]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
Eliminate enum bpstat_signal_value, simplify random signal checks further.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static void set_schedlock_func (char *args, int from_tty,
83 struct cmd_list_element *c);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
89
90 static void xdb_handle_command (char *args, int from_tty);
91
92 static int prepare_to_proceed (int);
93
94 static void print_exited_reason (int exitstatus);
95
96 static void print_signal_exited_reason (enum gdb_signal siggnal);
97
98 static void print_no_history_reason (void);
99
100 static void print_signal_received_reason (enum gdb_signal siggnal);
101
102 static void print_end_stepping_range_reason (void);
103
104 void _initialize_infrun (void);
105
106 void nullify_last_target_wait_ptid (void);
107
108 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
109
110 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
112 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
114 /* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117 int step_stop_if_no_debug = 0;
118 static void
119 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123 }
124
125 /* In asynchronous mode, but simulating synchronous execution. */
126
127 int sync_execution = 0;
128
129 /* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
131 running in. */
132
133 static ptid_t previous_inferior_ptid;
134
135 /* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140 static int detach_fork = 1;
141
142 int debug_displaced = 0;
143 static void
144 show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148 }
149
150 unsigned int debug_infrun = 0;
151 static void
152 show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156 }
157
158
159 /* Support for disabling address space randomization. */
160
161 int disable_randomization = 1;
162
163 static void
164 show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176 }
177
178 static void
179 set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181 {
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186 }
187
188 /* User interface for non-stop mode. */
189
190 int non_stop = 0;
191 static int non_stop_1 = 0;
192
193 static void
194 set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196 {
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204 }
205
206 static void
207 show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213 }
214
215 /* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
219 int observer_mode = 0;
220 static int observer_mode_1 = 0;
221
222 static void
223 set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257 }
258
259 static void
260 show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264 }
265
266 /* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272 void
273 update_observer_mode (void)
274 {
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289 }
290
291 /* Tables of how to react to signals; the user sets them. */
292
293 static unsigned char *signal_stop;
294 static unsigned char *signal_print;
295 static unsigned char *signal_program;
296
297 /* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301 static unsigned char *signal_catch;
302
303 /* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306 static unsigned char *signal_pass;
307
308 #define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316 #define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
324 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327 void
328 update_signals_program_target (void)
329 {
330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
331 }
332
333 /* Value to pass to target_resume() to cause all threads to resume. */
334
335 #define RESUME_ALL minus_one_ptid
336
337 /* Command list pointer for the "stop" placeholder. */
338
339 static struct cmd_list_element *stop_command;
340
341 /* Function inferior was in as of last step command. */
342
343 static struct symbol *step_start_function;
344
345 /* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
347 int stop_on_solib_events;
348
349 /* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352 static void
353 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354 {
355 update_solib_breakpoints ();
356 }
357
358 static void
359 show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361 {
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364 }
365
366 /* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369 int stop_after_trap;
370
371 /* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
376 struct regcache *stop_registers;
377
378 /* Nonzero after stop if current stack frame should be printed. */
379
380 static int stop_print_frame;
381
382 /* This is a cached copy of the pid/waitstatus of the last event
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
385 static ptid_t target_last_wait_ptid;
386 static struct target_waitstatus target_last_waitstatus;
387
388 static void context_switch (ptid_t ptid);
389
390 void init_thread_stepping_state (struct thread_info *tss);
391
392 static void init_infwait_state (void);
393
394 static const char follow_fork_mode_child[] = "child";
395 static const char follow_fork_mode_parent[] = "parent";
396
397 static const char *const follow_fork_mode_kind_names[] = {
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
401 };
402
403 static const char *follow_fork_mode_string = follow_fork_mode_parent;
404 static void
405 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407 {
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
411 value);
412 }
413 \f
414
415 /* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
419 static int
420 follow_fork (void)
421 {
422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
431 struct breakpoint *exception_resume_breakpoint = NULL;
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
496 delete_exception_resume_breakpoint (tp);
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
504 if (target_follow_fork (follow_child, detach_fork))
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
516 tp = find_thread_ptid (parent);
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
524 /* If we followed the child, switch to it... */
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
571
572 return should_resume;
573 }
574
575 void
576 follow_inferior_reset_breakpoints (void)
577 {
578 struct thread_info *tp = inferior_thread ();
579
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
593
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
604 }
605
606 /* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609 static int
610 proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612 {
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
629 }
630
631 return 0;
632 }
633
634 /* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637 static void
638 handle_vfork_child_exec_or_exit (int exec)
639 {
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
657 /* follow-fork child, detach-on-fork on. */
658
659 inf->vfork_parent->pending_detach = 0;
660
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
758 inf->symfile_flags = SYMFILE_NO_READ;
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
764 inferior. */
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792 }
793
794 /* Enum strings for "set|show follow-exec-mode". */
795
796 static const char follow_exec_mode_new[] = "new";
797 static const char follow_exec_mode_same[] = "same";
798 static const char *const follow_exec_mode_names[] =
799 {
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803 };
804
805 static const char *follow_exec_mode_string = follow_exec_mode_same;
806 static void
807 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809 {
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811 }
812
813 /* EXECD_PATHNAME is assumed to be non-NULL. */
814
815 static void
816 follow_exec (ptid_t pid, char *execd_pathname)
817 {
818 struct thread_info *th = inferior_thread ();
819 struct inferior *inf = current_inferior ();
820
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
840 we now have a new a.out, those shadow contents aren't valid. */
841
842 mark_breakpoints_out ();
843
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
847 statement through an exec(). */
848 th->control.step_resume_breakpoint = NULL;
849 th->control.exception_resume_breakpoint = NULL;
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
852
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
861 /* What is this a.out's name? */
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
865
866 /* We've followed the inferior through an exec. Therefore, the
867 inferior has essentially been killed & reborn. */
868
869 gdb_flush (gdb_stdout);
870
871 breakpoint_init_inferior (inf_execd);
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
878
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
883
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
919
920 gdb_assert (current_program_space == inf->pspace);
921
922 /* That a.out is now the one to use. */
923 exec_file_attach (execd_pathname, 0);
924
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
933 NULL, 0);
934
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
937
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
946 solib_create_inferior_hook (0);
947
948 jit_inferior_created_hook ();
949
950 breakpoint_re_set ();
951
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
954 to symbol_file_command...). */
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
960 matically get reset there in the new process.). */
961 }
962
963 /* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966 static int singlestep_breakpoints_inserted_p = 0;
967
968 /* The thread we inserted single-step breakpoints for. */
969 static ptid_t singlestep_ptid;
970
971 /* PC when we started this single-step. */
972 static CORE_ADDR singlestep_pc;
973
974 /* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976 static ptid_t saved_singlestep_ptid;
977 static int stepping_past_singlestep_breakpoint;
978
979 /* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
983 has switched to another thread and issued 'step'. We need to step over
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986 static ptid_t deferred_step_ptid;
987 \f
988 /* Displaced stepping. */
989
990 /* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
1076 struct displaced_step_request
1077 {
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080 };
1081
1082 /* Per-inferior displaced stepping state. */
1083 struct displaced_step_inferior_state
1084 {
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113 };
1114
1115 /* The list of states of processes involved in displaced stepping
1116 presently. */
1117 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119 /* Get the displaced stepping state of process PID. */
1120
1121 static struct displaced_step_inferior_state *
1122 get_displaced_stepping_state (int pid)
1123 {
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133 }
1134
1135 /* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139 static struct displaced_step_inferior_state *
1140 add_displaced_stepping_state (int pid)
1141 {
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
1149
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
1154
1155 return state;
1156 }
1157
1158 /* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162 struct displaced_step_closure*
1163 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164 {
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174 }
1175
1176 /* Remove the displaced stepping state of process PID. */
1177
1178 static void
1179 remove_displaced_stepping_state (int pid)
1180 {
1181 struct displaced_step_inferior_state *it, **prev_next_p;
1182
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199 }
1200
1201 static void
1202 infrun_inferior_exit (struct inferior *inf)
1203 {
1204 remove_displaced_stepping_state (inf->pid);
1205 }
1206
1207 /* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
1215 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1216
1217 static void
1218 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221 {
1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
1226 value, non_stop ? "on" : "off");
1227 else
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
1231 }
1232
1233 /* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
1236 static int
1237 use_displaced_stepping (struct gdbarch *gdbarch)
1238 {
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
1243 }
1244
1245 /* Clean out any stray displaced stepping state. */
1246 static void
1247 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1248 {
1249 /* Indicate that there is no cleanup pending. */
1250 displaced->step_ptid = null_ptid;
1251
1252 if (displaced->step_closure)
1253 {
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
1257 }
1258 }
1259
1260 static void
1261 displaced_step_clear_cleanup (void *arg)
1262 {
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
1266 }
1267
1268 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269 void
1270 displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273 {
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279 }
1280
1281 /* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295 static int
1296 displaced_step_prepare (ptid_t ptid)
1297 {
1298 struct cleanup *old_cleanups, *ignore_cleanups;
1299 struct thread_info *tp = find_thread_ptid (ptid);
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
1305 struct displaced_step_inferior_state *displaced;
1306 int status;
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
1320
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
1338 if (displaced->step_request_queue)
1339 {
1340 for (req = displaced->step_request_queue;
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
1347 displaced->step_request_queue = new_req;
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
1359 displaced_step_clear (displaced);
1360
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
1364 original = regcache_read_pc (regcache);
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
1370 displaced->step_saved_copy = xmalloc (len);
1371 ignore_cleanups = make_cleanup (free_current_contents,
1372 &displaced->step_saved_copy);
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
1379 if (debug_displaced)
1380 {
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1389 original, copy, regcache);
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
1401
1402 make_cleanup (displaced_step_clear_cleanup, displaced);
1403
1404 /* Resume execution at the copy. */
1405 regcache_write_pc (regcache, copy);
1406
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
1410
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
1414
1415 return 1;
1416 }
1417
1418 static void
1419 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
1421 {
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1423
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427 }
1428
1429 /* Restore the contents of the copy area for thread PTID. */
1430
1431 static void
1432 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434 {
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444 }
1445
1446 static void
1447 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1448 {
1449 struct cleanup *old_cleanups;
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
1456
1457 /* Was this event for the pid we displaced? */
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
1460 return;
1461
1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1463
1464 displaced_step_restore (displaced, displaced->step_ptid);
1465
1466 /* Did the instruction complete successfully? */
1467 if (signal == GDB_SIGNAL_TRAP)
1468 {
1469 /* Fix up the resulting state. */
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
1482
1483 pc = displaced->step_original + (pc - displaced->step_copy);
1484 regcache_write_pc (regcache, pc);
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
1489 displaced->step_ptid = null_ptid;
1490
1491 /* Are there any pending displaced stepping requests? If so, run
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
1498 struct regcache *regcache;
1499 struct gdbarch *gdbarch;
1500 CORE_ADDR actual_pc;
1501 struct address_space *aspace;
1502
1503 head = displaced->step_request_queue;
1504 ptid = head->ptid;
1505 displaced->step_request_queue = head->next;
1506 xfree (head);
1507
1508 context_switch (ptid);
1509
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
1512 aspace = get_regcache_aspace (regcache);
1513
1514 if (breakpoint_here_p (aspace, actual_pc))
1515 {
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
1523 gdbarch = get_regcache_arch (regcache);
1524
1525 if (debug_displaced)
1526 {
1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1528 gdb_byte buf[4];
1529
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
1538 target_resume (ptid, 1, GDB_SIGNAL_0);
1539 else
1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1541
1542 /* Done, we're stepping a thread. */
1543 break;
1544 }
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
1552 tp->control.trap_expected = 0;
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
1556
1557 if (debug_displaced)
1558 fprintf_unfiltered (gdb_stdlog,
1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1560 target_pid_to_str (tp->ptid), step);
1561
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
1568 }
1569 }
1570
1571 /* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573 static void
1574 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575 {
1576 struct displaced_step_request *it;
1577 struct displaced_step_inferior_state *displaced;
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
1599 }
1600
1601 \f
1602 /* Resuming. */
1603
1604 /* Things to clean up if we QUIT out of resume (). */
1605 static void
1606 resume_cleanups (void *ignore)
1607 {
1608 normal_stop ();
1609 }
1610
1611 static const char schedlock_off[] = "off";
1612 static const char schedlock_on[] = "on";
1613 static const char schedlock_step[] = "step";
1614 static const char *const scheduler_enums[] = {
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619 };
1620 static const char *scheduler_mode = schedlock_off;
1621 static void
1622 show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624 {
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
1628 value);
1629 }
1630
1631 static void
1632 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1633 {
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
1639 }
1640
1641 /* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644 int sched_multi = 0;
1645
1646 /* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652 static int
1653 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654 {
1655 int hw_step = 1;
1656
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1660 {
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1663 `wait_for_inferior'. */
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
1667 }
1668 return hw_step;
1669 }
1670
1671 /* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680 ptid_t
1681 user_visible_resume_ptid (int step)
1682 {
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708 }
1709
1710 /* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718 void
1719 resume (int step, enum gdb_signal sig)
1720 {
1721 int should_resume = 1;
1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1725 struct thread_info *tp = inferior_thread ();
1726 CORE_ADDR pc = regcache_read_pc (regcache);
1727 struct address_space *aspace = get_regcache_aspace (regcache);
1728
1729 QUIT;
1730
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
1750 if (debug_infrun)
1751 fprintf_unfiltered (gdb_stdlog,
1752 "infrun: resume (step=%d, signal=%s), "
1753 "trap_expected=%d, current thread [%s] at %s\n",
1754 step, gdb_signal_to_symbol_string (sig),
1755 tp->control.trap_expected,
1756 target_pid_to_str (inferior_ptid),
1757 paddress (gdbarch, pc));
1758
1759 /* Normally, by the time we reach `resume', the breakpoints are either
1760 removed or inserted, as appropriate. The exception is if we're sitting
1761 at a permanent breakpoint; we need to step over it, but permanent
1762 breakpoints can't be removed. So we have to test for it here. */
1763 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1764 {
1765 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1766 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1767 else
1768 error (_("\
1769 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1770 how to step past a permanent breakpoint on this architecture. Try using\n\
1771 a command like `return' or `jump' to continue execution."));
1772 }
1773
1774 /* If we have a breakpoint to step over, make sure to do a single
1775 step only. Same if we have software watchpoints. */
1776 if (tp->control.trap_expected || bpstat_should_step ())
1777 tp->control.may_range_step = 0;
1778
1779 /* If enabled, step over breakpoints by executing a copy of the
1780 instruction at a different address.
1781
1782 We can't use displaced stepping when we have a signal to deliver;
1783 the comments for displaced_step_prepare explain why. The
1784 comments in the handle_inferior event for dealing with 'random
1785 signals' explain what we do instead.
1786
1787 We can't use displaced stepping when we are waiting for vfork_done
1788 event, displaced stepping breaks the vfork child similarly as single
1789 step software breakpoint. */
1790 if (use_displaced_stepping (gdbarch)
1791 && (tp->control.trap_expected
1792 || (step && gdbarch_software_single_step_p (gdbarch)))
1793 && sig == GDB_SIGNAL_0
1794 && !current_inferior ()->waiting_for_vfork_done)
1795 {
1796 struct displaced_step_inferior_state *displaced;
1797
1798 if (!displaced_step_prepare (inferior_ptid))
1799 {
1800 /* Got placed in displaced stepping queue. Will be resumed
1801 later when all the currently queued displaced stepping
1802 requests finish. The thread is not executing at this point,
1803 and the call to set_executing will be made later. But we
1804 need to call set_running here, since from frontend point of view,
1805 the thread is running. */
1806 set_running (inferior_ptid, 1);
1807 discard_cleanups (old_cleanups);
1808 return;
1809 }
1810
1811 /* Update pc to reflect the new address from which we will execute
1812 instructions due to displaced stepping. */
1813 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1814
1815 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1816 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1817 displaced->step_closure);
1818 }
1819
1820 /* Do we need to do it the hard way, w/temp breakpoints? */
1821 else if (step)
1822 step = maybe_software_singlestep (gdbarch, pc);
1823
1824 /* Currently, our software single-step implementation leads to different
1825 results than hardware single-stepping in one situation: when stepping
1826 into delivering a signal which has an associated signal handler,
1827 hardware single-step will stop at the first instruction of the handler,
1828 while software single-step will simply skip execution of the handler.
1829
1830 For now, this difference in behavior is accepted since there is no
1831 easy way to actually implement single-stepping into a signal handler
1832 without kernel support.
1833
1834 However, there is one scenario where this difference leads to follow-on
1835 problems: if we're stepping off a breakpoint by removing all breakpoints
1836 and then single-stepping. In this case, the software single-step
1837 behavior means that even if there is a *breakpoint* in the signal
1838 handler, GDB still would not stop.
1839
1840 Fortunately, we can at least fix this particular issue. We detect
1841 here the case where we are about to deliver a signal while software
1842 single-stepping with breakpoints removed. In this situation, we
1843 revert the decisions to remove all breakpoints and insert single-
1844 step breakpoints, and instead we install a step-resume breakpoint
1845 at the current address, deliver the signal without stepping, and
1846 once we arrive back at the step-resume breakpoint, actually step
1847 over the breakpoint we originally wanted to step over. */
1848 if (singlestep_breakpoints_inserted_p
1849 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1850 {
1851 /* If we have nested signals or a pending signal is delivered
1852 immediately after a handler returns, might might already have
1853 a step-resume breakpoint set on the earlier handler. We cannot
1854 set another step-resume breakpoint; just continue on until the
1855 original breakpoint is hit. */
1856 if (tp->control.step_resume_breakpoint == NULL)
1857 {
1858 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1859 tp->step_after_step_resume_breakpoint = 1;
1860 }
1861
1862 remove_single_step_breakpoints ();
1863 singlestep_breakpoints_inserted_p = 0;
1864
1865 insert_breakpoints ();
1866 tp->control.trap_expected = 0;
1867 }
1868
1869 if (should_resume)
1870 {
1871 ptid_t resume_ptid;
1872
1873 /* If STEP is set, it's a request to use hardware stepping
1874 facilities. But in that case, we should never
1875 use singlestep breakpoint. */
1876 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1877
1878 /* Decide the set of threads to ask the target to resume. Start
1879 by assuming everything will be resumed, than narrow the set
1880 by applying increasingly restricting conditions. */
1881 resume_ptid = user_visible_resume_ptid (step);
1882
1883 /* Maybe resume a single thread after all. */
1884 if (singlestep_breakpoints_inserted_p
1885 && stepping_past_singlestep_breakpoint)
1886 {
1887 /* The situation here is as follows. In thread T1 we wanted to
1888 single-step. Lacking hardware single-stepping we've
1889 set breakpoint at the PC of the next instruction -- call it
1890 P. After resuming, we've hit that breakpoint in thread T2.
1891 Now we've removed original breakpoint, inserted breakpoint
1892 at P+1, and try to step to advance T2 past breakpoint.
1893 We need to step only T2, as if T1 is allowed to freely run,
1894 it can run past P, and if other threads are allowed to run,
1895 they can hit breakpoint at P+1, and nested hits of single-step
1896 breakpoints is not something we'd want -- that's complicated
1897 to support, and has no value. */
1898 resume_ptid = inferior_ptid;
1899 }
1900 else if ((step || singlestep_breakpoints_inserted_p)
1901 && tp->control.trap_expected)
1902 {
1903 /* We're allowing a thread to run past a breakpoint it has
1904 hit, by single-stepping the thread with the breakpoint
1905 removed. In which case, we need to single-step only this
1906 thread, and keep others stopped, as they can miss this
1907 breakpoint if allowed to run.
1908
1909 The current code actually removes all breakpoints when
1910 doing this, not just the one being stepped over, so if we
1911 let other threads run, we can actually miss any
1912 breakpoint, not just the one at PC. */
1913 resume_ptid = inferior_ptid;
1914 }
1915
1916 if (gdbarch_cannot_step_breakpoint (gdbarch))
1917 {
1918 /* Most targets can step a breakpoint instruction, thus
1919 executing it normally. But if this one cannot, just
1920 continue and we will hit it anyway. */
1921 if (step && breakpoint_inserted_here_p (aspace, pc))
1922 step = 0;
1923 }
1924
1925 if (debug_displaced
1926 && use_displaced_stepping (gdbarch)
1927 && tp->control.trap_expected)
1928 {
1929 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1930 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1931 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1932 gdb_byte buf[4];
1933
1934 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1935 paddress (resume_gdbarch, actual_pc));
1936 read_memory (actual_pc, buf, sizeof (buf));
1937 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1938 }
1939
1940 if (tp->control.may_range_step)
1941 {
1942 /* If we're resuming a thread with the PC out of the step
1943 range, then we're doing some nested/finer run control
1944 operation, like stepping the thread out of the dynamic
1945 linker or the displaced stepping scratch pad. We
1946 shouldn't have allowed a range step then. */
1947 gdb_assert (pc_in_thread_step_range (pc, tp));
1948 }
1949
1950 /* Install inferior's terminal modes. */
1951 target_terminal_inferior ();
1952
1953 /* Avoid confusing the next resume, if the next stop/resume
1954 happens to apply to another thread. */
1955 tp->suspend.stop_signal = GDB_SIGNAL_0;
1956
1957 /* Advise target which signals may be handled silently. If we have
1958 removed breakpoints because we are stepping over one (which can
1959 happen only if we are not using displaced stepping), we need to
1960 receive all signals to avoid accidentally skipping a breakpoint
1961 during execution of a signal handler. */
1962 if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected
1964 && !use_displaced_stepping (gdbarch))
1965 target_pass_signals (0, NULL);
1966 else
1967 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1968
1969 target_resume (resume_ptid, step, sig);
1970 }
1971
1972 discard_cleanups (old_cleanups);
1973 }
1974 \f
1975 /* Proceeding. */
1976
1977 /* Clear out all variables saying what to do when inferior is continued.
1978 First do this, then set the ones you want, then call `proceed'. */
1979
1980 static void
1981 clear_proceed_status_thread (struct thread_info *tp)
1982 {
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "infrun: clear_proceed_status_thread (%s)\n",
1986 target_pid_to_str (tp->ptid));
1987
1988 tp->control.trap_expected = 0;
1989 tp->control.step_range_start = 0;
1990 tp->control.step_range_end = 0;
1991 tp->control.may_range_step = 0;
1992 tp->control.step_frame_id = null_frame_id;
1993 tp->control.step_stack_frame_id = null_frame_id;
1994 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1995 tp->stop_requested = 0;
1996
1997 tp->control.stop_step = 0;
1998
1999 tp->control.proceed_to_finish = 0;
2000
2001 /* Discard any remaining commands or status from previous stop. */
2002 bpstat_clear (&tp->control.stop_bpstat);
2003 }
2004
2005 static int
2006 clear_proceed_status_callback (struct thread_info *tp, void *data)
2007 {
2008 if (is_exited (tp->ptid))
2009 return 0;
2010
2011 clear_proceed_status_thread (tp);
2012 return 0;
2013 }
2014
2015 void
2016 clear_proceed_status (void)
2017 {
2018 if (!non_stop)
2019 {
2020 /* In all-stop mode, delete the per-thread status of all
2021 threads, even if inferior_ptid is null_ptid, there may be
2022 threads on the list. E.g., we may be launching a new
2023 process, while selecting the executable. */
2024 iterate_over_threads (clear_proceed_status_callback, NULL);
2025 }
2026
2027 if (!ptid_equal (inferior_ptid, null_ptid))
2028 {
2029 struct inferior *inferior;
2030
2031 if (non_stop)
2032 {
2033 /* If in non-stop mode, only delete the per-thread status of
2034 the current thread. */
2035 clear_proceed_status_thread (inferior_thread ());
2036 }
2037
2038 inferior = current_inferior ();
2039 inferior->control.stop_soon = NO_STOP_QUIETLY;
2040 }
2041
2042 stop_after_trap = 0;
2043
2044 observer_notify_about_to_proceed ();
2045
2046 if (stop_registers)
2047 {
2048 regcache_xfree (stop_registers);
2049 stop_registers = NULL;
2050 }
2051 }
2052
2053 /* Check the current thread against the thread that reported the most recent
2054 event. If a step-over is required return TRUE and set the current thread
2055 to the old thread. Otherwise return FALSE.
2056
2057 This should be suitable for any targets that support threads. */
2058
2059 static int
2060 prepare_to_proceed (int step)
2061 {
2062 ptid_t wait_ptid;
2063 struct target_waitstatus wait_status;
2064 int schedlock_enabled;
2065
2066 /* With non-stop mode on, threads are always handled individually. */
2067 gdb_assert (! non_stop);
2068
2069 /* Get the last target status returned by target_wait(). */
2070 get_last_target_status (&wait_ptid, &wait_status);
2071
2072 /* Make sure we were stopped at a breakpoint. */
2073 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2074 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2075 && wait_status.value.sig != GDB_SIGNAL_ILL
2076 && wait_status.value.sig != GDB_SIGNAL_SEGV
2077 && wait_status.value.sig != GDB_SIGNAL_EMT))
2078 {
2079 return 0;
2080 }
2081
2082 schedlock_enabled = (scheduler_mode == schedlock_on
2083 || (scheduler_mode == schedlock_step
2084 && step));
2085
2086 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2087 if (schedlock_enabled)
2088 return 0;
2089
2090 /* Don't switch over if we're about to resume some other process
2091 other than WAIT_PTID's, and schedule-multiple is off. */
2092 if (!sched_multi
2093 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2094 return 0;
2095
2096 /* Switched over from WAIT_PID. */
2097 if (!ptid_equal (wait_ptid, minus_one_ptid)
2098 && !ptid_equal (inferior_ptid, wait_ptid))
2099 {
2100 struct regcache *regcache = get_thread_regcache (wait_ptid);
2101
2102 if (breakpoint_here_p (get_regcache_aspace (regcache),
2103 regcache_read_pc (regcache)))
2104 {
2105 /* If stepping, remember current thread to switch back to. */
2106 if (step)
2107 deferred_step_ptid = inferior_ptid;
2108
2109 /* Switch back to WAIT_PID thread. */
2110 switch_to_thread (wait_ptid);
2111
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: prepare_to_proceed (step=%d), "
2115 "switched to [%s]\n",
2116 step, target_pid_to_str (inferior_ptid));
2117
2118 /* We return 1 to indicate that there is a breakpoint here,
2119 so we need to step over it before continuing to avoid
2120 hitting it straight away. */
2121 return 1;
2122 }
2123 }
2124
2125 return 0;
2126 }
2127
2128 /* Basic routine for continuing the program in various fashions.
2129
2130 ADDR is the address to resume at, or -1 for resume where stopped.
2131 SIGGNAL is the signal to give it, or 0 for none,
2132 or -1 for act according to how it stopped.
2133 STEP is nonzero if should trap after one instruction.
2134 -1 means return after that and print nothing.
2135 You should probably set various step_... variables
2136 before calling here, if you are stepping.
2137
2138 You should call clear_proceed_status before calling proceed. */
2139
2140 void
2141 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2142 {
2143 struct regcache *regcache;
2144 struct gdbarch *gdbarch;
2145 struct thread_info *tp;
2146 CORE_ADDR pc;
2147 struct address_space *aspace;
2148 /* GDB may force the inferior to step due to various reasons. */
2149 int force_step = 0;
2150
2151 /* If we're stopped at a fork/vfork, follow the branch set by the
2152 "set follow-fork-mode" command; otherwise, we'll just proceed
2153 resuming the current thread. */
2154 if (!follow_fork ())
2155 {
2156 /* The target for some reason decided not to resume. */
2157 normal_stop ();
2158 if (target_can_async_p ())
2159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2160 return;
2161 }
2162
2163 /* We'll update this if & when we switch to a new thread. */
2164 previous_inferior_ptid = inferior_ptid;
2165
2166 regcache = get_current_regcache ();
2167 gdbarch = get_regcache_arch (regcache);
2168 aspace = get_regcache_aspace (regcache);
2169 pc = regcache_read_pc (regcache);
2170
2171 if (step > 0)
2172 step_start_function = find_pc_function (pc);
2173 if (step < 0)
2174 stop_after_trap = 1;
2175
2176 if (addr == (CORE_ADDR) -1)
2177 {
2178 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2179 && execution_direction != EXEC_REVERSE)
2180 /* There is a breakpoint at the address we will resume at,
2181 step one instruction before inserting breakpoints so that
2182 we do not stop right away (and report a second hit at this
2183 breakpoint).
2184
2185 Note, we don't do this in reverse, because we won't
2186 actually be executing the breakpoint insn anyway.
2187 We'll be (un-)executing the previous instruction. */
2188
2189 force_step = 1;
2190 else if (gdbarch_single_step_through_delay_p (gdbarch)
2191 && gdbarch_single_step_through_delay (gdbarch,
2192 get_current_frame ()))
2193 /* We stepped onto an instruction that needs to be stepped
2194 again before re-inserting the breakpoint, do so. */
2195 force_step = 1;
2196 }
2197 else
2198 {
2199 regcache_write_pc (regcache, addr);
2200 }
2201
2202 if (debug_infrun)
2203 fprintf_unfiltered (gdb_stdlog,
2204 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2205 paddress (gdbarch, addr),
2206 gdb_signal_to_symbol_string (siggnal), step);
2207
2208 if (non_stop)
2209 /* In non-stop, each thread is handled individually. The context
2210 must already be set to the right thread here. */
2211 ;
2212 else
2213 {
2214 /* In a multi-threaded task we may select another thread and
2215 then continue or step.
2216
2217 But if the old thread was stopped at a breakpoint, it will
2218 immediately cause another breakpoint stop without any
2219 execution (i.e. it will report a breakpoint hit incorrectly).
2220 So we must step over it first.
2221
2222 prepare_to_proceed checks the current thread against the
2223 thread that reported the most recent event. If a step-over
2224 is required it returns TRUE and sets the current thread to
2225 the old thread. */
2226 if (prepare_to_proceed (step))
2227 force_step = 1;
2228 }
2229
2230 /* prepare_to_proceed may change the current thread. */
2231 tp = inferior_thread ();
2232
2233 if (force_step)
2234 {
2235 tp->control.trap_expected = 1;
2236 /* If displaced stepping is enabled, we can step over the
2237 breakpoint without hitting it, so leave all breakpoints
2238 inserted. Otherwise we need to disable all breakpoints, step
2239 one instruction, and then re-add them when that step is
2240 finished. */
2241 if (!use_displaced_stepping (gdbarch))
2242 remove_breakpoints ();
2243 }
2244
2245 /* We can insert breakpoints if we're not trying to step over one,
2246 or if we are stepping over one but we're using displaced stepping
2247 to do so. */
2248 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2249 insert_breakpoints ();
2250
2251 if (!non_stop)
2252 {
2253 /* Pass the last stop signal to the thread we're resuming,
2254 irrespective of whether the current thread is the thread that
2255 got the last event or not. This was historically GDB's
2256 behaviour before keeping a stop_signal per thread. */
2257
2258 struct thread_info *last_thread;
2259 ptid_t last_ptid;
2260 struct target_waitstatus last_status;
2261
2262 get_last_target_status (&last_ptid, &last_status);
2263 if (!ptid_equal (inferior_ptid, last_ptid)
2264 && !ptid_equal (last_ptid, null_ptid)
2265 && !ptid_equal (last_ptid, minus_one_ptid))
2266 {
2267 last_thread = find_thread_ptid (last_ptid);
2268 if (last_thread)
2269 {
2270 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2271 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2272 }
2273 }
2274 }
2275
2276 if (siggnal != GDB_SIGNAL_DEFAULT)
2277 tp->suspend.stop_signal = siggnal;
2278 /* If this signal should not be seen by program,
2279 give it zero. Used for debugging signals. */
2280 else if (!signal_program[tp->suspend.stop_signal])
2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
2282
2283 annotate_starting ();
2284
2285 /* Make sure that output from GDB appears before output from the
2286 inferior. */
2287 gdb_flush (gdb_stdout);
2288
2289 /* Refresh prev_pc value just prior to resuming. This used to be
2290 done in stop_stepping, however, setting prev_pc there did not handle
2291 scenarios such as inferior function calls or returning from
2292 a function via the return command. In those cases, the prev_pc
2293 value was not set properly for subsequent commands. The prev_pc value
2294 is used to initialize the starting line number in the ecs. With an
2295 invalid value, the gdb next command ends up stopping at the position
2296 represented by the next line table entry past our start position.
2297 On platforms that generate one line table entry per line, this
2298 is not a problem. However, on the ia64, the compiler generates
2299 extraneous line table entries that do not increase the line number.
2300 When we issue the gdb next command on the ia64 after an inferior call
2301 or a return command, we often end up a few instructions forward, still
2302 within the original line we started.
2303
2304 An attempt was made to refresh the prev_pc at the same time the
2305 execution_control_state is initialized (for instance, just before
2306 waiting for an inferior event). But this approach did not work
2307 because of platforms that use ptrace, where the pc register cannot
2308 be read unless the inferior is stopped. At that point, we are not
2309 guaranteed the inferior is stopped and so the regcache_read_pc() call
2310 can fail. Setting the prev_pc value here ensures the value is updated
2311 correctly when the inferior is stopped. */
2312 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2313
2314 /* Fill in with reasonable starting values. */
2315 init_thread_stepping_state (tp);
2316
2317 /* Reset to normal state. */
2318 init_infwait_state ();
2319
2320 /* Resume inferior. */
2321 resume (force_step || step || bpstat_should_step (),
2322 tp->suspend.stop_signal);
2323
2324 /* Wait for it to stop (if not standalone)
2325 and in any case decode why it stopped, and act accordingly. */
2326 /* Do this only if we are not using the event loop, or if the target
2327 does not support asynchronous execution. */
2328 if (!target_can_async_p ())
2329 {
2330 wait_for_inferior ();
2331 normal_stop ();
2332 }
2333 }
2334 \f
2335
2336 /* Start remote-debugging of a machine over a serial link. */
2337
2338 void
2339 start_remote (int from_tty)
2340 {
2341 struct inferior *inferior;
2342
2343 inferior = current_inferior ();
2344 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2345
2346 /* Always go on waiting for the target, regardless of the mode. */
2347 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2348 indicate to wait_for_inferior that a target should timeout if
2349 nothing is returned (instead of just blocking). Because of this,
2350 targets expecting an immediate response need to, internally, set
2351 things up so that the target_wait() is forced to eventually
2352 timeout. */
2353 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2354 differentiate to its caller what the state of the target is after
2355 the initial open has been performed. Here we're assuming that
2356 the target has stopped. It should be possible to eventually have
2357 target_open() return to the caller an indication that the target
2358 is currently running and GDB state should be set to the same as
2359 for an async run. */
2360 wait_for_inferior ();
2361
2362 /* Now that the inferior has stopped, do any bookkeeping like
2363 loading shared libraries. We want to do this before normal_stop,
2364 so that the displayed frame is up to date. */
2365 post_create_inferior (&current_target, from_tty);
2366
2367 normal_stop ();
2368 }
2369
2370 /* Initialize static vars when a new inferior begins. */
2371
2372 void
2373 init_wait_for_inferior (void)
2374 {
2375 /* These are meaningless until the first time through wait_for_inferior. */
2376
2377 breakpoint_init_inferior (inf_starting);
2378
2379 clear_proceed_status ();
2380
2381 stepping_past_singlestep_breakpoint = 0;
2382 deferred_step_ptid = null_ptid;
2383
2384 target_last_wait_ptid = minus_one_ptid;
2385
2386 previous_inferior_ptid = inferior_ptid;
2387 init_infwait_state ();
2388
2389 /* Discard any skipped inlined frames. */
2390 clear_inline_frame_state (minus_one_ptid);
2391 }
2392
2393 \f
2394 /* This enum encodes possible reasons for doing a target_wait, so that
2395 wfi can call target_wait in one place. (Ultimately the call will be
2396 moved out of the infinite loop entirely.) */
2397
2398 enum infwait_states
2399 {
2400 infwait_normal_state,
2401 infwait_thread_hop_state,
2402 infwait_step_watch_state,
2403 infwait_nonstep_watch_state
2404 };
2405
2406 /* The PTID we'll do a target_wait on.*/
2407 ptid_t waiton_ptid;
2408
2409 /* Current inferior wait state. */
2410 static enum infwait_states infwait_state;
2411
2412 /* Data to be passed around while handling an event. This data is
2413 discarded between events. */
2414 struct execution_control_state
2415 {
2416 ptid_t ptid;
2417 /* The thread that got the event, if this was a thread event; NULL
2418 otherwise. */
2419 struct thread_info *event_thread;
2420
2421 struct target_waitstatus ws;
2422 int stop_func_filled_in;
2423 CORE_ADDR stop_func_start;
2424 CORE_ADDR stop_func_end;
2425 const char *stop_func_name;
2426 int wait_some_more;
2427 };
2428
2429 static void handle_inferior_event (struct execution_control_state *ecs);
2430
2431 static void handle_step_into_function (struct gdbarch *gdbarch,
2432 struct execution_control_state *ecs);
2433 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2434 struct execution_control_state *ecs);
2435 static void check_exception_resume (struct execution_control_state *,
2436 struct frame_info *);
2437
2438 static void stop_stepping (struct execution_control_state *ecs);
2439 static void prepare_to_wait (struct execution_control_state *ecs);
2440 static void keep_going (struct execution_control_state *ecs);
2441 static void process_event_stop_test (struct execution_control_state *ecs);
2442 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2443
2444 /* Callback for iterate over threads. If the thread is stopped, but
2445 the user/frontend doesn't know about that yet, go through
2446 normal_stop, as if the thread had just stopped now. ARG points at
2447 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2448 ptid_is_pid(PTID) is true, applies to all threads of the process
2449 pointed at by PTID. Otherwise, apply only to the thread pointed by
2450 PTID. */
2451
2452 static int
2453 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2454 {
2455 ptid_t ptid = * (ptid_t *) arg;
2456
2457 if ((ptid_equal (info->ptid, ptid)
2458 || ptid_equal (minus_one_ptid, ptid)
2459 || (ptid_is_pid (ptid)
2460 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2461 && is_running (info->ptid)
2462 && !is_executing (info->ptid))
2463 {
2464 struct cleanup *old_chain;
2465 struct execution_control_state ecss;
2466 struct execution_control_state *ecs = &ecss;
2467
2468 memset (ecs, 0, sizeof (*ecs));
2469
2470 old_chain = make_cleanup_restore_current_thread ();
2471
2472 /* Go through handle_inferior_event/normal_stop, so we always
2473 have consistent output as if the stop event had been
2474 reported. */
2475 ecs->ptid = info->ptid;
2476 ecs->event_thread = find_thread_ptid (info->ptid);
2477 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2478 ecs->ws.value.sig = GDB_SIGNAL_0;
2479
2480 handle_inferior_event (ecs);
2481
2482 if (!ecs->wait_some_more)
2483 {
2484 struct thread_info *tp;
2485
2486 normal_stop ();
2487
2488 /* Finish off the continuations. */
2489 tp = inferior_thread ();
2490 do_all_intermediate_continuations_thread (tp, 1);
2491 do_all_continuations_thread (tp, 1);
2492 }
2493
2494 do_cleanups (old_chain);
2495 }
2496
2497 return 0;
2498 }
2499
2500 /* This function is attached as a "thread_stop_requested" observer.
2501 Cleanup local state that assumed the PTID was to be resumed, and
2502 report the stop to the frontend. */
2503
2504 static void
2505 infrun_thread_stop_requested (ptid_t ptid)
2506 {
2507 struct displaced_step_inferior_state *displaced;
2508
2509 /* PTID was requested to stop. Remove it from the displaced
2510 stepping queue, so we don't try to resume it automatically. */
2511
2512 for (displaced = displaced_step_inferior_states;
2513 displaced;
2514 displaced = displaced->next)
2515 {
2516 struct displaced_step_request *it, **prev_next_p;
2517
2518 it = displaced->step_request_queue;
2519 prev_next_p = &displaced->step_request_queue;
2520 while (it)
2521 {
2522 if (ptid_match (it->ptid, ptid))
2523 {
2524 *prev_next_p = it->next;
2525 it->next = NULL;
2526 xfree (it);
2527 }
2528 else
2529 {
2530 prev_next_p = &it->next;
2531 }
2532
2533 it = *prev_next_p;
2534 }
2535 }
2536
2537 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2538 }
2539
2540 static void
2541 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2542 {
2543 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2544 nullify_last_target_wait_ptid ();
2545 }
2546
2547 /* Callback for iterate_over_threads. */
2548
2549 static int
2550 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2551 {
2552 if (is_exited (info->ptid))
2553 return 0;
2554
2555 delete_step_resume_breakpoint (info);
2556 delete_exception_resume_breakpoint (info);
2557 return 0;
2558 }
2559
2560 /* In all-stop, delete the step resume breakpoint of any thread that
2561 had one. In non-stop, delete the step resume breakpoint of the
2562 thread that just stopped. */
2563
2564 static void
2565 delete_step_thread_step_resume_breakpoint (void)
2566 {
2567 if (!target_has_execution
2568 || ptid_equal (inferior_ptid, null_ptid))
2569 /* If the inferior has exited, we have already deleted the step
2570 resume breakpoints out of GDB's lists. */
2571 return;
2572
2573 if (non_stop)
2574 {
2575 /* If in non-stop mode, only delete the step-resume or
2576 longjmp-resume breakpoint of the thread that just stopped
2577 stepping. */
2578 struct thread_info *tp = inferior_thread ();
2579
2580 delete_step_resume_breakpoint (tp);
2581 delete_exception_resume_breakpoint (tp);
2582 }
2583 else
2584 /* In all-stop mode, delete all step-resume and longjmp-resume
2585 breakpoints of any thread that had them. */
2586 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2587 }
2588
2589 /* A cleanup wrapper. */
2590
2591 static void
2592 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2593 {
2594 delete_step_thread_step_resume_breakpoint ();
2595 }
2596
2597 /* Pretty print the results of target_wait, for debugging purposes. */
2598
2599 static void
2600 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2601 const struct target_waitstatus *ws)
2602 {
2603 char *status_string = target_waitstatus_to_string (ws);
2604 struct ui_file *tmp_stream = mem_fileopen ();
2605 char *text;
2606
2607 /* The text is split over several lines because it was getting too long.
2608 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2609 output as a unit; we want only one timestamp printed if debug_timestamp
2610 is set. */
2611
2612 fprintf_unfiltered (tmp_stream,
2613 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2614 if (ptid_get_pid (waiton_ptid) != -1)
2615 fprintf_unfiltered (tmp_stream,
2616 " [%s]", target_pid_to_str (waiton_ptid));
2617 fprintf_unfiltered (tmp_stream, ", status) =\n");
2618 fprintf_unfiltered (tmp_stream,
2619 "infrun: %d [%s],\n",
2620 ptid_get_pid (result_ptid),
2621 target_pid_to_str (result_ptid));
2622 fprintf_unfiltered (tmp_stream,
2623 "infrun: %s\n",
2624 status_string);
2625
2626 text = ui_file_xstrdup (tmp_stream, NULL);
2627
2628 /* This uses %s in part to handle %'s in the text, but also to avoid
2629 a gcc error: the format attribute requires a string literal. */
2630 fprintf_unfiltered (gdb_stdlog, "%s", text);
2631
2632 xfree (status_string);
2633 xfree (text);
2634 ui_file_delete (tmp_stream);
2635 }
2636
2637 /* Prepare and stabilize the inferior for detaching it. E.g.,
2638 detaching while a thread is displaced stepping is a recipe for
2639 crashing it, as nothing would readjust the PC out of the scratch
2640 pad. */
2641
2642 void
2643 prepare_for_detach (void)
2644 {
2645 struct inferior *inf = current_inferior ();
2646 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2647 struct cleanup *old_chain_1;
2648 struct displaced_step_inferior_state *displaced;
2649
2650 displaced = get_displaced_stepping_state (inf->pid);
2651
2652 /* Is any thread of this process displaced stepping? If not,
2653 there's nothing else to do. */
2654 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2655 return;
2656
2657 if (debug_infrun)
2658 fprintf_unfiltered (gdb_stdlog,
2659 "displaced-stepping in-process while detaching");
2660
2661 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2662 inf->detaching = 1;
2663
2664 while (!ptid_equal (displaced->step_ptid, null_ptid))
2665 {
2666 struct cleanup *old_chain_2;
2667 struct execution_control_state ecss;
2668 struct execution_control_state *ecs;
2669
2670 ecs = &ecss;
2671 memset (ecs, 0, sizeof (*ecs));
2672
2673 overlay_cache_invalid = 1;
2674
2675 if (deprecated_target_wait_hook)
2676 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2677 else
2678 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2679
2680 if (debug_infrun)
2681 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2682
2683 /* If an error happens while handling the event, propagate GDB's
2684 knowledge of the executing state to the frontend/user running
2685 state. */
2686 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2687 &minus_one_ptid);
2688
2689 /* Now figure out what to do with the result of the result. */
2690 handle_inferior_event (ecs);
2691
2692 /* No error, don't finish the state yet. */
2693 discard_cleanups (old_chain_2);
2694
2695 /* Breakpoints and watchpoints are not installed on the target
2696 at this point, and signals are passed directly to the
2697 inferior, so this must mean the process is gone. */
2698 if (!ecs->wait_some_more)
2699 {
2700 discard_cleanups (old_chain_1);
2701 error (_("Program exited while detaching"));
2702 }
2703 }
2704
2705 discard_cleanups (old_chain_1);
2706 }
2707
2708 /* Wait for control to return from inferior to debugger.
2709
2710 If inferior gets a signal, we may decide to start it up again
2711 instead of returning. That is why there is a loop in this function.
2712 When this function actually returns it means the inferior
2713 should be left stopped and GDB should read more commands. */
2714
2715 void
2716 wait_for_inferior (void)
2717 {
2718 struct cleanup *old_cleanups;
2719
2720 if (debug_infrun)
2721 fprintf_unfiltered
2722 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2723
2724 old_cleanups =
2725 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2726
2727 while (1)
2728 {
2729 struct execution_control_state ecss;
2730 struct execution_control_state *ecs = &ecss;
2731 struct cleanup *old_chain;
2732
2733 memset (ecs, 0, sizeof (*ecs));
2734
2735 overlay_cache_invalid = 1;
2736
2737 if (deprecated_target_wait_hook)
2738 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2739 else
2740 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2741
2742 if (debug_infrun)
2743 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2744
2745 /* If an error happens while handling the event, propagate GDB's
2746 knowledge of the executing state to the frontend/user running
2747 state. */
2748 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2749
2750 /* Now figure out what to do with the result of the result. */
2751 handle_inferior_event (ecs);
2752
2753 /* No error, don't finish the state yet. */
2754 discard_cleanups (old_chain);
2755
2756 if (!ecs->wait_some_more)
2757 break;
2758 }
2759
2760 do_cleanups (old_cleanups);
2761 }
2762
2763 /* Asynchronous version of wait_for_inferior. It is called by the
2764 event loop whenever a change of state is detected on the file
2765 descriptor corresponding to the target. It can be called more than
2766 once to complete a single execution command. In such cases we need
2767 to keep the state in a global variable ECSS. If it is the last time
2768 that this function is called for a single execution command, then
2769 report to the user that the inferior has stopped, and do the
2770 necessary cleanups. */
2771
2772 void
2773 fetch_inferior_event (void *client_data)
2774 {
2775 struct execution_control_state ecss;
2776 struct execution_control_state *ecs = &ecss;
2777 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2778 struct cleanup *ts_old_chain;
2779 int was_sync = sync_execution;
2780 int cmd_done = 0;
2781
2782 memset (ecs, 0, sizeof (*ecs));
2783
2784 /* We're handling a live event, so make sure we're doing live
2785 debugging. If we're looking at traceframes while the target is
2786 running, we're going to need to get back to that mode after
2787 handling the event. */
2788 if (non_stop)
2789 {
2790 make_cleanup_restore_current_traceframe ();
2791 set_current_traceframe (-1);
2792 }
2793
2794 if (non_stop)
2795 /* In non-stop mode, the user/frontend should not notice a thread
2796 switch due to internal events. Make sure we reverse to the
2797 user selected thread and frame after handling the event and
2798 running any breakpoint commands. */
2799 make_cleanup_restore_current_thread ();
2800
2801 overlay_cache_invalid = 1;
2802
2803 make_cleanup_restore_integer (&execution_direction);
2804 execution_direction = target_execution_direction ();
2805
2806 if (deprecated_target_wait_hook)
2807 ecs->ptid =
2808 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2809 else
2810 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2811
2812 if (debug_infrun)
2813 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2814
2815 /* If an error happens while handling the event, propagate GDB's
2816 knowledge of the executing state to the frontend/user running
2817 state. */
2818 if (!non_stop)
2819 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2820 else
2821 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2822
2823 /* Get executed before make_cleanup_restore_current_thread above to apply
2824 still for the thread which has thrown the exception. */
2825 make_bpstat_clear_actions_cleanup ();
2826
2827 /* Now figure out what to do with the result of the result. */
2828 handle_inferior_event (ecs);
2829
2830 if (!ecs->wait_some_more)
2831 {
2832 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2833
2834 delete_step_thread_step_resume_breakpoint ();
2835
2836 /* We may not find an inferior if this was a process exit. */
2837 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2838 normal_stop ();
2839
2840 if (target_has_execution
2841 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2842 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2843 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2844 && ecs->event_thread->step_multi
2845 && ecs->event_thread->control.stop_step)
2846 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2847 else
2848 {
2849 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2850 cmd_done = 1;
2851 }
2852 }
2853
2854 /* No error, don't finish the thread states yet. */
2855 discard_cleanups (ts_old_chain);
2856
2857 /* Revert thread and frame. */
2858 do_cleanups (old_chain);
2859
2860 /* If the inferior was in sync execution mode, and now isn't,
2861 restore the prompt (a synchronous execution command has finished,
2862 and we're ready for input). */
2863 if (interpreter_async && was_sync && !sync_execution)
2864 display_gdb_prompt (0);
2865
2866 if (cmd_done
2867 && !was_sync
2868 && exec_done_display_p
2869 && (ptid_equal (inferior_ptid, null_ptid)
2870 || !is_running (inferior_ptid)))
2871 printf_unfiltered (_("completed.\n"));
2872 }
2873
2874 /* Record the frame and location we're currently stepping through. */
2875 void
2876 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2877 {
2878 struct thread_info *tp = inferior_thread ();
2879
2880 tp->control.step_frame_id = get_frame_id (frame);
2881 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2882
2883 tp->current_symtab = sal.symtab;
2884 tp->current_line = sal.line;
2885 }
2886
2887 /* Clear context switchable stepping state. */
2888
2889 void
2890 init_thread_stepping_state (struct thread_info *tss)
2891 {
2892 tss->stepping_over_breakpoint = 0;
2893 tss->step_after_step_resume_breakpoint = 0;
2894 }
2895
2896 /* Return the cached copy of the last pid/waitstatus returned by
2897 target_wait()/deprecated_target_wait_hook(). The data is actually
2898 cached by handle_inferior_event(), which gets called immediately
2899 after target_wait()/deprecated_target_wait_hook(). */
2900
2901 void
2902 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2903 {
2904 *ptidp = target_last_wait_ptid;
2905 *status = target_last_waitstatus;
2906 }
2907
2908 void
2909 nullify_last_target_wait_ptid (void)
2910 {
2911 target_last_wait_ptid = minus_one_ptid;
2912 }
2913
2914 /* Switch thread contexts. */
2915
2916 static void
2917 context_switch (ptid_t ptid)
2918 {
2919 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2920 {
2921 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2922 target_pid_to_str (inferior_ptid));
2923 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2924 target_pid_to_str (ptid));
2925 }
2926
2927 switch_to_thread (ptid);
2928 }
2929
2930 static void
2931 adjust_pc_after_break (struct execution_control_state *ecs)
2932 {
2933 struct regcache *regcache;
2934 struct gdbarch *gdbarch;
2935 struct address_space *aspace;
2936 CORE_ADDR breakpoint_pc;
2937
2938 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2939 we aren't, just return.
2940
2941 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2942 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2943 implemented by software breakpoints should be handled through the normal
2944 breakpoint layer.
2945
2946 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2947 different signals (SIGILL or SIGEMT for instance), but it is less
2948 clear where the PC is pointing afterwards. It may not match
2949 gdbarch_decr_pc_after_break. I don't know any specific target that
2950 generates these signals at breakpoints (the code has been in GDB since at
2951 least 1992) so I can not guess how to handle them here.
2952
2953 In earlier versions of GDB, a target with
2954 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2955 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2956 target with both of these set in GDB history, and it seems unlikely to be
2957 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2958
2959 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2960 return;
2961
2962 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2963 return;
2964
2965 /* In reverse execution, when a breakpoint is hit, the instruction
2966 under it has already been de-executed. The reported PC always
2967 points at the breakpoint address, so adjusting it further would
2968 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2969 architecture:
2970
2971 B1 0x08000000 : INSN1
2972 B2 0x08000001 : INSN2
2973 0x08000002 : INSN3
2974 PC -> 0x08000003 : INSN4
2975
2976 Say you're stopped at 0x08000003 as above. Reverse continuing
2977 from that point should hit B2 as below. Reading the PC when the
2978 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2979 been de-executed already.
2980
2981 B1 0x08000000 : INSN1
2982 B2 PC -> 0x08000001 : INSN2
2983 0x08000002 : INSN3
2984 0x08000003 : INSN4
2985
2986 We can't apply the same logic as for forward execution, because
2987 we would wrongly adjust the PC to 0x08000000, since there's a
2988 breakpoint at PC - 1. We'd then report a hit on B1, although
2989 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2990 behaviour. */
2991 if (execution_direction == EXEC_REVERSE)
2992 return;
2993
2994 /* If this target does not decrement the PC after breakpoints, then
2995 we have nothing to do. */
2996 regcache = get_thread_regcache (ecs->ptid);
2997 gdbarch = get_regcache_arch (regcache);
2998 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2999 return;
3000
3001 aspace = get_regcache_aspace (regcache);
3002
3003 /* Find the location where (if we've hit a breakpoint) the
3004 breakpoint would be. */
3005 breakpoint_pc = regcache_read_pc (regcache)
3006 - gdbarch_decr_pc_after_break (gdbarch);
3007
3008 /* Check whether there actually is a software breakpoint inserted at
3009 that location.
3010
3011 If in non-stop mode, a race condition is possible where we've
3012 removed a breakpoint, but stop events for that breakpoint were
3013 already queued and arrive later. To suppress those spurious
3014 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3015 and retire them after a number of stop events are reported. */
3016 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3017 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3018 {
3019 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3020
3021 if (RECORD_IS_USED)
3022 record_full_gdb_operation_disable_set ();
3023
3024 /* When using hardware single-step, a SIGTRAP is reported for both
3025 a completed single-step and a software breakpoint. Need to
3026 differentiate between the two, as the latter needs adjusting
3027 but the former does not.
3028
3029 The SIGTRAP can be due to a completed hardware single-step only if
3030 - we didn't insert software single-step breakpoints
3031 - the thread to be examined is still the current thread
3032 - this thread is currently being stepped
3033
3034 If any of these events did not occur, we must have stopped due
3035 to hitting a software breakpoint, and have to back up to the
3036 breakpoint address.
3037
3038 As a special case, we could have hardware single-stepped a
3039 software breakpoint. In this case (prev_pc == breakpoint_pc),
3040 we also need to back up to the breakpoint address. */
3041
3042 if (singlestep_breakpoints_inserted_p
3043 || !ptid_equal (ecs->ptid, inferior_ptid)
3044 || !currently_stepping (ecs->event_thread)
3045 || ecs->event_thread->prev_pc == breakpoint_pc)
3046 regcache_write_pc (regcache, breakpoint_pc);
3047
3048 do_cleanups (old_cleanups);
3049 }
3050 }
3051
3052 static void
3053 init_infwait_state (void)
3054 {
3055 waiton_ptid = pid_to_ptid (-1);
3056 infwait_state = infwait_normal_state;
3057 }
3058
3059 static int
3060 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3061 {
3062 for (frame = get_prev_frame (frame);
3063 frame != NULL;
3064 frame = get_prev_frame (frame))
3065 {
3066 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3067 return 1;
3068 if (get_frame_type (frame) != INLINE_FRAME)
3069 break;
3070 }
3071
3072 return 0;
3073 }
3074
3075 /* Auxiliary function that handles syscall entry/return events.
3076 It returns 1 if the inferior should keep going (and GDB
3077 should ignore the event), or 0 if the event deserves to be
3078 processed. */
3079
3080 static int
3081 handle_syscall_event (struct execution_control_state *ecs)
3082 {
3083 struct regcache *regcache;
3084 int syscall_number;
3085
3086 if (!ptid_equal (ecs->ptid, inferior_ptid))
3087 context_switch (ecs->ptid);
3088
3089 regcache = get_thread_regcache (ecs->ptid);
3090 syscall_number = ecs->ws.value.syscall_number;
3091 stop_pc = regcache_read_pc (regcache);
3092
3093 if (catch_syscall_enabled () > 0
3094 && catching_syscall_number (syscall_number) > 0)
3095 {
3096 if (debug_infrun)
3097 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3098 syscall_number);
3099
3100 ecs->event_thread->control.stop_bpstat
3101 = bpstat_stop_status (get_regcache_aspace (regcache),
3102 stop_pc, ecs->ptid, &ecs->ws);
3103
3104 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3105 {
3106 /* Catchpoint hit. */
3107 return 0;
3108 }
3109 }
3110
3111 /* If no catchpoint triggered for this, then keep going. */
3112 keep_going (ecs);
3113 return 1;
3114 }
3115
3116 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3117
3118 static void
3119 fill_in_stop_func (struct gdbarch *gdbarch,
3120 struct execution_control_state *ecs)
3121 {
3122 if (!ecs->stop_func_filled_in)
3123 {
3124 /* Don't care about return value; stop_func_start and stop_func_name
3125 will both be 0 if it doesn't work. */
3126 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3127 &ecs->stop_func_start, &ecs->stop_func_end);
3128 ecs->stop_func_start
3129 += gdbarch_deprecated_function_start_offset (gdbarch);
3130
3131 ecs->stop_func_filled_in = 1;
3132 }
3133 }
3134
3135 /* Given an execution control state that has been freshly filled in by
3136 an event from the inferior, figure out what it means and take
3137 appropriate action.
3138
3139 The alternatives are:
3140
3141 1) stop_stepping and return; to really stop and return to the
3142 debugger.
3143
3144 2) keep_going and return; to wait for the next event (set
3145 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3146 once). */
3147
3148 static void
3149 handle_inferior_event (struct execution_control_state *ecs)
3150 {
3151 struct frame_info *frame;
3152 struct gdbarch *gdbarch;
3153 int stopped_by_watchpoint;
3154 int stepped_after_stopped_by_watchpoint = 0;
3155 enum stop_kind stop_soon;
3156 int random_signal;
3157
3158 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3159 {
3160 /* We had an event in the inferior, but we are not interested in
3161 handling it at this level. The lower layers have already
3162 done what needs to be done, if anything.
3163
3164 One of the possible circumstances for this is when the
3165 inferior produces output for the console. The inferior has
3166 not stopped, and we are ignoring the event. Another possible
3167 circumstance is any event which the lower level knows will be
3168 reported multiple times without an intervening resume. */
3169 if (debug_infrun)
3170 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3171 prepare_to_wait (ecs);
3172 return;
3173 }
3174
3175 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3176 && target_can_async_p () && !sync_execution)
3177 {
3178 /* There were no unwaited-for children left in the target, but,
3179 we're not synchronously waiting for events either. Just
3180 ignore. Otherwise, if we were running a synchronous
3181 execution command, we need to cancel it and give the user
3182 back the terminal. */
3183 if (debug_infrun)
3184 fprintf_unfiltered (gdb_stdlog,
3185 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3186 prepare_to_wait (ecs);
3187 return;
3188 }
3189
3190 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3191 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3192 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3193 {
3194 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3195
3196 gdb_assert (inf);
3197 stop_soon = inf->control.stop_soon;
3198 }
3199 else
3200 stop_soon = NO_STOP_QUIETLY;
3201
3202 /* Cache the last pid/waitstatus. */
3203 target_last_wait_ptid = ecs->ptid;
3204 target_last_waitstatus = ecs->ws;
3205
3206 /* Always clear state belonging to the previous time we stopped. */
3207 stop_stack_dummy = STOP_NONE;
3208
3209 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3210 {
3211 /* No unwaited-for children left. IOW, all resumed children
3212 have exited. */
3213 if (debug_infrun)
3214 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3215
3216 stop_print_frame = 0;
3217 stop_stepping (ecs);
3218 return;
3219 }
3220
3221 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3222 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3223 {
3224 ecs->event_thread = find_thread_ptid (ecs->ptid);
3225 /* If it's a new thread, add it to the thread database. */
3226 if (ecs->event_thread == NULL)
3227 ecs->event_thread = add_thread (ecs->ptid);
3228
3229 /* Disable range stepping. If the next step request could use a
3230 range, this will be end up re-enabled then. */
3231 ecs->event_thread->control.may_range_step = 0;
3232 }
3233
3234 /* Dependent on valid ECS->EVENT_THREAD. */
3235 adjust_pc_after_break (ecs);
3236
3237 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3238 reinit_frame_cache ();
3239
3240 breakpoint_retire_moribund ();
3241
3242 /* First, distinguish signals caused by the debugger from signals
3243 that have to do with the program's own actions. Note that
3244 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3245 on the operating system version. Here we detect when a SIGILL or
3246 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3247 something similar for SIGSEGV, since a SIGSEGV will be generated
3248 when we're trying to execute a breakpoint instruction on a
3249 non-executable stack. This happens for call dummy breakpoints
3250 for architectures like SPARC that place call dummies on the
3251 stack. */
3252 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3253 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3254 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3255 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3256 {
3257 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3258
3259 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3260 regcache_read_pc (regcache)))
3261 {
3262 if (debug_infrun)
3263 fprintf_unfiltered (gdb_stdlog,
3264 "infrun: Treating signal as SIGTRAP\n");
3265 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3266 }
3267 }
3268
3269 /* Mark the non-executing threads accordingly. In all-stop, all
3270 threads of all processes are stopped when we get any event
3271 reported. In non-stop mode, only the event thread stops. If
3272 we're handling a process exit in non-stop mode, there's nothing
3273 to do, as threads of the dead process are gone, and threads of
3274 any other process were left running. */
3275 if (!non_stop)
3276 set_executing (minus_one_ptid, 0);
3277 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3278 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3279 set_executing (ecs->ptid, 0);
3280
3281 switch (infwait_state)
3282 {
3283 case infwait_thread_hop_state:
3284 if (debug_infrun)
3285 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3286 break;
3287
3288 case infwait_normal_state:
3289 if (debug_infrun)
3290 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3291 break;
3292
3293 case infwait_step_watch_state:
3294 if (debug_infrun)
3295 fprintf_unfiltered (gdb_stdlog,
3296 "infrun: infwait_step_watch_state\n");
3297
3298 stepped_after_stopped_by_watchpoint = 1;
3299 break;
3300
3301 case infwait_nonstep_watch_state:
3302 if (debug_infrun)
3303 fprintf_unfiltered (gdb_stdlog,
3304 "infrun: infwait_nonstep_watch_state\n");
3305 insert_breakpoints ();
3306
3307 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3308 handle things like signals arriving and other things happening
3309 in combination correctly? */
3310 stepped_after_stopped_by_watchpoint = 1;
3311 break;
3312
3313 default:
3314 internal_error (__FILE__, __LINE__, _("bad switch"));
3315 }
3316
3317 infwait_state = infwait_normal_state;
3318 waiton_ptid = pid_to_ptid (-1);
3319
3320 switch (ecs->ws.kind)
3321 {
3322 case TARGET_WAITKIND_LOADED:
3323 if (debug_infrun)
3324 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3325 if (!ptid_equal (ecs->ptid, inferior_ptid))
3326 context_switch (ecs->ptid);
3327 /* Ignore gracefully during startup of the inferior, as it might
3328 be the shell which has just loaded some objects, otherwise
3329 add the symbols for the newly loaded objects. Also ignore at
3330 the beginning of an attach or remote session; we will query
3331 the full list of libraries once the connection is
3332 established. */
3333 if (stop_soon == NO_STOP_QUIETLY)
3334 {
3335 struct regcache *regcache;
3336
3337 regcache = get_thread_regcache (ecs->ptid);
3338
3339 handle_solib_event ();
3340
3341 ecs->event_thread->control.stop_bpstat
3342 = bpstat_stop_status (get_regcache_aspace (regcache),
3343 stop_pc, ecs->ptid, &ecs->ws);
3344
3345 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3346 {
3347 /* A catchpoint triggered. */
3348 process_event_stop_test (ecs);
3349 return;
3350 }
3351
3352 /* If requested, stop when the dynamic linker notifies
3353 gdb of events. This allows the user to get control
3354 and place breakpoints in initializer routines for
3355 dynamically loaded objects (among other things). */
3356 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3357 if (stop_on_solib_events)
3358 {
3359 /* Make sure we print "Stopped due to solib-event" in
3360 normal_stop. */
3361 stop_print_frame = 1;
3362
3363 stop_stepping (ecs);
3364 return;
3365 }
3366 }
3367
3368 /* If we are skipping through a shell, or through shared library
3369 loading that we aren't interested in, resume the program. If
3370 we're running the program normally, also resume. */
3371 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3372 {
3373 /* Loading of shared libraries might have changed breakpoint
3374 addresses. Make sure new breakpoints are inserted. */
3375 if (stop_soon == NO_STOP_QUIETLY
3376 && !breakpoints_always_inserted_mode ())
3377 insert_breakpoints ();
3378 resume (0, GDB_SIGNAL_0);
3379 prepare_to_wait (ecs);
3380 return;
3381 }
3382
3383 /* But stop if we're attaching or setting up a remote
3384 connection. */
3385 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3386 || stop_soon == STOP_QUIETLY_REMOTE)
3387 {
3388 if (debug_infrun)
3389 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3390 stop_stepping (ecs);
3391 return;
3392 }
3393
3394 internal_error (__FILE__, __LINE__,
3395 _("unhandled stop_soon: %d"), (int) stop_soon);
3396
3397 case TARGET_WAITKIND_SPURIOUS:
3398 if (debug_infrun)
3399 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3400 if (!ptid_equal (ecs->ptid, inferior_ptid))
3401 context_switch (ecs->ptid);
3402 resume (0, GDB_SIGNAL_0);
3403 prepare_to_wait (ecs);
3404 return;
3405
3406 case TARGET_WAITKIND_EXITED:
3407 case TARGET_WAITKIND_SIGNALLED:
3408 if (debug_infrun)
3409 {
3410 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3411 fprintf_unfiltered (gdb_stdlog,
3412 "infrun: TARGET_WAITKIND_EXITED\n");
3413 else
3414 fprintf_unfiltered (gdb_stdlog,
3415 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3416 }
3417
3418 inferior_ptid = ecs->ptid;
3419 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3420 set_current_program_space (current_inferior ()->pspace);
3421 handle_vfork_child_exec_or_exit (0);
3422 target_terminal_ours (); /* Must do this before mourn anyway. */
3423
3424 /* Clearing any previous state of convenience variables. */
3425 clear_exit_convenience_vars ();
3426
3427 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3428 {
3429 /* Record the exit code in the convenience variable $_exitcode, so
3430 that the user can inspect this again later. */
3431 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3432 (LONGEST) ecs->ws.value.integer);
3433
3434 /* Also record this in the inferior itself. */
3435 current_inferior ()->has_exit_code = 1;
3436 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3437
3438 print_exited_reason (ecs->ws.value.integer);
3439 }
3440 else
3441 {
3442 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3443 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3444
3445 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3446 {
3447 /* Set the value of the internal variable $_exitsignal,
3448 which holds the signal uncaught by the inferior. */
3449 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3450 gdbarch_gdb_signal_to_target (gdbarch,
3451 ecs->ws.value.sig));
3452 }
3453 else
3454 {
3455 /* We don't have access to the target's method used for
3456 converting between signal numbers (GDB's internal
3457 representation <-> target's representation).
3458 Therefore, we cannot do a good job at displaying this
3459 information to the user. It's better to just warn
3460 her about it (if infrun debugging is enabled), and
3461 give up. */
3462 if (debug_infrun)
3463 fprintf_filtered (gdb_stdlog, _("\
3464 Cannot fill $_exitsignal with the correct signal number.\n"));
3465 }
3466
3467 print_signal_exited_reason (ecs->ws.value.sig);
3468 }
3469
3470 gdb_flush (gdb_stdout);
3471 target_mourn_inferior ();
3472 singlestep_breakpoints_inserted_p = 0;
3473 cancel_single_step_breakpoints ();
3474 stop_print_frame = 0;
3475 stop_stepping (ecs);
3476 return;
3477
3478 /* The following are the only cases in which we keep going;
3479 the above cases end in a continue or goto. */
3480 case TARGET_WAITKIND_FORKED:
3481 case TARGET_WAITKIND_VFORKED:
3482 if (debug_infrun)
3483 {
3484 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3485 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3486 else
3487 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3488 }
3489
3490 /* Check whether the inferior is displaced stepping. */
3491 {
3492 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3493 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3494 struct displaced_step_inferior_state *displaced
3495 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3496
3497 /* If checking displaced stepping is supported, and thread
3498 ecs->ptid is displaced stepping. */
3499 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3500 {
3501 struct inferior *parent_inf
3502 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3503 struct regcache *child_regcache;
3504 CORE_ADDR parent_pc;
3505
3506 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3507 indicating that the displaced stepping of syscall instruction
3508 has been done. Perform cleanup for parent process here. Note
3509 that this operation also cleans up the child process for vfork,
3510 because their pages are shared. */
3511 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3512
3513 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3514 {
3515 /* Restore scratch pad for child process. */
3516 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3517 }
3518
3519 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3520 the child's PC is also within the scratchpad. Set the child's PC
3521 to the parent's PC value, which has already been fixed up.
3522 FIXME: we use the parent's aspace here, although we're touching
3523 the child, because the child hasn't been added to the inferior
3524 list yet at this point. */
3525
3526 child_regcache
3527 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3528 gdbarch,
3529 parent_inf->aspace);
3530 /* Read PC value of parent process. */
3531 parent_pc = regcache_read_pc (regcache);
3532
3533 if (debug_displaced)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "displaced: write child pc from %s to %s\n",
3536 paddress (gdbarch,
3537 regcache_read_pc (child_regcache)),
3538 paddress (gdbarch, parent_pc));
3539
3540 regcache_write_pc (child_regcache, parent_pc);
3541 }
3542 }
3543
3544 if (!ptid_equal (ecs->ptid, inferior_ptid))
3545 context_switch (ecs->ptid);
3546
3547 /* Immediately detach breakpoints from the child before there's
3548 any chance of letting the user delete breakpoints from the
3549 breakpoint lists. If we don't do this early, it's easy to
3550 leave left over traps in the child, vis: "break foo; catch
3551 fork; c; <fork>; del; c; <child calls foo>". We only follow
3552 the fork on the last `continue', and by that time the
3553 breakpoint at "foo" is long gone from the breakpoint table.
3554 If we vforked, then we don't need to unpatch here, since both
3555 parent and child are sharing the same memory pages; we'll
3556 need to unpatch at follow/detach time instead to be certain
3557 that new breakpoints added between catchpoint hit time and
3558 vfork follow are detached. */
3559 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3560 {
3561 /* This won't actually modify the breakpoint list, but will
3562 physically remove the breakpoints from the child. */
3563 detach_breakpoints (ecs->ws.value.related_pid);
3564 }
3565
3566 if (singlestep_breakpoints_inserted_p)
3567 {
3568 /* Pull the single step breakpoints out of the target. */
3569 remove_single_step_breakpoints ();
3570 singlestep_breakpoints_inserted_p = 0;
3571 }
3572
3573 /* In case the event is caught by a catchpoint, remember that
3574 the event is to be followed at the next resume of the thread,
3575 and not immediately. */
3576 ecs->event_thread->pending_follow = ecs->ws;
3577
3578 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3579
3580 ecs->event_thread->control.stop_bpstat
3581 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3582 stop_pc, ecs->ptid, &ecs->ws);
3583
3584 /* If no catchpoint triggered for this, then keep going. Note
3585 that we're interested in knowing the bpstat actually causes a
3586 stop, not just if it may explain the signal. Software
3587 watchpoints, for example, always appear in the bpstat. */
3588 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3589 {
3590 ptid_t parent;
3591 ptid_t child;
3592 int should_resume;
3593 int follow_child
3594 = (follow_fork_mode_string == follow_fork_mode_child);
3595
3596 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3597
3598 should_resume = follow_fork ();
3599
3600 parent = ecs->ptid;
3601 child = ecs->ws.value.related_pid;
3602
3603 /* In non-stop mode, also resume the other branch. */
3604 if (non_stop && !detach_fork)
3605 {
3606 if (follow_child)
3607 switch_to_thread (parent);
3608 else
3609 switch_to_thread (child);
3610
3611 ecs->event_thread = inferior_thread ();
3612 ecs->ptid = inferior_ptid;
3613 keep_going (ecs);
3614 }
3615
3616 if (follow_child)
3617 switch_to_thread (child);
3618 else
3619 switch_to_thread (parent);
3620
3621 ecs->event_thread = inferior_thread ();
3622 ecs->ptid = inferior_ptid;
3623
3624 if (should_resume)
3625 keep_going (ecs);
3626 else
3627 stop_stepping (ecs);
3628 return;
3629 }
3630 process_event_stop_test (ecs);
3631 return;
3632
3633 case TARGET_WAITKIND_VFORK_DONE:
3634 /* Done with the shared memory region. Re-insert breakpoints in
3635 the parent, and keep going. */
3636
3637 if (debug_infrun)
3638 fprintf_unfiltered (gdb_stdlog,
3639 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3640
3641 if (!ptid_equal (ecs->ptid, inferior_ptid))
3642 context_switch (ecs->ptid);
3643
3644 current_inferior ()->waiting_for_vfork_done = 0;
3645 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3646 /* This also takes care of reinserting breakpoints in the
3647 previously locked inferior. */
3648 keep_going (ecs);
3649 return;
3650
3651 case TARGET_WAITKIND_EXECD:
3652 if (debug_infrun)
3653 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3654
3655 if (!ptid_equal (ecs->ptid, inferior_ptid))
3656 context_switch (ecs->ptid);
3657
3658 singlestep_breakpoints_inserted_p = 0;
3659 cancel_single_step_breakpoints ();
3660
3661 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3662
3663 /* Do whatever is necessary to the parent branch of the vfork. */
3664 handle_vfork_child_exec_or_exit (1);
3665
3666 /* This causes the eventpoints and symbol table to be reset.
3667 Must do this now, before trying to determine whether to
3668 stop. */
3669 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3670
3671 ecs->event_thread->control.stop_bpstat
3672 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3673 stop_pc, ecs->ptid, &ecs->ws);
3674
3675 /* Note that this may be referenced from inside
3676 bpstat_stop_status above, through inferior_has_execd. */
3677 xfree (ecs->ws.value.execd_pathname);
3678 ecs->ws.value.execd_pathname = NULL;
3679
3680 /* If no catchpoint triggered for this, then keep going. */
3681 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3682 {
3683 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3684 keep_going (ecs);
3685 return;
3686 }
3687 process_event_stop_test (ecs);
3688 return;
3689
3690 /* Be careful not to try to gather much state about a thread
3691 that's in a syscall. It's frequently a losing proposition. */
3692 case TARGET_WAITKIND_SYSCALL_ENTRY:
3693 if (debug_infrun)
3694 fprintf_unfiltered (gdb_stdlog,
3695 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3696 /* Getting the current syscall number. */
3697 if (handle_syscall_event (ecs) == 0)
3698 process_event_stop_test (ecs);
3699 return;
3700
3701 /* Before examining the threads further, step this thread to
3702 get it entirely out of the syscall. (We get notice of the
3703 event when the thread is just on the verge of exiting a
3704 syscall. Stepping one instruction seems to get it back
3705 into user code.) */
3706 case TARGET_WAITKIND_SYSCALL_RETURN:
3707 if (debug_infrun)
3708 fprintf_unfiltered (gdb_stdlog,
3709 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3710 if (handle_syscall_event (ecs) == 0)
3711 process_event_stop_test (ecs);
3712 return;
3713
3714 case TARGET_WAITKIND_STOPPED:
3715 if (debug_infrun)
3716 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3717 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3718 break;
3719
3720 case TARGET_WAITKIND_NO_HISTORY:
3721 if (debug_infrun)
3722 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3723 /* Reverse execution: target ran out of history info. */
3724
3725 /* Pull the single step breakpoints out of the target. */
3726 if (singlestep_breakpoints_inserted_p)
3727 {
3728 if (!ptid_equal (ecs->ptid, inferior_ptid))
3729 context_switch (ecs->ptid);
3730 remove_single_step_breakpoints ();
3731 singlestep_breakpoints_inserted_p = 0;
3732 }
3733 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3734 print_no_history_reason ();
3735 stop_stepping (ecs);
3736 return;
3737 }
3738
3739 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3740 {
3741 /* Do we need to clean up the state of a thread that has
3742 completed a displaced single-step? (Doing so usually affects
3743 the PC, so do it here, before we set stop_pc.) */
3744 displaced_step_fixup (ecs->ptid,
3745 ecs->event_thread->suspend.stop_signal);
3746
3747 /* If we either finished a single-step or hit a breakpoint, but
3748 the user wanted this thread to be stopped, pretend we got a
3749 SIG0 (generic unsignaled stop). */
3750
3751 if (ecs->event_thread->stop_requested
3752 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3753 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3754 }
3755
3756 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3757
3758 if (debug_infrun)
3759 {
3760 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3761 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3762 struct cleanup *old_chain = save_inferior_ptid ();
3763
3764 inferior_ptid = ecs->ptid;
3765
3766 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3767 paddress (gdbarch, stop_pc));
3768 if (target_stopped_by_watchpoint ())
3769 {
3770 CORE_ADDR addr;
3771
3772 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3773
3774 if (target_stopped_data_address (&current_target, &addr))
3775 fprintf_unfiltered (gdb_stdlog,
3776 "infrun: stopped data address = %s\n",
3777 paddress (gdbarch, addr));
3778 else
3779 fprintf_unfiltered (gdb_stdlog,
3780 "infrun: (no data address available)\n");
3781 }
3782
3783 do_cleanups (old_chain);
3784 }
3785
3786 if (stepping_past_singlestep_breakpoint)
3787 {
3788 gdb_assert (singlestep_breakpoints_inserted_p);
3789 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3790 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3791
3792 stepping_past_singlestep_breakpoint = 0;
3793
3794 /* We've either finished single-stepping past the single-step
3795 breakpoint, or stopped for some other reason. It would be nice if
3796 we could tell, but we can't reliably. */
3797 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3798 {
3799 if (debug_infrun)
3800 fprintf_unfiltered (gdb_stdlog,
3801 "infrun: stepping_past_"
3802 "singlestep_breakpoint\n");
3803 /* Pull the single step breakpoints out of the target. */
3804 if (!ptid_equal (ecs->ptid, inferior_ptid))
3805 context_switch (ecs->ptid);
3806 remove_single_step_breakpoints ();
3807 singlestep_breakpoints_inserted_p = 0;
3808
3809 ecs->event_thread->control.trap_expected = 0;
3810
3811 context_switch (saved_singlestep_ptid);
3812 if (deprecated_context_hook)
3813 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3814
3815 resume (1, GDB_SIGNAL_0);
3816 prepare_to_wait (ecs);
3817 return;
3818 }
3819 }
3820
3821 if (!ptid_equal (deferred_step_ptid, null_ptid))
3822 {
3823 /* In non-stop mode, there's never a deferred_step_ptid set. */
3824 gdb_assert (!non_stop);
3825
3826 /* If we stopped for some other reason than single-stepping, ignore
3827 the fact that we were supposed to switch back. */
3828 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3829 {
3830 if (debug_infrun)
3831 fprintf_unfiltered (gdb_stdlog,
3832 "infrun: handling deferred step\n");
3833
3834 /* Pull the single step breakpoints out of the target. */
3835 if (singlestep_breakpoints_inserted_p)
3836 {
3837 if (!ptid_equal (ecs->ptid, inferior_ptid))
3838 context_switch (ecs->ptid);
3839 remove_single_step_breakpoints ();
3840 singlestep_breakpoints_inserted_p = 0;
3841 }
3842
3843 ecs->event_thread->control.trap_expected = 0;
3844
3845 context_switch (deferred_step_ptid);
3846 deferred_step_ptid = null_ptid;
3847 /* Suppress spurious "Switching to ..." message. */
3848 previous_inferior_ptid = inferior_ptid;
3849
3850 resume (1, GDB_SIGNAL_0);
3851 prepare_to_wait (ecs);
3852 return;
3853 }
3854
3855 deferred_step_ptid = null_ptid;
3856 }
3857
3858 /* See if a thread hit a thread-specific breakpoint that was meant for
3859 another thread. If so, then step that thread past the breakpoint,
3860 and continue it. */
3861
3862 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3863 {
3864 int thread_hop_needed = 0;
3865 struct address_space *aspace =
3866 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3867
3868 /* Check if a regular breakpoint has been hit before checking
3869 for a potential single step breakpoint. Otherwise, GDB will
3870 not see this breakpoint hit when stepping onto breakpoints. */
3871 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3872 {
3873 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3874 thread_hop_needed = 1;
3875 }
3876 else if (singlestep_breakpoints_inserted_p)
3877 {
3878 /* We have not context switched yet, so this should be true
3879 no matter which thread hit the singlestep breakpoint. */
3880 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3881 if (debug_infrun)
3882 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3883 "trap for %s\n",
3884 target_pid_to_str (ecs->ptid));
3885
3886 /* The call to in_thread_list is necessary because PTIDs sometimes
3887 change when we go from single-threaded to multi-threaded. If
3888 the singlestep_ptid is still in the list, assume that it is
3889 really different from ecs->ptid. */
3890 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3891 && in_thread_list (singlestep_ptid))
3892 {
3893 /* If the PC of the thread we were trying to single-step
3894 has changed, discard this event (which we were going
3895 to ignore anyway), and pretend we saw that thread
3896 trap. This prevents us continuously moving the
3897 single-step breakpoint forward, one instruction at a
3898 time. If the PC has changed, then the thread we were
3899 trying to single-step has trapped or been signalled,
3900 but the event has not been reported to GDB yet.
3901
3902 There might be some cases where this loses signal
3903 information, if a signal has arrived at exactly the
3904 same time that the PC changed, but this is the best
3905 we can do with the information available. Perhaps we
3906 should arrange to report all events for all threads
3907 when they stop, or to re-poll the remote looking for
3908 this particular thread (i.e. temporarily enable
3909 schedlock). */
3910
3911 CORE_ADDR new_singlestep_pc
3912 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3913
3914 if (new_singlestep_pc != singlestep_pc)
3915 {
3916 enum gdb_signal stop_signal;
3917
3918 if (debug_infrun)
3919 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3920 " but expected thread advanced also\n");
3921
3922 /* The current context still belongs to
3923 singlestep_ptid. Don't swap here, since that's
3924 the context we want to use. Just fudge our
3925 state and continue. */
3926 stop_signal = ecs->event_thread->suspend.stop_signal;
3927 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3928 ecs->ptid = singlestep_ptid;
3929 ecs->event_thread = find_thread_ptid (ecs->ptid);
3930 ecs->event_thread->suspend.stop_signal = stop_signal;
3931 stop_pc = new_singlestep_pc;
3932 }
3933 else
3934 {
3935 if (debug_infrun)
3936 fprintf_unfiltered (gdb_stdlog,
3937 "infrun: unexpected thread\n");
3938
3939 thread_hop_needed = 1;
3940 stepping_past_singlestep_breakpoint = 1;
3941 saved_singlestep_ptid = singlestep_ptid;
3942 }
3943 }
3944 }
3945
3946 if (thread_hop_needed)
3947 {
3948 struct regcache *thread_regcache;
3949 int remove_status = 0;
3950
3951 if (debug_infrun)
3952 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3953
3954 /* Switch context before touching inferior memory, the
3955 previous thread may have exited. */
3956 if (!ptid_equal (inferior_ptid, ecs->ptid))
3957 context_switch (ecs->ptid);
3958
3959 /* Saw a breakpoint, but it was hit by the wrong thread.
3960 Just continue. */
3961
3962 if (singlestep_breakpoints_inserted_p)
3963 {
3964 /* Pull the single step breakpoints out of the target. */
3965 remove_single_step_breakpoints ();
3966 singlestep_breakpoints_inserted_p = 0;
3967 }
3968
3969 /* If the arch can displace step, don't remove the
3970 breakpoints. */
3971 thread_regcache = get_thread_regcache (ecs->ptid);
3972 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3973 remove_status = remove_breakpoints ();
3974
3975 /* Did we fail to remove breakpoints? If so, try
3976 to set the PC past the bp. (There's at least
3977 one situation in which we can fail to remove
3978 the bp's: On HP-UX's that use ttrace, we can't
3979 change the address space of a vforking child
3980 process until the child exits (well, okay, not
3981 then either :-) or execs. */
3982 if (remove_status != 0)
3983 error (_("Cannot step over breakpoint hit in wrong thread"));
3984 else
3985 { /* Single step */
3986 if (!non_stop)
3987 {
3988 /* Only need to require the next event from this
3989 thread in all-stop mode. */
3990 waiton_ptid = ecs->ptid;
3991 infwait_state = infwait_thread_hop_state;
3992 }
3993
3994 ecs->event_thread->stepping_over_breakpoint = 1;
3995 keep_going (ecs);
3996 return;
3997 }
3998 }
3999 }
4000
4001 /* See if something interesting happened to the non-current thread. If
4002 so, then switch to that thread. */
4003 if (!ptid_equal (ecs->ptid, inferior_ptid))
4004 {
4005 if (debug_infrun)
4006 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4007
4008 context_switch (ecs->ptid);
4009
4010 if (deprecated_context_hook)
4011 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4012 }
4013
4014 /* At this point, get hold of the now-current thread's frame. */
4015 frame = get_current_frame ();
4016 gdbarch = get_frame_arch (frame);
4017
4018 if (singlestep_breakpoints_inserted_p)
4019 {
4020 /* Pull the single step breakpoints out of the target. */
4021 remove_single_step_breakpoints ();
4022 singlestep_breakpoints_inserted_p = 0;
4023 }
4024
4025 if (stepped_after_stopped_by_watchpoint)
4026 stopped_by_watchpoint = 0;
4027 else
4028 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4029
4030 /* If necessary, step over this watchpoint. We'll be back to display
4031 it in a moment. */
4032 if (stopped_by_watchpoint
4033 && (target_have_steppable_watchpoint
4034 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4035 {
4036 /* At this point, we are stopped at an instruction which has
4037 attempted to write to a piece of memory under control of
4038 a watchpoint. The instruction hasn't actually executed
4039 yet. If we were to evaluate the watchpoint expression
4040 now, we would get the old value, and therefore no change
4041 would seem to have occurred.
4042
4043 In order to make watchpoints work `right', we really need
4044 to complete the memory write, and then evaluate the
4045 watchpoint expression. We do this by single-stepping the
4046 target.
4047
4048 It may not be necessary to disable the watchpoint to stop over
4049 it. For example, the PA can (with some kernel cooperation)
4050 single step over a watchpoint without disabling the watchpoint.
4051
4052 It is far more common to need to disable a watchpoint to step
4053 the inferior over it. If we have non-steppable watchpoints,
4054 we must disable the current watchpoint; it's simplest to
4055 disable all watchpoints and breakpoints. */
4056 int hw_step = 1;
4057
4058 if (!target_have_steppable_watchpoint)
4059 {
4060 remove_breakpoints ();
4061 /* See comment in resume why we need to stop bypassing signals
4062 while breakpoints have been removed. */
4063 target_pass_signals (0, NULL);
4064 }
4065 /* Single step */
4066 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4067 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4068 waiton_ptid = ecs->ptid;
4069 if (target_have_steppable_watchpoint)
4070 infwait_state = infwait_step_watch_state;
4071 else
4072 infwait_state = infwait_nonstep_watch_state;
4073 prepare_to_wait (ecs);
4074 return;
4075 }
4076
4077 ecs->event_thread->stepping_over_breakpoint = 0;
4078 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4079 ecs->event_thread->control.stop_step = 0;
4080 stop_print_frame = 1;
4081 stopped_by_random_signal = 0;
4082
4083 /* Hide inlined functions starting here, unless we just performed stepi or
4084 nexti. After stepi and nexti, always show the innermost frame (not any
4085 inline function call sites). */
4086 if (ecs->event_thread->control.step_range_end != 1)
4087 {
4088 struct address_space *aspace =
4089 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4090
4091 /* skip_inline_frames is expensive, so we avoid it if we can
4092 determine that the address is one where functions cannot have
4093 been inlined. This improves performance with inferiors that
4094 load a lot of shared libraries, because the solib event
4095 breakpoint is defined as the address of a function (i.e. not
4096 inline). Note that we have to check the previous PC as well
4097 as the current one to catch cases when we have just
4098 single-stepped off a breakpoint prior to reinstating it.
4099 Note that we're assuming that the code we single-step to is
4100 not inline, but that's not definitive: there's nothing
4101 preventing the event breakpoint function from containing
4102 inlined code, and the single-step ending up there. If the
4103 user had set a breakpoint on that inlined code, the missing
4104 skip_inline_frames call would break things. Fortunately
4105 that's an extremely unlikely scenario. */
4106 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4107 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4108 && ecs->event_thread->control.trap_expected
4109 && pc_at_non_inline_function (aspace,
4110 ecs->event_thread->prev_pc,
4111 &ecs->ws)))
4112 {
4113 skip_inline_frames (ecs->ptid);
4114
4115 /* Re-fetch current thread's frame in case that invalidated
4116 the frame cache. */
4117 frame = get_current_frame ();
4118 gdbarch = get_frame_arch (frame);
4119 }
4120 }
4121
4122 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4123 && ecs->event_thread->control.trap_expected
4124 && gdbarch_single_step_through_delay_p (gdbarch)
4125 && currently_stepping (ecs->event_thread))
4126 {
4127 /* We're trying to step off a breakpoint. Turns out that we're
4128 also on an instruction that needs to be stepped multiple
4129 times before it's been fully executing. E.g., architectures
4130 with a delay slot. It needs to be stepped twice, once for
4131 the instruction and once for the delay slot. */
4132 int step_through_delay
4133 = gdbarch_single_step_through_delay (gdbarch, frame);
4134
4135 if (debug_infrun && step_through_delay)
4136 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4137 if (ecs->event_thread->control.step_range_end == 0
4138 && step_through_delay)
4139 {
4140 /* The user issued a continue when stopped at a breakpoint.
4141 Set up for another trap and get out of here. */
4142 ecs->event_thread->stepping_over_breakpoint = 1;
4143 keep_going (ecs);
4144 return;
4145 }
4146 else if (step_through_delay)
4147 {
4148 /* The user issued a step when stopped at a breakpoint.
4149 Maybe we should stop, maybe we should not - the delay
4150 slot *might* correspond to a line of source. In any
4151 case, don't decide that here, just set
4152 ecs->stepping_over_breakpoint, making sure we
4153 single-step again before breakpoints are re-inserted. */
4154 ecs->event_thread->stepping_over_breakpoint = 1;
4155 }
4156 }
4157
4158 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4159 && stop_after_trap)
4160 {
4161 if (debug_infrun)
4162 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4163 stop_print_frame = 0;
4164 stop_stepping (ecs);
4165 return;
4166 }
4167
4168 /* This is originated from start_remote(), start_inferior() and
4169 shared libraries hook functions. */
4170 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4171 {
4172 if (debug_infrun)
4173 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4174 stop_stepping (ecs);
4175 return;
4176 }
4177
4178 /* This originates from attach_command(). We need to overwrite
4179 the stop_signal here, because some kernels don't ignore a
4180 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4181 See more comments in inferior.h. On the other hand, if we
4182 get a non-SIGSTOP, report it to the user - assume the backend
4183 will handle the SIGSTOP if it should show up later.
4184
4185 Also consider that the attach is complete when we see a
4186 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4187 target extended-remote report it instead of a SIGSTOP
4188 (e.g. gdbserver). We already rely on SIGTRAP being our
4189 signal, so this is no exception.
4190
4191 Also consider that the attach is complete when we see a
4192 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4193 the target to stop all threads of the inferior, in case the
4194 low level attach operation doesn't stop them implicitly. If
4195 they weren't stopped implicitly, then the stub will report a
4196 GDB_SIGNAL_0, meaning: stopped for no particular reason
4197 other than GDB's request. */
4198 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4199 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4200 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4201 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4202 {
4203 stop_stepping (ecs);
4204 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4205 return;
4206 }
4207
4208 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4209 handles this event. */
4210 ecs->event_thread->control.stop_bpstat
4211 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4212 stop_pc, ecs->ptid, &ecs->ws);
4213
4214 /* Following in case break condition called a
4215 function. */
4216 stop_print_frame = 1;
4217
4218 /* This is where we handle "moribund" watchpoints. Unlike
4219 software breakpoints traps, hardware watchpoint traps are
4220 always distinguishable from random traps. If no high-level
4221 watchpoint is associated with the reported stop data address
4222 anymore, then the bpstat does not explain the signal ---
4223 simply make sure to ignore it if `stopped_by_watchpoint' is
4224 set. */
4225
4226 if (debug_infrun
4227 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4228 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4229 GDB_SIGNAL_TRAP)
4230 && stopped_by_watchpoint)
4231 fprintf_unfiltered (gdb_stdlog,
4232 "infrun: no user watchpoint explains "
4233 "watchpoint SIGTRAP, ignoring\n");
4234
4235 /* NOTE: cagney/2003-03-29: These checks for a random signal
4236 at one stage in the past included checks for an inferior
4237 function call's call dummy's return breakpoint. The original
4238 comment, that went with the test, read:
4239
4240 ``End of a stack dummy. Some systems (e.g. Sony news) give
4241 another signal besides SIGTRAP, so check here as well as
4242 above.''
4243
4244 If someone ever tries to get call dummys on a
4245 non-executable stack to work (where the target would stop
4246 with something like a SIGSEGV), then those tests might need
4247 to be re-instated. Given, however, that the tests were only
4248 enabled when momentary breakpoints were not being used, I
4249 suspect that it won't be the case.
4250
4251 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4252 be necessary for call dummies on a non-executable stack on
4253 SPARC. */
4254
4255 /* See if the breakpoints module can explain the signal. */
4256 random_signal
4257 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4258 ecs->event_thread->suspend.stop_signal);
4259
4260 /* If not, perhaps stepping/nexting can. */
4261 if (random_signal)
4262 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4263 && currently_stepping (ecs->event_thread));
4264
4265 /* No? Perhaps we got a moribund watchpoint. */
4266 if (random_signal)
4267 random_signal = !stopped_by_watchpoint;
4268
4269 /* For the program's own signals, act according to
4270 the signal handling tables. */
4271
4272 if (random_signal)
4273 {
4274 /* Signal not for debugging purposes. */
4275 int printed = 0;
4276 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4277 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4278
4279 if (debug_infrun)
4280 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4281 gdb_signal_to_symbol_string (stop_signal));
4282
4283 stopped_by_random_signal = 1;
4284
4285 if (signal_print[ecs->event_thread->suspend.stop_signal])
4286 {
4287 printed = 1;
4288 target_terminal_ours_for_output ();
4289 print_signal_received_reason
4290 (ecs->event_thread->suspend.stop_signal);
4291 }
4292 /* Always stop on signals if we're either just gaining control
4293 of the program, or the user explicitly requested this thread
4294 to remain stopped. */
4295 if (stop_soon != NO_STOP_QUIETLY
4296 || ecs->event_thread->stop_requested
4297 || (!inf->detaching
4298 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4299 {
4300 stop_stepping (ecs);
4301 return;
4302 }
4303 /* If not going to stop, give terminal back
4304 if we took it away. */
4305 else if (printed)
4306 target_terminal_inferior ();
4307
4308 /* Clear the signal if it should not be passed. */
4309 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4310 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4311
4312 if (ecs->event_thread->prev_pc == stop_pc
4313 && ecs->event_thread->control.trap_expected
4314 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4315 {
4316 /* We were just starting a new sequence, attempting to
4317 single-step off of a breakpoint and expecting a SIGTRAP.
4318 Instead this signal arrives. This signal will take us out
4319 of the stepping range so GDB needs to remember to, when
4320 the signal handler returns, resume stepping off that
4321 breakpoint. */
4322 /* To simplify things, "continue" is forced to use the same
4323 code paths as single-step - set a breakpoint at the
4324 signal return address and then, once hit, step off that
4325 breakpoint. */
4326 if (debug_infrun)
4327 fprintf_unfiltered (gdb_stdlog,
4328 "infrun: signal arrived while stepping over "
4329 "breakpoint\n");
4330
4331 insert_hp_step_resume_breakpoint_at_frame (frame);
4332 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4333 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4334 ecs->event_thread->control.trap_expected = 0;
4335 keep_going (ecs);
4336 return;
4337 }
4338
4339 if (ecs->event_thread->control.step_range_end != 0
4340 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4341 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4342 && frame_id_eq (get_stack_frame_id (frame),
4343 ecs->event_thread->control.step_stack_frame_id)
4344 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4345 {
4346 /* The inferior is about to take a signal that will take it
4347 out of the single step range. Set a breakpoint at the
4348 current PC (which is presumably where the signal handler
4349 will eventually return) and then allow the inferior to
4350 run free.
4351
4352 Note that this is only needed for a signal delivered
4353 while in the single-step range. Nested signals aren't a
4354 problem as they eventually all return. */
4355 if (debug_infrun)
4356 fprintf_unfiltered (gdb_stdlog,
4357 "infrun: signal may take us out of "
4358 "single-step range\n");
4359
4360 insert_hp_step_resume_breakpoint_at_frame (frame);
4361 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4362 ecs->event_thread->control.trap_expected = 0;
4363 keep_going (ecs);
4364 return;
4365 }
4366
4367 /* Note: step_resume_breakpoint may be non-NULL. This occures
4368 when either there's a nested signal, or when there's a
4369 pending signal enabled just as the signal handler returns
4370 (leaving the inferior at the step-resume-breakpoint without
4371 actually executing it). Either way continue until the
4372 breakpoint is really hit. */
4373
4374 if (!switch_back_to_stepped_thread (ecs))
4375 {
4376 if (debug_infrun)
4377 fprintf_unfiltered (gdb_stdlog,
4378 "infrun: random signal, keep going\n");
4379
4380 keep_going (ecs);
4381 }
4382 return;
4383 }
4384
4385 process_event_stop_test (ecs);
4386 }
4387
4388 /* Come here when we've got some debug event / signal we can explain
4389 (IOW, not a random signal), and test whether it should cause a
4390 stop, or whether we should resume the inferior (transparently).
4391 E.g., could be a breakpoint whose condition evaluates false; we
4392 could be still stepping within the line; etc. */
4393
4394 static void
4395 process_event_stop_test (struct execution_control_state *ecs)
4396 {
4397 struct symtab_and_line stop_pc_sal;
4398 struct frame_info *frame;
4399 struct gdbarch *gdbarch;
4400 CORE_ADDR jmp_buf_pc;
4401 struct bpstat_what what;
4402
4403 /* Handle cases caused by hitting a breakpoint. */
4404
4405 frame = get_current_frame ();
4406 gdbarch = get_frame_arch (frame);
4407
4408 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4409
4410 if (what.call_dummy)
4411 {
4412 stop_stack_dummy = what.call_dummy;
4413 }
4414
4415 /* If we hit an internal event that triggers symbol changes, the
4416 current frame will be invalidated within bpstat_what (e.g., if we
4417 hit an internal solib event). Re-fetch it. */
4418 frame = get_current_frame ();
4419 gdbarch = get_frame_arch (frame);
4420
4421 switch (what.main_action)
4422 {
4423 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4424 /* If we hit the breakpoint at longjmp while stepping, we
4425 install a momentary breakpoint at the target of the
4426 jmp_buf. */
4427
4428 if (debug_infrun)
4429 fprintf_unfiltered (gdb_stdlog,
4430 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4431
4432 ecs->event_thread->stepping_over_breakpoint = 1;
4433
4434 if (what.is_longjmp)
4435 {
4436 struct value *arg_value;
4437
4438 /* If we set the longjmp breakpoint via a SystemTap probe,
4439 then use it to extract the arguments. The destination PC
4440 is the third argument to the probe. */
4441 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4442 if (arg_value)
4443 jmp_buf_pc = value_as_address (arg_value);
4444 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4445 || !gdbarch_get_longjmp_target (gdbarch,
4446 frame, &jmp_buf_pc))
4447 {
4448 if (debug_infrun)
4449 fprintf_unfiltered (gdb_stdlog,
4450 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4451 "(!gdbarch_get_longjmp_target)\n");
4452 keep_going (ecs);
4453 return;
4454 }
4455
4456 /* Insert a breakpoint at resume address. */
4457 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4458 }
4459 else
4460 check_exception_resume (ecs, frame);
4461 keep_going (ecs);
4462 return;
4463
4464 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4465 {
4466 struct frame_info *init_frame;
4467
4468 /* There are several cases to consider.
4469
4470 1. The initiating frame no longer exists. In this case we
4471 must stop, because the exception or longjmp has gone too
4472 far.
4473
4474 2. The initiating frame exists, and is the same as the
4475 current frame. We stop, because the exception or longjmp
4476 has been caught.
4477
4478 3. The initiating frame exists and is different from the
4479 current frame. This means the exception or longjmp has
4480 been caught beneath the initiating frame, so keep going.
4481
4482 4. longjmp breakpoint has been placed just to protect
4483 against stale dummy frames and user is not interested in
4484 stopping around longjmps. */
4485
4486 if (debug_infrun)
4487 fprintf_unfiltered (gdb_stdlog,
4488 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4489
4490 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4491 != NULL);
4492 delete_exception_resume_breakpoint (ecs->event_thread);
4493
4494 if (what.is_longjmp)
4495 {
4496 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4497
4498 if (!frame_id_p (ecs->event_thread->initiating_frame))
4499 {
4500 /* Case 4. */
4501 keep_going (ecs);
4502 return;
4503 }
4504 }
4505
4506 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4507
4508 if (init_frame)
4509 {
4510 struct frame_id current_id
4511 = get_frame_id (get_current_frame ());
4512 if (frame_id_eq (current_id,
4513 ecs->event_thread->initiating_frame))
4514 {
4515 /* Case 2. Fall through. */
4516 }
4517 else
4518 {
4519 /* Case 3. */
4520 keep_going (ecs);
4521 return;
4522 }
4523 }
4524
4525 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4526 exists. */
4527 delete_step_resume_breakpoint (ecs->event_thread);
4528
4529 ecs->event_thread->control.stop_step = 1;
4530 print_end_stepping_range_reason ();
4531 stop_stepping (ecs);
4532 }
4533 return;
4534
4535 case BPSTAT_WHAT_SINGLE:
4536 if (debug_infrun)
4537 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4538 ecs->event_thread->stepping_over_breakpoint = 1;
4539 /* Still need to check other stuff, at least the case where we
4540 are stepping and step out of the right range. */
4541 break;
4542
4543 case BPSTAT_WHAT_STEP_RESUME:
4544 if (debug_infrun)
4545 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4546
4547 delete_step_resume_breakpoint (ecs->event_thread);
4548 if (ecs->event_thread->control.proceed_to_finish
4549 && execution_direction == EXEC_REVERSE)
4550 {
4551 struct thread_info *tp = ecs->event_thread;
4552
4553 /* We are finishing a function in reverse, and just hit the
4554 step-resume breakpoint at the start address of the
4555 function, and we're almost there -- just need to back up
4556 by one more single-step, which should take us back to the
4557 function call. */
4558 tp->control.step_range_start = tp->control.step_range_end = 1;
4559 keep_going (ecs);
4560 return;
4561 }
4562 fill_in_stop_func (gdbarch, ecs);
4563 if (stop_pc == ecs->stop_func_start
4564 && execution_direction == EXEC_REVERSE)
4565 {
4566 /* We are stepping over a function call in reverse, and just
4567 hit the step-resume breakpoint at the start address of
4568 the function. Go back to single-stepping, which should
4569 take us back to the function call. */
4570 ecs->event_thread->stepping_over_breakpoint = 1;
4571 keep_going (ecs);
4572 return;
4573 }
4574 break;
4575
4576 case BPSTAT_WHAT_STOP_NOISY:
4577 if (debug_infrun)
4578 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4579 stop_print_frame = 1;
4580
4581 /* We are about to nuke the step_resume_breakpointt via the
4582 cleanup chain, so no need to worry about it here. */
4583
4584 stop_stepping (ecs);
4585 return;
4586
4587 case BPSTAT_WHAT_STOP_SILENT:
4588 if (debug_infrun)
4589 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4590 stop_print_frame = 0;
4591
4592 /* We are about to nuke the step_resume_breakpoin via the
4593 cleanup chain, so no need to worry about it here. */
4594
4595 stop_stepping (ecs);
4596 return;
4597
4598 case BPSTAT_WHAT_HP_STEP_RESUME:
4599 if (debug_infrun)
4600 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4601
4602 delete_step_resume_breakpoint (ecs->event_thread);
4603 if (ecs->event_thread->step_after_step_resume_breakpoint)
4604 {
4605 /* Back when the step-resume breakpoint was inserted, we
4606 were trying to single-step off a breakpoint. Go back to
4607 doing that. */
4608 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4609 ecs->event_thread->stepping_over_breakpoint = 1;
4610 keep_going (ecs);
4611 return;
4612 }
4613 break;
4614
4615 case BPSTAT_WHAT_KEEP_CHECKING:
4616 break;
4617 }
4618
4619 /* We come here if we hit a breakpoint but should not stop for it.
4620 Possibly we also were stepping and should stop for that. So fall
4621 through and test for stepping. But, if not stepping, do not
4622 stop. */
4623
4624 /* In all-stop mode, if we're currently stepping but have stopped in
4625 some other thread, we need to switch back to the stepped thread. */
4626 if (switch_back_to_stepped_thread (ecs))
4627 return;
4628
4629 if (ecs->event_thread->control.step_resume_breakpoint)
4630 {
4631 if (debug_infrun)
4632 fprintf_unfiltered (gdb_stdlog,
4633 "infrun: step-resume breakpoint is inserted\n");
4634
4635 /* Having a step-resume breakpoint overrides anything
4636 else having to do with stepping commands until
4637 that breakpoint is reached. */
4638 keep_going (ecs);
4639 return;
4640 }
4641
4642 if (ecs->event_thread->control.step_range_end == 0)
4643 {
4644 if (debug_infrun)
4645 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4646 /* Likewise if we aren't even stepping. */
4647 keep_going (ecs);
4648 return;
4649 }
4650
4651 /* Re-fetch current thread's frame in case the code above caused
4652 the frame cache to be re-initialized, making our FRAME variable
4653 a dangling pointer. */
4654 frame = get_current_frame ();
4655 gdbarch = get_frame_arch (frame);
4656 fill_in_stop_func (gdbarch, ecs);
4657
4658 /* If stepping through a line, keep going if still within it.
4659
4660 Note that step_range_end is the address of the first instruction
4661 beyond the step range, and NOT the address of the last instruction
4662 within it!
4663
4664 Note also that during reverse execution, we may be stepping
4665 through a function epilogue and therefore must detect when
4666 the current-frame changes in the middle of a line. */
4667
4668 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4669 && (execution_direction != EXEC_REVERSE
4670 || frame_id_eq (get_frame_id (frame),
4671 ecs->event_thread->control.step_frame_id)))
4672 {
4673 if (debug_infrun)
4674 fprintf_unfiltered
4675 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4676 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4677 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4678
4679 /* Tentatively re-enable range stepping; `resume' disables it if
4680 necessary (e.g., if we're stepping over a breakpoint or we
4681 have software watchpoints). */
4682 ecs->event_thread->control.may_range_step = 1;
4683
4684 /* When stepping backward, stop at beginning of line range
4685 (unless it's the function entry point, in which case
4686 keep going back to the call point). */
4687 if (stop_pc == ecs->event_thread->control.step_range_start
4688 && stop_pc != ecs->stop_func_start
4689 && execution_direction == EXEC_REVERSE)
4690 {
4691 ecs->event_thread->control.stop_step = 1;
4692 print_end_stepping_range_reason ();
4693 stop_stepping (ecs);
4694 }
4695 else
4696 keep_going (ecs);
4697
4698 return;
4699 }
4700
4701 /* We stepped out of the stepping range. */
4702
4703 /* If we are stepping at the source level and entered the runtime
4704 loader dynamic symbol resolution code...
4705
4706 EXEC_FORWARD: we keep on single stepping until we exit the run
4707 time loader code and reach the callee's address.
4708
4709 EXEC_REVERSE: we've already executed the callee (backward), and
4710 the runtime loader code is handled just like any other
4711 undebuggable function call. Now we need only keep stepping
4712 backward through the trampoline code, and that's handled further
4713 down, so there is nothing for us to do here. */
4714
4715 if (execution_direction != EXEC_REVERSE
4716 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4717 && in_solib_dynsym_resolve_code (stop_pc))
4718 {
4719 CORE_ADDR pc_after_resolver =
4720 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4721
4722 if (debug_infrun)
4723 fprintf_unfiltered (gdb_stdlog,
4724 "infrun: stepped into dynsym resolve code\n");
4725
4726 if (pc_after_resolver)
4727 {
4728 /* Set up a step-resume breakpoint at the address
4729 indicated by SKIP_SOLIB_RESOLVER. */
4730 struct symtab_and_line sr_sal;
4731
4732 init_sal (&sr_sal);
4733 sr_sal.pc = pc_after_resolver;
4734 sr_sal.pspace = get_frame_program_space (frame);
4735
4736 insert_step_resume_breakpoint_at_sal (gdbarch,
4737 sr_sal, null_frame_id);
4738 }
4739
4740 keep_going (ecs);
4741 return;
4742 }
4743
4744 if (ecs->event_thread->control.step_range_end != 1
4745 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4746 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4747 && get_frame_type (frame) == SIGTRAMP_FRAME)
4748 {
4749 if (debug_infrun)
4750 fprintf_unfiltered (gdb_stdlog,
4751 "infrun: stepped into signal trampoline\n");
4752 /* The inferior, while doing a "step" or "next", has ended up in
4753 a signal trampoline (either by a signal being delivered or by
4754 the signal handler returning). Just single-step until the
4755 inferior leaves the trampoline (either by calling the handler
4756 or returning). */
4757 keep_going (ecs);
4758 return;
4759 }
4760
4761 /* If we're in the return path from a shared library trampoline,
4762 we want to proceed through the trampoline when stepping. */
4763 /* macro/2012-04-25: This needs to come before the subroutine
4764 call check below as on some targets return trampolines look
4765 like subroutine calls (MIPS16 return thunks). */
4766 if (gdbarch_in_solib_return_trampoline (gdbarch,
4767 stop_pc, ecs->stop_func_name)
4768 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4769 {
4770 /* Determine where this trampoline returns. */
4771 CORE_ADDR real_stop_pc;
4772
4773 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4774
4775 if (debug_infrun)
4776 fprintf_unfiltered (gdb_stdlog,
4777 "infrun: stepped into solib return tramp\n");
4778
4779 /* Only proceed through if we know where it's going. */
4780 if (real_stop_pc)
4781 {
4782 /* And put the step-breakpoint there and go until there. */
4783 struct symtab_and_line sr_sal;
4784
4785 init_sal (&sr_sal); /* initialize to zeroes */
4786 sr_sal.pc = real_stop_pc;
4787 sr_sal.section = find_pc_overlay (sr_sal.pc);
4788 sr_sal.pspace = get_frame_program_space (frame);
4789
4790 /* Do not specify what the fp should be when we stop since
4791 on some machines the prologue is where the new fp value
4792 is established. */
4793 insert_step_resume_breakpoint_at_sal (gdbarch,
4794 sr_sal, null_frame_id);
4795
4796 /* Restart without fiddling with the step ranges or
4797 other state. */
4798 keep_going (ecs);
4799 return;
4800 }
4801 }
4802
4803 /* Check for subroutine calls. The check for the current frame
4804 equalling the step ID is not necessary - the check of the
4805 previous frame's ID is sufficient - but it is a common case and
4806 cheaper than checking the previous frame's ID.
4807
4808 NOTE: frame_id_eq will never report two invalid frame IDs as
4809 being equal, so to get into this block, both the current and
4810 previous frame must have valid frame IDs. */
4811 /* The outer_frame_id check is a heuristic to detect stepping
4812 through startup code. If we step over an instruction which
4813 sets the stack pointer from an invalid value to a valid value,
4814 we may detect that as a subroutine call from the mythical
4815 "outermost" function. This could be fixed by marking
4816 outermost frames as !stack_p,code_p,special_p. Then the
4817 initial outermost frame, before sp was valid, would
4818 have code_addr == &_start. See the comment in frame_id_eq
4819 for more. */
4820 if (!frame_id_eq (get_stack_frame_id (frame),
4821 ecs->event_thread->control.step_stack_frame_id)
4822 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4823 ecs->event_thread->control.step_stack_frame_id)
4824 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4825 outer_frame_id)
4826 || step_start_function != find_pc_function (stop_pc))))
4827 {
4828 CORE_ADDR real_stop_pc;
4829
4830 if (debug_infrun)
4831 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4832
4833 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4834 || ((ecs->event_thread->control.step_range_end == 1)
4835 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4836 ecs->stop_func_start)))
4837 {
4838 /* I presume that step_over_calls is only 0 when we're
4839 supposed to be stepping at the assembly language level
4840 ("stepi"). Just stop. */
4841 /* Also, maybe we just did a "nexti" inside a prolog, so we
4842 thought it was a subroutine call but it was not. Stop as
4843 well. FENN */
4844 /* And this works the same backward as frontward. MVS */
4845 ecs->event_thread->control.stop_step = 1;
4846 print_end_stepping_range_reason ();
4847 stop_stepping (ecs);
4848 return;
4849 }
4850
4851 /* Reverse stepping through solib trampolines. */
4852
4853 if (execution_direction == EXEC_REVERSE
4854 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4855 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4856 || (ecs->stop_func_start == 0
4857 && in_solib_dynsym_resolve_code (stop_pc))))
4858 {
4859 /* Any solib trampoline code can be handled in reverse
4860 by simply continuing to single-step. We have already
4861 executed the solib function (backwards), and a few
4862 steps will take us back through the trampoline to the
4863 caller. */
4864 keep_going (ecs);
4865 return;
4866 }
4867
4868 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4869 {
4870 /* We're doing a "next".
4871
4872 Normal (forward) execution: set a breakpoint at the
4873 callee's return address (the address at which the caller
4874 will resume).
4875
4876 Reverse (backward) execution. set the step-resume
4877 breakpoint at the start of the function that we just
4878 stepped into (backwards), and continue to there. When we
4879 get there, we'll need to single-step back to the caller. */
4880
4881 if (execution_direction == EXEC_REVERSE)
4882 {
4883 /* If we're already at the start of the function, we've either
4884 just stepped backward into a single instruction function,
4885 or stepped back out of a signal handler to the first instruction
4886 of the function. Just keep going, which will single-step back
4887 to the caller. */
4888 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
4889 {
4890 struct symtab_and_line sr_sal;
4891
4892 /* Normal function call return (static or dynamic). */
4893 init_sal (&sr_sal);
4894 sr_sal.pc = ecs->stop_func_start;
4895 sr_sal.pspace = get_frame_program_space (frame);
4896 insert_step_resume_breakpoint_at_sal (gdbarch,
4897 sr_sal, null_frame_id);
4898 }
4899 }
4900 else
4901 insert_step_resume_breakpoint_at_caller (frame);
4902
4903 keep_going (ecs);
4904 return;
4905 }
4906
4907 /* If we are in a function call trampoline (a stub between the
4908 calling routine and the real function), locate the real
4909 function. That's what tells us (a) whether we want to step
4910 into it at all, and (b) what prologue we want to run to the
4911 end of, if we do step into it. */
4912 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4913 if (real_stop_pc == 0)
4914 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4915 if (real_stop_pc != 0)
4916 ecs->stop_func_start = real_stop_pc;
4917
4918 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4919 {
4920 struct symtab_and_line sr_sal;
4921
4922 init_sal (&sr_sal);
4923 sr_sal.pc = ecs->stop_func_start;
4924 sr_sal.pspace = get_frame_program_space (frame);
4925
4926 insert_step_resume_breakpoint_at_sal (gdbarch,
4927 sr_sal, null_frame_id);
4928 keep_going (ecs);
4929 return;
4930 }
4931
4932 /* If we have line number information for the function we are
4933 thinking of stepping into and the function isn't on the skip
4934 list, step into it.
4935
4936 If there are several symtabs at that PC (e.g. with include
4937 files), just want to know whether *any* of them have line
4938 numbers. find_pc_line handles this. */
4939 {
4940 struct symtab_and_line tmp_sal;
4941
4942 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4943 if (tmp_sal.line != 0
4944 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4945 &tmp_sal))
4946 {
4947 if (execution_direction == EXEC_REVERSE)
4948 handle_step_into_function_backward (gdbarch, ecs);
4949 else
4950 handle_step_into_function (gdbarch, ecs);
4951 return;
4952 }
4953 }
4954
4955 /* If we have no line number and the step-stop-if-no-debug is
4956 set, we stop the step so that the user has a chance to switch
4957 in assembly mode. */
4958 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4959 && step_stop_if_no_debug)
4960 {
4961 ecs->event_thread->control.stop_step = 1;
4962 print_end_stepping_range_reason ();
4963 stop_stepping (ecs);
4964 return;
4965 }
4966
4967 if (execution_direction == EXEC_REVERSE)
4968 {
4969 /* If we're already at the start of the function, we've either just
4970 stepped backward into a single instruction function without line
4971 number info, or stepped back out of a signal handler to the first
4972 instruction of the function without line number info. Just keep
4973 going, which will single-step back to the caller. */
4974 if (ecs->stop_func_start != stop_pc)
4975 {
4976 /* Set a breakpoint at callee's start address.
4977 From there we can step once and be back in the caller. */
4978 struct symtab_and_line sr_sal;
4979
4980 init_sal (&sr_sal);
4981 sr_sal.pc = ecs->stop_func_start;
4982 sr_sal.pspace = get_frame_program_space (frame);
4983 insert_step_resume_breakpoint_at_sal (gdbarch,
4984 sr_sal, null_frame_id);
4985 }
4986 }
4987 else
4988 /* Set a breakpoint at callee's return address (the address
4989 at which the caller will resume). */
4990 insert_step_resume_breakpoint_at_caller (frame);
4991
4992 keep_going (ecs);
4993 return;
4994 }
4995
4996 /* Reverse stepping through solib trampolines. */
4997
4998 if (execution_direction == EXEC_REVERSE
4999 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5000 {
5001 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5002 || (ecs->stop_func_start == 0
5003 && in_solib_dynsym_resolve_code (stop_pc)))
5004 {
5005 /* Any solib trampoline code can be handled in reverse
5006 by simply continuing to single-step. We have already
5007 executed the solib function (backwards), and a few
5008 steps will take us back through the trampoline to the
5009 caller. */
5010 keep_going (ecs);
5011 return;
5012 }
5013 else if (in_solib_dynsym_resolve_code (stop_pc))
5014 {
5015 /* Stepped backward into the solib dynsym resolver.
5016 Set a breakpoint at its start and continue, then
5017 one more step will take us out. */
5018 struct symtab_and_line sr_sal;
5019
5020 init_sal (&sr_sal);
5021 sr_sal.pc = ecs->stop_func_start;
5022 sr_sal.pspace = get_frame_program_space (frame);
5023 insert_step_resume_breakpoint_at_sal (gdbarch,
5024 sr_sal, null_frame_id);
5025 keep_going (ecs);
5026 return;
5027 }
5028 }
5029
5030 stop_pc_sal = find_pc_line (stop_pc, 0);
5031
5032 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5033 the trampoline processing logic, however, there are some trampolines
5034 that have no names, so we should do trampoline handling first. */
5035 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5036 && ecs->stop_func_name == NULL
5037 && stop_pc_sal.line == 0)
5038 {
5039 if (debug_infrun)
5040 fprintf_unfiltered (gdb_stdlog,
5041 "infrun: stepped into undebuggable function\n");
5042
5043 /* The inferior just stepped into, or returned to, an
5044 undebuggable function (where there is no debugging information
5045 and no line number corresponding to the address where the
5046 inferior stopped). Since we want to skip this kind of code,
5047 we keep going until the inferior returns from this
5048 function - unless the user has asked us not to (via
5049 set step-mode) or we no longer know how to get back
5050 to the call site. */
5051 if (step_stop_if_no_debug
5052 || !frame_id_p (frame_unwind_caller_id (frame)))
5053 {
5054 /* If we have no line number and the step-stop-if-no-debug
5055 is set, we stop the step so that the user has a chance to
5056 switch in assembly mode. */
5057 ecs->event_thread->control.stop_step = 1;
5058 print_end_stepping_range_reason ();
5059 stop_stepping (ecs);
5060 return;
5061 }
5062 else
5063 {
5064 /* Set a breakpoint at callee's return address (the address
5065 at which the caller will resume). */
5066 insert_step_resume_breakpoint_at_caller (frame);
5067 keep_going (ecs);
5068 return;
5069 }
5070 }
5071
5072 if (ecs->event_thread->control.step_range_end == 1)
5073 {
5074 /* It is stepi or nexti. We always want to stop stepping after
5075 one instruction. */
5076 if (debug_infrun)
5077 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5078 ecs->event_thread->control.stop_step = 1;
5079 print_end_stepping_range_reason ();
5080 stop_stepping (ecs);
5081 return;
5082 }
5083
5084 if (stop_pc_sal.line == 0)
5085 {
5086 /* We have no line number information. That means to stop
5087 stepping (does this always happen right after one instruction,
5088 when we do "s" in a function with no line numbers,
5089 or can this happen as a result of a return or longjmp?). */
5090 if (debug_infrun)
5091 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5092 ecs->event_thread->control.stop_step = 1;
5093 print_end_stepping_range_reason ();
5094 stop_stepping (ecs);
5095 return;
5096 }
5097
5098 /* Look for "calls" to inlined functions, part one. If the inline
5099 frame machinery detected some skipped call sites, we have entered
5100 a new inline function. */
5101
5102 if (frame_id_eq (get_frame_id (get_current_frame ()),
5103 ecs->event_thread->control.step_frame_id)
5104 && inline_skipped_frames (ecs->ptid))
5105 {
5106 struct symtab_and_line call_sal;
5107
5108 if (debug_infrun)
5109 fprintf_unfiltered (gdb_stdlog,
5110 "infrun: stepped into inlined function\n");
5111
5112 find_frame_sal (get_current_frame (), &call_sal);
5113
5114 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5115 {
5116 /* For "step", we're going to stop. But if the call site
5117 for this inlined function is on the same source line as
5118 we were previously stepping, go down into the function
5119 first. Otherwise stop at the call site. */
5120
5121 if (call_sal.line == ecs->event_thread->current_line
5122 && call_sal.symtab == ecs->event_thread->current_symtab)
5123 step_into_inline_frame (ecs->ptid);
5124
5125 ecs->event_thread->control.stop_step = 1;
5126 print_end_stepping_range_reason ();
5127 stop_stepping (ecs);
5128 return;
5129 }
5130 else
5131 {
5132 /* For "next", we should stop at the call site if it is on a
5133 different source line. Otherwise continue through the
5134 inlined function. */
5135 if (call_sal.line == ecs->event_thread->current_line
5136 && call_sal.symtab == ecs->event_thread->current_symtab)
5137 keep_going (ecs);
5138 else
5139 {
5140 ecs->event_thread->control.stop_step = 1;
5141 print_end_stepping_range_reason ();
5142 stop_stepping (ecs);
5143 }
5144 return;
5145 }
5146 }
5147
5148 /* Look for "calls" to inlined functions, part two. If we are still
5149 in the same real function we were stepping through, but we have
5150 to go further up to find the exact frame ID, we are stepping
5151 through a more inlined call beyond its call site. */
5152
5153 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5154 && !frame_id_eq (get_frame_id (get_current_frame ()),
5155 ecs->event_thread->control.step_frame_id)
5156 && stepped_in_from (get_current_frame (),
5157 ecs->event_thread->control.step_frame_id))
5158 {
5159 if (debug_infrun)
5160 fprintf_unfiltered (gdb_stdlog,
5161 "infrun: stepping through inlined function\n");
5162
5163 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5164 keep_going (ecs);
5165 else
5166 {
5167 ecs->event_thread->control.stop_step = 1;
5168 print_end_stepping_range_reason ();
5169 stop_stepping (ecs);
5170 }
5171 return;
5172 }
5173
5174 if ((stop_pc == stop_pc_sal.pc)
5175 && (ecs->event_thread->current_line != stop_pc_sal.line
5176 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5177 {
5178 /* We are at the start of a different line. So stop. Note that
5179 we don't stop if we step into the middle of a different line.
5180 That is said to make things like for (;;) statements work
5181 better. */
5182 if (debug_infrun)
5183 fprintf_unfiltered (gdb_stdlog,
5184 "infrun: stepped to a different line\n");
5185 ecs->event_thread->control.stop_step = 1;
5186 print_end_stepping_range_reason ();
5187 stop_stepping (ecs);
5188 return;
5189 }
5190
5191 /* We aren't done stepping.
5192
5193 Optimize by setting the stepping range to the line.
5194 (We might not be in the original line, but if we entered a
5195 new line in mid-statement, we continue stepping. This makes
5196 things like for(;;) statements work better.) */
5197
5198 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5199 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5200 ecs->event_thread->control.may_range_step = 1;
5201 set_step_info (frame, stop_pc_sal);
5202
5203 if (debug_infrun)
5204 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5205 keep_going (ecs);
5206 }
5207
5208 /* In all-stop mode, if we're currently stepping but have stopped in
5209 some other thread, we may need to switch back to the stepped
5210 thread. Returns true we set the inferior running, false if we left
5211 it stopped (and the event needs further processing). */
5212
5213 static int
5214 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5215 {
5216 if (!non_stop)
5217 {
5218 struct thread_info *tp;
5219
5220 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5221 ecs->event_thread);
5222 if (tp)
5223 {
5224 /* However, if the current thread is blocked on some internal
5225 breakpoint, and we simply need to step over that breakpoint
5226 to get it going again, do that first. */
5227 if ((ecs->event_thread->control.trap_expected
5228 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5229 || ecs->event_thread->stepping_over_breakpoint)
5230 {
5231 keep_going (ecs);
5232 return 1;
5233 }
5234
5235 /* If the stepping thread exited, then don't try to switch
5236 back and resume it, which could fail in several different
5237 ways depending on the target. Instead, just keep going.
5238
5239 We can find a stepping dead thread in the thread list in
5240 two cases:
5241
5242 - The target supports thread exit events, and when the
5243 target tries to delete the thread from the thread list,
5244 inferior_ptid pointed at the exiting thread. In such
5245 case, calling delete_thread does not really remove the
5246 thread from the list; instead, the thread is left listed,
5247 with 'exited' state.
5248
5249 - The target's debug interface does not support thread
5250 exit events, and so we have no idea whatsoever if the
5251 previously stepping thread is still alive. For that
5252 reason, we need to synchronously query the target
5253 now. */
5254 if (is_exited (tp->ptid)
5255 || !target_thread_alive (tp->ptid))
5256 {
5257 if (debug_infrun)
5258 fprintf_unfiltered (gdb_stdlog,
5259 "infrun: not switching back to "
5260 "stepped thread, it has vanished\n");
5261
5262 delete_thread (tp->ptid);
5263 keep_going (ecs);
5264 return 1;
5265 }
5266
5267 /* Otherwise, we no longer expect a trap in the current thread.
5268 Clear the trap_expected flag before switching back -- this is
5269 what keep_going would do as well, if we called it. */
5270 ecs->event_thread->control.trap_expected = 0;
5271
5272 if (debug_infrun)
5273 fprintf_unfiltered (gdb_stdlog,
5274 "infrun: switching back to stepped thread\n");
5275
5276 ecs->event_thread = tp;
5277 ecs->ptid = tp->ptid;
5278 context_switch (ecs->ptid);
5279 keep_going (ecs);
5280 return 1;
5281 }
5282 }
5283 return 0;
5284 }
5285
5286 /* Is thread TP in the middle of single-stepping? */
5287
5288 static int
5289 currently_stepping (struct thread_info *tp)
5290 {
5291 return ((tp->control.step_range_end
5292 && tp->control.step_resume_breakpoint == NULL)
5293 || tp->control.trap_expected
5294 || bpstat_should_step ());
5295 }
5296
5297 /* Returns true if any thread *but* the one passed in "data" is in the
5298 middle of stepping or of handling a "next". */
5299
5300 static int
5301 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5302 {
5303 if (tp == data)
5304 return 0;
5305
5306 return (tp->control.step_range_end
5307 || tp->control.trap_expected);
5308 }
5309
5310 /* Inferior has stepped into a subroutine call with source code that
5311 we should not step over. Do step to the first line of code in
5312 it. */
5313
5314 static void
5315 handle_step_into_function (struct gdbarch *gdbarch,
5316 struct execution_control_state *ecs)
5317 {
5318 struct symtab *s;
5319 struct symtab_and_line stop_func_sal, sr_sal;
5320
5321 fill_in_stop_func (gdbarch, ecs);
5322
5323 s = find_pc_symtab (stop_pc);
5324 if (s && s->language != language_asm)
5325 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5326 ecs->stop_func_start);
5327
5328 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5329 /* Use the step_resume_break to step until the end of the prologue,
5330 even if that involves jumps (as it seems to on the vax under
5331 4.2). */
5332 /* If the prologue ends in the middle of a source line, continue to
5333 the end of that source line (if it is still within the function).
5334 Otherwise, just go to end of prologue. */
5335 if (stop_func_sal.end
5336 && stop_func_sal.pc != ecs->stop_func_start
5337 && stop_func_sal.end < ecs->stop_func_end)
5338 ecs->stop_func_start = stop_func_sal.end;
5339
5340 /* Architectures which require breakpoint adjustment might not be able
5341 to place a breakpoint at the computed address. If so, the test
5342 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5343 ecs->stop_func_start to an address at which a breakpoint may be
5344 legitimately placed.
5345
5346 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5347 made, GDB will enter an infinite loop when stepping through
5348 optimized code consisting of VLIW instructions which contain
5349 subinstructions corresponding to different source lines. On
5350 FR-V, it's not permitted to place a breakpoint on any but the
5351 first subinstruction of a VLIW instruction. When a breakpoint is
5352 set, GDB will adjust the breakpoint address to the beginning of
5353 the VLIW instruction. Thus, we need to make the corresponding
5354 adjustment here when computing the stop address. */
5355
5356 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5357 {
5358 ecs->stop_func_start
5359 = gdbarch_adjust_breakpoint_address (gdbarch,
5360 ecs->stop_func_start);
5361 }
5362
5363 if (ecs->stop_func_start == stop_pc)
5364 {
5365 /* We are already there: stop now. */
5366 ecs->event_thread->control.stop_step = 1;
5367 print_end_stepping_range_reason ();
5368 stop_stepping (ecs);
5369 return;
5370 }
5371 else
5372 {
5373 /* Put the step-breakpoint there and go until there. */
5374 init_sal (&sr_sal); /* initialize to zeroes */
5375 sr_sal.pc = ecs->stop_func_start;
5376 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5377 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5378
5379 /* Do not specify what the fp should be when we stop since on
5380 some machines the prologue is where the new fp value is
5381 established. */
5382 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5383
5384 /* And make sure stepping stops right away then. */
5385 ecs->event_thread->control.step_range_end
5386 = ecs->event_thread->control.step_range_start;
5387 }
5388 keep_going (ecs);
5389 }
5390
5391 /* Inferior has stepped backward into a subroutine call with source
5392 code that we should not step over. Do step to the beginning of the
5393 last line of code in it. */
5394
5395 static void
5396 handle_step_into_function_backward (struct gdbarch *gdbarch,
5397 struct execution_control_state *ecs)
5398 {
5399 struct symtab *s;
5400 struct symtab_and_line stop_func_sal;
5401
5402 fill_in_stop_func (gdbarch, ecs);
5403
5404 s = find_pc_symtab (stop_pc);
5405 if (s && s->language != language_asm)
5406 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5407 ecs->stop_func_start);
5408
5409 stop_func_sal = find_pc_line (stop_pc, 0);
5410
5411 /* OK, we're just going to keep stepping here. */
5412 if (stop_func_sal.pc == stop_pc)
5413 {
5414 /* We're there already. Just stop stepping now. */
5415 ecs->event_thread->control.stop_step = 1;
5416 print_end_stepping_range_reason ();
5417 stop_stepping (ecs);
5418 }
5419 else
5420 {
5421 /* Else just reset the step range and keep going.
5422 No step-resume breakpoint, they don't work for
5423 epilogues, which can have multiple entry paths. */
5424 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5425 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5426 keep_going (ecs);
5427 }
5428 return;
5429 }
5430
5431 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5432 This is used to both functions and to skip over code. */
5433
5434 static void
5435 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5436 struct symtab_and_line sr_sal,
5437 struct frame_id sr_id,
5438 enum bptype sr_type)
5439 {
5440 /* There should never be more than one step-resume or longjmp-resume
5441 breakpoint per thread, so we should never be setting a new
5442 step_resume_breakpoint when one is already active. */
5443 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5444 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5445
5446 if (debug_infrun)
5447 fprintf_unfiltered (gdb_stdlog,
5448 "infrun: inserting step-resume breakpoint at %s\n",
5449 paddress (gdbarch, sr_sal.pc));
5450
5451 inferior_thread ()->control.step_resume_breakpoint
5452 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5453 }
5454
5455 void
5456 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5457 struct symtab_and_line sr_sal,
5458 struct frame_id sr_id)
5459 {
5460 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5461 sr_sal, sr_id,
5462 bp_step_resume);
5463 }
5464
5465 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5466 This is used to skip a potential signal handler.
5467
5468 This is called with the interrupted function's frame. The signal
5469 handler, when it returns, will resume the interrupted function at
5470 RETURN_FRAME.pc. */
5471
5472 static void
5473 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5474 {
5475 struct symtab_and_line sr_sal;
5476 struct gdbarch *gdbarch;
5477
5478 gdb_assert (return_frame != NULL);
5479 init_sal (&sr_sal); /* initialize to zeros */
5480
5481 gdbarch = get_frame_arch (return_frame);
5482 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5483 sr_sal.section = find_pc_overlay (sr_sal.pc);
5484 sr_sal.pspace = get_frame_program_space (return_frame);
5485
5486 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5487 get_stack_frame_id (return_frame),
5488 bp_hp_step_resume);
5489 }
5490
5491 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5492 is used to skip a function after stepping into it (for "next" or if
5493 the called function has no debugging information).
5494
5495 The current function has almost always been reached by single
5496 stepping a call or return instruction. NEXT_FRAME belongs to the
5497 current function, and the breakpoint will be set at the caller's
5498 resume address.
5499
5500 This is a separate function rather than reusing
5501 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5502 get_prev_frame, which may stop prematurely (see the implementation
5503 of frame_unwind_caller_id for an example). */
5504
5505 static void
5506 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5507 {
5508 struct symtab_and_line sr_sal;
5509 struct gdbarch *gdbarch;
5510
5511 /* We shouldn't have gotten here if we don't know where the call site
5512 is. */
5513 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5514
5515 init_sal (&sr_sal); /* initialize to zeros */
5516
5517 gdbarch = frame_unwind_caller_arch (next_frame);
5518 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5519 frame_unwind_caller_pc (next_frame));
5520 sr_sal.section = find_pc_overlay (sr_sal.pc);
5521 sr_sal.pspace = frame_unwind_program_space (next_frame);
5522
5523 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5524 frame_unwind_caller_id (next_frame));
5525 }
5526
5527 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5528 new breakpoint at the target of a jmp_buf. The handling of
5529 longjmp-resume uses the same mechanisms used for handling
5530 "step-resume" breakpoints. */
5531
5532 static void
5533 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5534 {
5535 /* There should never be more than one longjmp-resume breakpoint per
5536 thread, so we should never be setting a new
5537 longjmp_resume_breakpoint when one is already active. */
5538 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5539
5540 if (debug_infrun)
5541 fprintf_unfiltered (gdb_stdlog,
5542 "infrun: inserting longjmp-resume breakpoint at %s\n",
5543 paddress (gdbarch, pc));
5544
5545 inferior_thread ()->control.exception_resume_breakpoint =
5546 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5547 }
5548
5549 /* Insert an exception resume breakpoint. TP is the thread throwing
5550 the exception. The block B is the block of the unwinder debug hook
5551 function. FRAME is the frame corresponding to the call to this
5552 function. SYM is the symbol of the function argument holding the
5553 target PC of the exception. */
5554
5555 static void
5556 insert_exception_resume_breakpoint (struct thread_info *tp,
5557 struct block *b,
5558 struct frame_info *frame,
5559 struct symbol *sym)
5560 {
5561 volatile struct gdb_exception e;
5562
5563 /* We want to ignore errors here. */
5564 TRY_CATCH (e, RETURN_MASK_ERROR)
5565 {
5566 struct symbol *vsym;
5567 struct value *value;
5568 CORE_ADDR handler;
5569 struct breakpoint *bp;
5570
5571 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5572 value = read_var_value (vsym, frame);
5573 /* If the value was optimized out, revert to the old behavior. */
5574 if (! value_optimized_out (value))
5575 {
5576 handler = value_as_address (value);
5577
5578 if (debug_infrun)
5579 fprintf_unfiltered (gdb_stdlog,
5580 "infrun: exception resume at %lx\n",
5581 (unsigned long) handler);
5582
5583 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5584 handler, bp_exception_resume);
5585
5586 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5587 frame = NULL;
5588
5589 bp->thread = tp->num;
5590 inferior_thread ()->control.exception_resume_breakpoint = bp;
5591 }
5592 }
5593 }
5594
5595 /* A helper for check_exception_resume that sets an
5596 exception-breakpoint based on a SystemTap probe. */
5597
5598 static void
5599 insert_exception_resume_from_probe (struct thread_info *tp,
5600 const struct probe *probe,
5601 struct frame_info *frame)
5602 {
5603 struct value *arg_value;
5604 CORE_ADDR handler;
5605 struct breakpoint *bp;
5606
5607 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5608 if (!arg_value)
5609 return;
5610
5611 handler = value_as_address (arg_value);
5612
5613 if (debug_infrun)
5614 fprintf_unfiltered (gdb_stdlog,
5615 "infrun: exception resume at %s\n",
5616 paddress (get_objfile_arch (probe->objfile),
5617 handler));
5618
5619 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5620 handler, bp_exception_resume);
5621 bp->thread = tp->num;
5622 inferior_thread ()->control.exception_resume_breakpoint = bp;
5623 }
5624
5625 /* This is called when an exception has been intercepted. Check to
5626 see whether the exception's destination is of interest, and if so,
5627 set an exception resume breakpoint there. */
5628
5629 static void
5630 check_exception_resume (struct execution_control_state *ecs,
5631 struct frame_info *frame)
5632 {
5633 volatile struct gdb_exception e;
5634 const struct probe *probe;
5635 struct symbol *func;
5636
5637 /* First see if this exception unwinding breakpoint was set via a
5638 SystemTap probe point. If so, the probe has two arguments: the
5639 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5640 set a breakpoint there. */
5641 probe = find_probe_by_pc (get_frame_pc (frame));
5642 if (probe)
5643 {
5644 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5645 return;
5646 }
5647
5648 func = get_frame_function (frame);
5649 if (!func)
5650 return;
5651
5652 TRY_CATCH (e, RETURN_MASK_ERROR)
5653 {
5654 struct block *b;
5655 struct block_iterator iter;
5656 struct symbol *sym;
5657 int argno = 0;
5658
5659 /* The exception breakpoint is a thread-specific breakpoint on
5660 the unwinder's debug hook, declared as:
5661
5662 void _Unwind_DebugHook (void *cfa, void *handler);
5663
5664 The CFA argument indicates the frame to which control is
5665 about to be transferred. HANDLER is the destination PC.
5666
5667 We ignore the CFA and set a temporary breakpoint at HANDLER.
5668 This is not extremely efficient but it avoids issues in gdb
5669 with computing the DWARF CFA, and it also works even in weird
5670 cases such as throwing an exception from inside a signal
5671 handler. */
5672
5673 b = SYMBOL_BLOCK_VALUE (func);
5674 ALL_BLOCK_SYMBOLS (b, iter, sym)
5675 {
5676 if (!SYMBOL_IS_ARGUMENT (sym))
5677 continue;
5678
5679 if (argno == 0)
5680 ++argno;
5681 else
5682 {
5683 insert_exception_resume_breakpoint (ecs->event_thread,
5684 b, frame, sym);
5685 break;
5686 }
5687 }
5688 }
5689 }
5690
5691 static void
5692 stop_stepping (struct execution_control_state *ecs)
5693 {
5694 if (debug_infrun)
5695 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5696
5697 /* Let callers know we don't want to wait for the inferior anymore. */
5698 ecs->wait_some_more = 0;
5699 }
5700
5701 /* Called when we should continue running the inferior, because the
5702 current event doesn't cause a user visible stop. This does the
5703 resuming part; waiting for the next event is done elsewhere. */
5704
5705 static void
5706 keep_going (struct execution_control_state *ecs)
5707 {
5708 /* Make sure normal_stop is called if we get a QUIT handled before
5709 reaching resume. */
5710 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5711
5712 /* Save the pc before execution, to compare with pc after stop. */
5713 ecs->event_thread->prev_pc
5714 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5715
5716 if (ecs->event_thread->control.trap_expected
5717 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5718 {
5719 /* We haven't yet gotten our trap, and either: intercepted a
5720 non-signal event (e.g., a fork); or took a signal which we
5721 are supposed to pass through to the inferior. Simply
5722 continue. */
5723 discard_cleanups (old_cleanups);
5724 resume (currently_stepping (ecs->event_thread),
5725 ecs->event_thread->suspend.stop_signal);
5726 }
5727 else
5728 {
5729 /* Either the trap was not expected, but we are continuing
5730 anyway (if we got a signal, the user asked it be passed to
5731 the child)
5732 -- or --
5733 We got our expected trap, but decided we should resume from
5734 it.
5735
5736 We're going to run this baby now!
5737
5738 Note that insert_breakpoints won't try to re-insert
5739 already inserted breakpoints. Therefore, we don't
5740 care if breakpoints were already inserted, or not. */
5741
5742 if (ecs->event_thread->stepping_over_breakpoint)
5743 {
5744 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5745
5746 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5747 {
5748 /* Since we can't do a displaced step, we have to remove
5749 the breakpoint while we step it. To keep things
5750 simple, we remove them all. */
5751 remove_breakpoints ();
5752 }
5753 }
5754 else
5755 {
5756 volatile struct gdb_exception e;
5757
5758 /* Stop stepping if inserting breakpoints fails. */
5759 TRY_CATCH (e, RETURN_MASK_ERROR)
5760 {
5761 insert_breakpoints ();
5762 }
5763 if (e.reason < 0)
5764 {
5765 exception_print (gdb_stderr, e);
5766 stop_stepping (ecs);
5767 return;
5768 }
5769 }
5770
5771 ecs->event_thread->control.trap_expected
5772 = ecs->event_thread->stepping_over_breakpoint;
5773
5774 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5775 explicitly specifies that such a signal should be delivered
5776 to the target program). Typically, that would occur when a
5777 user is debugging a target monitor on a simulator: the target
5778 monitor sets a breakpoint; the simulator encounters this
5779 breakpoint and halts the simulation handing control to GDB;
5780 GDB, noting that the stop address doesn't map to any known
5781 breakpoint, returns control back to the simulator; the
5782 simulator then delivers the hardware equivalent of a
5783 GDB_SIGNAL_TRAP to the program being debugged. */
5784 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5785 && !signal_program[ecs->event_thread->suspend.stop_signal])
5786 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5787
5788 discard_cleanups (old_cleanups);
5789 resume (currently_stepping (ecs->event_thread),
5790 ecs->event_thread->suspend.stop_signal);
5791 }
5792
5793 prepare_to_wait (ecs);
5794 }
5795
5796 /* This function normally comes after a resume, before
5797 handle_inferior_event exits. It takes care of any last bits of
5798 housekeeping, and sets the all-important wait_some_more flag. */
5799
5800 static void
5801 prepare_to_wait (struct execution_control_state *ecs)
5802 {
5803 if (debug_infrun)
5804 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5805
5806 /* This is the old end of the while loop. Let everybody know we
5807 want to wait for the inferior some more and get called again
5808 soon. */
5809 ecs->wait_some_more = 1;
5810 }
5811
5812 /* Several print_*_reason functions to print why the inferior has stopped.
5813 We always print something when the inferior exits, or receives a signal.
5814 The rest of the cases are dealt with later on in normal_stop and
5815 print_it_typical. Ideally there should be a call to one of these
5816 print_*_reason functions functions from handle_inferior_event each time
5817 stop_stepping is called. */
5818
5819 /* Print why the inferior has stopped.
5820 We are done with a step/next/si/ni command, print why the inferior has
5821 stopped. For now print nothing. Print a message only if not in the middle
5822 of doing a "step n" operation for n > 1. */
5823
5824 static void
5825 print_end_stepping_range_reason (void)
5826 {
5827 if ((!inferior_thread ()->step_multi
5828 || !inferior_thread ()->control.stop_step)
5829 && ui_out_is_mi_like_p (current_uiout))
5830 ui_out_field_string (current_uiout, "reason",
5831 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5832 }
5833
5834 /* The inferior was terminated by a signal, print why it stopped. */
5835
5836 static void
5837 print_signal_exited_reason (enum gdb_signal siggnal)
5838 {
5839 struct ui_out *uiout = current_uiout;
5840
5841 annotate_signalled ();
5842 if (ui_out_is_mi_like_p (uiout))
5843 ui_out_field_string
5844 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5845 ui_out_text (uiout, "\nProgram terminated with signal ");
5846 annotate_signal_name ();
5847 ui_out_field_string (uiout, "signal-name",
5848 gdb_signal_to_name (siggnal));
5849 annotate_signal_name_end ();
5850 ui_out_text (uiout, ", ");
5851 annotate_signal_string ();
5852 ui_out_field_string (uiout, "signal-meaning",
5853 gdb_signal_to_string (siggnal));
5854 annotate_signal_string_end ();
5855 ui_out_text (uiout, ".\n");
5856 ui_out_text (uiout, "The program no longer exists.\n");
5857 }
5858
5859 /* The inferior program is finished, print why it stopped. */
5860
5861 static void
5862 print_exited_reason (int exitstatus)
5863 {
5864 struct inferior *inf = current_inferior ();
5865 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5866 struct ui_out *uiout = current_uiout;
5867
5868 annotate_exited (exitstatus);
5869 if (exitstatus)
5870 {
5871 if (ui_out_is_mi_like_p (uiout))
5872 ui_out_field_string (uiout, "reason",
5873 async_reason_lookup (EXEC_ASYNC_EXITED));
5874 ui_out_text (uiout, "[Inferior ");
5875 ui_out_text (uiout, plongest (inf->num));
5876 ui_out_text (uiout, " (");
5877 ui_out_text (uiout, pidstr);
5878 ui_out_text (uiout, ") exited with code ");
5879 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5880 ui_out_text (uiout, "]\n");
5881 }
5882 else
5883 {
5884 if (ui_out_is_mi_like_p (uiout))
5885 ui_out_field_string
5886 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5887 ui_out_text (uiout, "[Inferior ");
5888 ui_out_text (uiout, plongest (inf->num));
5889 ui_out_text (uiout, " (");
5890 ui_out_text (uiout, pidstr);
5891 ui_out_text (uiout, ") exited normally]\n");
5892 }
5893 /* Support the --return-child-result option. */
5894 return_child_result_value = exitstatus;
5895 }
5896
5897 /* Signal received, print why the inferior has stopped. The signal table
5898 tells us to print about it. */
5899
5900 static void
5901 print_signal_received_reason (enum gdb_signal siggnal)
5902 {
5903 struct ui_out *uiout = current_uiout;
5904
5905 annotate_signal ();
5906
5907 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5908 {
5909 struct thread_info *t = inferior_thread ();
5910
5911 ui_out_text (uiout, "\n[");
5912 ui_out_field_string (uiout, "thread-name",
5913 target_pid_to_str (t->ptid));
5914 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5915 ui_out_text (uiout, " stopped");
5916 }
5917 else
5918 {
5919 ui_out_text (uiout, "\nProgram received signal ");
5920 annotate_signal_name ();
5921 if (ui_out_is_mi_like_p (uiout))
5922 ui_out_field_string
5923 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5924 ui_out_field_string (uiout, "signal-name",
5925 gdb_signal_to_name (siggnal));
5926 annotate_signal_name_end ();
5927 ui_out_text (uiout, ", ");
5928 annotate_signal_string ();
5929 ui_out_field_string (uiout, "signal-meaning",
5930 gdb_signal_to_string (siggnal));
5931 annotate_signal_string_end ();
5932 }
5933 ui_out_text (uiout, ".\n");
5934 }
5935
5936 /* Reverse execution: target ran out of history info, print why the inferior
5937 has stopped. */
5938
5939 static void
5940 print_no_history_reason (void)
5941 {
5942 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5943 }
5944
5945 /* Here to return control to GDB when the inferior stops for real.
5946 Print appropriate messages, remove breakpoints, give terminal our modes.
5947
5948 STOP_PRINT_FRAME nonzero means print the executing frame
5949 (pc, function, args, file, line number and line text).
5950 BREAKPOINTS_FAILED nonzero means stop was due to error
5951 attempting to insert breakpoints. */
5952
5953 void
5954 normal_stop (void)
5955 {
5956 struct target_waitstatus last;
5957 ptid_t last_ptid;
5958 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5959
5960 get_last_target_status (&last_ptid, &last);
5961
5962 /* If an exception is thrown from this point on, make sure to
5963 propagate GDB's knowledge of the executing state to the
5964 frontend/user running state. A QUIT is an easy exception to see
5965 here, so do this before any filtered output. */
5966 if (!non_stop)
5967 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5968 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5969 && last.kind != TARGET_WAITKIND_EXITED
5970 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5971 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5972
5973 /* In non-stop mode, we don't want GDB to switch threads behind the
5974 user's back, to avoid races where the user is typing a command to
5975 apply to thread x, but GDB switches to thread y before the user
5976 finishes entering the command. */
5977
5978 /* As with the notification of thread events, we want to delay
5979 notifying the user that we've switched thread context until
5980 the inferior actually stops.
5981
5982 There's no point in saying anything if the inferior has exited.
5983 Note that SIGNALLED here means "exited with a signal", not
5984 "received a signal". */
5985 if (!non_stop
5986 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5987 && target_has_execution
5988 && last.kind != TARGET_WAITKIND_SIGNALLED
5989 && last.kind != TARGET_WAITKIND_EXITED
5990 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5991 {
5992 target_terminal_ours_for_output ();
5993 printf_filtered (_("[Switching to %s]\n"),
5994 target_pid_to_str (inferior_ptid));
5995 annotate_thread_changed ();
5996 previous_inferior_ptid = inferior_ptid;
5997 }
5998
5999 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6000 {
6001 gdb_assert (sync_execution || !target_can_async_p ());
6002
6003 target_terminal_ours_for_output ();
6004 printf_filtered (_("No unwaited-for children left.\n"));
6005 }
6006
6007 if (!breakpoints_always_inserted_mode () && target_has_execution)
6008 {
6009 if (remove_breakpoints ())
6010 {
6011 target_terminal_ours_for_output ();
6012 printf_filtered (_("Cannot remove breakpoints because "
6013 "program is no longer writable.\nFurther "
6014 "execution is probably impossible.\n"));
6015 }
6016 }
6017
6018 /* If an auto-display called a function and that got a signal,
6019 delete that auto-display to avoid an infinite recursion. */
6020
6021 if (stopped_by_random_signal)
6022 disable_current_display ();
6023
6024 /* Don't print a message if in the middle of doing a "step n"
6025 operation for n > 1 */
6026 if (target_has_execution
6027 && last.kind != TARGET_WAITKIND_SIGNALLED
6028 && last.kind != TARGET_WAITKIND_EXITED
6029 && inferior_thread ()->step_multi
6030 && inferior_thread ()->control.stop_step)
6031 goto done;
6032
6033 target_terminal_ours ();
6034 async_enable_stdin ();
6035
6036 /* Set the current source location. This will also happen if we
6037 display the frame below, but the current SAL will be incorrect
6038 during a user hook-stop function. */
6039 if (has_stack_frames () && !stop_stack_dummy)
6040 set_current_sal_from_frame (get_current_frame (), 1);
6041
6042 /* Let the user/frontend see the threads as stopped. */
6043 do_cleanups (old_chain);
6044
6045 /* Look up the hook_stop and run it (CLI internally handles problem
6046 of stop_command's pre-hook not existing). */
6047 if (stop_command)
6048 catch_errors (hook_stop_stub, stop_command,
6049 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6050
6051 if (!has_stack_frames ())
6052 goto done;
6053
6054 if (last.kind == TARGET_WAITKIND_SIGNALLED
6055 || last.kind == TARGET_WAITKIND_EXITED)
6056 goto done;
6057
6058 /* Select innermost stack frame - i.e., current frame is frame 0,
6059 and current location is based on that.
6060 Don't do this on return from a stack dummy routine,
6061 or if the program has exited. */
6062
6063 if (!stop_stack_dummy)
6064 {
6065 select_frame (get_current_frame ());
6066
6067 /* Print current location without a level number, if
6068 we have changed functions or hit a breakpoint.
6069 Print source line if we have one.
6070 bpstat_print() contains the logic deciding in detail
6071 what to print, based on the event(s) that just occurred. */
6072
6073 /* If --batch-silent is enabled then there's no need to print the current
6074 source location, and to try risks causing an error message about
6075 missing source files. */
6076 if (stop_print_frame && !batch_silent)
6077 {
6078 int bpstat_ret;
6079 int source_flag;
6080 int do_frame_printing = 1;
6081 struct thread_info *tp = inferior_thread ();
6082
6083 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6084 switch (bpstat_ret)
6085 {
6086 case PRINT_UNKNOWN:
6087 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6088 (or should) carry around the function and does (or
6089 should) use that when doing a frame comparison. */
6090 if (tp->control.stop_step
6091 && frame_id_eq (tp->control.step_frame_id,
6092 get_frame_id (get_current_frame ()))
6093 && step_start_function == find_pc_function (stop_pc))
6094 source_flag = SRC_LINE; /* Finished step, just
6095 print source line. */
6096 else
6097 source_flag = SRC_AND_LOC; /* Print location and
6098 source line. */
6099 break;
6100 case PRINT_SRC_AND_LOC:
6101 source_flag = SRC_AND_LOC; /* Print location and
6102 source line. */
6103 break;
6104 case PRINT_SRC_ONLY:
6105 source_flag = SRC_LINE;
6106 break;
6107 case PRINT_NOTHING:
6108 source_flag = SRC_LINE; /* something bogus */
6109 do_frame_printing = 0;
6110 break;
6111 default:
6112 internal_error (__FILE__, __LINE__, _("Unknown value."));
6113 }
6114
6115 /* The behavior of this routine with respect to the source
6116 flag is:
6117 SRC_LINE: Print only source line
6118 LOCATION: Print only location
6119 SRC_AND_LOC: Print location and source line. */
6120 if (do_frame_printing)
6121 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6122
6123 /* Display the auto-display expressions. */
6124 do_displays ();
6125 }
6126 }
6127
6128 /* Save the function value return registers, if we care.
6129 We might be about to restore their previous contents. */
6130 if (inferior_thread ()->control.proceed_to_finish
6131 && execution_direction != EXEC_REVERSE)
6132 {
6133 /* This should not be necessary. */
6134 if (stop_registers)
6135 regcache_xfree (stop_registers);
6136
6137 /* NB: The copy goes through to the target picking up the value of
6138 all the registers. */
6139 stop_registers = regcache_dup (get_current_regcache ());
6140 }
6141
6142 if (stop_stack_dummy == STOP_STACK_DUMMY)
6143 {
6144 /* Pop the empty frame that contains the stack dummy.
6145 This also restores inferior state prior to the call
6146 (struct infcall_suspend_state). */
6147 struct frame_info *frame = get_current_frame ();
6148
6149 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6150 frame_pop (frame);
6151 /* frame_pop() calls reinit_frame_cache as the last thing it
6152 does which means there's currently no selected frame. We
6153 don't need to re-establish a selected frame if the dummy call
6154 returns normally, that will be done by
6155 restore_infcall_control_state. However, we do have to handle
6156 the case where the dummy call is returning after being
6157 stopped (e.g. the dummy call previously hit a breakpoint).
6158 We can't know which case we have so just always re-establish
6159 a selected frame here. */
6160 select_frame (get_current_frame ());
6161 }
6162
6163 done:
6164 annotate_stopped ();
6165
6166 /* Suppress the stop observer if we're in the middle of:
6167
6168 - a step n (n > 1), as there still more steps to be done.
6169
6170 - a "finish" command, as the observer will be called in
6171 finish_command_continuation, so it can include the inferior
6172 function's return value.
6173
6174 - calling an inferior function, as we pretend we inferior didn't
6175 run at all. The return value of the call is handled by the
6176 expression evaluator, through call_function_by_hand. */
6177
6178 if (!target_has_execution
6179 || last.kind == TARGET_WAITKIND_SIGNALLED
6180 || last.kind == TARGET_WAITKIND_EXITED
6181 || last.kind == TARGET_WAITKIND_NO_RESUMED
6182 || (!(inferior_thread ()->step_multi
6183 && inferior_thread ()->control.stop_step)
6184 && !(inferior_thread ()->control.stop_bpstat
6185 && inferior_thread ()->control.proceed_to_finish)
6186 && !inferior_thread ()->control.in_infcall))
6187 {
6188 if (!ptid_equal (inferior_ptid, null_ptid))
6189 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6190 stop_print_frame);
6191 else
6192 observer_notify_normal_stop (NULL, stop_print_frame);
6193 }
6194
6195 if (target_has_execution)
6196 {
6197 if (last.kind != TARGET_WAITKIND_SIGNALLED
6198 && last.kind != TARGET_WAITKIND_EXITED)
6199 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6200 Delete any breakpoint that is to be deleted at the next stop. */
6201 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6202 }
6203
6204 /* Try to get rid of automatically added inferiors that are no
6205 longer needed. Keeping those around slows down things linearly.
6206 Note that this never removes the current inferior. */
6207 prune_inferiors ();
6208 }
6209
6210 static int
6211 hook_stop_stub (void *cmd)
6212 {
6213 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6214 return (0);
6215 }
6216 \f
6217 int
6218 signal_stop_state (int signo)
6219 {
6220 return signal_stop[signo];
6221 }
6222
6223 int
6224 signal_print_state (int signo)
6225 {
6226 return signal_print[signo];
6227 }
6228
6229 int
6230 signal_pass_state (int signo)
6231 {
6232 return signal_program[signo];
6233 }
6234
6235 static void
6236 signal_cache_update (int signo)
6237 {
6238 if (signo == -1)
6239 {
6240 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6241 signal_cache_update (signo);
6242
6243 return;
6244 }
6245
6246 signal_pass[signo] = (signal_stop[signo] == 0
6247 && signal_print[signo] == 0
6248 && signal_program[signo] == 1
6249 && signal_catch[signo] == 0);
6250 }
6251
6252 int
6253 signal_stop_update (int signo, int state)
6254 {
6255 int ret = signal_stop[signo];
6256
6257 signal_stop[signo] = state;
6258 signal_cache_update (signo);
6259 return ret;
6260 }
6261
6262 int
6263 signal_print_update (int signo, int state)
6264 {
6265 int ret = signal_print[signo];
6266
6267 signal_print[signo] = state;
6268 signal_cache_update (signo);
6269 return ret;
6270 }
6271
6272 int
6273 signal_pass_update (int signo, int state)
6274 {
6275 int ret = signal_program[signo];
6276
6277 signal_program[signo] = state;
6278 signal_cache_update (signo);
6279 return ret;
6280 }
6281
6282 /* Update the global 'signal_catch' from INFO and notify the
6283 target. */
6284
6285 void
6286 signal_catch_update (const unsigned int *info)
6287 {
6288 int i;
6289
6290 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6291 signal_catch[i] = info[i] > 0;
6292 signal_cache_update (-1);
6293 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6294 }
6295
6296 static void
6297 sig_print_header (void)
6298 {
6299 printf_filtered (_("Signal Stop\tPrint\tPass "
6300 "to program\tDescription\n"));
6301 }
6302
6303 static void
6304 sig_print_info (enum gdb_signal oursig)
6305 {
6306 const char *name = gdb_signal_to_name (oursig);
6307 int name_padding = 13 - strlen (name);
6308
6309 if (name_padding <= 0)
6310 name_padding = 0;
6311
6312 printf_filtered ("%s", name);
6313 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6314 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6315 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6316 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6317 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6318 }
6319
6320 /* Specify how various signals in the inferior should be handled. */
6321
6322 static void
6323 handle_command (char *args, int from_tty)
6324 {
6325 char **argv;
6326 int digits, wordlen;
6327 int sigfirst, signum, siglast;
6328 enum gdb_signal oursig;
6329 int allsigs;
6330 int nsigs;
6331 unsigned char *sigs;
6332 struct cleanup *old_chain;
6333
6334 if (args == NULL)
6335 {
6336 error_no_arg (_("signal to handle"));
6337 }
6338
6339 /* Allocate and zero an array of flags for which signals to handle. */
6340
6341 nsigs = (int) GDB_SIGNAL_LAST;
6342 sigs = (unsigned char *) alloca (nsigs);
6343 memset (sigs, 0, nsigs);
6344
6345 /* Break the command line up into args. */
6346
6347 argv = gdb_buildargv (args);
6348 old_chain = make_cleanup_freeargv (argv);
6349
6350 /* Walk through the args, looking for signal oursigs, signal names, and
6351 actions. Signal numbers and signal names may be interspersed with
6352 actions, with the actions being performed for all signals cumulatively
6353 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6354
6355 while (*argv != NULL)
6356 {
6357 wordlen = strlen (*argv);
6358 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6359 {;
6360 }
6361 allsigs = 0;
6362 sigfirst = siglast = -1;
6363
6364 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6365 {
6366 /* Apply action to all signals except those used by the
6367 debugger. Silently skip those. */
6368 allsigs = 1;
6369 sigfirst = 0;
6370 siglast = nsigs - 1;
6371 }
6372 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6373 {
6374 SET_SIGS (nsigs, sigs, signal_stop);
6375 SET_SIGS (nsigs, sigs, signal_print);
6376 }
6377 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6378 {
6379 UNSET_SIGS (nsigs, sigs, signal_program);
6380 }
6381 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6382 {
6383 SET_SIGS (nsigs, sigs, signal_print);
6384 }
6385 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6386 {
6387 SET_SIGS (nsigs, sigs, signal_program);
6388 }
6389 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6390 {
6391 UNSET_SIGS (nsigs, sigs, signal_stop);
6392 }
6393 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6394 {
6395 SET_SIGS (nsigs, sigs, signal_program);
6396 }
6397 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6398 {
6399 UNSET_SIGS (nsigs, sigs, signal_print);
6400 UNSET_SIGS (nsigs, sigs, signal_stop);
6401 }
6402 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6403 {
6404 UNSET_SIGS (nsigs, sigs, signal_program);
6405 }
6406 else if (digits > 0)
6407 {
6408 /* It is numeric. The numeric signal refers to our own
6409 internal signal numbering from target.h, not to host/target
6410 signal number. This is a feature; users really should be
6411 using symbolic names anyway, and the common ones like
6412 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6413
6414 sigfirst = siglast = (int)
6415 gdb_signal_from_command (atoi (*argv));
6416 if ((*argv)[digits] == '-')
6417 {
6418 siglast = (int)
6419 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6420 }
6421 if (sigfirst > siglast)
6422 {
6423 /* Bet he didn't figure we'd think of this case... */
6424 signum = sigfirst;
6425 sigfirst = siglast;
6426 siglast = signum;
6427 }
6428 }
6429 else
6430 {
6431 oursig = gdb_signal_from_name (*argv);
6432 if (oursig != GDB_SIGNAL_UNKNOWN)
6433 {
6434 sigfirst = siglast = (int) oursig;
6435 }
6436 else
6437 {
6438 /* Not a number and not a recognized flag word => complain. */
6439 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6440 }
6441 }
6442
6443 /* If any signal numbers or symbol names were found, set flags for
6444 which signals to apply actions to. */
6445
6446 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6447 {
6448 switch ((enum gdb_signal) signum)
6449 {
6450 case GDB_SIGNAL_TRAP:
6451 case GDB_SIGNAL_INT:
6452 if (!allsigs && !sigs[signum])
6453 {
6454 if (query (_("%s is used by the debugger.\n\
6455 Are you sure you want to change it? "),
6456 gdb_signal_to_name ((enum gdb_signal) signum)))
6457 {
6458 sigs[signum] = 1;
6459 }
6460 else
6461 {
6462 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6463 gdb_flush (gdb_stdout);
6464 }
6465 }
6466 break;
6467 case GDB_SIGNAL_0:
6468 case GDB_SIGNAL_DEFAULT:
6469 case GDB_SIGNAL_UNKNOWN:
6470 /* Make sure that "all" doesn't print these. */
6471 break;
6472 default:
6473 sigs[signum] = 1;
6474 break;
6475 }
6476 }
6477
6478 argv++;
6479 }
6480
6481 for (signum = 0; signum < nsigs; signum++)
6482 if (sigs[signum])
6483 {
6484 signal_cache_update (-1);
6485 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6486 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6487
6488 if (from_tty)
6489 {
6490 /* Show the results. */
6491 sig_print_header ();
6492 for (; signum < nsigs; signum++)
6493 if (sigs[signum])
6494 sig_print_info (signum);
6495 }
6496
6497 break;
6498 }
6499
6500 do_cleanups (old_chain);
6501 }
6502
6503 /* Complete the "handle" command. */
6504
6505 static VEC (char_ptr) *
6506 handle_completer (struct cmd_list_element *ignore,
6507 const char *text, const char *word)
6508 {
6509 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6510 static const char * const keywords[] =
6511 {
6512 "all",
6513 "stop",
6514 "ignore",
6515 "print",
6516 "pass",
6517 "nostop",
6518 "noignore",
6519 "noprint",
6520 "nopass",
6521 NULL,
6522 };
6523
6524 vec_signals = signal_completer (ignore, text, word);
6525 vec_keywords = complete_on_enum (keywords, word, word);
6526
6527 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6528 VEC_free (char_ptr, vec_signals);
6529 VEC_free (char_ptr, vec_keywords);
6530 return return_val;
6531 }
6532
6533 static void
6534 xdb_handle_command (char *args, int from_tty)
6535 {
6536 char **argv;
6537 struct cleanup *old_chain;
6538
6539 if (args == NULL)
6540 error_no_arg (_("xdb command"));
6541
6542 /* Break the command line up into args. */
6543
6544 argv = gdb_buildargv (args);
6545 old_chain = make_cleanup_freeargv (argv);
6546 if (argv[1] != (char *) NULL)
6547 {
6548 char *argBuf;
6549 int bufLen;
6550
6551 bufLen = strlen (argv[0]) + 20;
6552 argBuf = (char *) xmalloc (bufLen);
6553 if (argBuf)
6554 {
6555 int validFlag = 1;
6556 enum gdb_signal oursig;
6557
6558 oursig = gdb_signal_from_name (argv[0]);
6559 memset (argBuf, 0, bufLen);
6560 if (strcmp (argv[1], "Q") == 0)
6561 sprintf (argBuf, "%s %s", argv[0], "noprint");
6562 else
6563 {
6564 if (strcmp (argv[1], "s") == 0)
6565 {
6566 if (!signal_stop[oursig])
6567 sprintf (argBuf, "%s %s", argv[0], "stop");
6568 else
6569 sprintf (argBuf, "%s %s", argv[0], "nostop");
6570 }
6571 else if (strcmp (argv[1], "i") == 0)
6572 {
6573 if (!signal_program[oursig])
6574 sprintf (argBuf, "%s %s", argv[0], "pass");
6575 else
6576 sprintf (argBuf, "%s %s", argv[0], "nopass");
6577 }
6578 else if (strcmp (argv[1], "r") == 0)
6579 {
6580 if (!signal_print[oursig])
6581 sprintf (argBuf, "%s %s", argv[0], "print");
6582 else
6583 sprintf (argBuf, "%s %s", argv[0], "noprint");
6584 }
6585 else
6586 validFlag = 0;
6587 }
6588 if (validFlag)
6589 handle_command (argBuf, from_tty);
6590 else
6591 printf_filtered (_("Invalid signal handling flag.\n"));
6592 if (argBuf)
6593 xfree (argBuf);
6594 }
6595 }
6596 do_cleanups (old_chain);
6597 }
6598
6599 enum gdb_signal
6600 gdb_signal_from_command (int num)
6601 {
6602 if (num >= 1 && num <= 15)
6603 return (enum gdb_signal) num;
6604 error (_("Only signals 1-15 are valid as numeric signals.\n\
6605 Use \"info signals\" for a list of symbolic signals."));
6606 }
6607
6608 /* Print current contents of the tables set by the handle command.
6609 It is possible we should just be printing signals actually used
6610 by the current target (but for things to work right when switching
6611 targets, all signals should be in the signal tables). */
6612
6613 static void
6614 signals_info (char *signum_exp, int from_tty)
6615 {
6616 enum gdb_signal oursig;
6617
6618 sig_print_header ();
6619
6620 if (signum_exp)
6621 {
6622 /* First see if this is a symbol name. */
6623 oursig = gdb_signal_from_name (signum_exp);
6624 if (oursig == GDB_SIGNAL_UNKNOWN)
6625 {
6626 /* No, try numeric. */
6627 oursig =
6628 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6629 }
6630 sig_print_info (oursig);
6631 return;
6632 }
6633
6634 printf_filtered ("\n");
6635 /* These ugly casts brought to you by the native VAX compiler. */
6636 for (oursig = GDB_SIGNAL_FIRST;
6637 (int) oursig < (int) GDB_SIGNAL_LAST;
6638 oursig = (enum gdb_signal) ((int) oursig + 1))
6639 {
6640 QUIT;
6641
6642 if (oursig != GDB_SIGNAL_UNKNOWN
6643 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6644 sig_print_info (oursig);
6645 }
6646
6647 printf_filtered (_("\nUse the \"handle\" command "
6648 "to change these tables.\n"));
6649 }
6650
6651 /* Check if it makes sense to read $_siginfo from the current thread
6652 at this point. If not, throw an error. */
6653
6654 static void
6655 validate_siginfo_access (void)
6656 {
6657 /* No current inferior, no siginfo. */
6658 if (ptid_equal (inferior_ptid, null_ptid))
6659 error (_("No thread selected."));
6660
6661 /* Don't try to read from a dead thread. */
6662 if (is_exited (inferior_ptid))
6663 error (_("The current thread has terminated"));
6664
6665 /* ... or from a spinning thread. */
6666 if (is_running (inferior_ptid))
6667 error (_("Selected thread is running."));
6668 }
6669
6670 /* The $_siginfo convenience variable is a bit special. We don't know
6671 for sure the type of the value until we actually have a chance to
6672 fetch the data. The type can change depending on gdbarch, so it is
6673 also dependent on which thread you have selected.
6674
6675 1. making $_siginfo be an internalvar that creates a new value on
6676 access.
6677
6678 2. making the value of $_siginfo be an lval_computed value. */
6679
6680 /* This function implements the lval_computed support for reading a
6681 $_siginfo value. */
6682
6683 static void
6684 siginfo_value_read (struct value *v)
6685 {
6686 LONGEST transferred;
6687
6688 validate_siginfo_access ();
6689
6690 transferred =
6691 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6692 NULL,
6693 value_contents_all_raw (v),
6694 value_offset (v),
6695 TYPE_LENGTH (value_type (v)));
6696
6697 if (transferred != TYPE_LENGTH (value_type (v)))
6698 error (_("Unable to read siginfo"));
6699 }
6700
6701 /* This function implements the lval_computed support for writing a
6702 $_siginfo value. */
6703
6704 static void
6705 siginfo_value_write (struct value *v, struct value *fromval)
6706 {
6707 LONGEST transferred;
6708
6709 validate_siginfo_access ();
6710
6711 transferred = target_write (&current_target,
6712 TARGET_OBJECT_SIGNAL_INFO,
6713 NULL,
6714 value_contents_all_raw (fromval),
6715 value_offset (v),
6716 TYPE_LENGTH (value_type (fromval)));
6717
6718 if (transferred != TYPE_LENGTH (value_type (fromval)))
6719 error (_("Unable to write siginfo"));
6720 }
6721
6722 static const struct lval_funcs siginfo_value_funcs =
6723 {
6724 siginfo_value_read,
6725 siginfo_value_write
6726 };
6727
6728 /* Return a new value with the correct type for the siginfo object of
6729 the current thread using architecture GDBARCH. Return a void value
6730 if there's no object available. */
6731
6732 static struct value *
6733 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6734 void *ignore)
6735 {
6736 if (target_has_stack
6737 && !ptid_equal (inferior_ptid, null_ptid)
6738 && gdbarch_get_siginfo_type_p (gdbarch))
6739 {
6740 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6741
6742 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6743 }
6744
6745 return allocate_value (builtin_type (gdbarch)->builtin_void);
6746 }
6747
6748 \f
6749 /* infcall_suspend_state contains state about the program itself like its
6750 registers and any signal it received when it last stopped.
6751 This state must be restored regardless of how the inferior function call
6752 ends (either successfully, or after it hits a breakpoint or signal)
6753 if the program is to properly continue where it left off. */
6754
6755 struct infcall_suspend_state
6756 {
6757 struct thread_suspend_state thread_suspend;
6758 #if 0 /* Currently unused and empty structures are not valid C. */
6759 struct inferior_suspend_state inferior_suspend;
6760 #endif
6761
6762 /* Other fields: */
6763 CORE_ADDR stop_pc;
6764 struct regcache *registers;
6765
6766 /* Format of SIGINFO_DATA or NULL if it is not present. */
6767 struct gdbarch *siginfo_gdbarch;
6768
6769 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6770 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6771 content would be invalid. */
6772 gdb_byte *siginfo_data;
6773 };
6774
6775 struct infcall_suspend_state *
6776 save_infcall_suspend_state (void)
6777 {
6778 struct infcall_suspend_state *inf_state;
6779 struct thread_info *tp = inferior_thread ();
6780 #if 0
6781 struct inferior *inf = current_inferior ();
6782 #endif
6783 struct regcache *regcache = get_current_regcache ();
6784 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6785 gdb_byte *siginfo_data = NULL;
6786
6787 if (gdbarch_get_siginfo_type_p (gdbarch))
6788 {
6789 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6790 size_t len = TYPE_LENGTH (type);
6791 struct cleanup *back_to;
6792
6793 siginfo_data = xmalloc (len);
6794 back_to = make_cleanup (xfree, siginfo_data);
6795
6796 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6797 siginfo_data, 0, len) == len)
6798 discard_cleanups (back_to);
6799 else
6800 {
6801 /* Errors ignored. */
6802 do_cleanups (back_to);
6803 siginfo_data = NULL;
6804 }
6805 }
6806
6807 inf_state = XZALLOC (struct infcall_suspend_state);
6808
6809 if (siginfo_data)
6810 {
6811 inf_state->siginfo_gdbarch = gdbarch;
6812 inf_state->siginfo_data = siginfo_data;
6813 }
6814
6815 inf_state->thread_suspend = tp->suspend;
6816 #if 0 /* Currently unused and empty structures are not valid C. */
6817 inf_state->inferior_suspend = inf->suspend;
6818 #endif
6819
6820 /* run_inferior_call will not use the signal due to its `proceed' call with
6821 GDB_SIGNAL_0 anyway. */
6822 tp->suspend.stop_signal = GDB_SIGNAL_0;
6823
6824 inf_state->stop_pc = stop_pc;
6825
6826 inf_state->registers = regcache_dup (regcache);
6827
6828 return inf_state;
6829 }
6830
6831 /* Restore inferior session state to INF_STATE. */
6832
6833 void
6834 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6835 {
6836 struct thread_info *tp = inferior_thread ();
6837 #if 0
6838 struct inferior *inf = current_inferior ();
6839 #endif
6840 struct regcache *regcache = get_current_regcache ();
6841 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6842
6843 tp->suspend = inf_state->thread_suspend;
6844 #if 0 /* Currently unused and empty structures are not valid C. */
6845 inf->suspend = inf_state->inferior_suspend;
6846 #endif
6847
6848 stop_pc = inf_state->stop_pc;
6849
6850 if (inf_state->siginfo_gdbarch == gdbarch)
6851 {
6852 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6853
6854 /* Errors ignored. */
6855 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6856 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6857 }
6858
6859 /* The inferior can be gone if the user types "print exit(0)"
6860 (and perhaps other times). */
6861 if (target_has_execution)
6862 /* NB: The register write goes through to the target. */
6863 regcache_cpy (regcache, inf_state->registers);
6864
6865 discard_infcall_suspend_state (inf_state);
6866 }
6867
6868 static void
6869 do_restore_infcall_suspend_state_cleanup (void *state)
6870 {
6871 restore_infcall_suspend_state (state);
6872 }
6873
6874 struct cleanup *
6875 make_cleanup_restore_infcall_suspend_state
6876 (struct infcall_suspend_state *inf_state)
6877 {
6878 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6879 }
6880
6881 void
6882 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6883 {
6884 regcache_xfree (inf_state->registers);
6885 xfree (inf_state->siginfo_data);
6886 xfree (inf_state);
6887 }
6888
6889 struct regcache *
6890 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6891 {
6892 return inf_state->registers;
6893 }
6894
6895 /* infcall_control_state contains state regarding gdb's control of the
6896 inferior itself like stepping control. It also contains session state like
6897 the user's currently selected frame. */
6898
6899 struct infcall_control_state
6900 {
6901 struct thread_control_state thread_control;
6902 struct inferior_control_state inferior_control;
6903
6904 /* Other fields: */
6905 enum stop_stack_kind stop_stack_dummy;
6906 int stopped_by_random_signal;
6907 int stop_after_trap;
6908
6909 /* ID if the selected frame when the inferior function call was made. */
6910 struct frame_id selected_frame_id;
6911 };
6912
6913 /* Save all of the information associated with the inferior<==>gdb
6914 connection. */
6915
6916 struct infcall_control_state *
6917 save_infcall_control_state (void)
6918 {
6919 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6920 struct thread_info *tp = inferior_thread ();
6921 struct inferior *inf = current_inferior ();
6922
6923 inf_status->thread_control = tp->control;
6924 inf_status->inferior_control = inf->control;
6925
6926 tp->control.step_resume_breakpoint = NULL;
6927 tp->control.exception_resume_breakpoint = NULL;
6928
6929 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6930 chain. If caller's caller is walking the chain, they'll be happier if we
6931 hand them back the original chain when restore_infcall_control_state is
6932 called. */
6933 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6934
6935 /* Other fields: */
6936 inf_status->stop_stack_dummy = stop_stack_dummy;
6937 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6938 inf_status->stop_after_trap = stop_after_trap;
6939
6940 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6941
6942 return inf_status;
6943 }
6944
6945 static int
6946 restore_selected_frame (void *args)
6947 {
6948 struct frame_id *fid = (struct frame_id *) args;
6949 struct frame_info *frame;
6950
6951 frame = frame_find_by_id (*fid);
6952
6953 /* If inf_status->selected_frame_id is NULL, there was no previously
6954 selected frame. */
6955 if (frame == NULL)
6956 {
6957 warning (_("Unable to restore previously selected frame."));
6958 return 0;
6959 }
6960
6961 select_frame (frame);
6962
6963 return (1);
6964 }
6965
6966 /* Restore inferior session state to INF_STATUS. */
6967
6968 void
6969 restore_infcall_control_state (struct infcall_control_state *inf_status)
6970 {
6971 struct thread_info *tp = inferior_thread ();
6972 struct inferior *inf = current_inferior ();
6973
6974 if (tp->control.step_resume_breakpoint)
6975 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6976
6977 if (tp->control.exception_resume_breakpoint)
6978 tp->control.exception_resume_breakpoint->disposition
6979 = disp_del_at_next_stop;
6980
6981 /* Handle the bpstat_copy of the chain. */
6982 bpstat_clear (&tp->control.stop_bpstat);
6983
6984 tp->control = inf_status->thread_control;
6985 inf->control = inf_status->inferior_control;
6986
6987 /* Other fields: */
6988 stop_stack_dummy = inf_status->stop_stack_dummy;
6989 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6990 stop_after_trap = inf_status->stop_after_trap;
6991
6992 if (target_has_stack)
6993 {
6994 /* The point of catch_errors is that if the stack is clobbered,
6995 walking the stack might encounter a garbage pointer and
6996 error() trying to dereference it. */
6997 if (catch_errors
6998 (restore_selected_frame, &inf_status->selected_frame_id,
6999 "Unable to restore previously selected frame:\n",
7000 RETURN_MASK_ERROR) == 0)
7001 /* Error in restoring the selected frame. Select the innermost
7002 frame. */
7003 select_frame (get_current_frame ());
7004 }
7005
7006 xfree (inf_status);
7007 }
7008
7009 static void
7010 do_restore_infcall_control_state_cleanup (void *sts)
7011 {
7012 restore_infcall_control_state (sts);
7013 }
7014
7015 struct cleanup *
7016 make_cleanup_restore_infcall_control_state
7017 (struct infcall_control_state *inf_status)
7018 {
7019 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7020 }
7021
7022 void
7023 discard_infcall_control_state (struct infcall_control_state *inf_status)
7024 {
7025 if (inf_status->thread_control.step_resume_breakpoint)
7026 inf_status->thread_control.step_resume_breakpoint->disposition
7027 = disp_del_at_next_stop;
7028
7029 if (inf_status->thread_control.exception_resume_breakpoint)
7030 inf_status->thread_control.exception_resume_breakpoint->disposition
7031 = disp_del_at_next_stop;
7032
7033 /* See save_infcall_control_state for info on stop_bpstat. */
7034 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7035
7036 xfree (inf_status);
7037 }
7038 \f
7039 int
7040 ptid_match (ptid_t ptid, ptid_t filter)
7041 {
7042 if (ptid_equal (filter, minus_one_ptid))
7043 return 1;
7044 if (ptid_is_pid (filter)
7045 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7046 return 1;
7047 else if (ptid_equal (ptid, filter))
7048 return 1;
7049
7050 return 0;
7051 }
7052
7053 /* restore_inferior_ptid() will be used by the cleanup machinery
7054 to restore the inferior_ptid value saved in a call to
7055 save_inferior_ptid(). */
7056
7057 static void
7058 restore_inferior_ptid (void *arg)
7059 {
7060 ptid_t *saved_ptid_ptr = arg;
7061
7062 inferior_ptid = *saved_ptid_ptr;
7063 xfree (arg);
7064 }
7065
7066 /* Save the value of inferior_ptid so that it may be restored by a
7067 later call to do_cleanups(). Returns the struct cleanup pointer
7068 needed for later doing the cleanup. */
7069
7070 struct cleanup *
7071 save_inferior_ptid (void)
7072 {
7073 ptid_t *saved_ptid_ptr;
7074
7075 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7076 *saved_ptid_ptr = inferior_ptid;
7077 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7078 }
7079
7080 /* See inferior.h. */
7081
7082 void
7083 clear_exit_convenience_vars (void)
7084 {
7085 clear_internalvar (lookup_internalvar ("_exitsignal"));
7086 clear_internalvar (lookup_internalvar ("_exitcode"));
7087 }
7088 \f
7089
7090 /* User interface for reverse debugging:
7091 Set exec-direction / show exec-direction commands
7092 (returns error unless target implements to_set_exec_direction method). */
7093
7094 int execution_direction = EXEC_FORWARD;
7095 static const char exec_forward[] = "forward";
7096 static const char exec_reverse[] = "reverse";
7097 static const char *exec_direction = exec_forward;
7098 static const char *const exec_direction_names[] = {
7099 exec_forward,
7100 exec_reverse,
7101 NULL
7102 };
7103
7104 static void
7105 set_exec_direction_func (char *args, int from_tty,
7106 struct cmd_list_element *cmd)
7107 {
7108 if (target_can_execute_reverse)
7109 {
7110 if (!strcmp (exec_direction, exec_forward))
7111 execution_direction = EXEC_FORWARD;
7112 else if (!strcmp (exec_direction, exec_reverse))
7113 execution_direction = EXEC_REVERSE;
7114 }
7115 else
7116 {
7117 exec_direction = exec_forward;
7118 error (_("Target does not support this operation."));
7119 }
7120 }
7121
7122 static void
7123 show_exec_direction_func (struct ui_file *out, int from_tty,
7124 struct cmd_list_element *cmd, const char *value)
7125 {
7126 switch (execution_direction) {
7127 case EXEC_FORWARD:
7128 fprintf_filtered (out, _("Forward.\n"));
7129 break;
7130 case EXEC_REVERSE:
7131 fprintf_filtered (out, _("Reverse.\n"));
7132 break;
7133 default:
7134 internal_error (__FILE__, __LINE__,
7135 _("bogus execution_direction value: %d"),
7136 (int) execution_direction);
7137 }
7138 }
7139
7140 static void
7141 show_schedule_multiple (struct ui_file *file, int from_tty,
7142 struct cmd_list_element *c, const char *value)
7143 {
7144 fprintf_filtered (file, _("Resuming the execution of threads "
7145 "of all processes is %s.\n"), value);
7146 }
7147
7148 /* Implementation of `siginfo' variable. */
7149
7150 static const struct internalvar_funcs siginfo_funcs =
7151 {
7152 siginfo_make_value,
7153 NULL,
7154 NULL
7155 };
7156
7157 void
7158 _initialize_infrun (void)
7159 {
7160 int i;
7161 int numsigs;
7162 struct cmd_list_element *c;
7163
7164 add_info ("signals", signals_info, _("\
7165 What debugger does when program gets various signals.\n\
7166 Specify a signal as argument to print info on that signal only."));
7167 add_info_alias ("handle", "signals", 0);
7168
7169 c = add_com ("handle", class_run, handle_command, _("\
7170 Specify how to handle signals.\n\
7171 Usage: handle SIGNAL [ACTIONS]\n\
7172 Args are signals and actions to apply to those signals.\n\
7173 If no actions are specified, the current settings for the specified signals\n\
7174 will be displayed instead.\n\
7175 \n\
7176 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7177 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7178 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7179 The special arg \"all\" is recognized to mean all signals except those\n\
7180 used by the debugger, typically SIGTRAP and SIGINT.\n\
7181 \n\
7182 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7183 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7184 Stop means reenter debugger if this signal happens (implies print).\n\
7185 Print means print a message if this signal happens.\n\
7186 Pass means let program see this signal; otherwise program doesn't know.\n\
7187 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7188 Pass and Stop may be combined.\n\
7189 \n\
7190 Multiple signals may be specified. Signal numbers and signal names\n\
7191 may be interspersed with actions, with the actions being performed for\n\
7192 all signals cumulatively specified."));
7193 set_cmd_completer (c, handle_completer);
7194
7195 if (xdb_commands)
7196 {
7197 add_com ("lz", class_info, signals_info, _("\
7198 What debugger does when program gets various signals.\n\
7199 Specify a signal as argument to print info on that signal only."));
7200 add_com ("z", class_run, xdb_handle_command, _("\
7201 Specify how to handle a signal.\n\
7202 Args are signals and actions to apply to those signals.\n\
7203 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7204 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7205 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7206 The special arg \"all\" is recognized to mean all signals except those\n\
7207 used by the debugger, typically SIGTRAP and SIGINT.\n\
7208 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7209 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7210 nopass), \"Q\" (noprint)\n\
7211 Stop means reenter debugger if this signal happens (implies print).\n\
7212 Print means print a message if this signal happens.\n\
7213 Pass means let program see this signal; otherwise program doesn't know.\n\
7214 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7215 Pass and Stop may be combined."));
7216 }
7217
7218 if (!dbx_commands)
7219 stop_command = add_cmd ("stop", class_obscure,
7220 not_just_help_class_command, _("\
7221 There is no `stop' command, but you can set a hook on `stop'.\n\
7222 This allows you to set a list of commands to be run each time execution\n\
7223 of the program stops."), &cmdlist);
7224
7225 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7226 Set inferior debugging."), _("\
7227 Show inferior debugging."), _("\
7228 When non-zero, inferior specific debugging is enabled."),
7229 NULL,
7230 show_debug_infrun,
7231 &setdebuglist, &showdebuglist);
7232
7233 add_setshow_boolean_cmd ("displaced", class_maintenance,
7234 &debug_displaced, _("\
7235 Set displaced stepping debugging."), _("\
7236 Show displaced stepping debugging."), _("\
7237 When non-zero, displaced stepping specific debugging is enabled."),
7238 NULL,
7239 show_debug_displaced,
7240 &setdebuglist, &showdebuglist);
7241
7242 add_setshow_boolean_cmd ("non-stop", no_class,
7243 &non_stop_1, _("\
7244 Set whether gdb controls the inferior in non-stop mode."), _("\
7245 Show whether gdb controls the inferior in non-stop mode."), _("\
7246 When debugging a multi-threaded program and this setting is\n\
7247 off (the default, also called all-stop mode), when one thread stops\n\
7248 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7249 all other threads in the program while you interact with the thread of\n\
7250 interest. When you continue or step a thread, you can allow the other\n\
7251 threads to run, or have them remain stopped, but while you inspect any\n\
7252 thread's state, all threads stop.\n\
7253 \n\
7254 In non-stop mode, when one thread stops, other threads can continue\n\
7255 to run freely. You'll be able to step each thread independently,\n\
7256 leave it stopped or free to run as needed."),
7257 set_non_stop,
7258 show_non_stop,
7259 &setlist,
7260 &showlist);
7261
7262 numsigs = (int) GDB_SIGNAL_LAST;
7263 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7264 signal_print = (unsigned char *)
7265 xmalloc (sizeof (signal_print[0]) * numsigs);
7266 signal_program = (unsigned char *)
7267 xmalloc (sizeof (signal_program[0]) * numsigs);
7268 signal_catch = (unsigned char *)
7269 xmalloc (sizeof (signal_catch[0]) * numsigs);
7270 signal_pass = (unsigned char *)
7271 xmalloc (sizeof (signal_program[0]) * numsigs);
7272 for (i = 0; i < numsigs; i++)
7273 {
7274 signal_stop[i] = 1;
7275 signal_print[i] = 1;
7276 signal_program[i] = 1;
7277 signal_catch[i] = 0;
7278 }
7279
7280 /* Signals caused by debugger's own actions
7281 should not be given to the program afterwards. */
7282 signal_program[GDB_SIGNAL_TRAP] = 0;
7283 signal_program[GDB_SIGNAL_INT] = 0;
7284
7285 /* Signals that are not errors should not normally enter the debugger. */
7286 signal_stop[GDB_SIGNAL_ALRM] = 0;
7287 signal_print[GDB_SIGNAL_ALRM] = 0;
7288 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7289 signal_print[GDB_SIGNAL_VTALRM] = 0;
7290 signal_stop[GDB_SIGNAL_PROF] = 0;
7291 signal_print[GDB_SIGNAL_PROF] = 0;
7292 signal_stop[GDB_SIGNAL_CHLD] = 0;
7293 signal_print[GDB_SIGNAL_CHLD] = 0;
7294 signal_stop[GDB_SIGNAL_IO] = 0;
7295 signal_print[GDB_SIGNAL_IO] = 0;
7296 signal_stop[GDB_SIGNAL_POLL] = 0;
7297 signal_print[GDB_SIGNAL_POLL] = 0;
7298 signal_stop[GDB_SIGNAL_URG] = 0;
7299 signal_print[GDB_SIGNAL_URG] = 0;
7300 signal_stop[GDB_SIGNAL_WINCH] = 0;
7301 signal_print[GDB_SIGNAL_WINCH] = 0;
7302 signal_stop[GDB_SIGNAL_PRIO] = 0;
7303 signal_print[GDB_SIGNAL_PRIO] = 0;
7304
7305 /* These signals are used internally by user-level thread
7306 implementations. (See signal(5) on Solaris.) Like the above
7307 signals, a healthy program receives and handles them as part of
7308 its normal operation. */
7309 signal_stop[GDB_SIGNAL_LWP] = 0;
7310 signal_print[GDB_SIGNAL_LWP] = 0;
7311 signal_stop[GDB_SIGNAL_WAITING] = 0;
7312 signal_print[GDB_SIGNAL_WAITING] = 0;
7313 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7314 signal_print[GDB_SIGNAL_CANCEL] = 0;
7315
7316 /* Update cached state. */
7317 signal_cache_update (-1);
7318
7319 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7320 &stop_on_solib_events, _("\
7321 Set stopping for shared library events."), _("\
7322 Show stopping for shared library events."), _("\
7323 If nonzero, gdb will give control to the user when the dynamic linker\n\
7324 notifies gdb of shared library events. The most common event of interest\n\
7325 to the user would be loading/unloading of a new library."),
7326 set_stop_on_solib_events,
7327 show_stop_on_solib_events,
7328 &setlist, &showlist);
7329
7330 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7331 follow_fork_mode_kind_names,
7332 &follow_fork_mode_string, _("\
7333 Set debugger response to a program call of fork or vfork."), _("\
7334 Show debugger response to a program call of fork or vfork."), _("\
7335 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7336 parent - the original process is debugged after a fork\n\
7337 child - the new process is debugged after a fork\n\
7338 The unfollowed process will continue to run.\n\
7339 By default, the debugger will follow the parent process."),
7340 NULL,
7341 show_follow_fork_mode_string,
7342 &setlist, &showlist);
7343
7344 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7345 follow_exec_mode_names,
7346 &follow_exec_mode_string, _("\
7347 Set debugger response to a program call of exec."), _("\
7348 Show debugger response to a program call of exec."), _("\
7349 An exec call replaces the program image of a process.\n\
7350 \n\
7351 follow-exec-mode can be:\n\
7352 \n\
7353 new - the debugger creates a new inferior and rebinds the process\n\
7354 to this new inferior. The program the process was running before\n\
7355 the exec call can be restarted afterwards by restarting the original\n\
7356 inferior.\n\
7357 \n\
7358 same - the debugger keeps the process bound to the same inferior.\n\
7359 The new executable image replaces the previous executable loaded in\n\
7360 the inferior. Restarting the inferior after the exec call restarts\n\
7361 the executable the process was running after the exec call.\n\
7362 \n\
7363 By default, the debugger will use the same inferior."),
7364 NULL,
7365 show_follow_exec_mode_string,
7366 &setlist, &showlist);
7367
7368 add_setshow_enum_cmd ("scheduler-locking", class_run,
7369 scheduler_enums, &scheduler_mode, _("\
7370 Set mode for locking scheduler during execution."), _("\
7371 Show mode for locking scheduler during execution."), _("\
7372 off == no locking (threads may preempt at any time)\n\
7373 on == full locking (no thread except the current thread may run)\n\
7374 step == scheduler locked during every single-step operation.\n\
7375 In this mode, no other thread may run during a step command.\n\
7376 Other threads may run while stepping over a function call ('next')."),
7377 set_schedlock_func, /* traps on target vector */
7378 show_scheduler_mode,
7379 &setlist, &showlist);
7380
7381 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7382 Set mode for resuming threads of all processes."), _("\
7383 Show mode for resuming threads of all processes."), _("\
7384 When on, execution commands (such as 'continue' or 'next') resume all\n\
7385 threads of all processes. When off (which is the default), execution\n\
7386 commands only resume the threads of the current process. The set of\n\
7387 threads that are resumed is further refined by the scheduler-locking\n\
7388 mode (see help set scheduler-locking)."),
7389 NULL,
7390 show_schedule_multiple,
7391 &setlist, &showlist);
7392
7393 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7394 Set mode of the step operation."), _("\
7395 Show mode of the step operation."), _("\
7396 When set, doing a step over a function without debug line information\n\
7397 will stop at the first instruction of that function. Otherwise, the\n\
7398 function is skipped and the step command stops at a different source line."),
7399 NULL,
7400 show_step_stop_if_no_debug,
7401 &setlist, &showlist);
7402
7403 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7404 &can_use_displaced_stepping, _("\
7405 Set debugger's willingness to use displaced stepping."), _("\
7406 Show debugger's willingness to use displaced stepping."), _("\
7407 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7408 supported by the target architecture. If off, gdb will not use displaced\n\
7409 stepping to step over breakpoints, even if such is supported by the target\n\
7410 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7411 if the target architecture supports it and non-stop mode is active, but will not\n\
7412 use it in all-stop mode (see help set non-stop)."),
7413 NULL,
7414 show_can_use_displaced_stepping,
7415 &setlist, &showlist);
7416
7417 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7418 &exec_direction, _("Set direction of execution.\n\
7419 Options are 'forward' or 'reverse'."),
7420 _("Show direction of execution (forward/reverse)."),
7421 _("Tells gdb whether to execute forward or backward."),
7422 set_exec_direction_func, show_exec_direction_func,
7423 &setlist, &showlist);
7424
7425 /* Set/show detach-on-fork: user-settable mode. */
7426
7427 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7428 Set whether gdb will detach the child of a fork."), _("\
7429 Show whether gdb will detach the child of a fork."), _("\
7430 Tells gdb whether to detach the child of a fork."),
7431 NULL, NULL, &setlist, &showlist);
7432
7433 /* Set/show disable address space randomization mode. */
7434
7435 add_setshow_boolean_cmd ("disable-randomization", class_support,
7436 &disable_randomization, _("\
7437 Set disabling of debuggee's virtual address space randomization."), _("\
7438 Show disabling of debuggee's virtual address space randomization."), _("\
7439 When this mode is on (which is the default), randomization of the virtual\n\
7440 address space is disabled. Standalone programs run with the randomization\n\
7441 enabled by default on some platforms."),
7442 &set_disable_randomization,
7443 &show_disable_randomization,
7444 &setlist, &showlist);
7445
7446 /* ptid initializations */
7447 inferior_ptid = null_ptid;
7448 target_last_wait_ptid = minus_one_ptid;
7449
7450 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7451 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7452 observer_attach_thread_exit (infrun_thread_thread_exit);
7453 observer_attach_inferior_exit (infrun_inferior_exit);
7454
7455 /* Explicitly create without lookup, since that tries to create a
7456 value with a void typed value, and when we get here, gdbarch
7457 isn't initialized yet. At this point, we're quite sure there
7458 isn't another convenience variable of the same name. */
7459 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7460
7461 add_setshow_boolean_cmd ("observer", no_class,
7462 &observer_mode_1, _("\
7463 Set whether gdb controls the inferior in observer mode."), _("\
7464 Show whether gdb controls the inferior in observer mode."), _("\
7465 In observer mode, GDB can get data from the inferior, but not\n\
7466 affect its execution. Registers and memory may not be changed,\n\
7467 breakpoints may not be set, and the program cannot be interrupted\n\
7468 or signalled."),
7469 set_observer_mode,
7470 show_observer_mode,
7471 &setlist,
7472 &showlist);
7473 }