdb_stdlog,
1060 "infrun: resuming vfork parent process %d\n",
1061 resume_parent);
1062
1063 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1064
1065 do_cleanups (old_chain);
1066 }
1067 }
1068 }
1069
1070 /* Enum strings for "set|show follow-exec-mode". */
1071
1072 static const char follow_exec_mode_new[] = "new";
1073 static const char follow_exec_mode_same[] = "same";
1074 static const char *const follow_exec_mode_names[] =
1075 {
1076 follow_exec_mode_new,
1077 follow_exec_mode_same,
1078 NULL,
1079 };
1080
1081 static const char *follow_exec_mode_string = follow_exec_mode_same;
1082 static void
1083 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1084 struct cmd_list_element *c, const char *value)
1085 {
1086 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1087 }
1088
1089 /* EXECD_PATHNAME is assumed to be non-NULL. */
1090
1091 static void
1092 follow_exec (ptid_t ptid, char *execd_pathname)
1093 {
1094 struct thread_info *th, *tmp;
1095 struct inferior *inf = current_inferior ();
1096 int pid = ptid_get_pid (ptid);
1097
1098 /* This is an exec event that we actually wish to pay attention to.
1099 Refresh our symbol table to the newly exec'd program, remove any
1100 momentary bp's, etc.
1101
1102 If there are breakpoints, they aren't really inserted now,
1103 since the exec() transformed our inferior into a fresh set
1104 of instructions.
1105
1106 We want to preserve symbolic breakpoints on the list, since
1107 we have hopes that they can be reset after the new a.out's
1108 symbol table is read.
1109
1110 However, any "raw" breakpoints must be removed from the list
1111 (e.g., the solib bp's), since their address is probably invalid
1112 now.
1113
1114 And, we DON'T want to call delete_breakpoints() here, since
1115 that may write the bp's "shadow contents" (the instruction
1116 value that was overwritten witha TRAP instruction). Since
1117 we now have a new a.out, those shadow contents aren't valid. */
1118
1119 mark_breakpoints_out ();
1120
1121 /* The target reports the exec event to the main thread, even if
1122 some other thread does the exec, and even if the main thread was
1123 stopped or already gone. We may still have non-leader threads of
1124 the process on our list. E.g., on targets that don't have thread
1125 exit events (like remote); or on native Linux in non-stop mode if
1126 there were only two threads in the inferior and the non-leader
1127 one is the one that execs (and nothing forces an update of the
1128 thread list up to here). When debugging remotely, it's best to
1129 avoid extra traffic, when possible, so avoid syncing the thread
1130 list with the target, and instead go ahead and delete all threads
1131 of the process but one that reported the event. Note this must
1132 be done before calling update_breakpoints_after_exec, as
1133 otherwise clearing the threads' resources would reference stale
1134 thread breakpoints -- it may have been one of these threads that
1135 stepped across the exec. We could just clear their stepping
1136 states, but as long as we're iterating, might as well delete
1137 them. Deleting them now rather than at the next user-visible
1138 stop provides a nicer sequence of events for user and MI
1139 notifications. */
1140 ALL_THREADS_SAFE (th, tmp)
1141 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1142 delete_thread (th->ptid);
1143
1144 /* We also need to clear any left over stale state for the
1145 leader/event thread. E.g., if there was any step-resume
1146 breakpoint or similar, it's gone now. We cannot truly
1147 step-to-next statement through an exec(). */
1148 th = inferior_thread ();
1149 th->control.step_resume_breakpoint = NULL;
1150 th->control.exception_resume_breakpoint = NULL;
1151 th->control.single_step_breakpoints = NULL;
1152 th->control.step_range_start = 0;
1153 th->control.step_range_end = 0;
1154
1155 /* The user may have had the main thread held stopped in the
1156 previous image (e.g., schedlock on, or non-stop). Release
1157 it now. */
1158 th->stop_requested = 0;
1159
1160 update_breakpoints_after_exec ();
1161
1162 /* What is this a.out's name? */
1163 printf_unfiltered (_("%s is executing new program: %s\n"),
1164 target_pid_to_str (inferior_ptid),
1165 execd_pathname);
1166
1167 /* We've followed the inferior through an exec. Therefore, the
1168 inferior has essentially been killed & reborn. */
1169
1170 gdb_flush (gdb_stdout);
1171
1172 breakpoint_init_inferior (inf_execd);
1173
1174 if (*gdb_sysroot != '\0')
1175 {
1176 char *name = exec_file_find (execd_pathname, NULL);
1177
1178 execd_pathname = alloca (strlen (name) + 1);
1179 strcpy (execd_pathname, name);
1180 xfree (name);
1181 }
1182
1183 /* Reset the shared library package. This ensures that we get a
1184 shlib event when the child reaches "_start", at which point the
1185 dld will have had a chance to initialize the child. */
1186 /* Also, loading a symbol file below may trigger symbol lookups, and
1187 we don't want those to be satisfied by the libraries of the
1188 previous incarnation of this process. */
1189 no_shared_libraries (NULL, 0);
1190
1191 if (follow_exec_mode_string == follow_exec_mode_new)
1192 {
1193 struct program_space *pspace;
1194
1195 /* The user wants to keep the old inferior and program spaces
1196 around. Create a new fresh one, and switch to it. */
1197
1198 /* Do exit processing for the original inferior before adding
1199 the new inferior so we don't have two active inferiors with
1200 the same ptid, which can confuse find_inferior_ptid. */
1201 exit_inferior_num_silent (current_inferior ()->num);
1202
1203 inf = add_inferior (pid);
1204 pspace = add_program_space (maybe_new_address_space ());
1205 inf->pspace = pspace;
1206 inf->aspace = pspace->aspace;
1207 add_thread (ptid);
1208
1209 set_current_inferior (inf);
1210 set_current_program_space (pspace);
1211 }
1212 else
1213 {
1214 /* The old description may no longer be fit for the new image.
1215 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1216 old description; we'll read a new one below. No need to do
1217 this on "follow-exec-mode new", as the old inferior stays
1218 around (its description is later cleared/refetched on
1219 restart). */
1220 target_clear_description ();
1221 }
1222
1223 gdb_assert (current_program_space == inf->pspace);
1224
1225 /* That a.out is now the one to use. */
1226 exec_file_attach (execd_pathname, 0);
1227
1228 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1229 (Position Independent Executable) main symbol file will get applied by
1230 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1231 the breakpoints with the zero displacement. */
1232
1233 symbol_file_add (execd_pathname,
1234 (inf->symfile_flags
1235 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1236 NULL, 0);
1237
1238 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1239 set_initial_language ();
1240
1241 /* If the target can specify a description, read it. Must do this
1242 after flipping to the new executable (because the target supplied
1243 description must be compatible with the executable's
1244 architecture, and the old executable may e.g., be 32-bit, while
1245 the new one 64-bit), and before anything involving memory or
1246 registers. */
1247 target_find_description ();
1248
1249 solib_create_inferior_hook (0);
1250
1251 jit_inferior_created_hook ();
1252
1253 breakpoint_re_set ();
1254
1255 /* Reinsert all breakpoints. (Those which were symbolic have
1256 been reset to the proper address in the new a.out, thanks
1257 to symbol_file_command...). */
1258 insert_breakpoints ();
1259
1260 /* The next resume of this inferior should bring it to the shlib
1261 startup breakpoints. (If the user had also set bp's on
1262 "main" from the old (parent) process, then they'll auto-
1263 matically get reset there in the new process.). */
1264 }
1265
1266 /* The queue of threads that need to do a step-over operation to get
1267 past e.g., a breakpoint. What technique is used to step over the
1268 breakpoint/watchpoint does not matter -- all threads end up in the
1269 same queue, to maintain rough temporal order of execution, in order
1270 to avoid starvation, otherwise, we could e.g., find ourselves
1271 constantly stepping the same couple threads past their breakpoints
1272 over and over, if the single-step finish fast enough. */
1273 struct thread_info *step_over_queue_head;
1274
1275 /* Bit flags indicating what the thread needs to step over. */
1276
1277 enum step_over_what
1278 {
1279 /* Step over a breakpoint. */
1280 STEP_OVER_BREAKPOINT = 1,
1281
1282 /* Step past a non-continuable watchpoint, in order to let the
1283 instruction execute so we can evaluate the watchpoint
1284 expression. */
1285 STEP_OVER_WATCHPOINT = 2
1286 };
1287
1288 /* Info about an instruction that is being stepped over. */
1289
1290 struct step_over_info
1291 {
1292 /* If we're stepping past a breakpoint, this is the address space
1293 and address of the instruction the breakpoint is set at. We'll
1294 skip inserting all breakpoints here. Valid iff ASPACE is
1295 non-NULL. */
1296 struct address_space *aspace;
1297 CORE_ADDR address;
1298
1299 /* The instruction being stepped over triggers a nonsteppable
1300 watchpoint. If true, we'll skip inserting watchpoints. */
1301 int nonsteppable_watchpoint_p;
1302 };
1303
1304 /* The step-over info of the location that is being stepped over.
1305
1306 Note that with async/breakpoint always-inserted mode, a user might
1307 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1308 being stepped over. As setting a new breakpoint inserts all
1309 breakpoints, we need to make sure the breakpoint being stepped over
1310 isn't inserted then. We do that by only clearing the step-over
1311 info when the step-over is actually finished (or aborted).
1312
1313 Presently GDB can only step over one breakpoint at any given time.
1314 Given threads that can't run code in the same address space as the
1315 breakpoint's can't really miss the breakpoint, GDB could be taught
1316 to step-over at most one breakpoint per address space (so this info
1317 could move to the address space object if/when GDB is extended).
1318 The set of breakpoints being stepped over will normally be much
1319 smaller than the set of all breakpoints, so a flag in the
1320 breakpoint location structure would be wasteful. A separate list
1321 also saves complexity and run-time, as otherwise we'd have to go
1322 through all breakpoint locations clearing their flag whenever we
1323 start a new sequence. Similar considerations weigh against storing
1324 this info in the thread object. Plus, not all step overs actually
1325 have breakpoint locations -- e.g., stepping past a single-step
1326 breakpoint, or stepping to complete a non-continuable
1327 watchpoint. */
1328 static struct step_over_info step_over_info;
1329
1330 /* Record the address of the breakpoint/instruction we're currently
1331 stepping over. */
1332
1333 static void
1334 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1335 int nonsteppable_watchpoint_p)
1336 {
1337 step_over_info.aspace = aspace;
1338 step_over_info.address = address;
1339 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1340 }
1341
1342 /* Called when we're not longer stepping over a breakpoint / an
1343 instruction, so all breakpoints are free to be (re)inserted. */
1344
1345 static void
1346 clear_step_over_info (void)
1347 {
1348 if (debug_infrun)
1349 fprintf_unfiltered (gdb_stdlog,
1350 "infrun: clear_step_over_info\n");
1351 step_over_info.aspace = NULL;
1352 step_over_info.address = 0;
1353 step_over_info.nonsteppable_watchpoint_p = 0;
1354 }
1355
1356 /* See infrun.h. */
1357
1358 int
1359 stepping_past_instruction_at (struct address_space *aspace,
1360 CORE_ADDR address)
1361 {
1362 return (step_over_info.aspace != NULL
1363 && breakpoint_address_match (aspace, address,
1364 step_over_info.aspace,
1365 step_over_info.address));
1366 }
1367
1368 /* See infrun.h. */
1369
1370 int
1371 stepping_past_nonsteppable_watchpoint (void)
1372 {
1373 return step_over_info.nonsteppable_watchpoint_p;
1374 }
1375
1376 /* Returns true if step-over info is valid. */
1377
1378 static int
1379 step_over_info_valid_p (void)
1380 {
1381 return (step_over_info.aspace != NULL
1382 || stepping_past_nonsteppable_watchpoint ());
1383 }
1384
1385 \f
1386 /* Displaced stepping. */
1387
1388 /* In non-stop debugging mode, we must take special care to manage
1389 breakpoints properly; in particular, the traditional strategy for
1390 stepping a thread past a breakpoint it has hit is unsuitable.
1391 'Displaced stepping' is a tactic for stepping one thread past a
1392 breakpoint it has hit while ensuring that other threads running
1393 concurrently will hit the breakpoint as they should.
1394
1395 The traditional way to step a thread T off a breakpoint in a
1396 multi-threaded program in all-stop mode is as follows:
1397
1398 a0) Initially, all threads are stopped, and breakpoints are not
1399 inserted.
1400 a1) We single-step T, leaving breakpoints uninserted.
1401 a2) We insert breakpoints, and resume all threads.
1402
1403 In non-stop debugging, however, this strategy is unsuitable: we
1404 don't want to have to stop all threads in the system in order to
1405 continue or step T past a breakpoint. Instead, we use displaced
1406 stepping:
1407
1408 n0) Initially, T is stopped, other threads are running, and
1409 breakpoints are inserted.
1410 n1) We copy the instruction "under" the breakpoint to a separate
1411 location, outside the main code stream, making any adjustments
1412 to the instruction, register, and memory state as directed by
1413 T's architecture.
1414 n2) We single-step T over the instruction at its new location.
1415 n3) We adjust the resulting register and memory state as directed
1416 by T's architecture. This includes resetting T's PC to point
1417 back into the main instruction stream.
1418 n4) We resume T.
1419
1420 This approach depends on the following gdbarch methods:
1421
1422 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1423 indicate where to copy the instruction, and how much space must
1424 be reserved there. We use these in step n1.
1425
1426 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1427 address, and makes any necessary adjustments to the instruction,
1428 register contents, and memory. We use this in step n1.
1429
1430 - gdbarch_displaced_step_fixup adjusts registers and memory after
1431 we have successfuly single-stepped the instruction, to yield the
1432 same effect the instruction would have had if we had executed it
1433 at its original address. We use this in step n3.
1434
1435 - gdbarch_displaced_step_free_closure provides cleanup.
1436
1437 The gdbarch_displaced_step_copy_insn and
1438 gdbarch_displaced_step_fixup functions must be written so that
1439 copying an instruction with gdbarch_displaced_step_copy_insn,
1440 single-stepping across the copied instruction, and then applying
1441 gdbarch_displaced_insn_fixup should have the same effects on the
1442 thread's memory and registers as stepping the instruction in place
1443 would have. Exactly which responsibilities fall to the copy and
1444 which fall to the fixup is up to the author of those functions.
1445
1446 See the comments in gdbarch.sh for details.
1447
1448 Note that displaced stepping and software single-step cannot
1449 currently be used in combination, although with some care I think
1450 they could be made to. Software single-step works by placing
1451 breakpoints on all possible subsequent instructions; if the
1452 displaced instruction is a PC-relative jump, those breakpoints
1453 could fall in very strange places --- on pages that aren't
1454 executable, or at addresses that are not proper instruction
1455 boundaries. (We do generally let other threads run while we wait
1456 to hit the software single-step breakpoint, and they might
1457 encounter such a corrupted instruction.) One way to work around
1458 this would be to have gdbarch_displaced_step_copy_insn fully
1459 simulate the effect of PC-relative instructions (and return NULL)
1460 on architectures that use software single-stepping.
1461
1462 In non-stop mode, we can have independent and simultaneous step
1463 requests, so more than one thread may need to simultaneously step
1464 over a breakpoint. The current implementation assumes there is
1465 only one scratch space per process. In this case, we have to
1466 serialize access to the scratch space. If thread A wants to step
1467 over a breakpoint, but we are currently waiting for some other
1468 thread to complete a displaced step, we leave thread A stopped and
1469 place it in the displaced_step_request_queue. Whenever a displaced
1470 step finishes, we pick the next thread in the queue and start a new
1471 displaced step operation on it. See displaced_step_prepare and
1472 displaced_step_fixup for details. */
1473
1474 /* Per-inferior displaced stepping state. */
1475 struct displaced_step_inferior_state
1476 {
1477 /* Pointer to next in linked list. */
1478 struct displaced_step_inferior_state *next;
1479
1480 /* The process this displaced step state refers to. */
1481 int pid;
1482
1483 /* True if preparing a displaced step ever failed. If so, we won't
1484 try displaced stepping for this inferior again. */
1485 int failed_before;
1486
1487 /* If this is not null_ptid, this is the thread carrying out a
1488 displaced single-step in process PID. This thread's state will
1489 require fixing up once it has completed its step. */
1490 ptid_t step_ptid;
1491
1492 /* The architecture the thread had when we stepped it. */
1493 struct gdbarch *step_gdbarch;
1494
1495 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1496 for post-step cleanup. */
1497 struct displaced_step_closure *step_closure;
1498
1499 /* The address of the original instruction, and the copy we
1500 made. */
1501 CORE_ADDR step_original, step_copy;
1502
1503 /* Saved contents of copy area. */
1504 gdb_byte *step_saved_copy;
1505 };
1506
1507 /* The list of states of processes involved in displaced stepping
1508 presently. */
1509 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1510
1511 /* Get the displaced stepping state of process PID. */
1512
1513 static struct displaced_step_inferior_state *
1514 get_displaced_stepping_state (int pid)
1515 {
1516 struct displaced_step_inferior_state *state;
1517
1518 for (state = displaced_step_inferior_states;
1519 state != NULL;
1520 state = state->next)
1521 if (state->pid == pid)
1522 return state;
1523
1524 return NULL;
1525 }
1526
1527 /* Returns true if any inferior has a thread doing a displaced
1528 step. */
1529
1530 static int
1531 displaced_step_in_progress_any_inferior (void)
1532 {
1533 struct displaced_step_inferior_state *state;
1534
1535 for (state = displaced_step_inferior_states;
1536 state != NULL;
1537 state = state->next)
1538 if (!ptid_equal (state->step_ptid, null_ptid))
1539 return 1;
1540
1541 return 0;
1542 }
1543
1544 /* Return true if process PID has a thread doing a displaced step. */
1545
1546 static int
1547 displaced_step_in_progress (int pid)
1548 {
1549 struct displaced_step_inferior_state *displaced;
1550
1551 displaced = get_displaced_stepping_state (pid);
1552 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1553 return 1;
1554
1555 return 0;
1556 }
1557
1558 /* Add a new displaced stepping state for process PID to the displaced
1559 stepping state list, or return a pointer to an already existing
1560 entry, if it already exists. Never returns NULL. */
1561
1562 static struct displaced_step_inferior_state *
1563 add_displaced_stepping_state (int pid)
1564 {
1565 struct displaced_step_inferior_state *state;
1566
1567 for (state = displaced_step_inferior_states;
1568 state != NULL;
1569 state = state->next)
1570 if (state->pid == pid)
1571 return state;
1572
1573 state = XCNEW (struct displaced_step_inferior_state);
1574 state->pid = pid;
1575 state->next = displaced_step_inferior_states;
1576 displaced_step_inferior_states = state;
1577
1578 return state;
1579 }
1580
1581 /* If inferior is in displaced stepping, and ADDR equals to starting address
1582 of copy area, return corresponding displaced_step_closure. Otherwise,
1583 return NULL. */
1584
1585 struct displaced_step_closure*
1586 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1587 {
1588 struct displaced_step_inferior_state *displaced
1589 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1590
1591 /* If checking the mode of displaced instruction in copy area. */
1592 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1593 && (displaced->step_copy == addr))
1594 return displaced->step_closure;
1595
1596 return NULL;
1597 }
1598
1599 /* Remove the displaced stepping state of process PID. */
1600
1601 static void
1602 remove_displaced_stepping_state (int pid)
1603 {
1604 struct displaced_step_inferior_state *it, **prev_next_p;
1605
1606 gdb_assert (pid != 0);
1607
1608 it = displaced_step_inferior_states;
1609 prev_next_p = &displaced_step_inferior_states;
1610 while (it)
1611 {
1612 if (it->pid == pid)
1613 {
1614 *prev_next_p = it->next;
1615 xfree (it);
1616 return;
1617 }
1618
1619 prev_next_p = &it->next;
1620 it = *prev_next_p;
1621 }
1622 }
1623
1624 static void
1625 infrun_inferior_exit (struct inferior *inf)
1626 {
1627 remove_displaced_stepping_state (inf->pid);
1628 }
1629
1630 /* If ON, and the architecture supports it, GDB will use displaced
1631 stepping to step over breakpoints. If OFF, or if the architecture
1632 doesn't support it, GDB will instead use the traditional
1633 hold-and-step approach. If AUTO (which is the default), GDB will
1634 decide which technique to use to step over breakpoints depending on
1635 which of all-stop or non-stop mode is active --- displaced stepping
1636 in non-stop mode; hold-and-step in all-stop mode. */
1637
1638 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1639
1640 static void
1641 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1642 struct cmd_list_element *c,
1643 const char *value)
1644 {
1645 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1646 fprintf_filtered (file,
1647 _("Debugger's willingness to use displaced stepping "
1648 "to step over breakpoints is %s (currently %s).\n"),
1649 value, target_is_non_stop_p () ? "on" : "off");
1650 else
1651 fprintf_filtered (file,
1652 _("Debugger's willingness to use displaced stepping "
1653 "to step over breakpoints is %s.\n"), value);
1654 }
1655
1656 /* Return non-zero if displaced stepping can/should be used to step
1657 over breakpoints of thread TP. */
1658
1659 static int
1660 use_displaced_stepping (struct thread_info *tp)
1661 {
1662 struct regcache *regcache = get_thread_regcache (tp->ptid);
1663 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1664 struct displaced_step_inferior_state *displaced_state;
1665
1666 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1667
1668 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1669 && target_is_non_stop_p ())
1670 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1671 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1672 && find_record_target () == NULL
1673 && (displaced_state == NULL
1674 || !displaced_state->failed_before));
1675 }
1676
1677 /* Clean out any stray displaced stepping state. */
1678 static void
1679 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1680 {
1681 /* Indicate that there is no cleanup pending. */
1682 displaced->step_ptid = null_ptid;
1683
1684 if (displaced->step_closure)
1685 {
1686 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1687 displaced->step_closure);
1688 displaced->step_closure = NULL;
1689 }
1690 }
1691
1692 static void
1693 displaced_step_clear_cleanup (void *arg)
1694 {
1695 struct displaced_step_inferior_state *state = arg;
1696
1697 displaced_step_clear (state);
1698 }
1699
1700 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1701 void
1702 displaced_step_dump_bytes (struct ui_file *file,
1703 const gdb_byte *buf,
1704 size_t len)
1705 {
1706 int i;
1707
1708 for (i = 0; i < len; i++)
1709 fprintf_unfiltered (file, "%02x ", buf[i]);
1710 fputs_unfiltered ("\n", file);
1711 }
1712
1713 /* Prepare to single-step, using displaced stepping.
1714
1715 Note that we cannot use displaced stepping when we have a signal to
1716 deliver. If we have a signal to deliver and an instruction to step
1717 over, then after the step, there will be no indication from the
1718 target whether the thread entered a signal handler or ignored the
1719 signal and stepped over the instruction successfully --- both cases
1720 result in a simple SIGTRAP. In the first case we mustn't do a
1721 fixup, and in the second case we must --- but we can't tell which.
1722 Comments in the code for 'random signals' in handle_inferior_event
1723 explain how we handle this case instead.
1724
1725 Returns 1 if preparing was successful -- this thread is going to be
1726 stepped now; 0 if displaced stepping this thread got queued; or -1
1727 if this instruction can't be displaced stepped. */
1728
1729 static int
1730 displaced_step_prepare_throw (ptid_t ptid)
1731 {
1732 struct cleanup *old_cleanups, *ignore_cleanups;
1733 struct thread_info *tp = find_thread_ptid (ptid);
1734 struct regcache *regcache = get_thread_regcache (ptid);
1735 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1736 CORE_ADDR original, copy;
1737 ULONGEST len;
1738 struct displaced_step_closure *closure;
1739 struct displaced_step_inferior_state *displaced;
1740 int status;
1741
1742 /* We should never reach this function if the architecture does not
1743 support displaced stepping. */
1744 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1745
1746 /* Nor if the thread isn't meant to step over a breakpoint. */
1747 gdb_assert (tp->control.trap_expected);
1748
1749 /* Disable range stepping while executing in the scratch pad. We
1750 want a single-step even if executing the displaced instruction in
1751 the scratch buffer lands within the stepping range (e.g., a
1752 jump/branch). */
1753 tp->control.may_range_step = 0;
1754
1755 /* We have to displaced step one thread at a time, as we only have
1756 access to a single scratch space per inferior. */
1757
1758 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1759
1760 if (!ptid_equal (displaced->step_ptid, null_ptid))
1761 {
1762 /* Already waiting for a displaced step to finish. Defer this
1763 request and place in queue. */
1764
1765 if (debug_displaced)
1766 fprintf_unfiltered (gdb_stdlog,
1767 "displaced: deferring step of %s\n",
1768 target_pid_to_str (ptid));
1769
1770 thread_step_over_chain_enqueue (tp);
1771 return 0;
1772 }
1773 else
1774 {
1775 if (debug_displaced)
1776 fprintf_unfiltered (gdb_stdlog,
1777 "displaced: stepping %s now\n",
1778 target_pid_to_str (ptid));
1779 }
1780
1781 displaced_step_clear (displaced);
1782
1783 old_cleanups = save_inferior_ptid ();
1784 inferior_ptid = ptid;
1785
1786 original = regcache_read_pc (regcache);
1787
1788 copy = gdbarch_displaced_step_location (gdbarch);
1789 len = gdbarch_max_insn_length (gdbarch);
1790
1791 /* Save the original contents of the copy area. */
1792 displaced->step_saved_copy = xmalloc (len);
1793 ignore_cleanups = make_cleanup (free_current_contents,
1794 &displaced->step_saved_copy);
1795 status = target_read_memory (copy, displaced->step_saved_copy, len);
1796 if (status != 0)
1797 throw_error (MEMORY_ERROR,
1798 _("Error accessing memory address %s (%s) for "
1799 "displaced-stepping scratch space."),
1800 paddress (gdbarch, copy), safe_strerror (status));
1801 if (debug_displaced)
1802 {
1803 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1804 paddress (gdbarch, copy));
1805 displaced_step_dump_bytes (gdb_stdlog,
1806 displaced->step_saved_copy,
1807 len);
1808 };
1809
1810 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1811 original, copy, regcache);
1812 if (closure == NULL)
1813 {
1814 /* The architecture doesn't know how or want to displaced step
1815 this instruction or instruction sequence. Fallback to
1816 stepping over the breakpoint in-line. */
1817 do_cleanups (old_cleanups);
1818 return -1;
1819 }
1820
1821 /* Save the information we need to fix things up if the step
1822 succeeds. */
1823 displaced->step_ptid = ptid;
1824 displaced->step_gdbarch = gdbarch;
1825 displaced->step_closure = closure;
1826 displaced->step_original = original;
1827 displaced->step_copy = copy;
1828
1829 make_cleanup (displaced_step_clear_cleanup, displaced);
1830
1831 /* Resume execution at the copy. */
1832 regcache_write_pc (regcache, copy);
1833
1834 discard_cleanups (ignore_cleanups);
1835
1836 do_cleanups (old_cleanups);
1837
1838 if (debug_displaced)
1839 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1840 paddress (gdbarch, copy));
1841
1842 return 1;
1843 }
1844
1845 /* Wrapper for displaced_step_prepare_throw that disabled further
1846 attempts at displaced stepping if we get a memory error. */
1847
1848 static int
1849 displaced_step_prepare (ptid_t ptid)
1850 {
1851 int prepared = -1;
1852
1853 TRY
1854 {
1855 prepared = displaced_step_prepare_throw (ptid);
1856 }
1857 CATCH (ex, RETURN_MASK_ERROR)
1858 {
1859 struct displaced_step_inferior_state *displaced_state;
1860
1861 if (ex.error != MEMORY_ERROR)
1862 throw_exception (ex);
1863
1864 if (debug_infrun)
1865 {
1866 fprintf_unfiltered (gdb_stdlog,
1867 "infrun: disabling displaced stepping: %s\n",
1868 ex.message);
1869 }
1870
1871 /* Be verbose if "set displaced-stepping" is "on", silent if
1872 "auto". */
1873 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1874 {
1875 warning (_("disabling displaced stepping: %s"),
1876 ex.message);
1877 }
1878
1879 /* Disable further displaced stepping attempts. */
1880 displaced_state
1881 = get_displaced_stepping_state (ptid_get_pid (ptid));
1882 displaced_state->failed_before = 1;
1883 }
1884 END_CATCH
1885
1886 return prepared;
1887 }
1888
1889 static void
1890 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1891 const gdb_byte *myaddr, int len)
1892 {
1893 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1894
1895 inferior_ptid = ptid;
1896 write_memory (memaddr, myaddr, len);
1897 do_cleanups (ptid_cleanup);
1898 }
1899
1900 /* Restore the contents of the copy area for thread PTID. */
1901
1902 static void
1903 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1904 ptid_t ptid)
1905 {
1906 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1907
1908 write_memory_ptid (ptid, displaced->step_copy,
1909 displaced->step_saved_copy, len);
1910 if (debug_displaced)
1911 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1912 target_pid_to_str (ptid),
1913 paddress (displaced->step_gdbarch,
1914 displaced->step_copy));
1915 }
1916
1917 /* If we displaced stepped an instruction successfully, adjust
1918 registers and memory to yield the same effect the instruction would
1919 have had if we had executed it at its original address, and return
1920 1. If the instruction didn't complete, relocate the PC and return
1921 -1. If the thread wasn't displaced stepping, return 0. */
1922
1923 static int
1924 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1925 {
1926 struct cleanup *old_cleanups;
1927 struct displaced_step_inferior_state *displaced
1928 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1929 int ret;
1930
1931 /* Was any thread of this process doing a displaced step? */
1932 if (displaced == NULL)
1933 return 0;
1934
1935 /* Was this event for the pid we displaced? */
1936 if (ptid_equal (displaced->step_ptid, null_ptid)
1937 || ! ptid_equal (displaced->step_ptid, event_ptid))
1938 return 0;
1939
1940 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1941
1942 displaced_step_restore (displaced, displaced->step_ptid);
1943
1944 /* Fixup may need to read memory/registers. Switch to the thread
1945 that we're fixing up. Also, target_stopped_by_watchpoint checks
1946 the current thread. */
1947 switch_to_thread (event_ptid);
1948
1949 /* Did the instruction complete successfully? */
1950 if (signal == GDB_SIGNAL_TRAP
1951 && !(target_stopped_by_watchpoint ()
1952 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1953 || target_have_steppable_watchpoint)))
1954 {
1955 /* Fix up the resulting state. */
1956 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1957 displaced->step_closure,
1958 displaced->step_original,
1959 displaced->step_copy,
1960 get_thread_regcache (displaced->step_ptid));
1961 ret = 1;
1962 }
1963 else
1964 {
1965 /* Since the instruction didn't complete, all we can do is
1966 relocate the PC. */
1967 struct regcache *regcache = get_thread_regcache (event_ptid);
1968 CORE_ADDR pc = regcache_read_pc (regcache);
1969
1970 pc = displaced->step_original + (pc - displaced->step_copy);
1971 regcache_write_pc (regcache, pc);
1972 ret = -1;
1973 }
1974
1975 do_cleanups (old_cleanups);
1976
1977 displaced->step_ptid = null_ptid;
1978
1979 return ret;
1980 }
1981
1982 /* Data to be passed around while handling an event. This data is
1983 discarded between events. */
1984 struct execution_control_state
1985 {
1986 ptid_t ptid;
1987 /* The thread that got the event, if this was a thread event; NULL
1988 otherwise. */
1989 struct thread_info *event_thread;
1990
1991 struct target_waitstatus ws;
1992 int stop_func_filled_in;
1993 CORE_ADDR stop_func_start;
1994 CORE_ADDR stop_func_end;
1995 const char *stop_func_name;
1996 int wait_some_more;
1997
1998 /* True if the event thread hit the single-step breakpoint of
1999 another thread. Thus the event doesn't cause a stop, the thread
2000 needs to be single-stepped past the single-step breakpoint before
2001 we can switch back to the original stepping thread. */
2002 int hit_singlestep_breakpoint;
2003 };
2004
2005 /* Clear ECS and set it to point at TP. */
2006
2007 static void
2008 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2009 {
2010 memset (ecs, 0, sizeof (*ecs));
2011 ecs->event_thread = tp;
2012 ecs->ptid = tp->ptid;
2013 }
2014
2015 static void keep_going_pass_signal (struct execution_control_state *ecs);
2016 static void prepare_to_wait (struct execution_control_state *ecs);
2017 static int keep_going_stepped_thread (struct thread_info *tp);
2018 static int thread_still_needs_step_over (struct thread_info *tp);
2019 static void stop_all_threads (void);
2020
2021 /* Are there any pending step-over requests? If so, run all we can
2022 now and return true. Otherwise, return false. */
2023
2024 static int
2025 start_step_over (void)
2026 {
2027 struct thread_info *tp, *next;
2028
2029 /* Don't start a new step-over if we already have an in-line
2030 step-over operation ongoing. */
2031 if (step_over_info_valid_p ())
2032 return 0;
2033
2034 for (tp = step_over_queue_head; tp != NULL; tp = next)
2035 {
2036 struct execution_control_state ecss;
2037 struct execution_control_state *ecs = &ecss;
2038 enum step_over_what step_what;
2039 int must_be_in_line;
2040
2041 next = thread_step_over_chain_next (tp);
2042
2043 /* If this inferior already has a displaced step in process,
2044 don't start a new one. */
2045 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2046 continue;
2047
2048 step_what = thread_still_needs_step_over (tp);
2049 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2050 || ((step_what & STEP_OVER_BREAKPOINT)
2051 && !use_displaced_stepping (tp)));
2052
2053 /* We currently stop all threads of all processes to step-over
2054 in-line. If we need to start a new in-line step-over, let
2055 any pending displaced steps finish first. */
2056 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2057 return 0;
2058
2059 thread_step_over_chain_remove (tp);
2060
2061 if (step_over_queue_head == NULL)
2062 {
2063 if (debug_infrun)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "infrun: step-over queue now empty\n");
2066 }
2067
2068 if (tp->control.trap_expected
2069 || tp->resumed
2070 || tp->executing)
2071 {
2072 internal_error (__FILE__, __LINE__,
2073 "[%s] has inconsistent state: "
2074 "trap_expected=%d, resumed=%d, executing=%d\n",
2075 target_pid_to_str (tp->ptid),
2076 tp->control.trap_expected,
2077 tp->resumed,
2078 tp->executing);
2079 }
2080
2081 if (debug_infrun)
2082 fprintf_unfiltered (gdb_stdlog,
2083 "infrun: resuming [%s] for step-over\n",
2084 target_pid_to_str (tp->ptid));
2085
2086 /* keep_going_pass_signal skips the step-over if the breakpoint
2087 is no longer inserted. In all-stop, we want to keep looking
2088 for a thread that needs a step-over instead of resuming TP,
2089 because we wouldn't be able to resume anything else until the
2090 target stops again. In non-stop, the resume always resumes
2091 only TP, so it's OK to let the thread resume freely. */
2092 if (!target_is_non_stop_p () && !step_what)
2093 continue;
2094
2095 switch_to_thread (tp->ptid);
2096 reset_ecs (ecs, tp);
2097 keep_going_pass_signal (ecs);
2098
2099 if (!ecs->wait_some_more)
2100 error (_("Command aborted."));
2101
2102 gdb_assert (tp->resumed);
2103
2104 /* If we started a new in-line step-over, we're done. */
2105 if (step_over_info_valid_p ())
2106 {
2107 gdb_assert (tp->control.trap_expected);
2108 return 1;
2109 }
2110
2111 if (!target_is_non_stop_p ())
2112 {
2113 /* On all-stop, shouldn't have resumed unless we needed a
2114 step over. */
2115 gdb_assert (tp->control.trap_expected
2116 || tp->step_after_step_resume_breakpoint);
2117
2118 /* With remote targets (at least), in all-stop, we can't
2119 issue any further remote commands until the program stops
2120 again. */
2121 return 1;
2122 }
2123
2124 /* Either the thread no longer needed a step-over, or a new
2125 displaced stepping sequence started. Even in the latter
2126 case, continue looking. Maybe we can also start another
2127 displaced step on a thread of other process. */
2128 }
2129
2130 return 0;
2131 }
2132
2133 /* Update global variables holding ptids to hold NEW_PTID if they were
2134 holding OLD_PTID. */
2135 static void
2136 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2137 {
2138 struct displaced_step_request *it;
2139 struct displaced_step_inferior_state *displaced;
2140
2141 if (ptid_equal (inferior_ptid, old_ptid))
2142 inferior_ptid = new_ptid;
2143
2144 for (displaced = displaced_step_inferior_states;
2145 displaced;
2146 displaced = displaced->next)
2147 {
2148 if (ptid_equal (displaced->step_ptid, old_ptid))
2149 displaced->step_ptid = new_ptid;
2150 }
2151 }
2152
2153 \f
2154 /* Resuming. */
2155
2156 /* Things to clean up if we QUIT out of resume (). */
2157 static void
2158 resume_cleanups (void *ignore)
2159 {
2160 if (!ptid_equal (inferior_ptid, null_ptid))
2161 delete_single_step_breakpoints (inferior_thread ());
2162
2163 normal_stop ();
2164 }
2165
2166 static const char schedlock_off[] = "off";
2167 static const char schedlock_on[] = "on";
2168 static const char schedlock_step[] = "step";
2169 static const char *const scheduler_enums[] = {
2170 schedlock_off,
2171 schedlock_on,
2172 schedlock_step,
2173 NULL
2174 };
2175 static const char *scheduler_mode = schedlock_off;
2176 static void
2177 show_scheduler_mode (struct ui_file *file, int from_tty,
2178 struct cmd_list_element *c, const char *value)
2179 {
2180 fprintf_filtered (file,
2181 _("Mode for locking scheduler "
2182 "during execution is \"%s\".\n"),
2183 value);
2184 }
2185
2186 static void
2187 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2188 {
2189 if (!target_can_lock_scheduler)
2190 {
2191 scheduler_mode = schedlock_off;
2192 error (_("Target '%s' cannot support this command."), target_shortname);
2193 }
2194 }
2195
2196 /* True if execution commands resume all threads of all processes by
2197 default; otherwise, resume only threads of the current inferior
2198 process. */
2199 int sched_multi = 0;
2200
2201 /* Try to setup for software single stepping over the specified location.
2202 Return 1 if target_resume() should use hardware single step.
2203
2204 GDBARCH the current gdbarch.
2205 PC the location to step over. */
2206
2207 static int
2208 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2209 {
2210 int hw_step = 1;
2211
2212 if (execution_direction == EXEC_FORWARD
2213 && gdbarch_software_single_step_p (gdbarch)
2214 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2215 {
2216 hw_step = 0;
2217 }
2218 return hw_step;
2219 }
2220
2221 /* See infrun.h. */
2222
2223 ptid_t
2224 user_visible_resume_ptid (int step)
2225 {
2226 ptid_t resume_ptid;
2227
2228 if (non_stop)
2229 {
2230 /* With non-stop mode on, threads are always handled
2231 individually. */
2232 resume_ptid = inferior_ptid;
2233 }
2234 else if ((scheduler_mode == schedlock_on)
2235 || (scheduler_mode == schedlock_step && step))
2236 {
2237 /* User-settable 'scheduler' mode requires solo thread
2238 resume. */
2239 resume_ptid = inferior_ptid;
2240 }
2241 else if (!sched_multi && target_supports_multi_process ())
2242 {
2243 /* Resume all threads of the current process (and none of other
2244 processes). */
2245 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2246 }
2247 else
2248 {
2249 /* Resume all threads of all processes. */
2250 resume_ptid = RESUME_ALL;
2251 }
2252
2253 return resume_ptid;
2254 }
2255
2256 /* Return a ptid representing the set of threads that we will resume,
2257 in the perspective of the target, assuming run control handling
2258 does not require leaving some threads stopped (e.g., stepping past
2259 breakpoint). USER_STEP indicates whether we're about to start the
2260 target for a stepping command. */
2261
2262 static ptid_t
2263 internal_resume_ptid (int user_step)
2264 {
2265 /* In non-stop, we always control threads individually. Note that
2266 the target may always work in non-stop mode even with "set
2267 non-stop off", in which case user_visible_resume_ptid could
2268 return a wildcard ptid. */
2269 if (target_is_non_stop_p ())
2270 return inferior_ptid;
2271 else
2272 return user_visible_resume_ptid (user_step);
2273 }
2274
2275 /* Wrapper for target_resume, that handles infrun-specific
2276 bookkeeping. */
2277
2278 static void
2279 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2280 {
2281 struct thread_info *tp = inferior_thread ();
2282
2283 /* Install inferior's terminal modes. */
2284 target_terminal_inferior ();
2285
2286 /* Avoid confusing the next resume, if the next stop/resume
2287 happens to apply to another thread. */
2288 tp->suspend.stop_signal = GDB_SIGNAL_0;
2289
2290 /* Advise target which signals may be handled silently.
2291
2292 If we have removed breakpoints because we are stepping over one
2293 in-line (in any thread), we need to receive all signals to avoid
2294 accidentally skipping a breakpoint during execution of a signal
2295 handler.
2296
2297 Likewise if we're displaced stepping, otherwise a trap for a
2298 breakpoint in a signal handler might be confused with the
2299 displaced step finishing. We don't make the displaced_step_fixup
2300 step distinguish the cases instead, because:
2301
2302 - a backtrace while stopped in the signal handler would show the
2303 scratch pad as frame older than the signal handler, instead of
2304 the real mainline code.
2305
2306 - when the thread is later resumed, the signal handler would
2307 return to the scratch pad area, which would no longer be
2308 valid. */
2309 if (step_over_info_valid_p ()
2310 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2311 target_pass_signals (0, NULL);
2312 else
2313 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2314
2315 target_resume (resume_ptid, step, sig);
2316 }
2317
2318 /* Resume the inferior, but allow a QUIT. This is useful if the user
2319 wants to interrupt some lengthy single-stepping operation
2320 (for child processes, the SIGINT goes to the inferior, and so
2321 we get a SIGINT random_signal, but for remote debugging and perhaps
2322 other targets, that's not true).
2323
2324 SIG is the signal to give the inferior (zero for none). */
2325 void
2326 resume (enum gdb_signal sig)
2327 {
2328 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2329 struct regcache *regcache = get_current_regcache ();
2330 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2331 struct thread_info *tp = inferior_thread ();
2332 CORE_ADDR pc = regcache_read_pc (regcache);
2333 struct address_space *aspace = get_regcache_aspace (regcache);
2334 ptid_t resume_ptid;
2335 /* This represents the user's step vs continue request. When
2336 deciding whether "set scheduler-locking step" applies, it's the
2337 user's intention that counts. */
2338 const int user_step = tp->control.stepping_command;
2339 /* This represents what we'll actually request the target to do.
2340 This can decay from a step to a continue, if e.g., we need to
2341 implement single-stepping with breakpoints (software
2342 single-step). */
2343 int step;
2344
2345 gdb_assert (!thread_is_in_step_over_chain (tp));
2346
2347 QUIT;
2348
2349 if (tp->suspend.waitstatus_pending_p)
2350 {
2351 if (debug_infrun)
2352 {
2353 char *statstr;
2354
2355 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2356 fprintf_unfiltered (gdb_stdlog,
2357 "infrun: resume: thread %s has pending wait status %s "
2358 "(currently_stepping=%d).\n",
2359 target_pid_to_str (tp->ptid), statstr,
2360 currently_stepping (tp));
2361 xfree (statstr);
2362 }
2363
2364 tp->resumed = 1;
2365
2366 /* FIXME: What should we do if we are supposed to resume this
2367 thread with a signal? Maybe we should maintain a queue of
2368 pending signals to deliver. */
2369 if (sig != GDB_SIGNAL_0)
2370 {
2371 warning (_("Couldn't deliver signal %s to %s."),
2372 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2373 }
2374
2375 tp->suspend.stop_signal = GDB_SIGNAL_0;
2376 discard_cleanups (old_cleanups);
2377
2378 if (target_can_async_p ())
2379 target_async (1);
2380 return;
2381 }
2382
2383 tp->stepped_breakpoint = 0;
2384
2385 /* Depends on stepped_breakpoint. */
2386 step = currently_stepping (tp);
2387
2388 if (current_inferior ()->waiting_for_vfork_done)
2389 {
2390 /* Don't try to single-step a vfork parent that is waiting for
2391 the child to get out of the shared memory region (by exec'ing
2392 or exiting). This is particularly important on software
2393 single-step archs, as the child process would trip on the
2394 software single step breakpoint inserted for the parent
2395 process. Since the parent will not actually execute any
2396 instruction until the child is out of the shared region (such
2397 are vfork's semantics), it is safe to simply continue it.
2398 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2399 the parent, and tell it to `keep_going', which automatically
2400 re-sets it stepping. */
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog,
2403 "infrun: resume : clear step\n");
2404 step = 0;
2405 }
2406
2407 if (debug_infrun)
2408 fprintf_unfiltered (gdb_stdlog,
2409 "infrun: resume (step=%d, signal=%s), "
2410 "trap_expected=%d, current thread [%s] at %s\n",
2411 step, gdb_signal_to_symbol_string (sig),
2412 tp->control.trap_expected,
2413 target_pid_to_str (inferior_ptid),
2414 paddress (gdbarch, pc));
2415
2416 /* Normally, by the time we reach `resume', the breakpoints are either
2417 removed or inserted, as appropriate. The exception is if we're sitting
2418 at a permanent breakpoint; we need to step over it, but permanent
2419 breakpoints can't be removed. So we have to test for it here. */
2420 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2421 {
2422 if (sig != GDB_SIGNAL_0)
2423 {
2424 /* We have a signal to pass to the inferior. The resume
2425 may, or may not take us to the signal handler. If this
2426 is a step, we'll need to stop in the signal handler, if
2427 there's one, (if the target supports stepping into
2428 handlers), or in the next mainline instruction, if
2429 there's no handler. If this is a continue, we need to be
2430 sure to run the handler with all breakpoints inserted.
2431 In all cases, set a breakpoint at the current address
2432 (where the handler returns to), and once that breakpoint
2433 is hit, resume skipping the permanent breakpoint. If
2434 that breakpoint isn't hit, then we've stepped into the
2435 signal handler (or hit some other event). We'll delete
2436 the step-resume breakpoint then. */
2437
2438 if (debug_infrun)
2439 fprintf_unfiltered (gdb_stdlog,
2440 "infrun: resume: skipping permanent breakpoint, "
2441 "deliver signal first\n");
2442
2443 clear_step_over_info ();
2444 tp->control.trap_expected = 0;
2445
2446 if (tp->control.step_resume_breakpoint == NULL)
2447 {
2448 /* Set a "high-priority" step-resume, as we don't want
2449 user breakpoints at PC to trigger (again) when this
2450 hits. */
2451 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2452 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2453
2454 tp->step_after_step_resume_breakpoint = step;
2455 }
2456
2457 insert_breakpoints ();
2458 }
2459 else
2460 {
2461 /* There's no signal to pass, we can go ahead and skip the
2462 permanent breakpoint manually. */
2463 if (debug_infrun)
2464 fprintf_unfiltered (gdb_stdlog,
2465 "infrun: resume: skipping permanent breakpoint\n");
2466 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2467 /* Update pc to reflect the new address from which we will
2468 execute instructions. */
2469 pc = regcache_read_pc (regcache);
2470
2471 if (step)
2472 {
2473 /* We've already advanced the PC, so the stepping part
2474 is done. Now we need to arrange for a trap to be
2475 reported to handle_inferior_event. Set a breakpoint
2476 at the current PC, and run to it. Don't update
2477 prev_pc, because if we end in
2478 switch_back_to_stepped_thread, we want the "expected
2479 thread advanced also" branch to be taken. IOW, we
2480 don't want this thread to step further from PC
2481 (overstep). */
2482 gdb_assert (!step_over_info_valid_p ());
2483 insert_single_step_breakpoint (gdbarch, aspace, pc);
2484 insert_breakpoints ();
2485
2486 resume_ptid = internal_resume_ptid (user_step);
2487 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2488 discard_cleanups (old_cleanups);
2489 tp->resumed = 1;
2490 return;
2491 }
2492 }
2493 }
2494
2495 /* If we have a breakpoint to step over, make sure to do a single
2496 step only. Same if we have software watchpoints. */
2497 if (tp->control.trap_expected || bpstat_should_step ())
2498 tp->control.may_range_step = 0;
2499
2500 /* If enabled, step over breakpoints by executing a copy of the
2501 instruction at a different address.
2502
2503 We can't use displaced stepping when we have a signal to deliver;
2504 the comments for displaced_step_prepare explain why. The
2505 comments in the handle_inferior event for dealing with 'random
2506 signals' explain what we do instead.
2507
2508 We can't use displaced stepping when we are waiting for vfork_done
2509 event, displaced stepping breaks the vfork child similarly as single
2510 step software breakpoint. */
2511 if (tp->control.trap_expected
2512 && use_displaced_stepping (tp)
2513 && !step_over_info_valid_p ()
2514 && sig == GDB_SIGNAL_0
2515 && !current_inferior ()->waiting_for_vfork_done)
2516 {
2517 int prepared = displaced_step_prepare (inferior_ptid);
2518
2519 if (prepared == 0)
2520 {
2521 if (debug_infrun)
2522 fprintf_unfiltered (gdb_stdlog,
2523 "Got placed in step-over queue\n");
2524
2525 tp->control.trap_expected = 0;
2526 discard_cleanups (old_cleanups);
2527 return;
2528 }
2529 else if (prepared < 0)
2530 {
2531 /* Fallback to stepping over the breakpoint in-line. */
2532
2533 if (target_is_non_stop_p ())
2534 stop_all_threads ();
2535
2536 set_step_over_info (get_regcache_aspace (regcache),
2537 regcache_read_pc (regcache), 0);
2538
2539 step = maybe_software_singlestep (gdbarch, pc);
2540
2541 insert_breakpoints ();
2542 }
2543 else if (prepared > 0)
2544 {
2545 struct displaced_step_inferior_state *displaced;
2546
2547 /* Update pc to reflect the new address from which we will
2548 execute instructions due to displaced stepping. */
2549 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2550
2551 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2552 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2553 displaced->step_closure);
2554 }
2555 }
2556
2557 /* Do we need to do it the hard way, w/temp breakpoints? */
2558 else if (step)
2559 step = maybe_software_singlestep (gdbarch, pc);
2560
2561 /* Currently, our software single-step implementation leads to different
2562 results than hardware single-stepping in one situation: when stepping
2563 into delivering a signal which has an associated signal handler,
2564 hardware single-step will stop at the first instruction of the handler,
2565 while software single-step will simply skip execution of the handler.
2566
2567 For now, this difference in behavior is accepted since there is no
2568 easy way to actually implement single-stepping into a signal handler
2569 without kernel support.
2570
2571 However, there is one scenario where this difference leads to follow-on
2572 problems: if we're stepping off a breakpoint by removing all breakpoints
2573 and then single-stepping. In this case, the software single-step
2574 behavior means that even if there is a *breakpoint* in the signal
2575 handler, GDB still would not stop.
2576
2577 Fortunately, we can at least fix this particular issue. We detect
2578 here the case where we are about to deliver a signal while software
2579 single-stepping with breakpoints removed. In this situation, we
2580 revert the decisions to remove all breakpoints and insert single-
2581 step breakpoints, and instead we install a step-resume breakpoint
2582 at the current address, deliver the signal without stepping, and
2583 once we arrive back at the step-resume breakpoint, actually step
2584 over the breakpoint we originally wanted to step over. */
2585 if (thread_has_single_step_breakpoints_set (tp)
2586 && sig != GDB_SIGNAL_0
2587 && step_over_info_valid_p ())
2588 {
2589 /* If we have nested signals or a pending signal is delivered
2590 immediately after a handler returns, might might already have
2591 a step-resume breakpoint set on the earlier handler. We cannot
2592 set another step-resume breakpoint; just continue on until the
2593 original breakpoint is hit. */
2594 if (tp->control.step_resume_breakpoint == NULL)
2595 {
2596 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2597 tp->step_after_step_resume_breakpoint = 1;
2598 }
2599
2600 delete_single_step_breakpoints (tp);
2601
2602 clear_step_over_info ();
2603 tp->control.trap_expected = 0;
2604
2605 insert_breakpoints ();
2606 }
2607
2608 /* If STEP is set, it's a request to use hardware stepping
2609 facilities. But in that case, we should never
2610 use singlestep breakpoint. */
2611 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2612
2613 /* Decide the set of threads to ask the target to resume. */
2614 if ((step || thread_has_single_step_breakpoints_set (tp))
2615 && tp->control.trap_expected)
2616 {
2617 /* We're allowing a thread to run past a breakpoint it has
2618 hit, by single-stepping the thread with the breakpoint
2619 removed. In which case, we need to single-step only this
2620 thread, and keep others stopped, as they can miss this
2621 breakpoint if allowed to run. */
2622 resume_ptid = inferior_ptid;
2623 }
2624 else
2625 resume_ptid = internal_resume_ptid (user_step);
2626
2627 if (execution_direction != EXEC_REVERSE
2628 && step && breakpoint_inserted_here_p (aspace, pc))
2629 {
2630 /* There are two cases where we currently need to step a
2631 breakpoint instruction when we have a signal to deliver:
2632
2633 - See handle_signal_stop where we handle random signals that
2634 could take out us out of the stepping range. Normally, in
2635 that case we end up continuing (instead of stepping) over the
2636 signal handler with a breakpoint at PC, but there are cases
2637 where we should _always_ single-step, even if we have a
2638 step-resume breakpoint, like when a software watchpoint is
2639 set. Assuming single-stepping and delivering a signal at the
2640 same time would takes us to the signal handler, then we could
2641 have removed the breakpoint at PC to step over it. However,
2642 some hardware step targets (like e.g., Mac OS) can't step
2643 into signal handlers, and for those, we need to leave the
2644 breakpoint at PC inserted, as otherwise if the handler
2645 recurses and executes PC again, it'll miss the breakpoint.
2646 So we leave the breakpoint inserted anyway, but we need to
2647 record that we tried to step a breakpoint instruction, so
2648 that adjust_pc_after_break doesn't end up confused.
2649
2650 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2651 in one thread after another thread that was stepping had been
2652 momentarily paused for a step-over. When we re-resume the
2653 stepping thread, it may be resumed from that address with a
2654 breakpoint that hasn't trapped yet. Seen with
2655 gdb.threads/non-stop-fair-events.exp, on targets that don't
2656 do displaced stepping. */
2657
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog,
2660 "infrun: resume: [%s] stepped breakpoint\n",
2661 target_pid_to_str (tp->ptid));
2662
2663 tp->stepped_breakpoint = 1;
2664
2665 /* Most targets can step a breakpoint instruction, thus
2666 executing it normally. But if this one cannot, just
2667 continue and we will hit it anyway. */
2668 if (gdbarch_cannot_step_breakpoint (gdbarch))
2669 step = 0;
2670 }
2671
2672 if (debug_displaced
2673 && tp->control.trap_expected
2674 && use_displaced_stepping (tp)
2675 && !step_over_info_valid_p ())
2676 {
2677 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2678 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2679 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2680 gdb_byte buf[4];
2681
2682 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2683 paddress (resume_gdbarch, actual_pc));
2684 read_memory (actual_pc, buf, sizeof (buf));
2685 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2686 }
2687
2688 if (tp->control.may_range_step)
2689 {
2690 /* If we're resuming a thread with the PC out of the step
2691 range, then we're doing some nested/finer run control
2692 operation, like stepping the thread out of the dynamic
2693 linker or the displaced stepping scratch pad. We
2694 shouldn't have allowed a range step then. */
2695 gdb_assert (pc_in_thread_step_range (pc, tp));
2696 }
2697
2698 do_target_resume (resume_ptid, step, sig);
2699 tp->resumed = 1;
2700 discard_cleanups (old_cleanups);
2701 }
2702 \f
2703 /* Proceeding. */
2704
2705 /* Clear out all variables saying what to do when inferior is continued.
2706 First do this, then set the ones you want, then call `proceed'. */
2707
2708 static void
2709 clear_proceed_status_thread (struct thread_info *tp)
2710 {
2711 if (debug_infrun)
2712 fprintf_unfiltered (gdb_stdlog,
2713 "infrun: clear_proceed_status_thread (%s)\n",
2714 target_pid_to_str (tp->ptid));
2715
2716 /* If we're starting a new sequence, then the previous finished
2717 single-step is no longer relevant. */
2718 if (tp->suspend.waitstatus_pending_p)
2719 {
2720 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2721 {
2722 if (debug_infrun)
2723 fprintf_unfiltered (gdb_stdlog,
2724 "infrun: clear_proceed_status: pending "
2725 "event of %s was a finished step. "
2726 "Discarding.\n",
2727 target_pid_to_str (tp->ptid));
2728
2729 tp->suspend.waitstatus_pending_p = 0;
2730 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2731 }
2732 else if (debug_infrun)
2733 {
2734 char *statstr;
2735
2736 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2737 fprintf_unfiltered (gdb_stdlog,
2738 "infrun: clear_proceed_status_thread: thread %s "
2739 "has pending wait status %s "
2740 "(currently_stepping=%d).\n",
2741 target_pid_to_str (tp->ptid), statstr,
2742 currently_stepping (tp));
2743 xfree (statstr);
2744 }
2745 }
2746
2747 /* If this signal should not be seen by program, give it zero.
2748 Used for debugging signals. */
2749 if (!signal_pass_state (tp->suspend.stop_signal))
2750 tp->suspend.stop_signal = GDB_SIGNAL_0;
2751
2752 tp->control.trap_expected = 0;
2753 tp->control.step_range_start = 0;
2754 tp->control.step_range_end = 0;
2755 tp->control.may_range_step = 0;
2756 tp->control.step_frame_id = null_frame_id;
2757 tp->control.step_stack_frame_id = null_frame_id;
2758 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2759 tp->control.step_start_function = NULL;
2760 tp->stop_requested = 0;
2761
2762 tp->control.stop_step = 0;
2763
2764 tp->control.proceed_to_finish = 0;
2765
2766 tp->control.command_interp = NULL;
2767 tp->control.stepping_command = 0;
2768
2769 /* Discard any remaining commands or status from previous stop. */
2770 bpstat_clear (&tp->control.stop_bpstat);
2771 }
2772
2773 void
2774 clear_proceed_status (int step)
2775 {
2776 if (!non_stop)
2777 {
2778 struct thread_info *tp;
2779 ptid_t resume_ptid;
2780
2781 resume_ptid = user_visible_resume_ptid (step);
2782
2783 /* In all-stop mode, delete the per-thread status of all threads
2784 we're about to resume, implicitly and explicitly. */
2785 ALL_NON_EXITED_THREADS (tp)
2786 {
2787 if (!ptid_match (tp->ptid, resume_ptid))
2788 continue;
2789 clear_proceed_status_thread (tp);
2790 }
2791 }
2792
2793 if (!ptid_equal (inferior_ptid, null_ptid))
2794 {
2795 struct inferior *inferior;
2796
2797 if (non_stop)
2798 {
2799 /* If in non-stop mode, only delete the per-thread status of
2800 the current thread. */
2801 clear_proceed_status_thread (inferior_thread ());
2802 }
2803
2804 inferior = current_inferior ();
2805 inferior->control.stop_soon = NO_STOP_QUIETLY;
2806 }
2807
2808 stop_after_trap = 0;
2809
2810 observer_notify_about_to_proceed ();
2811 }
2812
2813 /* Returns true if TP is still stopped at a breakpoint that needs
2814 stepping-over in order to make progress. If the breakpoint is gone
2815 meanwhile, we can skip the whole step-over dance. */
2816
2817 static int
2818 thread_still_needs_step_over_bp (struct thread_info *tp)
2819 {
2820 if (tp->stepping_over_breakpoint)
2821 {
2822 struct regcache *regcache = get_thread_regcache (tp->ptid);
2823
2824 if (breakpoint_here_p (get_regcache_aspace (regcache),
2825 regcache_read_pc (regcache))
2826 == ordinary_breakpoint_here)
2827 return 1;
2828
2829 tp->stepping_over_breakpoint = 0;
2830 }
2831
2832 return 0;
2833 }
2834
2835 /* Check whether thread TP still needs to start a step-over in order
2836 to make progress when resumed. Returns an bitwise or of enum
2837 step_over_what bits, indicating what needs to be stepped over. */
2838
2839 static int
2840 thread_still_needs_step_over (struct thread_info *tp)
2841 {
2842 struct inferior *inf = find_inferior_ptid (tp->ptid);
2843 int what = 0;
2844
2845 if (thread_still_needs_step_over_bp (tp))
2846 what |= STEP_OVER_BREAKPOINT;
2847
2848 if (tp->stepping_over_watchpoint
2849 && !target_have_steppable_watchpoint)
2850 what |= STEP_OVER_WATCHPOINT;
2851
2852 return what;
2853 }
2854
2855 /* Returns true if scheduler locking applies. STEP indicates whether
2856 we're about to do a step/next-like command to a thread. */
2857
2858 static int
2859 schedlock_applies (struct thread_info *tp)
2860 {
2861 return (scheduler_mode == schedlock_on
2862 || (scheduler_mode == schedlock_step
2863 && tp->control.stepping_command));
2864 }
2865
2866 /* Basic routine for continuing the program in various fashions.
2867
2868 ADDR is the address to resume at, or -1 for resume where stopped.
2869 SIGGNAL is the signal to give it, or 0 for none,
2870 or -1 for act according to how it stopped.
2871 STEP is nonzero if should trap after one instruction.
2872 -1 means return after that and print nothing.
2873 You should probably set various step_... variables
2874 before calling here, if you are stepping.
2875
2876 You should call clear_proceed_status before calling proceed. */
2877
2878 void
2879 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2880 {
2881 struct regcache *regcache;
2882 struct gdbarch *gdbarch;
2883 struct thread_info *tp;
2884 CORE_ADDR pc;
2885 struct address_space *aspace;
2886 ptid_t resume_ptid;
2887 struct execution_control_state ecss;
2888 struct execution_control_state *ecs = &ecss;
2889 struct cleanup *old_chain;
2890 int started;
2891
2892 /* If we're stopped at a fork/vfork, follow the branch set by the
2893 "set follow-fork-mode" command; otherwise, we'll just proceed
2894 resuming the current thread. */
2895 if (!follow_fork ())
2896 {
2897 /* The target for some reason decided not to resume. */
2898 normal_stop ();
2899 if (target_can_async_p ())
2900 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2901 return;
2902 }
2903
2904 /* We'll update this if & when we switch to a new thread. */
2905 previous_inferior_ptid = inferior_ptid;
2906
2907 regcache = get_current_regcache ();
2908 gdbarch = get_regcache_arch (regcache);
2909 aspace = get_regcache_aspace (regcache);
2910 pc = regcache_read_pc (regcache);
2911 tp = inferior_thread ();
2912
2913 /* Fill in with reasonable starting values. */
2914 init_thread_stepping_state (tp);
2915
2916 gdb_assert (!thread_is_in_step_over_chain (tp));
2917
2918 if (addr == (CORE_ADDR) -1)
2919 {
2920 if (pc == stop_pc
2921 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2922 && execution_direction != EXEC_REVERSE)
2923 /* There is a breakpoint at the address we will resume at,
2924 step one instruction before inserting breakpoints so that
2925 we do not stop right away (and report a second hit at this
2926 breakpoint).
2927
2928 Note, we don't do this in reverse, because we won't
2929 actually be executing the breakpoint insn anyway.
2930 We'll be (un-)executing the previous instruction. */
2931 tp->stepping_over_breakpoint = 1;
2932 else if (gdbarch_single_step_through_delay_p (gdbarch)
2933 && gdbarch_single_step_through_delay (gdbarch,
2934 get_current_frame ()))
2935 /* We stepped onto an instruction that needs to be stepped
2936 again before re-inserting the breakpoint, do so. */
2937 tp->stepping_over_breakpoint = 1;
2938 }
2939 else
2940 {
2941 regcache_write_pc (regcache, addr);
2942 }
2943
2944 if (siggnal != GDB_SIGNAL_DEFAULT)
2945 tp->suspend.stop_signal = siggnal;
2946
2947 /* Record the interpreter that issued the execution command that
2948 caused this thread to resume. If the top level interpreter is
2949 MI/async, and the execution command was a CLI command
2950 (next/step/etc.), we'll want to print stop event output to the MI
2951 console channel (the stepped-to line, etc.), as if the user
2952 entered the execution command on a real GDB console. */
2953 tp->control.command_interp = command_interp ();
2954
2955 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
2956
2957 /* If an exception is thrown from this point on, make sure to
2958 propagate GDB's knowledge of the executing state to the
2959 frontend/user running state. */
2960 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
2961
2962 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2963 threads (e.g., we might need to set threads stepping over
2964 breakpoints first), from the user/frontend's point of view, all
2965 threads in RESUME_PTID are now running. Unless we're calling an
2966 inferior function, as in that case we pretend the inferior
2967 doesn't run at all. */
2968 if (!tp->control.in_infcall)
2969 set_running (resume_ptid, 1);
2970
2971 if (debug_infrun)
2972 fprintf_unfiltered (gdb_stdlog,
2973 "infrun: proceed (addr=%s, signal=%s)\n",
2974 paddress (gdbarch, addr),
2975 gdb_signal_to_symbol_string (siggnal));
2976
2977 annotate_starting ();
2978
2979 /* Make sure that output from GDB appears before output from the
2980 inferior. */
2981 gdb_flush (gdb_stdout);
2982
2983 /* In a multi-threaded task we may select another thread and
2984 then continue or step.
2985
2986 But if a thread that we're resuming had stopped at a breakpoint,
2987 it will immediately cause another breakpoint stop without any
2988 execution (i.e. it will report a breakpoint hit incorrectly). So
2989 we must step over it first.
2990
2991 Look for threads other than the current (TP) that reported a
2992 breakpoint hit and haven't been resumed yet since. */
2993
2994 /* If scheduler locking applies, we can avoid iterating over all
2995 threads. */
2996 if (!non_stop && !schedlock_applies (tp))
2997 {
2998 struct thread_info *current = tp;
2999
3000 ALL_NON_EXITED_THREADS (tp)
3001 {
3002 /* Ignore the current thread here. It's handled
3003 afterwards. */
3004 if (tp == current)
3005 continue;
3006
3007 /* Ignore threads of processes we're not resuming. */
3008 if (!ptid_match (tp->ptid, resume_ptid))
3009 continue;
3010
3011 if (!thread_still_needs_step_over (tp))
3012 continue;
3013
3014 gdb_assert (!thread_is_in_step_over_chain (tp));
3015
3016 if (debug_infrun)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "infrun: need to step-over [%s] first\n",
3019 target_pid_to_str (tp->ptid));
3020
3021 thread_step_over_chain_enqueue (tp);
3022 }
3023
3024 tp = current;
3025 }
3026
3027 /* Enqueue the current thread last, so that we move all other
3028 threads over their breakpoints first. */
3029 if (tp->stepping_over_breakpoint)
3030 thread_step_over_chain_enqueue (tp);
3031
3032 /* If the thread isn't started, we'll still need to set its prev_pc,
3033 so that switch_back_to_stepped_thread knows the thread hasn't
3034 advanced. Must do this before resuming any thread, as in
3035 all-stop/remote, once we resume we can't send any other packet
3036 until the target stops again. */
3037 tp->prev_pc = regcache_read_pc (regcache);
3038
3039 started = start_step_over ();
3040
3041 if (step_over_info_valid_p ())
3042 {
3043 /* Either this thread started a new in-line step over, or some
3044 other thread was already doing one. In either case, don't
3045 resume anything else until the step-over is finished. */
3046 }
3047 else if (started && !target_is_non_stop_p ())
3048 {
3049 /* A new displaced stepping sequence was started. In all-stop,
3050 we can't talk to the target anymore until it next stops. */
3051 }
3052 else if (!non_stop && target_is_non_stop_p ())
3053 {
3054 /* In all-stop, but the target is always in non-stop mode.
3055 Start all other threads that are implicitly resumed too. */
3056 ALL_NON_EXITED_THREADS (tp)
3057 {
3058 /* Ignore threads of processes we're not resuming. */
3059 if (!ptid_match (tp->ptid, resume_ptid))
3060 continue;
3061
3062 if (tp->resumed)
3063 {
3064 if (debug_infrun)
3065 fprintf_unfiltered (gdb_stdlog,
3066 "infrun: proceed: [%s] resumed\n",
3067 target_pid_to_str (tp->ptid));
3068 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3069 continue;
3070 }
3071
3072 if (thread_is_in_step_over_chain (tp))
3073 {
3074 if (debug_infrun)
3075 fprintf_unfiltered (gdb_stdlog,
3076 "infrun: proceed: [%s] needs step-over\n",
3077 target_pid_to_str (tp->ptid));
3078 continue;
3079 }
3080
3081 if (debug_infrun)
3082 fprintf_unfiltered (gdb_stdlog,
3083 "infrun: proceed: resuming %s\n",
3084 target_pid_to_str (tp->ptid));
3085
3086 reset_ecs (ecs, tp);
3087 switch_to_thread (tp->ptid);
3088 keep_going_pass_signal (ecs);
3089 if (!ecs->wait_some_more)
3090 error (_("Command aborted."));
3091 }
3092 }
3093 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3094 {
3095 /* The thread wasn't started, and isn't queued, run it now. */
3096 reset_ecs (ecs, tp);
3097 switch_to_thread (tp->ptid);
3098 keep_going_pass_signal (ecs);
3099 if (!ecs->wait_some_more)
3100 error (_("Command aborted."));
3101 }
3102
3103 discard_cleanups (old_chain);
3104
3105 /* Tell the event loop to wait for it to stop. If the target
3106 supports asynchronous execution, it'll do this from within
3107 target_resume. */
3108 if (!target_can_async_p ())
3109 mark_async_event_handler (infrun_async_inferior_event_token);
3110 }
3111 \f
3112
3113 /* Start remote-debugging of a machine over a serial link. */
3114
3115 void
3116 start_remote (int from_tty)
3117 {
3118 struct inferior *inferior;
3119
3120 inferior = current_inferior ();
3121 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3122
3123 /* Always go on waiting for the target, regardless of the mode. */
3124 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3125 indicate to wait_for_inferior that a target should timeout if
3126 nothing is returned (instead of just blocking). Because of this,
3127 targets expecting an immediate response need to, internally, set
3128 things up so that the target_wait() is forced to eventually
3129 timeout. */
3130 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3131 differentiate to its caller what the state of the target is after
3132 the initial open has been performed. Here we're assuming that
3133 the target has stopped. It should be possible to eventually have
3134 target_open() return to the caller an indication that the target
3135 is currently running and GDB state should be set to the same as
3136 for an async run. */
3137 wait_for_inferior ();
3138
3139 /* Now that the inferior has stopped, do any bookkeeping like
3140 loading shared libraries. We want to do this before normal_stop,
3141 so that the displayed frame is up to date. */
3142 post_create_inferior (&current_target, from_tty);
3143
3144 normal_stop ();
3145 }
3146
3147 /* Initialize static vars when a new inferior begins. */
3148
3149 void
3150 init_wait_for_inferior (void)
3151 {
3152 /* These are meaningless until the first time through wait_for_inferior. */
3153
3154 breakpoint_init_inferior (inf_starting);
3155
3156 clear_proceed_status (0);
3157
3158 target_last_wait_ptid = minus_one_ptid;
3159
3160 previous_inferior_ptid = inferior_ptid;
3161
3162 /* Discard any skipped inlined frames. */
3163 clear_inline_frame_state (minus_one_ptid);
3164 }
3165
3166 \f
3167
3168 static void handle_inferior_event (struct execution_control_state *ecs);
3169
3170 static void handle_step_into_function (struct gdbarch *gdbarch,
3171 struct execution_control_state *ecs);
3172 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3173 struct execution_control_state *ecs);
3174 static void handle_signal_stop (struct execution_control_state *ecs);
3175 static void check_exception_resume (struct execution_control_state *,
3176 struct frame_info *);
3177
3178 static void end_stepping_range (struct execution_control_state *ecs);
3179 static void stop_waiting (struct execution_control_state *ecs);
3180 static void keep_going (struct execution_control_state *ecs);
3181 static void process_event_stop_test (struct execution_control_state *ecs);
3182 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3183
3184 /* Callback for iterate over threads. If the thread is stopped, but
3185 the user/frontend doesn't know about that yet, go through
3186 normal_stop, as if the thread had just stopped now. ARG points at
3187 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3188 ptid_is_pid(PTID) is true, applies to all threads of the process
3189 pointed at by PTID. Otherwise, apply only to the thread pointed by
3190 PTID. */
3191
3192 static int
3193 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3194 {
3195 ptid_t ptid = * (ptid_t *) arg;
3196
3197 if ((ptid_equal (info->ptid, ptid)
3198 || ptid_equal (minus_one_ptid, ptid)
3199 || (ptid_is_pid (ptid)
3200 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3201 && is_running (info->ptid)
3202 && !is_executing (info->ptid))
3203 {
3204 struct cleanup *old_chain;
3205 struct execution_control_state ecss;
3206 struct execution_control_state *ecs = &ecss;
3207
3208 memset (ecs, 0, sizeof (*ecs));
3209
3210 old_chain = make_cleanup_restore_current_thread ();
3211
3212 overlay_cache_invalid = 1;
3213 /* Flush target cache before starting to handle each event.
3214 Target was running and cache could be stale. This is just a
3215 heuristic. Running threads may modify target memory, but we
3216 don't get any event. */
3217 target_dcache_invalidate ();
3218
3219 /* Go through handle_inferior_event/normal_stop, so we always
3220 have consistent output as if the stop event had been
3221 reported. */
3222 ecs->ptid = info->ptid;
3223 ecs->event_thread = find_thread_ptid (info->ptid);
3224 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3225 ecs->ws.value.sig = GDB_SIGNAL_0;
3226
3227 handle_inferior_event (ecs);
3228
3229 if (!ecs->wait_some_more)
3230 {
3231 struct thread_info *tp;
3232
3233 normal_stop ();
3234
3235 /* Finish off the continuations. */
3236 tp = inferior_thread ();
3237 do_all_intermediate_continuations_thread (tp, 1);
3238 do_all_continuations_thread (tp, 1);
3239 }
3240
3241 do_cleanups (old_chain);
3242 }
3243
3244 return 0;
3245 }
3246
3247 /* This function is attached as a "thread_stop_requested" observer.
3248 Cleanup local state that assumed the PTID was to be resumed, and
3249 report the stop to the frontend. */
3250
3251 static void
3252 infrun_thread_stop_requested (ptid_t ptid)
3253 {
3254 struct thread_info *tp;
3255
3256 /* PTID was requested to stop. Remove matching threads from the
3257 step-over queue, so we don't try to resume them
3258 automatically. */
3259 ALL_NON_EXITED_THREADS (tp)
3260 if (ptid_match (tp->ptid, ptid))
3261 {
3262 if (thread_is_in_step_over_chain (tp))
3263 thread_step_over_chain_remove (tp);
3264 }
3265
3266 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3267 }
3268
3269 static void
3270 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3271 {
3272 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3273 nullify_last_target_wait_ptid ();
3274 }
3275
3276 /* Delete the step resume, single-step and longjmp/exception resume
3277 breakpoints of TP. */
3278
3279 static void
3280 delete_thread_infrun_breakpoints (struct thread_info *tp)
3281 {
3282 delete_step_resume_breakpoint (tp);
3283 delete_exception_resume_breakpoint (tp);
3284 delete_single_step_breakpoints (tp);
3285 }
3286
3287 /* If the target still has execution, call FUNC for each thread that
3288 just stopped. In all-stop, that's all the non-exited threads; in
3289 non-stop, that's the current thread, only. */
3290
3291 typedef void (*for_each_just_stopped_thread_callback_func)
3292 (struct thread_info *tp);
3293
3294 static void
3295 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3296 {
3297 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3298 return;
3299
3300 if (target_is_non_stop_p ())
3301 {
3302 /* If in non-stop mode, only the current thread stopped. */
3303 func (inferior_thread ());
3304 }
3305 else
3306 {
3307 struct thread_info *tp;
3308
3309 /* In all-stop mode, all threads have stopped. */
3310 ALL_NON_EXITED_THREADS (tp)
3311 {
3312 func (tp);
3313 }
3314 }
3315 }
3316
3317 /* Delete the step resume and longjmp/exception resume breakpoints of
3318 the threads that just stopped. */
3319
3320 static void
3321 delete_just_stopped_threads_infrun_breakpoints (void)
3322 {
3323 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3324 }
3325
3326 /* Delete the single-step breakpoints of the threads that just
3327 stopped. */
3328
3329 static void
3330 delete_just_stopped_threads_single_step_breakpoints (void)
3331 {
3332 for_each_just_stopped_thread (delete_single_step_breakpoints);
3333 }
3334
3335 /* A cleanup wrapper. */
3336
3337 static void
3338 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3339 {
3340 delete_just_stopped_threads_infrun_breakpoints ();
3341 }
3342
3343 /* See infrun.h. */
3344
3345 void
3346 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3347 const struct target_waitstatus *ws)
3348 {
3349 char *status_string = target_waitstatus_to_string (ws);
3350 struct ui_file *tmp_stream = mem_fileopen ();
3351 char *text;
3352
3353 /* The text is split over several lines because it was getting too long.
3354 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3355 output as a unit; we want only one timestamp printed if debug_timestamp
3356 is set. */
3357
3358 fprintf_unfiltered (tmp_stream,
3359 "infrun: target_wait (%d.%ld.%ld",
3360 ptid_get_pid (waiton_ptid),
3361 ptid_get_lwp (waiton_ptid),
3362 ptid_get_tid (waiton_ptid));
3363 if (ptid_get_pid (waiton_ptid) != -1)
3364 fprintf_unfiltered (tmp_stream,
3365 " [%s]", target_pid_to_str (waiton_ptid));
3366 fprintf_unfiltered (tmp_stream, ", status) =\n");
3367 fprintf_unfiltered (tmp_stream,
3368 "infrun: %d.%ld.%ld [%s],\n",
3369 ptid_get_pid (result_ptid),
3370 ptid_get_lwp (result_ptid),
3371 ptid_get_tid (result_ptid),
3372 target_pid_to_str (result_ptid));
3373 fprintf_unfiltered (tmp_stream,
3374 "infrun: %s\n",
3375 status_string);
3376
3377 text = ui_file_xstrdup (tmp_stream, NULL);
3378
3379 /* This uses %s in part to handle %'s in the text, but also to avoid
3380 a gcc error: the format attribute requires a string literal. */
3381 fprintf_unfiltered (gdb_stdlog, "%s", text);
3382
3383 xfree (status_string);
3384 xfree (text);
3385 ui_file_delete (tmp_stream);
3386 }
3387
3388 /* Select a thread at random, out of those which are resumed and have
3389 had events. */
3390
3391 static struct thread_info *
3392 random_pending_event_thread (ptid_t waiton_ptid)
3393 {
3394 struct thread_info *event_tp;
3395 int num_events = 0;
3396 int random_selector;
3397
3398 /* First see how many events we have. Count only resumed threads
3399 that have an event pending. */
3400 ALL_NON_EXITED_THREADS (event_tp)
3401 if (ptid_match (event_tp->ptid, waiton_ptid)
3402 && event_tp->resumed
3403 && event_tp->suspend.waitstatus_pending_p)
3404 num_events++;
3405
3406 if (num_events == 0)
3407 return NULL;
3408
3409 /* Now randomly pick a thread out of those that have had events. */
3410 random_selector = (int)
3411 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3412
3413 if (debug_infrun && num_events > 1)
3414 fprintf_unfiltered (gdb_stdlog,
3415 "infrun: Found %d events, selecting #%d\n",
3416 num_events, random_selector);
3417
3418 /* Select the Nth thread that has had an event. */
3419 ALL_NON_EXITED_THREADS (event_tp)
3420 if (ptid_match (event_tp->ptid, waiton_ptid)
3421 && event_tp->resumed
3422 && event_tp->suspend.waitstatus_pending_p)
3423 if (random_selector-- == 0)
3424 break;
3425
3426 return event_tp;
3427 }
3428
3429 /* Wrapper for target_wait that first checks whether threads have
3430 pending statuses to report before actually asking the target for
3431 more events. */
3432
3433 static ptid_t
3434 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3435 {
3436 ptid_t event_ptid;
3437 struct thread_info *tp;
3438
3439 /* First check if there is a resumed thread with a wait status
3440 pending. */
3441 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3442 {
3443 tp = random_pending_event_thread (ptid);
3444 }
3445 else
3446 {
3447 if (debug_infrun)
3448 fprintf_unfiltered (gdb_stdlog,
3449 "infrun: Waiting for specific thread %s.\n",
3450 target_pid_to_str (ptid));
3451
3452 /* We have a specific thread to check. */
3453 tp = find_thread_ptid (ptid);
3454 gdb_assert (tp != NULL);
3455 if (!tp->suspend.waitstatus_pending_p)
3456 tp = NULL;
3457 }
3458
3459 if (tp != NULL
3460 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3461 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3462 {
3463 struct regcache *regcache = get_thread_regcache (tp->ptid);
3464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3465 CORE_ADDR pc;
3466 int discard = 0;
3467
3468 pc = regcache_read_pc (regcache);
3469
3470 if (pc != tp->suspend.stop_pc)
3471 {
3472 if (debug_infrun)
3473 fprintf_unfiltered (gdb_stdlog,
3474 "infrun: PC of %s changed. was=%s, now=%s\n",
3475 target_pid_to_str (tp->ptid),
3476 paddress (gdbarch, tp->prev_pc),
3477 paddress (gdbarch, pc));
3478 discard = 1;
3479 }
3480 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3481 {
3482 if (debug_infrun)
3483 fprintf_unfiltered (gdb_stdlog,
3484 "infrun: previous breakpoint of %s, at %s gone\n",
3485 target_pid_to_str (tp->ptid),
3486 paddress (gdbarch, pc));
3487
3488 discard = 1;
3489 }
3490
3491 if (discard)
3492 {
3493 if (debug_infrun)
3494 fprintf_unfiltered (gdb_stdlog,
3495 "infrun: pending event of %s cancelled.\n",
3496 target_pid_to_str (tp->ptid));
3497
3498 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3499 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3500 }
3501 }
3502
3503 if (tp != NULL)
3504 {
3505 if (debug_infrun)
3506 {
3507 char *statstr;
3508
3509 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3510 fprintf_unfiltered (gdb_stdlog,
3511 "infrun: Using pending wait status %s for %s.\n",
3512 statstr,
3513 target_pid_to_str (tp->ptid));
3514 xfree (statstr);
3515 }
3516
3517 /* Now that we've selected our final event LWP, un-adjust its PC
3518 if it was a software breakpoint (and the target doesn't
3519 always adjust the PC itself). */
3520 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3521 && !target_supports_stopped_by_sw_breakpoint ())
3522 {
3523 struct regcache *regcache;
3524 struct gdbarch *gdbarch;
3525 int decr_pc;
3526
3527 regcache = get_thread_regcache (tp->ptid);
3528 gdbarch = get_regcache_arch (regcache);
3529
3530 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3531 if (decr_pc != 0)
3532 {
3533 CORE_ADDR pc;
3534
3535 pc = regcache_read_pc (regcache);
3536 regcache_write_pc (regcache, pc + decr_pc);
3537 }
3538 }
3539
3540 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3541 *status = tp->suspend.waitstatus;
3542 tp->suspend.waitstatus_pending_p = 0;
3543
3544 /* Wake up the event loop again, until all pending events are
3545 processed. */
3546 if (target_is_async_p ())
3547 mark_async_event_handler (infrun_async_inferior_event_token);
3548 return tp->ptid;
3549 }
3550
3551 /* But if we don't find one, we'll have to wait. */
3552
3553 if (deprecated_target_wait_hook)
3554 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3555 else
3556 event_ptid = target_wait (ptid, status, options);
3557
3558 return event_ptid;
3559 }
3560
3561 /* Prepare and stabilize the inferior for detaching it. E.g.,
3562 detaching while a thread is displaced stepping is a recipe for
3563 crashing it, as nothing would readjust the PC out of the scratch
3564 pad. */
3565
3566 void
3567 prepare_for_detach (void)
3568 {
3569 struct inferior *inf = current_inferior ();
3570 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3571 struct cleanup *old_chain_1;
3572 struct displaced_step_inferior_state *displaced;
3573
3574 displaced = get_displaced_stepping_state (inf->pid);
3575
3576 /* Is any thread of this process displaced stepping? If not,
3577 there's nothing else to do. */
3578 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3579 return;
3580
3581 if (debug_infrun)
3582 fprintf_unfiltered (gdb_stdlog,
3583 "displaced-stepping in-process while detaching");
3584
3585 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3586 inf->detaching = 1;
3587
3588 while (!ptid_equal (displaced->step_ptid, null_ptid))
3589 {
3590 struct cleanup *old_chain_2;
3591 struct execution_control_state ecss;
3592 struct execution_control_state *ecs;
3593
3594 ecs = &ecss;
3595 memset (ecs, 0, sizeof (*ecs));
3596
3597 overlay_cache_invalid = 1;
3598 /* Flush target cache before starting to handle each event.
3599 Target was running and cache could be stale. This is just a
3600 heuristic. Running threads may modify target memory, but we
3601 don't get any event. */
3602 target_dcache_invalidate ();
3603
3604 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3605
3606 if (debug_infrun)
3607 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3608
3609 /* If an error happens while handling the event, propagate GDB's
3610 knowledge of the executing state to the frontend/user running
3611 state. */
3612 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3613 &minus_one_ptid);
3614
3615 /* Now figure out what to do with the result of the result. */
3616 handle_inferior_event (ecs);
3617
3618 /* No error, don't finish the state yet. */
3619 discard_cleanups (old_chain_2);
3620
3621 /* Breakpoints and watchpoints are not installed on the target
3622 at this point, and signals are passed directly to the
3623 inferior, so this must mean the process is gone. */
3624 if (!ecs->wait_some_more)
3625 {
3626 discard_cleanups (old_chain_1);
3627 error (_("Program exited while detaching"));
3628 }
3629 }
3630
3631 discard_cleanups (old_chain_1);
3632 }
3633
3634 /* Wait for control to return from inferior to debugger.
3635
3636 If inferior gets a signal, we may decide to start it up again
3637 instead of returning. That is why there is a loop in this function.
3638 When this function actually returns it means the inferior
3639 should be left stopped and GDB should read more commands. */
3640
3641 void
3642 wait_for_inferior (void)
3643 {
3644 struct cleanup *old_cleanups;
3645 struct cleanup *thread_state_chain;
3646
3647 if (debug_infrun)
3648 fprintf_unfiltered
3649 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3650
3651 old_cleanups
3652 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3653 NULL);
3654
3655 /* If an error happens while handling the event, propagate GDB's
3656 knowledge of the executing state to the frontend/user running
3657 state. */
3658 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3659
3660 while (1)
3661 {
3662 struct execution_control_state ecss;
3663 struct execution_control_state *ecs = &ecss;
3664 ptid_t waiton_ptid = minus_one_ptid;
3665
3666 memset (ecs, 0, sizeof (*ecs));
3667
3668 overlay_cache_invalid = 1;
3669
3670 /* Flush target cache before starting to handle each event.
3671 Target was running and cache could be stale. This is just a
3672 heuristic. Running threads may modify target memory, but we
3673 don't get any event. */
3674 target_dcache_invalidate ();
3675
3676 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3677
3678 if (debug_infrun)
3679 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3680
3681 /* Now figure out what to do with the result of the result. */
3682 handle_inferior_event (ecs);
3683
3684 if (!ecs->wait_some_more)
3685 break;
3686 }
3687
3688 /* No error, don't finish the state yet. */
3689 discard_cleanups (thread_state_chain);
3690
3691 do_cleanups (old_cleanups);
3692 }
3693
3694 /* Cleanup that reinstalls the readline callback handler, if the
3695 target is running in the background. If while handling the target
3696 event something triggered a secondary prompt, like e.g., a
3697 pagination prompt, we'll have removed the callback handler (see
3698 gdb_readline_wrapper_line). Need to do this as we go back to the
3699 event loop, ready to process further input. Note this has no
3700 effect if the handler hasn't actually been removed, because calling
3701 rl_callback_handler_install resets the line buffer, thus losing
3702 input. */
3703
3704 static void
3705 reinstall_readline_callback_handler_cleanup (void *arg)
3706 {
3707 if (!interpreter_async)
3708 {
3709 /* We're not going back to the top level event loop yet. Don't
3710 install the readline callback, as it'd prep the terminal,
3711 readline-style (raw, noecho) (e.g., --batch). We'll install
3712 it the next time the prompt is displayed, when we're ready
3713 for input. */
3714 return;
3715 }
3716
3717 if (async_command_editing_p && !sync_execution)
3718 gdb_rl_callback_handler_reinstall ();
3719 }
3720
3721 /* Asynchronous version of wait_for_inferior. It is called by the
3722 event loop whenever a change of state is detected on the file
3723 descriptor corresponding to the target. It can be called more than
3724 once to complete a single execution command. In such cases we need
3725 to keep the state in a global variable ECSS. If it is the last time
3726 that this function is called for a single execution command, then
3727 report to the user that the inferior has stopped, and do the
3728 necessary cleanups. */
3729
3730 void
3731 fetch_inferior_event (void *client_data)
3732 {
3733 struct execution_control_state ecss;
3734 struct execution_control_state *ecs = &ecss;
3735 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3736 struct cleanup *ts_old_chain;
3737 int was_sync = sync_execution;
3738 int cmd_done = 0;
3739 ptid_t waiton_ptid = minus_one_ptid;
3740
3741 memset (ecs, 0, sizeof (*ecs));
3742
3743 /* End up with readline processing input, if necessary. */
3744 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3745
3746 /* We're handling a live event, so make sure we're doing live
3747 debugging. If we're looking at traceframes while the target is
3748 running, we're going to need to get back to that mode after
3749 handling the event. */
3750 if (non_stop)
3751 {
3752 make_cleanup_restore_current_traceframe ();
3753 set_current_traceframe (-1);
3754 }
3755
3756 if (non_stop)
3757 /* In non-stop mode, the user/frontend should not notice a thread
3758 switch due to internal events. Make sure we reverse to the
3759 user selected thread and frame after handling the event and
3760 running any breakpoint commands. */
3761 make_cleanup_restore_current_thread ();
3762
3763 overlay_cache_invalid = 1;
3764 /* Flush target cache before starting to handle each event. Target
3765 was running and cache could be stale. This is just a heuristic.
3766 Running threads may modify target memory, but we don't get any
3767 event. */
3768 target_dcache_invalidate ();
3769
3770 make_cleanup_restore_integer (&execution_direction);
3771 execution_direction = target_execution_direction ();
3772
3773 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3774 target_can_async_p () ? TARGET_WNOHANG : 0);
3775
3776 if (debug_infrun)
3777 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3778
3779 /* If an error happens while handling the event, propagate GDB's
3780 knowledge of the executing state to the frontend/user running
3781 state. */
3782 if (!target_is_non_stop_p ())
3783 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3784 else
3785 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3786
3787 /* Get executed before make_cleanup_restore_current_thread above to apply
3788 still for the thread which has thrown the exception. */
3789 make_bpstat_clear_actions_cleanup ();
3790
3791 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3792
3793 /* Now figure out what to do with the result of the result. */
3794 handle_inferior_event (ecs);
3795
3796 if (!ecs->wait_some_more)
3797 {
3798 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3799
3800 delete_just_stopped_threads_infrun_breakpoints ();
3801
3802 /* We may not find an inferior if this was a process exit. */
3803 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3804 normal_stop ();
3805
3806 if (target_has_execution
3807 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
3808 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3809 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3810 && ecs->event_thread->step_multi
3811 && ecs->event_thread->control.stop_step)
3812 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3813 else
3814 {
3815 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3816 cmd_done = 1;
3817 }
3818 }
3819
3820 /* No error, don't finish the thread states yet. */
3821 discard_cleanups (ts_old_chain);
3822
3823 /* Revert thread and frame. */
3824 do_cleanups (old_chain);
3825
3826 /* If the inferior was in sync execution mode, and now isn't,
3827 restore the prompt (a synchronous execution command has finished,
3828 and we're ready for input). */
3829 if (interpreter_async && was_sync && !sync_execution)
3830 observer_notify_sync_execution_done ();
3831
3832 if (cmd_done
3833 && !was_sync
3834 && exec_done_display_p
3835 && (ptid_equal (inferior_ptid, null_ptid)
3836 || !is_running (inferior_ptid)))
3837 printf_unfiltered (_("completed.\n"));
3838 }
3839
3840 /* Record the frame and location we're currently stepping through. */
3841 void
3842 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3843 {
3844 struct thread_info *tp = inferior_thread ();
3845
3846 tp->control.step_frame_id = get_frame_id (frame);
3847 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3848
3849 tp->current_symtab = sal.symtab;
3850 tp->current_line = sal.line;
3851 }
3852
3853 /* Clear context switchable stepping state. */
3854
3855 void
3856 init_thread_stepping_state (struct thread_info *tss)
3857 {
3858 tss->stepped_breakpoint = 0;
3859 tss->stepping_over_breakpoint = 0;
3860 tss->stepping_over_watchpoint = 0;
3861 tss->step_after_step_resume_breakpoint = 0;
3862 }
3863
3864 /* Set the cached copy of the last ptid/waitstatus. */
3865
3866 static void
3867 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3868 {
3869 target_last_wait_ptid = ptid;
3870 target_last_waitstatus = status;
3871 }
3872
3873 /* Return the cached copy of the last pid/waitstatus returned by
3874 target_wait()/deprecated_target_wait_hook(). The data is actually
3875 cached by handle_inferior_event(), which gets called immediately
3876 after target_wait()/deprecated_target_wait_hook(). */
3877
3878 void
3879 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3880 {
3881 *ptidp = target_last_wait_ptid;
3882 *status = target_last_waitstatus;
3883 }
3884
3885 void
3886 nullify_last_target_wait_ptid (void)
3887 {
3888 target_last_wait_ptid = minus_one_ptid;
3889 }
3890
3891 /* Switch thread contexts. */
3892
3893 static void
3894 context_switch (ptid_t ptid)
3895 {
3896 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3897 {
3898 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3899 target_pid_to_str (inferior_ptid));
3900 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3901 target_pid_to_str (ptid));
3902 }
3903
3904 switch_to_thread (ptid);
3905 }
3906
3907 /* If the target can't tell whether we've hit breakpoints
3908 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3909 check whether that could have been caused by a breakpoint. If so,
3910 adjust the PC, per gdbarch_decr_pc_after_break. */
3911
3912 static void
3913 adjust_pc_after_break (struct thread_info *thread,
3914 struct target_waitstatus *ws)
3915 {
3916 struct regcache *regcache;
3917 struct gdbarch *gdbarch;
3918 struct address_space *aspace;
3919 CORE_ADDR breakpoint_pc, decr_pc;
3920
3921 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3922 we aren't, just return.
3923
3924 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3925 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3926 implemented by software breakpoints should be handled through the normal
3927 breakpoint layer.
3928
3929 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3930 different signals (SIGILL or SIGEMT for instance), but it is less
3931 clear where the PC is pointing afterwards. It may not match
3932 gdbarch_decr_pc_after_break. I don't know any specific target that
3933 generates these signals at breakpoints (the code has been in GDB since at
3934 least 1992) so I can not guess how to handle them here.
3935
3936 In earlier versions of GDB, a target with
3937 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3938 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3939 target with both of these set in GDB history, and it seems unlikely to be
3940 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3941
3942 if (ws->kind != TARGET_WAITKIND_STOPPED)
3943 return;
3944
3945 if (ws->value.sig != GDB_SIGNAL_TRAP)
3946 return;
3947
3948 /* In reverse execution, when a breakpoint is hit, the instruction
3949 under it has already been de-executed. The reported PC always
3950 points at the breakpoint address, so adjusting it further would
3951 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3952 architecture:
3953
3954 B1 0x08000000 : INSN1
3955 B2 0x08000001 : INSN2
3956 0x08000002 : INSN3
3957 PC -> 0x08000003 : INSN4
3958
3959 Say you're stopped at 0x08000003 as above. Reverse continuing
3960 from that point should hit B2 as below. Reading the PC when the
3961 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3962 been de-executed already.
3963
3964 B1 0x08000000 : INSN1
3965 B2 PC -> 0x08000001 : INSN2
3966 0x08000002 : INSN3
3967 0x08000003 : INSN4
3968
3969 We can't apply the same logic as for forward execution, because
3970 we would wrongly adjust the PC to 0x08000000, since there's a
3971 breakpoint at PC - 1. We'd then report a hit on B1, although
3972 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3973 behaviour. */
3974 if (execution_direction == EXEC_REVERSE)
3975 return;
3976
3977 /* If the target can tell whether the thread hit a SW breakpoint,
3978 trust it. Targets that can tell also adjust the PC
3979 themselves. */
3980 if (target_supports_stopped_by_sw_breakpoint ())
3981 return;
3982
3983 /* Note that relying on whether a breakpoint is planted in memory to
3984 determine this can fail. E.g,. the breakpoint could have been
3985 removed since. Or the thread could have been told to step an
3986 instruction the size of a breakpoint instruction, and only
3987 _after_ was a breakpoint inserted at its address. */
3988
3989 /* If this target does not decrement the PC after breakpoints, then
3990 we have nothing to do. */
3991 regcache = get_thread_regcache (thread->ptid);
3992 gdbarch = get_regcache_arch (regcache);
3993
3994 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3995 if (decr_pc == 0)
3996 return;
3997
3998 aspace = get_regcache_aspace (regcache);
3999
4000 /* Find the location where (if we've hit a breakpoint) the
4001 breakpoint would be. */
4002 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4003
4004 /* If the target can't tell whether a software breakpoint triggered,
4005 fallback to figuring it out based on breakpoints we think were
4006 inserted in the target, and on whether the thread was stepped or
4007 continued. */
4008
4009 /* Check whether there actually is a software breakpoint inserted at
4010 that location.
4011
4012 If in non-stop mode, a race condition is possible where we've
4013 removed a breakpoint, but stop events for that breakpoint were
4014 already queued and arrive later. To suppress those spurious
4015 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4016 and retire them after a number of stop events are reported. Note
4017 this is an heuristic and can thus get confused. The real fix is
4018 to get the "stopped by SW BP and needs adjustment" info out of
4019 the target/kernel (and thus never reach here; see above). */
4020 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4021 || (target_is_non_stop_p ()
4022 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4023 {
4024 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4025
4026 if (record_full_is_used ())
4027 record_full_gdb_operation_disable_set ();
4028
4029 /* When using hardware single-step, a SIGTRAP is reported for both
4030 a completed single-step and a software breakpoint. Need to
4031 differentiate between the two, as the latter needs adjusting
4032 but the former does not.
4033
4034 The SIGTRAP can be due to a completed hardware single-step only if
4035 - we didn't insert software single-step breakpoints
4036 - this thread is currently being stepped
4037
4038 If any of these events did not occur, we must have stopped due
4039 to hitting a software breakpoint, and have to back up to the
4040 breakpoint address.
4041
4042 As a special case, we could have hardware single-stepped a
4043 software breakpoint. In this case (prev_pc == breakpoint_pc),
4044 we also need to back up to the breakpoint address. */
4045
4046 if (thread_has_single_step_breakpoints_set (thread)
4047 || !currently_stepping (thread)
4048 || (thread->stepped_breakpoint
4049 && thread->prev_pc == breakpoint_pc))
4050 regcache_write_pc (regcache, breakpoint_pc);
4051
4052 do_cleanups (old_cleanups);
4053 }
4054 }
4055
4056 static int
4057 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4058 {
4059 for (frame = get_prev_frame (frame);
4060 frame != NULL;
4061 frame = get_prev_frame (frame))
4062 {
4063 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4064 return 1;
4065 if (get_frame_type (frame) != INLINE_FRAME)
4066 break;
4067 }
4068
4069 return 0;
4070 }
4071
4072 /* Auxiliary function that handles syscall entry/return events.
4073 It returns 1 if the inferior should keep going (and GDB
4074 should ignore the event), or 0 if the event deserves to be
4075 processed. */
4076
4077 static int
4078 handle_syscall_event (struct execution_control_state *ecs)
4079 {
4080 struct regcache *regcache;
4081 int syscall_number;
4082
4083 if (!ptid_equal (ecs->ptid, inferior_ptid))
4084 context_switch (ecs->ptid);
4085
4086 regcache = get_thread_regcache (ecs->ptid);
4087 syscall_number = ecs->ws.value.syscall_number;
4088 stop_pc = regcache_read_pc (regcache);
4089
4090 if (catch_syscall_enabled () > 0
4091 && catching_syscall_number (syscall_number) > 0)
4092 {
4093 if (debug_infrun)
4094 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4095 syscall_number);
4096
4097 ecs->event_thread->control.stop_bpstat
4098 = bpstat_stop_status (get_regcache_aspace (regcache),
4099 stop_pc, ecs->ptid, &ecs->ws);
4100
4101 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4102 {
4103 /* Catchpoint hit. */
4104 return 0;
4105 }
4106 }
4107
4108 /* If no catchpoint triggered for this, then keep going. */
4109 keep_going (ecs);
4110 return 1;
4111 }
4112
4113 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4114
4115 static void
4116 fill_in_stop_func (struct gdbarch *gdbarch,
4117 struct execution_control_state *ecs)
4118 {
4119 if (!ecs->stop_func_filled_in)
4120 {
4121 /* Don't care about return value; stop_func_start and stop_func_name
4122 will both be 0 if it doesn't work. */
4123 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4124 &ecs->stop_func_start, &ecs->stop_func_end);
4125 ecs->stop_func_start
4126 += gdbarch_deprecated_function_start_offset (gdbarch);
4127
4128 if (gdbarch_skip_entrypoint_p (gdbarch))
4129 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4130 ecs->stop_func_start);
4131
4132 ecs->stop_func_filled_in = 1;
4133 }
4134 }
4135
4136
4137 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4138
4139 static enum stop_kind
4140 get_inferior_stop_soon (ptid_t ptid)
4141 {
4142 struct inferior *inf = find_inferior_ptid (ptid);
4143
4144 gdb_assert (inf != NULL);
4145 return inf->control.stop_soon;
4146 }
4147
4148 /* Wait for one event. Store the resulting waitstatus in WS, and
4149 return the event ptid. */
4150
4151 static ptid_t
4152 wait_one (struct target_waitstatus *ws)
4153 {
4154 ptid_t event_ptid;
4155 ptid_t wait_ptid = minus_one_ptid;
4156
4157 overlay_cache_invalid = 1;
4158
4159 /* Flush target cache before starting to handle each event.
4160 Target was running and cache could be stale. This is just a
4161 heuristic. Running threads may modify target memory, but we
4162 don't get any event. */
4163 target_dcache_invalidate ();
4164
4165 if (deprecated_target_wait_hook)
4166 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4167 else
4168 event_ptid = target_wait (wait_ptid, ws, 0);
4169
4170 if (debug_infrun)
4171 print_target_wait_results (wait_ptid, event_ptid, ws);
4172
4173 return event_ptid;
4174 }
4175
4176 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4177 instead of the current thread. */
4178 #define THREAD_STOPPED_BY(REASON) \
4179 static int \
4180 thread_stopped_by_ ## REASON (ptid_t ptid) \
4181 { \
4182 struct cleanup *old_chain; \
4183 int res; \
4184 \
4185 old_chain = save_inferior_ptid (); \
4186 inferior_ptid = ptid; \
4187 \
4188 res = target_stopped_by_ ## REASON (); \
4189 \
4190 do_cleanups (old_chain); \
4191 \
4192 return res; \
4193 }
4194
4195 /* Generate thread_stopped_by_watchpoint. */
4196 THREAD_STOPPED_BY (watchpoint)
4197 /* Generate thread_stopped_by_sw_breakpoint. */
4198 THREAD_STOPPED_BY (sw_breakpoint)
4199 /* Generate thread_stopped_by_hw_breakpoint. */
4200 THREAD_STOPPED_BY (hw_breakpoint)
4201
4202 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4203
4204 static void
4205 switch_to_thread_cleanup (void *ptid_p)
4206 {
4207 ptid_t ptid = *(ptid_t *) ptid_p;
4208
4209 switch_to_thread (ptid);
4210 }
4211
4212 /* Save the thread's event and stop reason to process it later. */
4213
4214 static void
4215 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4216 {
4217 struct regcache *regcache;
4218 struct address_space *aspace;
4219
4220 if (debug_infrun)
4221 {
4222 char *statstr;
4223
4224 statstr = target_waitstatus_to_string (ws);
4225 fprintf_unfiltered (gdb_stdlog,
4226 "infrun: saving status %s for %d.%ld.%ld\n",
4227 statstr,
4228 ptid_get_pid (tp->ptid),
4229 ptid_get_lwp (tp->ptid),
4230 ptid_get_tid (tp->ptid));
4231 xfree (statstr);
4232 }
4233
4234 /* Record for later. */
4235 tp->suspend.waitstatus = *ws;
4236 tp->suspend.waitstatus_pending_p = 1;
4237
4238 regcache = get_thread_regcache (tp->ptid);
4239 aspace = get_regcache_aspace (regcache);
4240
4241 if (ws->kind == TARGET_WAITKIND_STOPPED
4242 && ws->value.sig == GDB_SIGNAL_TRAP)
4243 {
4244 CORE_ADDR pc = regcache_read_pc (regcache);
4245
4246 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4247
4248 if (thread_stopped_by_watchpoint (tp->ptid))
4249 {
4250 tp->suspend.stop_reason
4251 = TARGET_STOPPED_BY_WATCHPOINT;
4252 }
4253 else if (target_supports_stopped_by_sw_breakpoint ()
4254 && thread_stopped_by_sw_breakpoint (tp->ptid))
4255 {
4256 tp->suspend.stop_reason
4257 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4258 }
4259 else if (target_supports_stopped_by_hw_breakpoint ()
4260 && thread_stopped_by_hw_breakpoint (tp->ptid))
4261 {
4262 tp->suspend.stop_reason
4263 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4264 }
4265 else if (!target_supports_stopped_by_hw_breakpoint ()
4266 && hardware_breakpoint_inserted_here_p (aspace,
4267 pc))
4268 {
4269 tp->suspend.stop_reason
4270 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4271 }
4272 else if (!target_supports_stopped_by_sw_breakpoint ()
4273 && software_breakpoint_inserted_here_p (aspace,
4274 pc))
4275 {
4276 tp->suspend.stop_reason
4277 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4278 }
4279 else if (!thread_has_single_step_breakpoints_set (tp)
4280 && currently_stepping (tp))
4281 {
4282 tp->suspend.stop_reason
4283 = TARGET_STOPPED_BY_SINGLE_STEP;
4284 }
4285 }
4286 }
4287
4288 /* Stop all threads. */
4289
4290 static void
4291 stop_all_threads (void)
4292 {
4293 /* We may need multiple passes to discover all threads. */
4294 int pass;
4295 int iterations = 0;
4296 ptid_t entry_ptid;
4297 struct cleanup *old_chain;
4298
4299 gdb_assert (target_is_non_stop_p ());
4300
4301 if (debug_infrun)
4302 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4303
4304 entry_ptid = inferior_ptid;
4305 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4306
4307 /* Request threads to stop, and then wait for the stops. Because
4308 threads we already know about can spawn more threads while we're
4309 trying to stop them, and we only learn about new threads when we
4310 update the thread list, do this in a loop, and keep iterating
4311 until two passes find no threads that need to be stopped. */
4312 for (pass = 0; pass < 2; pass++, iterations++)
4313 {
4314 if (debug_infrun)
4315 fprintf_unfiltered (gdb_stdlog,
4316 "infrun: stop_all_threads, pass=%d, "
4317 "iterations=%d\n", pass, iterations);
4318 while (1)
4319 {
4320 ptid_t event_ptid;
4321 struct target_waitstatus ws;
4322 int need_wait = 0;
4323 struct thread_info *t;
4324
4325 update_thread_list ();
4326
4327 /* Go through all threads looking for threads that we need
4328 to tell the target to stop. */
4329 ALL_NON_EXITED_THREADS (t)
4330 {
4331 if (t->executing)
4332 {
4333 /* If already stopping, don't request a stop again.
4334 We just haven't seen the notification yet. */
4335 if (!t->stop_requested)
4336 {
4337 if (debug_infrun)
4338 fprintf_unfiltered (gdb_stdlog,
4339 "infrun: %s executing, "
4340 "need stop\n",
4341 target_pid_to_str (t->ptid));
4342 target_stop (t->ptid);
4343 t->stop_requested = 1;
4344 }
4345 else
4346 {
4347 if (debug_infrun)
4348 fprintf_unfiltered (gdb_stdlog,
4349 "infrun: %s executing, "
4350 "already stopping\n",
4351 target_pid_to_str (t->ptid));
4352 }
4353
4354 if (t->stop_requested)
4355 need_wait = 1;
4356 }
4357 else
4358 {
4359 if (debug_infrun)
4360 fprintf_unfiltered (gdb_stdlog,
4361 "infrun: %s not executing\n",
4362 target_pid_to_str (t->ptid));
4363
4364 /* The thread may be not executing, but still be
4365 resumed with a pending status to process. */
4366 t->resumed = 0;
4367 }
4368 }
4369
4370 if (!need_wait)
4371 break;
4372
4373 /* If we find new threads on the second iteration, restart
4374 over. We want to see two iterations in a row with all
4375 threads stopped. */
4376 if (pass > 0)
4377 pass = -1;
4378
4379 event_ptid = wait_one (&ws);
4380 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4381 {
4382 /* All resumed threads exited. */
4383 }
4384 else if (ws.kind == TARGET_WAITKIND_EXITED
4385 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4386 {
4387 if (debug_infrun)
4388 {
4389 ptid_t ptid = pid_to_ptid (ws.value.integer);
4390
4391 fprintf_unfiltered (gdb_stdlog,
4392 "infrun: %s exited while "
4393 "stopping threads\n",
4394 target_pid_to_str (ptid));
4395 }
4396 }
4397 else
4398 {
4399 t = find_thread_ptid (event_ptid);
4400 if (t == NULL)
4401 t = add_thread (event_ptid);
4402
4403 t->stop_requested = 0;
4404 t->executing = 0;
4405 t->resumed = 0;
4406 t->control.may_range_step = 0;
4407
4408 if (ws.kind == TARGET_WAITKIND_STOPPED
4409 && ws.value.sig == GDB_SIGNAL_0)
4410 {
4411 /* We caught the event that we intended to catch, so
4412 there's no event pending. */
4413 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4414 t->suspend.waitstatus_pending_p = 0;
4415
4416 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4417 {
4418 /* Add it back to the step-over queue. */
4419 if (debug_infrun)
4420 {
4421 fprintf_unfiltered (gdb_stdlog,
4422 "infrun: displaced-step of %s "
4423 "canceled: adding back to the "
4424 "step-over queue\n",
4425 target_pid_to_str (t->ptid));
4426 }
4427 t->control.trap_expected = 0;
4428 thread_step_over_chain_enqueue (t);
4429 }
4430 }
4431 else
4432 {
4433 enum gdb_signal sig;
4434 struct regcache *regcache;
4435 struct address_space *aspace;
4436
4437 if (debug_infrun)
4438 {
4439 char *statstr;
4440
4441 statstr = target_waitstatus_to_string (&ws);
4442 fprintf_unfiltered (gdb_stdlog,
4443 "infrun: target_wait %s, saving "
4444 "status for %d.%ld.%ld\n",
4445 statstr,
4446 ptid_get_pid (t->ptid),
4447 ptid_get_lwp (t->ptid),
4448 ptid_get_tid (t->ptid));
4449 xfree (statstr);
4450 }
4451
4452 /* Record for later. */
4453 save_waitstatus (t, &ws);
4454
4455 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4456 ? ws.value.sig : GDB_SIGNAL_0);
4457
4458 if (displaced_step_fixup (t->ptid, sig) < 0)
4459 {
4460 /* Add it back to the step-over queue. */
4461 t->control.trap_expected = 0;
4462 thread_step_over_chain_enqueue (t);
4463 }
4464
4465 regcache = get_thread_regcache (t->ptid);
4466 t->suspend.stop_pc = regcache_read_pc (regcache);
4467
4468 if (debug_infrun)
4469 {
4470 fprintf_unfiltered (gdb_stdlog,
4471 "infrun: saved stop_pc=%s for %s "
4472 "(currently_stepping=%d)\n",
4473 paddress (target_gdbarch (),
4474 t->suspend.stop_pc),
4475 target_pid_to_str (t->ptid),
4476 currently_stepping (t));
4477 }
4478 }
4479 }
4480 }
4481 }
4482
4483 do_cleanups (old_chain);
4484
4485 if (debug_infrun)
4486 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4487 }
4488
4489 /* Given an execution control state that has been freshly filled in by
4490 an event from the inferior, figure out what it means and take
4491 appropriate action.
4492
4493 The alternatives are:
4494
4495 1) stop_waiting and return; to really stop and return to the
4496 debugger.
4497
4498 2) keep_going and return; to wait for the next event (set
4499 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4500 once). */
4501
4502 static void
4503 handle_inferior_event_1 (struct execution_control_state *ecs)
4504 {
4505 enum stop_kind stop_soon;
4506
4507 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4508 {
4509 /* We had an event in the inferior, but we are not interested in
4510 handling it at this level. The lower layers have already
4511 done what needs to be done, if anything.
4512
4513 One of the possible circumstances for this is when the
4514 inferior produces output for the console. The inferior has
4515 not stopped, and we are ignoring the event. Another possible
4516 circumstance is any event which the lower level knows will be
4517 reported multiple times without an intervening resume. */
4518 if (debug_infrun)
4519 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4520 prepare_to_wait (ecs);
4521 return;
4522 }
4523
4524 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4525 && target_can_async_p () && !sync_execution)
4526 {
4527 /* There were no unwaited-for children left in the target, but,
4528 we're not synchronously waiting for events either. Just
4529 ignore. Otherwise, if we were running a synchronous
4530 execution command, we need to cancel it and give the user
4531 back the terminal. */
4532 if (debug_infrun)
4533 fprintf_unfiltered (gdb_stdlog,
4534 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4535 prepare_to_wait (ecs);
4536 return;
4537 }
4538
4539 /* Cache the last pid/waitstatus. */
4540 set_last_target_status (ecs->ptid, ecs->ws);
4541
4542 /* Always clear state belonging to the previous time we stopped. */
4543 stop_stack_dummy = STOP_NONE;
4544
4545 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4546 {
4547 /* No unwaited-for children left. IOW, all resumed children
4548 have exited. */
4549 if (debug_infrun)
4550 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4551
4552 stop_print_frame = 0;
4553 stop_waiting (ecs);
4554 return;
4555 }
4556
4557 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4558 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4559 {
4560 ecs->event_thread = find_thread_ptid (ecs->ptid);
4561 /* If it's a new thread, add it to the thread database. */
4562 if (ecs->event_thread == NULL)
4563 ecs->event_thread = add_thread (ecs->ptid);
4564
4565 /* Disable range stepping. If the next step request could use a
4566 range, this will be end up re-enabled then. */
4567 ecs->event_thread->control.may_range_step = 0;
4568 }
4569
4570 /* Dependent on valid ECS->EVENT_THREAD. */
4571 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4572
4573 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4574 reinit_frame_cache ();
4575
4576 breakpoint_retire_moribund ();
4577
4578 /* First, distinguish signals caused by the debugger from signals
4579 that have to do with the program's own actions. Note that
4580 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4581 on the operating system version. Here we detect when a SIGILL or
4582 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4583 something similar for SIGSEGV, since a SIGSEGV will be generated
4584 when we're trying to execute a breakpoint instruction on a
4585 non-executable stack. This happens for call dummy breakpoints
4586 for architectures like SPARC that place call dummies on the
4587 stack. */
4588 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4589 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4590 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4591 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4592 {
4593 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4594
4595 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4596 regcache_read_pc (regcache)))
4597 {
4598 if (debug_infrun)
4599 fprintf_unfiltered (gdb_stdlog,
4600 "infrun: Treating signal as SIGTRAP\n");
4601 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4602 }
4603 }
4604
4605 /* Mark the non-executing threads accordingly. In all-stop, all
4606 threads of all processes are stopped when we get any event
4607 reported. In non-stop mode, only the event thread stops. */
4608 {
4609 ptid_t mark_ptid;
4610
4611 if (!target_is_non_stop_p ())
4612 mark_ptid = minus_one_ptid;
4613 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4614 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4615 {
4616 /* If we're handling a process exit in non-stop mode, even
4617 though threads haven't been deleted yet, one would think
4618 that there is nothing to do, as threads of the dead process
4619 will be soon deleted, and threads of any other process were
4620 left running. However, on some targets, threads survive a
4621 process exit event. E.g., for the "checkpoint" command,
4622 when the current checkpoint/fork exits, linux-fork.c
4623 automatically switches to another fork from within
4624 target_mourn_inferior, by associating the same
4625 inferior/thread to another fork. We haven't mourned yet at
4626 this point, but we must mark any threads left in the
4627 process as not-executing so that finish_thread_state marks
4628 them stopped (in the user's perspective) if/when we present
4629 the stop to the user. */
4630 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4631 }
4632 else
4633 mark_ptid = ecs->ptid;
4634
4635 set_executing (mark_ptid, 0);
4636
4637 /* Likewise the resumed flag. */
4638 set_resumed (mark_ptid, 0);
4639 }
4640
4641 switch (ecs->ws.kind)
4642 {
4643 case TARGET_WAITKIND_LOADED:
4644 if (debug_infrun)
4645 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4646 if (!ptid_equal (ecs->ptid, inferior_ptid))
4647 context_switch (ecs->ptid);
4648 /* Ignore gracefully during startup of the inferior, as it might
4649 be the shell which has just loaded some objects, otherwise
4650 add the symbols for the newly loaded objects. Also ignore at
4651 the beginning of an attach or remote session; we will query
4652 the full list of libraries once the connection is
4653 established. */
4654
4655 stop_soon = get_inferior_stop_soon (ecs->ptid);
4656 if (stop_soon == NO_STOP_QUIETLY)
4657 {
4658 struct regcache *regcache;
4659
4660 regcache = get_thread_regcache (ecs->ptid);
4661
4662 handle_solib_event ();
4663
4664 ecs->event_thread->control.stop_bpstat
4665 = bpstat_stop_status (get_regcache_aspace (regcache),
4666 stop_pc, ecs->ptid, &ecs->ws);
4667
4668 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4669 {
4670 /* A catchpoint triggered. */
4671 process_event_stop_test (ecs);
4672 return;
4673 }
4674
4675 /* If requested, stop when the dynamic linker notifies
4676 gdb of events. This allows the user to get control
4677 and place breakpoints in initializer routines for
4678 dynamically loaded objects (among other things). */
4679 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4680 if (stop_on_solib_events)
4681 {
4682 /* Make sure we print "Stopped due to solib-event" in
4683 normal_stop. */
4684 stop_print_frame = 1;
4685
4686 stop_waiting (ecs);
4687 return;
4688 }
4689 }
4690
4691 /* If we are skipping through a shell, or through shared library
4692 loading that we aren't interested in, resume the program. If
4693 we're running the program normally, also resume. */
4694 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4695 {
4696 /* Loading of shared libraries might have changed breakpoint
4697 addresses. Make sure new breakpoints are inserted. */
4698 if (stop_soon == NO_STOP_QUIETLY)
4699 insert_breakpoints ();
4700 resume (GDB_SIGNAL_0);
4701 prepare_to_wait (ecs);
4702 return;
4703 }
4704
4705 /* But stop if we're attaching or setting up a remote
4706 connection. */
4707 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4708 || stop_soon == STOP_QUIETLY_REMOTE)
4709 {
4710 if (debug_infrun)
4711 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4712 stop_waiting (ecs);
4713 return;
4714 }
4715
4716 internal_error (__FILE__, __LINE__,
4717 _("unhandled stop_soon: %d"), (int) stop_soon);
4718
4719 case TARGET_WAITKIND_SPURIOUS:
4720 if (debug_infrun)
4721 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4722 if (!ptid_equal (ecs->ptid, inferior_ptid))
4723 context_switch (ecs->ptid);
4724 resume (GDB_SIGNAL_0);
4725 prepare_to_wait (ecs);
4726 return;
4727
4728 case TARGET_WAITKIND_EXITED:
4729 case TARGET_WAITKIND_SIGNALLED:
4730 if (debug_infrun)
4731 {
4732 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4733 fprintf_unfiltered (gdb_stdlog,
4734 "infrun: TARGET_WAITKIND_EXITED\n");
4735 else
4736 fprintf_unfiltered (gdb_stdlog,
4737 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4738 }
4739
4740 inferior_ptid = ecs->ptid;
4741 set_current_inferior (find_inferior_ptid (ecs->ptid));
4742 set_current_program_space (current_inferior ()->pspace);
4743 handle_vfork_child_exec_or_exit (0);
4744 target_terminal_ours (); /* Must do this before mourn anyway. */
4745
4746 /* Clearing any previous state of convenience variables. */
4747 clear_exit_convenience_vars ();
4748
4749 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4750 {
4751 /* Record the exit code in the convenience variable $_exitcode, so
4752 that the user can inspect this again later. */
4753 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4754 (LONGEST) ecs->ws.value.integer);
4755
4756 /* Also record this in the inferior itself. */
4757 current_inferior ()->has_exit_code = 1;
4758 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4759
4760 /* Support the --return-child-result option. */
4761 return_child_result_value = ecs->ws.value.integer;
4762
4763 observer_notify_exited (ecs->ws.value.integer);
4764 }
4765 else
4766 {
4767 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4768 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4769
4770 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4771 {
4772 /* Set the value of the internal variable $_exitsignal,
4773 which holds the signal uncaught by the inferior. */
4774 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4775 gdbarch_gdb_signal_to_target (gdbarch,
4776 ecs->ws.value.sig));
4777 }
4778 else
4779 {
4780 /* We don't have access to the target's method used for
4781 converting between signal numbers (GDB's internal
4782 representation <-> target's representation).
4783 Therefore, we cannot do a good job at displaying this
4784 information to the user. It's better to just warn
4785 her about it (if infrun debugging is enabled), and
4786 give up. */
4787 if (debug_infrun)
4788 fprintf_filtered (gdb_stdlog, _("\
4789 Cannot fill $_exitsignal with the correct signal number.\n"));
4790 }
4791
4792 observer_notify_signal_exited (ecs->ws.value.sig);
4793 }
4794
4795 gdb_flush (gdb_stdout);
4796 target_mourn_inferior ();
4797 stop_print_frame = 0;
4798 stop_waiting (ecs);
4799 return;
4800
4801 /* The following are the only cases in which we keep going;
4802 the above cases end in a continue or goto. */
4803 case TARGET_WAITKIND_FORKED:
4804 case TARGET_WAITKIND_VFORKED:
4805 if (debug_infrun)
4806 {
4807 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4808 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4809 else
4810 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4811 }
4812
4813 /* Check whether the inferior is displaced stepping. */
4814 {
4815 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4816 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4817 struct displaced_step_inferior_state *displaced
4818 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4819
4820 /* If checking displaced stepping is supported, and thread
4821 ecs->ptid is displaced stepping. */
4822 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4823 {
4824 struct inferior *parent_inf
4825 = find_inferior_ptid (ecs->ptid);
4826 struct regcache *child_regcache;
4827 CORE_ADDR parent_pc;
4828
4829 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4830 indicating that the displaced stepping of syscall instruction
4831 has been done. Perform cleanup for parent process here. Note
4832 that this operation also cleans up the child process for vfork,
4833 because their pages are shared. */
4834 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
4835 /* Start a new step-over in another thread if there's one
4836 that needs it. */
4837 start_step_over ();
4838
4839 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4840 {
4841 /* Restore scratch pad for child process. */
4842 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4843 }
4844
4845 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4846 the child's PC is also within the scratchpad. Set the child's PC
4847 to the parent's PC value, which has already been fixed up.
4848 FIXME: we use the parent's aspace here, although we're touching
4849 the child, because the child hasn't been added to the inferior
4850 list yet at this point. */
4851
4852 child_regcache
4853 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4854 gdbarch,
4855 parent_inf->aspace);
4856 /* Read PC value of parent process. */
4857 parent_pc = regcache_read_pc (regcache);
4858
4859 if (debug_displaced)
4860 fprintf_unfiltered (gdb_stdlog,
4861 "displaced: write child pc from %s to %s\n",
4862 paddress (gdbarch,
4863 regcache_read_pc (child_regcache)),
4864 paddress (gdbarch, parent_pc));
4865
4866 regcache_write_pc (child_regcache, parent_pc);
4867 }
4868 }
4869
4870 if (!ptid_equal (ecs->ptid, inferior_ptid))
4871 context_switch (ecs->ptid);
4872
4873 /* Immediately detach breakpoints from the child before there's
4874 any chance of letting the user delete breakpoints from the
4875 breakpoint lists. If we don't do this early, it's easy to
4876 leave left over traps in the child, vis: "break foo; catch
4877 fork; c; <fork>; del; c; <child calls foo>". We only follow
4878 the fork on the last `continue', and by that time the
4879 breakpoint at "foo" is long gone from the breakpoint table.
4880 If we vforked, then we don't need to unpatch here, since both
4881 parent and child are sharing the same memory pages; we'll
4882 need to unpatch at follow/detach time instead to be certain
4883 that new breakpoints added between catchpoint hit time and
4884 vfork follow are detached. */
4885 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4886 {
4887 /* This won't actually modify the breakpoint list, but will
4888 physically remove the breakpoints from the child. */
4889 detach_breakpoints (ecs->ws.value.related_pid);
4890 }
4891
4892 delete_just_stopped_threads_single_step_breakpoints ();
4893
4894 /* In case the event is caught by a catchpoint, remember that
4895 the event is to be followed at the next resume of the thread,
4896 and not immediately. */
4897 ecs->event_thread->pending_follow = ecs->ws;
4898
4899 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4900
4901 ecs->event_thread->control.stop_bpstat
4902 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4903 stop_pc, ecs->ptid, &ecs->ws);
4904
4905 /* If no catchpoint triggered for this, then keep going. Note
4906 that we're interested in knowing the bpstat actually causes a
4907 stop, not just if it may explain the signal. Software
4908 watchpoints, for example, always appear in the bpstat. */
4909 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4910 {
4911 ptid_t parent;
4912 ptid_t child;
4913 int should_resume;
4914 int follow_child
4915 = (follow_fork_mode_string == follow_fork_mode_child);
4916
4917 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4918
4919 should_resume = follow_fork ();
4920
4921 parent = ecs->ptid;
4922 child = ecs->ws.value.related_pid;
4923
4924 /* In non-stop mode, also resume the other branch. */
4925 if (!detach_fork && (non_stop
4926 || (sched_multi && target_is_non_stop_p ())))
4927 {
4928 if (follow_child)
4929 switch_to_thread (parent);
4930 else
4931 switch_to_thread (child);
4932
4933 ecs->event_thread = inferior_thread ();
4934 ecs->ptid = inferior_ptid;
4935 keep_going (ecs);
4936 }
4937
4938 if (follow_child)
4939 switch_to_thread (child);
4940 else
4941 switch_to_thread (parent);
4942
4943 ecs->event_thread = inferior_thread ();
4944 ecs->ptid = inferior_ptid;
4945
4946 if (should_resume)
4947 keep_going (ecs);
4948 else
4949 stop_waiting (ecs);
4950 return;
4951 }
4952 process_event_stop_test (ecs);
4953 return;
4954
4955 case TARGET_WAITKIND_VFORK_DONE:
4956 /* Done with the shared memory region. Re-insert breakpoints in
4957 the parent, and keep going. */
4958
4959 if (debug_infrun)
4960 fprintf_unfiltered (gdb_stdlog,
4961 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
4962
4963 if (!ptid_equal (ecs->ptid, inferior_ptid))
4964 context_switch (ecs->ptid);
4965
4966 current_inferior ()->waiting_for_vfork_done = 0;
4967 current_inferior ()->pspace->breakpoints_not_allowed = 0;
4968 /* This also takes care of reinserting breakpoints in the
4969 previously locked inferior. */
4970 keep_going (ecs);
4971 return;
4972
4973 case TARGET_WAITKIND_EXECD:
4974 if (debug_infrun)
4975 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
4976
4977 if (!ptid_equal (ecs->ptid, inferior_ptid))
4978 context_switch (ecs->ptid);
4979
4980 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4981
4982 /* Do whatever is necessary to the parent branch of the vfork. */
4983 handle_vfork_child_exec_or_exit (1);
4984
4985 /* This causes the eventpoints and symbol table to be reset.
4986 Must do this now, before trying to determine whether to
4987 stop. */
4988 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
4989
4990 /* In follow_exec we may have deleted the original thread and
4991 created a new one. Make sure that the event thread is the
4992 execd thread for that case (this is a nop otherwise). */
4993 ecs->event_thread = inferior_thread ();
4994
4995 ecs->event_thread->control.stop_bpstat
4996 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4997 stop_pc, ecs->ptid, &ecs->ws);
4998
4999 /* Note that this may be referenced from inside
5000 bpstat_stop_status above, through inferior_has_execd. */
5001 xfree (ecs->ws.value.execd_pathname);
5002 ecs->ws.value.execd_pathname = NULL;
5003
5004 /* If no catchpoint triggered for this, then keep going. */
5005 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5006 {
5007 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5008 keep_going (ecs);
5009 return;
5010 }
5011 process_event_stop_test (ecs);
5012 return;
5013
5014 /* Be careful not to try to gather much state about a thread
5015 that's in a syscall. It's frequently a losing proposition. */
5016 case TARGET_WAITKIND_SYSCALL_ENTRY:
5017 if (debug_infrun)
5018 fprintf_unfiltered (gdb_stdlog,
5019 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5020 /* Getting the current syscall number. */
5021 if (handle_syscall_event (ecs) == 0)
5022 process_event_stop_test (ecs);
5023 return;
5024
5025 /* Before examining the threads further, step this thread to
5026 get it entirely out of the syscall. (We get notice of the
5027 event when the thread is just on the verge of exiting a
5028 syscall. Stepping one instruction seems to get it back
5029 into user code.) */
5030 case TARGET_WAITKIND_SYSCALL_RETURN:
5031 if (debug_infrun)
5032 fprintf_unfiltered (gdb_stdlog,
5033 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5034 if (handle_syscall_event (ecs) == 0)
5035 process_event_stop_test (ecs);
5036 return;
5037
5038 case TARGET_WAITKIND_STOPPED:
5039 if (debug_infrun)
5040 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5041 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5042 handle_signal_stop (ecs);
5043 return;
5044
5045 case TARGET_WAITKIND_NO_HISTORY:
5046 if (debug_infrun)
5047 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5048 /* Reverse execution: target ran out of history info. */
5049
5050 delete_just_stopped_threads_single_step_breakpoints ();
5051 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5052 observer_notify_no_history ();
5053 stop_waiting (ecs);
5054 return;
5055 }
5056 }
5057
5058 /* A wrapper around handle_inferior_event_1, which also makes sure
5059 that all temporary struct value objects that were created during
5060 the handling of the event get deleted at the end. */
5061
5062 static void
5063 handle_inferior_event (struct execution_control_state *ecs)
5064 {
5065 struct value *mark = value_mark ();
5066
5067 handle_inferior_event_1 (ecs);
5068 /* Purge all temporary values created during the event handling,
5069 as it could be a long time before we return to the command level
5070 where such values would otherwise be purged. */
5071 value_free_to_mark (mark);
5072 }
5073
5074 /* Restart threads back to what they were trying to do back when we
5075 paused them for an in-line step-over. The EVENT_THREAD thread is
5076 ignored. */
5077
5078 static void
5079 restart_threads (struct thread_info *event_thread)
5080 {
5081 struct thread_info *tp;
5082 struct thread_info *step_over = NULL;
5083
5084 /* In case the instruction just stepped spawned a new thread. */
5085 update_thread_list ();
5086
5087 ALL_NON_EXITED_THREADS (tp)
5088 {
5089 if (tp == event_thread)
5090 {
5091 if (debug_infrun)
5092 fprintf_unfiltered (gdb_stdlog,
5093 "infrun: restart threads: "
5094 "[%s] is event thread\n",
5095 target_pid_to_str (tp->ptid));
5096 continue;
5097 }
5098
5099 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5100 {
5101 if (debug_infrun)
5102 fprintf_unfiltered (gdb_stdlog,
5103 "infrun: restart threads: "
5104 "[%s] not meant to be running\n",
5105 target_pid_to_str (tp->ptid));
5106 continue;
5107 }
5108
5109 if (tp->resumed)
5110 {
5111 if (debug_infrun)
5112 fprintf_unfiltered (gdb_stdlog,
5113 "infrun: restart threads: [%s] resumed\n",
5114 target_pid_to_str (tp->ptid));
5115 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5116 continue;
5117 }
5118
5119 if (thread_is_in_step_over_chain (tp))
5120 {
5121 if (debug_infrun)
5122 fprintf_unfiltered (gdb_stdlog,
5123 "infrun: restart threads: "
5124 "[%s] needs step-over\n",
5125 target_pid_to_str (tp->ptid));
5126 gdb_assert (!tp->resumed);
5127 continue;
5128 }
5129
5130
5131 if (tp->suspend.waitstatus_pending_p)
5132 {
5133 if (debug_infrun)
5134 fprintf_unfiltered (gdb_stdlog,
5135 "infrun: restart threads: "
5136 "[%s] has pending status\n",
5137 target_pid_to_str (tp->ptid));
5138 tp->resumed = 1;
5139 continue;
5140 }
5141
5142 /* If some thread needs to start a step-over at this point, it
5143 should still be in the step-over queue, and thus skipped
5144 above. */
5145 if (thread_still_needs_step_over (tp))
5146 {
5147 internal_error (__FILE__, __LINE__,
5148 "thread [%s] needs a step-over, but not in "
5149 "step-over queue\n",
5150 target_pid_to_str (tp->ptid));
5151 }
5152
5153 if (currently_stepping (tp))
5154 {
5155 if (debug_infrun)
5156 fprintf_unfiltered (gdb_stdlog,
5157 "infrun: restart threads: [%s] was stepping\n",
5158 target_pid_to_str (tp->ptid));
5159 keep_going_stepped_thread (tp);
5160 }
5161 else
5162 {
5163 struct execution_control_state ecss;
5164 struct execution_control_state *ecs = &ecss;
5165
5166 if (debug_infrun)
5167 fprintf_unfiltered (gdb_stdlog,
5168 "infrun: restart threads: [%s] continuing\n",
5169 target_pid_to_str (tp->ptid));
5170 reset_ecs (ecs, tp);
5171 switch_to_thread (tp->ptid);
5172 keep_going_pass_signal (ecs);
5173 }
5174 }
5175 }
5176
5177 /* Callback for iterate_over_threads. Find a resumed thread that has
5178 a pending waitstatus. */
5179
5180 static int
5181 resumed_thread_with_pending_status (struct thread_info *tp,
5182 void *arg)
5183 {
5184 return (tp->resumed
5185 && tp->suspend.waitstatus_pending_p);
5186 }
5187
5188 /* Called when we get an event that may finish an in-line or
5189 out-of-line (displaced stepping) step-over started previously.
5190 Return true if the event is processed and we should go back to the
5191 event loop; false if the caller should continue processing the
5192 event. */
5193
5194 static int
5195 finish_step_over (struct execution_control_state *ecs)
5196 {
5197 int had_step_over_info;
5198
5199 displaced_step_fixup (ecs->ptid,
5200 ecs->event_thread->suspend.stop_signal);
5201
5202 had_step_over_info = step_over_info_valid_p ();
5203
5204 if (had_step_over_info)
5205 {
5206 /* If we're stepping over a breakpoint with all threads locked,
5207 then only the thread that was stepped should be reporting
5208 back an event. */
5209 gdb_assert (ecs->event_thread->control.trap_expected);
5210
5211 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5212 clear_step_over_info ();
5213 }
5214
5215 if (!target_is_non_stop_p ())
5216 return 0;
5217
5218 /* Start a new step-over in another thread if there's one that
5219 needs it. */
5220 start_step_over ();
5221
5222 /* If we were stepping over a breakpoint before, and haven't started
5223 a new in-line step-over sequence, then restart all other threads
5224 (except the event thread). We can't do this in all-stop, as then
5225 e.g., we wouldn't be able to issue any other remote packet until
5226 these other threads stop. */
5227 if (had_step_over_info && !step_over_info_valid_p ())
5228 {
5229 struct thread_info *pending;
5230
5231 /* If we only have threads with pending statuses, the restart
5232 below won't restart any thread and so nothing re-inserts the
5233 breakpoint we just stepped over. But we need it inserted
5234 when we later process the pending events, otherwise if
5235 another thread has a pending event for this breakpoint too,
5236 we'd discard its event (because the breakpoint that
5237 originally caused the event was no longer inserted). */
5238 context_switch (ecs->ptid);
5239 insert_breakpoints ();
5240
5241 restart_threads (ecs->event_thread);
5242
5243 /* If we have events pending, go through handle_inferior_event
5244 again, picking up a pending event at random. This avoids
5245 thread starvation. */
5246
5247 /* But not if we just stepped over a watchpoint in order to let
5248 the instruction execute so we can evaluate its expression.
5249 The set of watchpoints that triggered is recorded in the
5250 breakpoint objects themselves (see bp->watchpoint_triggered).
5251 If we processed another event first, that other event could
5252 clobber this info. */
5253 if (ecs->event_thread->stepping_over_watchpoint)
5254 return 0;
5255
5256 pending = iterate_over_threads (resumed_thread_with_pending_status,
5257 NULL);
5258 if (pending != NULL)
5259 {
5260 struct thread_info *tp = ecs->event_thread;
5261 struct regcache *regcache;
5262
5263 if (debug_infrun)
5264 {
5265 fprintf_unfiltered (gdb_stdlog,
5266 "infrun: found resumed threads with "
5267 "pending events, saving status\n");
5268 }
5269
5270 gdb_assert (pending != tp);
5271
5272 /* Record the event thread's event for later. */
5273 save_waitstatus (tp, &ecs->ws);
5274 /* This was cleared early, by handle_inferior_event. Set it
5275 so this pending event is considered by
5276 do_target_wait. */
5277 tp->resumed = 1;
5278
5279 gdb_assert (!tp->executing);
5280
5281 regcache = get_thread_regcache (tp->ptid);
5282 tp->suspend.stop_pc = regcache_read_pc (regcache);
5283
5284 if (debug_infrun)
5285 {
5286 fprintf_unfiltered (gdb_stdlog,
5287 "infrun: saved stop_pc=%s for %s "
5288 "(currently_stepping=%d)\n",
5289 paddress (target_gdbarch (),
5290 tp->suspend.stop_pc),
5291 target_pid_to_str (tp->ptid),
5292 currently_stepping (tp));
5293 }
5294
5295 /* This in-line step-over finished; clear this so we won't
5296 start a new one. This is what handle_signal_stop would
5297 do, if we returned false. */
5298 tp->stepping_over_breakpoint = 0;
5299
5300 /* Wake up the event loop again. */
5301 mark_async_event_handler (infrun_async_inferior_event_token);
5302
5303 prepare_to_wait (ecs);
5304 return 1;
5305 }
5306 }
5307
5308 return 0;
5309 }
5310
5311 /* Come here when the program has stopped with a signal. */
5312
5313 static void
5314 handle_signal_stop (struct execution_control_state *ecs)
5315 {
5316 struct frame_info *frame;
5317 struct gdbarch *gdbarch;
5318 int stopped_by_watchpoint;
5319 enum stop_kind stop_soon;
5320 int random_signal;
5321
5322 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5323
5324 /* Do we need to clean up the state of a thread that has
5325 completed a displaced single-step? (Doing so usually affects
5326 the PC, so do it here, before we set stop_pc.) */
5327 if (finish_step_over (ecs))
5328 return;
5329
5330 /* If we either finished a single-step or hit a breakpoint, but
5331 the user wanted this thread to be stopped, pretend we got a
5332 SIG0 (generic unsignaled stop). */
5333 if (ecs->event_thread->stop_requested
5334 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5335 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5336
5337 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5338
5339 if (debug_infrun)
5340 {
5341 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5342 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5343 struct cleanup *old_chain = save_inferior_ptid ();
5344
5345 inferior_ptid = ecs->ptid;
5346
5347 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5348 paddress (gdbarch, stop_pc));
5349 if (target_stopped_by_watchpoint ())
5350 {
5351 CORE_ADDR addr;
5352
5353 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5354
5355 if (target_stopped_data_address (&current_target, &addr))
5356 fprintf_unfiltered (gdb_stdlog,
5357 "infrun: stopped data address = %s\n",
5358 paddress (gdbarch, addr));
5359 else
5360 fprintf_unfiltered (gdb_stdlog,
5361 "infrun: (no data address available)\n");
5362 }
5363
5364 do_cleanups (old_chain);
5365 }
5366
5367 /* This is originated from start_remote(), start_inferior() and
5368 shared libraries hook functions. */
5369 stop_soon = get_inferior_stop_soon (ecs->ptid);
5370 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5371 {
5372 if (!ptid_equal (ecs->ptid, inferior_ptid))
5373 context_switch (ecs->ptid);
5374 if (debug_infrun)
5375 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5376 stop_print_frame = 1;
5377 stop_waiting (ecs);
5378 return;
5379 }
5380
5381 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5382 && stop_after_trap)
5383 {
5384 if (!ptid_equal (ecs->ptid, inferior_ptid))
5385 context_switch (ecs->ptid);
5386 if (debug_infrun)
5387 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5388 stop_print_frame = 0;
5389 stop_waiting (ecs);
5390 return;
5391 }
5392
5393 /* This originates from attach_command(). We need to overwrite
5394 the stop_signal here, because some kernels don't ignore a
5395 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5396 See more comments in inferior.h. On the other hand, if we
5397 get a non-SIGSTOP, report it to the user - assume the backend
5398 will handle the SIGSTOP if it should show up later.
5399
5400 Also consider that the attach is complete when we see a
5401 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5402 target extended-remote report it instead of a SIGSTOP
5403 (e.g. gdbserver). We already rely on SIGTRAP being our
5404 signal, so this is no exception.
5405
5406 Also consider that the attach is complete when we see a
5407 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5408 the target to stop all threads of the inferior, in case the
5409 low level attach operation doesn't stop them implicitly. If
5410 they weren't stopped implicitly, then the stub will report a
5411 GDB_SIGNAL_0, meaning: stopped for no particular reason
5412 other than GDB's request. */
5413 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5414 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5415 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5416 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5417 {
5418 stop_print_frame = 1;
5419 stop_waiting (ecs);
5420 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5421 return;
5422 }
5423
5424 /* See if something interesting happened to the non-current thread. If
5425 so, then switch to that thread. */
5426 if (!ptid_equal (ecs->ptid, inferior_ptid))
5427 {
5428 if (debug_infrun)
5429 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5430
5431 context_switch (ecs->ptid);
5432
5433 if (deprecated_context_hook)
5434 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
5435 }
5436
5437 /* At this point, get hold of the now-current thread's frame. */
5438 frame = get_current_frame ();
5439 gdbarch = get_frame_arch (frame);
5440
5441 /* Pull the single step breakpoints out of the target. */
5442 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5443 {
5444 struct regcache *regcache;
5445 struct address_space *aspace;
5446 CORE_ADDR pc;
5447
5448 regcache = get_thread_regcache (ecs->ptid);
5449 aspace = get_regcache_aspace (regcache);
5450 pc = regcache_read_pc (regcache);
5451
5452 /* However, before doing so, if this single-step breakpoint was
5453 actually for another thread, set this thread up for moving
5454 past it. */
5455 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5456 aspace, pc))
5457 {
5458 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5459 {
5460 if (debug_infrun)
5461 {
5462 fprintf_unfiltered (gdb_stdlog,
5463 "infrun: [%s] hit another thread's "
5464 "single-step breakpoint\n",
5465 target_pid_to_str (ecs->ptid));
5466 }
5467 ecs->hit_singlestep_breakpoint = 1;
5468 }
5469 }
5470 else
5471 {
5472 if (debug_infrun)
5473 {
5474 fprintf_unfiltered (gdb_stdlog,
5475 "infrun: [%s] hit its "
5476 "single-step breakpoint\n",
5477 target_pid_to_str (ecs->ptid));
5478 }
5479 }
5480 }
5481 delete_just_stopped_threads_single_step_breakpoints ();
5482
5483 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5484 && ecs->event_thread->control.trap_expected
5485 && ecs->event_thread->stepping_over_watchpoint)
5486 stopped_by_watchpoint = 0;
5487 else
5488 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5489
5490 /* If necessary, step over this watchpoint. We'll be back to display
5491 it in a moment. */
5492 if (stopped_by_watchpoint
5493 && (target_have_steppable_watchpoint
5494 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5495 {
5496 /* At this point, we are stopped at an instruction which has
5497 attempted to write to a piece of memory under control of
5498 a watchpoint. The instruction hasn't actually executed
5499 yet. If we were to evaluate the watchpoint expression
5500 now, we would get the old value, and therefore no change
5501 would seem to have occurred.
5502
5503 In order to make watchpoints work `right', we really need
5504 to complete the memory write, and then evaluate the
5505 watchpoint expression. We do this by single-stepping the
5506 target.
5507
5508 It may not be necessary to disable the watchpoint to step over
5509 it. For example, the PA can (with some kernel cooperation)
5510 single step over a watchpoint without disabling the watchpoint.
5511
5512 It is far more common to need to disable a watchpoint to step
5513 the inferior over it. If we have non-steppable watchpoints,
5514 we must disable the current watchpoint; it's simplest to
5515 disable all watchpoints.
5516
5517 Any breakpoint at PC must also be stepped over -- if there's
5518 one, it will have already triggered before the watchpoint
5519 triggered, and we either already reported it to the user, or
5520 it didn't cause a stop and we called keep_going. In either
5521 case, if there was a breakpoint at PC, we must be trying to
5522 step past it. */
5523 ecs->event_thread->stepping_over_watchpoint = 1;
5524 keep_going (ecs);
5525 return;
5526 }
5527
5528 ecs->event_thread->stepping_over_breakpoint = 0;
5529 ecs->event_thread->stepping_over_watchpoint = 0;
5530 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5531 ecs->event_thread->control.stop_step = 0;
5532 stop_print_frame = 1;
5533 stopped_by_random_signal = 0;
5534
5535 /* Hide inlined functions starting here, unless we just performed stepi or
5536 nexti. After stepi and nexti, always show the innermost frame (not any
5537 inline function call sites). */
5538 if (ecs->event_thread->control.step_range_end != 1)
5539 {
5540 struct address_space *aspace =
5541 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5542
5543 /* skip_inline_frames is expensive, so we avoid it if we can
5544 determine that the address is one where functions cannot have
5545 been inlined. This improves performance with inferiors that
5546 load a lot of shared libraries, because the solib event
5547 breakpoint is defined as the address of a function (i.e. not
5548 inline). Note that we have to check the previous PC as well
5549 as the current one to catch cases when we have just
5550 single-stepped off a breakpoint prior to reinstating it.
5551 Note that we're assuming that the code we single-step to is
5552 not inline, but that's not definitive: there's nothing
5553 preventing the event breakpoint function from containing
5554 inlined code, and the single-step ending up there. If the
5555 user had set a breakpoint on that inlined code, the missing
5556 skip_inline_frames call would break things. Fortunately
5557 that's an extremely unlikely scenario. */
5558 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5559 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5560 && ecs->event_thread->control.trap_expected
5561 && pc_at_non_inline_function (aspace,
5562 ecs->event_thread->prev_pc,
5563 &ecs->ws)))
5564 {
5565 skip_inline_frames (ecs->ptid);
5566
5567 /* Re-fetch current thread's frame in case that invalidated
5568 the frame cache. */
5569 frame = get_current_frame ();
5570 gdbarch = get_frame_arch (frame);
5571 }
5572 }
5573
5574 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5575 && ecs->event_thread->control.trap_expected
5576 && gdbarch_single_step_through_delay_p (gdbarch)
5577 && currently_stepping (ecs->event_thread))
5578 {
5579 /* We're trying to step off a breakpoint. Turns out that we're
5580 also on an instruction that needs to be stepped multiple
5581 times before it's been fully executing. E.g., architectures
5582 with a delay slot. It needs to be stepped twice, once for
5583 the instruction and once for the delay slot. */
5584 int step_through_delay
5585 = gdbarch_single_step_through_delay (gdbarch, frame);
5586
5587 if (debug_infrun && step_through_delay)
5588 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5589 if (ecs->event_thread->control.step_range_end == 0
5590 && step_through_delay)
5591 {
5592 /* The user issued a continue when stopped at a breakpoint.
5593 Set up for another trap and get out of here. */
5594 ecs->event_thread->stepping_over_breakpoint = 1;
5595 keep_going (ecs);
5596 return;
5597 }
5598 else if (step_through_delay)
5599 {
5600 /* The user issued a step when stopped at a breakpoint.
5601 Maybe we should stop, maybe we should not - the delay
5602 slot *might* correspond to a line of source. In any
5603 case, don't decide that here, just set
5604 ecs->stepping_over_breakpoint, making sure we
5605 single-step again before breakpoints are re-inserted. */
5606 ecs->event_thread->stepping_over_breakpoint = 1;
5607 }
5608 }
5609
5610 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5611 handles this event. */
5612 ecs->event_thread->control.stop_bpstat
5613 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5614 stop_pc, ecs->ptid, &ecs->ws);
5615
5616 /* Following in case break condition called a
5617 function. */
5618 stop_print_frame = 1;
5619
5620 /* This is where we handle "moribund" watchpoints. Unlike
5621 software breakpoints traps, hardware watchpoint traps are
5622 always distinguishable from random traps. If no high-level
5623 watchpoint is associated with the reported stop data address
5624 anymore, then the bpstat does not explain the signal ---
5625 simply make sure to ignore it if `stopped_by_watchpoint' is
5626 set. */
5627
5628 if (debug_infrun
5629 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5630 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5631 GDB_SIGNAL_TRAP)
5632 && stopped_by_watchpoint)
5633 fprintf_unfiltered (gdb_stdlog,
5634 "infrun: no user watchpoint explains "
5635 "watchpoint SIGTRAP, ignoring\n");
5636
5637 /* NOTE: cagney/2003-03-29: These checks for a random signal
5638 at one stage in the past included checks for an inferior
5639 function call's call dummy's return breakpoint. The original
5640 comment, that went with the test, read:
5641
5642 ``End of a stack dummy. Some systems (e.g. Sony news) give
5643 another signal besides SIGTRAP, so check here as well as
5644 above.''
5645
5646 If someone ever tries to get call dummys on a
5647 non-executable stack to work (where the target would stop
5648 with something like a SIGSEGV), then those tests might need
5649 to be re-instated. Given, however, that the tests were only
5650 enabled when momentary breakpoints were not being used, I
5651 suspect that it won't be the case.
5652
5653 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5654 be necessary for call dummies on a non-executable stack on
5655 SPARC. */
5656
5657 /* See if the breakpoints module can explain the signal. */
5658 random_signal
5659 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5660 ecs->event_thread->suspend.stop_signal);
5661
5662 /* Maybe this was a trap for a software breakpoint that has since
5663 been removed. */
5664 if (random_signal && target_stopped_by_sw_breakpoint ())
5665 {
5666 if (program_breakpoint_here_p (gdbarch, stop_pc))
5667 {
5668 struct regcache *regcache;
5669 int decr_pc;
5670
5671 /* Re-adjust PC to what the program would see if GDB was not
5672 debugging it. */
5673 regcache = get_thread_regcache (ecs->event_thread->ptid);
5674 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5675 if (decr_pc != 0)
5676 {
5677 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5678
5679 if (record_full_is_used ())
5680 record_full_gdb_operation_disable_set ();
5681
5682 regcache_write_pc (regcache, stop_pc + decr_pc);
5683
5684 do_cleanups (old_cleanups);
5685 }
5686 }
5687 else
5688 {
5689 /* A delayed software breakpoint event. Ignore the trap. */
5690 if (debug_infrun)
5691 fprintf_unfiltered (gdb_stdlog,
5692 "infrun: delayed software breakpoint "
5693 "trap, ignoring\n");
5694 random_signal = 0;
5695 }
5696 }
5697
5698 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5699 has since been removed. */
5700 if (random_signal && target_stopped_by_hw_breakpoint ())
5701 {
5702 /* A delayed hardware breakpoint event. Ignore the trap. */
5703 if (debug_infrun)
5704 fprintf_unfiltered (gdb_stdlog,
5705 "infrun: delayed hardware breakpoint/watchpoint "
5706 "trap, ignoring\n");
5707 random_signal = 0;
5708 }
5709
5710 /* If not, perhaps stepping/nexting can. */
5711 if (random_signal)
5712 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5713 && currently_stepping (ecs->event_thread));
5714
5715 /* Perhaps the thread hit a single-step breakpoint of _another_
5716 thread. Single-step breakpoints are transparent to the
5717 breakpoints module. */
5718 if (random_signal)
5719 random_signal = !ecs->hit_singlestep_breakpoint;
5720
5721 /* No? Perhaps we got a moribund watchpoint. */
5722 if (random_signal)
5723 random_signal = !stopped_by_watchpoint;
5724
5725 /* For the program's own signals, act according to
5726 the signal handling tables. */
5727
5728 if (random_signal)
5729 {
5730 /* Signal not for debugging purposes. */
5731 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5732 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5733
5734 if (debug_infrun)
5735 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5736 gdb_signal_to_symbol_string (stop_signal));
5737
5738 stopped_by_random_signal = 1;
5739
5740 /* Always stop on signals if we're either just gaining control
5741 of the program, or the user explicitly requested this thread
5742 to remain stopped. */
5743 if (stop_soon != NO_STOP_QUIETLY
5744 || ecs->event_thread->stop_requested
5745 || (!inf->detaching
5746 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5747 {
5748 stop_waiting (ecs);
5749 return;
5750 }
5751
5752 /* Notify observers the signal has "handle print" set. Note we
5753 returned early above if stopping; normal_stop handles the
5754 printing in that case. */
5755 if (signal_print[ecs->event_thread->suspend.stop_signal])
5756 {
5757 /* The signal table tells us to print about this signal. */
5758 target_terminal_ours_for_output ();
5759 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5760 target_terminal_inferior ();
5761 }
5762
5763 /* Clear the signal if it should not be passed. */
5764 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5765 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5766
5767 if (ecs->event_thread->prev_pc == stop_pc
5768 && ecs->event_thread->control.trap_expected
5769 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5770 {
5771 int was_in_line;
5772
5773 /* We were just starting a new sequence, attempting to
5774 single-step off of a breakpoint and expecting a SIGTRAP.
5775 Instead this signal arrives. This signal will take us out
5776 of the stepping range so GDB needs to remember to, when
5777 the signal handler returns, resume stepping off that
5778 breakpoint. */
5779 /* To simplify things, "continue" is forced to use the same
5780 code paths as single-step - set a breakpoint at the
5781 signal return address and then, once hit, step off that
5782 breakpoint. */
5783 if (debug_infrun)
5784 fprintf_unfiltered (gdb_stdlog,
5785 "infrun: signal arrived while stepping over "
5786 "breakpoint\n");
5787
5788 was_in_line = step_over_info_valid_p ();
5789 clear_step_over_info ();
5790 insert_hp_step_resume_breakpoint_at_frame (frame);
5791 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5792 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5793 ecs->event_thread->control.trap_expected = 0;
5794
5795 if (target_is_non_stop_p ())
5796 {
5797 /* Either "set non-stop" is "on", or the target is
5798 always in non-stop mode. In this case, we have a bit
5799 more work to do. Resume the current thread, and if
5800 we had paused all threads, restart them while the
5801 signal handler runs. */
5802 keep_going (ecs);
5803
5804 if (was_in_line)
5805 {
5806 restart_threads (ecs->event_thread);
5807 }
5808 else if (debug_infrun)
5809 {
5810 fprintf_unfiltered (gdb_stdlog,
5811 "infrun: no need to restart threads\n");
5812 }
5813 return;
5814 }
5815
5816 /* If we were nexting/stepping some other thread, switch to
5817 it, so that we don't continue it, losing control. */
5818 if (!switch_back_to_stepped_thread (ecs))
5819 keep_going (ecs);
5820 return;
5821 }
5822
5823 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5824 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5825 || ecs->event_thread->control.step_range_end == 1)
5826 && frame_id_eq (get_stack_frame_id (frame),
5827 ecs->event_thread->control.step_stack_frame_id)
5828 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5829 {
5830 /* The inferior is about to take a signal that will take it
5831 out of the single step range. Set a breakpoint at the
5832 current PC (which is presumably where the signal handler
5833 will eventually return) and then allow the inferior to
5834 run free.
5835
5836 Note that this is only needed for a signal delivered
5837 while in the single-step range. Nested signals aren't a
5838 problem as they eventually all return. */
5839 if (debug_infrun)
5840 fprintf_unfiltered (gdb_stdlog,
5841 "infrun: signal may take us out of "
5842 "single-step range\n");
5843
5844 clear_step_over_info ();
5845 insert_hp_step_resume_breakpoint_at_frame (frame);
5846 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5847 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5848 ecs->event_thread->control.trap_expected = 0;
5849 keep_going (ecs);
5850 return;
5851 }
5852
5853 /* Note: step_resume_breakpoint may be non-NULL. This occures
5854 when either there's a nested signal, or when there's a
5855 pending signal enabled just as the signal handler returns
5856 (leaving the inferior at the step-resume-breakpoint without
5857 actually executing it). Either way continue until the
5858 breakpoint is really hit. */
5859
5860 if (!switch_back_to_stepped_thread (ecs))
5861 {
5862 if (debug_infrun)
5863 fprintf_unfiltered (gdb_stdlog,
5864 "infrun: random signal, keep going\n");
5865
5866 keep_going (ecs);
5867 }
5868 return;
5869 }
5870
5871 process_event_stop_test (ecs);
5872 }
5873
5874 /* Come here when we've got some debug event / signal we can explain
5875 (IOW, not a random signal), and test whether it should cause a
5876 stop, or whether we should resume the inferior (transparently).
5877 E.g., could be a breakpoint whose condition evaluates false; we
5878 could be still stepping within the line; etc. */
5879
5880 static void
5881 process_event_stop_test (struct execution_control_state *ecs)
5882 {
5883 struct symtab_and_line stop_pc_sal;
5884 struct frame_info *frame;
5885 struct gdbarch *gdbarch;
5886 CORE_ADDR jmp_buf_pc;
5887 struct bpstat_what what;
5888
5889 /* Handle cases caused by hitting a breakpoint. */
5890
5891 frame = get_current_frame ();
5892 gdbarch = get_frame_arch (frame);
5893
5894 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
5895
5896 if (what.call_dummy)
5897 {
5898 stop_stack_dummy = what.call_dummy;
5899 }
5900
5901 /* If we hit an internal event that triggers symbol changes, the
5902 current frame will be invalidated within bpstat_what (e.g., if we
5903 hit an internal solib event). Re-fetch it. */
5904 frame = get_current_frame ();
5905 gdbarch = get_frame_arch (frame);
5906
5907 switch (what.main_action)
5908 {
5909 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5910 /* If we hit the breakpoint at longjmp while stepping, we
5911 install a momentary breakpoint at the target of the
5912 jmp_buf. */
5913
5914 if (debug_infrun)
5915 fprintf_unfiltered (gdb_stdlog,
5916 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
5917
5918 ecs->event_thread->stepping_over_breakpoint = 1;
5919
5920 if (what.is_longjmp)
5921 {
5922 struct value *arg_value;
5923
5924 /* If we set the longjmp breakpoint via a SystemTap probe,
5925 then use it to extract the arguments. The destination PC
5926 is the third argument to the probe. */
5927 arg_value = probe_safe_evaluate_at_pc (frame, 2);
5928 if (arg_value)
5929 {
5930 jmp_buf_pc = value_as_address (arg_value);
5931 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
5932 }
5933 else if (!gdbarch_get_longjmp_target_p (gdbarch)
5934 || !gdbarch_get_longjmp_target (gdbarch,
5935 frame, &jmp_buf_pc))
5936 {
5937 if (debug_infrun)
5938 fprintf_unfiltered (gdb_stdlog,
5939 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
5940 "(!gdbarch_get_longjmp_target)\n");
5941 keep_going (ecs);
5942 return;
5943 }
5944
5945 /* Insert a breakpoint at resume address. */
5946 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
5947 }
5948 else
5949 check_exception_resume (ecs, frame);
5950 keep_going (ecs);
5951 return;
5952
5953 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
5954 {
5955 struct frame_info *init_frame;
5956
5957 /* There are several cases to consider.
5958
5959 1. The initiating frame no longer exists. In this case we
5960 must stop, because the exception or longjmp has gone too
5961 far.
5962
5963 2. The initiating frame exists, and is the same as the
5964 current frame. We stop, because the exception or longjmp
5965 has been caught.
5966
5967 3. The initiating frame exists and is different from the
5968 current frame. This means the exception or longjmp has
5969 been caught beneath the initiating frame, so keep going.
5970
5971 4. longjmp breakpoint has been placed just to protect
5972 against stale dummy frames and user is not interested in
5973 stopping around longjmps. */
5974
5975 if (debug_infrun)
5976 fprintf_unfiltered (gdb_stdlog,
5977 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
5978
5979 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
5980 != NULL);
5981 delete_exception_resume_breakpoint (ecs->event_thread);
5982
5983 if (what.is_longjmp)
5984 {
5985 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
5986
5987 if (!frame_id_p (ecs->event_thread->initiating_frame))
5988 {
5989 /* Case 4. */
5990 keep_going (ecs);
5991 return;
5992 }
5993 }
5994
5995 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
5996
5997 if (init_frame)
5998 {
5999 struct frame_id current_id
6000 = get_frame_id (get_current_frame ());
6001 if (frame_id_eq (current_id,
6002 ecs->event_thread->initiating_frame))
6003 {
6004 /* Case 2. Fall through. */
6005 }
6006 else
6007 {
6008 /* Case 3. */
6009 keep_going (ecs);
6010 return;
6011 }
6012 }
6013
6014 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6015 exists. */
6016 delete_step_resume_breakpoint (ecs->event_thread);
6017
6018 end_stepping_range (ecs);
6019 }
6020 return;
6021
6022 case BPSTAT_WHAT_SINGLE:
6023 if (debug_infrun)
6024 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6025 ecs->event_thread->stepping_over_breakpoint = 1;
6026 /* Still need to check other stuff, at least the case where we
6027 are stepping and step out of the right range. */
6028 break;
6029
6030 case BPSTAT_WHAT_STEP_RESUME:
6031 if (debug_infrun)
6032 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6033
6034 delete_step_resume_breakpoint (ecs->event_thread);
6035 if (ecs->event_thread->control.proceed_to_finish
6036 && execution_direction == EXEC_REVERSE)
6037 {
6038 struct thread_info *tp = ecs->event_thread;
6039
6040 /* We are finishing a function in reverse, and just hit the
6041 step-resume breakpoint at the start address of the
6042 function, and we're almost there -- just need to back up
6043 by one more single-step, which should take us back to the
6044 function call. */
6045 tp->control.step_range_start = tp->control.step_range_end = 1;
6046 keep_going (ecs);
6047 return;
6048 }
6049 fill_in_stop_func (gdbarch, ecs);
6050 if (stop_pc == ecs->stop_func_start
6051 && execution_direction == EXEC_REVERSE)
6052 {
6053 /* We are stepping over a function call in reverse, and just
6054 hit the step-resume breakpoint at the start address of
6055 the function. Go back to single-stepping, which should
6056 take us back to the function call. */
6057 ecs->event_thread->stepping_over_breakpoint = 1;
6058 keep_going (ecs);
6059 return;
6060 }
6061 break;
6062
6063 case BPSTAT_WHAT_STOP_NOISY:
6064 if (debug_infrun)
6065 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6066 stop_print_frame = 1;
6067
6068 /* Assume the thread stopped for a breapoint. We'll still check
6069 whether a/the breakpoint is there when the thread is next
6070 resumed. */
6071 ecs->event_thread->stepping_over_breakpoint = 1;
6072
6073 stop_waiting (ecs);
6074 return;
6075
6076 case BPSTAT_WHAT_STOP_SILENT:
6077 if (debug_infrun)
6078 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6079 stop_print_frame = 0;
6080
6081 /* Assume the thread stopped for a breapoint. We'll still check
6082 whether a/the breakpoint is there when the thread is next
6083 resumed. */
6084 ecs->event_thread->stepping_over_breakpoint = 1;
6085 stop_waiting (ecs);
6086 return;
6087
6088 case BPSTAT_WHAT_HP_STEP_RESUME:
6089 if (debug_infrun)
6090 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6091
6092 delete_step_resume_breakpoint (ecs->event_thread);
6093 if (ecs->event_thread->step_after_step_resume_breakpoint)
6094 {
6095 /* Back when the step-resume breakpoint was inserted, we
6096 were trying to single-step off a breakpoint. Go back to
6097 doing that. */
6098 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6099 ecs->event_thread->stepping_over_breakpoint = 1;
6100 keep_going (ecs);
6101 return;
6102 }
6103 break;
6104
6105 case BPSTAT_WHAT_KEEP_CHECKING:
6106 break;
6107 }
6108
6109 /* If we stepped a permanent breakpoint and we had a high priority
6110 step-resume breakpoint for the address we stepped, but we didn't
6111 hit it, then we must have stepped into the signal handler. The
6112 step-resume was only necessary to catch the case of _not_
6113 stepping into the handler, so delete it, and fall through to
6114 checking whether the step finished. */
6115 if (ecs->event_thread->stepped_breakpoint)
6116 {
6117 struct breakpoint *sr_bp
6118 = ecs->event_thread->control.step_resume_breakpoint;
6119
6120 if (sr_bp != NULL
6121 && sr_bp->loc->permanent
6122 && sr_bp->type == bp_hp_step_resume
6123 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6124 {
6125 if (debug_infrun)
6126 fprintf_unfiltered (gdb_stdlog,
6127 "infrun: stepped permanent breakpoint, stopped in "
6128 "handler\n");
6129 delete_step_resume_breakpoint (ecs->event_thread);
6130 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6131 }
6132 }
6133
6134 /* We come here if we hit a breakpoint but should not stop for it.
6135 Possibly we also were stepping and should stop for that. So fall
6136 through and test for stepping. But, if not stepping, do not
6137 stop. */
6138
6139 /* In all-stop mode, if we're currently stepping but have stopped in
6140 some other thread, we need to switch back to the stepped thread. */
6141 if (switch_back_to_stepped_thread (ecs))
6142 return;
6143
6144 if (ecs->event_thread->control.step_resume_breakpoint)
6145 {
6146 if (debug_infrun)
6147 fprintf_unfiltered (gdb_stdlog,
6148 "infrun: step-resume breakpoint is inserted\n");
6149
6150 /* Having a step-resume breakpoint overrides anything
6151 else having to do with stepping commands until
6152 that breakpoint is reached. */
6153 keep_going (ecs);
6154 return;
6155 }
6156
6157 if (ecs->event_thread->control.step_range_end == 0)
6158 {
6159 if (debug_infrun)
6160 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6161 /* Likewise if we aren't even stepping. */
6162 keep_going (ecs);
6163 return;
6164 }
6165
6166 /* Re-fetch current thread's frame in case the code above caused
6167 the frame cache to be re-initialized, making our FRAME variable
6168 a dangling pointer. */
6169 frame = get_current_frame ();
6170 gdbarch = get_frame_arch (frame);
6171 fill_in_stop_func (gdbarch, ecs);
6172
6173 /* If stepping through a line, keep going if still within it.
6174
6175 Note that step_range_end is the address of the first instruction
6176 beyond the step range, and NOT the address of the last instruction
6177 within it!
6178
6179 Note also that during reverse execution, we may be stepping
6180 through a function epilogue and therefore must detect when
6181 the current-frame changes in the middle of a line. */
6182
6183 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6184 && (execution_direction != EXEC_REVERSE
6185 || frame_id_eq (get_frame_id (frame),
6186 ecs->event_thread->control.step_frame_id)))
6187 {
6188 if (debug_infrun)
6189 fprintf_unfiltered
6190 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6191 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6192 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6193
6194 /* Tentatively re-enable range stepping; `resume' disables it if
6195 necessary (e.g., if we're stepping over a breakpoint or we
6196 have software watchpoints). */
6197 ecs->event_thread->control.may_range_step = 1;
6198
6199 /* When stepping backward, stop at beginning of line range
6200 (unless it's the function entry point, in which case
6201 keep going back to the call point). */
6202 if (stop_pc == ecs->event_thread->control.step_range_start
6203 && stop_pc != ecs->stop_func_start
6204 && execution_direction == EXEC_REVERSE)
6205 end_stepping_range (ecs);
6206 else
6207 keep_going (ecs);
6208
6209 return;
6210 }
6211
6212 /* We stepped out of the stepping range. */
6213
6214 /* If we are stepping at the source level and entered the runtime
6215 loader dynamic symbol resolution code...
6216
6217 EXEC_FORWARD: we keep on single stepping until we exit the run
6218 time loader code and reach the callee's address.
6219
6220 EXEC_REVERSE: we've already executed the callee (backward), and
6221 the runtime loader code is handled just like any other
6222 undebuggable function call. Now we need only keep stepping
6223 backward through the trampoline code, and that's handled further
6224 down, so there is nothing for us to do here. */
6225
6226 if (execution_direction != EXEC_REVERSE
6227 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6228 && in_solib_dynsym_resolve_code (stop_pc))
6229 {
6230 CORE_ADDR pc_after_resolver =
6231 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6232
6233 if (debug_infrun)
6234 fprintf_unfiltered (gdb_stdlog,
6235 "infrun: stepped into dynsym resolve code\n");
6236
6237 if (pc_after_resolver)
6238 {
6239 /* Set up a step-resume breakpoint at the address
6240 indicated by SKIP_SOLIB_RESOLVER. */
6241 struct symtab_and_line sr_sal;
6242
6243 init_sal (&sr_sal);
6244 sr_sal.pc = pc_after_resolver;
6245 sr_sal.pspace = get_frame_program_space (frame);
6246
6247 insert_step_resume_breakpoint_at_sal (gdbarch,
6248 sr_sal, null_frame_id);
6249 }
6250
6251 keep_going (ecs);
6252 return;
6253 }
6254
6255 if (ecs->event_thread->control.step_range_end != 1
6256 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6257 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6258 && get_frame_type (frame) == SIGTRAMP_FRAME)
6259 {
6260 if (debug_infrun)
6261 fprintf_unfiltered (gdb_stdlog,
6262 "infrun: stepped into signal trampoline\n");
6263 /* The inferior, while doing a "step" or "next", has ended up in
6264 a signal trampoline (either by a signal being delivered or by
6265 the signal handler returning). Just single-step until the
6266 inferior leaves the trampoline (either by calling the handler
6267 or returning). */
6268 keep_going (ecs);
6269 return;
6270 }
6271
6272 /* If we're in the return path from a shared library trampoline,
6273 we want to proceed through the trampoline when stepping. */
6274 /* macro/2012-04-25: This needs to come before the subroutine
6275 call check below as on some targets return trampolines look
6276 like subroutine calls (MIPS16 return thunks). */
6277 if (gdbarch_in_solib_return_trampoline (gdbarch,
6278 stop_pc, ecs->stop_func_name)
6279 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6280 {
6281 /* Determine where this trampoline returns. */
6282 CORE_ADDR real_stop_pc;
6283
6284 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6285
6286 if (debug_infrun)
6287 fprintf_unfiltered (gdb_stdlog,
6288 "infrun: stepped into solib return tramp\n");
6289
6290 /* Only proceed through if we know where it's going. */
6291 if (real_stop_pc)
6292 {
6293 /* And put the step-breakpoint there and go until there. */
6294 struct symtab_and_line sr_sal;
6295
6296 init_sal (&sr_sal); /* initialize to zeroes */
6297 sr_sal.pc = real_stop_pc;
6298 sr_sal.section = find_pc_overlay (sr_sal.pc);
6299 sr_sal.pspace = get_frame_program_space (frame);
6300
6301 /* Do not specify what the fp should be when we stop since
6302 on some machines the prologue is where the new fp value
6303 is established. */
6304 insert_step_resume_breakpoint_at_sal (gdbarch,
6305 sr_sal, null_frame_id);
6306
6307 /* Restart without fiddling with the step ranges or
6308 other state. */
6309 keep_going (ecs);
6310 return;
6311 }
6312 }
6313
6314 /* Check for subroutine calls. The check for the current frame
6315 equalling the step ID is not necessary - the check of the
6316 previous frame's ID is sufficient - but it is a common case and
6317 cheaper than checking the previous frame's ID.
6318
6319 NOTE: frame_id_eq will never report two invalid frame IDs as
6320 being equal, so to get into this block, both the current and
6321 previous frame must have valid frame IDs. */
6322 /* The outer_frame_id check is a heuristic to detect stepping
6323 through startup code. If we step over an instruction which
6324 sets the stack pointer from an invalid value to a valid value,
6325 we may detect that as a subroutine call from the mythical
6326 "outermost" function. This could be fixed by marking
6327 outermost frames as !stack_p,code_p,special_p. Then the
6328 initial outermost frame, before sp was valid, would
6329 have code_addr == &_start. See the comment in frame_id_eq
6330 for more. */
6331 if (!frame_id_eq (get_stack_frame_id (frame),
6332 ecs->event_thread->control.step_stack_frame_id)
6333 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6334 ecs->event_thread->control.step_stack_frame_id)
6335 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6336 outer_frame_id)
6337 || (ecs->event_thread->control.step_start_function
6338 != find_pc_function (stop_pc)))))
6339 {
6340 CORE_ADDR real_stop_pc;
6341
6342 if (debug_infrun)
6343 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6344
6345 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6346 {
6347 /* I presume that step_over_calls is only 0 when we're
6348 supposed to be stepping at the assembly language level
6349 ("stepi"). Just stop. */
6350 /* And this works the same backward as frontward. MVS */
6351 end_stepping_range (ecs);
6352 return;
6353 }
6354
6355 /* Reverse stepping through solib trampolines. */
6356
6357 if (execution_direction == EXEC_REVERSE
6358 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6359 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6360 || (ecs->stop_func_start == 0
6361 && in_solib_dynsym_resolve_code (stop_pc))))
6362 {
6363 /* Any solib trampoline code can be handled in reverse
6364 by simply continuing to single-step. We have already
6365 executed the solib function (backwards), and a few
6366 steps will take us back through the trampoline to the
6367 caller. */
6368 keep_going (ecs);
6369 return;
6370 }
6371
6372 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6373 {
6374 /* We're doing a "next".
6375
6376 Normal (forward) execution: set a breakpoint at the
6377 callee's return address (the address at which the caller
6378 will resume).
6379
6380 Reverse (backward) execution. set the step-resume
6381 breakpoint at the start of the function that we just
6382 stepped into (backwards), and continue to there. When we
6383 get there, we'll need to single-step back to the caller. */
6384
6385 if (execution_direction == EXEC_REVERSE)
6386 {
6387 /* If we're already at the start of the function, we've either
6388 just stepped backward into a single instruction function,
6389 or stepped back out of a signal handler to the first instruction
6390 of the function. Just keep going, which will single-step back
6391 to the caller. */
6392 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6393 {
6394 struct symtab_and_line sr_sal;
6395
6396 /* Normal function call return (static or dynamic). */
6397 init_sal (&sr_sal);
6398 sr_sal.pc = ecs->stop_func_start;
6399 sr_sal.pspace = get_frame_program_space (frame);
6400 insert_step_resume_breakpoint_at_sal (gdbarch,
6401 sr_sal, null_frame_id);
6402 }
6403 }
6404 else
6405 insert_step_resume_breakpoint_at_caller (frame);
6406
6407 keep_going (ecs);
6408 return;
6409 }
6410
6411 /* If we are in a function call trampoline (a stub between the
6412 calling routine and the real function), locate the real
6413 function. That's what tells us (a) whether we want to step
6414 into it at all, and (b) what prologue we want to run to the
6415 end of, if we do step into it. */
6416 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6417 if (real_stop_pc == 0)
6418 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6419 if (real_stop_pc != 0)
6420 ecs->stop_func_start = real_stop_pc;
6421
6422 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6423 {
6424 struct symtab_and_line sr_sal;
6425
6426 init_sal (&sr_sal);
6427 sr_sal.pc = ecs->stop_func_start;
6428 sr_sal.pspace = get_frame_program_space (frame);
6429
6430 insert_step_resume_breakpoint_at_sal (gdbarch,
6431 sr_sal, null_frame_id);
6432 keep_going (ecs);
6433 return;
6434 }
6435
6436 /* If we have line number information for the function we are
6437 thinking of stepping into and the function isn't on the skip
6438 list, step into it.
6439
6440 If there are several symtabs at that PC (e.g. with include
6441 files), just want to know whether *any* of them have line
6442 numbers. find_pc_line handles this. */
6443 {
6444 struct symtab_and_line tmp_sal;
6445
6446 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6447 if (tmp_sal.line != 0
6448 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6449 &tmp_sal))
6450 {
6451 if (execution_direction == EXEC_REVERSE)
6452 handle_step_into_function_backward (gdbarch, ecs);
6453 else
6454 handle_step_into_function (gdbarch, ecs);
6455 return;
6456 }
6457 }
6458
6459 /* If we have no line number and the step-stop-if-no-debug is
6460 set, we stop the step so that the user has a chance to switch
6461 in assembly mode. */
6462 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6463 && step_stop_if_no_debug)
6464 {
6465 end_stepping_range (ecs);
6466 return;
6467 }
6468
6469 if (execution_direction == EXEC_REVERSE)
6470 {
6471 /* If we're already at the start of the function, we've either just
6472 stepped backward into a single instruction function without line
6473 number info, or stepped back out of a signal handler to the first
6474 instruction of the function without line number info. Just keep
6475 going, which will single-step back to the caller. */
6476 if (ecs->stop_func_start != stop_pc)
6477 {
6478 /* Set a breakpoint at callee's start address.
6479 From there we can step once and be back in the caller. */
6480 struct symtab_and_line sr_sal;
6481
6482 init_sal (&sr_sal);
6483 sr_sal.pc = ecs->stop_func_start;
6484 sr_sal.pspace = get_frame_program_space (frame);
6485 insert_step_resume_breakpoint_at_sal (gdbarch,
6486 sr_sal, null_frame_id);
6487 }
6488 }
6489 else
6490 /* Set a breakpoint at callee's return address (the address
6491 at which the caller will resume). */
6492 insert_step_resume_breakpoint_at_caller (frame);
6493
6494 keep_going (ecs);
6495 return;
6496 }
6497
6498 /* Reverse stepping through solib trampolines. */
6499
6500 if (execution_direction == EXEC_REVERSE
6501 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6502 {
6503 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6504 || (ecs->stop_func_start == 0
6505 && in_solib_dynsym_resolve_code (stop_pc)))
6506 {
6507 /* Any solib trampoline code can be handled in reverse
6508 by simply continuing to single-step. We have already
6509 executed the solib function (backwards), and a few
6510 steps will take us back through the trampoline to the
6511 caller. */
6512 keep_going (ecs);
6513 return;
6514 }
6515 else if (in_solib_dynsym_resolve_code (stop_pc))
6516 {
6517 /* Stepped backward into the solib dynsym resolver.
6518 Set a breakpoint at its start and continue, then
6519 one more step will take us out. */
6520 struct symtab_and_line sr_sal;
6521
6522 init_sal (&sr_sal);
6523 sr_sal.pc = ecs->stop_func_start;
6524 sr_sal.pspace = get_frame_program_space (frame);
6525 insert_step_resume_breakpoint_at_sal (gdbarch,
6526 sr_sal, null_frame_id);
6527 keep_going (ecs);
6528 return;
6529 }
6530 }
6531
6532 stop_pc_sal = find_pc_line (stop_pc, 0);
6533
6534 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6535 the trampoline processing logic, however, there are some trampolines
6536 that have no names, so we should do trampoline handling first. */
6537 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6538 && ecs->stop_func_name == NULL
6539 && stop_pc_sal.line == 0)
6540 {
6541 if (debug_infrun)
6542 fprintf_unfiltered (gdb_stdlog,
6543 "infrun: stepped into undebuggable function\n");
6544
6545 /* The inferior just stepped into, or returned to, an
6546 undebuggable function (where there is no debugging information
6547 and no line number corresponding to the address where the
6548 inferior stopped). Since we want to skip this kind of code,
6549 we keep going until the inferior returns from this
6550 function - unless the user has asked us not to (via
6551 set step-mode) or we no longer know how to get back
6552 to the call site. */
6553 if (step_stop_if_no_debug
6554 || !frame_id_p (frame_unwind_caller_id (frame)))
6555 {
6556 /* If we have no line number and the step-stop-if-no-debug
6557 is set, we stop the step so that the user has a chance to
6558 switch in assembly mode. */
6559 end_stepping_range (ecs);
6560 return;
6561 }
6562 else
6563 {
6564 /* Set a breakpoint at callee's return address (the address
6565 at which the caller will resume). */
6566 insert_step_resume_breakpoint_at_caller (frame);
6567 keep_going (ecs);
6568 return;
6569 }
6570 }
6571
6572 if (ecs->event_thread->control.step_range_end == 1)
6573 {
6574 /* It is stepi or nexti. We always want to stop stepping after
6575 one instruction. */
6576 if (debug_infrun)
6577 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6578 end_stepping_range (ecs);
6579 return;
6580 }
6581
6582 if (stop_pc_sal.line == 0)
6583 {
6584 /* We have no line number information. That means to stop
6585 stepping (does this always happen right after one instruction,
6586 when we do "s" in a function with no line numbers,
6587 or can this happen as a result of a return or longjmp?). */
6588 if (debug_infrun)
6589 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6590 end_stepping_range (ecs);
6591 return;
6592 }
6593
6594 /* Look for "calls" to inlined functions, part one. If the inline
6595 frame machinery detected some skipped call sites, we have entered
6596 a new inline function. */
6597
6598 if (frame_id_eq (get_frame_id (get_current_frame ()),
6599 ecs->event_thread->control.step_frame_id)
6600 && inline_skipped_frames (ecs->ptid))
6601 {
6602 struct symtab_and_line call_sal;
6603
6604 if (debug_infrun)
6605 fprintf_unfiltered (gdb_stdlog,
6606 "infrun: stepped into inlined function\n");
6607
6608 find_frame_sal (get_current_frame (), &call_sal);
6609
6610 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6611 {
6612 /* For "step", we're going to stop. But if the call site
6613 for this inlined function is on the same source line as
6614 we were previously stepping, go down into the function
6615 first. Otherwise stop at the call site. */
6616
6617 if (call_sal.line == ecs->event_thread->current_line
6618 && call_sal.symtab == ecs->event_thread->current_symtab)
6619 step_into_inline_frame (ecs->ptid);
6620
6621 end_stepping_range (ecs);
6622 return;
6623 }
6624 else
6625 {
6626 /* For "next", we should stop at the call site if it is on a
6627 different source line. Otherwise continue through the
6628 inlined function. */
6629 if (call_sal.line == ecs->event_thread->current_line
6630 && call_sal.symtab == ecs->event_thread->current_symtab)
6631 keep_going (ecs);
6632 else
6633 end_stepping_range (ecs);
6634 return;
6635 }
6636 }
6637
6638 /* Look for "calls" to inlined functions, part two. If we are still
6639 in the same real function we were stepping through, but we have
6640 to go further up to find the exact frame ID, we are stepping
6641 through a more inlined call beyond its call site. */
6642
6643 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6644 && !frame_id_eq (get_frame_id (get_current_frame ()),
6645 ecs->event_thread->control.step_frame_id)
6646 && stepped_in_from (get_current_frame (),
6647 ecs->event_thread->control.step_frame_id))
6648 {
6649 if (debug_infrun)
6650 fprintf_unfiltered (gdb_stdlog,
6651 "infrun: stepping through inlined function\n");
6652
6653 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6654 keep_going (ecs);
6655 else
6656 end_stepping_range (ecs);
6657 return;
6658 }
6659
6660 if ((stop_pc == stop_pc_sal.pc)
6661 && (ecs->event_thread->current_line != stop_pc_sal.line
6662 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6663 {
6664 /* We are at the start of a different line. So stop. Note that
6665 we don't stop if we step into the middle of a different line.
6666 That is said to make things like for (;;) statements work
6667 better. */
6668 if (debug_infrun)
6669 fprintf_unfiltered (gdb_stdlog,
6670 "infrun: stepped to a different line\n");
6671 end_stepping_range (ecs);
6672 return;
6673 }
6674
6675 /* We aren't done stepping.
6676
6677 Optimize by setting the stepping range to the line.
6678 (We might not be in the original line, but if we entered a
6679 new line in mid-statement, we continue stepping. This makes
6680 things like for(;;) statements work better.) */
6681
6682 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6683 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6684 ecs->event_thread->control.may_range_step = 1;
6685 set_step_info (frame, stop_pc_sal);
6686
6687 if (debug_infrun)
6688 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6689 keep_going (ecs);
6690 }
6691
6692 /* In all-stop mode, if we're currently stepping but have stopped in
6693 some other thread, we may need to switch back to the stepped
6694 thread. Returns true we set the inferior running, false if we left
6695 it stopped (and the event needs further processing). */
6696
6697 static int
6698 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6699 {
6700 if (!target_is_non_stop_p ())
6701 {
6702 struct thread_info *tp;
6703 struct thread_info *stepping_thread;
6704
6705 /* If any thread is blocked on some internal breakpoint, and we
6706 simply need to step over that breakpoint to get it going
6707 again, do that first. */
6708
6709 /* However, if we see an event for the stepping thread, then we
6710 know all other threads have been moved past their breakpoints
6711 already. Let the caller check whether the step is finished,
6712 etc., before deciding to move it past a breakpoint. */
6713 if (ecs->event_thread->control.step_range_end != 0)
6714 return 0;
6715
6716 /* Check if the current thread is blocked on an incomplete
6717 step-over, interrupted by a random signal. */
6718 if (ecs->event_thread->control.trap_expected
6719 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6720 {
6721 if (debug_infrun)
6722 {
6723 fprintf_unfiltered (gdb_stdlog,
6724 "infrun: need to finish step-over of [%s]\n",
6725 target_pid_to_str (ecs->event_thread->ptid));
6726 }
6727 keep_going (ecs);
6728 return 1;
6729 }
6730
6731 /* Check if the current thread is blocked by a single-step
6732 breakpoint of another thread. */
6733 if (ecs->hit_singlestep_breakpoint)
6734 {
6735 if (debug_infrun)
6736 {
6737 fprintf_unfiltered (gdb_stdlog,
6738 "infrun: need to step [%s] over single-step "
6739 "breakpoint\n",
6740 target_pid_to_str (ecs->ptid));
6741 }
6742 keep_going (ecs);
6743 return 1;
6744 }
6745
6746 /* If this thread needs yet another step-over (e.g., stepping
6747 through a delay slot), do it first before moving on to
6748 another thread. */
6749 if (thread_still_needs_step_over (ecs->event_thread))
6750 {
6751 if (debug_infrun)
6752 {
6753 fprintf_unfiltered (gdb_stdlog,
6754 "infrun: thread [%s] still needs step-over\n",
6755 target_pid_to_str (ecs->event_thread->ptid));
6756 }
6757 keep_going (ecs);
6758 return 1;
6759 }
6760
6761 /* If scheduler locking applies even if not stepping, there's no
6762 need to walk over threads. Above we've checked whether the
6763 current thread is stepping. If some other thread not the
6764 event thread is stepping, then it must be that scheduler
6765 locking is not in effect. */
6766 if (schedlock_applies (ecs->event_thread))
6767 return 0;
6768
6769 /* Otherwise, we no longer expect a trap in the current thread.
6770 Clear the trap_expected flag before switching back -- this is
6771 what keep_going does as well, if we call it. */
6772 ecs->event_thread->control.trap_expected = 0;
6773
6774 /* Likewise, clear the signal if it should not be passed. */
6775 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6776 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6777
6778 /* Do all pending step-overs before actually proceeding with
6779 step/next/etc. */
6780 if (start_step_over ())
6781 {
6782 prepare_to_wait (ecs);
6783 return 1;
6784 }
6785
6786 /* Look for the stepping/nexting thread. */
6787 stepping_thread = NULL;
6788
6789 ALL_NON_EXITED_THREADS (tp)
6790 {
6791 /* Ignore threads of processes the caller is not
6792 resuming. */
6793 if (!sched_multi
6794 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
6795 continue;
6796
6797 /* When stepping over a breakpoint, we lock all threads
6798 except the one that needs to move past the breakpoint.
6799 If a non-event thread has this set, the "incomplete
6800 step-over" check above should have caught it earlier. */
6801 if (tp->control.trap_expected)
6802 {
6803 internal_error (__FILE__, __LINE__,
6804 "[%s] has inconsistent state: "
6805 "trap_expected=%d\n",
6806 target_pid_to_str (tp->ptid),
6807 tp->control.trap_expected);
6808 }
6809
6810 /* Did we find the stepping thread? */
6811 if (tp->control.step_range_end)
6812 {
6813 /* Yep. There should only one though. */
6814 gdb_assert (stepping_thread == NULL);
6815
6816 /* The event thread is handled at the top, before we
6817 enter this loop. */
6818 gdb_assert (tp != ecs->event_thread);
6819
6820 /* If some thread other than the event thread is
6821 stepping, then scheduler locking can't be in effect,
6822 otherwise we wouldn't have resumed the current event
6823 thread in the first place. */
6824 gdb_assert (!schedlock_applies (tp));
6825
6826 stepping_thread = tp;
6827 }
6828 }
6829
6830 if (stepping_thread != NULL)
6831 {
6832 if (debug_infrun)
6833 fprintf_unfiltered (gdb_stdlog,
6834 "infrun: switching back to stepped thread\n");
6835
6836 if (keep_going_stepped_thread (stepping_thread))
6837 {
6838 prepare_to_wait (ecs);
6839 return 1;
6840 }
6841 }
6842 }
6843
6844 return 0;
6845 }
6846
6847 /* Set a previously stepped thread back to stepping. Returns true on
6848 success, false if the resume is not possible (e.g., the thread
6849 vanished). */
6850
6851 static int
6852 keep_going_stepped_thread (struct thread_info *tp)
6853 {
6854 struct frame_info *frame;
6855 struct gdbarch *gdbarch;
6856 struct execution_control_state ecss;
6857 struct execution_control_state *ecs = &ecss;
6858
6859 /* If the stepping thread exited, then don't try to switch back and
6860 resume it, which could fail in several different ways depending
6861 on the target. Instead, just keep going.
6862
6863 We can find a stepping dead thread in the thread list in two
6864 cases:
6865
6866 - The target supports thread exit events, and when the target
6867 tries to delete the thread from the thread list, inferior_ptid
6868 pointed at the exiting thread. In such case, calling
6869 delete_thread does not really remove the thread from the list;
6870 instead, the thread is left listed, with 'exited' state.
6871
6872 - The target's debug interface does not support thread exit
6873 events, and so we have no idea whatsoever if the previously
6874 stepping thread is still alive. For that reason, we need to
6875 synchronously query the target now. */
6876
6877 if (is_exited (tp->ptid)
6878 || !target_thread_alive (tp->ptid))
6879 {
6880 if (debug_infrun)
6881 fprintf_unfiltered (gdb_stdlog,
6882 "infrun: not resuming previously "
6883 "stepped thread, it has vanished\n");
6884
6885 delete_thread (tp->ptid);
6886 return 0;
6887 }
6888
6889 if (debug_infrun)
6890 fprintf_unfiltered (gdb_stdlog,
6891 "infrun: resuming previously stepped thread\n");
6892
6893 reset_ecs (ecs, tp);
6894 switch_to_thread (tp->ptid);
6895
6896 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
6897 frame = get_current_frame ();
6898 gdbarch = get_frame_arch (frame);
6899
6900 /* If the PC of the thread we were trying to single-step has
6901 changed, then that thread has trapped or been signaled, but the
6902 event has not been reported to GDB yet. Re-poll the target
6903 looking for this particular thread's event (i.e. temporarily
6904 enable schedlock) by:
6905
6906 - setting a break at the current PC
6907 - resuming that particular thread, only (by setting trap
6908 expected)
6909
6910 This prevents us continuously moving the single-step breakpoint
6911 forward, one instruction at a time, overstepping. */
6912
6913 if (stop_pc != tp->prev_pc)
6914 {
6915 ptid_t resume_ptid;
6916
6917 if (debug_infrun)
6918 fprintf_unfiltered (gdb_stdlog,
6919 "infrun: expected thread advanced also (%s -> %s)\n",
6920 paddress (target_gdbarch (), tp->prev_pc),
6921 paddress (target_gdbarch (), stop_pc));
6922
6923 /* Clear the info of the previous step-over, as it's no longer
6924 valid (if the thread was trying to step over a breakpoint, it
6925 has already succeeded). It's what keep_going would do too,
6926 if we called it. Do this before trying to insert the sss
6927 breakpoint, otherwise if we were previously trying to step
6928 over this exact address in another thread, the breakpoint is
6929 skipped. */
6930 clear_step_over_info ();
6931 tp->control.trap_expected = 0;
6932
6933 insert_single_step_breakpoint (get_frame_arch (frame),
6934 get_frame_address_space (frame),
6935 stop_pc);
6936
6937 tp->resumed = 1;
6938 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
6939 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
6940 }
6941 else
6942 {
6943 if (debug_infrun)
6944 fprintf_unfiltered (gdb_stdlog,
6945 "infrun: expected thread still hasn't advanced\n");
6946
6947 keep_going_pass_signal (ecs);
6948 }
6949 return 1;
6950 }
6951
6952 /* Is thread TP in the middle of (software or hardware)
6953 single-stepping? (Note the result of this function must never be
6954 passed directly as target_resume's STEP parameter.) */
6955
6956 static int
6957 currently_stepping (struct thread_info *tp)
6958 {
6959 return ((tp->control.step_range_end
6960 && tp->control.step_resume_breakpoint == NULL)
6961 || tp->control.trap_expected
6962 || tp->stepped_breakpoint
6963 || bpstat_should_step ());
6964 }
6965
6966 /* Inferior has stepped into a subroutine call with source code that
6967 we should not step over. Do step to the first line of code in
6968 it. */
6969
6970 static void
6971 handle_step_into_function (struct gdbarch *gdbarch,
6972 struct execution_control_state *ecs)
6973 {
6974 struct compunit_symtab *cust;
6975 struct symtab_and_line stop_func_sal, sr_sal;
6976
6977 fill_in_stop_func (gdbarch, ecs);
6978
6979 cust = find_pc_compunit_symtab (stop_pc);
6980 if (cust != NULL && compunit_language (cust) != language_asm)
6981 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
6982 ecs->stop_func_start);
6983
6984 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
6985 /* Use the step_resume_break to step until the end of the prologue,
6986 even if that involves jumps (as it seems to on the vax under
6987 4.2). */
6988 /* If the prologue ends in the middle of a source line, continue to
6989 the end of that source line (if it is still within the function).
6990 Otherwise, just go to end of prologue. */
6991 if (stop_func_sal.end
6992 && stop_func_sal.pc != ecs->stop_func_start
6993 && stop_func_sal.end < ecs->stop_func_end)
6994 ecs->stop_func_start = stop_func_sal.end;
6995
6996 /* Architectures which require breakpoint adjustment might not be able
6997 to place a breakpoint at the computed address. If so, the test
6998 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
6999 ecs->stop_func_start to an address at which a breakpoint may be
7000 legitimately placed.
7001
7002 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7003 made, GDB will enter an infinite loop when stepping through
7004 optimized code consisting of VLIW instructions which contain
7005 subinstructions corresponding to different source lines. On
7006 FR-V, it's not permitted to place a breakpoint on any but the
7007 first subinstruction of a VLIW instruction. When a breakpoint is
7008 set, GDB will adjust the breakpoint address to the beginning of
7009 the VLIW instruction. Thus, we need to make the corresponding
7010 adjustment here when computing the stop address. */
7011
7012 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7013 {
7014 ecs->stop_func_start
7015 = gdbarch_adjust_breakpoint_address (gdbarch,
7016 ecs->stop_func_start);
7017 }
7018
7019 if (ecs->stop_func_start == stop_pc)
7020 {
7021 /* We are already there: stop now. */
7022 end_stepping_range (ecs);
7023 return;
7024 }
7025 else
7026 {
7027 /* Put the step-breakpoint there and go until there. */
7028 init_sal (&sr_sal); /* initialize to zeroes */
7029 sr_sal.pc = ecs->stop_func_start;
7030 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7031 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7032
7033 /* Do not specify what the fp should be when we stop since on
7034 some machines the prologue is where the new fp value is
7035 established. */
7036 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7037
7038 /* And make sure stepping stops right away then. */
7039 ecs->event_thread->control.step_range_end
7040 = ecs->event_thread->control.step_range_start;
7041 }
7042 keep_going (ecs);
7043 }
7044
7045 /* Inferior has stepped backward into a subroutine call with source
7046 code that we should not step over. Do step to the beginning of the
7047 last line of code in it. */
7048
7049 static void
7050 handle_step_into_function_backward (struct gdbarch *gdbarch,
7051 struct execution_control_state *ecs)
7052 {
7053 struct compunit_symtab *cust;
7054 struct symtab_and_line stop_func_sal;
7055
7056 fill_in_stop_func (gdbarch, ecs);
7057
7058 cust = find_pc_compunit_symtab (stop_pc);
7059 if (cust != NULL && compunit_language (cust) != language_asm)
7060 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7061 ecs->stop_func_start);
7062
7063 stop_func_sal = find_pc_line (stop_pc, 0);
7064
7065 /* OK, we're just going to keep stepping here. */
7066 if (stop_func_sal.pc == stop_pc)
7067 {
7068 /* We're there already. Just stop stepping now. */
7069 end_stepping_range (ecs);
7070 }
7071 else
7072 {
7073 /* Else just reset the step range and keep going.
7074 No step-resume breakpoint, they don't work for
7075 epilogues, which can have multiple entry paths. */
7076 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7077 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7078 keep_going (ecs);
7079 }
7080 return;
7081 }
7082
7083 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7084 This is used to both functions and to skip over code. */
7085
7086 static void
7087 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7088 struct symtab_and_line sr_sal,
7089 struct frame_id sr_id,
7090 enum bptype sr_type)
7091 {
7092 /* There should never be more than one step-resume or longjmp-resume
7093 breakpoint per thread, so we should never be setting a new
7094 step_resume_breakpoint when one is already active. */
7095 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7096 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7097
7098 if (debug_infrun)
7099 fprintf_unfiltered (gdb_stdlog,
7100 "infrun: inserting step-resume breakpoint at %s\n",
7101 paddress (gdbarch, sr_sal.pc));
7102
7103 inferior_thread ()->control.step_resume_breakpoint
7104 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7105 }
7106
7107 void
7108 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7109 struct symtab_and_line sr_sal,
7110 struct frame_id sr_id)
7111 {
7112 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7113 sr_sal, sr_id,
7114 bp_step_resume);
7115 }
7116
7117 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7118 This is used to skip a potential signal handler.
7119
7120 This is called with the interrupted function's frame. The signal
7121 handler, when it returns, will resume the interrupted function at
7122 RETURN_FRAME.pc. */
7123
7124 static void
7125 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7126 {
7127 struct symtab_and_line sr_sal;
7128 struct gdbarch *gdbarch;
7129
7130 gdb_assert (return_frame != NULL);
7131 init_sal (&sr_sal); /* initialize to zeros */
7132
7133 gdbarch = get_frame_arch (return_frame);
7134 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7135 sr_sal.section = find_pc_overlay (sr_sal.pc);
7136 sr_sal.pspace = get_frame_program_space (return_frame);
7137
7138 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7139 get_stack_frame_id (return_frame),
7140 bp_hp_step_resume);
7141 }
7142
7143 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7144 is used to skip a function after stepping into it (for "next" or if
7145 the called function has no debugging information).
7146
7147 The current function has almost always been reached by single
7148 stepping a call or return instruction. NEXT_FRAME belongs to the
7149 current function, and the breakpoint will be set at the caller's
7150 resume address.
7151
7152 This is a separate function rather than reusing
7153 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7154 get_prev_frame, which may stop prematurely (see the implementation
7155 of frame_unwind_caller_id for an example). */
7156
7157 static void
7158 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7159 {
7160 struct symtab_and_line sr_sal;
7161 struct gdbarch *gdbarch;
7162
7163 /* We shouldn't have gotten here if we don't know where the call site
7164 is. */
7165 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7166
7167 init_sal (&sr_sal); /* initialize to zeros */
7168
7169 gdbarch = frame_unwind_caller_arch (next_frame);
7170 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7171 frame_unwind_caller_pc (next_frame));
7172 sr_sal.section = find_pc_overlay (sr_sal.pc);
7173 sr_sal.pspace = frame_unwind_program_space (next_frame);
7174
7175 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7176 frame_unwind_caller_id (next_frame));
7177 }
7178
7179 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7180 new breakpoint at the target of a jmp_buf. The handling of
7181 longjmp-resume uses the same mechanisms used for handling
7182 "step-resume" breakpoints. */
7183
7184 static void
7185 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7186 {
7187 /* There should never be more than one longjmp-resume breakpoint per
7188 thread, so we should never be setting a new
7189 longjmp_resume_breakpoint when one is already active. */
7190 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7191
7192 if (debug_infrun)
7193 fprintf_unfiltered (gdb_stdlog,
7194 "infrun: inserting longjmp-resume breakpoint at %s\n",
7195 paddress (gdbarch, pc));
7196
7197 inferior_thread ()->control.exception_resume_breakpoint =
7198 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7199 }
7200
7201 /* Insert an exception resume breakpoint. TP is the thread throwing
7202 the exception. The block B is the block of the unwinder debug hook
7203 function. FRAME is the frame corresponding to the call to this
7204 function. SYM is the symbol of the function argument holding the
7205 target PC of the exception. */
7206
7207 static void
7208 insert_exception_resume_breakpoint (struct thread_info *tp,
7209 const struct block *b,
7210 struct frame_info *frame,
7211 struct symbol *sym)
7212 {
7213 TRY
7214 {
7215 struct block_symbol vsym;
7216 struct value *value;
7217 CORE_ADDR handler;
7218 struct breakpoint *bp;
7219
7220 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7221 value = read_var_value (vsym.symbol, vsym.block, frame);
7222 /* If the value was optimized out, revert to the old behavior. */
7223 if (! value_optimized_out (value))
7224 {
7225 handler = value_as_address (value);
7226
7227 if (debug_infrun)
7228 fprintf_unfiltered (gdb_stdlog,
7229 "infrun: exception resume at %lx\n",
7230 (unsigned long) handler);
7231
7232 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7233 handler, bp_exception_resume);
7234
7235 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7236 frame = NULL;
7237
7238 bp->thread = tp->num;
7239 inferior_thread ()->control.exception_resume_breakpoint = bp;
7240 }
7241 }
7242 CATCH (e, RETURN_MASK_ERROR)
7243 {
7244 /* We want to ignore errors here. */
7245 }
7246 END_CATCH
7247 }
7248
7249 /* A helper for check_exception_resume that sets an
7250 exception-breakpoint based on a SystemTap probe. */
7251
7252 static void
7253 insert_exception_resume_from_probe (struct thread_info *tp,
7254 const struct bound_probe *probe,
7255 struct frame_info *frame)
7256 {
7257 struct value *arg_value;
7258 CORE_ADDR handler;
7259 struct breakpoint *bp;
7260
7261 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7262 if (!arg_value)
7263 return;
7264
7265 handler = value_as_address (arg_value);
7266
7267 if (debug_infrun)
7268 fprintf_unfiltered (gdb_stdlog,
7269 "infrun: exception resume at %s\n",
7270 paddress (get_objfile_arch (probe->objfile),
7271 handler));
7272
7273 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7274 handler, bp_exception_resume);
7275 bp->thread = tp->num;
7276 inferior_thread ()->control.exception_resume_breakpoint = bp;
7277 }
7278
7279 /* This is called when an exception has been intercepted. Check to
7280 see whether the exception's destination is of interest, and if so,
7281 set an exception resume breakpoint there. */
7282
7283 static void
7284 check_exception_resume (struct execution_control_state *ecs,
7285 struct frame_info *frame)
7286 {
7287 struct bound_probe probe;
7288 struct symbol *func;
7289
7290 /* First see if this exception unwinding breakpoint was set via a
7291 SystemTap probe point. If so, the probe has two arguments: the
7292 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7293 set a breakpoint there. */
7294 probe = find_probe_by_pc (get_frame_pc (frame));
7295 if (probe.probe)
7296 {
7297 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7298 return;
7299 }
7300
7301 func = get_frame_function (frame);
7302 if (!func)
7303 return;
7304
7305 TRY
7306 {
7307 const struct block *b;
7308 struct block_iterator iter;
7309 struct symbol *sym;
7310 int argno = 0;
7311
7312 /* The exception breakpoint is a thread-specific breakpoint on
7313 the unwinder's debug hook, declared as:
7314
7315 void _Unwind_DebugHook (void *cfa, void *handler);
7316
7317 The CFA argument indicates the frame to which control is
7318 about to be transferred. HANDLER is the destination PC.
7319
7320 We ignore the CFA and set a temporary breakpoint at HANDLER.
7321 This is not extremely efficient but it avoids issues in gdb
7322 with computing the DWARF CFA, and it also works even in weird
7323 cases such as throwing an exception from inside a signal
7324 handler. */
7325
7326 b = SYMBOL_BLOCK_VALUE (func);
7327 ALL_BLOCK_SYMBOLS (b, iter, sym)
7328 {
7329 if (!SYMBOL_IS_ARGUMENT (sym))
7330 continue;
7331
7332 if (argno == 0)
7333 ++argno;
7334 else
7335 {
7336 insert_exception_resume_breakpoint (ecs->event_thread,
7337 b, frame, sym);
7338 break;
7339 }
7340 }
7341 }
7342 CATCH (e, RETURN_MASK_ERROR)
7343 {
7344 }
7345 END_CATCH
7346 }
7347
7348 static void
7349 stop_waiting (struct execution_control_state *ecs)
7350 {
7351 if (debug_infrun)
7352 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7353
7354 clear_step_over_info ();
7355
7356 /* Let callers know we don't want to wait for the inferior anymore. */
7357 ecs->wait_some_more = 0;
7358
7359 /* If all-stop, but the target is always in non-stop mode, stop all
7360 threads now that we're presenting the stop to the user. */
7361 if (!non_stop && target_is_non_stop_p ())
7362 stop_all_threads ();
7363 }
7364
7365 /* Like keep_going, but passes the signal to the inferior, even if the
7366 signal is set to nopass. */
7367
7368 static void
7369 keep_going_pass_signal (struct execution_control_state *ecs)
7370 {
7371 /* Make sure normal_stop is called if we get a QUIT handled before
7372 reaching resume. */
7373 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7374
7375 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7376 gdb_assert (!ecs->event_thread->resumed);
7377
7378 /* Save the pc before execution, to compare with pc after stop. */
7379 ecs->event_thread->prev_pc
7380 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7381
7382 if (ecs->event_thread->control.trap_expected)
7383 {
7384 struct thread_info *tp = ecs->event_thread;
7385
7386 if (debug_infrun)
7387 fprintf_unfiltered (gdb_stdlog,
7388 "infrun: %s has trap_expected set, "
7389 "resuming to collect trap\n",
7390 target_pid_to_str (tp->ptid));
7391
7392 /* We haven't yet gotten our trap, and either: intercepted a
7393 non-signal event (e.g., a fork); or took a signal which we
7394 are supposed to pass through to the inferior. Simply
7395 continue. */
7396 discard_cleanups (old_cleanups);
7397 resume (ecs->event_thread->suspend.stop_signal);
7398 }
7399 else if (step_over_info_valid_p ())
7400 {
7401 /* Another thread is stepping over a breakpoint in-line. If
7402 this thread needs a step-over too, queue the request. In
7403 either case, this resume must be deferred for later. */
7404 struct thread_info *tp = ecs->event_thread;
7405
7406 if (ecs->hit_singlestep_breakpoint
7407 || thread_still_needs_step_over (tp))
7408 {
7409 if (debug_infrun)
7410 fprintf_unfiltered (gdb_stdlog,
7411 "infrun: step-over already in progress: "
7412 "step-over for %s deferred\n",
7413 target_pid_to_str (tp->ptid));
7414 thread_step_over_chain_enqueue (tp);
7415 }
7416 else
7417 {
7418 if (debug_infrun)
7419 fprintf_unfiltered (gdb_stdlog,
7420 "infrun: step-over in progress: "
7421 "resume of %s deferred\n",
7422 target_pid_to_str (tp->ptid));
7423 }
7424
7425 discard_cleanups (old_cleanups);
7426 }
7427 else
7428 {
7429 struct regcache *regcache = get_current_regcache ();
7430 int remove_bp;
7431 int remove_wps;
7432 enum step_over_what step_what;
7433
7434 /* Either the trap was not expected, but we are continuing
7435 anyway (if we got a signal, the user asked it be passed to
7436 the child)
7437 -- or --
7438 We got our expected trap, but decided we should resume from
7439 it.
7440
7441 We're going to run this baby now!
7442
7443 Note that insert_breakpoints won't try to re-insert
7444 already inserted breakpoints. Therefore, we don't
7445 care if breakpoints were already inserted, or not. */
7446
7447 /* If we need to step over a breakpoint, and we're not using
7448 displaced stepping to do so, insert all breakpoints
7449 (watchpoints, etc.) but the one we're stepping over, step one
7450 instruction, and then re-insert the breakpoint when that step
7451 is finished. */
7452
7453 step_what = thread_still_needs_step_over (ecs->event_thread);
7454
7455 remove_bp = (ecs->hit_singlestep_breakpoint
7456 || (step_what & STEP_OVER_BREAKPOINT));
7457 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7458
7459 /* We can't use displaced stepping if we need to step past a
7460 watchpoint. The instruction copied to the scratch pad would
7461 still trigger the watchpoint. */
7462 if (remove_bp
7463 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7464 {
7465 set_step_over_info (get_regcache_aspace (regcache),
7466 regcache_read_pc (regcache), remove_wps);
7467 }
7468 else if (remove_wps)
7469 set_step_over_info (NULL, 0, remove_wps);
7470
7471 /* If we now need to do an in-line step-over, we need to stop
7472 all other threads. Note this must be done before
7473 insert_breakpoints below, because that removes the breakpoint
7474 we're about to step over, otherwise other threads could miss
7475 it. */
7476 if (step_over_info_valid_p () && target_is_non_stop_p ())
7477 stop_all_threads ();
7478
7479 /* Stop stepping if inserting breakpoints fails. */
7480 TRY
7481 {
7482 insert_breakpoints ();
7483 }
7484 CATCH (e, RETURN_MASK_ERROR)
7485 {
7486 exception_print (gdb_stderr, e);
7487 stop_waiting (ecs);
7488 discard_cleanups (old_cleanups);
7489 return;
7490 }
7491 END_CATCH
7492
7493 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7494
7495 discard_cleanups (old_cleanups);
7496 resume (ecs->event_thread->suspend.stop_signal);
7497 }
7498
7499 prepare_to_wait (ecs);
7500 }
7501
7502 /* Called when we should continue running the inferior, because the
7503 current event doesn't cause a user visible stop. This does the
7504 resuming part; waiting for the next event is done elsewhere. */
7505
7506 static void
7507 keep_going (struct execution_control_state *ecs)
7508 {
7509 if (ecs->event_thread->control.trap_expected
7510 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7511 ecs->event_thread->control.trap_expected = 0;
7512
7513 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7514 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7515 keep_going_pass_signal (ecs);
7516 }
7517
7518 /* This function normally comes after a resume, before
7519 handle_inferior_event exits. It takes care of any last bits of
7520 housekeeping, and sets the all-important wait_some_more flag. */
7521
7522 static void
7523 prepare_to_wait (struct execution_control_state *ecs)
7524 {
7525 if (debug_infrun)
7526 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7527
7528 ecs->wait_some_more = 1;
7529
7530 if (!target_is_async_p ())
7531 mark_infrun_async_event_handler ();
7532 }
7533
7534 /* We are done with the step range of a step/next/si/ni command.
7535 Called once for each n of a "step n" operation. */
7536
7537 static void
7538 end_stepping_range (struct execution_control_state *ecs)
7539 {
7540 ecs->event_thread->control.stop_step = 1;
7541 stop_waiting (ecs);
7542 }
7543
7544 /* Several print_*_reason functions to print why the inferior has stopped.
7545 We always print something when the inferior exits, or receives a signal.
7546 The rest of the cases are dealt with later on in normal_stop and
7547 print_it_typical. Ideally there should be a call to one of these
7548 print_*_reason functions functions from handle_inferior_event each time
7549 stop_waiting is called.
7550
7551 Note that we don't call these directly, instead we delegate that to
7552 the interpreters, through observers. Interpreters then call these
7553 with whatever uiout is right. */
7554
7555 void
7556 print_end_stepping_range_reason (struct ui_out *uiout)
7557 {
7558 /* For CLI-like interpreters, print nothing. */
7559
7560 if (ui_out_is_mi_like_p (uiout))
7561 {
7562 ui_out_field_string (uiout, "reason",
7563 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7564 }
7565 }
7566
7567 void
7568 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7569 {
7570 annotate_signalled ();
7571 if (ui_out_is_mi_like_p (uiout))
7572 ui_out_field_string
7573 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7574 ui_out_text (uiout, "\nProgram terminated with signal ");
7575 annotate_signal_name ();
7576 ui_out_field_string (uiout, "signal-name",
7577 gdb_signal_to_name (siggnal));
7578 annotate_signal_name_end ();
7579 ui_out_text (uiout, ", ");
7580 annotate_signal_string ();
7581 ui_out_field_string (uiout, "signal-meaning",
7582 gdb_signal_to_string (siggnal));
7583 annotate_signal_string_end ();
7584 ui_out_text (uiout, ".\n");
7585 ui_out_text (uiout, "The program no longer exists.\n");
7586 }
7587
7588 void
7589 print_exited_reason (struct ui_out *uiout, int exitstatus)
7590 {
7591 struct inferior *inf = current_inferior ();
7592 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7593
7594 annotate_exited (exitstatus);
7595 if (exitstatus)
7596 {
7597 if (ui_out_is_mi_like_p (uiout))
7598 ui_out_field_string (uiout, "reason",
7599 async_reason_lookup (EXEC_ASYNC_EXITED));
7600 ui_out_text (uiout, "[Inferior ");
7601 ui_out_text (uiout, plongest (inf->num));
7602 ui_out_text (uiout, " (");
7603 ui_out_text (uiout, pidstr);
7604 ui_out_text (uiout, ") exited with code ");
7605 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7606 ui_out_text (uiout, "]\n");
7607 }
7608 else
7609 {
7610 if (ui_out_is_mi_like_p (uiout))
7611 ui_out_field_string
7612 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7613 ui_out_text (uiout, "[Inferior ");
7614 ui_out_text (uiout, plongest (inf->num));
7615 ui_out_text (uiout, " (");
7616 ui_out_text (uiout, pidstr);
7617 ui_out_text (uiout, ") exited normally]\n");
7618 }
7619 }
7620
7621 void
7622 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7623 {
7624 annotate_signal ();
7625
7626 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7627 {
7628 struct thread_info *t = inferior_thread ();
7629
7630 ui_out_text (uiout, "\n[");
7631 ui_out_field_string (uiout, "thread-name",
7632 target_pid_to_str (t->ptid));
7633 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7634 ui_out_text (uiout, " stopped");
7635 }
7636 else
7637 {
7638 ui_out_text (uiout, "\nProgram received signal ");
7639 annotate_signal_name ();
7640 if (ui_out_is_mi_like_p (uiout))
7641 ui_out_field_string
7642 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7643 ui_out_field_string (uiout, "signal-name",
7644 gdb_signal_to_name (siggnal));
7645 annotate_signal_name_end ();
7646 ui_out_text (uiout, ", ");
7647 annotate_signal_string ();
7648 ui_out_field_string (uiout, "signal-meaning",
7649 gdb_signal_to_string (siggnal));
7650 annotate_signal_string_end ();
7651 }
7652 ui_out_text (uiout, ".\n");
7653 }
7654
7655 void
7656 print_no_history_reason (struct ui_out *uiout)
7657 {
7658 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
7659 }
7660
7661 /* Print current location without a level number, if we have changed
7662 functions or hit a breakpoint. Print source line if we have one.
7663 bpstat_print contains the logic deciding in detail what to print,
7664 based on the event(s) that just occurred. */
7665
7666 void
7667 print_stop_event (struct target_waitstatus *ws)
7668 {
7669 int bpstat_ret;
7670 enum print_what source_flag;
7671 int do_frame_printing = 1;
7672 struct thread_info *tp = inferior_thread ();
7673
7674 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7675 switch (bpstat_ret)
7676 {
7677 case PRINT_UNKNOWN:
7678 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7679 should) carry around the function and does (or should) use
7680 that when doing a frame comparison. */
7681 if (tp->control.stop_step
7682 && frame_id_eq (tp->control.step_frame_id,
7683 get_frame_id (get_current_frame ()))
7684 && tp->control.step_start_function == find_pc_function (stop_pc))
7685 {
7686 /* Finished step, just print source line. */
7687 source_flag = SRC_LINE;
7688 }
7689 else
7690 {
7691 /* Print location and source line. */
7692 source_flag = SRC_AND_LOC;
7693 }
7694 break;
7695 case PRINT_SRC_AND_LOC:
7696 /* Print location and source line. */
7697 source_flag = SRC_AND_LOC;
7698 break;
7699 case PRINT_SRC_ONLY:
7700 source_flag = SRC_LINE;
7701 break;
7702 case PRINT_NOTHING:
7703 /* Something bogus. */
7704 source_flag = SRC_LINE;
7705 do_frame_printing = 0;
7706 break;
7707 default:
7708 internal_error (__FILE__, __LINE__, _("Unknown value."));
7709 }
7710
7711 /* The behavior of this routine with respect to the source
7712 flag is:
7713 SRC_LINE: Print only source line
7714 LOCATION: Print only location
7715 SRC_AND_LOC: Print location and source line. */
7716 if (do_frame_printing)
7717 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7718
7719 /* Display the auto-display expressions. */
7720 do_displays ();
7721 }
7722
7723 /* Here to return control to GDB when the inferior stops for real.
7724 Print appropriate messages, remove breakpoints, give terminal our modes.
7725
7726 STOP_PRINT_FRAME nonzero means print the executing frame
7727 (pc, function, args, file, line number and line text).
7728 BREAKPOINTS_FAILED nonzero means stop was due to error
7729 attempting to insert breakpoints. */
7730
7731 void
7732 normal_stop (void)
7733 {
7734 struct target_waitstatus last;
7735 ptid_t last_ptid;
7736 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
7737 ptid_t pid_ptid;
7738
7739 get_last_target_status (&last_ptid, &last);
7740
7741 /* If an exception is thrown from this point on, make sure to
7742 propagate GDB's knowledge of the executing state to the
7743 frontend/user running state. A QUIT is an easy exception to see
7744 here, so do this before any filtered output. */
7745 if (!non_stop)
7746 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
7747 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7748 || last.kind == TARGET_WAITKIND_EXITED)
7749 {
7750 /* On some targets, we may still have live threads in the
7751 inferior when we get a process exit event. E.g., for
7752 "checkpoint", when the current checkpoint/fork exits,
7753 linux-fork.c automatically switches to another fork from
7754 within target_mourn_inferior. */
7755 if (!ptid_equal (inferior_ptid, null_ptid))
7756 {
7757 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
7758 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
7759 }
7760 }
7761 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
7762 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
7763
7764 /* As we're presenting a stop, and potentially removing breakpoints,
7765 update the thread list so we can tell whether there are threads
7766 running on the target. With target remote, for example, we can
7767 only learn about new threads when we explicitly update the thread
7768 list. Do this before notifying the interpreters about signal
7769 stops, end of stepping ranges, etc., so that the "new thread"
7770 output is emitted before e.g., "Program received signal FOO",
7771 instead of after. */
7772 update_thread_list ();
7773
7774 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
7775 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
7776
7777 /* As with the notification of thread events, we want to delay
7778 notifying the user that we've switched thread context until
7779 the inferior actually stops.
7780
7781 There's no point in saying anything if the inferior has exited.
7782 Note that SIGNALLED here means "exited with a signal", not
7783 "received a signal".
7784
7785 Also skip saying anything in non-stop mode. In that mode, as we
7786 don't want GDB to switch threads behind the user's back, to avoid
7787 races where the user is typing a command to apply to thread x,
7788 but GDB switches to thread y before the user finishes entering
7789 the command, fetch_inferior_event installs a cleanup to restore
7790 the current thread back to the thread the user had selected right
7791 after this event is handled, so we're not really switching, only
7792 informing of a stop. */
7793 if (!non_stop
7794 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
7795 && target_has_execution
7796 && last.kind != TARGET_WAITKIND_SIGNALLED
7797 && last.kind != TARGET_WAITKIND_EXITED
7798 && last.kind != TARGET_WAITKIND_NO_RESUMED)
7799 {
7800 target_terminal_ours_for_output ();
7801 printf_filtered (_("[Switching to %s]\n"),
7802 target_pid_to_str (inferior_ptid));
7803 annotate_thread_changed ();
7804 previous_inferior_ptid = inferior_ptid;
7805 }
7806
7807 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
7808 {
7809 gdb_assert (sync_execution || !target_can_async_p ());
7810
7811 target_terminal_ours_for_output ();
7812 printf_filtered (_("No unwaited-for children left.\n"));
7813 }
7814
7815 /* Note: this depends on the update_thread_list call above. */
7816 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7817 {
7818 if (remove_breakpoints ())
7819 {
7820 target_terminal_ours_for_output ();
7821 printf_filtered (_("Cannot remove breakpoints because "
7822 "program is no longer writable.\nFurther "
7823 "execution is probably impossible.\n"));
7824 }
7825 }
7826
7827 /* If an auto-display called a function and that got a signal,
7828 delete that auto-display to avoid an infinite recursion. */
7829
7830 if (stopped_by_random_signal)
7831 disable_current_display ();
7832
7833 /* Notify observers if we finished a "step"-like command, etc. */
7834 if (target_has_execution
7835 && last.kind != TARGET_WAITKIND_SIGNALLED
7836 && last.kind != TARGET_WAITKIND_EXITED
7837 && inferior_thread ()->control.stop_step)
7838 {
7839 /* But not if in the middle of doing a "step n" operation for
7840 n > 1 */
7841 if (inferior_thread ()->step_multi)
7842 goto done;
7843
7844 observer_notify_end_stepping_range ();
7845 }
7846
7847 target_terminal_ours ();
7848 async_enable_stdin ();
7849
7850 /* Set the current source location. This will also happen if we
7851 display the frame below, but the current SAL will be incorrect
7852 during a user hook-stop function. */
7853 if (has_stack_frames () && !stop_stack_dummy)
7854 set_current_sal_from_frame (get_current_frame ());
7855
7856 /* Let the user/frontend see the threads as stopped, but defer to
7857 call_function_by_hand if the thread finished an infcall
7858 successfully. We may be e.g., evaluating a breakpoint condition.
7859 In that case, the thread had state THREAD_RUNNING before the
7860 infcall, and shall remain marked running, all without informing
7861 the user/frontend about state transition changes. */
7862 if (target_has_execution
7863 && inferior_thread ()->control.in_infcall
7864 && stop_stack_dummy == STOP_STACK_DUMMY)
7865 discard_cleanups (old_chain);
7866 else
7867 do_cleanups (old_chain);
7868
7869 /* Look up the hook_stop and run it (CLI internally handles problem
7870 of stop_command's pre-hook not existing). */
7871 if (stop_command)
7872 catch_errors (hook_stop_stub, stop_command,
7873 "Error while running hook_stop:\n", RETURN_MASK_ALL);
7874
7875 if (!has_stack_frames ())
7876 goto done;
7877
7878 if (last.kind == TARGET_WAITKIND_SIGNALLED
7879 || last.kind == TARGET_WAITKIND_EXITED)
7880 goto done;
7881
7882 /* Select innermost stack frame - i.e., current frame is frame 0,
7883 and current location is based on that.
7884 Don't do this on return from a stack dummy routine,
7885 or if the program has exited. */
7886
7887 if (!stop_stack_dummy)
7888 {
7889 select_frame (get_current_frame ());
7890
7891 /* If --batch-silent is enabled then there's no need to print the current
7892 source location, and to try risks causing an error message about
7893 missing source files. */
7894 if (stop_print_frame && !batch_silent)
7895 print_stop_event (&last);
7896 }
7897
7898 if (stop_stack_dummy == STOP_STACK_DUMMY)
7899 {
7900 /* Pop the empty frame that contains the stack dummy.
7901 This also restores inferior state prior to the call
7902 (struct infcall_suspend_state). */
7903 struct frame_info *frame = get_current_frame ();
7904
7905 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
7906 frame_pop (frame);
7907 /* frame_pop() calls reinit_frame_cache as the last thing it
7908 does which means there's currently no selected frame. We
7909 don't need to re-establish a selected frame if the dummy call
7910 returns normally, that will be done by
7911 restore_infcall_control_state. However, we do have to handle
7912 the case where the dummy call is returning after being
7913 stopped (e.g. the dummy call previously hit a breakpoint).
7914 We can't know which case we have so just always re-establish
7915 a selected frame here. */
7916 select_frame (get_current_frame ());
7917 }
7918
7919 done:
7920 annotate_stopped ();
7921
7922 /* Suppress the stop observer if we're in the middle of:
7923
7924 - a step n (n > 1), as there still more steps to be done.
7925
7926 - a "finish" command, as the observer will be called in
7927 finish_command_continuation, so it can include the inferior
7928 function's return value.
7929
7930 - calling an inferior function, as we pretend we inferior didn't
7931 run at all. The return value of the call is handled by the
7932 expression evaluator, through call_function_by_hand. */
7933
7934 if (!target_has_execution
7935 || last.kind == TARGET_WAITKIND_SIGNALLED
7936 || last.kind == TARGET_WAITKIND_EXITED
7937 || last.kind == TARGET_WAITKIND_NO_RESUMED
7938 || (!(inferior_thread ()->step_multi
7939 && inferior_thread ()->control.stop_step)
7940 && !(inferior_thread ()->control.stop_bpstat
7941 && inferior_thread ()->control.proceed_to_finish)
7942 && !inferior_thread ()->control.in_infcall))
7943 {
7944 if (!ptid_equal (inferior_ptid, null_ptid))
7945 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
7946 stop_print_frame);
7947 else
7948 observer_notify_normal_stop (NULL, stop_print_frame);
7949 }
7950
7951 if (target_has_execution)
7952 {
7953 if (last.kind != TARGET_WAITKIND_SIGNALLED
7954 && last.kind != TARGET_WAITKIND_EXITED)
7955 /* Delete the breakpoint we stopped at, if it wants to be deleted.
7956 Delete any breakpoint that is to be deleted at the next stop. */
7957 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
7958 }
7959
7960 /* Try to get rid of automatically added inferiors that are no
7961 longer needed. Keeping those around slows down things linearly.
7962 Note that this never removes the current inferior. */
7963 prune_inferiors ();
7964 }
7965
7966 static int
7967 hook_stop_stub (void *cmd)
7968 {
7969 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
7970 return (0);
7971 }
7972 \f
7973 int
7974 signal_stop_state (int signo)
7975 {
7976 return signal_stop[signo];
7977 }
7978
7979 int
7980 signal_print_state (int signo)
7981 {
7982 return signal_print[signo];
7983 }
7984
7985 int
7986 signal_pass_state (int signo)
7987 {
7988 return signal_program[signo];
7989 }
7990
7991 static void
7992 signal_cache_update (int signo)
7993 {
7994 if (signo == -1)
7995 {
7996 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
7997 signal_cache_update (signo);
7998
7999 return;
8000 }
8001
8002 signal_pass[signo] = (signal_stop[signo] == 0
8003 && signal_print[signo] == 0
8004 && signal_program[signo] == 1
8005 && signal_catch[signo] == 0);
8006 }
8007
8008 int
8009 signal_stop_update (int signo, int state)
8010 {
8011 int ret = signal_stop[signo];
8012
8013 signal_stop[signo] = state;
8014 signal_cache_update (signo);
8015 return ret;
8016 }
8017
8018 int
8019 signal_print_update (int signo, int state)
8020 {
8021 int ret = signal_print[signo];
8022
8023 signal_print[signo] = state;
8024 signal_cache_update (signo);
8025 return ret;
8026 }
8027
8028 int
8029 signal_pass_update (int signo, int state)
8030 {
8031 int ret = signal_program[signo];
8032
8033 signal_program[signo] = state;
8034 signal_cache_update (signo);
8035 return ret;
8036 }
8037
8038 /* Update the global 'signal_catch' from INFO and notify the
8039 target. */
8040
8041 void
8042 signal_catch_update (const unsigned int *info)
8043 {
8044 int i;
8045
8046 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8047 signal_catch[i] = info[i] > 0;
8048 signal_cache_update (-1);
8049 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8050 }
8051
8052 static void
8053 sig_print_header (void)
8054 {
8055 printf_filtered (_("Signal Stop\tPrint\tPass "
8056 "to program\tDescription\n"));
8057 }
8058
8059 static void
8060 sig_print_info (enum gdb_signal oursig)
8061 {
8062 const char *name = gdb_signal_to_name (oursig);
8063 int name_padding = 13 - strlen (name);
8064
8065 if (name_padding <= 0)
8066 name_padding = 0;
8067
8068 printf_filtered ("%s", name);
8069 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8070 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8071 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8072 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8073 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8074 }
8075
8076 /* Specify how various signals in the inferior should be handled. */
8077
8078 static void
8079 handle_command (char *args, int from_tty)
8080 {
8081 char **argv;
8082 int digits, wordlen;
8083 int sigfirst, signum, siglast;
8084 enum gdb_signal oursig;
8085 int allsigs;
8086 int nsigs;
8087 unsigned char *sigs;
8088 struct cleanup *old_chain;
8089
8090 if (args == NULL)
8091 {
8092 error_no_arg (_("signal to handle"));
8093 }
8094
8095 /* Allocate and zero an array of flags for which signals to handle. */
8096
8097 nsigs = (int) GDB_SIGNAL_LAST;
8098 sigs = (unsigned char *) alloca (nsigs);
8099 memset (sigs, 0, nsigs);
8100
8101 /* Break the command line up into args. */
8102
8103 argv = gdb_buildargv (args);
8104 old_chain = make_cleanup_freeargv (argv);
8105
8106 /* Walk through the args, looking for signal oursigs, signal names, and
8107 actions. Signal numbers and signal names may be interspersed with
8108 actions, with the actions being performed for all signals cumulatively
8109 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8110
8111 while (*argv != NULL)
8112 {
8113 wordlen = strlen (*argv);
8114 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8115 {;
8116 }
8117 allsigs = 0;
8118 sigfirst = siglast = -1;
8119
8120 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8121 {
8122 /* Apply action to all signals except those used by the
8123 debugger. Silently skip those. */
8124 allsigs = 1;
8125 sigfirst = 0;
8126 siglast = nsigs - 1;
8127 }
8128 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8129 {
8130 SET_SIGS (nsigs, sigs, signal_stop);
8131 SET_SIGS (nsigs, sigs, signal_print);
8132 }
8133 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8134 {
8135 UNSET_SIGS (nsigs, sigs, signal_program);
8136 }
8137 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8138 {
8139 SET_SIGS (nsigs, sigs, signal_print);
8140 }
8141 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8142 {
8143 SET_SIGS (nsigs, sigs, signal_program);
8144 }
8145 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8146 {
8147 UNSET_SIGS (nsigs, sigs, signal_stop);
8148 }
8149 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8150 {
8151 SET_SIGS (nsigs, sigs, signal_program);
8152 }
8153 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8154 {
8155 UNSET_SIGS (nsigs, sigs, signal_print);
8156 UNSET_SIGS (nsigs, sigs, signal_stop);
8157 }
8158 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8159 {
8160 UNSET_SIGS (nsigs, sigs, signal_program);
8161 }
8162 else if (digits > 0)
8163 {
8164 /* It is numeric. The numeric signal refers to our own
8165 internal signal numbering from target.h, not to host/target
8166 signal number. This is a feature; users really should be
8167 using symbolic names anyway, and the common ones like
8168 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8169
8170 sigfirst = siglast = (int)
8171 gdb_signal_from_command (atoi (*argv));
8172 if ((*argv)[digits] == '-')
8173 {
8174 siglast = (int)
8175 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8176 }
8177 if (sigfirst > siglast)
8178 {
8179 /* Bet he didn't figure we'd think of this case... */
8180 signum = sigfirst;
8181 sigfirst = siglast;
8182 siglast = signum;
8183 }
8184 }
8185 else
8186 {
8187 oursig = gdb_signal_from_name (*argv);
8188 if (oursig != GDB_SIGNAL_UNKNOWN)
8189 {
8190 sigfirst = siglast = (int) oursig;
8191 }
8192 else
8193 {
8194 /* Not a number and not a recognized flag word => complain. */
8195 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8196 }
8197 }
8198
8199 /* If any signal numbers or symbol names were found, set flags for
8200 which signals to apply actions to. */
8201
8202 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8203 {
8204 switch ((enum gdb_signal) signum)
8205 {
8206 case GDB_SIGNAL_TRAP:
8207 case GDB_SIGNAL_INT:
8208 if (!allsigs && !sigs[signum])
8209 {
8210 if (query (_("%s is used by the debugger.\n\
8211 Are you sure you want to change it? "),
8212 gdb_signal_to_name ((enum gdb_signal) signum)))
8213 {
8214 sigs[signum] = 1;
8215 }
8216 else
8217 {
8218 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8219 gdb_flush (gdb_stdout);
8220 }
8221 }
8222 break;
8223 case GDB_SIGNAL_0:
8224 case GDB_SIGNAL_DEFAULT:
8225 case GDB_SIGNAL_UNKNOWN:
8226 /* Make sure that "all" doesn't print these. */
8227 break;
8228 default:
8229 sigs[signum] = 1;
8230 break;
8231 }
8232 }
8233
8234 argv++;
8235 }
8236
8237 for (signum = 0; signum < nsigs; signum++)
8238 if (sigs[signum])
8239 {
8240 signal_cache_update (-1);
8241 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8242 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8243
8244 if (from_tty)
8245 {
8246 /* Show the results. */
8247 sig_print_header ();
8248 for (; signum < nsigs; signum++)
8249 if (sigs[signum])
8250 sig_print_info ((enum gdb_signal) signum);
8251 }
8252
8253 break;
8254 }
8255
8256 do_cleanups (old_chain);
8257 }
8258
8259 /* Complete the "handle" command. */
8260
8261 static VEC (char_ptr) *
8262 handle_completer (struct cmd_list_element *ignore,
8263 const char *text, const char *word)
8264 {
8265 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8266 static const char * const keywords[] =
8267 {
8268 "all",
8269 "stop",
8270 "ignore",
8271 "print",
8272 "pass",
8273 "nostop",
8274 "noignore",
8275 "noprint",
8276 "nopass",
8277 NULL,
8278 };
8279
8280 vec_signals = signal_completer (ignore, text, word);
8281 vec_keywords = complete_on_enum (keywords, word, word);
8282
8283 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8284 VEC_free (char_ptr, vec_signals);
8285 VEC_free (char_ptr, vec_keywords);
8286 return return_val;
8287 }
8288
8289 enum gdb_signal
8290 gdb_signal_from_command (int num)
8291 {
8292 if (num >= 1 && num <= 15)
8293 return (enum gdb_signal) num;
8294 error (_("Only signals 1-15 are valid as numeric signals.\n\
8295 Use \"info signals\" for a list of symbolic signals."));
8296 }
8297
8298 /* Print current contents of the tables set by the handle command.
8299 It is possible we should just be printing signals actually used
8300 by the current target (but for things to work right when switching
8301 targets, all signals should be in the signal tables). */
8302
8303 static void
8304 signals_info (char *signum_exp, int from_tty)
8305 {
8306 enum gdb_signal oursig;
8307
8308 sig_print_header ();
8309
8310 if (signum_exp)
8311 {
8312 /* First see if this is a symbol name. */
8313 oursig = gdb_signal_from_name (signum_exp);
8314 if (oursig == GDB_SIGNAL_UNKNOWN)
8315 {
8316 /* No, try numeric. */
8317 oursig =
8318 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8319 }
8320 sig_print_info (oursig);
8321 return;
8322 }
8323
8324 printf_filtered ("\n");
8325 /* These ugly casts brought to you by the native VAX compiler. */
8326 for (oursig = GDB_SIGNAL_FIRST;
8327 (int) oursig < (int) GDB_SIGNAL_LAST;
8328 oursig = (enum gdb_signal) ((int) oursig + 1))
8329 {
8330 QUIT;
8331
8332 if (oursig != GDB_SIGNAL_UNKNOWN
8333 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8334 sig_print_info (oursig);
8335 }
8336
8337 printf_filtered (_("\nUse the \"handle\" command "
8338 "to change these tables.\n"));
8339 }
8340
8341 /* Check if it makes sense to read $_siginfo from the current thread
8342 at this point. If not, throw an error. */
8343
8344 static void
8345 validate_siginfo_access (void)
8346 {
8347 /* No current inferior, no siginfo. */
8348 if (ptid_equal (inferior_ptid, null_ptid))
8349 error (_("No thread selected."));
8350
8351 /* Don't try to read from a dead thread. */
8352 if (is_exited (inferior_ptid))
8353 error (_("The current thread has terminated"));
8354
8355 /* ... or from a spinning thread. */
8356 if (is_running (inferior_ptid))
8357 error (_("Selected thread is running."));
8358 }
8359
8360 /* The $_siginfo convenience variable is a bit special. We don't know
8361 for sure the type of the value until we actually have a chance to
8362 fetch the data. The type can change depending on gdbarch, so it is
8363 also dependent on which thread you have selected.
8364
8365 1. making $_siginfo be an internalvar that creates a new value on
8366 access.
8367
8368 2. making the value of $_siginfo be an lval_computed value. */
8369
8370 /* This function implements the lval_computed support for reading a
8371 $_siginfo value. */
8372
8373 static void
8374 siginfo_value_read (struct value *v)
8375 {
8376 LONGEST transferred;
8377
8378 validate_siginfo_access ();
8379
8380 transferred =
8381 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8382 NULL,
8383 value_contents_all_raw (v),
8384 value_offset (v),
8385 TYPE_LENGTH (value_type (v)));
8386
8387 if (transferred != TYPE_LENGTH (value_type (v)))
8388 error (_("Unable to read siginfo"));
8389 }
8390
8391 /* This function implements the lval_computed support for writing a
8392 $_siginfo value. */
8393
8394 static void
8395 siginfo_value_write (struct value *v, struct value *fromval)
8396 {
8397 LONGEST transferred;
8398
8399 validate_siginfo_access ();
8400
8401 transferred = target_write (&current_target,
8402 TARGET_OBJECT_SIGNAL_INFO,
8403 NULL,
8404 value_contents_all_raw (fromval),
8405 value_offset (v),
8406 TYPE_LENGTH (value_type (fromval)));
8407
8408 if (transferred != TYPE_LENGTH (value_type (fromval)))
8409 error (_("Unable to write siginfo"));
8410 }
8411
8412 static const struct lval_funcs siginfo_value_funcs =
8413 {
8414 siginfo_value_read,
8415 siginfo_value_write
8416 };
8417
8418 /* Return a new value with the correct type for the siginfo object of
8419 the current thread using architecture GDBARCH. Return a void value
8420 if there's no object available. */
8421
8422 static struct value *
8423 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8424 void *ignore)
8425 {
8426 if (target_has_stack
8427 && !ptid_equal (inferior_ptid, null_ptid)
8428 && gdbarch_get_siginfo_type_p (gdbarch))
8429 {
8430 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8431
8432 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8433 }
8434
8435 return allocate_value (builtin_type (gdbarch)->builtin_void);
8436 }
8437
8438 \f
8439 /* infcall_suspend_state contains state about the program itself like its
8440 registers and any signal it received when it last stopped.
8441 This state must be restored regardless of how the inferior function call
8442 ends (either successfully, or after it hits a breakpoint or signal)
8443 if the program is to properly continue where it left off. */
8444
8445 struct infcall_suspend_state
8446 {
8447 struct thread_suspend_state thread_suspend;
8448
8449 /* Other fields: */
8450 CORE_ADDR stop_pc;
8451 struct regcache *registers;
8452
8453 /* Format of SIGINFO_DATA or NULL if it is not present. */
8454 struct gdbarch *siginfo_gdbarch;
8455
8456 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8457 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8458 content would be invalid. */
8459 gdb_byte *siginfo_data;
8460 };
8461
8462 struct infcall_suspend_state *
8463 save_infcall_suspend_state (void)
8464 {
8465 struct infcall_suspend_state *inf_state;
8466 struct thread_info *tp = inferior_thread ();
8467 struct regcache *regcache = get_current_regcache ();
8468 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8469 gdb_byte *siginfo_data = NULL;
8470
8471 if (gdbarch_get_siginfo_type_p (gdbarch))
8472 {
8473 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8474 size_t len = TYPE_LENGTH (type);
8475 struct cleanup *back_to;
8476
8477 siginfo_data = xmalloc (len);
8478 back_to = make_cleanup (xfree, siginfo_data);
8479
8480 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8481 siginfo_data, 0, len) == len)
8482 discard_cleanups (back_to);
8483 else
8484 {
8485 /* Errors ignored. */
8486 do_cleanups (back_to);
8487 siginfo_data = NULL;
8488 }
8489 }
8490
8491 inf_state = XCNEW (struct infcall_suspend_state);
8492
8493 if (siginfo_data)
8494 {
8495 inf_state->siginfo_gdbarch = gdbarch;
8496 inf_state->siginfo_data = siginfo_data;
8497 }
8498
8499 inf_state->thread_suspend = tp->suspend;
8500
8501 /* run_inferior_call will not use the signal due to its `proceed' call with
8502 GDB_SIGNAL_0 anyway. */
8503 tp->suspend.stop_signal = GDB_SIGNAL_0;
8504
8505 inf_state->stop_pc = stop_pc;
8506
8507 inf_state->registers = regcache_dup (regcache);
8508
8509 return inf_state;
8510 }
8511
8512 /* Restore inferior session state to INF_STATE. */
8513
8514 void
8515 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8516 {
8517 struct thread_info *tp = inferior_thread ();
8518 struct regcache *regcache = get_current_regcache ();
8519 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8520
8521 tp->suspend = inf_state->thread_suspend;
8522
8523 stop_pc = inf_state->stop_pc;
8524
8525 if (inf_state->siginfo_gdbarch == gdbarch)
8526 {
8527 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8528
8529 /* Errors ignored. */
8530 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8531 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8532 }
8533
8534 /* The inferior can be gone if the user types "print exit(0)"
8535 (and perhaps other times). */
8536 if (target_has_execution)
8537 /* NB: The register write goes through to the target. */
8538 regcache_cpy (regcache, inf_state->registers);
8539
8540 discard_infcall_suspend_state (inf_state);
8541 }
8542
8543 static void
8544 do_restore_infcall_suspend_state_cleanup (void *state)
8545 {
8546 restore_infcall_suspend_state (state);
8547 }
8548
8549 struct cleanup *
8550 make_cleanup_restore_infcall_suspend_state
8551 (struct infcall_suspend_state *inf_state)
8552 {
8553 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8554 }
8555
8556 void
8557 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8558 {
8559 regcache_xfree (inf_state->registers);
8560 xfree (inf_state->siginfo_data);
8561 xfree (inf_state);
8562 }
8563
8564 struct regcache *
8565 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8566 {
8567 return inf_state->registers;
8568 }
8569
8570 /* infcall_control_state contains state regarding gdb's control of the
8571 inferior itself like stepping control. It also contains session state like
8572 the user's currently selected frame. */
8573
8574 struct infcall_control_state
8575 {
8576 struct thread_control_state thread_control;
8577 struct inferior_control_state inferior_control;
8578
8579 /* Other fields: */
8580 enum stop_stack_kind stop_stack_dummy;
8581 int stopped_by_random_signal;
8582 int stop_after_trap;
8583
8584 /* ID if the selected frame when the inferior function call was made. */
8585 struct frame_id selected_frame_id;
8586 };
8587
8588 /* Save all of the information associated with the inferior<==>gdb
8589 connection. */
8590
8591 struct infcall_control_state *
8592 save_infcall_control_state (void)
8593 {
8594 struct infcall_control_state *inf_status =
8595 XNEW (struct infcall_control_state);
8596 struct thread_info *tp = inferior_thread ();
8597 struct inferior *inf = current_inferior ();
8598
8599 inf_status->thread_control = tp->control;
8600 inf_status->inferior_control = inf->control;
8601
8602 tp->control.step_resume_breakpoint = NULL;
8603 tp->control.exception_resume_breakpoint = NULL;
8604
8605 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8606 chain. If caller's caller is walking the chain, they'll be happier if we
8607 hand them back the original chain when restore_infcall_control_state is
8608 called. */
8609 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8610
8611 /* Other fields: */
8612 inf_status->stop_stack_dummy = stop_stack_dummy;
8613 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8614 inf_status->stop_after_trap = stop_after_trap;
8615
8616 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8617
8618 return inf_status;
8619 }
8620
8621 static int
8622 restore_selected_frame (void *args)
8623 {
8624 struct frame_id *fid = (struct frame_id *) args;
8625 struct frame_info *frame;
8626
8627 frame = frame_find_by_id (*fid);
8628
8629 /* If inf_status->selected_frame_id is NULL, there was no previously
8630 selected frame. */
8631 if (frame == NULL)
8632 {
8633 warning (_("Unable to restore previously selected frame."));
8634 return 0;
8635 }
8636
8637 select_frame (frame);
8638
8639 return (1);
8640 }
8641
8642 /* Restore inferior session state to INF_STATUS. */
8643
8644 void
8645 restore_infcall_control_state (struct infcall_control_state *inf_status)
8646 {
8647 struct thread_info *tp = inferior_thread ();
8648 struct inferior *inf = current_inferior ();
8649
8650 if (tp->control.step_resume_breakpoint)
8651 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8652
8653 if (tp->control.exception_resume_breakpoint)
8654 tp->control.exception_resume_breakpoint->disposition
8655 = disp_del_at_next_stop;
8656
8657 /* Handle the bpstat_copy of the chain. */
8658 bpstat_clear (&tp->control.stop_bpstat);
8659
8660 tp->control = inf_status->thread_control;
8661 inf->control = inf_status->inferior_control;
8662
8663 /* Other fields: */
8664 stop_stack_dummy = inf_status->stop_stack_dummy;
8665 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8666 stop_after_trap = inf_status->stop_after_trap;
8667
8668 if (target_has_stack)
8669 {
8670 /* The point of catch_errors is that if the stack is clobbered,
8671 walking the stack might encounter a garbage pointer and
8672 error() trying to dereference it. */
8673 if (catch_errors
8674 (restore_selected_frame, &inf_status->selected_frame_id,
8675 "Unable to restore previously selected frame:\n",
8676 RETURN_MASK_ERROR) == 0)
8677 /* Error in restoring the selected frame. Select the innermost
8678 frame. */
8679 select_frame (get_current_frame ());
8680 }
8681
8682 xfree (inf_status);
8683 }
8684
8685 static void
8686 do_restore_infcall_control_state_cleanup (void *sts)
8687 {
8688 restore_infcall_control_state (sts);
8689 }
8690
8691 struct cleanup *
8692 make_cleanup_restore_infcall_control_state
8693 (struct infcall_control_state *inf_status)
8694 {
8695 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
8696 }
8697
8698 void
8699 discard_infcall_control_state (struct infcall_control_state *inf_status)
8700 {
8701 if (inf_status->thread_control.step_resume_breakpoint)
8702 inf_status->thread_control.step_resume_breakpoint->disposition
8703 = disp_del_at_next_stop;
8704
8705 if (inf_status->thread_control.exception_resume_breakpoint)
8706 inf_status->thread_control.exception_resume_breakpoint->disposition
8707 = disp_del_at_next_stop;
8708
8709 /* See save_infcall_control_state for info on stop_bpstat. */
8710 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8711
8712 xfree (inf_status);
8713 }
8714 \f
8715 /* restore_inferior_ptid() will be used by the cleanup machinery
8716 to restore the inferior_ptid value saved in a call to
8717 save_inferior_ptid(). */
8718
8719 static void
8720 restore_inferior_ptid (void *arg)
8721 {
8722 ptid_t *saved_ptid_ptr = arg;
8723
8724 inferior_ptid = *saved_ptid_ptr;
8725 xfree (arg);
8726 }
8727
8728 /* Save the value of inferior_ptid so that it may be restored by a
8729 later call to do_cleanups(). Returns the struct cleanup pointer
8730 needed for later doing the cleanup. */
8731
8732 struct cleanup *
8733 save_inferior_ptid (void)
8734 {
8735 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
8736
8737 *saved_ptid_ptr = inferior_ptid;
8738 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8739 }
8740
8741 /* See infrun.h. */
8742
8743 void
8744 clear_exit_convenience_vars (void)
8745 {
8746 clear_internalvar (lookup_internalvar ("_exitsignal"));
8747 clear_internalvar (lookup_internalvar ("_exitcode"));
8748 }
8749 \f
8750
8751 /* User interface for reverse debugging:
8752 Set exec-direction / show exec-direction commands
8753 (returns error unless target implements to_set_exec_direction method). */
8754
8755 int execution_direction = EXEC_FORWARD;
8756 static const char exec_forward[] = "forward";
8757 static const char exec_reverse[] = "reverse";
8758 static const char *exec_direction = exec_forward;
8759 static const char *const exec_direction_names[] = {
8760 exec_forward,
8761 exec_reverse,
8762 NULL
8763 };
8764
8765 static void
8766 set_exec_direction_func (char *args, int from_tty,
8767 struct cmd_list_element *cmd)
8768 {
8769 if (target_can_execute_reverse)
8770 {
8771 if (!strcmp (exec_direction, exec_forward))
8772 execution_direction = EXEC_FORWARD;
8773 else if (!strcmp (exec_direction, exec_reverse))
8774 execution_direction = EXEC_REVERSE;
8775 }
8776 else
8777 {
8778 exec_direction = exec_forward;
8779 error (_("Target does not support this operation."));
8780 }
8781 }
8782
8783 static void
8784 show_exec_direction_func (struct ui_file *out, int from_tty,
8785 struct cmd_list_element *cmd, const char *value)
8786 {
8787 switch (execution_direction) {
8788 case EXEC_FORWARD:
8789 fprintf_filtered (out, _("Forward.\n"));
8790 break;
8791 case EXEC_REVERSE:
8792 fprintf_filtered (out, _("Reverse.\n"));
8793 break;
8794 default:
8795 internal_error (__FILE__, __LINE__,
8796 _("bogus execution_direction value: %d"),
8797 (int) execution_direction);
8798 }
8799 }
8800
8801 static void
8802 show_schedule_multiple (struct ui_file *file, int from_tty,
8803 struct cmd_list_element *c, const char *value)
8804 {
8805 fprintf_filtered (file, _("Resuming the execution of threads "
8806 "of all processes is %s.\n"), value);
8807 }
8808
8809 /* Implementation of `siginfo' variable. */
8810
8811 static const struct internalvar_funcs siginfo_funcs =
8812 {
8813 siginfo_make_value,
8814 NULL,
8815 NULL
8816 };
8817
8818 /* Callback for infrun's target events source. This is marked when a
8819 thread has a pending status to process. */
8820
8821 static void
8822 infrun_async_inferior_event_handler (gdb_client_data data)
8823 {
8824 inferior_event_handler (INF_REG_EVENT, NULL);
8825 }
8826
8827 void
8828 _initialize_infrun (void)
8829 {
8830 int i;
8831 int numsigs;
8832 struct cmd_list_element *c;
8833
8834 /* Register extra event sources in the event loop. */
8835 infrun_async_inferior_event_token
8836 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8837
8838 add_info ("signals", signals_info, _("\
8839 What debugger does when program gets various signals.\n\
8840 Specify a signal as argument to print info on that signal only."));
8841 add_info_alias ("handle", "signals", 0);
8842
8843 c = add_com ("handle", class_run, handle_command, _("\
8844 Specify how to handle signals.\n\
8845 Usage: handle SIGNAL [ACTIONS]\n\
8846 Args are signals and actions to apply to those signals.\n\
8847 If no actions are specified, the current settings for the specified signals\n\
8848 will be displayed instead.\n\
8849 \n\
8850 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8851 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8852 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8853 The special arg \"all\" is recognized to mean all signals except those\n\
8854 used by the debugger, typically SIGTRAP and SIGINT.\n\
8855 \n\
8856 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8857 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8858 Stop means reenter debugger if this signal happens (implies print).\n\
8859 Print means print a message if this signal happens.\n\
8860 Pass means let program see this signal; otherwise program doesn't know.\n\
8861 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8862 Pass and Stop may be combined.\n\
8863 \n\
8864 Multiple signals may be specified. Signal numbers and signal names\n\
8865 may be interspersed with actions, with the actions being performed for\n\
8866 all signals cumulatively specified."));
8867 set_cmd_completer (c, handle_completer);
8868
8869 if (!dbx_commands)
8870 stop_command = add_cmd ("stop", class_obscure,
8871 not_just_help_class_command, _("\
8872 There is no `stop' command, but you can set a hook on `stop'.\n\
8873 This allows you to set a list of commands to be run each time execution\n\
8874 of the program stops."), &cmdlist);
8875
8876 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
8877 Set inferior debugging."), _("\
8878 Show inferior debugging."), _("\
8879 When non-zero, inferior specific debugging is enabled."),
8880 NULL,
8881 show_debug_infrun,
8882 &setdebuglist, &showdebuglist);
8883
8884 add_setshow_boolean_cmd ("displaced", class_maintenance,
8885 &debug_displaced, _("\
8886 Set displaced stepping debugging."), _("\
8887 Show displaced stepping debugging."), _("\
8888 When non-zero, displaced stepping specific debugging is enabled."),
8889 NULL,
8890 show_debug_displaced,
8891 &setdebuglist, &showdebuglist);
8892
8893 add_setshow_boolean_cmd ("non-stop", no_class,
8894 &non_stop_1, _("\
8895 Set whether gdb controls the inferior in non-stop mode."), _("\
8896 Show whether gdb controls the inferior in non-stop mode."), _("\
8897 When debugging a multi-threaded program and this setting is\n\
8898 off (the default, also called all-stop mode), when one thread stops\n\
8899 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8900 all other threads in the program while you interact with the thread of\n\
8901 interest. When you continue or step a thread, you can allow the other\n\
8902 threads to run, or have them remain stopped, but while you inspect any\n\
8903 thread's state, all threads stop.\n\
8904 \n\
8905 In non-stop mode, when one thread stops, other threads can continue\n\
8906 to run freely. You'll be able to step each thread independently,\n\
8907 leave it stopped or free to run as needed."),
8908 set_non_stop,
8909 show_non_stop,
8910 &setlist,
8911 &showlist);
8912
8913 numsigs = (int) GDB_SIGNAL_LAST;
8914 signal_stop = XNEWVEC (unsigned char, numsigs);
8915 signal_print = XNEWVEC (unsigned char, numsigs);
8916 signal_program = XNEWVEC (unsigned char, numsigs);
8917 signal_catch = XNEWVEC (unsigned char, numsigs);
8918 signal_pass = XNEWVEC (unsigned char, numsigs);
8919 for (i = 0; i < numsigs; i++)
8920 {
8921 signal_stop[i] = 1;
8922 signal_print[i] = 1;
8923 signal_program[i] = 1;
8924 signal_catch[i] = 0;
8925 }
8926
8927 /* Signals caused by debugger's own actions should not be given to
8928 the program afterwards.
8929
8930 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8931 explicitly specifies that it should be delivered to the target
8932 program. Typically, that would occur when a user is debugging a
8933 target monitor on a simulator: the target monitor sets a
8934 breakpoint; the simulator encounters this breakpoint and halts
8935 the simulation handing control to GDB; GDB, noting that the stop
8936 address doesn't map to any known breakpoint, returns control back
8937 to the simulator; the simulator then delivers the hardware
8938 equivalent of a GDB_SIGNAL_TRAP to the program being
8939 debugged. */
8940 signal_program[GDB_SIGNAL_TRAP] = 0;
8941 signal_program[GDB_SIGNAL_INT] = 0;
8942
8943 /* Signals that are not errors should not normally enter the debugger. */
8944 signal_stop[GDB_SIGNAL_ALRM] = 0;
8945 signal_print[GDB_SIGNAL_ALRM] = 0;
8946 signal_stop[GDB_SIGNAL_VTALRM] = 0;
8947 signal_print[GDB_SIGNAL_VTALRM] = 0;
8948 signal_stop[GDB_SIGNAL_PROF] = 0;
8949 signal_print[GDB_SIGNAL_PROF] = 0;
8950 signal_stop[GDB_SIGNAL_CHLD] = 0;
8951 signal_print[GDB_SIGNAL_CHLD] = 0;
8952 signal_stop[GDB_SIGNAL_IO] = 0;
8953 signal_print[GDB_SIGNAL_IO] = 0;
8954 signal_stop[GDB_SIGNAL_POLL] = 0;
8955 signal_print[GDB_SIGNAL_POLL] = 0;
8956 signal_stop[GDB_SIGNAL_URG] = 0;
8957 signal_print[GDB_SIGNAL_URG] = 0;
8958 signal_stop[GDB_SIGNAL_WINCH] = 0;
8959 signal_print[GDB_SIGNAL_WINCH] = 0;
8960 signal_stop[GDB_SIGNAL_PRIO] = 0;
8961 signal_print[GDB_SIGNAL_PRIO] = 0;
8962
8963 /* These signals are used internally by user-level thread
8964 implementations. (See signal(5) on Solaris.) Like the above
8965 signals, a healthy program receives and handles them as part of
8966 its normal operation. */
8967 signal_stop[GDB_SIGNAL_LWP] = 0;
8968 signal_print[GDB_SIGNAL_LWP] = 0;
8969 signal_stop[GDB_SIGNAL_WAITING] = 0;
8970 signal_print[GDB_SIGNAL_WAITING] = 0;
8971 signal_stop[GDB_SIGNAL_CANCEL] = 0;
8972 signal_print[GDB_SIGNAL_CANCEL] = 0;
8973
8974 /* Update cached state. */
8975 signal_cache_update (-1);
8976
8977 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
8978 &stop_on_solib_events, _("\
8979 Set stopping for shared library events."), _("\
8980 Show stopping for shared library events."), _("\
8981 If nonzero, gdb will give control to the user when the dynamic linker\n\
8982 notifies gdb of shared library events. The most common event of interest\n\
8983 to the user would be loading/unloading of a new library."),
8984 set_stop_on_solib_events,
8985 show_stop_on_solib_events,
8986 &setlist, &showlist);
8987
8988 add_setshow_enum_cmd ("follow-fork-mode", class_run,
8989 follow_fork_mode_kind_names,
8990 &follow_fork_mode_string, _("\
8991 Set debugger response to a program call of fork or vfork."), _("\
8992 Show debugger response to a program call of fork or vfork."), _("\
8993 A fork or vfork creates a new process. follow-fork-mode can be:\n\
8994 parent - the original process is debugged after a fork\n\
8995 child - the new process is debugged after a fork\n\
8996 The unfollowed process will continue to run.\n\
8997 By default, the debugger will follow the parent process."),
8998 NULL,
8999 show_follow_fork_mode_string,
9000 &setlist, &showlist);
9001
9002 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9003 follow_exec_mode_names,
9004 &follow_exec_mode_string, _("\
9005 Set debugger response to a program call of exec."), _("\
9006 Show debugger response to a program call of exec."), _("\
9007 An exec call replaces the program image of a process.\n\
9008 \n\
9009 follow-exec-mode can be:\n\
9010 \n\
9011 new - the debugger creates a new inferior and rebinds the process\n\
9012 to this new inferior. The program the process was running before\n\
9013 the exec call can be restarted afterwards by restarting the original\n\
9014 inferior.\n\
9015 \n\
9016 same - the debugger keeps the process bound to the same inferior.\n\
9017 The new executable image replaces the previous executable loaded in\n\
9018 the inferior. Restarting the inferior after the exec call restarts\n\
9019 the executable the process was running after the exec call.\n\
9020 \n\
9021 By default, the debugger will use the same inferior."),
9022 NULL,
9023 show_follow_exec_mode_string,
9024 &setlist, &showlist);
9025
9026 add_setshow_enum_cmd ("scheduler-locking", class_run,
9027 scheduler_enums, &scheduler_mode, _("\
9028 Set mode for locking scheduler during execution."), _("\
9029 Show mode for locking scheduler during execution."), _("\
9030 off == no locking (threads may preempt at any time)\n\
9031 on == full locking (no thread except the current thread may run)\n\
9032 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9033 In this mode, other threads may run during other commands."),
9034 set_schedlock_func, /* traps on target vector */
9035 show_scheduler_mode,
9036 &setlist, &showlist);
9037
9038 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9039 Set mode for resuming threads of all processes."), _("\
9040 Show mode for resuming threads of all processes."), _("\
9041 When on, execution commands (such as 'continue' or 'next') resume all\n\
9042 threads of all processes. When off (which is the default), execution\n\
9043 commands only resume the threads of the current process. The set of\n\
9044 threads that are resumed is further refined by the scheduler-locking\n\
9045 mode (see help set scheduler-locking)."),
9046 NULL,
9047 show_schedule_multiple,
9048 &setlist, &showlist);
9049
9050 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9051 Set mode of the step operation."), _("\
9052 Show mode of the step operation."), _("\
9053 When set, doing a step over a function without debug line information\n\
9054 will stop at the first instruction of that function. Otherwise, the\n\
9055 function is skipped and the step command stops at a different source line."),
9056 NULL,
9057 show_step_stop_if_no_debug,
9058 &setlist, &showlist);
9059
9060 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9061 &can_use_displaced_stepping, _("\
9062 Set debugger's willingness to use displaced stepping."), _("\
9063 Show debugger's willingness to use displaced stepping."), _("\
9064 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9065 supported by the target architecture. If off, gdb will not use displaced\n\
9066 stepping to step over breakpoints, even if such is supported by the target\n\
9067 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9068 if the target architecture supports it and non-stop mode is active, but will not\n\
9069 use it in all-stop mode (see help set non-stop)."),
9070 NULL,
9071 show_can_use_displaced_stepping,
9072 &setlist, &showlist);
9073
9074 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9075 &exec_direction, _("Set direction of execution.\n\
9076 Options are 'forward' or 'reverse'."),
9077 _("Show direction of execution (forward/reverse)."),
9078 _("Tells gdb whether to execute forward or backward."),
9079 set_exec_direction_func, show_exec_direction_func,
9080 &setlist, &showlist);
9081
9082 /* Set/show detach-on-fork: user-settable mode. */
9083
9084 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9085 Set whether gdb will detach the child of a fork."), _("\
9086 Show whether gdb will detach the child of a fork."), _("\
9087 Tells gdb whether to detach the child of a fork."),
9088 NULL, NULL, &setlist, &showlist);
9089
9090 /* Set/show disable address space randomization mode. */
9091
9092 add_setshow_boolean_cmd ("disable-randomization", class_support,
9093 &disable_randomization, _("\
9094 Set disabling of debuggee's virtual address space randomization."), _("\
9095 Show disabling of debuggee's virtual address space randomization."), _("\
9096 When this mode is on (which is the default), randomization of the virtual\n\
9097 address space is disabled. Standalone programs run with the randomization\n\
9098 enabled by default on some platforms."),
9099 &set_disable_randomization,
9100 &show_disable_randomization,
9101 &setlist, &showlist);
9102
9103 /* ptid initializations */
9104 inferior_ptid = null_ptid;
9105 target_last_wait_ptid = minus_one_ptid;
9106
9107 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9108 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9109 observer_attach_thread_exit (infrun_thread_thread_exit);
9110 observer_attach_inferior_exit (infrun_inferior_exit);
9111
9112 /* Explicitly create without lookup, since that tries to create a
9113 value with a void typed value, and when we get here, gdbarch
9114 isn't initialized yet. At this point, we're quite sure there
9115 isn't another convenience variable of the same name. */
9116 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9117
9118 add_setshow_boolean_cmd ("observer", no_class,
9119 &observer_mode_1, _("\
9120 Set whether gdb controls the inferior in observer mode."), _("\
9121 Show whether gdb controls the inferior in observer mode."), _("\
9122 In observer mode, GDB can get data from the inferior, but not\n\
9123 affect its execution. Registers and memory may not be changed,\n\
9124 breakpoints may not be set, and the program cannot be interrupted\n\
9125 or signalled."),
9126 set_observer_mode,
9127 show_observer_mode,
9128 &setlist,
9129 &showlist);
9130 }